Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets
Pielot Rainer
2010-01-01
Full Text Available Abstract Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE, a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.
Bock, David C; Kirshenbaum, Kevin C; Wang, Jiajun; Zhang, Wei; Wang, Feng; Wang, Jun; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S
2015-06-24
When electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation illustrates the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry. PMID:26024206
geomIO: A tool for geodynamicists to turn 2D cross-sections into 3D geometries
Baumann, Tobias; Bauville, Arthur
2016-04-01
In numerical deformation models, material properties are usually defined on elements (e.g., in body-fitted finite elements), or on a set of Lagrangian markers (Eulerian, ALE or mesh-free methods). In any case, geometrical constraints are needed to assign different material properties to the model domain. Whereas simple geometries such as spheres, layers or cuboids can easily be programmed, it quickly gets complex and time-consuming to create more complicated geometries for numerical model setups, especially in three dimensions. geomIO (geometry I/O, http://geomio.bitbucket.org/) is a MATLAB-based library that has two main functionalities. First, it can be used to create 3D volumes based on series of 2D vector drawings similar to a CAD program; and second, it uses these 3D volumes to assign material properties to the numerical model domain. The drawings can conveniently be created using the open-source vector graphics software Inkscape. Adobe Illustrator is also partially supported. The drawings represent a series of cross-sections in the 3D model domain, for example, cross-sectional interpretations of seismic tomography. geomIO is then used to read the drawings and to create 3D volumes by interpolating between the cross-sections. In the second part, the volumes are used to assign material phases to markers inside the volumes. Multiple volumes can be created at the same time and, depending on the order of assignment, unions or intersections can be built to assign additional material phases. geomIO also offers the possibility to create 3D temperature structures for geodynamic models based on depth dependent parameterisations, for example the half space cooling model. In particular, this can be applied to geometries of subducting slabs of arbitrary shape. Yet, geomIO is held very general, and can be used for a variety of applications. We present examples of setup generation from pictures of micro-scale tectonics and lithospheric scale setups of 3D present-day model
Shen Guang-Xian; Linghu Rong-Feng; Wang Rong-Kai; Yang Xiang-Dong
2007-01-01
In this paper, close-coupling method was applied to the He-H2(D2,T2) system, and the first vibrational excitation differences of these partial wave cross sections, this paper have obtained the change rules of the partial wave cross sections with increases of quantum number, and with change of reduced mass of system. Based on the calculation,influence on the partial wave cross sections brought by the variations in the reduced mass of systems and in the relative kinetic energy of incident atoms is discussed.
ZZ DLC-2D/100G, 100 Neutron-Group Cross-Section Library by SUPERTOG Calculation for ANISN, DOT
1 - Nature of physical problem solved: Format: ANISN, DOT or DTF-4; Number of groups: 100; Nuclides: H, D, He, He-3, Li-6, Li-7, Be-9, B-10, B-11, C-12, N-14, O-16, Na-23, Mg, Al-27, Si, Cl, K, Ca, V, Cr, Mn-55, Fe, Co-59, Ni, Cu, Cu-63, Cu-65, Nb, Mo, Ag-107, Xe-135, Cs-133, Sm-149, Eu-151, Eu-153, Gd, Dy-164, Lu-175, Lu-176, Ta-181, Ta-182, W-182, W-183, W-184, W-186, Re-185, Re-187, Au-197, Pb, Th-232, Pa-233, U-234, U-235, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Am-241, Am-243, and Cm-244. Origin: The nuclides in DLC-2 are those which have been released as category I ENDF/B by the National Neutron Cross Section Center, Brookhaven National Laboratory. Weighting spectrum: The explicit assumption was made that the flux has the shape of a fission spectrum joined at 0.0674 MeV by a 1/E tail. Neutron transport calculations can be performed with DLC-2 data. Since the data are intended for use in multigroup discrete-ordinates or Monte Carlo transport codes which treat anisotropic scattering, possible cross section angular expansion is limited only by the options available in the particular code used. Specifically, the retrieval program manipulates DLC-2 such that it conforms to input requirements of the ANISN, DOT, or DTF-4 codes, or any computer code using data in the ANISN or DTF-4 format. The nuclides in DLC-2 are those which have been released as category I ENDF/B by the National Neutron Cross Section Center, Brookhaven National Laboratory. The library contains data for H, D, He, 3-He, 6-Li, 7-Li, 9-Be, 10-B, 11-B, 12-C, 14-N, 16-O, 23-Na, Mg, 27-Al, Si, Cl, K, Ca, V, Cr, 55-Mn, Fe, 59-Co, Ni, Cu, 63-Cu, 65-Cu, Nb, Mo, 107-Ag, 135-Xe, 133-Cs, 149-Sm, 151-Eu, 153-Eu, Gd, 164-Dy, 175-Lu, 176-Lu, 181-Ta, 182-Ta, 182-W, 183-W, 184-W, 186-W, 185-Re, 187-Re, 197-Au, Pb, 232-Th, 233-Pa, 234-U, 235-U, 238-U, 238-Pu, 239-Pu, 240-Pu, 241-Pu, 242-Pu, 241-Am, 243-Am, and 244-Cm. 2 - Method of solution: DLC-2 was generated by SUPERTOG from nuclear data in either point
Debeljak, Marta [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia); Elteren, Johannes T. van, E-mail: elteren@ki.si [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia)
2013-07-17
Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg{sup 2+} does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm{sup −2}; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg{sup −1} DW HgCl{sub 2}. It was
Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg2+ does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm−2; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg−1 DW HgCl2. It was found that at given Hg
The 3D imaging of the middle ear facilitates better understanding of the patient's anatomy. Cross-sectional slices, however, often allow a more accurate evaluation of anatomical structures, as some detail may be lost through post-processing. In order to demonstrate the advantages of combining both approaches, we performed computed tomography (CT) imaging in two normal and 15 different pathological cases, and the 3D models were correlated to the cross-sectional CT slices. Reconstructed CT datasets were acquired by multi-slice CT. Post-processing was performed using the in-house software ''3D Slicer'', applying thresholding and manual segmentation. 3D models of the individual anatomical structures were generated and displayed in different colours. The display of relevant anatomical and pathological structures was evaluated in the greyscale 2D slices, 3D images, and the 2D slices showing the segmented 2D anatomy in different colours for each structure. Correlating 2D slices to the 3D models and virtual endoscopy helps to combine the advantages of each method. As generating 3D models can be extremely time-consuming, this approach can be a clinically applicable way of gaining a 3D understanding of the patient's anatomy by using models as a reference. Furthermore, it can help radiologists and otolaryngologists evaluating the 2D slices by adding the correct 3D information that would otherwise have to be mentally integrated. The method can be applied to radiological diagnosis, surgical planning, and especially, to teaching. (orig.)
Kalyar, M. A.; Yar, A.; Iqbal, J.; Ali, R.; Baig, M. A.
2016-03-01
We have carried out measurements of absolute photoionization cross sections of the 4p excited levels and oscillator strengths of the 4p→nd Rydberg transitions in potassium using a two-step photo-excitation and ionization technique in conjunction with a thermionic diode ion detector. The measurements were conducted using the linearly polarized laser light and the absolute values of the cross sections from the 4p 2P3/2 and 2P1/2 excited levels have been determined at the ionization threshold as (6.3±0.9) Mb and (5.4±0.8) Mb respectively. In addition, photoionization cross sections have been determined at various ionizing wavelengths above the first ionization threshold to explore different energy regions of the continuum. The oscillator strengths for the 4p 2P1/2→nd 2D3/2 and 4p 2P3/2→nd 2D3/2,5/2 Rydberg transitions have been deduced by using the measured cross sections of the 4p 2P1/2 and 2P3/2 levels at the ionization threshold. The new results are in good agreement with the available theoretical and experimental data.
Maija E Miettinen
Full Text Available OBJECTIVES: Low serum 25-hydroxyvitamin D (25OHD level has been associated with an increased risk of several chronic diseases. Our aim was to determine lifestyle and clinical factors that are associated with 25OHD level and to investigate connection of 25OHD level with metabolic and cardiovascular disease markers. DESIGN: In total, 2868 Finnish men and women aged 45-74 years participated in FIN-D2D population-based health survey in 2007. Participants that had a serum sample available (98.4%; n = 2822 were included in this study. 25OHD was measured with chemiluminescent microparticle immunoassay method. RESULTS: The mean 25OHD level was 58.2 nmol/l in men (n = 1348 and 57.1 nmol/l in women (n = 1474. Mean 25OHD level was lower in the younger age groups than in the older ones (p<0.0001 both in men and women. This study confirmed that low physical activity (p<0.0001 both in men and women, smoking (p = 0.0002 in men and p = 0.03 in women and high BMI (p<0.0001 in women are factors that independently associate with low 25OHD level. Of the metabolic and cardiovascular disease markers high triglyceride concentration (p = 0.02 in men and p = 0.001 in women and high apolipoprotein B/apolipoprotein A1 ratio (p = 0.04 in men and p = 0.03 in women were independently associated with low 25OHD level. CONCLUSIONS: Higher age did not predict lower 25OHD level in this study population of aged 45-74 years which may derive from a healthy life-style of "active pensioners". Low physical activity and smoking came up as independent lifestyle factors associated with low 25OHD level. Defining the molecular mechanisms behind the associations of 25OHD with low physical activity and smoking are important objective in future studies. The association of 25OHD with BMI, high triglyceride concentration and apolipoprotein B/apolipoprotein A1 ratio may be related to the role of vitamin D in inflammation, but more detailed studies are needed.
Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...
G. GiacomelliBologna University and INFN
2014-01-01
The measurements of the hadron-hadron total cross sections are the first measurements performed when a new hadron accelerator opens up a new energy region; the measurements were made as function of the incoming beam momentum or c.m. energy and have often been repeated with improved accuracy and finer energy spacing.
Gollapinni, Sowjanya
2016-01-01
The study of neutrino-nucleus interactions has recently received renewed attention due to their importance in interpreting the neutrino oscillation data. Over the past few years, there has been continuous disagreement between neutrino cross section data and predictions due to lack of accurate nuclear models suitable for modern experiments which use heavier nuclear targets. Also, the current short and long-baseline neutrino oscillation experiments focus in the few GeV region where several distinct neutrino processes come into play resulting in complex nuclear effects. Despite recent efforts, more experimental input is needed to improve nuclear models and reduce neutrino interaction systematics which are currently dominating oscillation searches together with neutrino flux uncertainties. A number of new detector concepts with diverse neutrino beams and nuclear targets are currently being developed to provide necessary inputs required for next generation oscillation experiments. This paper summarizes these effor...
Group cross sections calculations
Just a few methods have been developped to compute multigroup cross-sections from ENDF data. We have developped an original method in order to get accuracy and to reduce the number of discretization points in the same time; this is why we have tried to use polynomial integration. In this paper, we describe this method: in the first part, we recall some physical hypothesis generally used to solve the linear Boltzmann equation: that is the frame in which the numerical method has been developped. Polynomial methods are really powerfull only if discretization points are suitably chosen. This choice is explained in the next part of this paper. In conclusion, some numerical results are given to illustrate our method
Diffractive and rising cross sections
The energy dependence of the diffractive component of the proton-proton cross section is discussed and its contribution to the rise of the total cross section at high energies is examined. 17 refs., 9 figs
[Fast neutron cross section measurements
This paper discusses the following topics: 14 MeV pulsed neutron facility; detection and measurement system; 238U capture cross sections at 23 and 964 keV using photon neutron sources; capture cross sections of Au-197 at 23 and 964 keV; and yttrium nuclear cross section measurement
XCOM: Photon Cross Sections Database
SRD 8 XCOM: Photon Cross Sections Database (Web, free access) A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.
Most of the fission products and a few of the actinides in ENDF/B-V do not have (n,2n) cross sections. A complete set of these cross sections is presented in the multigroup structure defined. These were constructed for future use in the DANDE Code System
Cross Sections and Lorentz Violation
Colladay, Don; Kostelecky, Alan
2001-01-01
The derivation of cross sections and decay rates in the Lorentz-violating standard-model extension is discussed. General features of the physics are described, and some conceptual and calculational issues are addressed. As an illustrative example, the cross section for the specific process of electron-positron pair annihilation into two photons is obtained.
Measurement of fission cross sections
A review is presented on the recent progress in the experiment of fission cross section measurement, including recent activity in Japan being carried out under the project of nuclear data measurement. (author)
R. Vogt
2007-01-01
We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that due to the small charm quark mass, which amplifies the effect of the other parameters in the calculation, the uncertainty on the total charm cross section is difficult to quantify.
Revolutionizing Cross-sectional Imaging
Fan, Yifang; Luo, Liangping; Lin, Wentao; Li, Zhiyu; Zhong, Xin; Shi, Changzheng; Newman, Tony; Zhou, Yi; Lv, Changsheng; Fan, Yuzhou
2014-01-01
Cross-sectional imaging is so important that, six Nobel Prizes have been awarded to the field of nuclear magnetic resonance alone because it revolutionized clinical diagnosis. The BigBrain project supported by up to 1 billion euro each over a time period of 10 years predicts to "revolutionize our ability to understand internal brain organization" (Evan 2013). If we claim that cross-sectional imaging diagnosis is only semi-quantitative, some may believe because no doctor would ever tell their patient that we can observe the changes of this cross-sectional image next time. If we claim that BigBrain will make no difference in clinical medicine, then few would believe because no doctor would ever tell their patient to scan this part of the image and compare it with that from the BigBrain. If we claim that the BigBrain Project and the Human Brain Project have defects in their key method, one might believe it. But this is true. The key lies in the reconstruction of any cross-sectional image along any axis. Using Ga...
Terahertz radar cross section measurements
Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd
2010-01-01
We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...
Cross sections for nuclear astrophysics
General properties of low-energy cross sections and of reaction rates are presented. We describe different models used in nuclear astrophysics: microscopic models, the potential model, and the R-matrix method. Two important reactions, 7Be(p,γ)8B and 12C(α,γ)16O, are then briefly discussed. (author)
Metonymy and Cross Section Demand
Evstigneev, Igor V.; Hildenbrand, Werner; Jerison, Michael
1996-01-01
Cross section consumer expenditure data are frequently used to make conclusions about consumer demand behavior. Such conclusions, however, can only be justified under certain assumptions, which are often left unstated in the empirical demand literature. An assumption of this type, the metonymy hypothesis, was stated rigorously and then exploited by Hardle, Hildenbrand and Jerison when analyzing the monotonicity property of aggregate demand functions. The purpose of the present paper is to exa...
Wind Turbine Radar Cross Section
David Jenn; Cuong Ton
2012-01-01
The radar cross section (RCS) of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axi...
New activation cross section data
New nuclear cross section libraries (known as USACT92) have been created for activation calculations. A point-wise file was created from merging the previous version of the activation library, the U.S. Nuclear Data Library (ENDF/B-VI), and the European Activation File (EAF-2). 175 and 99 multi-group versions were also created. All the data are available at the National Energy Research Supercomputer Center
Microscopic cross sections: An utopia?
Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)
2010-07-01
The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)
[Fast neutron cross section measurements
In this report, we outline the progress achieved in two distinct under the DOE-sponsored cross section project: the initial results obtained from the pulsed 14 MeV neutron facility, and a cooperative effort with Argonne National Laboratory in the measurement of fast neutron cross sections in yttrium. In the 14 MeV neutron laboratory, this year has seen the maturation of the project into one in which initial scattering measurements are now underway. We have improved the accelerator and ion source in several significant ways, so that neutron intensities have now been proven to be adequate for our series of elastic scattering angular distribution measurements outlined in our initial proposal of two years ago. We have successfully tested all components of the time-of-flight spectrometer and recorded initial neutron spectra from the ring targets that we have obtained for our first angular distribution measurements. Examples of the time-of-flight spectra that have been obtained are given later in this report. At the present time, the accelerator is operating with the highest degree of reliability that we have experienced since installing the pulsing system. Improvements made over the past year have not only increased the available neutron intensity, but also increased our capability to deal with inevitable component failures that require repair or replacement. The measurements carried out in conjunction with Argonne have contributed significantly to the available database on fast neutron interactions in yttrium. Results indicate that the cross section for the 89 Y(n,p)89Sr reaction is substantially higher than represented in ENDF/B-VI
Wind Turbine Radar Cross Section
David Jenn
2012-01-01
Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.
Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging
Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain
2015-01-01
The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed in the...
[Fast neutron cross section measurements
In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months
Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.
1995-01-01
Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.
Liao, C.; Chutjian, A.; Hitz, D.; Tayal, S. S.
1997-01-01
Experimental and theoretical collisional excitation cross sections are reported for the transitions 3s(exp 2)3p(exp 3)4S(exp o) approaches 3s(exp 2)3p(exp 3) 2D(exp o), 2P(exp o), and 3s3P(exp 4) 4P in S II. The transition wavelengths (energies) are 6716 A (1.85 eV), 4069 A (3.05 eV), and 1256 A (9.87 eV), respectively. In the experiments, use is made of the energy-loss merged-beams method. The metastable fraction of the S II beam was assessed and minimized. The contribution of elastically scattered electrons was reduced by the use of a lowered solenoidal magnetic field and a modulated radio-frequency voltage on the analyzing plates and by retarding grids to reject the elastically scattered electrons with larger Larmor radii. For each transition, comparisons are made among experiments, the new 19 state R-matrix calculation, and three other close-coupling calculations.
Electron-Impact Ionization Cross Section Database
SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access) This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.
Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap
Bergami, Leonardo
Recent studies conclude that important reduction of the fatigue loads encountered by a wind turbine blade can be achieved using a deformable trailing edge control system. The focus of the current work is to determine the effect of this flap-like system on the aeroelastic stability of a 2D airfoil...... section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfoil without flap are determined, and, in the second part of the work, a deformable trailing edge flap is...
Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap
Bergami, Leonardo
2008-01-01
Recent studies conclude that important reduction of the fatigue loads encountered by a wind turbine blade can be achieved using a deformable trailing edge control system. The focus of the current work is to determine the effect of this flap-like system on the aeroelastic stability of a 2D airfoil section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfo...
Evaluation of cross section for 103Rh
A completely new evaluation for the neutron cross sections is presented. The experimental data mainly referred to EXFOR, and the recommended cross sections are compared with ENDF/B-6, BROND-2, JENDL-3.2 and JEF-2
Isotope effect in dissociative electron attachment cross sections in acetylene
May, Olivier; Fedor, Juraj; Allan, Michael, E-mail: olivier.may@unifr.c [Department of Chemistry, University of Fribourg, Chemin du Muse 9, 1700 Fribourg (Switzerland)
2009-11-01
We present absolute cross section measurement of dissociative electron attachment to C{sub 2}H{sub 2} and C{sub 2}D{sub 2}. The C{sub 2}H{sup -}/ C{sub 2}D{sup -} band at 3 eV shows pronounced isotope effect with the cross section for C{sub 2}H{sub 2} being 14.7 times larger than that for C{sub 2}D{sub 2}. The light fragments H{sup -} and D{sup -} dominate the second dissociative electron attachment band around 8 eV. These bands exhibit much weaker isotope effects which is in agreement with their assignment to Feshbach resonances.
Photoproduction total cross section and shower development
Cornet, F.; García Canal, C. A.; Grau, A.; Pancheri, G.; Sciutto, S. J.
2015-12-01
The total photoproduction cross section at ultrahigh energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.
Photoproduction total cross section and shower development
Cornet, F; Grau, A; Pancheri, G; Sciutto, S J
2015-01-01
The total photoproduction cross section at ultra-high energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air-showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.
JENDL gas-production cross section file
The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)
2D Direction of Arrival Estimation for Cross Array in the Presence of Mutual Coupling
2014-01-01
This paper proposes a new method for cross array to estimate two-dimensional direction of arrival (2-D DOA) in the presence of mutual coupling. In this method, the array elements which are affected by the same mutual coupling are chosen on x-axis and z-axis, respectively. Then a new matrix is constructed with the proper entries of cross covariance matrix of the chosen elements outputs on x-axis and z-axis. Propagation method (PM) and rotational invariance techniques for uniform linear array (...
[Fast neutron cross section measurements
From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase
Recent fission cross section standards measurements
Wasson, O.A.
1985-01-01
The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.
Recent fission cross section standards measurements
The 235U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to 235U. However, the more difficult 235U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the 235U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs
SNL RML recommended dosimetry cross section compendium
Griffin, P.J.; Kelly, J.G.; Luera, T.F. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)
1993-11-01
A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
Background-cross-section-dependent subgroup parameters
A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)
Cross section inference based on PDE-constrained optimization
The problem of inferring the material properties (cross section) in noninvasive inverse problems is formulated as a PDE-constrained optimization problem, where the governing laws of the chosen physics act as a constraint. A standard Lagrangian functional, containing the objective function to be minimized and the constraints to satisfy, is formed. The resolution of the optimality conditions lead to a nonlinear problem that is tackled with a Gauss-Newton procedure. Results of cross section inference are presented in the case of 1-group 2D neutron diffusion theory. (authors)
Cross Sections for Electron Collisions with Methane
Song, Mi-Young, E-mail: mysong@nfri.re.kr; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-dong, Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Cho, Hyuck [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara 252-5210 (Japan); Karwasz, Grzegorz P. [Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus, Grudziadzka 5, 87100 Toruń (Poland); Kokoouline, Viatcheslav [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Nakamura, Yoshiharu [6-1-5-201 Miyazaki, Miyamae, Kawasaki 216-0033 (Japan); Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2015-06-15
Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.
Measurements of neutron capture cross sections
A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)
Compilation of cross-sections. Pt. 2
A compilation of integrated cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross sections versus incident laboratory momentum are also given. This volume II contains cross-sections for K+ and K- induced reactions. (orig.)
Ion and electron impact ionization cross sections
Several current projects are described in which cross sections of interest to radiation physics are being measured. These include total and multiple ionization cross sections for protons on several gases covering a wide energy range, the measurement of cross sections differential in the angle and energy of ejected electrons for several gases including water vapor, and a review of proton ionization data. The work on water vapor has also been extended to electron and neutral hydrogen impact. A brief discussion is also given of some systematics of ionization cross sections. 13 references
Improved Empirical Parametrization of Fragmentation Cross Sections
Sümmerer, Klaus
2012-01-01
A new version is proposed for the universal empirical formula, EPAX, which describes fragmentation cross sections in high-energy heavy-ion reactions. The new version, EPAX 3, can be shown to yield cross sections that are in better agreement with experimental data for the most neutron-rich fragments than the previous version. At the same time, the very good agreement of EPAX 2 with data on the neutron-deficient side has been largely maintained. Comparison with measured cross sections show that the bulk of the data is reproduced within a factor of about 2, for cross sections down to the pico-barn range.
Damage cross section library (DAMSIG77)
The damage cross sections of various materials are converted to a data format, which can be used as library for the program SAND-II. The materials available in this library are graphite, stainless steel, aluminium, silicium, chromium, iron, nickel, copper, zirconium, molybdenum, tungsten, vanadium and niobium. A number of these materials have more than one cross section set, originating from different evaluations. Cross sections for some activation reactions, commonly used to determine thermal and fast neutron fluences have been included too. Moreover, also some artificial cross sections are introduced in this library which can be used to derive values for some physical quantities which may characterize neutron spectra
Compilation of cross-sections. Pt. 1
A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)
Compilation of cross-sections. Pt. 4
This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and KL0. It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)
Fission cross section calculations for Pa isotopes
Based on the recently measured cross-section values for the neutron-induced fission of 231Pa and our experience gained with other isotopes, new self consistent neutron cross section calculations for n+231Pa have been performed up to 30 MeV. The results are quite different to the existing evaluations, especially above the first chance fission threshold. (authors)
Nucleon-XcJ Dissociation Cross Sections
冯又层; 许晓明; 周代翠
2002-01-01
Nucleon-XcJ dissociation cross sections are calculated in a constituent interexchange model in which quark-quark potential is derived from the Buchmüller-Tye quark-anti-quark potential. These new cross sections for dominant reaction channels depend on the centre-of-mass energy of the nucleon and the charmonium.
Recommended evaluation procedure for photonuclear cross section
Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)
Comparative analysis among several cross section sets
Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author)
Photoproton cross section for 17O
The measurement of the 17O(γ,p)16N reaction from threshold to an excitation energy of 44 MeV is presented. These results have been summed with the previously measured total photoneutron cross section to provide an approximation to the total photoabsorption cross section of 17O. The magnitude of the 17O photoabsorption cross section at the peak of the Giant Dipole Resonance is considerably less than the equivalent value for the photoabsorption cross sections of 16O and 18O. In addition, the integrated total photoabsorption cross section for 17O (up to 40 MeV) exhausts only about 58% of the sum rule; the values for the cases of 16O and 18O are significantly larger than this. The present data along with results from other reaction channels of this nucleus, were used to make spin, parity, and isospin assignments for several states in 17O. 48 refs., 4 tabs., 7 figs
Aeroservoelastic stability of a 2D airfoil section equipped with a trailing edge flap
Bergami, Leonardo
2008-11-15
Recent studies conclude that important reduction of the fatigue loads encountered by a wind turbine blade can be achieved using a deformable trailing edge control system. The focus of the current work is to determine the effect of this flap-like system on the aeroelastic stability of a 2D airfoil section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfoil without flap are determined, and, in the second part of the work, a deformable trailing edge flap is applied. Stability is investigated for the uncontrolled flap, and for three different control algorithms. The three controls are tuned for fatigue load alleviation and they are based on, respectively, measurement of the heave displacement and velocity, measurement of the local angle of attack, measurement of the pressure difference between the two sides of the airfoil. The stability of the aeroservoelastic system in a defined equilibrium state, and for a given flow speed, is then determined by solving an eigenvalue problem. Results show that the trailing edge control system modifies significantly the stability limits of the section. In the investigated case, increased flutter limits are reported when the elastic flap is left without control, whereas, by applying any of the control algorithms, the flutter velocity is reduced. Nevertheless, only in the heave control case the flutter limit becomes critically close to normal operation flow speeds. Furthermore, a marked dependence of the stability limits on the control gain is also observed and, by tuning the gain parameters, flutter and divergence can be suppressed for flow speed even above the flutter velocity encountered with uncontrolled flap. (author)
Photoneutron cross sections for the silicon isotopes
The photoneutron cross sections for 28Si, 29Si, and 30Si have been measured up to 33 MeV with monoenergetic photons from the annihilation in flight of fast positrons, using neutron multiplicity counting. Average neutron energies were obtained simultaneously with the cross-section data by the ring-ratio technique. The giant dipole resonance for 28Si and 30Si exhibit appreciable fragmentation; that for 29Si does not. The (γ,2n) cross section for 30Si is large; that for 29Si is consistent with zero. The (γ,1n) cross section for 30Si decreases sharply with energy to values near zero as the (γ,2n) cross section grows, then increases to appreciable values as the (γ,2n) cross section diminishes; this extreme behavior, although never seen before, is attributable to the competition between the (γ,n), (γ,2n), and (γ,pn) decay channels. Some properties of the isospin components of the giant resonance are inferred. Other features of the data, including the integrated cross sections, are found to be similar in many respects to corresponding results for the oxygen and magnesium isotopes. The 28Si nucleus is found to be a better core for 29Si and 30Si than might have been expected from previous descriptions of its open-shell character
The 42Ca photoneutron cross section
The measurement of the 42Ca(γ,nsub(t)) is reported here over the energy range 10.5 - 28 MeV. Bremsstrahlung radiation from the 35 MeV Betatron at this University was used to measure a yield curve of photoneutrons, from which the (γ,nsub(t)) cross section was derived. Since proton and neutron emission are the major decay modes of the giant dipole resonance, summing these cross sections approximates the photo-absorption cross section. With this information the theoretical predictions can be checked
Compilation of cross-sections. Pt. 3
A compilation of integrated cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data, particularly those from the CERN Collider, have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. This volume III contains cross-sections for p and anti p induced reactions. (orig.)
Screening corrections to the Rutherford cross section
Differential cross sections for elastic p-Au scattering were measured in the energy range between 0.2 and 0.8 MeV for scattering angles from 300 to 1500 in order to determine corrections to the Rutherford cross section due to the screening of the nuclear charge by the atomic electrons. Furthermore, differential cross sections have been calculated in the weakly screening region using various screening functions. A simple analytical expression has been derived for the representation of both experimental and theoretical results. (orig.)
Differential cross sections of positron hydrogen collisions
于荣梅; 濮春英; 黄晓玉; 殷复荣; 刘旭焱; 焦利光; 周雅君
2016-01-01
We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.
A nuclear cross section data handbook
Fisher, H.O.M.
1989-12-01
Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.
Systematics of (n,2n) Cross Sections
2008-01-01
<正>The experimental data of (n, 2n) cross sections were collected and evaluated as complete as possible. There are 640 sets of experimental data for 130 nuclei. The data were fitted to the expressions that describe the
Methods for calculating anisotropic transfer cross sections
The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)
Neutron capture cross sections from Surrogate measurements
Scielzo N.D.; Dietrich F.S.; Escher J.E.
2010-01-01
The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.
Neutron capture cross sections from Surrogate measurements
Scielzo N.D.
2010-03-01
Full Text Available The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.
Photoneutron cross section of 34S
Using an enriched 34S target, the reaction 34S(γ,sn)33S has been measured from below threshold (10.4 MeV) to 28 MeV by directly counting the photoneutrons as a function of bremsstrahlung energy. The resultant cross section shows gross splitting in the GDR region. The integrated cross section is discussed in the light of the systematics of similar nuclei having two neutrons outside a doubly closed shell/sub-shell core
Photoneutron cross section of 34S
Using an enriched 34S target, the reaction 34S(γ, sn) has been measured from below threshold (10.4 MeV) to 28 MeV by directly counting the photoneutrons as a function of bremsstrahlung energy. The resultant cross section shows gross splitting in the GDR region. The integrated cross section is discussed in the light of the systematics of similar nuclei having two neutrons outside a doubly closed shell/sub-shell core. (orig.)
Evaluation methods for neutron cross section standards
Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables
Photoproton cross section for 14C
Using bremsstrahlung, the 14C(γ,p) reaction cross section has been measured from threshold to 29 MeV. The integrated cross section up to 30 MeV is 18±3 MeV mb. Above 23.5 MeV, the reported cross section includes a contribution, estimated at 3.5 MeV mb, due to the 14C(γ,d) and 14Cγ,pn) reactions. Essentially the entire 14C(γ,p) cross section results from decay of T> dipole states. From knowledge of other decay channels estimates of the cross section, integrated to 30 MeV for the T and T> components of the giant resonance (GDR) of 81 MeV mb and 43 MeV mb are obtained. The splitting of the mean energies of the GDR isospin components is 8.5 MeV. Comparisons with several shell-model calculations are made with the data, and general agreement is found. A comparison of photonuclear absorption cross sections for 12,1314C and 16,17,18 O shows dramatic redistribution of dipole strength as neutrons are added to the core nuclei. 41 refs., 1 tab., 7 figs
Couvreur, Valentin; Faget, Marc; Javaux, Mathieu; Chaumont, Francois; Draye, Xavier; 2016 Kirkham Conference
2016-01-01
Objectives: To improve our understanding of aquaporin (AQP) expression patterns and root anatomy effects on radial hydraulic conductivity by combining quantitative in vivo and in silico experiments from the cell to the root cross-section scales in various hydric environments. Methods: A program generates explicit 2D root cross-section hydraulic networks from cross-section anatomy images. The hydraulic network includes "cell wall" and "intra cell" nodes constituting connected pathways allowing...
abo-cross: Hydrogen broadening cross-section calculator
Barklem, P. S.; Anstee, S. D.; O'Mara, B. J.
2015-07-01
Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O'Mara (1995), Barklem & O'Mara (1997) and Barklem, O'Mara & Ross (1998) for s-p, p-s, p-d, d-p, d-f and f-d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.
A Pebble Bed Reactor cross section methodology
A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.
Saxena, Nishank; Mavko, Gary
2016-03-01
Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.
Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation
The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions
Axial dependence of homogenized cross sections used for nodal analysis of the boiling water reactor
The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronics analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions. (authors)
Reduction Methods for Total Reaction Cross Sections
Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.
2016-03-01
The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.
The effect of intersystem crossings in N({sup 2}D) + H{sub 2} collisions
Galvão, B. R. L., E-mail: brenogalvao@gmail.com; Poveda, L. A. [Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais (Brazil)
2015-05-14
The transitions between quartet and doublet states of the NH{sub 2} molecule are studied for the first time, allowing the evaluation of the N({sup 4}S) + H{sub 2} reactive channel. High level ab initio calculations of the spin-orbit coupling are performed over the whole configurational space of the NH{sub 2} molecule and fitted to a proposed analytic form. Quasiclassical trajectories coupled with the surface hopping method are employed to calculate reaction cross section and rate constants. The reaction is largely affected by the initial rovibrational states of H{sub 2}, while the formation of long-lived complexes enhances the reaction probability.
Prospects for Precision Neutrino Cross Section Measurements
Harris, Deborah A. [Fermilab
2016-01-28
The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.
Neutron cross section of methane hydrate
Kiyanagi, Y.; Date, S.; Horikawa, T.; Takamine, J.; Iwasa, H.; Kamiyama, T. [Graduate School of Eng., Hokkaido Univ., Sapporo (Japan); Uchida, T.; Ebinuma, T.; Narrita, H. [National Inst. of Advanced Industrial Science, Tsukisamu, Sapporo (Japan); Bennington, S.M. [ISIS Dept., Rutherford Appleton, Chilton, Didcot, Oxon (United Kingdom)
2004-03-01
To estimate the neutronic characteristics of methane hydrate and also to synthesize cross section data for simulation we need neutron scattering data ranging wide energy and momentum region. We performed inelastic neutron scattering experiments to get information about the neutron cross section on methane hydrate. It was found that at high momentum transfer region rotational mode as well as vibration mode showed recoil like behavior. On the other hand, at low momentum region, as well known, free rotation like energy levels were observed. The energy level of ice in methane hydrate was very similar to normal ice. The results suggest that the rough expression of the cross section of the methane hydrate is presented by linear combination of the methane and ice. (orig.)
Radar Cross Section measurements on the stealth metamaterial objects
Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.; Zhang, Xi; Averitt, Richard D.; Jepsen, Peter Uhd
have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS is...
Radiation pressure cross section for fluffy aggregates
We apply the discrete dipole approximation (DDA) to estimate the radiation pressure cross section for fluffy aggregates by computing the asymmetry parameter and the cross sections for extinction and scattering. The ballistic particle-cluster aggregate and the ballistic cluster-cluster aggregate consisting of either dielectric or absorbing material are considered to represent naturally existing aggregates. We show that the asymmetry parameter perpendicular to the direction of wave propagation is maximized where the wavelength is comparable to the aggregate size, which may be characterized by the area-equivalent radius or the radius of gyration rather than the volume-equivalent radius. The asymmetry parameter for the aggregate depends on the morphology of the particle, but not on the constituent material. Therefore, the dependence of the radiation pressure cross section on the material composition arises mainly from that of the extinction and scattering cross sections, in other words, the single-scattering albedo. We find that aggregates consisting of high-albedo material show a large deviation of radiation pressure from the direction of incident radiation. When the aggregates are illuminated by blackbody radiation, the deviation of the radiation pressure increases with increasing temperature of the blackbody. Since the parallel component of the radiation pressure cross section for the aggregates is smaller than that for the volume-equivalent spheres at the size parameter close to unity, the Planck-mean radiation pressure cross section for the aggregates having radius comparable to the effective wavelength of radiation shows a lower value, compared with the volume-equivalent sphere. Consequently, the slope of the radiation pressure force per mass of the particle as a function of particle mass shows a lower maximum for the aggregates than for compact spherical particles. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Saturation Effects in Hadronic Cross Sections
Shoshi, Arif I.; Steffen, Frank D.
2002-01-01
We compute total and differential elastic cross sections of high-energy hadronic collisions in the loop-loop correlation model that provides a unified description of hadron-hadron, photon-hadron, and photon-photon reactions. The impact parameter profiles of pp and gamma*p collisions are calculated. For ultra-high energies the hadron opacity saturates at the black disc limit which tames the growth of the hadronic cross sections in agreement with the Froissart bound. We compute the impact param...
Precise neutron inelastic cross section measurements
Negret, Alexandru
2012-11-01
The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.
Charged particle reaction cross sections and nucleosynthesis
The role of proton and α-particle induced reactions in carbon, neon, oxygen and silicon burning in massive stars is surveyed. The problems associated with determining thermonuclear reaction rates for reactions with widely spaced resonances and with closely spaced or overlapping resonances are discussed and the associated experimental approaches are reviewed. Experimental techniques which have been used in the measurement of reaction cross sections are discussed and their strengths and weaknesses are identified. Recent developments in attempts to establish reliable statistical-model codes for calculation of reaction cross sections are presented and discussed. The results of experimental tests of statistical model codes are summarised and evaluated
Neutron capture cross sections from surrogate measurements
The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. The method is applied to the 155Gd(n,γ) reaction. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications. (authors)
Covariance Evaluation Methodology for Neutron Cross Sections
Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.
2008-09-01
We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.
Atlas of neutron capture cross sections
This report describes neutron capture cross sections in the range 10-5 eV - 20 MeV as evaluated and compiled in recent activation libraries. The selected subset comprise the (n,γ) cross sections for a total of 739 targets for the elements H (Z = 1, Z = 1) to Cm (Z = 96, A = 238) totaling 972 reactions. Plots of the point-wise data are shown and comparisons are made with the available experimental values at thermal energy, 30 keV and 14.5 MeV. 10 refs, 7 tabs
Optical Model and Cross Section Uncertainties
Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.
2009-10-05
Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.
Verification of important cross section data
Full text: Continuing efforts in nuclear data development have made the design of a fusion power system less uncertain. The fusion evaluated nuclear data library (FENDL) development effort since 1987 under the leadership of the IAEA Nuclear Data Section has provided a credible international library for the investigation and design of the International Thermonuclear Engineering Reactor (ITER). Integral neutronics experiments are being carried out for ITER and fusion power plant blanket and shield assemblies to validate the available nuclear database and to identify deficiencies for further improvement. Important cross section data need experimental verifications if these data are evaluated based on physics model calculations and there are no measured data points available. A particular reaction cross section is Si28(n,x)Al27, which is the important cross section to determine whether the low activation SiC composite structure can be qualified as low level nuclear waste after life time exposure in the first wall neutron environment in a fusion power plant. Measurements of helium production data for candidate fusion materials are also needed, particularly at energies above 14 MeV for the assessment of materials damage in the IFMIF neutron spectrum. To a less extent, it appears that V51(n,x)Ti50 reaction cross section also needs to be measured to further confirm a recent new evaluation of vanadium for ENDF/B-VII. (author)
Symmetric charge transfer cross section of uranium
Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d3/2 electron in the U atom transfers into the d-electron site of U+(4I9/2) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10-15 cm2) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U+ ion. Charge transfer cross section between U+ in the first excited state (289 cm-1) and U in the ground state was also obtained. (author)
Electron impact excitation cross sections for carbon
Ganas, P. S.
1981-04-01
A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p 2( 3P O) valence state.
Electron impact excitation cross sections for carbon
A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p2(3P0) valence state. (orig.)
Top quark cross sections and differential distributions
Kidonakis, Nikolaos
2011-01-01
I present results for the top quark pair total cross section and the top quark transverse momentum distribution at Tevatron and LHC energies. I also present results for single top quark production. All calculations include NNLO corrections from NNLL threshold resummation.
Neutron cross sections of importance to astrophysics
Neutron reactions of importance to the various stellar burning cycles are discussed. The role of isomeric states in the branched s-process is considered for particular cases. Neutron cross section needs for the 187Re-187Os, 87Rb-87Sr clocks for nuclear cosmochronology are discussed. Other reactions of interest to astrophysical processes are presented. 35 references
Fusion cross sections and the new dynamics
The prediction of the need for an extra push over the interaction barrier in order to make the heavier nuclei fuse is made the basis of a simple algebraic theory for the energy-dependence of the fusion cross-section. A comparison with recent experiments promises to provide a quantitative test of the New Dynamics
LSP-Nucleus Elastic Scattering Cross Sections
Vergados, J. D.; Kosmas, T. S.
1997-01-01
We calculate LSP-nucleus elastic scattering cross sections using some representative input in the restricted SUSY parameter space. The coherent matrix elements are computed throughout the periodic table while the spin matrix elements for the proposed $^{207}Pb$ target which has a rather simple nuclear structure. The results are compared to those given from other cold dark matter detection targets.
Neutron Capture Cross Sections for Radioactive Nuclei
Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas
2015-10-01
Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.
Modelisation of the fission cross section
The neutron cross sections of four nuclear systems (n+235U, n+233U, n+241Am and n+237Np) are studied in the present document. The target nuclei of the first case, like 235U and 239Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237Np and 241Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author)
Measurement cross sections for radioisotopes production
New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β- - 47Sc, 67Cu - β+ - 44Sc, 64Cu, 82Sr/82Rb, 68Ge/68Ga - and α emitters - 211At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - natCu or natNi - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the natTi(p,X)47Sc and 68Zn(p,2p)67Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)
Zuo, M.; Smith, S.; Chutjian, A.; Williams, I.; Tayal, S.; McLaughlin, B.
1994-01-01
Experimental and theoretical excitation cross sections are reported for the first forbidden transition xxx and the first allowed (resonance) transition xxx in OII. Use is made of electron-energy loss and merged beams methods. The electron energy range covered is 3.33 eV (threshold) to 15 eV for the S->D transition, and 14.9 eV (threshold) to 40 eV for the S->P transition. Care was taken to assess and minimize the metastable fraction of the OII beam. An electron mirror was designed and tested to reflect inelastically back-scattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-Matrix calculations. Calculations are also presented for the xxx transition.
A New Neutrino Cross Section Data Ressource
Whalley, M R
2005-01-01
We describe a new web based data resource being developed to provide access to accurate and validated cross sections of low energy neutrino and antineutrino interactions. The proposed content of this database are outlined which cover total and differential cross from inclusive, quasi-elastic and exclusive pion production processes from charged and neutral current interactions. Efforts to obtain these data, which come mainly from old bubble chamber experiments, are described as well as the implementation of an embryonic web site to make the resource generally accessible.
We are developing a method of (n,α) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the 12C(n,α0)9Be measurement. We applied this method to the 16O(n,α)13C cross section around 14.1 MeV. (author)
Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering
1997-03-01
We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)
Cross-section analysis for TRADE fuel
The TRIGA core includes bounded hydrogen in Zirconium hydride in its fuel meat allowing for fast reactivity transients. The inherent safety mechanism is based on the immediate increase of neutron up-scattering by the hydrogen as a result of a fuel temperature increase. The temperature dependent resonance absorption is the second safety feature. The special fuel type together with the introduction of an external source within it for the TRADE project necessitates an accurate evaluation of the bounded hydrogen cross section generation technique as well as of the resonance treatment. By comparing deterministic tools and Monte Carlo solution methods the generated bounded isotopes cross sections are analysed. Further, the importance of the Doppler and the thermal up-scattering effects are quantified and the sensitivities to the solution method are discussed. (authors)
The photoneutron cross section of 20Ne
The photoneutron cross section of 20Ne has been measured over a photon energy range 16 to 29 MeV in steps of 100 keV. The giant dipole resonance is resolved into three strong peaks below 21 MeV and at least two broader resonances at higher excitations. This structure is consistent with earlier measurements of poorer resolution and shows a correlation with the recent calculations of Schmid and Do Dang. Comparisons with high resolution neutron time-of-flight and electron scattering data indicate that there appear to exist in the giant resonance of 20Ne, regions of structure roughly 2-3 MeV wide which exhibit localised characteristics related to the excitation mechanisms. The role of deformation and configuration splitting effects in the cross section are discussed and possible directions of further study are noted which might clarify the situation more fully
Structured ion impact: Doubly differential cross sections
The electron emission in coincidence with a projectile that has been ionized has been measured, thus making it possible to separate and identify electrons resulting from these various mechanisms. In 1985, coincidence doubly differential cross sections were measured for 400 to 750 keV/atomic mass unit (amu) He+ impact on He, Ne, Ar, Kr, and H2O. Cross sections were measured for selected angles and for electron energies ranging from 10 to 1000 eV. Because of the coincidence mode of measurement, the total electron emission was subdivided into its target emission and its projectile emission components. The most interesting findings were that target ionization does not account for the electron emission spectrum at lower electron energies. A sizable percentage of these low-energy electrons were shown to originate as a result of simultaneous projectile/target ionizations. Similar features were observed for all targets and impact energies that were studied
Elliptical cross section fuel rod study II
In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab
Jet cross sections and PDF constraints
CMS Collaboration
2012-01-01
A measurement of inclusive jet and dijet production cross sections is presented. Data from LHC proton-proton collisions at $\\sqrt{s}=7\\TeV$, corresponding to $4.67\\fbinv$ of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed with the anti-$k_T$ clustering algorithm of size parameter $R=0.7$, extending to rapidity $|y|=2.5$, transverse momentum $\\pt=2\\TeV$, and dijet invariant mass $M_{JJ}=5\\TeV$. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using various sets of parton distribution functions.
Electron capture cross sections for stellar nucleosynthesis
Giannaka, P G
2015-01-01
In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasi-particle random-phase approximation (pn-QRPA) and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the above mentioned $e^-$-capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the $^{66}Zn$ isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.
Measurements of neutron spallation cross section. 2
Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.
1997-03-01
Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)
Reinforced concrete columns of variable cross section
Brant, N.F.A.
1984-01-01
The results of a series of 19 full scale tests carried out on pin-ended reinforced concrete columns are reported. The columns tested had either tapered rectangular sections along the length or octagonal cross sections. All columns, except the last 6, were subjected to uniaxial eccentricities at one of the ends (the stronger end), and a nominally concentric load at the other end. For the case of the last six columns the loading applied at the stronger end was biaxially eccentric. For each of t...
Electron collision cross sections and radiation chemistry
A survey is given of the cross section data needs in radiation chemistry, and of the recent progress in electron impact studies on dissociative excitation of molecules. In the former some of the important target species, processes, and collision energies are presented, while in the latter it is demonstrated that radiation chemistry is a source of new ideas and information in atomic collision research. 37 references, 4 figures
Atomic-process cross section data, 1
Compiled by the Data Study Group, the data are intended for fusion plasma physics research. Cross sections of the latest experimental and theoretic studies cover the processes involving H,D,T as principal plasma materials as well as photons and electrons: emission and absorption of electromagnetic wave, electron collision, ion collision, recombination, neutral atom mutual collision, etc. Edition is so made to enable the future renewal by users. (J.P.N.)
Cross section of the CMS solenoid
Tejinder S. Virdee, CERN
2005-01-01
The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.
Neutron cross section standards and instrumentation
This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the 10B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for 10B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards 237Np(n,f) and 239Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program
Neutron capture cross section measurement techniques
A review of currently-used techniques to measure neutron capture cross sections is presented. Measurements involving use of total absorption and Moxon-Rae detectors are based on low-resolution detection of the prompt γ-ray cascades following neutron captures. In certain energy ranges activation methods are convenient and useful. High resolution γ-ray measurements with germanium detectors can give information on the parameters of resonance capture states. The use of these techniques is described. (U.S.)
Fusion cross sections at deep subbarrier energies
Hagino, K.; Rowley, N.; Dasgupta, M
2003-01-01
A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisi...
How to calculate colourful cross sections efficiently
Gleisberg, Tanju; Krauss, Frank
2008-01-01
Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.
Jet cross sections in leptoproduction from QCD
We have calculated the longitudinal and other polarization dependent cross sections for jet production in deep inelastic ep, νp and anti νp scattering up to order αsub(s) of the quark-gluon coupling constant. Fragmentation of final state partons into hadrons is taken into account. Distributions in thrust, p2sub(Tin) and p2sub(Tout) are predicted for all three reactions and various values of W and Q. (orig.)
Measurements of Fission Cross Sections of Actinides
Wiescher, M; Cox, J; Dahlfors, M
2002-01-01
A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.
Neutron cross section standards and instrumentation
1992-09-01
This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.
Fusion cross sections measurements with MUSIC
Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.
2014-09-01
The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.
Inclusive jet cross section at D0
Bhattacharjee, M. [Delhi Univ. (India). Dept. of Physics and Astrophysics
1996-09-01
Preliminary measurement of the central ({vert_bar}{eta}{vert_bar} {<=} 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D{null} based on the 1992-1993 (13.7 {ital pb}{sup -1}) and 1994-1995 (90 {ital pb}{sup -1}) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made.
The Pa-233 fission cross section
The energy dependent neutron-induced fission cross section of 233Pa has for the first time been measured directly with mono-energetic neutrons. This isotope is produced in the thorium fuel cycle and serves as an intermediate step between the 232Th source material and the 233U fuel material. Four neutron energies between 1.0 and 3.0 MeV have been measured in a first campaign. Some preliminary results are presented and compared to literature. (author)
Total neutron cross section for 181Ta
Schilling K.-D.
2010-10-01
Full Text Available The neutron time of flight facility nELBE, produces fast neutrons in the energy range from 0.1 MeV to 10 MeV by impinging a pulsed relativistic electron beam on a liquid lead circuit [1]. The short beam pulses (∼10 ps and a small radiator volume give an energy resolution better than 1% at 1 MeV using a short flight path of about 6 m, for neutron TOF measurements. The present neutron source provides 2 ⋅ 104 n/cm2s at the target position using an electron charge of 77 pC and 100 kHz pulse repetition rate. This neutron intensity enables to measure neutron total cross section with a 2%–5% statistical uncertainty within a few days. In February 2008, neutron radiator, plastic detector [2] and data acquisition system were tested by measurements of the neutron total cross section for 181Ta and 27Al. Measurement of 181Ta was chosen because lack of high quality data in an anergy region below 700 keV. The total neutron cross – section for 27Al was measured as a control target, since there exists data for 27Al with high resolution and low statistical error [3].
Cross-section reconstruction during uniaxial loading
The inelastic response of materials to applied uniaxial loading is typically measured using tensile or compressive specimens of an initially circular cross-section. Under deformation, this cross-section may become elliptical due to anisotropic material behaviour. An optical technique for measuring the elliptical deformation of anisotropic, homogeneous cylindrical specimens undergoing uniaxial deformation is presented. It enables the quantification of anisotropic deformation in situ and provides data for material characterization. Three or more silhouette views of a specimen are obtained using multiple cameras or mirrored views. The positions of the edges are computed using a sub-pixel edge detection method, and 3D tangent rays from the camera through these positions are calculated. These bounding tangents are used as the basis for an elliptical fit by least squares at cross-sections along the length of the specimen. Stochastic error estimates are performed by simulation of the experiment. Error estimates, for the experimental set-up used, are also calculated by reconstructing elliptical prisms of precisely measured dimensions. Example reconstructions from specimens of rolled titanium deformed plastically in tension at quasi-static (7 × 10−4 s−1) and high strain rates (3 × 103 s−1) are presented
Electron impact cross sections of vibrationally and electronically excited molecules
Yoon, Jung-Sik, E-mail: jsyoon@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2, Osikdo-Dong, Gunsan, Jeollabuk-Do, 573-540 (Korea, Republic of); Song, Mi-Young; Kwon, Deuk-Chul; Choi, Heechol [Plasma Technology Research Center, National Fusion Research Institute, 814-2, Osikdo-Dong, Gunsan, Jeollabuk-Do, 573-540 (Korea, Republic of); Kim, Chang-Geun [National Center for Standard Reference Data, Korea Research Institute of Standards and Science, Doryong-Dong, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); Kumar, Vijay [B-82, Aarohi Twin Bungalows, Near Govt. Tubewell, Bopal, Ahmedabad-380058 (India)
2014-10-30
It is well known that the electron impact cross sections for elastic and inelastic processes for the vibrationally and electronically excited molecules are predominantly different than those for molecules in the ground state. Collisions of low energy electrons with excited molecules play an important role in explaining the behavior of gas discharges in laser and plasma physics, in planetary atmospheres, stars, and interstellar medium and in plasmas widely used in the fabrication of microelectronics. This explains as to why there is a need for having validated sets of electron impact cross sections for different processes. This work reviews the subject of electron collisions with vibrationally and electronically excited molecules in a comprehensive way. The survey has been carried out for a few excited molecules such as H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT, N{sub 2}, O{sub 2}, and CO{sub 2}. This review includes the discussion on the methods to produce and detect vibrationally and electronically excited molecules. We will take up the cross section data available in the literature for such molecules on electron scattering, dissociation, ionization and attachment processes and will discuss, evaluate and well-validate the same wherever and whenever possible.
Electron impact cross sections of vibrationally and electronically excited molecules
It is well known that the electron impact cross sections for elastic and inelastic processes for the vibrationally and electronically excited molecules are predominantly different than those for molecules in the ground state. Collisions of low energy electrons with excited molecules play an important role in explaining the behavior of gas discharges in laser and plasma physics, in planetary atmospheres, stars, and interstellar medium and in plasmas widely used in the fabrication of microelectronics. This explains as to why there is a need for having validated sets of electron impact cross sections for different processes. This work reviews the subject of electron collisions with vibrationally and electronically excited molecules in a comprehensive way. The survey has been carried out for a few excited molecules such as H2, D2, T2, HD, HT, DT, N2, O2, and CO2. This review includes the discussion on the methods to produce and detect vibrationally and electronically excited molecules. We will take up the cross section data available in the literature for such molecules on electron scattering, dissociation, ionization and attachment processes and will discuss, evaluate and well-validate the same wherever and whenever possible
无
2006-01-01
Using the nullisomic back-cross procedure, four wheat-rye chromosome substitution 2R (2D) lines with different agronomic performance, designated WR02-145-1, WR01-145-2, WR02-145-3, and WR02-145-4, were produced from a cross between 2D nullisomic wheat (Triticum aestivum L. cv. "Xiaoyan 6") and rye (Secale cereale L. cv. "German White"). The chromosomal constitution of 2n=42=21 in WR02-145 lines was confirmed by cytological and molecular cytogenetic methods. Using genomic in situ hybridization on root tip chromosome preparations, a pair of intact rye chromosomes was detected in the WR02-145 lines. PCR using chromosome-specific primers confirmed the presence of 2R chromosomes of rye in these wheat-rye lines, indicating that WR02-145 lines are disomic chromosome substitution lines 2R (2D). The WR02-145 lines are resistant to the powdery mildew (Erysiphe graminis DC. f. sp. tritici E. Marchal) isolates prevalent in northern China and may possess gene(s) for resistance to powdery mildew, which differ from the previously identified Pm7 gene located on chromosome 2RL. The newly developed "Xiaoyan 6"- "German White"2R (2D) chromosome substitution lines are genetically stable, show desirable agronomic traits, and are expected to be useful in wheat improvement.
Crossing the c=1 barrier in 2D Lorentzian quantum gravity
Ambjørn, J.; Anagnostopoulos, K.; Loll, R.
2000-02-01
In an extension of earlier work we investigate the behavior of two-dimensional (2D) Lorentzian quantum gravity under coupling to a conformal field theory with c>1. This is done by analyzing numerically a system of eight Ising models (corresponding to c=4) coupled to dynamically triangulated Lorentzian geometries. It is known that a single Ising model couples weakly to Lorentzian quantum gravity, in the sense that the Hausdorff dimension of the ensemble of two-geometries is two (as in pure Lorentzian quantum gravity) and the matter behavior is governed by the Onsager exponents. By increasing the amount of matter to eight Ising models, we find that the geometry of the combined system has undergone a phase transition. The new phase is characterized by an anomalous scaling of spatial length relative to proper time at large distances, and as a consequence the Hausdorff dimension is now three. In spite of this qualitative change in the geometric sector, and a very strong interaction between matter and geometry, the critical exponents of the Ising model retain their Onsager values. This provides evidence for the conjecture that the KPZ values of the critical exponents in 2D Euclidean quantum gravity are entirely due to the presence of baby universes. Lastly, we summarize the lessons learned so far from 2D Lorentzian quantum gravity.
This paper discusses recent developments and future plans for the SENSIBL code (the successor to the SENSIT[6] and SENSIT-2D[7] codes), along with associated covariance data and cross section libraries. 34 refs
Averaging cross section data so we can fit it
Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC
2014-10-23
The ^{56}Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
Averaging cross section data so we can fit it
The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
Nuclear interaction cross sections for proton radiotherapy
Chadwick, M B; Arendse, G J; Cowley, A A; Richter, W A; Lawrie, J J; Newman, R T; Pilcher, J V; Smit, F D; Steyn, G F; Koen, J W; Stander, J A
1999-01-01
Model calculations of proton-induced nuclear reaction cross sections are described for biologically-important targets. Measurements made at the National Accelerator Centre are presented for double-differential proton, deuteron, triton, helium-3 and alpha particle spectra, for 150 and 200 MeV protons incident on C, N, and O. These data are needed for Monte Carlo simulations of radiation transport and absorbed dose in proton therapy. Data relevant to the use of positron emission tomography to locate the Bragg peak are also described.
Neutron capture cross section of $^{93}$Zr
We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.
Charge changing cross sections of relativistic uranium
We report equilibrium charge state distributions of uranium at energies of 962 MeV/nucleon, 437 MeV/nucleon and 200 MeV/nucleon in low Z and high Z targets and the cross sections for U92+ reversible U91+ and U91+ reversible U90+ at 962 MeV/nucleon and 437 MeV/nucleon. Equilibrium thickness Cu targets produce approx. = 5% bare U92+ at 200 MeV/nucleon and 85% U92+ at 962 MeV/nucleon. 7 references, 5 figures
Fission cross section measurements for minor actinides
Fursov, B. [IPPE, Obninsk (Russian Federation)
1997-03-01
The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)
Neutron absorption cross section of uranium-236
U-236 neutron absorption was measured as a function of neutron time-of-flight from 20 eV to 1 MeV. The neutron flux was monitored with a 6Li glass scintillator. Average cross sections from 3 keV to 1 MeV were derived. Estimated uncertainties were less than 5% below 600 keV and increased to 9.5% at 1 MeV. Resonance parametrization from 20 eV to a few keV remains to be done. 17 refs., 5 figs., 3 tabs
LEP vacuum chamber, cross-section
1983-01-01
Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.
Critical behavior of cross sections at LHC
Dremin, I M
2016-01-01
Recent experimental data on elastic scattering of high energy protons show that the critical regime has been reached at LHC energies. The approach to criticality is demonstrated by increase of the ratio of elastic to total cross sections from ISR to LHC energies. At LHC it reaches the value which can result in principal change of the character of proton interactions. The treatment of new physics of hollowed toroid-like hadrons requires usage of another branch of the unitarity condition. Its further fate is speculated and interpreted with the help of the unitarity condition in combination with present experimental data. The gedanken experiments to distinguish between different possibilities are proposed.
30 CFR 779.25 - Cross sections, maps, and plans.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 779.25 Section... RESOURCES § 779.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps..., maps and plans included in a permit application as required by this section shall be prepared by,...
Monochromatic path crossing exponents and graph connectivity in 2D percolation
Jacobsen, Jesper Lykke; Zinn-Justin, Paul
2002-01-01
We consider the fractal dimensions d_k of the k-connected part of percolation clusters in two dimensions, generalizing the cluster (k=1) and backbone (k=2) dimensions. The codimensions X_k = 2-d_k describe the asymptotic decay of the probabilities P(r,R) ~ (r/R)^{X_k} that an annulus of radii r1 is traversed by k disjoint paths, all living on the percolation clusters. Using a transfer matrix approach, we obtain numerical results for X_k, k
The Elusive p-air Cross Section
Block, Martin M
2006-01-01
For the $\\pbar p$ and $pp$ systems, we have used all of the extensive data of the Particle Data Group[K. Hagiwara {\\em et al.} (Particle Data Group), Phys. Rev. D 66, 010001 (2002).]. We then subject these data to a screening process, the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate ``outliers'' that can skew a $\\chi^2$ fit. With the ``Sieve'' algorithm, a robust fit using a Lorentzian distribution is first made to all of the data to sieve out abnormally high $\\delchi$, the individual i$^{\\rm th}$ point's contribution to the total $\\chi^2$. The $\\chi^2$ fits are then made to the sieved data. We demonstrate that we cleanly discriminate between asymptotic $\\ln s$ and $\\ln^2s$ behavior of total hadronic cross sections when we require that these amplitudes {\\em also} describe, on average, low energy data dominated by resonances. We simultaneously fit real analytic amplitudes to the ``sieved'' high energy measurements of $\\bar p p$ and $pp$ total cross sections and $\\rho$-values for $\\...
Cross-section measurements for radioactive samples
The measurement of (n,p), (n,α) and (n,γ) cross sections for radioactive nuclei is of interest to both nuclear physics and astrophysics. For example, using these reactions, properties of levels in nuclei at high excitation energies, which are difficult or impossible to study using other reactions, can be investigated. Also, reaction rates for both big-bang and stellar nucleosynthesis can be obtained from these measurements. In the past, the large background associated with the sample activity limited these types of measurements to radioisotopes with very long half-lives. The advent of the low-energy, high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Examples of (n,p) measurements on samples with half lives as short as fifty-three days will be given. The nuclear physics and astrophysics to be learned from these data will be discussed. Additional difficulties are encountered when making (n,γ) rather than (n,p) or (n,α) measurements. However, with a properly-designed detector, and the high peak neutron intensities now available, (n,γ) measurements can be made for nuclei with half lives as short as several months. Progress on the Los Alamos (n,γ) cross-section measurement program for radioactive samples will be discussed. 39 refs., 7 figs
Calculation of cross sections for heavy isotopes
In the present work an integrated system of codes for basic neutron data evaluation were assembled and built. Complete evaluations for the isotopes 240Pu, 241Pu, 242Pu and 238Pu were performed. The following cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n), (n,3n) and differential elastic were evaluated as well as the average number of neutrons per neutron-induced fission and the average elastic scattering cosine in the lab system.The data for the plutonium isotopes were incorporated into the German KEDAK file. A method was developed for calculating the energy distributions of the second and third secondary neutrons from the A(n,2n) and (n,3n) reactions in the framework of the compound nucleus theory, and utilizing the nuclear data of the nuclei A, A-1, A-2. This method was used to generate the 238U secondary neutron energy distributions in the incident neutron energy range of 6 to 15 MeV. A nuclear data evaluation for 237U in the resolved inelastic scattering range (10-700 keV) was performed. The compound elastic and partial inelastic scattering cross sections were used in the 238U secondary neutron energy distribution calculations. (B.G.)
Windowed multipole for cross section Doppler broadening
Josey, C.; Ducru, P.; Forget, B.; Smith, K.
2016-02-01
This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.
Combined crustal-geological cross-section of Ellesmere Island
Stephenson, Randell Alexander; Schiffer, Christian; Oakey, Gordon
Ellesmere Island, in Canada’s Arctic, consists of a series of ~SW-NE trending tectonic provinces, the crustal structure and geological expression of which represent a combination of interplate, accretionary orogenesis in the Palaeozoic and, most recently, intraplate deformation in the Cenozoic...... are reported in detail in another presentation at this symposium (Schiffer et al.). Moho depth, a number of intracrustal horizons and sedimentary thicknesses can be inferred. Meanwhile, geological mapping on Ellesmere Island in the framework of BGR’s (Germany) CASE (“Circum-Arctic Structural Events...... cross-sections have been integrated to produce a single, combined crustal-geological 2-D model of Ellesmere Island with the aim of illuminating the relationships between crustal architecture and geology as expressed at the surface of and in the topography of Ellesmere Island....
Nonlinear 2D convection and enhanced cross-field plasma transport near the MHD instability threshold
Results of theoretical study and computer simulations of nonlinear 2D convection induced by a convective MHD instability near its threshold in FRC-like non-paraxial magnetic confinement system are presented. An appropriate closed set of weakly nonideal reduced MHD equations is derived to describe the self-consistent plasma dynamics. It is shown that the convection forms nonlinear large scale stochastic vortices (convective cells), which tend to restore and to maintain the marginally stable pressure pro e and result in an essentially nonlocal enhanced heat transport. A large amount of data on the structure of the nascent convective flows is obtained and analyzed. The computer simulations of long time plasma evolutions demonstrate such features of the resulting anomalous transport as pro e consistency, L-H transition, external transport barrier, pinch of impurities, etc. (author)
30 CFR 783.25 - Cross sections, maps, and plans.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 783.25 Section... ENVIRONMENTAL RESOURCES § 783.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps, and plans showing— (1) Elevations and locations of test borings and core samplings;...
Plasma-based radar cross section reduction
Singh, Hema; Jha, Rakesh Mohan
2016-01-01
This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...
Partial cross sections in H- photodetachment
This dissertation reports experimental measurements of partial decay cross sections in the H- photodetachment spectrum. Observed decays of the 1P0 H-**(n) doubly-excitedresonances to the H(N=2) continuum are reported for n=2,3, and 4 from 1990 runs in which the author participated. A recent analysis of 1989 data revealing effects of static electric fields on the partial decay spectrum above 13.5 eV is also presented. The experiments were performed at the High Resolution Atomic Beam Facility. the Los Alamos Meson Physics Facility, with a relativistic H-beam (β=0.842)intersecting a ND:YAG laser. Variation of the intersection angle amounts to Doppler-shifting the photon energy, allowing continuous tuning of the laser energy as viewed from the moving ions' frame
Radar Cross Section of Moving Objects
Gholizade, H
2013-01-01
I investigate the effects of movement on radar cross section calculations. The results show that relativistic effects (the constant velocity case) can change the RCS of moving targets by changing the incident plane wave field vectors. As in the Doppler effect, the changes in the fields are proportional to $\\frac{v}{c}$. For accelerated objects, using the Newtonian equations of motion yields an effective electric field (or effective current density) on the object due to the finite mass of the conducting electrons. The results indicate that the magnetic moment of an accelerated object is different from that of an un-accelerated object, and this difference can change the RCS of the object. Results for moving sphere and non-uniformly rotating sphere are given and compared with static (\\textbf{v}=0) case.
Elastic cross sections in an RSIIp scenario
The elastic differential cross section is calculated at low energies (below 100 MeV) for the elements 3He, 20Ne, 40Ar, 14N, 12C, and for the 208Pb using a finite electromagnetic potential, which is obtained by considering a Randall–Sundrum II scenario modified by the inclusion of p compact extra-dimensions. The length scale is adjusted in the potential to compare with known experimental data and to set bounds for the parameter of the model. The effective four-dimensional (4D) electromagnetic potential is produced by a point charge, as seen from the three-brane that contains it, in uniform motion in an RSIIp scenario. (paper)
Lunar Radar Cross Section at Low Frequency
Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.
2002-01-01
Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.
Calculated medium energy fission cross sections
An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that
Photoneutron cross sections measured by Saclay and Livermore
The differences between the Saclay and Livermore photoneutron cross sections are discussed. It is shown that the differences between Saclay and Livermore (γ,n) and (γ,2n) cross sections arise from the neutron multiplicity sorting. (Author)
Single-level resonance parameters fit nuclear cross-sections
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
Residual diagnostics for cross-section time series regression models
Baum, Christopher F
2001-01-01
These routines support the diagnosis of groupwise heteroskedasticity and cross-sectional correlation in the context of a regression model fit to pooled cross-section time series (xt) data. Copyright 2001 by Stata Corporation.
Development of an iterative lattice-core coupling method based on MICROX-2 cross section libraries
This paper describes an innovative online cross section generation method, developed based on Iterative Diffusion-Transport (IDT) calculation to minimize the inconsistency and inaccuracy in determining physics parameters by feeding actual reactor core conditions into the cross section generation process. A 2-dimensional (2-D) pin-by-pin lattice program, NEMA, was also developed to generate assembly lattice parameters using the embedded MICROX-2 cross section libraries and Nodal Expansion Method (NEM). The proposed methods were validated against a 2-D miniature core benchmark problem for both NEMA itself and its coupling to a reactor code by the IDT method (NEMA-DIF3D). The computational benchmark calculations have shown that the IDT improves the eigenvalue and power distribution predictions when compared with the conventional offline method. (author)
Electron Impact Ionization of the Edge Plasma Constituents: Partial Cross-Sections
The partial cross-section for positive ions formed via electron impact ionization (EII) to methane (CH3D and CD4), deuteriated ethane (C2D6) and propane (C3H8) have been measured in a crossed electron/neutral beams apparatus with mass spectrometric analysis of the ions. The partial cross-sections of the ions formed via electron impact ionization to these molecules were determined at low temperature (approximately 300 K and 370 K in the case of propane) and at elevated temperature (approximately 700 K). Gas temperature induced differences in the partial cross-sections have been observed. Additionally, the effect of the isotopic composition of a molecules on the partial cross-sections for EII have been observed. (author)
Total cross sections for neutron-nucleus scattering
Suryanarayana, S. V.; H. Naik; Ganesan, S; Kailas, S; Choudhury, R. K.; Kim, Guinyum
2010-01-01
Systematics of neutron scattering cross sections on various materials for neutron energies up to several hundred MeV are important for ADSS applications. Ramsauer model is well known and widely applied to understand systematics of neutron nucleus total cross sections. In this work, we examined the role of nuclear effective radius parameter (r$_0$) on Ramsauer model fits of neutron total cross sections. We performed Ramsauer model global analysis of the experimental neutron total cross section...
Electron Elastic-Scattering Cross-Section Database
SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge) This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).
Development of an iterative diffusion-transport method based on MICROX-2 cross section libraries
Highlights: • Innovative Iterative Diffusion Transport (IDT) method is developed. • A 2-dimensional (2-D) pin-by-pin lattice program, NEMA, is also developed. • The developed methods and codes are verified on benchmark problems. • Results show that the IDT method improves the global and local predictions. - Abstract: This paper introduces an innovative online cross section generation method, developed based on Iterative Diffusion-Transport (IDT) calculation to minimize the inconsistency and inaccuracy in determining physics parameters by feeding actual reactor core conditions into the cross section generation process. A two-dimensional (2-D) pin-by-pin lattice program, NEMA, was developed to generate assembly lattice parameters using the refined MICROX-2 cross section libraries and Nodal Expansion Method (NEM). The proposed method was verified against a 2-D miniature core (mini-core) benchmark problem. First, the few-group cross sections generated by NEMA were compared with those calculated by a Monte Carlo method code Serpent. Next, the analysis of a 2-D Light Water Reactor (LWR) mini-core benchmark problem was carried out by the nodal transport code DIF3D using few-group cross sections generated by NEMA, and the results were compared with those obtained from the Serpent full core calculation. Finally, the same benchmark problem was solved by the NEMA-DIF3D approach using the IDT coupling method. The computational benchmark calculations have shown that the homogenization technique implemented in NEMA is reliable when producing the few-group cross sections for the reactor core calculation. The IDT method also improves the eigenvalue and power distribution predictions
Cross sections for electron impact excitation of molecules
The discussion in this chapter is restricted to elastic scattering, rotational, vibrational, and electronic excitation and total scattering cross sections in electron molecule collisions. Experimental data on differential, integral and momentum transfer cross sections are surveyed and short remarks are made on experimental techniques and theoretical approaches used for generating cross section data. 11 references, 3 figures
Finite sum expressions for elastic and reaction cross sections
Nuclear cross section calculations are often performed by using the partial wave method or the Eikonal method through Glauber theory. The expressions for the total cross section, total elastic cross section, and total reaction cross section in the partial wave method involve infinite sums and do not utilize simplifying approximations. Conversely, the Eikonal method gives these expressions in terms of integrals but utilizes the high energy and small angle approximations. In this paper, by using the fact that the lth partial wave component of the T-matrix can be very accurately approximated by its Born term, the infinite sums in each of the expressions for the differential cross section, total elastic cross section, total cross section, and total reaction cross section are re-written in terms of finite sums plus closed form expressions. The differential cross sections are compared to the Eikonal results for 16O+16O,12C+12C, and p+12C elastic scattering. Total cross sections, total reaction cross sections, and total elastic cross sections are compared to the Eikonal results for 12C+12C scattering
Production cross sections from phenomenological constraints
Hadronic production cross sections ν sub(n) (s) satisfying exactly the high energy empirical laws known for the first, second and third multiplicity moments are determined. The result is obtained in the form of a second order linear differential equation for ν sub(n) (s) which allows one to calculate explicitly all successive moments. In particular, the fourth moment is in excellent agreement with the data. The asymptotic solution of the equation for ν sub(n) (s) is given analytically. KNO scaling turns out to be an asymptotic property of the solution. The full solution for ν sub(n) (s) is studied numerically and the KNO plot is compared with the data. No free parameters are left to be adjusted except for an overall normalization constant. As expected, KNO scaling sets in rather quickly with increasing n and the agreement with the data is progressively good. This agreement becomes excellent for the whole interval of n/ for which data exist (O) approximately equal to 2. It turns out that the asymptotic solution, given in analytic terms, is an excellent approximation to the data and can thus be used for practical purposes instead of the full solution for calculating ν sub(n) (s). (author)
Radar Cross-section Measurement Techniques
V.G. Borkar
2010-03-01
Full Text Available Radar cross-section (RCS is an important study parameter for defence applications specially dealing with airborne weapon system. The RCS parameter guides the detection range for a target and is therefore studied to understand the effectiveness of a weapon system. It is not only important to understand the RCS characteristics of a target but also to look into the diagnostic mode of study where factors contributing to a particular RCS values are studied. This further opens up subject like RCS suppression and stealth. The paper discusses the RCS principle, control, and need of measurements. Classification of RCS in terms of popular usage is explained with detailed theory of RF imaging and inverse synthetic aperture radar (ISAR. The various types of RCS measurement ranges are explained with brief discussion on outdoor RCS measurement range. The RCS calibration plays a critical role in referencing the measurement to absolute values and has been described.The RCS facility at Reseach Centre Imarat, Hyderabad, is explained with some details of different activities that are carried out including RAM evaluation, scale model testing, and diagnostic imaging.Defence Science Journal, 2010, 60(2, pp.204-212, DOI:http://dx.doi.org/10.14429/dsj.60.341
Resonance capture cross section of 207Pb
Domingo-Pardo, C; Aerts, G; Alvarez-Pol, H; Alvarez-Velarde, F; Andrzejewski, J; Andriamonje, Samuel A; Assimakopoulos, P A; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Bisterzo, S; Calviño, F; Cano-Ott, D; Capote, R; Carrapico, C; Chepel, V; Cennini, P; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Gallino, R; Gonçalves, I; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; Oshima, M; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente6, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K
2006-01-01
The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.
Differential cross section and related integrals for the Moliere potential
The Moliere potential is widely used in radiation damage simulation studies. It is not much used in analytical transport theory calculations because of the awkward expression for the differential cross section corresponding to the potential. A two step process is followed to obtain a useful cross section: adopting the Lindhard, Nielsen and Scharff (LNS) approximations in order to generate a simpler form of the Moliere cross section and then creating a simple, easy-to-use, fit to that approximate form. Within the framework of the LNS treatment of atomic cross sections, our fit is accurate to 6%. Simple forms for the total cross section and several related quantities are presented. (author)
Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes
Proton-nucleus cross section at high energies
Wibig, Tadeusz; Sobczynska, Dorota
1998-01-01
Cross sections for proton inelastic collision with different nuclei are described within the Glauber and multiple scattering approximations. A significant difference between approximate `Glauber' formula and exact calculations with a geometrical scaling assumption for very high-energy cross section is shown. Experimental values of proton-proton cross sections obtained using extensive air shower data are based on the relationship of proton-proton and respective proton-air absorption cross sect...
Lopez-Sanchez, Marco; Llana-Fúnez, Sergio
2016-04-01
The understanding of creep behaviour in rocks requires knowledge of 3D grain size distributions (GSD) that result from dynamic recrystallization processes during deformation. The methods to estimate directly the 3D grain size distribution -serial sectioning, synchrotron or X-ray-based tomography- are expensive, time-consuming and, in most cases and at best, challenging. This means that in practice grain size distributions are mostly derived from 2D sections. Although there are a number of methods in the literature to derive the actual 3D grain size distributions from 2D sections, the most popular in highly deformed rocks is the so-called Saltykov method. It has though two major drawbacks: the method assumes no interaction between grains, which is not true in the case of recrystallised mylonites; and uses histograms to describe distributions, which limits the quantification of the GSD. The first aim of this contribution is to test whether the interaction between grains in mylonites, i.e. random grain packing, affects significantly the GSDs estimated by the Saltykov method. We test this using the random resampling technique in a large data set (n = 12298). The full data set is built from several parallel thin sections that cut a completely dynamically recrystallized quartz aggregate in a rock sample from a Variscan shear zone in NW Spain. The results proved that the Saltykov method is reliable as long as the number of grains is large (n > 1000). Assuming that a lognormal distribution is an optimal approximation for the GSD in a completely dynamically recrystallized rock, we introduce an additional step to the Saltykov method, which allows estimating a continuous probability distribution function of the 3D grain size population. The additional step takes the midpoints of the classes obtained by the Saltykov method and fits a lognormal distribution with a trust region using a non-linear least squares algorithm. The new protocol is named the two-step method. The
Reference solution for cross section parametrization
Core calculations of nuclear reactors are usually performed by core physics codes (e.g. with NEM or FDM solvers) in diffusion or SP3 approximation of the transport equation. For each fuel type parameterized data libraries are prepared by means of a lattice code. The data libraries are burnup dependent, and the parameterization covers the hyperspace of admissible values of all operational parameters (fuel temperature, moderator density, boron concentration etc.) This approach has two weak spots. The first is, that it is difficult to make perfect parameterization of the data library because of relatively broad range of the parameter values and the fact that the parameters' effect on the macroscopic cross-sections are not mutually independent. The second is that even for perfect parameterizations with precise approximations of the data changes with respect to the feedback parameters the so-called history effects are neglected. It is generally difficult to assess the cumulative errors arising due to the approximative parameterization of the data libraries and due to the history effects. It is as well difficult to assess the efficiency of techniques developed in order to incorporate the history effect in the data library (such as time integration). In this paper we present a tool for reference core calculations in which the above stated approximations are eliminated. This paper presents the solution method, its implementation, as well as the results of a demonstration calculation showing the improvement of the calculation results over the traditional approach, assessing the magnitude of history and parameterization effects importance. The most important feature of the presented method is that it provides the perfect parameterization of macroscopic data, allowing the core physics code developers to understand sources of modeling uncertainties by completely removing the parameterization error (including, unlike other approaches, a complete representation of the
Resonance Averaged Photoionization Cross Sections for Astrophysical Models
Bautista, M A; Pradhan, A K
1997-01-01
We present ground state photoionization cross sections of atoms and ions averaged over resonance structures for photoionization modeling of astrophysical sources. The detailed cross sections calculated in the close-coupling approximation using the R-matrix method, with resonances delineated at thousands of energies, are taken from the Opacity Project database TOPbase and the Iron Project, including new data for the low ionization stages of iron Fe I--V. The resonance-averaged cross sections are obtained by convolving the detailed cross sections with a Gaussian distribution over the autoionizing resonances. This procedure is expected to minimize errors in the derived ionization rates that could result from small uncertainties in computed positions of resonances, while preserving the overall resonant contribution to the cross sections in the important near threshold regions. The detailed photoionization cross sections at low photon energies are complemented by new relativistic distorted-wave calculations for Z1...
Color dipole cross section and inelastic structure function
Jeong, Yu Seon; Reno, Mary Hall
2014-01-01
Instead of starting from a theoretically motivated form of the color dipole cross section in the dipole picture of deep inelastic scattering, we start with a parametrization of the deep inelastic structure function for electromagnetic scattering with protons, and then extract the color dipole cross section. Using the Donnachie-Landshoff parametrization of $F_2(x,Q^2)$, we find the dipole cross section from an approximate form of the presumed dipole cross section convoluted with the perturbative photon wave function for virtual photon splitting into a color dipole with massless quarks. The color dipole cross section determined this way works quite well in the massive case, reproducing the original Donnachie-Landshoff structure function for $0.1$ GeV$^2\\leq Q^2\\leq 10$ GeV$^2$. We discuss the large and small form of the dipole cross section and compare with other parameterizations.
Polynomial parameterized representation of macroscopic cross section for PWR reactor
Fiel, Joao Claudio B., E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear
2015-07-01
The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and {sup 235} U {sub 92} enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K{sub inf}, generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)
Sterling, N C; Bilodeau, R C; Kilcoyne, A L D; Red, E C; Phaneuf, R A; Aguilar, A
2010-01-01
Absolute photoionization cross-section measurements are reported for Se+ in the photon energy range 18.0-31.0 eV, which spans the ionization thresholds of the 4S_{3/2} ground state and the low-lying 2P_{3/2,1/2} and 2D_{5/2,3/2} metastable states. The measurements were performed using the Advanced Light Source synchrotron radiation facility. Strong photoexcitation-autoionization resonances due to 4p-->nd transitions are seen in the cross-section spectrum and identified with a quantum-defect analysis.
Full text: Ring opening metathesis polymerization (ROMP) has become an important tool for the synthesis of highly defined polymers and various polymer architectures. In the present work, the residual double bonds in ROMP derived polymeric materials were exploited for a photoinduced thiol-ene reaction in order to achieve a selective cross-linking of the macromolecules. To demonstrate the versatility of this reaction for the realization of polymeric microstructures, thin films of poly(norbornene dicarboxylic acid, dimethylester) were structured by means of photolithography. Besides the photoinduced thiol-ene reaction, which was investigated by means of FTIR measurements, also the cross-linking of the macromolecules and thus the change in the solubility were assessed by means of sol-gel analysis. Thin films of this polymer were laterally patterned using conventional single photon lithography leading to resolutions in the μm range. Going a step further, this approach can also be used for realizing 3D polynorborne microstructures employing the two photo absorption writing technique. The obtained 3D features have been visualized by scanning electron microscopy and atomic force microscopy, respectively. The accessibility and reactivity of the polynorbornene main chain C = C double bonds in the thiol-ene reaction paves the way towards novel strategies for the realization of polymer 2D and 3D microstructures. (author)
Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation
Norbury, John W.; Adamczyk, Anne; Dick, Frank
2008-01-01
Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.
Theoretical estimates of cross sections for neutron-nucleus collisions
Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.
2010-01-01
We construct an analytical model derived from nuclear reaction theory and having a simple functional form to demonstrate the quantitative agreement with the measured cross sections for neutron induced reactions. The neutron-nucleus total, reaction and scattering cross sections, for energies ranging from 5 to 700 MeV and for several nuclei spanning a wide mass range are estimated. Systematics of neutron scattering cross sections on various materials for neutron energies upto several hundred Me...
LINX-1: a code for linking polynomial cross section files
The capabilities of the LINX-1 code are described. It was developed for the purpose of linking seperate fuel assembly and reflector node polynomial cross section files, obtained by the POLX-1 code, together into a single reactor polynomial cross section library. The output of the polynomial cross section library can be in either binary or fixed (BCD) format. Input data requirements and the format of the output file generated by LINX-1 are also described. 2 refs
Simulation of cross sections for practical ALCHEMI
Full text: Precisely known atomic scattering factors are essential for accurate atom location by channeling enhanced microanalysis (ALCHEMI) based on inner-shell ionization. For ALCHEMI using energy dispersive x-ray analysis (EDX), first principles calculations of ionization cross sections, realistically modelling the 'delocalization' of the ionization interaction, give excellent agreement with experiment. Such calculations are complex and computationally intensive. Hence, simple analytic forms are often assumed to describe the ionization potential. Such an approach assumes that the precise shape of the ionization potential is not important but that at least the half width at half maximum (HWHM) should be accurately estimated, for example using estimates of the HWHM from root-mean-square impact parameters for ionization. However this is generally not a good approximation and we have provided more realistic estimates. These are based on accurate atomic scattering form factors for ionization that have been calculated from first principles using relativistic Hartree-Fock wave functions for bound states and Hartree-Slater wave functions for the continuum states. The effective ionization interaction may be approximated by an equivalent local potential. The scattering factors have been calculated for K-shell ionization for elements in the range Z= 6 (carbon) to Z = 50 (tin) and for Z-shell ionization in the range Z = 20 (calcium) to Z = 60 (neodymium). Accurate values of the scattering factors can be obtained by interpolation for incident electron energies between 50 and 400 keV. The utility of these form factors is illustrated, using some data obtained by Matsumura and coworkers during their project to investigate radiation-induced disordering in magnesium aluminate spinel. High angular resolution electron channeling x-ray spectroscopy was employed to investigate ion displacements in MgOnAl2O3 (n = 1.0 and 2.4) irradiated with 1 MeV Ne+ ions or 900 keV electrons at 873
Positive Scattering Cross Sections using Constrained Least Squares
A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented
Fano interference and cross-section fluctuations in molecular photodissociation
We derive an expression for the total photodissociation cross section of a molecule incorporating both direct and indirect processes that proceed through excited resonances, and show that it exhibits generalized Beutler-Fano line shapes. Assuming that the closed system can be modeled by random-matrix theory, we derive the statistical properties of the photodissociation cross section and find that they are significantly affected by the direct processes. In the limit of isolated resonances, we find that direct processes suppress the correlation hole of the cross-section autocorrelation function and lead to a maximum in the cross-section distribution
Systematics of fission cross sections at the intermediate energy region
Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)
Neutron-capture Cross Sections from Indirect Measurements
Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J
2011-10-18
Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.
Positive Scattering Cross Sections using Constrained Least Squares
Dahl, J.A.; Ganapol, B.D.; Morel, J.E.
1999-09-27
A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented.
Continuous Extraction of Subway Tunnel Cross Sections Based on Terrestrial Point Clouds
Zhizhong Kang
2014-01-01
Full Text Available An efficient method for the continuous extraction of subway tunnel cross sections using terrestrial point clouds is proposed. First, the continuous central axis of the tunnel is extracted using a 2D projection of the point cloud and curve fitting using the RANSAC (RANdom SAmple Consensus algorithm, and the axis is optimized using a global extraction strategy based on segment-wise fitting. The cross-sectional planes, which are orthogonal to the central axis, are then determined for every interval. The cross-sectional points are extracted by intersecting straight lines that rotate orthogonally around the central axis within the cross-sectional plane with the tunnel point cloud. An interpolation algorithm based on quadric parametric surface fitting, using the BaySAC (Bayesian SAmpling Consensus algorithm, is proposed to compute the cross-sectional point when it cannot be acquired directly from the tunnel points along the extraction direction of interest. Because the standard shape of the tunnel cross section is a circle, circle fitting is implemented using RANSAC to reduce the noise. The proposed approach is tested on terrestrial point clouds that cover a 150-m-long segment of a Shanghai subway tunnel, which were acquired using a LMS VZ-400 laser scanner. The results indicate that the proposed quadric parametric surface fitting using the optimized BaySAC achieves a higher overall fitting accuracy (0.9 mm than the accuracy (1.6 mm obtained by the plain RANSAC. The results also show that the proposed cross section extraction algorithm can achieve high accuracy (millimeter level, which was assessed by comparing the fitted radii with the designed radius of the cross section and comparing corresponding chord lengths in different cross sections and high efficiency (less than 3 s/section on average.
Cross sections for the reaction 197Au(γ, chin)(chi<=12) have been measured for bremsstrahlung end-point energies in the range 60-340 MeV. From these dominant cross sections, the total photon absorption cross section is determined using a cascade-evaporation calculation to account for the missing reaction channels. The enhancement factor for the classical E1 sum rule is found to be 0.93+-0.10. (orig.)
Cross Sections for Inner-Shell Ionization by Electron Impact
An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements
Ni elemental neutron induced reaction cross-section evaluation
A completely new evaluation of the nickel neutron induced reaction cross sections was undertaken as a part of the ENDF/B-V effort. (n,xy) reactions and capture reaction time from threshold to 20 MeV were considered for 5860616264Ni isotopes to construct the corresponding reaction cross section for natural nickel. Both experimental and theoretical calculated results were used in evaluating different partial cross sections. Precompound effects were included in calculating (n,xy) reaction cross sections. Experimentally measured total section data extending from 0.7 MeV to 20 MeV were used to generate smooth cross section. Below 0.7 to MeV elastic and capture cross sections are represented by resonance parameters. Inelastic angular distributions to the discrete isotopic levels and elemental elastic angular distributions are included in the evaluated data file. Gamma production cross sections and energy distribution due to capture and the (n,xy) reactions were evaluated from experimental data. Finally, error files are constructed for all partial cross sections
Nuclear characteristics of Pu fueled LWR and cross section sensitivities
Takeda, Toshikazu [Osaka Univ., Suita (Japan). Faculty of Engineering
1998-03-01
The present status of Pu utilization to thermal reactors in Japan, nuclear characteristics and topics and cross section sensitivities for analysis of Pu fueled thermal reactors are described. As topics we will discuss the spatial self-shielding effect on the Doppler reactivity effect and the cross section sensitivities with the JENDL-3.1 and 3.2 libraries. (author)
Learning of Cross-Sectional Anatomy Using Clay Models
Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon
2009-01-01
We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…
On the scattering cross section of passive linear arrays
Solymar, L.
1973-01-01
A general formula is derived for the scattering cross section of a passiven-element linear array consisting of isotropic radiators. When all the reactances are tuned out and scattering in the mirror direction is investigated, it is found thatA_{sr}, the relative scattering cross section is equal to...
Simplified polynomial representation of cross sections for reactor calculation
It is shown a simplified representation of a cross section library generated by transport theory using the cell model of Wigner-Seitz for typical PWR fuel elements. The effect of burnup evolution through tables of reference cross sections and the effect of the variation of the reactor operation parameters considered by adjusted polynomials are presented. (M.C.K.)
Parametric equations for calculation of macroscopic cross sections
Botelho, Mario Hugo; Carvalho, Fernando, E-mail: mariobotelho@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2015-07-01
Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)
Modeling and analysis of ground target radiation cross section
SHI Xiang; LOU GuoWei; LI XingGuo
2008-01-01
Based on the analysis of the passive millimeter wave (MMW) radiometer detection, the ground target radiation cross section is modeled as the new token for the target MMW radiant characteristics. Its ap-plication and actual testing are discussed and analyzed. The essence of passive MMW stealth is target radiation cross section reduction.
Analysis of cross sections using various nuclear potential
The relevant astrophysical reaction rates which are derived from the reaction cross sections are necessary input to the reaction network. In this work, we analyse several theoretical models of the nuclear potential which give better prediction of the cross sections for some selected reactions
Total Cross Sections at High Energies - An Update
Fazal-e-Aleem; Sohail Afzal Tahir; M. Alam Saeed; M. Qadeer Afzal
2002-01-01
Current and future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX, and TOTEMhave been analyzed using various models. In the light of this study an attempt has been made to focus on the behaviorof total cross section at very high energies.
Surrogate reaction methods for neutron induced cross-sections
A brief discussion on surrogate reaction methods and some of the recent results on neutron induced fission cross-section measurements carried out by our group and the possibility of extending the measurements for determining (n,g), (n,2n) and (n,p) reaction cross-sections by surrogate reaction method are presented
Cross Sections for Electron Collisions with Carbon Monoxide
Cross section data are collected and reviewed for electron collisions with carbon monoxide. Collision processes included are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational and electronic states, ionization, and dissociation. For each process, recommended values of the cross sections are presented, when possible. The literature has been surveyed through to the end of 2013
Applications of the BEam Cross section Analysis Software (BECAS)
Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir;
2013-01-01
A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the...
Minijets, soft gluon resummation and photon cross-sections
Godbole, R. M.; Grau, A.; Pancheri, G.; Srivastava, Y. N.
2008-01-01
We compare the high energy behaviour of hadronic photon-photon cross-sections in different models. We find that the photon-photon cross-section appears to rise faster than the purely hadronic ones (proton-proton and proton-antiproton).
Temperature dependence of the HNO3 UV absorption cross sections
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan
1993-01-01
The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.
Cross section probability tables in multi-group transport calculations
The use of cross section probability tables in multigroup transport calculations is presented. Emphasis is placed on how probability table parameters are generated in a multigroup cross section processor and how existing transport codes must be modifed to use them. In order to illustrate the accuracy obtained by using probability tables, results are presented for a variety of neutron and photon transport problems
The effect of the decay data on activation cross section
The effect of the decay data on evaluation of activation cross section is investigated. Present work shows that these effects must be considered carefully when activation cross section is evaluated. Sometime they are main reason for causing the discrepancies among the experimental data
Possibility of spin mechanism of total cross section growth
The possibility of existence of the spin mechanism of total cross section growth is considered. A nucleon-nucleon scattering is studied. The energy dependence of scattering amplitude and possible effects related with the spin mechanism of total cross section growth are studied. It is shown that the considered mechanism can play a great role at high energies
Transport model based on three-dimensional cross-section generation for TRIGA core analysis
Kriangchaiporn, Nateekool
This dissertation addresses the development of a reactor core physics model based on 3-D transport methodology utilizing 3-D multigroup fuel lattice cross-section generation and core calculation for PSBR. The proposed 3-D transport calculation scheme for reactor core simulations is based on the TORT code. The methodology includes development of algorithms for 2-D and 3-D cross-section generation. The fine- and broad-group structures for the TRIGA cross-section generation problems were developed based on the CPXSD (Contributon and Point-wise Cross-Section Driven) methodology that selects effective group structure. Along with the study of cross section generation, the parametric studies for SN calculations were performed to evaluate the impact of the spatial meshing, angular, and scattering order variables and to obtain the suitable values for cross-section collapsing of the TRIGA cell problem. The TRIGA core loading 2 is used to verify and validate the selected effective group structures. Finally, the 13 group structure was selected to use for core calculations. The results agree with continuous energy for eigenvalues and normalized pin power distribution. The Monte Carlo solutions are used as the references.
Measurement of the fission cross section of 238Pu
The fission cross sections of 238Pu have been measured from 0.1 eV to 80 keV energy range using the Rensselaer Intense Neutron Spectrometer. The cross sections were normalized to the 235U ENDF/B-V data broadened to the resolution of the Rensselaer Intense Neutron Spectrometer system. The fission areas and widths were determined for the resolved low-energy resonances. The ENDF/B-V fission cross sections for the 238Pu isotope are, in general, not in good agreement with the measured cross sections and a new evaluation is recommended. The observations of structure in the unresolved fission cross sections is suggestive of the existence of intermediate structure. 18 refs., 1 fig., 1 tab
Capture cross-section of threading dislocations in thin films
Highlights: ► We study the effect of film stress on capture cross-section of interacting threads. ► Capture cross-section area diverges near film channeling stress. ► Thread interactions are much more likely when local stress is near critical stress. - Abstract: The capture cross section for annihilation of two threads with opposite Burgers vectors moving on orthogonal slip planes in a thin film is examined using a numerical model. The initial configurations of threads that lead to annihilation are mapped out for a range of applied film stresses. The area of the region of initial configurations that lead to annihilation at a given stress and thickness is the capture cross-section. The size of the capture cross-section is shown to be highly sensitive to the applied stress relative to the critical stress for dislocation motion imposed by the film thickness.
Anomalously large neutron capture cross sections: a random phenomenon?
Carlson, B V; Kerman, A K
2015-01-01
We discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, $$ in the capture cross section is calculated and related to the underlying cross section correlation function and found to be $ = \\frac{3}{\\pi \\sqrt{2}\\gamma_{A}}$, where $\\gamma_{A}$ is a characteristic mass correlation width which designates the degree of remnant coherence in the system. We trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.
Panman, Matthijs R; van Dijk, Chris N; Meuzelaar, Heleen; Woutersen, S
2015-01-28
We present a simple method to measure the dynamics of cross peaks in time-resolved two-dimensional vibrational spectroscopy. By combining suitably weighted dispersed pump-probe spectra, we eliminate the diagonal contribution to the 2D-IR response, so that the dispersed pump-probe signal contains the projection of only the cross peaks onto one of the axes of the 2D-IR spectrum. We apply the method to investigate the folding dynamics of an alpha-helical peptide in a temperature-jump experiment and find characteristic folding and unfolding time constants of 260 ± 30 and 580 ± 70 ns at 298 K. PMID:25637962
Panman, Matthijs R.; van Dijk, Chris N.; Meuzelaar, Heleen; Woutersen, S.
2015-01-01
We present a simple method to measure the dynamics of cross peaks in time-resolved two-dimensional vibrational spectroscopy. By combining suitably weighted dispersed pump-probe spectra, we eliminate the diagonal contribution to the 2D-IR response, so that the dispersed pump-probe signal contains the projection of only the cross peaks onto one of the axes of the 2D-IR spectrum. We apply the method to investigate the folding dynamics of an alpha-helical peptide in a temperature-jump experiment and find characteristic folding and unfolding time constants of 260 ± 30 and 580 ± 70 ns at 298 K.
Nelson, R; R. Vogt; Frawley, A. D.
2012-01-01
We explore the available parameter space that gives reasonable fits to the total charm cross section to make a better estimate of its true uncertainty. We study the effect of the parameter choices on the energy dependence of the J/\\psi\\ cross section.
Meeting cross section requirements for nuclear energy design
The purpose of this report is to summarize and explain current requirements in cross section data that are essential to nuclear energy programs and to provide some insight into how these data might be obtained. The report is divided into six sections that describe: design parameters and target accuracies; data collection, evaluation, and analysis; determination of high accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; and identification of important cross sections and inferred needs
Meeting cross-section requirements for nuclear-energy design
Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs. (U.K.)
The photonuclear absorption cross section of Pb, σ(TOT:Esub(γ), is studied in the 145-440 MeV Δ resonance range using a quasi-monochromatic photon beam obtained by monoenergetic positon in-flight annihilation. This study is deduced of the cross section measurement for at least j neutron emission σsup(j))Esub(γ). The cross sections of reactions with 1 or 0 neutron are evaluated as the same values as the experimental errors. The variation of the photonuclear absorption cross section for a nuclear σ(TOT:Esub(γ)/A is mass independent for A<=4-6. It seems that the damping between σ(TOT:Esub(γ)/A and the cross section of the free nucleon is caused by the Fermi movement of the nucleons. In conclusion: it seems that the excitation of the nucleus in the Δ resonance region is produced on free nucleons and there are no collective states
Neutron standard cross sections in reactor physics - Need and status
The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community
Cross-Sectional Drawing Techniques And The Artist
Berry, William A.
1980-07-01
Although Democritus, a Greek pholosopher of the fifth century B.C. described the use of cross-sections in analyzing a solid form, this method was not extensively developed in art until the Renaissance. The earliest treatise documenting the integration of the cross-section and linear perspective is Piero della Francesca's De prospective pingendi (c. 1480), in which a drawing of the human head is mathematically conceived and plotted by means of cross-section contours. Piero's method anticipates contemporary biostereometric techniques and current theories of visual perception. Outside of theoretical treatises the complete cross-section rarely occurs in art, though certain pictorial elements such as the religious halo can be interpreted as cross-sections. The chan-ging representation of the halo in art of the Medieval, Renaissance and Baroque periods parallels the development of the artist's concepts and techniques for representing form and space. During the Renaissance and Baroque periods the widespread use of contour hatching, a drawing technique based on the cross-section, indicates that the cross-section concept has played a greater role in pictorial representation than has generally been recognized.
The total collision cross section in the glory region
Chapter 1 presents a calculation of approximate total cross sections in the glory region from noble gas potentials. The relations between the main features of the total cross section and the properties of the potential to which these are sensitive are extensively investigated in chapter II. A beam apparatus has been developed, which allows for accurate measurements on the total cross section. All effects due to the finite angular and velocity resolution of the apparatus can be eliminated from the data to yield actual total cross sections as a function of the relative velocity. This facilitates a comparison to total cross sections predicted by potentials available in the literature. A brief description of the apparatus and of the data reduction is given in chapter III. The total cross section data obtained for various noble gas combinations are presented and analysed in chapter IV, where also a large number of potentials proposed in the literature is tested. In chapter V the quenching of the glories in the case of a non-spherical interaction is analysed. Subsequently, total cross section data for some atom-molecule systems are discussed. (Auth.)
Electron impact ionization cross sections of beryllium-tungsten clusters*
Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael
2016-01-01
We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7
Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.
Total cross sections of beauty and charmed mesons on protons
Using a simple scaling law we predict the values of the total cross sections σ(B±p), σBd,s0, σ(bar Bd,s0P), σ(Dd,s±P), σ(D0p), σ(bar D0p) from known total Kp cross sections. We assume that mesons with the same light valence quark, q, and differing only by their heavy valence quark content, Q, have total cross sections on protons which scale as the inverse of the nth power of the reduced mass of the meson. We predict that σ(Q bar q)p > σ(bar Qq)p
Comparison of fission and capture cross sections of minor actinides
The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals. (author)
Thermal neutron capture cross-sections and neutron separation energies
Thermal radiative neutron capture cross-sections have been re-evaluated as part of an ongoing project at the National Nuclear Data Center at Brookhaven National Laboratory at Upton, New York, to update the Neutron Cross-sections compendia, Vol. 1, Parts A and B, Neutron Resonance Parameters and Thermal Capture Cross-sections, published by Academic Press in 1981 and 1984, respectively. Neutron separation energies are evaluated as part of an ongoing project at the Atomic Mass Data Center in Orsay, France. The adopted data are compared with new results derived from this evaluation
Neutron activation cross section measurements and evaluations in CIAE
The cross sections of 28 reactions have been measured by the activation method since 1995 in CIAE. At the same time the cross sections of 40 reactions which we have measured since 1989 have been compiled and evaluated. A brief description of experimental measurement of activation cross sections is given. The data measured after 1995 by ourselves are listed in Table 4 and our evaluations for 40 reactions are listed in Table 5, respectively. A graphical intercomparison with available experimental data isi given in appendix. (author)
Testing of cross section libraries for TRIGA criticality benchmark
Influence of various up-to-date cross section libraries on the multiplication factor of TRIGA benchmark as well as the influence of fuel composition on the multiplication factor of the system composed of various types of TRIGA fuel elements was investigated. It was observed that keff calculated by using the ENDF/B VII cross section library is systematically higher than using the ENDF/B-VI cross section library. The main contributions (∼220 pcm) are from 235U and Zr. (author)
Neutron total scattering cross sections of elemental antimony
Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V
A method for measuring light ion reaction cross-sections
An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle
Neutron inelastic cross section measurements for 24Mg
OLACEL A.; Borcea, C.; DESSAGNE Philippe; Kerveno, M.; NEGRET A.; PLOMPEN Arjan
2014-01-01
The gamma production cross sections from the neutron inelastic scattering on 24Mg were measured for neutron energies up to 18 MeV at GELINA (Geel Linear Accelerator), the neutron source operated by EC-JRC-IRMM, Belgium. The level cross section and the total inelastic cross section were determined. We used the GAINS (Gamma Array for Inelastic Neutron Scattering) spectrometer with 7 large volume HPGe detectors placed at 110◦ and 150◦ with respect to the beam direction. The neutron flux was dete...
Cross Section to Multiplicity Ratios at Very High Energy
Block, M M
2014-01-01
Recent data from the LHC makes it possible to examine an old speculation that at very high energy the total multiplicity and the cross section in elementary particle interactions vary in parallel with energy. Using fits incorporating the new data, it appears that the ratios of the total, elastic, and inelastic cross sections to the average multiplicity N can in fact approach constants at very high energy. The approach to the limit is however quite slow for the total and inelastic cross sections and is not yet reached at LHC energies. The elastic ratio sigma^{el}/N at 7 TeV, however, is not far from its asymptotic value.
Measurements of fission cross-sections. Chapter 4
The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)
Photodetachment cross-section of the negatively charged hydrogen ion
Frolov, Alexei M.
2015-01-01
Photodetachment cross-section $\\sigma_{ph}(p_e)$ of the negatively charged hydrogen ion H$^{-}$ is determined with the use of highly accurate variational wave functions constructed for this ion. Photodetachment cross-sections of the H$^{-}$ ion are also studied for very small and very large values of the photo-electron momentum $p_e$. Maximum of this cross-section and its location have been evaluated to high accuracy. In particular, we have found that $[\\sigma_{ph}(p_e)]_{\\max} \\approx$ 3.862...
Resonance interaction effects in photonucleon reaction cross sections
The fine structure of a giant dipole resonance in the photonuclear reaction cross section is investigated. Developed is a diagram of parametrization of cross sections, angular distribution and polarization for two resonances, one of which is directly excited by gamma-quantum, the second - due to internal and external mixing with the first state. It is shown, that for several reaction channels the interaction effects significantly the energy dependence of the cross sections and results in qualitative effects in the photonuclear angular distributions and polarization of photonucleons
Comparison of fission and capture cross sections of minor actinides
Nakagawa, T
2003-01-01
The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals.
Neutron-induced fission cross-section of 231Pa
A first series of fission cross-section measurements for incident neutron energies between 0.6 and 3.4 MeV has confirmed a first chance threshold value around 1b. In contrast to our findings for the fission cross-section in 233Pa, both the direct and the surrogate cross-section data lead to the same result. This seems to support the assumption, that only in cases, where ingoing and outgoing particle are similar, particle-transfer reactions give results that are in agreement with those obtained from direct compound nuclear reactions
Evaluation of neutron induced reaction cross sections on Rh isotopes
Evaluations of neutron nuclear data on 101,102,103,105Rh in the incident energies up to 20 MeV were performed, using theoretical nuclear reaction model code CCONE. The calculated cross sections of stable 103Rh are in good agreement with measured inelastic scattering, capture, (n, 2n), (n, p), (n, α) and (n, nα) reaction cross sections. The production cross section for the meta-state of 99Tc with half-life of 6.0 h was evaluated for the estimation of nuclear medicine use and resulted in 2.4 mb at a maximum. (author)
Cross polarization caused by perturbed circular cross sections of waveguides and horn antennas
Lier, Erik
1987-03-01
The cross polarization caused by a perturbed cross section of the conical hybrid-mode horn is analyzed. The perturbed cross section is assumed to be slightly elliptical. The theory of Lier and Bergh (1986) for cross polarization in a smooth-walled waveguide supporting the TE11-mode is referred and applied to the HE11 mode as well. Simple analytical formulas which are sufficiently accurate for small ellipticites of the cross-section ellipse are presented. These show that the tolerances on the waveguide diameter are extremely strong, typically on the order of 0.02-0.04 mm in the horn throat for typical horn geometries at 12 GHz.
A genetic algorithm to reduce stream channel cross section data
Berenbrock, C.
2006-01-01
A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.
Scaling of Cross Sections for Ion-atom Impact Ionization
Kaganovich, I D; Startsev, E
2003-01-01
The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.