WorldWideScience

Sample records for 2d ir spectroscopy

  1. A salt-bridge structure in solution revealed by 2D-IR spectroscopy

    Huerta-Viga, Adriana; Domingos, Sérgio R.; Amirjalayer, Saeed; Woutersen, Sander

    2014-07-01

    Salt bridges are known to be important for the stability of protein conformation, but up to now it has been difficult to study their geometry in solution. Here we characterize the spatial structure of a model salt bridge between guanidinium (Gdm+) and acetate (Ac-) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridging the infrared response of Gdm+ and Ac- change significantly, and in the 2D-IR spectrum, salt bridging of the molecules appears as cross peaks. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes involved in the salt bridge, as well as the coupling between them. In this manner we reconstruct the geometry of the solvated salt bridge.

  2. Structure of a model salt bridge in solution investigated with 2D-IR spectroscopy

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Woutersen, Sander

    2013-01-01

    Salt bridges are known to be important for the stability of protein conformation, but up to now it has been difficult to study their geometry in solution. Here we characterize the spatial structure of a model salt bridge between guanidinium (Gdm+) and acetate (Ac-) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridging the infrared response of Gdm+ and Ac- change significantly, and in the 2D-IR spectrum, salt bridging of the molecules appears as cross peaks. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes involved in the salt bridge, as well as the coupling between them. In this manner we reconstruct the geometry of the solvated salt bridge.

  3. A salt-bridge structure in solution revealed by 2D-IR spectroscopy.

    Huerta-Viga, Adriana; Domingos, Sérgio R; Amirjalayer, Saeed; Woutersen, Sander

    2014-08-14

    Salt bridges are important interactions for the stability of protein conformations, but up to now it has been difficult to determine salt-bridge geometries in solution. Here we characterize the spatial structure of a salt bridge between guanidinium (Gdm(+)) and acetate (Ac(-)) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridge formation there is a significant change in the infrared response of Gdm(+) and Ac(-), and cross peaks between them appear in the 2D-IR spectrum. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes of Gdm(+) and Ac(-), as well as the coupling between them. PMID:24676430

  4. Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.

    Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D

    2016-08-01

    Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods. PMID:27385320

  5. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  6. Probing Intermolecular Interactions in Polycyclic Aromatic Hydrocarbons with 2D IR Spectroscopy

    Krummel, Amber

    2014-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment and impact geochemical processes that are critical to sustainable energy resources. For example, asphaltenes exist naturally in geologic formations and their aggregates heavily impact the petroleum economy. Unfortunately, the chemical dynamics that drive asphaltene nanoaggregation processes are still poorly understood. Solvent dynamics and intermolecular interactions such as π-stacking interactions play integral roles in asphaltene nanoaggregation. Linear and nonlinear vibrational spectroscopy including two-dimensional infrared spectroscopy (2DIR), are well suited to explore these fundamental interactions. Teasing apart the vibrational characteristics in PAHs that model asphaltenic compounds represents an important step towards utilizing 2D IR spectroscopy to understand the intermolecular interactions that are prevalent in asphaltene nanoaggregation. A solar dye, N,N'-Dioctyl-3,4,9,10-perylenedicarboximide, is used in this work to model aphaltenes. Carbonyl and ring vibrations are used to probe the nanoaggregates of the model compounds. However, the characteristics of these normal modes change as a function of the size of the conjugated ring system. Thus, in order to fully understand the nature of these normal modes, we include a systematic study of a series of quinones. Our investigation employs a combination of 2DIR spectroscopy and electronic structure calculations to explore vibrational coupling in quinones and PAHs. We compare the calculated vibrational characteristics to those extracted from 2DIR spectra. ATK acknowledges the Donors of the American Chemical Society Petroleum Research Fund for support of this research.

  7. Interrogating Fiber Formation Kinetics with Automated 2D-IR Spectroscopy

    Strasfeld, David B.; Ling, Yun L.; Shim, Sang-Hee; Zanni, Martin T.

    A new method for collecting 2D-IR spectra that utilizes both a pump-probe beam geometry and a mid-IR pulse shaper is used to gain a fuller understanding of fiber formation in the human islet amyloid polypeptide (hIAPP). We extract structural kinetics in order to better understand aggregation in hIAPP, the protein component of the amyloid fibers found to inhibit insulin production in type II diabetes patients.

  8. Earle K. Plyler Prize for Molecular Spectroscopy and Dynamics Lecture: 2D IR Spectroscopy of Peptide Conformation

    Tokmakoff, Andrei

    2012-02-01

    Descriptions of protein and peptide conformation are colored by the methods we use to study them. Protein x-ray and NMR structures often lead to impressions of rigid or well-defined conformations, even though these are dynamic molecules. The conformational fluctuations and disorder of proteins and peptides is more difficult to quantify. This presentation will describe an approach toward characterizing and quantifying structural heterogeneity and disorder in peptides using 2D IR spectroscopy. Using amide I vibrational spectroscopy, isotope labeling strategies, and computational modeling based on molecular dynamics simulations and Markov state models allows us to characterize distinct peptide conformers and conformational variation. The examples illustrated include the beta-hairpin tripzip2 and elastin-like peptides.

  9. Observation of kinetic networks of hydrogen-bond exchange using 2D IR echo spectroscopy

    Kim, Yung Sam; Hochstrasser, Robin M.

    The ultrafast H-bond motion in acetonitrile/methanol and of methanol and water around a dicarbonyl (piperidone) dominates the mechanism of vibrational coherence transfer in linear and 2D IR echo spectra. Multiple state coherence transfer and energy transfer are seen at and between the two carbonyl groups of the piperidone in both water and methanol.

  10. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz. PMID:26907062

  11. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  12. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    Popescu, Maria-Cristina, E-mail: cpopescu@icmpp.ro [' Petru Poni' Institute of Macromolecular Chemistry (Romania); Gomez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz [Universidad de Alcala, Departamento de Quimica Inorganica (Spain); Simionescu, Bogdan C. [' Petru Poni' Institute of Macromolecular Chemistry (Romania)

    2013-06-15

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010-2,710, 1,530-1,170, and 1,170-625 cm{sup -1} regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 Degree-Sign C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si-O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH{sub 3} and CH{sub 3}-N{sup +} groups take place first. With increasing temperature, the intensity variation of the CH{sub 2}, C-N, Si-C and C-C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  13. Hydrogen-bond lifetime measured by time-resolved 2D-IR spectroscopy: N-methylacetamide in methanol

    Woutersen, S.; Mu, Y.; Stock, G.; Hamm, P.

    2001-05-01

    2D vibrational spectroscopy is applied to investigate the equilibrium dynamics of hydrogen bonding of N-methylacetamide (NMA) dissolved in methanol- d4. For this particular solute-solvent system, roughly equal populations are found for two conformers of the solute-solvent complex, one of which forms a hydrogen bond from the CO group of NMA to the surrounding solvent, and one of which does not. Using time-resolved 2D-IR spectroscopy on the amide I band of NMA, the exchange between both conformers is resolved. Equilibration of each conformer is completed after 4.5 ps, while the formation and breaking of the hydrogen bond occurs on a slower, 10-15 ps time scale. This interpretation is supported by classical molecular-dynamics simulations of NMA in methanol. The calculations predict a 64% population of the hydrogen-bonded conformer and an average hydrogen-bond lifetime of ≈12 ps.

  14. Ultrafast slaving dynamics at the protein-water interface studied with 2D-IR spectroscopy

    Kubarych K. J.

    2013-03-01

    Full Text Available The dynamics of hen egg white lysozyme in D2O/glycerol mixtures is studied using two-dimensional infrared spectroscopy. The hydration dynamics and the protein dynamics are studied simultaneously through vibrational probes attached to the protein surface.

  15. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics

    Reppert, Mike; Tokmakoff, Andrei

    2016-05-01

    Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications.

  16. Azide-water intermolecular coupling measured by 2-color 2D IR spectroscopy

    Perakis F.

    2013-03-01

    Full Text Available We present 2-color two-dimensional infrared spectroscopy of intermolecular coupling between azide ions and their solvation shell water molecules. The cross-peak between azide asymmetric stretch vibration and the OD-stretch vibration is a result of low- probability uphill population transfer. Narrow bleach/excited state absorption peak shows selectivity to solvation shell water molecules only and the characteristics of the cross-peak suggest that the solvation shell hydrogen bond potential has similar anharmonic properties as the hydrogen bond in ice Ih. Population and depopulation of the excited state of the OD-stretch vibration happen on 150 fs and 1.7 ps timescales, respectively, with early manifesting heating effects that limit the selectivity to population times up to 1 ps.

  17. 2D-IR spectroscopy of hydrogen-bond-mediated vibrational excitation transfer.

    Chuntonov, Lev

    2016-05-18

    Vibrational excitation transfer along the hydrogen-bond-mediated pathways in the complex of methyl acetate (MA) and 4-cyanophenol (4CP) was studied by dual-frequency femtosecond two-dimensional infrared spectroscopy. We excited the energy-donating ester carbonyl stretching vibrational mode and followed the transfer to the energy-accepting benzene ring and cyano stretching vibrations. The complexes with no, one, and two hydrogen-bonded 4CP molecules were studied. Vibrational relaxation of the carbonyl mode is more efficient in both hydrogen-bonded complexes as compared with free MA molecules. The inter-molecular transport in a hydrogen-bonded complex involving a single 4CP molecule is slower than that in a complex with two 4CP molecules. In the former, vibrational relaxation leads to local heating, as shown by the spectroscopy of the carbonyl mode, whereas the local heating is suppressed in the latter because the excitation redistribution is more efficient. At early times, the transfer to the benzene ring is governed by its direct coupling with the energy-donating carbonyl mode, whereas at later times intermediate states are involved. The transfer to a more distant site of the cyano group in 4CP involves intermediate states at all times, since no direct coupling between the energy-donating and accepting modes was observed. We anticipate that our findings will be of importance for spectroscopic studies of bio-molecular structures and dynamics, and inter- and intra-molecular signaling pathways, and for developing molecular networking applications. PMID:27145861

  18. Communication: nanosecond folding dynamics of an alpha helix: time-dependent 2D-IR cross peaks observed using polarization-sensitive dispersed pump-probe spectroscopy.

    Panman, Matthijs R; van Dijk, Chris N; Meuzelaar, Heleen; Woutersen, S

    2015-01-28

    We present a simple method to measure the dynamics of cross peaks in time-resolved two-dimensional vibrational spectroscopy. By combining suitably weighted dispersed pump-probe spectra, we eliminate the diagonal contribution to the 2D-IR response, so that the dispersed pump-probe signal contains the projection of only the cross peaks onto one of the axes of the 2D-IR spectrum. We apply the method to investigate the folding dynamics of an alpha-helical peptide in a temperature-jump experiment and find characteristic folding and unfolding time constants of 260 ± 30 and 580 ± 70 ns at 298 K. PMID:25637962

  19. Communication: Nanosecond folding dynamics of an alpha helix: Time-dependent 2D-IR cross peaks observed using polarization-sensitive dispersed pump-probe spectroscopy

    Panman, Matthijs R.; van Dijk, Chris N.; Meuzelaar, Heleen; Woutersen, S.

    2015-01-01

    We present a simple method to measure the dynamics of cross peaks in time-resolved two-dimensional vibrational spectroscopy. By combining suitably weighted dispersed pump-probe spectra, we eliminate the diagonal contribution to the 2D-IR response, so that the dispersed pump-probe signal contains the projection of only the cross peaks onto one of the axes of the 2D-IR spectrum. We apply the method to investigate the folding dynamics of an alpha-helical peptide in a temperature-jump experiment and find characteristic folding and unfolding time constants of 260 ± 30 and 580 ± 70 ns at 298 K.

  20. 2D IR Spectroscopy of Histidine: Probing Side-Chain Structure and Dynamics via Backbone Amide Vibrations

    Ghosh, Ayanjeet; Tucker, Matthew J.; Gai, Feng

    2014-01-01

    It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrationa...

  1. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution. PMID:26049464

  2. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  3. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    Two Keggin-type heteropolytungstates, [Co(phen)3]3[CoW12O40]·9H2O 1 (phen=1,10-phenanthroline) and [Fe(phen)3]2[FeW12O40]·H3O·H2O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)3]2+ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm−1, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. - Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate

  4. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    Ghosh, Ayanjeet, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Gai, Feng, E-mail: ayanjeet@sas.upenn.edu, E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M. [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Wang, Jun; DeGrado, William F. [Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143 (United States); Moroz, Yurii S.; Korendovych, Ivan V. [Department of Chemistry, Syracuse University, Syracuse, New York 13244 (United States); Zanni, Martin [Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  5. Interplay of Ion-Water and Water-Water Interactions within the Hydration Shells of Nitrate and Carbonate Directly Probed with 2D IR Spectroscopy.

    Fournier, Joseph A; Carpenter, William; De Marco, Luigi; Tokmakoff, Andrei

    2016-08-01

    The long-range influence of ions in solution on the water hydrogen-bond (H-bond) network remains a topic of vigorous debate. Recent spectroscopic and theoretical studies have, for the most part, reached the consensus that weakly coordinating ions only affect water molecules in the first hydration shell. Here, we apply ultrafast broadband two-dimensional infrared (2D IR) spectroscopy to aqueous nitrate and carbonate in neat H2O to study the solvation structure and dynamics of ions on opposite ends of the Hofmeister series. By exciting both the water OH stretches and ion stretches and probing the associated cross-peaks between them, we are afforded a comprehensive view into the complex nature of ion hydration. We show in aqueous nitrate that weak ion-water H-bonding leads to water-water interactions in the ion solvation shells dominating the dynamics. In contrast, the carbonate CO stretches show significant mixing with the water OH stretches due to strong ion-water H-bonding such that the water and ion modes are intimately correlated. Further, the excitonic nature of vibrations in neat H2O, which spans multiple water molecules, is an important factor in describing ion hydration. We attribute these complex dynamics to the likely presence of intermediate-range effects influenced by waters beyond the first solvation shell. PMID:27404015

  6. Protein Denaturation with Guanidinium: A 2D-IR Study

    Huerta-Viga, Adriana; Woutersen, Sander

    2013-01-01

    Guanidinium (Gdm+) is a widely used denaturant, but it is still largely unknown how it operates at the molecular level. In particular, the effect of guanidinium on the different types of secondary structure motifs of proteins is at present not clear. Here, we use two-dimensional infrared spectroscopy (2D-IR) to investigate changes in the secondary structure of two proteins with mainly α-helical or β-sheet content upon addition of Gdm-13C15N3·Cl. We find that upon denaturation, the β-sheet pro...

  7. Ultrafast vibrational spectroscopy (2D-IR) of CO{sub 2} in ionic liquids: Carbon capture from carbon dioxide’s point of view

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean, E-mail: sgr@pitt.edu [Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260 (United States)

    2015-06-07

    The CO{sub 2}ν{sub 3} asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO{sub 2} is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C{sub 4}C{sub 1}im][X], where [X]{sup −} is the anion from the series hexafluorophosphate (PF{sub 6}{sup −}), tetrafluoroborate (BF{sub 4}{sup −}), bis-(trifluoromethyl)sulfonylimide (Tf{sub 2}N{sup −}), triflate (TfO{sup −}), trifluoroacetate (TFA{sup −}), dicyanamide (DCA{sup −}), and thiocyanate (SCN{sup −})). In the ionic liquids studied, the ν{sub 3} center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO{sub 2} and from CO{sub 2} to the cation. The charge transfer drives geometrical distortion of CO{sub 2}, which in turn changes the ν{sub 3} frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν{sub 2} and ν{sub 3} normal modes of CO{sub 2}. Thermal fluctuations in the ν{sub 2} population stochastically modulate the ν{sub 3} frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO{sub 2}. The results suggest that the picosecond dynamics of CO{sub 2} are gated by local diffusion of anions and cations.

  8. Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-01

    The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X]- is the anion from the series hexafluorophosphate (PF 6- ), tetrafluoroborate (BF 4- ), bis-(trifluoromethyl)sulfonylimide (Tf2N-), triflate (TfO-), trifluoroacetate (TFA-), dicyanamide (DCA-), and thiocyanate (SCN-)). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.

  9. Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide’s point of view

    The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X]− is the anion from the series hexafluorophosphate (PF6−), tetrafluoroborate (BF4−), bis-(trifluoromethyl)sulfonylimide (Tf2N−), triflate (TfO−), trifluoroacetate (TFA−), dicyanamide (DCA−), and thiocyanate (SCN−)). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations

  10. Study on the Processing of Leech by FTIR and 2D-IR Correlation Spectroscopy%应用红外光谱技术研究中药水蛭的炮制过程

    李冰宁; 武彦文; 欧阳杰; 孙素琴; 陈舜琮

    2011-01-01

    考察水蚝炮制前后化学成分产生的变化,文章采用红外光谱(FTlR)二维相关红外谱图(2D-IR)对中药水蛭鲜品和制品进行了研究.结果表明:水蛭具有明显的酰胺Ⅰ和Ⅱ带蛋白质特征峰,其中鲜品的酰胺Ⅱ带吸收峰在1543 cm-1,而生品和炮制品的向低频位移至1 535cm-1;采用热微扰模拟水蛭炮制过程并分析水蛭的2D-IR,结果显示水蛭鲜品中的酰胺Ⅰ带与酰胺Ⅱ带的自动峰的强度比炮制品的更为显著.说明水蛭在炮制过程中蛋白质的空间构象破损、氢键断裂,导致变性失活,部分脂肪酸和甾醇类组分在炮制中发生氧化分解.%The chemical differences of traditional Chinese medicine leech before and after processing were analyzed by FTIR and two-dimensional correlation infrared (2D-IR) spectroscopy. The result showed that the leech was high in protein, with characteristic peaks of amide Ⅰ, Ⅱ bands. Comparing the IR spectra of samples, the primary difference was that the characteristic peak of fresh leech was at 1 543 cm-1, while that of crude and processed leech was at 1 535 cm-1. A 2D-IR spectrum with heating perturbation was used to track the processing dynamics of leech. In the 2D-IR correlation spectra, fresh leech exhibited stronger automatic peaks of the amide Ⅰ and Ⅱ hands than that of processed leech, which indicates that the protein components of the fresh leech were more sensitive to heat perturhation than the processed one. Moreover, the result of FTIR and 2D-IR correlation spectra validated that the 3-dimensional structure of protein was damaged and hydrogen bonds were broken after processing, which resulted in the inactivation of protein. The fatty acids and cholesterol components of leech were also oxidized in this process.

  11. Protein Denaturation with Guanidinium: A 2D-IR Study.

    Huerta-Viga, Adriana; Woutersen, Sander

    2013-10-17

    Guanidinium (Gdm(+)) is a widely used denaturant, but it is still largely unknown how it operates at the molecular level. In particular, the effect of guanidinium on the different types of secondary structure motifs of proteins is at present not clear. Here, we use two-dimensional infrared spectroscopy (2D-IR) to investigate changes in the secondary structure of two proteins with mainly α-helical or β-sheet content upon addition of Gdm-(13)C(15)N3·Cl. We find that upon denaturation, the β-sheet protein shows a complete loss of β-sheet structure, whereas the α-helical protein maintains most of its secondary structure. These results suggest that Gdm(+) disrupts β-sheets much more efficiently than α-helices, possibly because in the former, hydrophobic interactions are more important and the number of dangling hydrogen bonds is larger. PMID:24163724

  12. Internal Photoemission Spectroscopy of 2-D Materials

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  13. Localised IR spectroscopy of hemoglobin

    Yarrow, Fiona

    2010-01-01

    IR absorption spectroscopy of hemoglobin was performed using an IR optical parametric oscillator laser and a commercial atomic force microscope in a novel experimental arrangement based on the use of a bottom-up excitation alignment. This experimental approach enables detection of protein samples with a resolution that is much higher than that of standard IR spectroscopy. Presented here are AFM based IR absorption spectra of micron sized hemoglobin features

  14. Moessbauer spectroscopy with 191193Ir

    The contributions made by Ir Moessbauer spectroscopy to the determination of nuclear parameters, as well as applications in solid state physics and chemistry, are reviewed. In addition, a brief description of experimental techniques and source preparation procedures is given. (Auth.)

  15. Photocurrent spectroscopy of 2D materials

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  16. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  17. 不同产地茯苓皮药材红外光谱的识别%Analysis and Identification of Poria Cocos Peels Harvested form Different Producing Areas by FTIR and 2D-IR Correlation Spectroscopy

    马芳; 张方; 汤进; 陈平; 陈建波; 周群; 孙素琴

    2014-01-01

    Different geographical regions of traditional Chinese medicine (TCM ) ,its chemical composition is different ,the accu-mulation of drug and medicinal properties is different .The accurate identification and analysis of different production area of me-dicinal herbs is critical for the quality control and pharmacological research of TCM .In this paper ,a tri-step infrared spectrosco-py (Fourier transform infrared spectroscopy (FTIR) combined with second derivative spectra and two-dimensional correlation in-frared spectroscopy (2D-COS) were employed to identify and analyze the main components of Hubei(HB) ,Anhui(AH) ,Yun-nan(YN) genuine Poria Cocos peels .The emergence of several characteristic absorption peaks of carbohydrates including 1 149 , 1 079 1 036 cm -1 ,peaks around 1 619 ,1 315 ,780 cm -1 belonged to calcium oxalate suggested that HB and AH Poria Cocos peels contained calcium oxalate ,but peaks around 797 ,779 ,537 ,470 cm -1 belonged to kaoline suggested that YN Poria Cocos peels contained kaoline .Their carbohydrates were different by comparing the second derivative infrared spectra in the range of 1 640~450 cm -1 and Yongping come from YN contains both calcium oxalate and kaoline .Furthermore ,the above differences were visually validated by two-dimensional correlation spectroscopy (2D-COS) .It was demonstrated that the Tri-step infrared spectroscopy were successfully applied to fast analyze and identify Poria Cocos peels from different geographical regions and sub-sequently would be applicable to explain the relevance of geographical regions and medicinal properties for the TCM .%采用红外光谱、二阶导数光谱和二维相关红外光谱对大别山地区和云南省两大道地主产区的茯苓皮进行鉴别分析。结果表明,不同产地茯苓皮的红外光谱都有1149,1079和1036 cm -1等表征糖类成分的特征吸收峰,其中大别山产区(湖北省、安徽省)的茯苓皮中1619,1315和780 cm -1等表征草酸钙

  18. Determining Transition State Geometries in Liquids Using 2D-IR

    Harris, Charles; Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.

    2007-12-11

    Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.

  19. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local in

  20. Quantum process tomography by 2D fluorescence spectroscopy

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  1. Quantum process tomography by 2D fluorescence spectroscopy

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed

  2. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  3. Differentiation of five species of Danggui raw materials by FTIR combined with 2D-COS IR

    Li, Jian-Rui; Sun, Su-Qin; Wang, Xiao-Xiao; Xu, Chang-Hua; Chen, Jian-Bo; Zhou, Qun; Lu, Guang-Hua

    2014-07-01

    Five herbs named as Chinese Danggui (CDG), Japanese Danggui (JDG), Korea Danggui (KDG), Lovage root (LR) and Angelica root (AR) are widely and confusedly used in eastern and western countries owing to their homonym. These herbs come from different plant species resulting in the variety of bioactive components and medical efficacy. A method combing tri-step IR macro-fingerprinting techniques with statistical pattern recognition was therefore employed discriminate the five herbs in order to assure their genuineness. A total of 26 samples were collected and identified by conventional Fourier transform infrared (FTIR) spectroscopy, second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-COS IR) spectroscopy. CDG and KDG were easily differentiated from others herbs by FTIR and SD-IR spectra. The characteristic peaks of CDG were located at 1068, 1051, 990, 909 and 867 cm-1, whilst KDG contained the peaks located at 1628, 1565, 1392, 1232 and 1136 cm-1. By 2D-COS IR spectra, the bands in the range of 950-1110 cm-1 could be a characteristic range to identify the five herbs. There were six auto-peaks located at 978, 991, 1028 (strongest), 1061, 1071 and 1097 cm-1 for CDG, six auto-peaks at 975, 991, 1026, 1053, 1070 (strongest) and 1096 cm-1 for KDG, five auto-peaks at 970, 1009, 1037, 1070 and 1096 (strongest) cm-1 for JDG, five auto-peaks at 973 (strongest), 1009, 1033, 1072 and 1099 cm-1 for LR, and five auto-peaks at 974 (strongest), 1010, 1033, 1072 and 1099 cm-1 for AR. Classification analysis of FTIR showed that these species located in different clusters. The results indicate the tri-step infrared macro-fingerprinting combines with principle component analysis (PCA) is suitable to rapidly and nondestructively differentiate these herbs.

  4. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  5. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 1816-1821. ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  6. [Research on parching procedure of white mustard seed with fourier transform infrared spectroscopy and two-dimensional IR correlation spectroscopy].

    Yu, Lu; Sun, Su-qin; Zhou, Qun; Qin, Zhu

    2006-12-01

    Using multi-steps macro-fingerprint infrared (IR) spectroscopy, which combines three steps: conventional Fourier transform infrared spectroscopy (FTIR), second derivative spectroscopy, and two-dimensional infrared (2D-IR) correlation spectroscopy, the authors tracked dynamically the parching procedure of mustard seed to analyze the main transformation during the process. Compared with conventional IR spectra of samples parched for different time, the authors found that the characteristic peaks of protein decreased gradually, indicating the reduction of protein with the parching process, maybe because under a longtime parching procedure the heat denaturation occurred in protein compound. In addition, the essence of enzyme was protein, therefore, its transformation trend was closely related to that of protein, which also underwent heat denaturation. The absorption peak around 1 055 cm(-1), which was due to the vibrations of fibred saccharides, began to minish rapidly at early time, then vanished after ten minutes because of the decomposition of fibred saccharides at the beginning of the process. Moreover the results of second derivative spectroscopy and 2D IR correlation spectroscopy validated that of conventional IR spectroscopy, which also indicated the heat denaturation of enzyme and decomposition of saccharides. This multi-steps macro-fingerprint IR spectroscopy method can track dynamically the processing procedure of medicinal herbs and reveal the main transformations; it must play an important role in studying medicinal herbs in the future. PMID:17361704

  7. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao

    2008-06-01

    As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.

  8. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  9. Thermalization in 2D critical quench and UV/IR mixing

    Mandal, Gautam; Sorokhaibam, Nilakash

    2015-01-01

    We consider quantum quenches to criticality in 2D models of free scalars and fermions with time dependent mass functions $m(t)$ and nontrivial pre-quench quantum states. We show that, as anticipated in MSS (hep-th/1501.04580), any generic quench protocol $m(t)$ leads to a wavefunction of the generalized Calabrese-Cardy form $|\\psi \\rangle$= $\\exp[-\\kappa_2 H -\\sum_{n>2}^\\infty \\kappa_n W_n]| Bd \\rangle$, namely, a conformal boundary state deformed by an infinite number of ${\\mathbb W}_\\infty$ charges. This extends, beyond perturbative domain, the MSS proof of thermalization to a generalized Gibbs ensemble (GGE), with chemical potentials $\\mu_n=4\\kappa_n$. We show that the equilibrium properties retain a memory of the quench protocol, which can be retrieved by applying an inverse scattering method. For specific quench protocols, we compute exact time-dependent correlators which show thermalization explicitly. A surprising aspect of these correlators is a UV/IR mixing: dependence in the IR (at long distances an...

  10. Resonant photothermal IR spectroscopy of picogram samples with microstring resonator

    Yamada, Shoko; Schmid, Silvan; Boisen, Anja

    2013-01-01

    Here, we report a demonstration of resonant photothermal IR spectroscopy using microstrings in mid-infrared region providing rapid identification of picogram samples. In our microelectromechanical resonant photothermal IR spectroscopy system, samples are deposited directly on microstrings using a...... spectra, obtained from picogram samples, suggest promising future applications of this approach....

  11. Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin

    2008-07-01

    Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.

  12. Organic structure determination using 2-D NMR spectroscopy a problem-based approach

    Simpson, Jeffrey H

    2011-01-01

    Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-Based Approach, Second Edition, provides an introduction to the use of two-dimensional (2-D) nuclear magnetic resonance (NMR) spectroscopy to determine organic structure. The book begins with a discussion of the NMR technique, while subsequent chapters cover instrumental considerations; data collection, processing, and plotting; chemical shifts; symmetry and topicity; through-bond effects; and through-space effects. The book also covers molecular dynamics; strategies for assigning resonances to atoms within a molecule; s

  13. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    Kolev, Tsonko

    2011-01-01

    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  14. Exploiting the IR: Solar and stellar spectroscopy in the IR

    Deming, Drake

    1987-01-01

    Recent instrumental advances have provided the capability to perform high resolution spectroscopy, in the thermal infrared region of the solar spectrum, with high sensitivity. The 8 to 12 micron region was extensively observed using Fourier transform (FTS) and laser heterodyne techniques. The continuous opacity of the solar atmosphere, due to H(-), increases with wavelength in the infrared region longward of 1.6 microns. Consequently thermal infrared observations probe the upper photosphere, and give an insight into the dynamics and structure of this region. The most notable spectral features in the 10 micron window include pure rotation lines of OH, and emission lines due to high-n states in MgI and AlI. The high-n lines due to MgI and AlI are important to solar and stellar physics because of their very large Zeeman sensitivity. The recent development of a cryogenic grating postdispenser for the FTS has allowed low-noise solar observations of these lines in 90 seconds. Limited mapping of the lines in a sunspot penumbra was performed, and gives information of the structure of the penumbral magnetic field. Although the MgI lines were detected in red giant spectra, instrumental sensitivity is not yet sufficient to see them in stars where significant magnetic fields are expected.

  15. A post-processing framework for localized 2D MR spectroscopy in vivo

    We propose a post-processing framework for localized two-dimensional (2D) magnetic resonance spectroscopy (MRS) in vivo. Our framework consists of corrections on eddy current and subject motion along with the framework used in conventional analytical 2D nuclear magnetic resonance (NMR) spectroscopy. In the eddy current correction, the phases of the free induction decays (FIDs) of the metabolite 1H are corrected along the t2 direction by the phase of the FID of water 1H. The corrected FIDs are Fourier transformed along the t2 direction, and interferograms of F(t1, ω2) are calculated. In the motion correction, the zero-order phase of the N-acetyl aspartate (NAA) singlet peak for each t1 axis is corrected after correction of frequency drift. We applied this framework in phantom and human brain measurements in a 4.7 T whole-body MR system. Two-dimensional data were collected by the localized 2D constant-time correlation spectroscopy (CT-COSY) sequence. We used a phantom containing a brain metabolite mixture of NAA, creatine (Cr), glutamate (Glu), glutamine (Gln) and γ-amino butyric acid (GABA). We demonstrated the eddy current correction procedure in the phantom experiments and the subject motion correction in human measurements. Though asymmetric patterns of the singlets of NAA and Cr were shown around the peak along the F2 direction in the reconstructed phantom spectra without eddy current correction, symmetric patterns arose after the correction. The t1 noise caused by those singlets was found in the human brain spectra without motion correction. The t1 noise was sufficiently suppressed by the motion correction. Our proposed post-processing framework for localized 2D MRS can improve the quality of in vivo 2D spectra and may allow improved quantitation and robustness of in vivo 2D spectroscopy. (author)

  16. 2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    Magusin, P.C.M.M.; Hemminga, M A

    1995-01-01

    Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for ...

  17. Ir Spectroscopy and Nickel (II) Hexammines

    Reedijk, J.; And Others

    1975-01-01

    Describes an experiment, for the general chemistry laboratory, intended to introduce the student to infrared spectroscopy. After being introduced to the theory of molecular vibrations on an elementary level, each student receives a list of 5-7 nickel (II) ammines to be prepared, analyzed and characterized by infrared spectoscopy. (MLH)

  18. Remote sensing by IR heterodyne spectroscopy

    Kostiuk, T.; Mumma, M. J.

    1983-01-01

    The use of infrared heterodyne spectroscopy for the study of planetary atmospheres is discussed. Infrared heterodyne spectroscopy provides a convenient and sensitive method for measuring the true intensity profiles of atmospheric spectral lines. Application of radiative transfer theory to measured lineshapes can then permit the study of molecular abundances, temperatures, total pressures, excitation conditions, and dynamics of the regions of line formation. The theory of formation of atmospheric spectral lines and the retrieval of the information contained in these molecular lines is illustrated. Notable successes of such retrievals from infrared heterodyne measurements on Venus, Mars, Jupiter and the earth are given. A discussion of developments in infrared heterodyne technology is also presented. Previously announced in STAR as N83-28551

  19. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.

    Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D

    2016-07-21

    Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid. PMID:27363680

  20. Characterization of Hydrogen Bonds by IR Spectroscopy

    Vojta, D.

    2012-05-01

    Full Text Available In the identification and quantification of hydrogen bond, as one of the most abundant non-covalent interactions in phenomena like self-assembly and molecular recognition, IR spectrosopy has been employed as the most sensitive method. The performance of the high dilution method enables determination of the stability constant of hydrogen-bonded complex as one of the most important thermodynamic quantities used in their characterization. However, the alleged experimental simplicity of the mentioned method is loaded with errors originating not only from researcher intervention but also independent from it. The second source of error is particularly emphasized and elaborated in this paper, which is designed as the recipe for the successful characterization of hydrogen bonds. Besides the enumeration of all steps in the determination of hydrogen-bonded stability constants, the reader can be acquainted with the most important ex perimental conditions that should be fulfilled in order to minimize the naturally occurring errors in this type of investigation. In the spectral analysis, the application of both uni- and multivariate approach has been discussed. Some computer packages, considering the latter, are mentioned, described, and recommended. KUI -10/2012Received August 1, 2011Accepted October 24, 2011

  1. Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy

    Lott, Geoffrey A; Utterback, James K; Widom, Julia R; Aspuru-Guzik, Alán; Marcus, Andrew H

    2011-01-01

    By applying a phase-modulation fluorescence approach to 2D electronic spectroscopy, we studied the conformation-dependent exciton-coupling of a porphyrin dimer embedded in a phospholipid bilayer membrane. Our measurements specify the relative angle and separation between interacting electronic transition dipole moments, and thus provide a detailed characterization of dimer conformation. Phase-modulation 2D fluorescence spectroscopy (PM-2D FS) produces 2D spectra with distinct optical features, similar to those obtained using 2D photon-echo spectroscopy (2D PE). Specifically, we studied magnesium meso tetraphenylporphyrin dimers, which form in the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. Comparison between experimental and simulated spectra show that while a wide range of dimer conformations can be inferred by either the linear absorption spectrum or the 2D spectrum alone, consideration of both types of spectra constrains the possible structures to a "T-shaped" geometry. The...

  2. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    Van-Han Nguyen

    2015-03-01

    Full Text Available In indoor environments, the Global Positioning System (GPS and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  3. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  4. Differentiation of enantiomers by 2D NMR spectroscopy at 1 T using residual dipolar couplings.

    Koos, Martin R M; Danieli, Ernesto; Casanova, Federico; Blümich, Bernhard; Luy, Burkhard

    2016-06-01

    Differentiating enantiomers using 2D bench-top NMR spectroscopy. Spectrometers working with permanent magnets at 1 T field strength allow the acquisition of 2D data sets. In conjunction with previously reported chiral alignment media, this setup allows the measurement of enantiomeric excess via residual dipolar couplings in stretched gelatine as a result of the reduced line width obtained by 2D J-resolved spectroscopy. PMID:25773020

  5. IR spectroscopy of gaseous fluorocarbon ions: The perfluoroethyl anion

    Crestoni, Maria Elisa; Chiavarino, Barbara [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy); Lemaire, Joel; Maitre, Philippe [Universite Paris Sud, Laboratoire de Chimie Physique - UMR8000 CNRS, Faculte des Sciences - Batiment 350, 91405 Orsay Cedex (France); Fornarini, Simonetta, E-mail: simonetta.fornarini@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer C{sub 2}F{sub 5}{sup -} ions are formed by dissociative electron capture in perfluoropropane. Black-Right-Pointing-Pointer Both their reactivity towards neutrals and IRMPD spectroscopy are investigated. Black-Right-Pointing-Pointer The sampled C{sub 2}F{sub 5}{sup -} ions are best described as covalently bound pentafluoroethyl anions. - Abstract: The first IR spectrum of a perfluorinated carbanion has been obtained in the gas phase by IRMPD spectroscopy. Quantum chemical calculations at the MP2/cc-pVTZ level were performed yielding the optimized geometries and IR spectra for a covalently bound C{sub 2}F{sub 5}{sup -} species and for conceivable loosely bound F{sup -}(C{sub 2}F{sub 4}) complexes. Both the computational results and the IR characterization point to a covalent structure for the assayed species in agreement with the reactivity pattern displayed with selected neutrals.

  6. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  7. IR Spectroscopy and Photo-Chemistry of Extraterrestrial Ices

    Bernstein, Max P.; Mastrapa, Rachel; Elsila, Jamie; Sandford, Scott

    2005-01-01

    Dense molecular clouds from which planetary systems form and the outer Solar System are both cold environments dominated by ices. Infrared (IR) spectroscopy is used to probe these ices, but the IR absorptions of molecules depend on the conditions. As a result appropriate lab data is needed to correctly fit spectra of extraterrestrial ices. Such fits have shown that most of these ices are composed primarily of H2O, but also contain 1-10 percent of other simple molecules such as CO2, CO, CH4, & NH3;. We shall present near IR spectra of ice mixtures of relevance to icy outer Solar System bodies and show that they still hold surprises, such as the Cheshire cat-like CO2 (2v3) overtone near 2.134 micrometers (4685 cm-1) that is absent from spectra of pure CO2 but present in H2O-CO2 mixtures.

  8. Ultradeep Spectroscopy with the Spitzer^1 IRS^2

    Teplitz, H. I.; Desai, V.; Armus, L.; Chary, R.; Colbert, J. W.; Frayer, D. T.; Pope, A.; Blain, A.; Spoon, H.; Charmandaris, V.; Scott, D.; Antonucci, S.

    2008-03-01

    Mid-IR spectroscopy has detected the signatures of star-formation (PAH emission) in high redshift (z>1) ultra- and hyper-luminous infrared galaxies. However, the study of the dominant population of IR-luminous galaxies (10^{11} - 10^{12} Lsun at 1SL-1 and LL-2, respectively, and 12 hours for LL-1. We also present the spectra of two serendipitous sources. We detect strong PAH emission in four targets. We compare the spectra to those of local galaxies observed by the IRS. The z=1.09 source appears to be a typical, star-formation dominated LIRG, while the z=2.69 source is a composite source with strong star formation and a prominent AGN. The AGN component dominates the IRAC colors of this source, obscuring the 1.6 micron ``bump.'' Such sources would be excluded from IRAC surveys for starbursts which might then underestimate the star formation density.

  9. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141. ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  10. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  11. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the Dx parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter

  12. Electron spectroscopy of rubber and resin-based composites containing 2D carbon

    Kaciulis, S., E-mail: saulius.kaciulis@ismn.cnr.it [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Mezzi, A.; Balijepalli, S.K. [Institute for the Study of Nanostructured Materials, ISMN-CNR, P.O. Box 10, Monterotondo Stazione, 00015 Roma (Italy); Lavorgna, M. [Institute of Polymers, Composites and Biomaterials, IPCB-CNR, P.le Fermi, 80055 Napoli (Italy); Xia, H.S. [State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 Sichuan (China)

    2015-04-30

    Composite materials with 2D carbon (graphene and/or single wall carbon nanotubes) are very promising due to their extraordinary electrical and mechanical properties. Graphene and natural rubber composites, which may be used for the gaskets or sealants, were prepared by ultrasonically assisted latex-mixing exfoliation and in-situ reduction process, with two vulcanization approaches: roll-mixing and hot-pressing. Also the resin-based composites, filled with micro-particles of Ag and graphene or carbon nanotubes, have been studied. The standards for the compositional characterization of these materials still are not established. In addition to the mostly used techniques, such as Raman spectroscopy and electron microscopy, also Auger electron spectroscopy can be employed for the identification of graphene. In this study, the shape of C KVV peak, excited by electron beam and X-ray photons, has been investigated in different composite materials containing graphene and carbon nanotubes. A spectroscopic method for 2D carbon recognition, based on the D{sub x} parameter which is determined from C KVV signal excited by X-ray photons, was proposed and verified. Even a small content of graphene in different types of composites was sufficient for this recognition due to the dominating presence of graphene on the surface of composites. - Highlights: • Chemical composition of the rubber composites was determined by XPS. • Auger spectrum of carbon was used for graphene identification in composites. • Small content of graphene was sufficient for its recognition from the D parameter.

  13. Broadband 2D Electronic Spectroscopy Reveals Coupling Between Dark 1Bu- State of Carotenoid and Qx State of Bacteriochlorophyll

    Scholes Gregory D.

    2013-03-01

    Full Text Available The study of LH2 protein of purple bacteria by broadband 2D electronic spectroscopy is presented. The dark 1Bu- carotenoid state is directly observed in 2D spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.

  14. Two-Dimensional Correlation Spectroscopy in Analyzing the Concentration-Dependent IR Spectra of Urea Aqueous Solution

    The folding studies conducted over a wide range of water/urea mixtures show that the unfolding effectiveness of urea depends on its concentration. Despite many literature data on the studies of use as a denaturating agent, the detailed mechanism of urea-water interaction is still an unsolved problem. Therefore in this study, I have focused on monitoring of the association process in course of the increase of urea concentration. The concentration dependent IR spectra of urea aqueous solution are analyzed by means of two-dimensional (2D) correlation spectroscopy. Generalized 2D correlation spectroscopy has become one of standard analytical techniques to interpret spectral data sets obtained during the observation of a system under some external perturbation. For IR measurements, deuterated C13-urea solutions with different concentrations (0.5, 1.0, 2.5, 3.0 M, etc.) were prepared in phosphate buffer (pH 6.6) solution prepared with D2O

  15. 2D-Spectroscopy of Two SBS Galaxies with Star Formation Regions

    Hakopian, Susanna

    2007-08-01

    About 500 SBS-galaxies in the selected fields were classified using a scheme, adapted to slit spectroscopic data obtained for them. Continuing the investigation of these objects as the members of subclasses of objects with nuclear and starforming activity, we are using 2D - spectroscopy, allowing to extend in understanding of the details of morphology, dynamic and kinematic processes and physical nature, by which the differences and similarities in subclasses are caused. This work presents a detailed study of two starforming galaxies in different stages of activity, both consisting of HII-regions, SBS 1202+583 and SBS 1533+574. Observations have been carried out with multipupil spectrographs VAGR at 2.6m and MPFS at 6m telescopes.

  16. 3D OPTICAL AND IR SPECTROSCOPY OF EXCEPTIONAL HII GALAXIES

    E. Telles

    2009-01-01

    Full Text Available In this contribution I will very brie y summarize some recent results obtained applying 3D spectroscopy to observations of the well known HII galaxy II Zw 40, both in the optical and near-IR. I have studied the distribution of the dust in the starburst region, the velocity and velocity dispersion, and the geometry of the molecular hydrogen and ionized gas. I found a clear correlation between the component of the ISM and the velocity eld suggesting that the latter has a fundamental role in de ning the modes of the star formation process.

  17. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2015-12-01

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank.

  18. Structural Characterization of Lignins Isolated from Caragana sinica Using FT-IR and NMR Spectroscopy

    XIAOLing-ping; SHIZheng-jun; XUFeng; SUN Run-cang; Amar Kmohanty

    2011-01-01

    In order to efficiently explore and use woody biomass,six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic.solvents and alkaline solutions.The lignin structures were characterized by Fourier transform infrared spectroscopy (FT-IR) and 1D and 2D Nuclear Magnetic Resonance (NMR).FT-IR spectra revealed that the “core” of the lignin structure did not significantly change during the treatment under the conditions given.The results of 1 H and 13C NMR demonstrated that the lignin fraction L2,isolated with 70% ethanol containing 1% NaOH,was mainly composed of β-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit.Based on the 2D HSQC NMR spectrum,the ethanol organosolv lignin fraction L1,extracted with 70% ethanol,presents a predominance of β-O-4' arylether linkages (61% of total side chains),and a low abundance of condensed carbon-carbon linked structures (such as β-β',β-1',and β-5') and a lower S/G ratio.Furthermore,a small percentage (ca.9%) of the linkage side chain was found to be acylated at the γ-carbon.

  19. Rapid authentication of different ages of tissue-cultured and wild Dendrobium huoshanense as well as wild Dendrobium henanense using FTIR and 2D-COS IR

    Chen, Nai-Dong; Chen, Nai-Fu; Li, Jun; Cao, Cai-Yun; Wang, Jin-Mei

    2015-12-01

    The accumulating of pharmaceutical chemicals in medicinal plants would greatly be affected by their ages and establishing a fast quality-identification method to evaluate the similarity of medicinal herbs at different cultivated ages is a critical step for assurance of quality and safety in the TCM industry. In this work, tri-step IR macro-fingerprinting and 2D-COS IR spectrum techniques combined with statistical pattern recognition were applied for discrimination and similarity evaluation of different ages of tissue-cultured and wild Dendrobium huoshanense C. Z. Tang et S. J. Cheng as well as Dendrobium henanense J.L.Lu et L.X Gao. Both tissue-cultured and wild D. huoshanense were easily differentiated from D. henanense by FTIR and SD-IR spectra, while it's quite difficult to discriminate different cultivated years of the three investigated Dendrobiums. In 2D-COS IR spectra, 1-5 auto-peaks with different indensity and positions were located in the region 1160-1030 cm-1 of the twelve Dendrobium samples and thus could be used to identify Dendrobium samples at different ages. Principle component analysis (PCA) of synchronous 2D-COS data showed that the twelve samples were effectively identified and evaluated. The results indicated that the tri-step infrared macro-fingerprinting combined with PCA method was suitable to differentiate the cultivated ages of Dendrobiums with species and orgins rapidly and nondestructively.

  20. Investigating the Hydration of CM2 meteorites by IR spectroscopy

    Góbi, S; Beck, P; Quirico, E; Schmidt, B

    2014-01-01

    Chondritic meteorites are of great interest since they are one of the most ancient remnants of the early solar system. Some of them, like the carbonaceous CM meteorites experienced aqueous alteration thus their olivine content transformed more or less into hydrated silicates such as phyllosilicates. These hydrated CM2 meteorites have been investigated in KBr pellets by means of Fourier transform infrared (FT-IR) spectroscopy. In our focus of interest was to study the 3 and 10 $\\mu$m (3000 and 1000 cm$^{-1}$, the O$-$H and silicate streching) bands of several CM2 chondrites. By investigating these signals the water content and the extent of hydration can be determined. In order to achieve this, development of a new pellet production method was essential. This technique facilitates the elimination of adsorbed water coming from the surrounding environment, which would complicate correct interpretation of the results.

  1. Study of the deuterated albumin by FT-IR spectroscopy

    The albumin is a protein from the soluble or corpuscular protein class, which exists in cells, in dissolved state or in form of a hydrated gel. Proteins are essential constituents beside water, inorganic salts, lipids, carbon hydrates, vitamins, enzymes. The albumin is also a protein soluble in water and in diluted electrolyte solutions (acids, bases and salts). The investigation of the vibration isotopic effect has a great importance both for the diatomic molecules and for the polyatomic molecules. This paper is the first from a series of works which are intended to study the physico-chemical properties of the deuterated albumin and of the albumin solutions in heavy water by an isotopic exchange method. To put in evidence H-D exchange, the FT-IR spectroscopy is used when the deuterated albumin has different layer thickness. It is also of interest to elucidate the isotopic exchange between the hydrogen and oxygen atoms in bovine serum albumin macromolecules. (authors)

  2. Differentiation of Leishmania species by FT-IR spectroscopy

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  3. Fourier transformation IR spectroscopy of rare earth hydrides and manganates

    The publication describes IR optical investigations of rare earth hybrids and manganates. Both of these material systems have a pronounced interaction with light in the IR spectral region and are therefore well suited for Fourier transformation IR spectroscopy. Especially the spectra of the La1-xCaxMnO3 films contain many structures that derive both from the investigated film and the substrate. Quantitative information on the properties of the material system is obtained by separating the optical properties of LCMO from the substrate by means of adaptation using a multilayer formalism. The temperature dependence of the IR spectra was investigated down to the low-temperature range. Splitting and frequency shifts of the phonon modes were quantified, and the sensitive influence of the oxygen concentration of the samples on their optical properties was demonstrated. As representatives of the class of rare earth hybrids, various aspects of the material systems NdH2, EuH2 and YHx were investigated in thin film samples grown on substrates by means of molecular beam epitaxy. Detailed RHEED and Auger electron spectroscopy investigations provided information on the growth process, crystalline structure and chemical composition of the samples. By using a buffer layer between the rare earth metals and the palladium protective layer which is necessary with Nd and Eu, the minimum thickness of the Pd layer could be reduced about by half. The structural changes resulting from hydrogen loading are investigated by means of Raman measurements of the Nd hydride. The raman-active phonons that were observed for the first time by this method are strongly dependent on the crystal structure, i.e. the various phases are identified as a function of the hydrogen concentration. With the aid of the isotope effect, the origin of the phonons observed in the IR reflection and transmission spectra can be attributed to hydrogen oscillations. Evaluation of the spectra by multilayer formalism provides

  4. Impedance- and IR-spectroscopy on sputtered borate glasses

    Ion-conducting oxide glasses are considered as components of thin film batteries. In our study, glass films of the compositions xLi2O.(1-x)B2O3 with x=0.15, 0.20, 0.25, 0.30, and 0.35 are prepared by ion beam sputtering in a thickness range between 100 and 1000 nm. TEM cross section investigations show a homogeneous, amorphous structure of the films, while the correspondence of their chemical composition with the glass targets is proved by EELS analysis. The specific dc-conductivity of the glass films is determined by temperature-dependent impedance spectroscopy and found to be up to three orders of magnitude higher compared to the conductivity of the corresponding bulk glasses prepared from the melt. This conductivity increase is explained by a modification of the network structure of the thin glass films. The concentration of the Non-Bridging Oxygen atoms of the network is assumed to be increased by the sputter process. This increase is expected to be the main reason for the observed conductivity enhancement. IR-spectroscopy is used to determine the content of the Non-Bridging Oxygen atoms of the network, to correlate structural and electrical properties of the thin film glasses

  5. Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy

    Garcia, Victor P., E-mail: vpergarw@gobiernodecanarias.org [Instituto de Productos Naturales de Canarias, Departamento de Quimica de Productos Naturales y Biotecnologia (Spain)

    2011-05-15

    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution {sup 1}H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that {omega}{tau}{sub c} {approx} 1, where {tau}{sub c} are the motional correlation times and {omega} is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of {tau}{sub c}. The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180 Degree-Sign Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were

  6. Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy.

    García, Víctor P

    2011-05-01

    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution (1)H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that ωτ(c) ~ 1, where τ(c) are the motional correlation times and ω is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of τ(c). The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180° Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were determined by ROESY experiments. PMID:21431831

  7. Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy

    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution 1H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that ωτc ∼ 1, where τc are the motional correlation times and ω is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of τc. The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180° Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were determined by ROESY experiments.

  8. Structure of a model salt bridge in solution investigated with 2D-​IR spectroscopy

    A. Huerta-Viga; S.R. Domingos; S. Amirjalayer; S. Woutersen

    2013-01-01

    Salt bridges are known to be important for the stability of protein conformation, but up to now it has been difficult to study their geometry in soln. Here we characterize the spatial structure of a model salt bridge between guanidinium (Gdm+) and acetate (Ac-​) using two-​dimensional vibrational (2

  9. Nanomechanical IR Spectroscopy for the fast analysis of picogram samples of engineered nanomaterials

    Andersen, Alina Joukainen; Ek, Pramod Kumar; Andresen, Thomas Lars;

    2014-01-01

    The proliferation of engineered nanomaterials (ENMs), e.g. in nanomedicine, demands for novel sensitive techniques allowing for the analysis of minute samples. We present nanoelectromechanical system-based IR spectroscopy (NEMS-IR) of picograms of polymeric micelles. The micelles are nebulized with......, compared to 2 days for analysis by ATR-FT-IR. NEMS-IR constitutes a promising technique for the fast analysis of ENMs....

  10. Stereochemistry of 16a-Hydroxyfriedelin and 3-Oxo-16-methylfriedel-16-ene Established by 2D NMR Spectroscopy

    Vagner Fernandes Knupp

    2009-02-01

    Full Text Available Friedelin (1, 3b-friedelinol (2, 28-hydroxyfriedelin (3, 16a-hydroxyfriedelin (4, 30-hydroxyfriedelin (5 and 16a,28-dihydroxyfriedelin (6 were isolated through fractionation of the hexane extract obtained from branches of Salacia elliptica. After a week in CDCl3 solution, 16a-hydroxyfriedelin (4 reacted turning into 3-oxo-16-methylfriedel-16-ene (7. This is the first report of a dehydration followed by a Nametkin rearrangement of a pentacyclic triterpene in CDCl3 solution occurring in the NMR tube. These seven pentacyclic triterpenes was identified through NMR spectroscopy and the stereochemistry of compound 4 and 7 was established by 2D NMR (NOESY spectroscopy and mass spectrometry (GC-MS. It is also the first time that all the 13C-NMR and 2D NMR spectral data are reported for compounds 4 and 7.

  11. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  12. Recovering the Fermi surface with 2D-ACAR spectroscopy in samples with defects

    When two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) experiments are performed in metals containing defects, conventional analysis in which the measured momentum distribution is folded back into the first Brillouin zone is rendered ineffective due to the contribution from positrons annihilating from the defect. However, by working with the radial anisotropy of the spectrum, it is shown that an image of the Fermi surface can be recovered since the defect contribution is essentially isotropic.

  13. Recovering the Fermi surface with 2D-ACAR spectroscopy in samples with defects

    Dugdale, S. B.; Laverock, J.

    2014-04-01

    When two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) experiments are performed in metals containing defects, conventional analysis in which the measured momentum distribution is folded back into the first Brillouin zone is rendered ineffective due to the contribution from positrons annihilating from the defect. However, by working with the radial anisotropy of the spectrum, it is shown that an image of the Fermi surface can be recovered since the defect contribution is essentially isotropic.

  14. A new sequence for shaped voxel spectroscopy in the human brain using 2D spatially selective excitation and parallel transmission.

    Waxmann, Patrick; Mekle, Ralf; Schubert, Florian; Brühl, Rüdiger; Kuehne, Andre; Lindel, Tomasz D; Seifert, Frank; Speck, Oliver; Ittermann, Bernd

    2016-08-01

    Spatially selective excitation in two dimensions (2D-SSE) utilizing parallel transmission was applied as a means to acquire signal from voxels adapted to the anatomy of interest for in vivo (1) H MR spectroscopy. A novel method to select spectroscopy voxels with arbitrary shapes in two dimensions was investigated. An on-off scheme with an adiabatic slice selective inversion pulse preceding a 2D-SSE pulse together with a segmented inward spiral excitation k-space trajectory enabled rapid free induction decay acquisitions. Performance of the sequence was evaluated in simulations, phantom experiments, and in vivo measurements at 3 T. High spatial fidelity of the excitation profile was achieved for different target shapes and with little off-resonance deterioration. Metabolite concentrations in human brain determined with the new sequence were quantified with Cramér-Rao lower bounds less than 20%. They were in the physiological range and did not deviate systematically from results acquired with a conventional SPECIAL sequence. In conclusion, a new approach for shaped voxel MRS in the human brain is presented, which complements existing sequences. Simulations show that 2D-SSE pulses yield reduced chemical shift artifact when compared with conventional localization methods. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27254102

  15. 2D-correlation analysis applied to in situ and operando Mossbauer spectroscopy

    Aldon, Laurent; Perea, Alexis

    2011-01-01

    In this paper we propose a new way for Mossbauer data treatment when numerous experimental spectra are recorded in operando conditions depending on a perturbation. In our example, the perturabation is the Li amount extracted from a positive electrode material LiFe(0.75)Mn(0.25)PO(4). In other cases perturbation could be the recording temperature, the pressure or kinetic parameter or even time for isothermal experiments. From analysis of both synchronous and asynchronous 2D-correlation spectra...

  16. XAFS data acquisition with 2D-detectors: Transmission mode XAFS and grazing incidence EXAFS spectroscopy

    Lützenkirchen-Hecht, D.; Gasse, J.-C.; Bögel, R.; Wagner, R.; Frahm, R.

    2016-05-01

    XAFS-experiments in transmission and reflection modes have been performed using a Pilatus 100K pixel detector. Transmission mode XAFS spectra from a Co metal foil and Co3O4 were recorded to evaluate the data quality offered by this 2D-detector. Furthermore, the pixel detector was also used to measure reflection mode grazing incidence EXAFS data. Using different regions of interest in the collected scattering patterns, we will show that the diffuse scattering can be separated for the different contributing surfaces and interfaces, allowing simultaneous investigations of surfaces and buried interfaces within multi-layered samples.

  17. Infrared spectroscopy of radio-luminous OH/IR stars

    Jones, Terry Jay; Hyland, A. R.; Fix, John D.; Cobb, Michael L.

    1988-01-01

    Low-resolution 1.5-2.5-micron spectra for 21 radio-luminous OH/IR stars are presented. These spectra divide into two broad classes. Those with very strong water-vapor absorption closely resemble the spectra of classical Mira variables and are classified Type VM. Those with weaker water-vapor absorption, but still showing strong CO absorption, resemble the spectra of true core-burning supergiants and are classified Type SG. Comparison of the classification of 30 radio-luminous OH/IR stars with their Delta(V)s and luminosities suggests this classification is a good indicator of the intrinsic nature of the underlying star. There is some evidence, however, that some true supergiants (massive main-sequence progenitors) develop the pulsation properties and photospheric characteristics of the Mira-like OH/IR stars when they become optically obscured OH/IR stars.

  18. 2D optical photon echo spectroscopy of a self-assembled quantum dot

    Fingerhut, Benjamin P.; Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California, 92697-2025 (United States); Richter, Marten [Department of Chemistry, University of California, Irvine, California, 92697-2025 (United States); Institut fuer Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623, Berlin (Germany); Luo, Jun-Wei [National Renewable Energy Laboratory, Golden, Colorado, 80401 (United States); Zunger, Alex [University of Colorado, Boulder, Colorado, 80309 (United States)

    2013-02-15

    Simulations of two dimensional coherent photon echo (2D-PE) spectra of self-assembled InAs/GaAs quantum dots (QD) in different charged states are presented revealing the coupling between the individual mono-exciton X{sup q} transitions and contributions of bi-excitons XX{sup q}. The information about the XX{sup q} states is crucial for various application scenarios of QDs, like e.g. highly efficient solar cells. The simulations rely on a microscopic description of the electronic structure by high-level atomistic many-body pseudopotential calculations. It is shown that asymmetric diagonal peak shapes and double cross-peaks are the result of XX{sup q} state contributions to the PE signal by analyzing the contributions of the individual pathways excited state emission, ground state bleach and excited state absorption. The results show that from the detuned X{sup q} and XX{sup q} contributions the bi-exciton binding energies of the XX{sup q} manifold are revealed in 2D-PE signals. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Inertial solvation in femtosecond 2D spectra

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  20. 2D-correlation analysis applied to in situ and operando Moessbauer spectroscopy

    Aldon, Laurent; Perea, Alexis [ICGM/AIME (UMR 5253 CNRS), CC 15-02, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2011-02-01

    In this paper we propose a new way for Moessbauer data treatment when numerous experimental spectra are recorded in operando conditions depending on a perturbation. In our example, the perturbation is the Li amount extracted from a positive electrode material LiFe{sub 0.75}Mn{sub 0.25}PO{sub 4}. In other cases perturbation could be the recording temperature, the pressure or kinetic parameter or even time for isothermal experiments. From analysis of both synchronous and asynchronous 2D-correlation spectra, we can focus our attention on the intensity variations at some specific positions deduced from cross-peaks. This analytical method is very powerful when overlap between absorption lines is observed. This is typically the case when Fe{sup 2+}/Fe{sup 3+} contributions are simultaneously present in a Moessbauer spectrum at lower velocities. (author)

  1. [Analysis of streamer properties and emission spectroscopy of 2-D OH distribution of pulsed corona discharge].

    Zhao, Lei; Gao, Xiang; Luo, Zhong-Yang; Xuan, Jian-Yong; Jiang, Jian-Ping; Cen, Ke-Fa

    2011-11-01

    Streamer plays a key role in the process of OH radical generation. The propagation of primary and secondary streamers of positive wire-plate pulsed corona discharge was observed using a short gate ICCD in air environment. The influence of the applied voltage on the properties was investigated. It was shown that the primary streamer propagation velocity, electric coverage and length of secondary streamer increased significantly with increasing the applied voltage. Then 2-D OH distribution was investigated by the emission spectrum. With the analysis of the OH emission spectra, the distribution of OH radicals showed a trend of decreasing from the wire electrode to its circumambience. Compared with the streamer propagation trace, the authors found that OH radical distribution and streamer are in the same area. Both OH radical concentration and the intensity of streamer decreased when far away from the wire electrode. PMID:22242481

  2. 2D spectroscopy of galaxies with star formation regions. Study of SBS 1533+574

    Hakopian, S. A.; Balayan, S. K.; Dodonov, S. N.; Movsessian, T. A.

    2006-10-01

    A preliminary analysis is given of 2D spectroscopic data on the galaxy SBS 1533+574(AB) obtained using the multipupil spectrographs on the 2.6-m telescope at the BAO (VAGR) and the 6-m telescope at the SAO (MPFS). The two components of the galaxy are star formation regions in different stages. The component SBS 1533+574B is known to be a BCDG. The plots of the intensity distribution of the radiation in the recombination lines of hydrogen and the forbidden lines of gases with a low degree of ionization obtained here make it possible to compare the basic characteristics of the HII-zones and the surrounding shell. The velocity distribution over the field of the galaxy is indicative of a common rotation of the system and of an intrinsic rotation of the components which is more distinct for component B.

  3. FT-IR spectroscopy characterization of schwannoma: a case study

    Ferreira, Isabelle; Neto, Lazaro P. M.; das Chagas, Maurilio José; Carvalho, Luís. Felipe C. S.; dos Santos, Laurita; Ribas, Marcelo; Loddi, Vinicius; Martin, Airton A.

    2016-03-01

    Schwannoma are rare benign neural neoplasia. The clinical diagnosis could be improved if novel optical techniques are performed. Among these techniques, FT-IR is one of the currently techniques which has been applied for samples discrimination using biochemical information with minimum sample preparation. In this work, we report a case of a schwannoma in the cervical region. A histological examination described a benign process. An immunohistochemically examination demonstrated positivity to anti-S100 protein antibody, indicating a diagnosis of schwannoma. The aim of this analysis was to characterize FT-IR spectrum of the neoplastic and normal tissue in the fingerprint (1000-1800 cm-1) and high wavenumber region (2800-3600 cm-1). The IR spectra were collect from tumor tissue and normal nerve samples by a FT-IR spectrophotometer (Spotlight Perkin Elmer 400, USA) with 64 scans, and resolution of 4 cm-1. A total of twenty spectra were recorded (10 from schwannoma and 10 from nerve). Multivariate Analysis was used to classify the data. Through average and standard deviation analysis we observed that the main spectral change occurs at ≍1600 cm-1 (amide I) and ≍1400 cm-1 (amide III) in the fingerprint region, and in CH2/CH3 protein-lipids and OH-water vibrations for the high wavenumber region. In conclusion, FT-IR could be used as a technique for schwannoma analysis helping to establish specific diagnostic.

  4. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis;

    2014-01-01

    -power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. In an international collaboration in the EU project MINERVA [minerva......-project.eu] DTU Fotonik has now demonstrated the first optical fiber based broadband so-called supercontinuum light souce, which covers 1.4-13.3 μm and thereby most of the molecular fingerprint region [1]. This ultra-fast light source is the basic component in the mid-IR camera developed in MINERVA for early...

  5. 2-D spectroscopy and modeling of the biconical ionized gas in NGC 4388

    Ciroi, S.; Contini, M.; Rafanelli, P.; Richter, G. M.

    2003-01-01

    We present recent results from spectroscopic data and modeling of the biconical ionized gas in the Seyfert-2 galaxy NGC 4388. A field of ~2.6 x 2.4 kpc centered on the nucleus has been observed by means of the modern technique of integral field spectroscopy. The analysis of more than two hundred spectra allowed to study the physical characteristics of the gas in the surroundings of the active nucleus. The South-West ionization cone, revealed by the [O III]5007/H-beta excitation map, shows hig...

  6. Determination of Dihydrobenzoacridinone Structures by NMR, IR, and UV Spectroscopy and Mass Spectrometry

    Kozlov, N. G.; Zhiharko, Yu. D.; Skakovsky, E. D.; Baranovsky, A. V.; Ogorodnikova, M. M.; Basalaeva, L. I.

    2016-01-01

    Condensation of 2-naphthylamine, aromatic aldehydes, and dimedone was found to produce 9,10-dihydrobenzo[a] acridin-11-one derivatives according to PMR, 13C NMR, and IR spectroscopy and mass spectrometry. Correlation spectroscopy showed that the carbonyl in the synthesized dihydrobenzoacridinone derivatives was located on C11.

  7. 2-D analysis of Ge implanted SiO2 surfaces by laser-induced breakdown spectroscopy

    2-D elemental distribution of Ge in silicon oxide substrates with differing implantation doses of between 3 x 1016 cm-2 and 1.5 x 1017 cm-2 has been investigated by Laser-Induced Breakdown Spectroscopy (LIBS). Spectral emission intensity has been optimized with respect to time, crater size, ablation depth and laser energy. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive X-Ray Spectroscopy (EDX) have been utilized to obtain crater depth, morphology and elemental composition of the sample material, respectively. LIBS spectral data revealed the possibility of performing 2-D distribution analysis of Ge atoms in silicon oxide substrate. EDX analysis results confirmed that LIBS is capable to detect Ge atoms at concentrations lower than 0.2% (atomic). LIBS as a fast semi-quantitative analysis method with 50 μm lateral and 800 nm depth resolution has been evaluated. Results illustrate the potential use of LIBS for rapid, on-line assessment of the quality of advanced technology materials during the manufacturing process

  8. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.

    Idström, Alexander; Schantz, Staffan; Sundberg, Johan; Chmelka, Bradley F; Gatenholm, Paul; Nordstierna, Lars

    2016-10-20

    From the assignment of the solid-state (13)C NMR signals in the C4 region, distinct types of crystalline cellulose, cellulose at crystalline surfaces, and disordered cellulose can be identified and quantified. For regenerated cellulose, complete (13)C assignments of the other carbon regions have not previously been attainable, due to signal overlap. In this study, two-dimensional (2D) NMR correlation methods were used to resolve and assign (13)C signals for all carbon atoms in regenerated cellulose. (13)C-enriched bacterial nanocellulose was biosynthesized, dissolved, and coagulated as highly crystalline cellulose II. Specifically, four distinct (13)C signals were observed corresponding to conformationally different anhydroglucose units: two signals assigned to crystalline moieties and two signals assigned to non-crystalline species. The C1, C4 and C6 regions for cellulose II were fully examined by global spectral deconvolution, which yielded qualitative trends of the relative populations of the different cellulose moieties, as a function of wetting and drying treatments. PMID:27474592

  9. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  10. Ultradeep Spitzer IRS Spectroscopy in the GOODS Southern Field

    Teplitz, H. I.; Armus, L.; Chary, R.; Colbert, J. W.; Frayer, D.; Desai, V.; Blain, A.; Spoon, H.; Charmandaris, V.; Pope, A.; Scott, D.

    2005-12-01

    We present the deepest spectra taken to date by the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. We targeted two faint ( ˜ 0.15 mJy) sources in the Southern GOODS field, at z=1.09 and z=2.69, as likely star-forming galaxies. Spectra of the lower redshift target were taken in 8-21 micron range (short-low first order and long-low second order), while the higher redshift target was observed from 21-37 microns (long-low first order). Observing times were 3 and 9 hours on-source for SL-1 and LL-2, respectively, and 12 hours for LL-1. We detect strong PAH emission in both targets. We compare the spectra to those of local galaxies observed by the IRS.

  11. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy.

    Singh, Anand Pratap; Krieger, Jan Wolfgang; Buchholz, Jan; Charbon, Edoardo; Langowski, Jörg; Wohland, Thorsten

    2013-04-01

    Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, transport, flow velocities and concentrations in an imaging mode. SPIM-FCS records correlation functions over a whole plane in a sample, which requires array detectors for recording the fluorescence signal. Several types of image sensors are suitable for FCS. They differ in properties such as effective area per pixel, quantum efficiency, noise level and read-out speed. Here we compare the performance of several low light array detectors based on three different technologies: (1) Single-photon avalanche diode (SPAD) arrays, (2) passive-pixel electron multiplying charge coupled device (EMCCD) and (3) active-pixel scientific-grade complementary metal oxide semiconductor cameras (sCMOS). We discuss the influence of the detector characteristics on the effective FCS observation volume, and demonstrate that light sheet based SPIM-FCS provides absolute diffusion coefficients. This is verified by parallel measurements with confocal FCS, single particle tracking (SPT), and the determination of concentration gradients in space and time. While EMCCD cameras have a temporal resolution in the millisecond range, sCMOS cameras and SPAD arrays can extend the time resolution of SPIM-FCS down to 10 μs or lower. PMID:23571955

  12. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  13. Spectroscopy of 175Ir and 177Ir and deformation effects in odd iridium nuclei

    Excited states in 175Ir and 177Ir have been identified using (heavy ion, pxn) reactions and γ-ray spectroscopic techniques. Rotational bands based on intrinsic states arising from the odd-proton parents, were established to high spin except for the 5/2+[402] bands. Only the h9/2 bands show sharp alignment gains compatible with alignment of the i13/2 proton bands can be attributed, at least qualitatively, to a much larger deformation. The complex alignment gains observed in the h11/2 bands in these and other iridium isotopes in the range 173-181Ir are consistent with the effects of mixing with a deformed intruder (equivalently, a low-spin shape change). This conjecture is tested against the in-band decay properties using a three-band model. Examination of the band structure suggests a significant gamma deformation at very low spin, before the change to a more deformed configuration occurs. 31 refs., 6 tabs., 14 figs

  14. Spectroscopy of 175Ir and 177Ir and deformation effects in odd iridium nuclei

    Excited states in 175Ir and 177Ir have been identified using (heavy-ion, pxn) reactions and γ-ray spectroscopic techniques. Rotational bands based on intrinsic states arising from the odd-proton parents, h9/2, h11/2, i13/2 and d5/2 were established to high-spin except for the 5/2+[402] bands. Only the h9/2 bands show sharp alignment gains compatible with alignment of (i13/2)2 neutrons. The smooth apparent alignments of the i13/2 proton bands can be attributed, at least qualitatively, to a much larger deformation. The complex alignment gains observed in the h11/2 bands in these and other iridium isotopes in the range 173-181Ir are consistent with the effects of mixing with a deformed intruder (equivalently, a low-spin shape change). This conjecture is tested against the in-band decay properties using a three-band model. Examination of the band structure suggests a significant gamma deformation at very low spin, before the change to a more deformed configuration occurs. (orig.)

  15. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents.

    Lesot, Philippe; Baillif, Vincent; Billault, Isabelle

    2008-04-15

    The quantitative determination of isotopic (2H/1H)i ratios at natural abundance using the SNIF-NMR protocol is a well-known method for understanding the enzymatic biosynthesis of metabolites. However, this approach is not always successful for analyzing large solutes and, specifically, is inadequate for prochiral molecules such as complete essential unsaturated fatty acids. To overcome these analytical limitations, we use the natural abundance deuterium 2D NMR (NAD 2D NMR) spectroscopy on solutes embedded in polypeptide chiral liquid crystals. This approach, recently explored for measuring (2H/1H)i ratios of small analytes (Lesot, P.; Aroulanda, C.; Billault, I. Anal. Chem. 2004, 76, 2827-2835), is a powerful way to separate the 2H signals of all nonequivalent enantioisotopomers on the basis both of the 2H quadrupolar interactions and of the 2H chemical shift. Two significant advances over our previous work are presented here and allow the complete isotopic analysis of four mono- and polyunsaturated fatty acid methyl esters: methyl oleate (1), methyl linoleate (2), methyl linolenate (3), and methyl vernoleate (4). The first consists of using NMR spectrometers operating at higher magnetic field strength (14.1 T) and equipped with a selective cryoprobe optimized for deuterium nuclei. The second is the development of Q-COSY Fz 2D NMR experiments able to produce phased 2H 2D maps after a double Fourier transformation. This combination of modern hardware and efficient NMR sequences provides a unique tool to analyze the (2H/1H)i ratios of large prochiral molecules (C-18) dissolved in organic solutions of poly(gamma-benzyl-L-glutamate) and requires smaller amounts of solute than previous study on fatty acids. For each compound (1-4), all 2H quadrupolar doublets visible in the 2D spectra have been assigned on the basis of 2H chemical shifts, isotopic data obtained from isotropic quantitative NAD NMR, and by an interspectral comparison of the anisotropic NAD spectra of four

  16. Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy

    Sakai, Makoto; Kawashima, Yasutake; Takeda, Akihiro; Ohmori, Tsutomu; Fujii, Masaaki

    2007-05-01

    A new far-field infrared super-resolution microscopy combining laser fluorescence microscope and picosecond time-resolved transient fluorescence detected IR (TFD-IR) spectroscopy is proposed. TFD-IR spectroscopy is a kind of IR-visible/UV double resonance spectroscopy, and detects IR transitions by the transient fluorescence due to electronic transition originating from vibrationally excited level populated by IR light. IR images of rhodamine-6G solution and of fluorescent beads were clearly observed by monitoring the transient fluorescence. Super-resolution twice higher than the diffraction limit for IR light was achieved. The IR spectrum due to the transient fluorescence was also measured from spatial domains smaller than the diffraction limit.

  17. Conformational studies of [Nphe5]SFTI-1 by means of 2D NMR spectroscopy in conjunction with molecular dynamics calculations

    Brzozowski, K.; Stawikowski, M.; Ślusarz, R.; Sikorska, E.; Lesner, A.; Łęgowska, A.; Rolka, K.

    2015-11-01

    Trypsin inhibitor SFTI-1 is the smallest and the most potent among BBI inhibitors. It is also an interesting object for SAR studies since it is cyclic 14 amino acid molecule which additionally contains disulfide bridge. We showed that elimination of head-to-tail cycliztion did not influence its activity. Moreover peptoid monomers of Nlys and Nphe introduced in the substrate specificity P1 position of monocyclic SFTI-1 preserved trypsin and chymotripsin inhibitory activity respectively and made P1-P1‧ bond proteolytically stable. These findings motivated us to perform conformational analysis of [Nphe5]SFTI-1 by means of 2D NMR spectroscopy and molecular dynamics calculations. Obtained structure occurred to be in a good agreement with published structures for wild-type SFTI-1, its monocyclic analog with disulfide bridge only as well as one containing Nlys peptoid monomer in P1 position.

  18. Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials

    Andersen, Alina Joukainen; Yamada, Shoko; Ek, Pramod Kumar;

    2016-01-01

    The proliferated use of engineered nanomaterials (ENMs), e.g. in nanomedicine, calls for novel techniques allowing for fast and sensitive analysis of minute samples. Here we present nanomechanical IR spectroscopy (NAM-IR) for chemical analysis of picograms of ENMs. ENMs are nebulized directly from...... obtained by recording this detuning of the resonator over a range of IR wavelengths. Results recorded using NAM-IR agree well with corresponding results obtained through ATR-FTIR, and remarkably, measurement including sample preparation takes only a few minutes, compared to ∼2 days sample preparation for...... ATR-FTIR. Resonator dimensions play an important role in NAM-IR, a relationship which will be elaborated here....

  19. Photoisomerization and structural dynamics of two nitrosylruthenium complexes: a joint study by NMR and nonlinear IR spectroscopies.

    Wang, Jianru; Yang, Fan; Zhao, Yan; Yu, Pengyun; Qiao, Xiaoyan; Wang, Jianping; Wang, Hongfei

    2014-11-21

    In this work, the photoisomerization and structural dynamics of two isomeric nitrosylruthenium(ii) complexes [Ru(OAc)(2cqn)2NO] (H2cqn = 2-chloro-8-quinolinol) in CDCl3 and DMSO are examined using NMR and IR spectroscopic methods. The two N atoms in the 2cqn ligand are in trans position in the synthesized cis-1 isomer, while they are in cis position in the cis-2 isomer. Kinetics monitored by NMR spectroscopy shows that the rate constant of photoisomerization from cis-2 to cis-1 isomer depends on the wavelength of irradiation and solvent polarity; it proceeds faster on irradiating near the absorption peak in the UV-Vis region, and also in more polar solvents (DMSO). Density functional theory computation indicates that the peculiarity of [Ru(ii)-NO(+)] group affects the structure and reactivity of the nitrosylruthenium complexes. Using the nitrosyl stretching (νNO) to be vibrational probe, the structural dynamics and structural distributions of the cis-1 and cis-2 isomers are examined by steady-state linear infrared and ultrafast two-dimensional infrared (2D IR) spectroscopies. The structural and photochemical aspects of the observed spectroscopic parameters are discussed in terms of solute-solvent interactions for the two nitrosylruthenium complexes. PMID:25285659

  20. Composition of the Martian aerosols through near-IR spectroscopy

    Erard, Stephane; Cerroni, Priscilla; Coradini, Angioletta

    1993-01-01

    Near-infrared spectroscopy is a powerful technique to study the composition of planetary surfaces, as the main minerals exhibit absorption bands in this spectral range. It gave important information on the mineralogy and petrology of Mars in the past twenty years although in this case it is well known that a large fraction of light is scattered by the airborne particles before reaching the surface. The measured signal is thus the sum of two different contributions that should be studied separately: One from the surface and one from the aerosols that depends on their density, size distribution and composition. Data from the ISM imaging spectrometer are used here to derive the aerosols spectrum. They consist in sets of spectra (from 0.76 to 3.16 microns) of approximately 3000 pixels approximately 25x25 sq km in size. The resulting spectrum exhibits both water-ice and clay mineral features superimposed on a scattering continuum.

  1. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state

  2. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Akhtar, Parveen; Garab, Győző; Lambrev, Petar H., E-mail: lambrev@brc.hu [Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged (Hungary)

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  3. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  4. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1–35 wt% starch) were collected and preprocessed to generate calibration and predi...

  5. Monitoring lipase-catalyzed interesterification for bulky fats modification with FT-IR/NIR spectroscopy

    Chang, Tinghong; Lai, Xuxin; Zhang, Hong;

    2005-01-01

    This work demonstrates the application of FT-IR and FT-NIR spectroscopy to monitor the enzymatic interesterification process for bulky fat modification. The reaction was conducted between palm stearin and coconut oil (70/30, w/w) with the catalysis of Lipozyme TL IM at 70°C in a batch reactor...

  6. Solid Acid-Catalyzed Cellulose Hydrolysis Monitored by In Situ ATR-IR Spectroscopy

    Zakzeski, J.; Grisel, R.J.H.; Smit, A.T.; Weckhuysen, B.M.

    2012-01-01

    The solid acid-catalyzed hydrolysis of cellulose was studied under elevated temperatures and autogenous pressures using in situ ATR-IR spectroscopy. Standards of cellulose and pure reaction products, which include glucose, fructose, hydroxymethylfurfural (HMF), levulinic acid (LA), formic acid, and

  7. Preparation of Phenolized Calcium Lignosulfonate andCharacterization of the Reaction by IR Spectroscopy

    2001-01-01

    A kind of calcium lignosulfonate was phenolized by phenol with sulfuric acid as catalyst. The calcium lignosulfonate and its phenolized derivatives were characterized by infrared spectroscopy. It is proved that the extent and type of the phenolizing reaction can be deduced from the IR spectra of the calcium lignosulfonate and its phenolized derivatives.

  8. Analysis of NMR spectra of sugar chains of glycolipids by multiple relayed COSY and 2D homonuclear Hartman-Hahn spectroscopy

    The authors applied multiple relayed COSY and 2D homonuclear Hartman-Hahn spectroscopy to globoside, a glycolipid purified from human red blood cells. The subspectra corresponding to individual sugar components were extracted even from overlapping proton resonances by taking the cross sections of 2D spectra parallel to the F2 axis at anomeric proton resonances, so that unambiguous assignments of sugar proton resonances were accomplished. (Auth.)

  9. Tunable diffractive filters for robust NIR and IR spectroscopy

    Three different types of specialized spectrometers have been implemented. These sensors are well suited for gas detection or other industrial applications where long-term stability is a key requirement. These sensors are based on tunable diffractive filters that were developed in the past and that we have now adapted to fit into the presented spectrometers, each of them developed to perform a dedicated measurement. The diffractive filters share the common feature that a single surface hologram integrates the functions of lenses, beam splitters and spectral filters. In order to perform a compensated measurement, it is possible to switch between several filter functions, which can be done without the need for complicated or precise mechanical control. These features make it possible for the spectrometers to be made robust against long-term drift, which eliminates the need for frequent recalibration and maintenance. In addition, the simplicity of the sensor assembly makes the sensors well suited for a wide range of applications; the requirement is either a low production cost or robustness to harsh industrial environment. The sensors are or have been industrialized, with application mainly for gas spectroscopy. Results in terms of sensitivity and long-term drift were obtained in the field and are presented. (paper)

  10. Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions.

    Ikeda, Tatsushi; Ito, Hironobu; Tanimura, Yoshitaka

    2015-06-01

    We explore and describe the roles of inter-molecular vibrations employing a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear infrared absorption (1D IR), we calculated 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are compared with results obtained from the LL+SL BO model applied through use of hierarchal Fokker-Planck equations with non-perturbative and non-Markovian noise. We find that all of the qualitative features of the 2D profiles of the signals obtained from the MD simulations are reproduced with the LL+SL BO model, indicating that this model captures the essential features of the inter-molecular motion. We analyze the fitted 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The origins of the echo peaks of the librational motion and the elongated peaks parallel to the probe direction are elucidated using optical Liouville paths. PMID:26049441

  11. Analyzing 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions

    Ikeda, Tatsushi; Tanimura, Yoshitaka

    2015-01-01

    We explore and describe the roles of inter-molecular vibrations in terms of a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear absorption (1D IR), we calculate 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are then accounted by the LL+SL BO model with the use of the hierarchal Fokker-Planck equations for a non-perturbative and non-Markovian noise. All of the characteristic 2D profiles of the simulated signals are reproduced using the LL+SL BO model, indicating that the present model captures the essential features of the inter-molecular motion. We analyze the fitted the 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The ...

  12. Preliminary Discrimination of Cheese Adulteration by FT-IR Spectroscopy

    Lucian Cuibus

    2014-11-01

    Full Text Available The present work describes a preliminary study to compare some traditional Romanian cheeses and adulterated cheeses using Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. For PLS model calibration (6 concentration levels and validation (5 concentration levels sets were prepared from commercial Dalia Cheese from different manufacturers by spiking it with palm oil at concentrations ranging 2-50 % and 5-40 %, respectively. Fifteen Dalia Cheese were evaluated as external set. The spectra of each sample, after homogenization, were acquired in triplicate using a FTIR Shimatsu Prestige 21 Spectrophotometer, with a horizontal diamond ATR accessory in the MIR region 4000-600 cm-1. Statistical methods as PLS were applied using MVC1 routines written for Matlab R2010a. As first step the optimal condition for PLS model were obtained using cross-validation on the Calibration set. Spectral region in 3873-652 cm-1, and 3 PLS-factors were stated as the best conditions and showed an R2 value of 0.9338 and a relative error in the calibration of 17.2%. Then validation set was evaluated, obtaining good recovery rates (108% and acceptable dispersion of the data (20%. The curve of actual vs. predicted values shows slope near to 1 and origin close to 0, with an R2 of 0.9695. When the external sample set was evaluated, samples F19, F21, F22 and F24, showed detectable levels of palm fats. The results proved that FTIR-PLS is a reliable non-destructive technique for a rapid quantification the level of adulteration in cheese.  The spectroscopic methods could assist the quality control authority, traders and the producers to discriminate the adulterated cheeses with palm oil.

  13. Investigation of Catalytic NOx, reduction with transient techniques, isotopic exchange and FT-IR spectroscopy

    Emissions from vehicles are suppressed by catalytic conversion, i.e. total oxidation of carbon monoxide and hydrocarbons and reduction of nitrogen oxides. The on-going demand for lower emissions requires more detailed knowledge about the catalytic reaction mechanisms and kinetics on the level of elementary steps, especially because of the mutual interactions in the complex reaction mixture. The reaction mechanisms for the abatement of nitrogen oxides (NOx) are of particular interest, since they are environmentally very unfriendly compounds. Transient experimental techniques can be used as a tool to understand the reaction mechanisms and to develop mathematical models allowing simulation and optimisation of the behaviour of three-way catalyst converters. In chemical kinetics, isotope-labelled reactants are frequently employed to follow reaction pathways and to determine reaction mechanisms. The kinetics and mechanisms of the catalytic reduction of nitrogen oxide (NO) by hydrogen as well as self-decomposition of NO and N2O were studied over alumina based palladium and rhodium-alumina monoliths. In addition, NO reduction with H2 and D2, isotope exchange of hydrogen atoms in water, ammonia and hydrogen with deuterium, as well as adsorption of ammonia and water on the Pd-monolith were studied with transient experiments. Transient step-response experiments, isotopic jumping techniques, steady- state isotopic-transient analysis, temperature programmed desorption (TPD) and Fourier-transformed infrared spectroscopy (FT-IR) were used as experimental techniques. The catalysts were characterised by carbon monoxide chemisorption, nitrogen physisorption and X-ray photoelectron spectroscopy (XPS). Nitrogen, nitrous oxide, ammonia, and water were detected as reaction products in NO reduction by hydrogen. The transient and FT-IR experiments yielded information about the surface reaction mechanisms. The dissociation of NO on the catalyst surface is the crucial step, dominating the

  14. Remote Thermal IR Spectroscopy of our Solar System

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  15. Monitoring lipase-catalyzed interesterification for bulky fats modification with FT-IR/NIR spectroscopy

    Chang, Tinghong; Lai, Xuxin; Zhang, Hong;

    2005-01-01

    least squares (PLS) regression. High correlations (r > 0.96) were obtained from cross validations of the data estimated by FT-IR, FT-NIRand above-mentioned conventional analytical methods, except for correlations (r = 0.90-0,95) between FT-IR and SFC profiles. Overall, FT-NIR spectroscopy coupled with...... transmission mode measured at 70 °C had the highest correlations which also had the most close conditions to the sampled products in the process, indicating a big potential to implement as online control for monitoring enzymatic interesterification process....

  16. Dual-Comb Spectroscopy based on Mid-IR Quantum-Cascade-Lasers Frequency-combs

    Full text: Optical frequency combs act as rulers in the frequency domain and have revolutionised many fields such as high-resolution spectroscopy. To wide their applications, realizing a compact mid-IR spectrometer using frequency combs is of paramount importance, as the fundamental roto-vibrational bands of most light molecules lie on this spectral region. We have recently demonstrated a mid-IR, all-solid-state frequency comb based on a quantum cascade laser. Here a compact dual-comb spectrometer is realised. The dual-comb spectrometer covers 60 cm-1 with individual tooth linewidth of 150 kHz by using mid-IR QCL based frequency combs centered at 1430. (author)

  17. Analysis of biological and chemical compounds by remote spectroscopy using IR TeX glass fibers

    Le Foulgoc, Karine; Le Neindre, Lydia; Guimond, Yann; Ma, Hong Li; Zhang, Xhang H.; Lucas, Jacques

    1995-09-01

    The TeX glasses are attracting much attention as materials for low loss mid-IR optical fibers and are consequently good candidates for thermal imaging, laser power delivery, and more recently remote sensing. The TeX glass fiber, transmitting in a wide optical window, has a minimum attenuation in the 9-10 micrometers region. Fibers with an attenuation of less than 0.5 dB/m have been repeatly obtained. These fibers are coated with a UV curable or thermal plastic, in order to improve their mechanical properites. The IR remote spectroscopy using TeX fibers is one of the most promising applications. This technology allows to perform in situ, real-time, and on-line analysis of chemical and biological compounds. The study of industrial processes such as fermentations has been performed by this method, based on the use of these IR TeX fibers.

  18. Supramolecular structure of diolein and stearyl alcohol characterised by IR spectroscopy and theoretical modeling

    Andrushchenko, Valery; Pohle, W.; Gauger, D. R.; Bouř, Petr

    Coimbra : -, 2011. [European Conference on the Spectroscopy of Biological Molecules /14./. 29.08.2011-03.09.2011, Coimbra] R&D Projects: GA ČR GAP208/10/0559; GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant ostatní: AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : amphiphiles * supramolecular assemblies * IR spectroscopy * quantum chemistry spectra simulations * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry

  19. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  20. DME Dissociation Reaction on Platinum Electrode Surface : A Quantitative Kinetic Analysis by In Situ IR Spectroscopy

    Zhang, Yi; Tong, Yujin; Lu, Leilei; Osawa, Masatoshi; Ye, Shen

    2010-01-01

    The kinetics of electrocatalytic dissociation reaction of dimethyl ether (DME) on a platinum (Pt) polycrystalline electrode in an acidic solution yielding carbon monoxide (CO) has been quantitatively analyzed by in situ IR spectroscopy in the potential region between 100 and 500 mV (vs reversible hydrogen electrode). A two-step consecutive reaction model, an initial dehydrogenation step followed by a CO formation step, is proposed for the dissociation process of the DME molecule. The mechanis...

  1. IR double-resonance spectroscopy applied to the 4-aminophenol(H2O)1 cluster

    Gerhards, M.; Unterberg, C.

    2001-04-01

    The IR double-resonance techniques IR/R2PI (infrared/resonant 2-photon ionization), IR/PIRI (infrared-photo-induced Rydberg ionization) and IR-photodissociation spectroscopy are valuable tools to investigate structure, vibrations, and dynamical processes of neutral and ionic hydrogen-bonded clusters containing aromatic molecules. In this paper we report on the application of the IR double-resonance techniques to determine the NH and OH stretching vibrations of 4-aminophenol and 4-aminophenol(H2O)1, both in the neutral (S0) and ionic (D0) ground state. All vibrational frequencies obtained for 4-aminophenol and the cluster are compared with the values obtained from ab initio and DFT calculations. In the S0 state, a trans-linear arrangement of 4-aminophenol(H2O)1 is obtained containing an O-H..O hydrogen bond. In the D0 state an overlay of two spectra can be observed resulting from the trans-linear structure and a second structure which contains a N-H..O hydrogen bond. The observation of these two structures within the ion is an interesting example of a rearrangement reaction in the ionic state.

  2. Potential of mid IR spectroscopy in the rapid label free identification of skin malignancies

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2016-03-01

    The rapid inspection of suspicious skin lesions for pathological cell types is the objective of optical point of care diagnostics technologies. A marker free fast diagnosis of skin malignancies would overcome the limitations of the current gold standard surgical biopsy. The time consuming and costly biopsy procedure requires the inspection of each sample by a trained pathologist, which limits the analysis of potentially malignant lesions. Optical technologies like RAMAN or infrared spectroscopy, which provide both, localization and chemical information, can be used to differentiate malignant from healthy tissue by the analysis of multi cell structures and cell type specific spectra. We here report the application of midIR spectroscopy towards fast and reliable skin diagnostics. Within the European research project MINERVA we developed standardized in vitro skin systems with increasing complexity, from single skin cell types as fibroblasts, keratinocytes and melanoma cells, to mixtures of these and finally three dimensional human skin equivalents. The standards were characterized in the established midIR range and also with newly developed systems for fast imaging up to 12 μm. The analysis of the spectra by novel data processing algorithms demonstrated the clear separation of all cell types, especially the tumor cells. The signals from single cell layers were sufficient for cell type differentiation. We have compared different midIR systems and found all of them suitable for specific cell type identification. Our data demonstrate the potential of midIR spectroscopy for fast image acquisition and an improved data processing as sensitive and specific optical biopsy technology.

  3. Collaborative Student Laboratory Exercise Using FT-IR Spectroscopy for the Kinetics Study of a Biotin Analogue

    Leong, Jhaque; Ackroyd, Nathan C.; Ho, Karen

    2014-01-01

    The synthesis of N-methoxycarbonyl-2-imidazolidone, an analogue of biotin, was conducted by organic chemistry students and confirmed using FT-IR and H NMR. Spectroscopy students used FT-IR to measure the rate of hydrolysis of the product and determined the rate constant for the reaction using the integrated rate law. From the magnitude of the rate…

  4. Discrimination of adulterated milk based on two-dimensional correlation spectroscopy (2D-COS) combined with kernel orthogonal projection to latent structure (K-OPLS).

    Yang, Renjie; Liu, Rong; Xu, Kexin; Yang, Yanrong

    2013-12-01

    A new method for discrimination analysis of adulterated milk and pure milk is proposed by combining two-dimensional correlation spectroscopy (2D-COS) with kernel orthogonal projection to latent structure (K-OPLS). Three adulteration types of milk with urea, melamine, and glucose were prepared, respectively. The synchronous 2D spectra of adulterated milk and pure milk samples were calculated. Based on the characteristics of 2D correlation spectra of adulterated milk and pure milk, a discriminant model of urea-tainted milk, melamine-tainted milk, glucose-tainted milk, and pure milk was built by K-OPLS. The classification accuracy rates of unknown samples were 85.7, 92.3, 100, and 87.5%, respectively. The results show that this method has great potential in the rapid discrimination analysis of adulterated milk and pure milk. PMID:24359648

  5. Structure and Absolute Configuration of Ginkgolide B Characterized by IR- and VCD Spectroscopy

    Andersen, Niels Højmark; Christensen, N.J.; Lassen, Peter Rygaard; Freedman, T.B.N.; Nafie, L.A.; Stromgaard, K.; Hemmingsen, L.

    2010-01-01

    Experimental and calculated (B3LYP/6-31G(d)) vibrational Circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent......, displaying different intramolecular hydrogen bonding. Differences between measured and calculated IR and VCD spectra for GB at certain wavenumbers are rationalized in terms of interactions with solvent, intermolecular GB-GB interactions, and the potential presence of more than one conformer. This is the...... first detailed investigation of the spectroscopic fingerprint region (850-1300 cm(-1)) of the natural product GB employing infrared absorption and VCD spectroscopy. Chirality 22:217-223, 2010....

  6. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  7. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  8. Structure-Activity Relations In Enzymes: An Application Of IR-ATR Modulation Spectroscopy

    Fringeli, Urs P.; Ahlstrom, Peter; Vincenz, Claudius; Fringeli, Marianna

    1985-12-01

    Relations between structure and specific activity in immobilized acetylcholinesterase (ACNE) have been studied by means of pH- and Ca++-modulation technique combined with attenuated total reflection (ATR) infrared (IR) spectroscopy and enzyme activity measurement. Periodic modulation of pH and Ca++-concentration enabled a periodic on-off switching of about 40% of the total enzyme activity. It was found that about 0.5 to 1% of the amino acids were involved in this process. These 15 to 30 amino acids assumed antiparallel pleated sheet structure in the inhibited state and random and/or helical structure in the activated state.

  9. Interaction of mineral surfaces with simple organic molecules by diffuse reflectance IR spectroscopy (DRIFT)

    Thomas, Joan E.; Kelley, Michael J.

    2008-06-01

    Diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was used to characterize multi-layers of lysine, glutamic acid and salicylic acid on -alumina and kaolinite surfaces. The results agreed well with those previously obtained by ATR-IR in aqueous media where available, indicating that DRIFT may be regarded as effectively an in-situ spectroscopy for these materials. In the case of salicylic acid adsorption onto γ-alumina, DRIFTS was used to identify monolayer coverage and to detect molecules down to coverage of 3% of a monolayer. The spectroscopic results as to coverage were confirmed by analysis of the solutions used for treatment. The spectra obtained allowed identification of changes in the bonding environment with increasing surface coverage. DRIFTS, offers several advantages in terms of materials, experimental technique and data treatment, motivating further investigations.

  10. Determination of leachate compounds relevant for landfill aftercare using FT-IR spectroscopy.

    Lenz, Sabine; Böhm, Katharina; Ottner, Reinhold; Huber-Humer, Marion

    2016-09-01

    Controlling and monitoring of emissions from municipal solid waste (MSW) landfills is important to reduce environmental damage and health risks. Therefore, simple and meaningful monitoring tools are required. This paper presents how Fourier Transform Infrared (FT-IR) Spectroscopy can be used to monitor leachate from various landfill sites. The composition of percolated leachate provides information about reactivity or stability of organic matter in landfills. Chemical compounds of investigated leachate are depicted by distinct spectral pattern. Partial least squares regression (PLS-R) models, a multivariate analysis tool, were developed based on infrared spectra to determine simultaneously conventional parameters such as ammonium, nitrate, sulfate, and dissolved organic carbon. The developed models are appropriate for application in waste management practice with respect to their excellent coefficients of determination, namely R(2)=0.99, 0.99, 0.98, and 0.98, their low errors of cross-validation and their high ratios of performance to deviation (RPD=9.3, 12.5, 6.5, 7.3). Thus, FT-IR spectroscopy turned out to be a reliable, time-saving tool to determine four parameters relevant for landfill aftercare monitoring by one single easy adaptable measurement. PMID:26951718

  11. Cyclohexene Photo-oxidation over Vanadia Catalyst Analyzed by Time Resolved ATR-FT-IR Spectroscopy

    Frei, Heinz; Mul, Guido; Wasylenko, Walter; Hamdy, M. Sameh; Frei, Heinz

    2008-06-04

    Vanadia was incorporated in the 3-dimensional mesoporous material TUD-1 with a loading of 2percent w/w vanadia. The performance in the selective photo-oxidation of liquid cyclohexene was investigated using ATR-FT-IR spectroscopy. Under continuous illumination at 458 nm a significant amount of product, i.e. cyclohexenone, was identified. This demonstrates for the first time that hydroxylated vanadia centers in mesoporous materials can be activated by visible light to induce oxidation reactions. Using the rapid scan method, a strong perturbation of the vanadyl environment could be observed in the selective oxidation process induced by a 458 nm laser pulse of 480 ms duration. This is proposed to be caused by interaction of the catalytic centre with a cyclohexenyl hydroperoxide intermediate. The restoration of the vanadyl environment could be kinetically correlated to the rate of formation of cyclohexenone, and is explained by molecular rearrangement and dissociation of the peroxide to ketone and water. The ketone diffuses away from the active center and ATR infrared probing zone, resulting in a decreasing ketone signal on the tens of seconds time scale after initiation of the photoreaction. This study demonstrates the high potential of time resolved ATR FT-IR spectroscopy for mechanistic studies of liquid phase reactions by monitoring not only intermediates and products, but by correlating the temporal behavior of these species to molecular changes of the vanadyl catalytic site.

  12. Pyrolysis GC/MS and IR spectroscopy in chitin analysis of molluscan shells.

    Furuhashi, Takeshi; Beran, Anton; Blazso, Marianne; Czegeny, Zsuzsanna; Schwarzinger, Clemens; Steiner, Gerhard

    2009-01-01

    Chitin is an insoluble component in the shells of several molluscan species. It is thought to play important roles, in biomineralization and shell structure. To date, however, reports are scarce and sometimes contradictory, and suffer from methodological problems. Only in a single cephalopod species has the chitin been identified as beta-chitin. We present data on chitin occurrence in 22 species of shell-bearing Mollusca (Conchifera) and Polyplacophora, including the first evidence for scaphopods, based on pyrolysis gas chromatography, mass spectrometry (GC-MS), and infrared spectroscopy (IR). Pyrolysis GC-MS detected chitin in every tested member of the Conchifera. IR spectroscopy before and after chitinase treatment revealed at least three distinct patterns of peak changes. The contents of the insoluble shell organics included not only chitin and proteins, but also insoluble polysaccharides, e.g., glucan. We conclude that chitin was present in the last common ancestor of the Conchifera and that its abundance in the shell matrix depends on the differentiation of the shell. PMID:19129649

  13. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution

    Süss, B.; Ringleb, F.; Heberle, J.

    2016-06-01

    A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.

  14. Effect of Water on HEMA Conversion by FT-IR Spectroscopy

    TS. Jafarzadeh Kashi

    2007-09-01

    Full Text Available Objective: The use of HEMA as a biocompatible material in dentin bonding systems and its potential for clinical applications has been well established. Excess water can affect conversion of bonding resins. The aim of this study was to survey the effect of water on the degree of conversion of HEMA by Fourier Transform Infra-red Spectroscopy (FT-IR.Materials and Methods: In this experimental study, distilled water was added in amounts of 0, 0.05, 0.1, 0.2, and 0.4 ml to 1 ml of curable HEMA solution. Six repetitions per wa-ter ratio were made and investigated. Each sample was polymerized for 60 seconds. De-gree of conversion was obtained from the absorbance IR-Spectrum of the materials before and after polymerization by FT-IR spectroscopy. One way ANOVA and Tukey-HSD were carried out to compare and detect any differences among groups.Results: Statistical analysis indicates highly significant difference between pairs of groups at level (P<0.001. The results showed a trend of decreasing in HEMA conversion with increasing water. Degree of conversion changes significantly within the 0.05 ml to 0.2 ml water range. However, degree of conversion did not change after reaching 0.02 ml and before 0.05.Conclusion: Degree of conversion of HEMA decreased by increasing water. The most dramatic effect of water on the polymerization process occurs within a range which exists under clinical conditions. The reason that the degree of conversion did not show signifi-cant result before 0.05 ml may be related to the hydrophilic nature of HEMA.

  15. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness. PMID:26889359

  16. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness. PMID:26889359

  17. Utility of FT-IR imaging spectroscopy in estimating differences between the quality of bovine blastocysts

    Wiecheć, A.; Opiela, J.; Lipiec, E.; Kwiatek, W. M.

    2013-10-01

    This study was conducted to verify whether the FT-IR spectroscopy and Focal Plane Array (FPA) imaging can be successfully applied to estimate the quality of bovine blastocysts (on the basis of the concentration of nucleic acids and amides). The FT-IR spectra of inner cell mass from blastocysts of three different culture systems were examined. The spectral changes between blastocysts were analyzed in DNA (spectral range of 1240-950 cm-1) and protein amides (1800-1400 cm-1). Blastocyst 1 (BL1-HA) was developed from the fertilized oocyte cultured with low concentration of hialuronian (HA), Blastocyst 2 and 3 were developed from the oocytes cultured in standard conditions. Cleavage stage blastocyst 2 (BL2-SOF) has been cultured in SOF medium while blastocyst 3 (BL3-VERO) was cultured in co-culture with VERO cells. The multivariate statistical analysis (Hierarchical Cluster Analysis - HCA and Principal Component Analysis - PCA) of single cells spectra showed high similarity of cells forming the inner cell mass within single blastocyst. The main variance between the three examined blastocysts was related to amides bands. Differences in the intensities of the amides' peaks between the bovine blastocysts derived from different culture systems indicated that specific proteins reflecting the appearance of a new phenotype were produced. However, for the three blastocysts, the α-helix typical peak was twice more intensive than the β-sheet typical peak suggesting that the differentiation processes had been started. Taking into account the quantitative and qualitative composition of the protein into examined blastocysts, it can be assumed, that the quality of the BL1-HA turned out much more similar to BL3-VERO than to BL2-SOF. FT-IR spectroscopy can be successfully applied in reproductive biology research for quality estimation of oocytes and embryos at varied stages of their development. Moreover this technique proved to be particularly useful when the quantity of the

  18. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  19. Study of simple super-critical fluids (CO2, C2D6) through neutron scattering, Raman spectroscopy and molecular dynamic simulations

    Super-critical fluids are largely used in industrial sectors. However the knowledge of the physical phenomena in which they are involved stays insufficient because of their particular properties. A new model of adjusting molecular structures is proposed, this model has been validated through neutron scattering experiments with high momentum transfer on C2D6. The experimental representation of the critical universal function for C2D6 and CO2 has been obtained through the neutron echo spin and by relying on structure measurements made through neutron elastic scattering at small angles. Raman spectroscopy and molecular dynamics simulation have been used to feature structure and dynamics. Scattering as well as microscopic molecular density fluctuations have been analysed

  20. A Practical Deconvolution Computation Algorithm to Extract 1D Spectra from 2D Images of Optical Fiber Spectroscopy

    Li, Guangwei; Bai, Zhongrui

    2015-01-01

    Bolton and Schlegel presented a promising deconvolution method to extract 1D spectra from a 2D optical fiber spectral CCD image. The method could eliminate the PSF difference between fibers, extract spectra to the photo noise level, as well as improve the resolution. But the method is limited by its huge computation requirement and thus cannot be implemented in actual data reduction. In this article, we develop a practical computation method to solve the computation problem. The new computation method can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. Our method does not require large amounts of memory and can extract a 4k multi 4k noise-free CCD image with 250 fibers in 2 hr. To make our method more practical, we further consider the influence of noise, which is thought to be an intrinsic illposed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. Compared with the results of tra...

  1. Comparing the photophysics of the two forms of the Orange Carotenoid Protein using 2D electronic spectroscopy

    Mathies R.A.

    2013-03-01

    Full Text Available Broadband two-dimensional electronic spectroscopy is applied to investigate the photophysics of the photoactive orange carotenoid protein, which is involved in nonphotochemical quenching in cyanobacteria. Differences in dynamics between the light and dark forms arise from the different structure of the carotenoid in the protein pocket, with consequences for the biological role of the two forms.

  2. Resonant multi-photon IR dissociation spectroscopy of a trapped and sympathetically cooled biomolecular ion species

    Wellers, Ch; Vasilyev, S; Offenberg, D; Schiller, S

    2011-01-01

    In this work we demonstrate vibrational spectroscopy of polyatomic ions that are trapped and sympathetically cooled by laser-cooled atomic ions. We use the protonated dipeptide tryptophane-alanine (HTyrAla+) as a model system, cooled by Barium ions to less than 800mK secular temperature. The spectroscopy is performed on the fundamental vibrational transition of a local vibrational mode at 2.74 {\\mu}m using a continuous-wave optical parametric oscillator (OPO). Resonant multi-photon IR dissociation spectroscopy (without the use of a UV laser) generates charged molecular fragments, which are sympathetically cooled and trapped, and subsequently released from the trap and counted. We measured the cross section for R-IRMPD under conditions of low intensity, and found it to be approximately two orders smaller than the vibrational excitation cross section. The observed rotational bandwidth of the vibrational transition is larger than the one expected from the combined effects of 300 K black-body temperature, conform...

  3. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 2: Wind propagation and emission rates

    Krueger, A.; Stremme, W.; Harig, R.; Grutter, M.

    2013-01-01

    A technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012a). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and...

  4. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 2: Wind propagation and emission fluxes

    Harig, R.; Grutter, M.; Stremme, W.; Krueger, A.

    2012-01-01

    The technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emis...

  5. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 2: Wind propagation and emission rates

    Harig, R.; Grutter, M.; Stremme, W.; Krueger, A.

    2013-01-01

    A technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012a). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emiss...

  6. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    Artur Zdunek; Monika Szymańska-Chargot; Justyna Cybulska

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XC R...

  7. Applications of Ultrafast Terahertz Pulses for Intra-ExcitonicSpectroscopy of Quasi-2D Electron-Hole Gases

    Kaindl, Robert A.; Carnahan, Marc A.; Hagele, Daniel; Chemla, D.S.

    2006-09-02

    Excitons are of fundamental interest and of importance foropto-electronic applications of bulk and nano-structured semiconductors.This paper discusses the utilization of ultrafast terahertz (THz) pulsesfor the study of characteristic low-energy excitations of photoexcitedquasi 2D electron-hole (e-h) gases. Optical-pump THz-probe spectroscopyat 250-kHz repetition rate is employed to detect characteristic THzsignatures of excitons and unbound e-h pairs in GaAs quantum wells.Exciton and free-carrier densities are extracted from the data using atwo-component model. We report the detailed THz response and pairdensities for different photoexcitation energies resonant to heavy-holeexcitons, light-hole excitons, or the continuum of unbound pairs. Suchexperiments can provide quantitative insights into wavelength, time, andtemperature dependence of the low-energy response and composition ofoptically excited e-h gases in low-dimensionalsemiconductors.

  8. Mid-IR Photometry and Near-IR Spectroscopy of the FU Ori Protostar V2775 Ori (HOPS 223)

    Fischer, William J.; Safron, Emily J.; Megeath, S. Thomas; Terebey, Susan; Soto, Edith; Wilson, Thomas L.; Adams, Joseph D.

    2016-02-01

    On 2015 November 20.39, we obtained mid-IR photometry of V2775 Ori (HOPS 223) with the FORCAST instrument aboard SOFIA. This is a low-mass embedded young stellar object that was reported to have undergone a luminosity outburst by Caratti o Garatti et al. (2011, A & A, 526, L1). Fischer et al. (2012, ApJ, 756, 99) dated the beginning of the outburst to between 2005 April and 2007 March and discussed the similarity of its near-IR spectrum to that of FU Orionis.

  9. Study of the cyclodextrin and its complexation with 2,4-dinitrobenzoic acid through photophysical properties and 2D NMR spectroscopy

    Stalin, T.; Srinivasan, K.; Sivakumar, K.

    2014-02-01

    The host-guest inclusion complex formation of 2,4-dinitrobenzoic acid (2,4-DNB) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase were studied by UV-visible spectrophotometer and electrochemical method (cyclic voltammetry, CV). The prototropic behaviors of 2,4-DNB with and without β-CD and the ground state acidity constant (pKa) of host-guest inclusion complex (2,4-DNB-β-CD) was studied. The binding constant of the inclusion complex at 303 K was calculated using Benesi-Hildebrand plot. The solid inclusion complex formation between β-CD and 2,4-DNB was confirmed by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD and SEM analysis. A schematic representation of this inclusion process is proposed by molecular docking studies using the patch dock server.

  10. Radiation damage studies of membrane model systems by means of ATR-IR spectroscopy

    An investigation was made of the destruction of thin oriental layer systems by means of IR spectroscopy in an ATR (Attenuated Total Reflection) mode. 8 tripalmitin layers were deposited with transfer ratios between 0.95-1, 1 on always 2 Ge internal reflection plates, previously coated with a Cd-arachidate monolayer. Both Ge-plates were then mounted on a holder fitting like a photographic plate into a special device normally used for step-wedge exposures in the e.m. image plane. Through a fitting mask one of the plates was exposed on each side to 100 keV electrons. The IR spectrum of reference plate (not irradiated) showed no defects at all. In comparison a plate irradiated with effectively 5 x 10-4 Cb/cm2 at a measured current density of 1,24.10-8 A/cm2 shows serious defects in the tripalmitin layers, although this dose is far below what is considered necessary for a single heavy atom detection. (author)

  11. High pressure FT-IR spectroscopy for biomedical and cancer research

    Wong, Patrick T. T.

    1994-07-01

    By resolving technical and methodological problems, we are now able to obtain extremely high quality infrared spectra of animal and human tissues and cells as a function of pressure. This allows us to analyze the spectra in great details in terms of structural and dynamic properties at the molecular level in a wide range of biological and biomedical problems. For instance, in our cancer research we found that many structural modifications of cellular molecules in the malignant transformation are common to all the cancers that we have studied to data. Recently, large scale evaluation of the use of high-pressure FT-IR spectroscopy for the prescreening of cancer as well as preinvasive lesions of the cervix has been initiated in our laboratory. In order to optimize the specificity of the FT-IR technology for cervical screening, we have systematically studied and analyzed the high-pressure infrared spectra of individual abnormal lessons of the cervix. The results of one of these studies, differentiation between malignancy and inflammation in the human uterine cervix are given in this paper.

  12. Monitoring wine aging with Fourier transform infrared spectroscopy (FT-IR

    Basalekou Marianthi

    2015-01-01

    Full Text Available Oak wood has commonly been used in wine aging but recently other wood types such as Acacia and Chestnut, have attracted the interest of the researchers due to their possible positive contribution to wine quality. However, only the use of oak and chestnut woods is approved by the International Enological Codex of the International Organisation of Vine and Wine. In this study Fourier Transform (FT-mid-infrared spectroscopy combined with Discriminant Analysis was used to differentiate wines aged in barrels made from French oak, American oak, Acacia and Chestnut and in tanks with oak chips, over a period of 12 months. Two red (Mandilaria, Kotsifali and two white (Vilana, Dafni native Greek grape varieties where used to produce four wines. The Fourier Transform Infrared (FT-IR spectra of the samples were recorded on a Zinc Selenide (ZnSe window after incubation at 40 °C for 30 min. A complete differentiation of the samples according to both the type of wood used and the contact time was achieved based on their FT-IR spectra.

  13. A Practical Deconvolution Computation Algorithm to Extract 1D Spectra from 2D Images of Optical Fiber Spectroscopy

    Guangwei, Li; Haotong, Zhang; Zhongrui, Bai

    2015-06-01

    Bolton & Schlegel presented a promising deconvolution method to extract one-dimensional (1D) spectra from a two-dimensional (2D) optical fiber spectral CCD (charge-coupled device) image. The method could eliminate the PSF (point-spread function) difference between fibers, extract spectra to the photo noise level, as well as improve the resolution. But the method is limited by its huge computation requirement and thus can not be implemented in actual data reduction. In this article, we develop a practical computation method to solve the computation problem. The new computation method can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. Our method does not require large amounts of memory and can extract a 4 k × 4 k noise-free CCD image with 250 fibers in 2 hr. To make our method more practical, we further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. We do a series of simulations to test how our method performs under more real situations with Poisson noise and extreme cross talk. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method has the least residual and influence by cross talk. For the noise-added image, the computation speed does not depend very much on fiber distance, the signal-to-noise ratio converges in 2-4 iterations, and the computation times are about 3.5 hr for the extreme fiber distance and about 2 hr for nonextreme cases. A better balance between the computation time and result precision could be achieved by setting the precision threshold similar to the noise level. Finally, we apply our method to real LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope; a.k.a. Guo Shou Jing Telescope) data. We find that the 1D spectrum extracted by our

  14. 2D Spectroscopy of Candidate Polar-Ring Galaxies: I. The Pair of Galaxies UGC 5600/09

    Shalyapina, L. V.; Merkulova, O. A.; Yakovleva, V. A.; Volkov, E. V.

    2008-01-01

    Observations of the pair of galaxies VV 330 with the SCORPIO multimode instrument on the 6-m Special Astrophysical Observatory telescope are presented. Large-scale velocity fields of the ionized gas in H-alfa and brightness distributions in continuum and H-alfa have been constructed for both galaxies with the help of a scanning Fabry Perot interferometer. Long-slit spectroscopy is used to study the stellar kinematics. Analysis of the data obtained has revealed a complex structure in each of t...

  15. Half-sandwich (6-arene)ruthenium(II) chiral Schiff base complexes: Analysis of the diastereomeric mixtures in solution by 2D-NMR spectroscopy

    Rakesh K Rath; G A Nagana Gowda; Akhil R Chakravarty

    2002-10-01

    2D NMR spectroscopy has been used to determine the metal configuration in solution of three complexes, viz. [($\\eta^6$--cymene)Ru(L∗)Cl] (1) and [(6--cymene)Ru(L∗)(L')] (ClO4) (L' = H2O, 2; PPh3, 3), where L∗ is the anion of ()-(1-phenylethyl)salicylaldimine. The complexes exist in two diastereomeric forms in solution. Both the (Ru, C)- and (Ru, C)-diastereomers display the presence of attractive CH/ interaction involving the phenyl group attached to the chiral carbon and the cymene ring hydrogens. This interaction restricts the rotation of the C∗-N single bond and, as a result, two structural types with either the hydrogen atom attached to the chiral carbon (C∗) or the methyl group attached to C∗ in close proximity of the cymene ring protons get stabilized. Using 2D NMR spectroscopy as a tool, the spatial interaction involving these protons are studied in order to obtain the metal configuration(s) of the diastereomeric complexes in solution. This technique has enabled us to determine the metal configuration as (Ru, C) for the major isomers of 1-3 in solution.

  16. Development and testing of an image-guided FT-IR instrument for field spectroscopy

    Dai, Xiaobing; Liu, Xiangyan; Liu, Li

    2015-09-01

    Standoff detection, identification and quantification of chemicals require sensitive spectrometers with calibration capabilities. We have developed a compact novel instrument that can not only provide imaging capability, bust also one that provides spectral capability of the field of view (FOV) center under the image-guided. The system employs a Fourier transform infrared (FT-IR) spectrometer, coupled with chalcogenide glass optical fiber, and a specially designed infrared optic lens. A special kit provided by Bruker Optics is connected on the spectrometer to focus the infrared beam from the lens at the entry of the fiber. Its spectral range covers the infrared band from 1850cm-1 to 5000cm-1 and its spectral resolution could be chosen among six selected values 1, 2, 4, 8, 16, 32cm-1. This paper will address the issues of image-guided spectroscopy and will show how an instrument designed for specifically imaging applications can dramatically improve the performance of the system and quality of the data acquired. The benefit of these technologies in spectroscopy can be demonstrated with a system optimally designed for detecting spectral characteristics of moving targets.

  17. Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR.

    Freitas, Renato P; Ribeiro, Iohanna M; Calza, Cristiane; Oliveira, Ana L; Felix, Valter S; Ferreira, Douglas S; Pimenta, André R; Pereira, Ronaldo V; Pereira, Marcelo O; Lopes, Ricardo T

    2016-02-01

    In this study, samples were taken from the sculpture of Our Lady of Sorrows and analyzed by Raman spectroscopy and FT-IR. This sculpture has been dated to the early eighteenth century. Samples were also examined using optical microscopy and Energy Dispersive Spectroscopy (EDS). Based on chemical analysis, the pigments vermilion [HgS], massicot [PbO] and azurite [Cu3(CO3)2(OH)2]were found in the sculpture polychrome. The results indicate that the green polychrome of the sculpture's mantle comes from the blending of massicot and azurite. Because the literature reports that the mantle of the Our Lady of Sorrows sculpture is blue, the mixing of these pigments results from a production error. The results also indicate the presence of Au in the sculpture, which indicates the originality of the piece. The results from this study helped restorers to choose the appropriate procedures for intervening in the sculpture and contributed to the knowledge about the manufacturing process of Brazilian baroque sculptures. PMID:26513229

  18. HST/STIS results on circumstellar disks and jets, future coronography and technology for IR multi-object spectroscopy

    Woodgate, Bruce E.

    2002-01-01

    Results of studies of circumstellar disks and jets obtained by HST/STIS visible coronagraphy and UV spectroscopy, and by ground-based Fabry-Perot coronagraphy will be presented. Future improvements in coronagraphy will be discussed. The development of microshutter arrays as programmable multi-object selectors for the NGST near IR spectrograph will be described.

  19. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

  20. 2-D spectroscopy of polar-ring galaxies candidates. II. The peculiar galaxies NGC 2748 and UGC 4385

    Merkulova, O. A.; Shalyapina, L. V.; Yakovleva, V. A.

    2009-09-01

    This article is devoted to the analysis of new observational data obtained on the 6-m telescope using multimode instrument SCORPIO for two peculiar galaxies NGC 2748 and UGC 4385. Using scanning Fabry-Perot interferometer (FPI) large-scale velocity fields of ionized gas in lines H α and [N II] λ6584 Å for NGC 2748 and in line H α for UGC 4385 and the maps of brightness distribution in continuum and in corresponding lines for both galaxies were constructed. Observational data obtained in the long-slit mode of spectroscopy gave information about the kinematics of stellar component. The analysis of the received materials for NGC 2748 have shown that this object is a disky galaxy with stellar shell which rotates around the major axis of main body. The origin of such shell is most likely connected with the capture and disruption of dwarf companion. The structure of ionized gas velocity field of UGC 4385 appeared to be very complex. The most regular part of the field which concerns the supposed ring is best represented by the model of circular rotation with expansion. In addition long-slit observations showed that the optical spectra of two bright in the infrared region condensations resemble the spectra of galaxies’ nuclei. A supposition was made that UGC 4385 is two galaxies in the stage of head-on collision.

  1. Characterization of Paracoccidioides brasiliensis by FT-IR spectroscopy and nanotechnology

    Ferreira, Isabelle; Ferreira-Strixino, Juliana; Castilho, Maiara L.; Campos, Claudia B. L.; Tellez, Claudio; Raniero, Leandro

    2016-01-01

    Paracoccidioides brasiliensis, the etiological agent of paracoccidioidomycosis, is a dimorphic fungus existing as mycelia in the environment (or at 25 °C in vitro) and as yeast cells in the human host (or at 37 °C in vitro). Because mycological examination of lesions in patients frequently is unable to show the presence of the fungus and serological tests can misdiagnose the disease with other mycosis, the development of new approach's for molecular identification of P. brasiliensis spurges is needed. This study describes the use of a gold nanoprobe of a known gene sequence of P. brasiliensis as a molecular tool to identify P. brasiliensis by regular polymerase chain reaction (PCR) associated with a colorimetric methods. This approach is suitable for testing in remote areas because it does not require any further step than gene amplification, being safer and cheaper than electrophoresis methods. The proposed test showed a color change of the PCR reaction mixture from red to blue in negative samples, whereas the solution remains red in positive samples. We also performed a Fourier Transform Infrared (FT-IR) Spectroscopy analysis to characterize and compare the chemical composition between yeast and mycelia forms, which revealed biochemical differences between these two forms. The analysis of the spectra showed that differences were distributed in chemical bonds of proteins, lipids and carbohydrates. The most prominent difference between both forms was vibration modes related to 1,3-β-glucan usually found in mycelia and 1,3-α-glucan found in yeasts and also chitin forms. In this work, we introduce FT-IR as a new method suitable to reveal overall differences that biochemically distinguish each form of P. brasiliensis that could be additionally used to discriminate biochemical differences among a single form under distinct environmental conditions.

  2. An add-on cap for ATR-IR spectroscopy studies

    2014-01-01

    The invention relates to a cap (300B) for an attenuated total reflectance infrared (ATR-IR) spectrometer, the ATR-IR spectrometer comprising an ATR-IR plate (200). The cap (300B) comprises an ATR- IR plate facing cap surface. When the ATR-IR plate facing cap surface is placed on the sample surfac...... as cap securing means (322), as the cap (300B) is secured onto the ATR-IR plate (200) by a pressure clamp (108) and an arm (110) holding the pressure clamp (108) pressing on the bridge (322)....

  3. Grism Performance for Mid-IR (5-40 microns) Spectroscopy

    Ennico, K. A.; Mar, D. J.; Jaffe, D. T.; Marsh, J. P.; Keller, L. D.; Herter, T. L.; Greene, T. P.; Adams, J. D.

    2006-01-01

    Grisms provide a straightforward method to transform an imager into a spectrometer with little change to the original imaging optics. This paper addresses the performance of a suite of grisms as part of an Astrobiology Science and Instrument Development (ASTID) Program to implement a moderate resolution spectroscopic capability to the mid/far-IR facility instrument FORCAST for the Stratospheric Observatory For Infrared Astronomy (SOFIA) [see accompanying abstract by Adams et al.]. A moderate resolution mid-IR spectrometer on SOFIA will offer advantages not available to either ground or space-based instruments after the Spitzer Space Telescope ceases operation in approx. 2007. SOFIA will begin operations in 2007 and will have an operational lifetime of approx. 20 years. From aircraft altitudes, it will be possible to cover a range of wavelengths, particularly in the critical 5-9 micron band, where detection of astrobiologically interesting molecules have key spectral signatures, that are not accessible from the ground. This grism suite consists of six grisms: four monolithic Si grisms [see accompanying abstract by Mar et al.] and two KRS-5 grisms. These devices will allow long slit low-resolution and short slit, cross-dispersed high-resolution spectroscopic modes selectable by simply moving the camera filter wheels. This configuration will enable observing programs to gather images and spectra in a single SOFIA flight. The four silicon grisms, whose performance is highlighted in this paper, will operate in the following wavelength ranges: 5-8, 17-28, and 28-37 microns. In the 5-8 micron range, R=1200 is achievable for a 2 arcsecond slit using the grism as a cross-disperser. For the 17-28 and 28-37 micron ranges, the resolving powers are R approx. 130, 250 when used in low orders with a slit of 3 arcseconds. The silicon grisms demonstrate a new family of dispersive elements with good optical performance for spectroscopy from 1.2-8 micron and beyond 18 microns

  4. WaFIRS, a Waveguide Far-IR Spectrometer: Enabling Space-Borne Spectroscopy of High-z Galaxies in the Far-IR and Submm

    Bradford, C. M.; Bock, J. J.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H.; Zmuidzinas, J.

    2004-01-01

    The discovery of galaxies beyond z approximately equal to 1 which emit the bulk of their luminosity at long wavelengths has demonstrated the need for high sensitivity, broadband spectroscopy in the far-IR/submm/mm bands. Because many of these sources are not detectable in the optical, long wavelength spectroscopy is key to measuring their redshifts and ISM conditions. The continuum source list will increase in the next decade with new ground-based instruments (SCUBA2, Bolocam, MAMBO) and the surveys of HSO and SIRTF. Yet the planned spectroscopic capabilities lag behind, primarily due to the difficulty in scaling existing IR spectrograph designs to longer wavelengths. To overcome these limitations, we are developing WaFIRS, a novel concept for long-wavelength spectroscopy which utilizes a parallel-plate waveguide and a curved diffraction grating. WaFIRS provides the large (approximately 60%) instantaneous bandwidth and high throughput of a conventional grating system, but offers a dramatic reduction in volume and mass. WaFIRS requires no space overheads for extra optical elements beyond the diffraction grating itself, and is two-dimensional because the propagation is confined between two parallel plates. Thus several modules could be stacked to multiplex either spatially or in different frequency bands. The size and mass savings provide opportunities for spectroscopy from space-borne observatories which would be impractical with conventional spectrographs. With background-limited detectors and a cooled 3.5 telescope, the line sensitivity would be better than that of ALMA, with instantaneous broad-band coverage. We have built and tested a WaFIRS prototype for 1-1.6 mm, and are currently constructing Z-Spec, a 100 mK model to be used as a ground-based lambda/DELTAlambda approximately equal to 350 submillimeter galaxy redshift machine.

  5. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  6. Photophysical and photochemical properties of 4-thiouracil: time-resolved IR spectroscopy and DFT studies.

    Zou, Xiaoran; Dai, Xiaojuan; Liu, Kunhui; Zhao, Hongmei; Song, Di; Su, Hongmei

    2014-06-01

    Intensified research interests are posed with the thionucleobase 4-thiouracil (4-TU), due to its important biological function as site-specific photoprobe to detect RNA structures and nucleic acid-nucleic acid contacts. By means of time-resolved IR spectroscopy and density functional theory (DFT) studies, we have examined the unique photophysical and photochemical properties of 4-TU. It is shown that 4-TU absorbs UVA light and results in the triplet formation with a high quantum yield (0.9). Under N2-saturated anaerobic conditions, the reactive triplet undergoes mainly cross-linking, leading to the (5-4)/(6-4) pyrimidine-pyrimidone product. In the presence of O2 under aerobic conditions, the triplet 4-TU acts as an energy donor to produce singlet oxygen (1)O2 by triplet-triplet energy transfer. The highly reactive oxygen species (1)O2 then reacts readily with 4-TU, leading to the products of uracil (U) with a yield of 0.2 and uracil-6-sulfonate (U(SO3)) that is fluorescent at ~390 nm. The product formation pathways and product distribution are well rationalized by the joint B3LYP/6-311+G(d,p) calculations. From dynamics and mechanistic point of views, these results enable a further understanding for 4-TU acting as reactive precursors for photochemical reactions relevant to (1)O2, which has profound implications for photo cross-linking, DNA photodamage, as well as photodynamic therapy studies. PMID:24820207

  7. IR spectroscopy of monohydrated tryptamine cation: Rearrangement of the intermolecular hydrogen bond induced by photoionization

    Sakota, Kenji; Kouno, Yuuki; Harada, Satoshi; Miyazaki, Mitsuhiko; Fujii, Masaaki; Sekiya, Hiroshi

    2012-12-01

    Rearrangement of intermolecular hydrogen bond in a monohydrated tryptamine cation, [TRA(H2O)1]+, has been investigated in the gas phase by IR spectroscopy and quantum chemical calculations. In the S0 state of TRA(H2O)1, a water molecule is hydrogen-bonded to the N atom of the amino group of a flexible ethylamine side chain [T. S. Zwier, J. Phys. Chem. A 105, 8827 (2001), 10.1021/jp011659+]. A remarkable change in the hydrogen-bonding motif of [TRA(H2O)]+ occurs upon photoionization. In the D0 state of [TRA(H2O)1]+, the water molecule is hydrogen-bonded to the NH group of the indole ring of TRA+, indicating that the water molecule transfers from the amino group to NH group. Quantum chemical calculations are performed to investigate the pathway of the water transfer. Two potential energy barriers emerge in [TRA(H2O)1]+ along the intrinsic reaction coordinate of the water transfer. The water transfer event observed in [TRA(H2O)1]+ is not an elementary but a complex process.

  8. Conformations of 1-heptene secondary ozonide as studied by low temperature FT-IR spectroscopy

    Bariseviciute, R.; Ceponkus, J.; Sablinskas, V.; Kimtys, L.

    2007-11-01

    Conformational diversity of the 1-heptene secondary ozonides (SOZ) in solid neat films as well as isolated in Ar or CO 2 matrices was studied by the means of FT-IR absorption spectroscopy. The ozonization reaction was performed at 77 K in the neat films of the reactants. The spectra of the ozonide were analyzed by combining the experimental data with the results of theoretical calculations performed at B3LYP 6-311++G (3df, 3pd) level. It was found that the samples of 1-heptene secondary ozonide exist as a mixture of three dominating conformers. The most stable conformer is the one with O-O half-chair configuration of the five membered ring, the aliphatic radical attached to the ring in equatorial position and the aliphatic chain being in gauche (∠OCCC ≈ -60°) position. The other two stable conformers are equatorial with aliphatic chain in anti (∠OCCC ≈ 180°) and gauche (∠OCCC ≈ 60°) positions. It was found from Van't Hoff plots that Δ H of the equatorial anti conformer is equal to 0.24 ± 0.03 kJ/mol. The experimental value of Δ H is in reasonable accordance to the calculated one - 0.5 kJ/mol.

  9. Characteristics of the complexing of chitosan with sodium dodecyl sulfate, according to IR spectroscopy data and quantum-chemical calculations

    Shilova, S. V.; Romanova, K. A.; Galyametdinov, Yu. G.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-06-01

    The complexing of protonated chitosan with dodecyl sulfate ions in water solutions is studied using IR spectroscopy data and quantum-chemical calculations. It is established that the electrostatic interaction between the protonated amino groups of chitosan and dodecyl sulfate ions is apparent in the IR spectrum as a band at 833 cm-1. The need to consider the effect the solvent has on the formation of hydrogen-bound ion pairs [CTS+ ṡ C12H25O 3 - ] is shown via a quantum-chemical simulation of the equilibrium geometry and the energy characteristics of complexing and hydration.

  10. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  11. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Simone Borri

    2016-02-01

    Full Text Available The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  12. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  13. Configurational and conformational analysis of chiral molecules using IR and VCD spectroscopies: spiropentylcarboxylic acid methyl ester and spiropentyl acetate.

    Devlin, F J; Stephens, P J; Osterle, C; Wiberg, K B; Cheeseman, J R; Frisch, M J

    2002-11-15

    The chiral monosubstituted derivatives of spiropentane, spiropentylcarboxylic acid methyl ester, 1, and spiropentyl acetate, 2, have been synthesized in optically active form. Configurational and conformational analysis of 1 and 2 has been carried out using infrared (IR) and vibrational circular dichroism (VCD) spectroscopies. Analysis of the experimental IR and VCD spectra has been carried out using ab initio density functional theory (DFT). For both 1 and 2, DFT predicts two populated conformations. Comparison to experiment of the conformationally averaged IR and VCD spectra of 1 and 2, predicted using DFT, provides unequivocal evidence of the predicted conformations and yields the absolute configurations R(-)/S(+) for 1 and R(+)/S(-) for 2. These absolute configurations are consistent with the R(-)/S(+) absolute configuration of spiropentylcarboxylic acid, assigned previously via X-ray crystallography of its alpha-phenylethylammonium salt. PMID:12423137

  14. ATR-FT-IR spectroscopy in the region of 500-230 cm -1 for identification of inorganic red pigments

    Vahur, Signe; Knuutinen, Ulla; Leito, Ivo

    2009-08-01

    It is demonstrated that micro-ATR-FT-IR in the low wave number range (500-230 cm -1) can be well used for identification of pigments in paint samples thereby markedly extending the possibilities of pigment identification by ATR-IR spectroscopy into the realm of pigments having no absorptions in the mid-IR region. Reference spectra of pigments can be conveniently obtained by mixing them with linseed oil in approximately 1:1 mass ratio. Vermilion (or cinnabar), read lead, different red iron oxide pigments and cadmium red can be identified. In some cases the method can be used alone for pigment identification and in many cases it provides useful additional evidence for pigment identification using other instrumental techniques (electron microprobe analysis, XRF, optical microscopy).

  15. Aminophenol isomers unraveled by conformer-specific far-IR action spectroscopy.

    Yatsyna, Vasyl; Bakker, Daniël J; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-02-17

    Spectroscopic studies of molecular structure can strongly benefit from extending the conventional mid-IR range to the far-IR and THz regions, as low-frequency molecular vibrations provide unique fingerprints and high sensitivity to intra- and intermolecular interactions. In this work, the gas-phase conformer specific far-IR spectra of aminophenol isomers, recorded in the spectral range of 220-800 cm(-1) at the free-electron laser laboratory FELIX in Nijmegen (the Netherlands), are reported. Many distinct far-IR vibrational signatures which are specific for the molecular structure of the different aminophenol isomers are revealed and assigned. The observed far-IR transitions of the NH2 wagging (inversion) motion have been treated with a double-minimum harmonic well potential model that has enabled us to obtain the inversion barrier values. Moreover, we discuss the limitations and capability of conventional DFT frequency calculations to describe the far-IR vibrational modes. PMID:26854118

  16. Graphitic carbon nitride C6N9H3.HCl: Characterisation by UV and near-IR FT Raman spectroscopy

    The graphitic layered compound C6N9H3.HCl was prepared by reaction between melamine and cyanuric chloride under high pressure-high temperature conditions in a piston cylinder apparatus and characterised using SEM, powder X-ray diffraction, UV Raman and near-IR Fourier transform Raman spectroscopy with near-IR excitation. Theoretical calculations using density functional methods permitted evaluation of the mode of attachment of H atoms to nitrogen sites in the structure and a better understanding of the X-ray diffraction pattern. Broadening in the UV and near-IR FT Raman spectra indicate possible disordering of the void sites within the graphitic layers or it could be due to electron-phonon coupling effects. - Graphical abstract: The graphitic layered compound C6N9H3.HCl was prepared by reaction between melamine and cyanuric chloride under high pressure-high temperature conditions in a piston cylinder apparatus and characterised using SEM, powder X-ray diffraction, UV Raman and near-IR Fourier transform Raman spectroscopy using near-IR excitation. Theoretical calculations using density functional methods permitted evaluation of the mode of attachment of H atoms to nitrogen sites around the C12N12 voids within the layered structure and also led to better understanding of the X-ray diffraction pattern. Sharp peaks in the UV Raman spectra are due to C3N3 triazine ring units in the structure, that may be enhanced by resonance Raman effects. Broadening in the UV and near-IR FT Raman spectra indicate possible disordering within the graphitic layers or electron-phonon coupling effects.

  17. Formation of host–guest complexes on gold surface investigated by surface-enhanced IR absorption spectroscopy

    Inokuchi, Yoshiya; Mizuuchi, Takahiro; Ebata, Takayuki; Ikeda, Toshiaki; Haino, Takeharu; Kimura, Tetsunari; Guo, Hao; Furutani, Yuji

    2014-01-01

    We apply surface-enhanced infrared absorption (SEIRA) spectroscopy to host-guest complexes in liquid phase to examine the structural change in the complex formation. Two thiol derivatives of 18-crown-6 (18C6) are chemisorbed on a gold surface, and aqueous solutions of MCl salts (M = Li, Na, K, Rb, and Cs) are put to form M+・18C6 complexes. Infrared spectra of these complexes in the 900-2000 cm-1 region are obtained by SEIRA spectroscopy. The observed IR spectra show noticeable peaks due to th...

  18. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 2: Wind propagation and emission rates

    R. Harig

    2013-01-01

    Full Text Available A technique for measuring two-dimensional (2-D plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012a. In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission rate from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a projected wind field and the average velocity at which the volcanic plume is propagating. This information is valuable since the largest uncertainties when calculating emission rates of the gases using remote sensing techniques arise from propagation velocities which are often inadequately assumed. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularisation. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2, which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated in an analogous manner and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind field and column distribution of the gas plume can provide the emission rate of the volcano both during day and night.

  19. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 2: Wind propagation and emission fluxes

    R. Harig

    2012-07-01

    Full Text Available The technique for measuring two-dimensional (2-D plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012. In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission flux from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a wind-field and the average velocity at which the volcanic plume is propagating. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularization. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2 which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated analogously and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind-field and column distribution of the gas plume can provide the emission flux of the volcano both during day and night.

  20. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    Sagar Dhakal; Kuanglin Chao; Walter Schmidt; Jianwei Qin; Moon Kim; Diane Chan

    2016-01-01

    Turmeric powder (Curcuma longa L.) is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman) and Fourier Transform-Infra Red (FT-IR) spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powd...

  1. The application of the derivative IR-spectroscopy and HPLC-ESI-MS/MS in the analysis of archaeology resin

    Zareva, S.; Kuleff, I.

    2010-07-01

    The applicability of the reducing-difference procedure for the interpretation of the conventional IR-spectroscopy as successful scientific technique for the analysis of ancient and modern resins has been demonstrated. The new temperature tool for modeling of the ancient resin samples has also been shown. The experimental infrared data are supported by the hydride approach of HPLC-MS-MS with ES-ionisation.

  2. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  3. IR double-resonance spectroscopy applied to the 4-aminophenol(H{sub 2}O){sub 1} cluster

    Gerhards, M.; Unterberg, C. [Duesseldorf Univ. (Germany). Inst. fuer Physikalische Chemie und Elektrochemie

    2001-03-01

    The IR double-resonance techniques IR/R2PI (infrared/resonant 2-photon ionization), IR/PIRI (infrared-photo-induced Rydberg ionization) and IR-photodissociation spectroscopy are valuable tools to investigate structure, vibrations, and dynamical processes of neutral and ionic hydrogen-bonded clusters containing aromatic molecules. In this paper we report on the application of the IR double-resonance techniques to determine the NH and OH stretching vibrations of 4-aminophenol and 4-aminophenol(H{sub 2}O){sub 1}, both in the neutral (S{sub 0}) and ionic (D{sub 0}) ground state. All vibrational frequencies obtained for 4-aminophenol and the cluster are compared with the values obtained from ab initio and DFT calculations. In the S{sub 0} state, a trans-linear arrangement of 4-aminophenol(H{sub 2}O){sub 1} is obtained containing an O-H. O hydrogen bond. In the D{sub 0} state an overlay of two spectra can be observed resulting from the trans-linear structure and a second structure which contains a N-H. O hydrogen bond. The observation of these two structures within the ion is an interesting example of a rearrangement reaction in the ionic state. (orig.)

  4. Hydrogenated graphene on Ir(111): A high-resolution electron energy loss spectroscopy study of the vibrational spectrum

    Kyhl, Line; Balog, Richard; Angot, Thierry; Hornekær, Liv; Bisson, Régis

    2016-03-01

    Hydrogen atom adsorption on high-quality graphene on Ir(111) [gr/Ir(111)] is investigated using high-resolution electron energy loss spectroscopy. The evolution of the vibrational spectrum, up to 400 meV, of gr/Ir(111) upon increasing hydrogen atom exposures is measured. The two dominant binding configurations of atomic hydrogen are identified as (1) graphanelike hydrogen clusters on the parts of the graphene more strongly interacting with the Ir(111) surface and (2) dimers bound more weakly to the freestanding parts of the graphene. The graphanelike surface structures lead to increased corrugation of the graphene sheet, yielding graphane-related phonon components. Additionally, a recent theoretical prediction of the existence of a bending character for a LO/TO graphane chair phonon mode is experimentally verified. No clear evidence was found for hydrogen bound on both sides of a high-quality graphene sheet and phonon features strongly suggest interactions between graphanelike hydrogen clusters and Ir atoms in the substrate.

  5. Structure Determination and Excited State Proton Transfer Reaction of 1-NAPHTHOL-AMMONIA Clusters in the S_{1} State Studied by Uv-Ir Mid-Ir Spectroscopy

    Yoshikawa, Shunpei; Miyazaki, Mitsuhiko; Martin, Weiler; Ishikawa, Haruki; Fujii, Masaaki

    2013-06-01

    1-naphthol ammonia clusters have been studied long time as a benchmark system of the excited state proton transfer (ESPT) reactions. Understanding the ESPT reaction in this system has still not been fully established. To detect the cluster size dependence of the S_{1} state properties, many researcher extensively investigated such as emission spectra, lifetime, solvents (ammonia) evaporation pattern. Curiously, cluster structure that is fundamental to discuss the reaction has not been determined for the system. Thus we applied an IR spectroscopy to the S_{1} states of the system to determine the cluster structure and to discuss the minimum size inducing the ionic dissociation of the O-H bond in the S_{1} state. IR spectra were recorded not only the O-H and N-H stretching region (3 {μ}m) but also the skeletal vibrational region (5.5-10 {μ}m). Though O-H and N-H stretching vibrations do not provide useful structural information due to the broadness, the skeletal vibrations hold the sharpness even in the S_{1} states. Changes in the skeletal vibrations due to the ammonia solvation, e.g. C-O stretching and C-O-H bending, will be discussed based on a comparison with theoretical calculations. O. Cheshnovsky and S. Leutwylar, J. Chem. Phys. 1, 4127 (1988). S. K. Kim et al., Chem. Phys. lett. 228, 369 (1994). C. Dedonder-Lardeux et al., Phys. Chem, Chem, Phys. 3, 4316 (2001).

  6. Electronic structure of charge-density-wave state in quasi-2D KMo6O17 purple bronze characterized by angle resolved photoemission spectroscopy

    Valbuena, M. A.; Avila, J.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-01-01

    We report on an angle-resolved-photoemission spectroscopy (ARPES) investigation of layered quasi-two dimensional (2D) Molybdenum purple bronze KMo6O17 in order to study and characterizes the transition to a charge-density-wave (CDW) state. We have performed photoemission temperature dependent measurements cooling down from room temperature (RT) to 32 K, well below the Peierls transition for this material, with CDW transition temperature Tc =110 K. The spectra have been taken at a selected kF point of the Fermi surface (FS) that satisfies the nesting condition of the FS, looking for the characteristic pseudo-gap opening in this kind of materials. The pseudogap has been estimated and it result to be in agreement with our previous works. The shift to lower binding energy of crossing Fermi level ARPES feature have been also confirmed and studied as a function of temperature, showing a rough like BCS behaviour. Finally we have also focused on ARPES measurements along ΓM¯ high symmetry direction for both room and low temperature states finding some insight for ‘shadow’ or back folded bands indicating the new periodicity of real lattice after the CDW lattice distortion.

  7. Formation of host-guest complexes on gold surface investigated by surface-enhanced IR absorption spectroscopy

    Inokuchi, Yoshiya; Mizuuchi, Takahiro; Ebata, Takayuki; Ikeda, Toshiaki; Haino, Takeharu; Kimura, Tetsunari; Guo, Hao; Furutani, Yuji

    2014-01-01

    We apply surface-enhanced infrared absorption (SEIRA) spectroscopy to host-guest complexes in liquid phase to examine the structural change in the complex formation. Two thiol derivatives of 18-crown-6 (18C6) are chemisorbed on a gold surface, and aqueous solutions of MCl salts (M = Li, Na, K, Rb, and Cs) are put to form M+·18C6 complexes. Infrared spectra of these complexes in the 900-2000 cm-1 region are obtained by SEIRA spectroscopy. The observed IR spectra show noticeable peaks due to the complex formation, demonstrating that SEIRA spectroscopy will be a powerful method to investigate the structure of host-guest complexes in supramolecular chemistry.

  8. An IR and XPS spectroscopy assessment of the physico-chemical surface properties of alumina–YAG nanopowders

    Well-dispersed nano-crystalline transition alumina suspensions were mixed with yttrium chloride aqueous solutions, with the aim of producing by spray-drying Al2O3–Y3Al5O12 (YAG) composite powders of increasing YAG vol.%. Two samples were prepared, with different Y content, corresponding to 5 and 20 YAG vol.%, respectively. Both samples were then treated at either 600 or 1150 °C. The obtained powders were characterized by X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infra Red (FT-IR) spectroscopy and compared to three reference samples: commercial nano-crystalline transition alumina, YAG and Y2O3. YAG powders were obtained by co-precipitation route whereas Y2O3 powders were yielded by spray-drying of a yttrium chloride aqueous solution. Modification of physico-chemical properties of the surface of alumina nanoparticles were assessed by combining XPS and FT-IR spectroscopies. On the basis of the results obtained, a possible model is proposed for the structure of the obtained composites, in which Y basically reacts with more acidic hydroxyls of alumina, by forming Y-rich surface grains, the extension of which depends on the thermal treatment. - Highlights: • Al2O3–Y3Al5O12 (YAG) composite nanopowders were prepared by spray drying. • Combined XPS and IR spectroscopy: effective tools to study surface modifications. • Y reacts with more acidic hydroxyls at alumina surface. • Y-rich surface grains form: their extension depends on the thermal treatment

  9. TOPICAL REVIEW: Nonlinear two-dimensional vibrational spectroscopy of peptides

    Woutersen, Sander; Hamm, Peter

    2002-10-01

    In this overview, we discuss theoretical and experimental aspects of nonlinear two-dimensional infrared (2D-IR) spectroscopy. With this technique both peptide conformation and conformational flexibility can be probed. The quantitative relation between the experimental 2D-IR spectrum and the peptide conformation is discussed, and examples of how the conformation of a peptide and the timescale of its fluctuations are derived from its (time-resolved) 2D spectrum are presented.

  10. Rate constant of exciton quenching of Ir(ppy)3 with hole measured by time-resolved luminescence spectroscopy

    Oyama, Shiho; Sakai, Heisuke; Murata, Hideyuki

    2016-03-01

    We observed the quenching of tris(2-phenylpyridinato)iridium(III) [Ir(ppy)3] excitons by polarons (holes or electrons) by time-resolved photoluminescence (PL) spectroscopy to clarify the dynamics of the triplet-polaron quenching of excitons. We employed a hole-only device (HOD) and an electron-only device (EOD), where the emitting layer consists of Ir(ppy)3 doped in 4,4‧-bis(carbazol-9-yl)biphenyl. Time-resolved PL spectroscopy of the EOD and HOD were measured under a constant current density. The results showed that the excitons of Ir(ppy)3 were significantly quenched only by holes. The PL decay curves of HOD were well fitted by the biexponential function, where lifetimes (τ1 and τ2) remain unchanged but the coefficient of each exponential term depends on hole current density. From the results, we proposed a model of exciton quenching where the exciton-hole quenching area expands with increasing hole current density. On the basis of the model, the triplet-polaron quenching rate constant Kq was determined.

  11. Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy.

    Lórenz-Fonfría, Víctor A; Schultz, Bernd-Joachim; Resler, Tom; Schlesinger, Ramona; Bamann, Christian; Bamberg, Ernst; Heberle, Joachim

    2015-02-11

    Light-gated ion permeation by channelrhodopsin-2 (ChR2) relies on the photoisomerization of the retinal chromophore and the subsequent photocycle, leading to the formation (on-gating) and decay (off-gating) of the conductive state. Here, we have analyzed the photocycle of a fast-cycling ChR2 variant (E123T mutation, also known as ChETA), by time-resolved UV/vis, step-scan FT-IR, and tunable quantum cascade laser IR spectroscopies with nanosecond resolution. Pre-gating conformational changes rise with a half-life of 200 ns, silent to UV/vis but detected by IR spectroscopy. They involve changes in the peptide backbone and in the H-bond of the side chain of the critical residue D156. Thus, the P1(500) intermediate must be separated into early and late states. Light-adapted ChR2 contains a mixture of all-trans and 13-cis retinal in a 70:30 ratio which are both photoactive. Analysis of ethylenic and fingerprint vibrations of retinal provides evidence that the 13-cis photocycle recovers in 1 ms. This recovery is faster than channel off-gating and most of the proton transfer reactions, implying that the 13-cis photocycle is of minor functional relevance for ChR2. PMID:25584873

  12. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the

  13. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  14. Spitzer/IRS spectroscopy of high mass precursors to planetary nebulae

    Garcia-Hernandez, D. A.; Perea-Calderon, J. V.; Bobrowsky, M.; Garcia-Lario, P.

    2007-01-01

    We present Spitzer/IRS observations of a small sample of heavily obscured IRAS sources displaying both the infrared and OH maser emission characteristic of OH/IR stars on the asymptotic giant branch (AGB), but also radio continuum emission typical of ionized planetary nebulae (PNe), the so-called OHPNe. Our observations show that their mid-infrared spectra are dominated by the simultaneous presence of strong and broad amorphous silicate absorption features together with crystalline silicate f...

  15. Development of a Tunable Ultra-Broadband Mid IR Pulsed Source for Nonlinear Spectroscopy

    Cheng, Mark; Reynolds, Anthony; Widgren, Heather; Khalil, Munira

    2012-02-01

    We generate ultra- broadband mid-IR pulses tunable from 2.5 -- 8 μm by focusing 800 nm/400 nm pulses into various gas media. The input 800 nm light is doubled to 400 nm in a type I BBO crystal. The two orthogonally polarized φ/2φ pulses encounter a birefringent calcite crystal for time delay compensation and are subsequently focused in various gas media (air, argon, neon and nitrogen) contained within a 1.2 m gas cell using a 1 m focal length silver mirror. The tunability of the broadband mid-IR pulses arises from different gases, pressure of gases and the amount of incident 800 nm/400 nm light focused into the gas cell at a given pressure. We measure IR energies as high as 0.5 μJ/pulse for an input 800 nm energy of 3 mJ/pulse in 900 Torr of Argon. The mid IR pulses exhibit ˜2% long term stability. The ultrabroadband IR pulses have a spectral bandwidth of ˜2000 cm-1 corresponding to a sub-cycle pulse centered at 4.5 μm. We will present our preliminary efforts on using the ultrabroadband IR pulses in nonlinear experiments. The broad spectral content of this novel source affords the possibility of probing multiple vibrations in a coherent manner.

  16. Non-destructive and in situ identification of rice paper, seals and pigments by FT-IR and XRD spectroscopy.

    Na, Na; Ouyang, Qi-Ming; Ma, Hui; Ouyang, Jin; Li, Yanping

    2004-11-15

    This paper studied the chemical characteristics of rice paper, pigments and seals on Chinese calligraphies and traditional Chinese paintings. The techniques used here were Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). FT-IR allows good identification of the substances present in pigments and inkpads and differentiates each era of rice paper. This can be the base of estimating the age of rice paper. Different crystalline phases can be identified by XRD, which is further evidence to separate different kinds of pigments or inkpads. Both of these methods were non-destructive in situ analysis and can be used in the identification in calligraphies and traditional Chinese paintings. These results confirmed that the applied techniques are relatively quicker and more reliable than traditional approaches authenticated by years of experience. PMID:18969703

  17. MRI and 2D-CSI MR spectroscopy of the brain in the evaluation of patients with acute onset of neuropsychiatric systemic lupus erythematosus

    MRI and 2D-CSI spectroscopy were performed in eight patients with systemic lupus erythematosus who presented with acute onset of neuropsychiatric lupus (NP-SLE), and in seven normal controls to evaluate for differences in metabolic peaks and metabolic ratios between the two groups. Also, the interval change of the metabolic peaks and their ratios during treatment in the NP-SLE patient group was evaluated. Metabolic peaks for N-acetyl-aspartate (NAA), choline (Cho), creatine (Cr), and lactate/lipids (LL) and their ratios (NAA/Cr, NAA/Cho, Cho/Cr, LL/Cr) were determined at initial presentation and 3 and 6 months later. In the eight lupus patients compared to the seven normal controls, NAA/Cho ratios were lower at presentation (1.05 vs 1.25; p = 0.004) and decreased even further at the three month follow-up (0.92 vs 1.05; p = 0.008). In contrast, both Cho/Cr (1.42 vs 1.26; p = 0.026) and LL/Cr ratios (0.26 vs 0.19; p = 0.002) were higher in the lupus patients at presentation compared to the controls and did not significantly change at three and six months follow-up. The NAA/Cr ratios were lower in the lupus patients compared to the controls at presentation but the difference was not statistically significant. However, the mean NAA/Cr significantly decreased from the initial examination to the three month follow-up (1.42 vs 1.32; p = 0.049) but did not significantly change from the three to the six month follow-up examinations. The NAA/Cr, Cho/Cr, and NAA/Cho ratios varied significantly (p < 0.05, p < 0.05, p < 0.05, respectively) between the 17 different locations measured in the brain in all eight patients and seven controls. Both the NAA/Cr ratios and the Cho/Cr ratios were also significantly lower in the gray matter than in the white matter (p < 0.0001) in both patients and controls, whereas the LL/Cr and NAA/Cho ratios were not significantly different. In conclusion, 2D-CSI MR spectroscopy may be useful in the early detection of metabolic CNS changes in NP

  18. MRI and 2D-CSI MR spectroscopy of the brain in the evaluation of patients with acute onset of neuropsychiatric systemic lupus erythematosus

    Sundgren, P.C.; Jennings, J.; Gebarski, S.; Pang, Y.; Maly, P. [University of Michigan Health Systems, Department of Radiology, Ann Arbor, MI (United States); Attwood, J.T.; McCune, W.J. [University of Michigan Health Systems, Department of and Rheumatology, Ann Arbor, MI (United States); Nan, B. [University of Michigan Health Systems, School of Public Health, Ann Arbor, MI (United States)

    2005-08-01

    MRI and 2D-CSI spectroscopy were performed in eight patients with systemic lupus erythematosus who presented with acute onset of neuropsychiatric lupus (NP-SLE), and in seven normal controls to evaluate for differences in metabolic peaks and metabolic ratios between the two groups. Also, the interval change of the metabolic peaks and their ratios during treatment in the NP-SLE patient group was evaluated. Metabolic peaks for N-acetyl-aspartate (NAA), choline (Cho), creatine (Cr), and lactate/lipids (LL) and their ratios (NAA/Cr, NAA/Cho, Cho/Cr, LL/Cr) were determined at initial presentation and 3 and 6 months later. In the eight lupus patients compared to the seven normal controls, NAA/Cho ratios were lower at presentation (1.05 vs 1.25; p = 0.004) and decreased even further at the three month follow-up (0.92 vs 1.05; p = 0.008). In contrast, both Cho/Cr (1.42 vs 1.26; p = 0.026) and LL/Cr ratios (0.26 vs 0.19; p = 0.002) were higher in the lupus patients at presentation compared to the controls and did not significantly change at three and six months follow-up. The NAA/Cr ratios were lower in the lupus patients compared to the controls at presentation but the difference was not statistically significant. However, the mean NAA/Cr significantly decreased from the initial examination to the three month follow-up (1.42 vs 1.32; p = 0.049) but did not significantly change from the three to the six month follow-up examinations. The NAA/Cr, Cho/Cr, and NAA/Cho ratios varied significantly (p < 0.05, p < 0.05, p < 0.05, respectively) between the 17 different locations measured in the brain in all eight patients and seven controls. Both the NAA/Cr ratios and the Cho/Cr ratios were also significantly lower in the gray matter than in the white matter (p < 0.0001) in both patients and controls, whereas the LL/Cr and NAA/Cho ratios were not significantly different. In conclusion, 2D-CSI MR spectroscopy may be useful in the early detection of metabolic CNS changes in NP

  19. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  20. External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution.

    Alcaráz, Mirta R; Schwaighofer, Andreas; Kristament, Christian; Ramer, Georg; Brandstetter, Markus; Goicoechea, Héctor; Lendl, Bernhard

    2015-07-01

    In this work, we report mid-IR transmission measurements of the protein amide I band in aqueous solution at large optical paths. A tunable external-cavity quantum cascade laser (EC-QCL) operated in pulsed mode at room temperature allowed one to apply a path length of up to 38 μm, which is four times larger than that applicable with conventional FT-IR spectrometers. To minimize temperature-induced variations caused by background absorption of the ν2-vibration of water (HOH-bending) overlapping with the amide I region, a highly stable temperature control unit with relative temperature stability within 0.005 °C was developed. An advanced data processing protocol was established to overcome fluctuations in the fine structure of the emission curve that are inherent to the employed EC-QCL due to its mechanical instabilities. To allow for wavenumber accuracy, a spectral calibration method has been elaborated to reference the acquired IR spectra to the absolute positions of the water vapor absorption bands. Employing this setup, characteristic spectral features of five well-studied proteins exhibiting different secondary structures could be measured at concentrations as low as 2.5 mg mL(-1). This concentration range could previously only be accessed by IR measurements in D2O. Mathematical evaluation of the spectral overlap and comparison of second derivative spectra confirm excellent agreement of the QCL transmission measurements with protein spectra acquired by FT-IR spectroscopy. This proves the potential of the applied setup to monitor secondary structure changes of proteins in aqueous solution at extended optical path lengths, which allow experiments in flow through configuration. PMID:26059222

  1. Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser

    Xukun Yin; Lei Dong; Huadan Zheng; Xiaoli Liu; Hongpeng Wu; Yanfang Yang; Weiguang Ma; Lei Zhang; Wangbao Yin; Liantuan Xiao; Suotang Jia

    2016-01-01

    A near-IR CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is evaluated using humidified nitrogen samples. Relaxation processes in the CO-N2-H2O system are investigated. A simple kinetic model is used to predict the sensor performance at different gas pressures. The results show that CO has a ~3 and ~5 times slower relaxation time constant than CH4 and HCN, respectively, under dry conditions. However, with the presence of water, its relaxation time constant can ...

  2. Allophane on Mars: Evidence from IR Spectroscopy and TES Spectral Models

    Ming, Douglas W.; Rampe, E. B.; Kraft, M. D.; Sharp. T. G.; Golden, D. C.; Christensen, P. C.

    2010-01-01

    Allophane is an alteration product of volcanic glass and a clay mineral precursor that is commonly found in basaltic soils on Earth. It is a poorly-crystalline or amorphous, hydrous aluminosilicate with Si/Al ratios ranging from approx.0.5-1 [Wada, 1989]. Analyses of thermal infrared (TIR) spectra of the Martian surface from TES show high-silica phases at mid-to-high latitudes that have been proposed to be primary volcanic glass [Bandfield et al., 2000; Bandfield, 2002; Rogers and Christensen, 2007] or poorly-crystalline secondary silicates such as allophane or aluminous amorphous silica [Kraft et al., 2003; Michalski et al., 2006; Rogers and Christensen, 2007; Kraft, 2009]. Phase modeling of chemical data from the APXS on the Mars Exploration Rover Spirit suggest the presence of allophane in chemically weathered rocks [Ming et al., 2006]. The presence of allophane on Mars has not been previously tested with IR spectroscopy because allophane spectra have not been available. We synthesized allophanes and allophanic gels with a range of Si/Al ratios to measure TIR emission and VNIR reflectance spectra and to test for the presence of allophane in Martian soils. VNIR reflectance spectra of the synthetic allophane samples have broad absorptions near 1.4 m from OH stretching overtones and 1.9 m from a combination of stretching and bending vibrations in H2O. Samples have a broad absorption centered near 2.25 microns, from AlAlOH combination bending and stretching vibrations, that shifts position with Si/Al ratio. Amorphous silica (opaline silica or primary volcanic glass) has been identified in CRISM spectra of southern highland terrains based on the presence of 1.4, 1.9, and broad 2.25 m absorptions [Mustard et al., 2008]; however, these absorptions are also consistent with the presence of allophane. TIR emission spectra of the synthetic allophanes show two spectrally distinct types: Si-rich and Al-rich. Si-rich allophanes have two broad absorptions centered near 1080

  3. Kinetics of the reaction F+NO+M->FNO+M studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.; Ratajczak, E.

    The title reaction was initiated by pulse radiolysis of SF6/NO gas mixtures, and the formation of FNO was studied by time-resolved IR and UV spectroscopy. At SF6 pressures of 10-320 mbar at 298 K, the formation of FNO was studied by infrared diode laser spectroscopy at 1857.324 cm(-1). Comparative...

  4. Study of Kinetics of Iron Minerals in Coal by 57Fe Moessbauer and FT-IR Spectroscopy During Natural Burning

    The process of burning of sulphur rich coal from Jaipur mine in North-Eastern India was carried out at a temperature of (675 ± 5) oC for different time intervals. 57Fe Moessbauer spectroscopy was applied to study the reaction products of iron compounds in each step of thermal treatment. The transformation of Szomolnokite (FeSO4.H2O) and Pyrite (FeS2) in the as received coal sample finally transformed to γ-Fe2O3 and α-Fe2O3. Other clay minerals produce some low spin silicate ash. Fourier Transmission Infrared (FT-IR) spectroscopy gives the ratio of several structural parameters such as Har/Hal and Har/Car. DTA analysis of the coal sample gives the exothermic reaction at different temperatures. TGA and TG analysis of the coal sample in an inert atmosphere shows the weight loss of the coal sample in different temperature ranges.

  5. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to…

  6. Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy

    Mondelli, C.; Grunwaldt, Jan-Dierk; Ferri, D.; Baiker, A.

    2010-01-01

    catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic...... behaviour is not observed in the presence of Bi, whose geometric effect (site blocking) is interpreted as additionally limiting the adsorption of toluene and the premature deactivation of Pt. ATR-IR spectroscopy during CO adsorption on Pt and during reaction indicates that Bi is located rather on extended...

  7. Classification of edible oils and modeling of their physico-chemical properties by chemometric methods using mid-IR spectroscopy

    Luna, Aderval S.; da Silva, Arnaldo P.; Ferré, Joan; Boqué, Ricard

    This research work describes two studies for the classification and characterization of edible oils and its quality parameters through Fourier transform mid infrared spectroscopy (FT-mid-IR) together with chemometric methods. The discrimination of canola, sunflower, corn and soybean oils was investigated using SVM-DA, SIMCA and PLS-DA. Using FT-mid-IR, DPLS was able to classify 100% of the samples from the validation set, but SIMCA and SVM-DA were not. The quality parameters: refraction index and relative density of edible oils were obtained from reference methods. Prediction models for FT-mid-IR spectra were calculated for these quality parameters using partial least squares (PLS) and support vector machines (SVM). Several preprocessing alternatives (first derivative, multiplicative scatter correction, mean centering, and standard normal variate) were investigated. The best result for the refraction index was achieved with SVM as well as for the relative density except when the preprocessing combination of mean centering and first derivative was used. For both of quality parameters, the best results obtained for the figures of merit expressed by the root mean square error of cross validation (RMSECV) and prediction (RMSEP) were equal to 0.0001.

  8. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    Sandra Tamosaityte

    Full Text Available Spinal cord injury (SCI induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28. Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  9. ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization

    Graphical abstract: - Highlights: • Hydrophobin self-assembled layers on Teflon in different preparation conditions were investigated. • ATR collection data geometry allowed samples examination without any particular preparation. • Amide content, lipid/amide and carbohydrate/amide ratios of the protein layer were estimated. • Secondary structure of protein was determined for the examined samples. • FT-IR demonstrated to be of extreme relevance in monitoring hydrophobin self-assembled layers preparation. - Abstract: Surface functionalization by layers of hydrophobins, amphiphilic proteins produced by fungi offers a promising and green strategy for fabrication of biomedical and bioanalytical devices. The layering process of the Vmh2 hydrophobin from Pleurotus ostreatus on Teflon membrane has been investigated by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy. In particular, protein layers obtained with hydrophobin purified with two different procedures and in various coating conditions have been examined. The layers have been characterized by quantifying the amide I and amide II band area together with the lipid/amide ratio and carbohydrate/amide ratio. This characterization can be very useful in evaluating the best purification strategy and coating conditions. Moreover the analysis of the secondary structure of the layered protein using the deconvolution procedure of amide I band indicate the prevalent contribution from β-sheet state. The results inferred by infrared spectroscopy have been also confirmed by scanning electron microscopy imaging

  10. ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization

    Portaccio, M., E-mail: marianna.portaccio@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy); Gravagnuolo, A.M., E-mail: alfredomaria.gravagnuolo@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Longobardi, S., E-mail: sara.longobardi@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Giardina, P., E-mail: paola.giardina@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Rea, I., E-mail: ilaria.rea@na.imm.cnr.it [Institute for Microelectronics and Microsystems, CNR, Via P. Castellino, 111-80131 Napoli (Italy); De Stefano, L., E-mail: luca.destefano@na.imm.cnr.it [Institute for Microelectronics and Microsystems, CNR, Via P. Castellino, 111-80131 Napoli (Italy); Cammarota, M., E-mail: marcella.cammarota@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy); Lepore, M., E-mail: maria.lepore@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy)

    2015-10-01

    Graphical abstract: - Highlights: • Hydrophobin self-assembled layers on Teflon in different preparation conditions were investigated. • ATR collection data geometry allowed samples examination without any particular preparation. • Amide content, lipid/amide and carbohydrate/amide ratios of the protein layer were estimated. • Secondary structure of protein was determined for the examined samples. • FT-IR demonstrated to be of extreme relevance in monitoring hydrophobin self-assembled layers preparation. - Abstract: Surface functionalization by layers of hydrophobins, amphiphilic proteins produced by fungi offers a promising and green strategy for fabrication of biomedical and bioanalytical devices. The layering process of the Vmh2 hydrophobin from Pleurotus ostreatus on Teflon membrane has been investigated by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy. In particular, protein layers obtained with hydrophobin purified with two different procedures and in various coating conditions have been examined. The layers have been characterized by quantifying the amide I and amide II band area together with the lipid/amide ratio and carbohydrate/amide ratio. This characterization can be very useful in evaluating the best purification strategy and coating conditions. Moreover the analysis of the secondary structure of the layered protein using the deconvolution procedure of amide I band indicate the prevalent contribution from β-sheet state. The results inferred by infrared spectroscopy have been also confirmed by scanning electron microscopy imaging.

  11. Accelerated Aging of BKC 44306-10 Rigid Polyurethane Foam: FT-IR Spectroscopy, Dimensional Analysis, and Micro Computed Tomography

    Gilbertson, Robert D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patterson, Brian M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Zachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-02

    An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micro CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.

  12. Radiological impact of a municipal solid waste landfill on soil and groundwater using 2-D resistivity tomography and gamma ray spectroscopy

    The radiological impacts of a municipal solid waste landfill on soil and groundwater in Port Harcourt municipality was investigated by integrating 2-D resistivity imaging and gamma-ray spectroscopy. The objective of the study is to determine the lateral and vertical limits of leachate contamination, and to estimate the radioactivity concentrations in soil and groundwater. Results show that the soil and ground water have been contaminated by landfill emissions and radioactive materials throughout the landfill area. The distribution of the contamination is uneven and spotty, both horizontally and vertically, and has penetrated to depths exceeding 31m into the ground water aquifer. The primary contaminants found in the site were leachate, landfill gases, and 40K, 226Ra, and 228Ra radionuclides. The mean absorbed dose rates of 31.98nGy/hr, 10.51nGy/hr and 6.98nGy/hr, and mean dose rate equivalents of 0.28mSv/yr, 0.09mSv/yr and 0.06mSv/yr were obtained for the soil, leachate and water samples, respectively. The mean absorbed and equivalent dose rates in the soil and water samples are greater than their controls, suggesting that the landfill area is contaminated. These results are comparable to those reported for other waste sites in the area and lower than the maximum permitted limits for the general public of 1mSv/yr and 0.1mSv/yr for soil and water, respectively. These therefore, have no immediate radiological health burden on the inhabitants who depend on the soil and groundwater for their crops and potable water supply, except for the effects of disease causing micro-organism and non-methane volatile organic compounds (VOCs) from the leachate. However, with continuous consumption of crop products and intake of groundwater, increase in the activity concentration and dose rates of these radionuclides may occur over time, with adverse effects on humans.

  13. High sensitivity gas sensor based on IR spectroscopy technology and application

    Li, Hengyi

    2016-06-01

    Due to extremely effective advantages of the quantum cascade laser spectroscopy and technology for trace gas detection, this paper presents spectroscopy scanning, the characteristics of temperature tuning, system resolution, sensitivity, and system stability with the application of the presented gas sensor. Experimental results showed that the sensor resolution was ≤0.01cm-1 (equivalent to 0.06 nm), and the sensor sensitivity was at the level of 194 ppb with the application of H2CO measurement.

  14. Analysis of trace trichlorosilane in high purity silicon tetrachloride by near-IR spectroscopy

    Park, C.J.; Lee, S.G. [Korea Research Institute of Chemical Technology, Taejeon (Korea)

    2002-02-01

    The content of SiHCl{sub 3} as a trace impurity in SiCl{sub 4} was analyzed by Near IR spectrophotometer with optical fiber. The strong absorption bands of 5345{approx}5116 cm{sup -1} and 4848{approx}4349 cm{sup -1} were used for analysis of SiHCl{sub 3}, and the detection limit of impurity SiHCl{sub 3} was appeared to be 0.005% in the spectrum. The quantitative analysis by NEAR IR spectrophotometry showed the analytical possibility of trace impurity in SiCl{sub 4} without sample pre-treatment not only in the laboratory but also in the field. (author). 10 refs., 3 figs.

  15. High Resolution Near-IR Spectroscopy of Protostars With Large Telescopes

    Greene, Tom; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    It is now possible to measure absorption spectra of Class I protostars using D greater than or = 8m telescopes equipped with sensitive cryogenic IR spectrographs. Our latest high-resolution (R approx. 20,000) Keck data reveal that Class I protostars are indeed low-mass stars with dwarf-like features. However, they differ from T Tauri stars in that Class I protostars have much higher IR veilings (tau(sub k) greater than or = 1 - 3+) and they are rotating quickly, v sin i greater than 20 km/s. Interestingly, the vast majority of protostellar absorption spectra show stellar - not disk - absorption features. A preliminary H-R diagram suggests that protostellar photospheres may have different physical structures than T Tauri stars, perhaps due to their higher accretion rates.

  16. Structure of Magnetic Lanthanide Clusters from Far-IR Spectroscopy: Tb (n = 5-9)

    Bowlan, John; Jalink, Jeroen; Kirilyuk, Andrei; Meijer, Gerard; Fielicke, André

    2012-01-01

    Small lanthanide clusters have interesting magnetic properties, but their structures are unknown. We have identified the structures of small terbium cluster cations Tb (n = 5-9) in the gas phase, by analysis of their vibrational spectra. The spectra have been measured via IR multiple photon dissociation of their complexes with Ar atoms in the 50-250 1/cm range with an infrared free electron laser. Density functional theory calculations using a 4f-in-core effective core potential (ECP) accurately reproduce the experimental far-IR spectra. The ECP corresponds to a 4f85d16s2 trivalent configuration of terbium. The assigned structures are similar to those observed in several other transition metal systems. From this, we conclude that the bonding in Tb clusters is through the interactions between the 5d and 6s electrons, and that the 4f electrons have only an indirect effect on the cluster structures.

  17. Determination of the aromatic compounds in plant cuticular waxes using FT-IR spectroscopy

    Dubis, Eligiusz N.; Dubis, Alina T.; Popławski, J.

    2001-09-01

    The infrared study of the aromatic components of hops ( Humulus lupulus) cuticular wax was performed. HATR FT-IR technique for fresh leaves and their extract analysis was applied. Phenylmethyl myristate, 2-phenylethyl myristate and docosyl benzoate were synthesized and used as reference standards. An absorption band in the range of 709-966 cm -1 indicates the presence of aromatic esters in plant cuticular waxes.

  18. IR spectroscopy studies of polycarbonate irradiated by H+ and Li+ ions

    Infrared spectrometry studies of some irradiated polymers are presented. Our study is mainly about the polycarbonate (PC) irradiated by H+ and Li+ ions. In its IR spectrum, there is no new band, and the initial bands decrease showing that degradation is the dominant phenomenon. When we compare the behaviour of some irradiated polymers: PC, CR 39 and HIRI, the polycarbonate seems to be the most sensitive to irradiation. (orig.)

  19. Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR

    Kantojärvi, Uula; Varpula, Aapo; Antila, Tapani; Holmlund, Christer; Mäkynen, Jussi; Näsilä, Antti; Mannila, Rami; Rissanen, Anna; Antila, Jarkko; Disch, Rolf J.; Waldmann, Torsten A.

    2014-03-01

    VTT has developed Fabry-Pérot Interferometers (FPI) for visible and infrared wavelengths since 90's. Here we present two new platforms for mid-infrared gas spectroscopy having a large optical aperture to provide high optical throughput but still enabling miniaturized instrument size. First platform is a tunable filter that replaces a traditional filter wheel, which operates between wavelengths of 4-5 um. Second platform is for correlation spectroscopy where the interferometer provides a comb-like transmission pattern mimicking absorption of diatomic molecules at the wavelength range of 4.7-4.8 um. The Bragg mirrors have 2-4 thin layers of polysilicon and silicon oxide.

  20. Vibrational spectroscopy at interfaces by IR-VIS sum-frequency generation using CLIO FEL

    IR-vis sum-frequency generation (SFG) has developed into a versatile technique for probing the vibrational structure of interfaces. To overcome the limited spectral range accessible by benchtop IR lasers, we have developed an SFG spectrometer that makes use of the broad band tuneable infrared beam provided by the CLIO-FEL. We will evaluate the gain in sensitivity of the FEL-SFG spectrometer in comparison to that of benchtop lasers, taking account of the surface damage by laser heating. Thereafter, we review the different research projects undertaken using this facility: (1) The interface selectivity of SFG makes it particularly suitable for probing buried liquid/solid interface. We took advantage of the spectrometer sensitivity to monitor the electrochemical deposition of hydrogen on platinum single crystals at under- and overpotential (2) Because of its sensitivity to the molecular symmetry, SFG allows probing the conformation of self assembled monolayers deposited on metals. We discuss SFG spectra of ω(4-nitroanilino)-dodecane adsorbed on polycrystalline gold and silver films; in the 1550 - 900 cm-1 spectral range. (3) We have undertaken a spectroscopic approach for the investigation of polymer films adhesion on glass. Polyurethane/glass interface is investigated in the 2200 - 1600 cin-1 spectral region. (4) The use of the CLIO FEL allows probing of the vibrational dynamics of the prominent IR active vibrations between 1500 and 500 cm-1 of fullerene epitaxial films. These modes are modified upon charge transfer from the substrate to the C60 molecules. Preliminary SFG spectra of C60/Ag interface are presented. (5) Site specific detection of CO adsorption and CO + O coadsorption on Pd(111) are studied

  1. Mid- and Far-IR Spectroscopy of the Nebular Phase of SN1987A

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    The mid- and far-infrared (IR) spectra of the nebular phase of SM 987A spans 250 days through more than 1000 days after the event. Analysis of the spectra, largely obtained from the Kuiper Airborne Observatory, leads to a rich picture of the structure of the supernebula. The evidence for dust grain formation. In the nebula after about 580 days will be reviewed. The dust continuum emission spectrum was gray and dust appears to have condensed in optically thick 'clumps' throughout a significant fraction of the nebula. Additional information is contained in the original extended abstract.

  2. Application of FT-IR Absorption Spectroscopy to Characterize Waste and Biofuels for Pyrolysis and Gasification.

    Kalisz, S.; Svoboda, Karel; Robak, Z.; Baxter, D.; Andersen, L. K.

    -: -, 2007, s. 1-12. [International Conference Fuel from Waste 2007 /6./. Krynica (PL), 24.10.2007-26.10.2007] Institutional research plan: CEZ:AV0Z40720504 Keywords : spectroscopy * waste bio-fuels * gasification Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  3. Ultrafast IR Spectroscopy on Aqueous Reverse-Micellar Nano-Droplets

    Cringus, Dan; Milder, Maaike T.W.; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Lindner, Jörg; Vöhringer, Peter; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2005-01-01

    The ultrafast dynamics of water nano-droplets (1-10 nm size) of the L2-phase of the ternary mixture H2O-AOT-CCl4 have been studied using frequency-resolved mid-infrared pump-probe spectroscopy in the spectral region of the OH-stretching vibration.

  4. Utilization of UV and IR Supercontinua in Gas-Phase Subpicosecond Kinetic Spectroscopy

    Glownia, J. H.; Misewich, J.; Sorokin, P. P.

    Through the work of photochemists extending over many decades, there now exists a wealth of information on the various reactions that photoexcited gas phase molecules undergo. Most of this information relates to the product molecules that are formed, either as the direct result of a primary photochemical act, such as photodissociation, or through subsequent secondary reactions, involving collisions with other molecules in the gas. Recently, there has been an extensive effort directed at determining the exact energy distributions of the primary products formed in photodissociation. With the use of nanosecond tunable-laser techniques, such as laser-induced fluorescence (LIF) and coherent anti-Stokes Raman spectroscopy (CARS), scientists have successfully determined the nascent electronic, vibrational, and rotational energy distributions of various diatomic fragments such as CN, OH, NO, and O2 that are directly formed in the photodissociation of many kinds of molecules. The ready availability of high-quality, tunable, nanosecond lasers has made determination of the above-mentioned collisionless energy distributions a relatively straightforward process. The determination of product translational energies has long effectively been handled by angularly resolved time-of-flight (TOF) spectroscopy, or by sub-Doppler resolution spectroscopy, including a recently improved version of the latter, velocity-aligned Doppler spectroscopy (Xu et al., 1986).

  5. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  6. Activation and deactivation of a robust immobilized Cp*Ir-transfer hydrogenation catalyst: a multielement in situ X-ray absorption spectroscopy study.

    Sherborne, Grant J; Chapman, Michael R; Blacker, A John; Bourne, Richard A; Chamberlain, Thomas W; Crossley, Benjamin D; Lucas, Stephanie J; McGowan, Patrick C; Newton, Mark A; Screen, Thomas E O; Thompson, Paul; Willans, Charlotte E; Nguyen, Bao N

    2015-04-01

    A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and "hot filtration" experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide-iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure. PMID:25768298

  7. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  8. Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser

    Xukun Yin

    2016-01-01

    Full Text Available A near-IR CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS is evaluated using humidified nitrogen samples. Relaxation processes in the CO-N2-H2O system are investigated. A simple kinetic model is used to predict the sensor performance at different gas pressures. The results show that CO has a ~3 and ~5 times slower relaxation time constant than CH4 and HCN, respectively, under dry conditions. However, with the presence of water, its relaxation time constant can be improved by three orders of magnitude. The experimentally determined normalized detection sensitivity for CO in humid gas is 1.556 × 10 − 8   W ⋅ cm − 1 / Hz 1 / 2 .

  9. Hot Carrier Dynamics in the X Valley in Si and Ge Measured by Pump-IR-Probe Absorption Spectroscopy

    Wang, W. B.; Cavicchia, M. A.; Alfano, R. R.

    1996-01-01

    Si is the semiconductor of choice for nanoelectronic roadmap into the next century for computer and other nanodevices. With growing interest in Si, Ge, and Si(sub m)Ge(sub n) strained superlattices, knowledge of the carrier relaxation processes in these materials and structures has become increasingly important. The limited time resolution for earlier studies of carrier dynamics in Ge and Si, performed using Nd:glass lasers, was not sufficient to observe the fast cooling processes. In this paper, we present a direct measurement of hot carrier dynamics in the satellite X valley in Si and Ge by time-resolved infrared(IR) absorption spectroscopy, and show the potential of our technique to identify whether the X valley is the lowest conduction valley in semiconductor materials and structures.

  10. Studies of Eu2O3 - Bi2O3 - B2O3 glasses using Raman and IR spectroscopy

    The bismuth borate (3Bi2O3·B2O3) glasses were prepared with different concentrations of Eu3+. The structure of these systems were investigated by Raman and IR spectroscopy. The structural study reveals that the glasses contain BiO3, BiO6, BO3, BO4 and Eu-O structural units. For the samples with a higher content of Eu2O3, the spectra became very large indicating a more disordered structure. The hygroscopic character of the 3Bi2O3·B2O3 glass matrix and the progressive decrease of this behaviour with increasing the Eu2O3 content was observed. Therefore, we conclude that the europium oxide acts as a network modifier in these glasses. (authors)