WorldWideScience

Sample records for 2d capacitive micromachined

  1. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  2. Acoustic lens for capacitive micromachined ultrasonic transducers

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with traditional piezoelectric transducers in therapeutic ultrasound applications. In this paper we have designed, fabricated and developed an acoustic lens formed on the CMUT to mechanically focus ultrasound. The acoustic lens was designed based on the paraxial theory and made of silicone rubber for acoustic impedance matching and encapsulation. The CMUT was fabricated based on the local oxidation of silicon (LOCOS) and fusion-bonding. The fabricated CMUT was verified to behave like an electromechanical resonator in air and exhibited wideband response with a center frequency of 2.2 MHz in immersion. The fabrication for the acoustic lens contained two consecutive mold castings and directly formed on the surface of the CMUT. Applied with ac burst input voltages at the center frequency, the CMUT with the acoustic lens generated an output pressure of 1.89 MPa (peak-to-peak) at the focal point with an effective focal gain of 3.43 in immersion. Compared to the same CMUT without a lens, the CMUT with the acoustic lens demonstrated the ability to successfully focus ultrasound and provided a viable solution to the miniaturization of the multi-modality forward-looking endoscopes without electrical focusing. (paper)

  3. Capacitive Micromachined Ultrasonic Transducers (CMUTs for Underwater Imaging Applications

    Jinlong Song

    2015-09-01

    Full Text Available A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The −6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20  excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system.

  4. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers

    Singulation of MEMS is a critical step in the transition from wafer-level to die-level devices. As is the case for capacitive micromachined ultrasound transducer (CMUT) ring arrays, an ideal singulation must protect the fragile membranes from the processing environment while maintaining a ring array geometry. The singulation process presented in this paper involves bonding a trench-patterned CMUT wafer onto a support wafer, deep reactive ion etching (DRIE) of the trenches, separating the CMUT wafer from the support wafer and de-tethering the CMUT device from the CMUT wafer. The CMUT arrays fabricated and singulated in this process were ring-shaped arrays, with inner and outer diameters of 5 mm and 10 mm, respectively. The fabricated CMUT ring arrays demonstrate the ability of this method to successfully and safely singulate the ring arrays and is applicable to any arbitrary 2D shaped MEMS device with uspended microstructures, taking advantage of the inherent planar attributes of DRIE. (technical note)

  5. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Lani, Shane W.; Wasequr Rashid, M.; Hasler, Jennifer; Sabra, Karim G.; Levent Degertekin, F.

    2014-01-01

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally ...

  6. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer

    Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H.; Kupnik, Mario; Khuri-Yakub, Butrus Thomas

    2010-01-01

    The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as poly...

  7. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.

    Lani, Shane W; Wasequr Rashid, M; Hasler, Jennifer; Sabra, Karim G; Levent Degertekin, F

    2014-02-01

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range. PMID:24753623

  8. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range

  9. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  10. Encapsulation of Capacitive Micromachined Ultrasonic Transducers Using Viscoelastic Polymer.

    Lin, Der-Song; Zhuang, Xuefeng; Wong, Serena H; Kupnik, Mario; Khuri-Yakub, Butrus Thomas

    2010-12-01

    The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs. PMID:21170294

  11. Resonant gravimetric immunosensing based on capacitive micromachined ultrasound transducers

    Viržonis, Darius

    2014-04-08

    High-frequency (40 MHz) and low-frequency (7 MHz) capacitive micromachined ultrasound transducers (CMUT) were fabricated and tested for use in gravimetric detection of biomolecules. The low-frequency CMUT sensors have a gold-coated surface, while the high-frequency sensors have a silicon nitride surface. Both surfaces were functionalized with bovine leukemia virus antigen gp51 acting as the antigen. On addition of an a specific antibody labeled with horseradish peroxidase (HRP), the antigen/antibody complex is formed on the surface and quantified by HRP-catalyzed oxidation of tetramethylbenzidine. It has been found that a considerably smaller quantity of immuno complex is formed on the high frequency sensor surface. In parallel, the loading of the surface of the CMUT was determined via resonance frequency and electromechanical resistance readings. Following the formation of the immuno complexes, the resonance frequencies of the low-frequency and high-frequency sensors decrease by up to 420 and 440 kHz, respectively. Finite element analysis reveals that the loading of the (gold-coated) low frequency sensors is several times larger than that on high frequency sensors. The formation of the protein film with pronounced elasticity and stress on the gold surface case is discussed. We also discuss the adoption of this method for the detection of DNA using a hybridization assay following polymerase chain reaction.

  12. Resonant gravimetric immuno sensing based on capacitive micromachined ultrasound transducers

    High-frequency (40 MHz) and low-frequency (7 MHz) capacitive micromachined ultrasound transducers (CMUT) were fabricated and tested for use in gravimetric detection of biomolecules. The low-frequency CMUT sensors have a gold-coated surface, while the high-frequency sensors have a silicon nitride surface. Both surfaces were functionalized with bovine leukemia virus antigen gp51 acting as the antigen. On addition of an a specific antibody labeled with horseradish peroxidase (HRP), the antigen/antibody complex is formed on the surface and quantified by HRP-catalyzed oxidation of tetramethylbenzidine. It has been found that a considerably smaller quantity of immuno complex is formed on the high frequency sensor surface. In parallel, the loading of the surface of the CMUT was determined via resonance frequency and electromechanical resistance readings. Following the formation of the immuno complexes, the resonance frequencies of the low-frequency and high-frequency sensors decrease by up to 420 and 440 kHz, respectively. Finite element analysis reveals that the loading of the (gold-coated) low frequency sensors is several times larger than that on high frequency sensors. The formation of the protein film with pronounced elasticity and stress on the gold surface case is discussed. We also discuss the adoption of this method for the detection of DNA using a hybridization assay following polymerase chain reaction. (author)

  13. A surface-micromachined capacitive microphone with improved sensitivity

    We present a surface-micromachined capacitive microphone with a membrane center hole and back-plate supports. The proposed membrane center hole reduces air damping at the center of the membrane and increases the sensitivity and frequency response. The back-plate supports allow for a deep back-chamber and prevent deformation of the back-plate. The proposed microelectromechanical-system (MEMS) microphone is fabricated using fully CMOS-compatible processes. The fabricated MEMS microphone has a membrane 500 µm in diameter and a center hole 30 µm in diameter. A deep back-chamber with a depth of 100 µm is formed by the back-plate supporting structures. During fabrication, the residual stress of the membrane is minimized using PECVD silicon nitride inserted in the metal membrane. The measured residual stress of the sensing membrane is 14.8 MPa. Acoustic measurements show that the sensitivity of the microphone is −49.1 dBV Pa−1 @1 kHz at a 12 V dc bias voltage, which is in good agreement with the calculated value. (paper)

  14. Development of capacitive micromachined ultrasonic transducer for noncontact ultrasonic detection

    In this study, the capacitive micromachined ultrasonic transducer (cMUT) was developed. Theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) of the cMUT were performed. The design parameters of the cMUT were estimated and are the dimension and thickness of membrane, thickness of sacrificial layer, thickness and size of electrode, size of active element and so on. With the micro-fabrication process, the cMUT was fabricated on the silicon wafer. To measure the membrane displacement of cMUT, the Michelson phase modulation fiber interferometer was constructed. The measured membrane displacement was good agreed with the result of finite element analysis. To estimate the ultrasonic wave generated by the cMUT, the ultrasonic transceiver system was constructed. The developed cMUT shows a good performance and hence will be widely used to the filed of non-contact ultrasonic application.

  15. Experimental Analysis of Bisbenzocyclobutene Bonded Capacitive Micromachined Ultrasonic Transducers.

    Manwar, Rayyan; Chowdhury, Sazzadur

    2016-01-01

    Experimental measurement results of a 1.75 mm × 1.75 mm footprint area Capacitive Micromachined Ultrasonic Transducer (CMUT) planar array fabricated using a bisbenzocyclobutene (BCB)-based adhesive wafer bonding technique has been presented. The array consists of 40 × 40 square diaphragm CMUT cells with a cavity thickness of 900 nm and supported by 10 µm wide dielectric spacers patterned on a thin layer of BCB. A 150 µm wide one µm thick gold strip has been used as the contact pad for gold wire bonding. The measured resonant frequency of 19.3 MHz using a Polytec™ laser Doppler vibrometer (Polytec™ MSA-500) is in excellent agreement with the 3-D FEA simulation result using IntelliSuite™. An Agilent ENA5061B vector network analyzer (VNA) has been used for impedance measurement and the resonance and anti-resonance values from the imaginary impedance curve were used to determine the electromechanical coupling co-efficient. The measured coupling coefficient of 0.294 at 20 V DC bias exhibits 40% higher transduction efficiency as compared to a measured value published elsewhere for a silicon nitride based CMUT. A white light interferometry method was used to measure the diaphragm deflection profiles at different DC bias. The diaphragm center velocity was measured for different sub-resonant frequencies using a Polytec™ laser Doppler vibrometer that confirms vibration of the diaphragm at different excitation frequencies and bias voltages. Transmit and receive operations of CMUT cells were characterized using a pitch-catch method and a -6 dB fractional bandwidth of 23% was extracted from the received signal in frequency domain. From the measurement, it appears that BCB-based CMUTs offer superior transduction efficiency as compared to silicon nitride or silicon dioxide insulator-based CMUTs, and provide a very uniform deflection profile thus making them a suitable candidate to fabricate highly energy efficient CMUTs. PMID:27347955

  16. Touch mode micromachined capacitive pressure sensor with signal conditioning electronics

    Fragiacomo, Giulio; Eriksen, Gert F.; Christensen, Carsten;

    2010-01-01

    In the last decades, pressure sensors have been one of the greatest successes of the MEMS industry. Many companies are using them in a variety of applications from the automotive to the environmental field. Currently piezoresistive pressure sensors are the most developed, and a well established...... technology to design and fabricate these sensors has been implemented. Capacitive pressure sensing, on the other hand, is still an open and really promising field. Results Capacitive microsensors were designed and fabricated (Fig. 1) and an analytical model for touch mode regime, which fitted accurately the...... is therefore to develop new technologies based on capacitive sensing to be able to fulfil future requirements in this field....

  17. Capacitive micromachined ultrasonic transducer for ultra-low pressure measurement: Theoretical study

    Zhikang Li; Libo Zhao; Zhuangde Jiang; Sina Akhbari; Jianjun Ding; Yihe Zhao; Yulong Zhao; Liwei Lin

    2015-01-01

    Ultra-low pressure measurement is necessary in many areas, such as high-vacuum environment monitoring, process control and biomedical applications. This paper presents a novel approach for ultra-low pressure measurement where capacitive micromachined ultrasonic transducers (CMUTs) are used as the sensing elements. The working principle is based on the resonant frequency shift of the membrane under the applied pressure. The membranes of the biased CMUTs can produce a larger resonant frequency ...

  18. Probing 2D black phosphorus by quantum capacitance measurements.

    Kuiri, Manabendra; Kumar, Chandan; Chakraborty, Biswanath; Gupta, Satyendra N; Naik, Mit H; Jain, Manish; Sood, A K; Das, Anindya

    2015-12-01

    Two-dimensional materials and their heterostructures have emerged as a new class of materials, not only for fundamental physics but also for electronic and optoelectronic applications. Black phosphorus (BP) is a relatively new addition to this class of materials. Its strong in-plane anisotropy makes BP a unique material for making conceptually new types of electronic devices. However, the global density of states (DOS) of BP in device geometry has not been measured experimentally. Here, we report the quantum capacitance measurements together with the conductance measurements on an hBN-protected few-layer BP (∼six layers) in a dual-gated field effect transistor (FET) geometry. The measured DOS from our quantum capacitance is compared with density functional theory (DFT). Our results reveal that the transport gap for quantum capacitance is smaller than that in conductance measurements due to the presence of localized states near the band edge. The presence of localized states is confirmed by the variable range hopping seen in our temperature dependence conductivity. A large asymmetry is observed between the electron and hole side. This asymmetric nature is attributed to the anisotropic band dispersion of BP. Our measurements establish the uniqueness of quantum capacitance in probing the localized states near the band edge, hitherto not seen in conductance measurements. PMID:26559656

  19. Micromachined capacitive pressure sensor with signal conditioning electronics

    Fragiacomo, Giulio

    possible solution in many cases where, for example, the dimensions of the sensing element is the limiting factor. Furthermore, MEMS can significantly reduce costs and power consumption being the best candidate for consumer electronics such as mobile phones and cameras, or for the automotive industry where...... a great deal of sensors are used. Pressure sensors are among the most successful MEMS and are used in a huge variety of applications. In this project an absolute capacitive pressure sensor has been developed with the aim to integrate it in pump control systems to improve the efficiency of the pump....... This demonstrator has been characterized and presented at Grundfos Direct Sensors A/S and constitute the preliminary work for a new product which is intended target the low power or wireless pressure sensor for harsh environment market....

  20. Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance

    Pedersen, Thomas; Fragiacomo, Giulio; Hansen, Ole;

    2009-01-01

    This paper describes the design and fabrication of a capacitive pressure sensor that has a large capacitance signal and a high sensitivity of 76 pF/bar in touch mode operation. Due to the large signal, problems with parasitic capacitances are avoided and hence it is possible to integrate the sensor...... with a discrete components electronics circuit for signal conditioning. Using an AC bridge electronics circuit a resolution of 8 mV/mbar is achieved. The large signal is obtained due to a novel membrane structure utilizing closely packed hexagonal elements. The sensor is fabricated in a process based...

  1. Modeling and Design of Capacitive Micromachined Ultrasonic Transducers Based-on Database Optimization

    A Capacitive Micromachined Ultrasonic Transducers simulation database, based on electromechanical coupling theory, has been fully developed for versatile capacitive microtransducer design and analysis. Both arithmetic and graphic configurations are used to find optimal parameters based on serial coupling simulations. The key modeling parameters identified can improve microtransducer's character and reliability effectively. This method could be used to reduce design time and fabrication cost, eliminating trial-and-error procedures. Various microtransducers, with optimized characteristics, can be developed economically using the developed database. A simulation to design an ultrasonic microtransducer is completed as an executed example. The dependent relationship between membrane geometry, vibration displacement and output response is demonstrated. The electromechanical coupling effects, mechanical impedance and frequency response are also taken into consideration for optimal microstructures. The microdevice parameters with the best output signal response are predicted, and microfabrication processing constraints and realities are also taken into consideration

  2. Fabrication of a Micromachined Capacitive Switch Using the CMOS-MEMS Technology

    Cheng-Yang Lin

    2015-11-01

    Full Text Available The study investigates the design and fabrication of a micromachined radio frequency (RF capacitive switch using the complementary metal oxide semiconductor-microelectromechanical system (CMOS-MEMS technology. The structure of the micromachined switch is composed of a membrane, eight springs, four inductors, and coplanar waveguide (CPW lines. In order to reduce the actuation voltage of the switch, the springs are designed as low stiffness. The finite element method (FEM software CoventorWare is used to simulate the actuation voltage and displacement of the switch. The micromachined switch needs a post-CMOS process to release the springs and membrane. A wet etching is employed to etch the sacrificial silicon dioxide layer, and to release the membrane and springs of the switch. Experiments show that the pull-in voltage of the switch is 12 V. The switch has an insertion loss of 0.8 dB at 36 GHz and an isolation of 19 dB at 36 GHz.

  3. Micromachining.

    Park, Bob; Lamson, Bob; Lowell, Dave

    2002-03-01

    Components and features can be made in a number of ways. This article describes the different micromachining processes and what they can achieve in terms of precision, repeatability and cost savings. PMID:11984992

  4. Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection.

    Hall, Neal A; Lee, Wook; Degertekin, F Levent

    2003-11-01

    Capacitive detection limits the performance of capacitive micromachined ultrasonic transducers (CMUTs) by providing poor sensitivity below megahertz frequencies and limiting acoustic power output by imposing constraints on the membrane-substrate gap height. In this paper, an integrated optical interferometric detection method for CMUTs, which provides high displacement sensitivity independent of operation frequency and device capacitance, is reported. The method also enables optoelectronics integration in a small volume and provides optoelectronic isolation between transmit and receive electronics. Implementation of the method involves fabricating CMUTs on transparent substrates and shaping the electrode under each individual CMUT membrane in the form of an optical diffraction grating. Each CMUT membrane thus forms a phase-sensitive optical diffraction grating structure that is used to measure membrane displacements down to 2 x 10(-4) A/square root(Hz) level in the dc to 2-MHz range. Test devices are fabricated on quartz substrates, and ultrasonic array imaging in air is performed using a single 4-mm square CMUT consisting of 19 x 19 array of membranes operating at 750 kHz. PMID:14682641

  5. Greenhouse Gas Molecule CO2 Detection Using a Capacitive Micromachined Ultrasound Transducer.

    Barauskas, Dovydas; Pelenis, Donatas; Virzonis, Darius; Baltrus, John P; Baltrusaitis, Jonas

    2016-07-01

    We manufactured and tested a capacitive micromachined ultrasound transducer (CMUT)-based sensor for CO2 detection at environmentally relevant concentrations using polyethylenimine as a CO2 binding material. The assembly of a sensing chip was 10 × 20 mm, and up to 5 gases can potentially be detected simultaneously using a masking technique and different sensing materials. The limit of detection was calculated to be 0.033 CO2 vol % while the limit of quantification was calculated to be 0.102%. The sensor exhibited a linear response between 0.06% and 0.30% CO2 while concentrations close to those in flue gas can also be measured using dilution with inert gas. PMID:27321769

  6. Fabrication of Vacuum-Sealed Capacitive Micromachined Ultrasonic Transducer Arrays Using Glass Reflow Process

    Nguyen Van Toan

    2016-04-01

    Full Text Available This paper presents a process for the fabrication of vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT arrays using glass reflow and anodic bonding techniques. Silicon through-wafer interconnects have been investigated by the glass reflow process. Then, the patterned silicon-glass reflow wafer is anodically bonded to an SOI (silicon-on-insulator wafer for the fabrication of CMUT devices. The CMUT 5 × 5 array has been successfully fabricated. The resonant frequency of the CMUT array with a one-cell radius of 100 µm and sensing gap of 3.2 µm (distance between top and bottom electrodes is observed at 2.84 MHz. The Q factor is approximately 1300 at pressure of 0.01 Pa.

  7. Modeling and analysis of the membrane-behavior in capacitive micromachined ultrasonic transducer

    In this study, theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) in the capacitive micromachined ultrasonic transducer (cMUT) were performed. The design parameter of the cMUT were estimated and are the dimension and thickness of membrane, thickness of sacrificed layer, thickness and size of electrode, size of active element and so on. The resonance frequency of the membrane increased as the thickness of the membrane increased but decreased as the diameter of the membrane increased. The deflection of the membrane increased as d-c bias voltage increased. The collapse voltage of the membrane was predicted.

  8. Modeling and analysis of the membrane-behavior in capacitive micromachined ultrasonic transducer

    In this study, theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) in the capacitive micromachined ultrasonic transducer (cMUT) were performed. The design parameters of the cMUT were estimated and are the dimension and thickness of membrane, thickness of sacrificial layer, thickness and size of electrode, size of active element and so on. The resonance frequency of the membrane increased as the thickness of the membrane increased but decreased as the diameter of the membrane increased. The deflection of the membrane increased as d-c bias voltage increased. The collapse voltage of the membrane was predicted.

  9. Development of Capacitive Micromachined Ultrasonic Transducer (I) - Analysis of the Membrane Behavior

    This study was conducted to develop a capacitive micromachined ultrasonic transducer (cMUT) which enable to high efficient non-contact transmit and receive the ultrasonic wave in air. Theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) of the cMUT were performed. The design parameters of the cMUT such as the dimension and thickness of membrane, thickness of sacrificial layer, thickness and size of electrode were estimated. The resonance frequency of the membrane increased as the thickness of the membrane increased but decreased as the diameter of the membrane increased. The deflection of the membrane increased as d-c bias voltage increased. The collapse voltage of the membrane was analyzed

  10. Design, simulation and testing of capacitive micromachined ultrasound transducer-based phospholipidic biosensor elements

    In this study we present theoretical proof of the principle of using interdigital capacitive micromachined ultrasound transducers (CMUT IDTs) for the detection of phospholipid membrane elasticity. Proof of principle was needed to find out whether the new type of microelectromechanical sensors of the toxins incorporated with the lipid membranes was feasible. CMUT IDTs for 10 MHz operation in water, with 146 µm spaced double fingers were designed and fabricated using the surface micromachining technique. Fabricated CMUTs were tested for their resonance in air and for Scholte-type wave transmission in deionized water and isopropanol solutions containing 0%, 10% and 20% water. The amplitude and phase velocity of the excited and received Scholte waves were measured in a 200 µm height microchannel, capped with a thick layer of soft polymer, which suppressed the production of non-informative guided waves. It was determined that the average sensitivity of Scholte wave phase velocity within the given range of solution concentrations is 2.9 m s−1 per one percent. Experimental data were also used to verify the adequacy of the finite element model, which was found to be suitable for reliable prediction of the phospholipid membrane elasticity impact on the Scholte wave phase velocity or the resonance frequency in the present IDT structure. It was determined that for the analyzed conditions (the elasticity of simulated phospholipid membrane changed from 1 to 5 GPa) the sensitivity of the measurement channel is expected to be no worse than 2 kHz GPa−1 in terms of the Scholte wave and CMUT IDT resonance frequency. This leads to a positive conclusion on the feasibility of the new sensor type. (paper)

  11. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Rubaiyet Iftekharul Haque; Erick Ogam; Christophe Loussert; Patrick Benaben; Xavier Boddaert

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive ...

  12. Capacitive micromachined ultrasonic transducer for ultra-low pressure measurement: Theoretical study

    Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Akhbari, Sina; Ding, Jianjun; Zhao, Yihe; Zhao, Yulong; Lin, Liwei

    2015-12-01

    Ultra-low pressure measurement is necessary in many areas, such as high-vacuum environment monitoring, process control and biomedical applications. This paper presents a novel approach for ultra-low pressure measurement where capacitive micromachined ultrasonic transducers (CMUTs) are used as the sensing elements. The working principle is based on the resonant frequency shift of the membrane under the applied pressure. The membranes of the biased CMUTs can produce a larger resonant frequency shift than the diaphragms with no DC bias in the state-of-the-art resonant pressure sensors, which contributes to pressure sensitivity improvement. The theoretical analysis and finite element method (FEM) simulation were employed to study the relationship between the resonant frequency and the pressure. The results demonstrated excellent capability of the CMUTs for ultra-low pressure measurement. It is shown that the resonant frequency of the CMUT varies linearly with the applied pressure. A sensitivity of more than 6.33 ppm/Pa (68 kHz/kPa) was obtained within a pressure range of 0 to 100 Pa when the CMUTs were biased at a DC voltage of 90% of the collapse voltage. It was also demonstrated that the pressure sensitivity can be adjusted by the DC bias voltage. In addition, the effects of air damping and ambient temperature on the resonant frequency were also studied. The effect of air damping is negligible for the pressures below 1000 Pa. To eliminate the temperature effect on the resonant frequency, a temperature compensating method was proposed.

  13. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  14. Radiation impedance study of a capacitive micromachined ultrasonic transducer by finite element analysis.

    Bayram, Baris

    2015-08-01

    In this study, radiation impedance of a capacitive micromachined ultrasonic transducer composed of square-shaped membranes arranged in m × m configuration (m = 1 - 5) is investigated using finite element analysis (FEA) of a commercially available software package(ANSYS). Radiation impedance is calculated for immersed membranes operating in conventional and collapse modes. Individual membrane response within the multi-membrane configuration is analyzed, and excited modes and their effects on radiation impedance and the pressure spectra are reported. This FEA provides an accurate behavior of the acoustic coupling of a thin membrane in a multi-membrane configuration, and extends above the anti-resonance frequency. The first resonance frequency of the membrane is excited for m × m (m ≥ 3) configuration in conventional mode and for m × m (m ≥ 2) configuration in collapse mode. Therefore, this frequency is determined to be responsible for the adverse effects observed in radiation impedance and pressure spectrum. A membrane configuration, which is missing the central membrane from the full m × m configuration is proposed, and is investigated with the FEA. This study is beneficial for the design of precise transducers suited for biomedical applications. PMID:26328680

  15. Capacitive Micromachined Ultrasonic Transducer Arrays for Integrated Diagnostic/Therapeutic Catheters

    Wong, Serena H.; Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Bayram, Baris; Kupnik, Mario; Oralkan, Omer; Ergun, A. Sanli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2006-05-01

    In recent years, medical procedures have become increasingly non-invasive. These include endoscopic procedures and intracardiac interventions (e.g., pulmonary vein isolation for treatment of atrial fibrillation and plaque ablation for treatment of arteriosclerosis). However, current tools suffer from poor visualization and difficult coordination of multiple therapeutic and imaging devices. Dual-mode (imaging and therapeutic) ultrasound arrays provide a solution to these challenges. A dual-mode transducer can provide focused, noncontact ultrasound suitable for therapy and can be used to provide high quality real-time images for navigation and monitoring of the procedure. In the last decade, capacitive micromachined ultrasonic transducers (CMUTs), have become an attractive option for ultrasonic imaging systems due to their fabrication flexibility, improved bandwidth, and integration with electronics. The CMUT's potential in therapeutic applications has also been demonstrated by surface output pressures as high as 1MPa peak to peak and continuous wave (CW) operation. This paper reviews existing interventional CMUT arrays, demonstrates the feasibility of CMUTs for high intensity focused ultrasound (HIFU), and presents a design for the next-generation CMUTs for integrated imaging and HIFU endoscopic catheters.

  16. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-01-01

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes. PMID:27271625

  17. Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity

    Spark-assisted chemical engraving (SACE) is an unconventional micro-machining technology based on electrochemical discharge used for micro-machining nonconductive materials. SACE 2D micro-machining with constant speed was used to machine micro-channels in glass. Parameters affecting the quality and geometry of the micro-channels machined by SACE technology with constant velocity were presented and the effect of each of the parameters was assessed. The effect of chemical etching on the geometry of micro-channels under different machining conditions has been studied, and a model is proposed for characterization of the micro-channels as a function of machining voltage and applied speed

  18. Capacitive micromachined ultrasonic transducer for ultra-low pressure measurement: Theoretical study

    Zhikang Li

    2015-12-01

    Full Text Available Ultra-low pressure measurement is necessary in many areas, such as high-vacuum environment monitoring, process control and biomedical applications. This paper presents a novel approach for ultra-low pressure measurement where capacitive micromachined ultrasonic transducers (CMUTs are used as the sensing elements. The working principle is based on the resonant frequency shift of the membrane under the applied pressure. The membranes of the biased CMUTs can produce a larger resonant frequency shift than the diaphragms with no DC bias in the state-of-the-art resonant pressure sensors, which contributes to pressure sensitivity improvement. The theoretical analysis and finite element method (FEM simulation were employed to study the relationship between the resonant frequency and the pressure. The results demonstrated excellent capability of the CMUTs for ultra-low pressure measurement. It is shown that the resonant frequency of the CMUT varies linearly with the applied pressure. A sensitivity of more than 6.33 ppm/Pa (68 kHz/kPa was obtained within a pressure range of 0 to 100 Pa when the CMUTs were biased at a DC voltage of 90% of the collapse voltage. It was also demonstrated that the pressure sensitivity can be adjusted by the DC bias voltage. In addition, the effects of air damping and ambient temperature on the resonant frequency were also studied. The effect of air damping is negligible for the pressures below 1000 Pa. To eliminate the temperature effect on the resonant frequency, a temperature compensating method was proposed.

  19. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    Mashtalir, O.; Lukatskaya, M. R.; Kolesnikov, A. I.; Raymundo-Piñero, E.; Naguib, M.; Barsoum, M. W.; Gogotsi, Y.

    2016-04-01

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g-1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.Herein we show that hydrazine intercalation into 2D titanium carbide (Ti3C2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti3C2Tx layers pre-opening the structure and improving the accessability to active sites. The hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g-1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm. Electronic supplementary information (ESI) available: Characterization methods, additional XRD patterns (Fig. S1) and INS spectra (Fig. S2-S4). See DOI: 10.1039/c6nr01462c

  20. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  1. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-01-01

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878

  2. 2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges

    Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Marakhtanov, A. M.

    2016-06-01

    A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths.

  3. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  4. Development of micro capacitive accelerometer for subsurface microseismic measurement; Micromachining ni yoru chika danseiha kenshutsu no tame no silicon yoryogata kasokudo sensor no seisaku

    Nishizawa, M.; Niitsuma, H.; Esashi, M. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1997-05-27

    A silicon capacitive accelerometer was fabricated to detect subsurface elastic waves by using micromachining technology. Characteristics required for it call for capability of detecting acceleration with amplitudes from 0.1 to 1 gal and flat amplitude characteristics in frequency bands of 10 Hz to several kHz. For the purpose of measuring transition phenomena, linear phase characteristics in the required bands must be guaranteed, cross sensitivity must be small, and resistance to water, pressure and heat is demanded. Sensitivity of the sensor is determined finally by noise level in a detection circuit. The sensor`s minimum detection capability was 40 mgal in the case of the distance between a weight and an electrode being 3 {mu}m. This specification value is a value realizable by the current micromachining technology. Dimensions for the weight and other members were decided with the natural frequency to make band width 2 kHz set to 4 kHz. Completion of the product has not been achieved yet, however, because of a problem that the weight gets stuck on the electrode plate in anode bonding in the assembly process. 7 refs., 5 figs., 1 tab.

  5. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed in the...

  6. Noninvasive real-time 2D imaging of temperature distribution during the plastic pellet cooling process by using electrical capacitance tomography

    This study has launched a concept to image a real-time 2D temperature distribution noninvasively by a combination of the electrical capacitance tomography (ECT) technique and a permittivity-temperature calibration equation for the plastic pellet cooling process. The concept has two steps, which are the relative permittivity calculation from the measured capacitance among the many electrodes by the ECT technique, and the temperature distribution imaging from the relative permittivity by the permittivity-temperature calibration equation. An ECT sensor with 12 electrodes was designed to image the cross-sectional temperature distribution during the polymethyl methacrylate pellets cooling process. The images of temperature distribution were successfully reconstructed from the relative permittivity distribution at every time step during the process. The images reasonably indicate the temperature diffusion in a 2D space and time within a 0.0065 and 0.0175 time-dependent temperature deviation, as compared to an analytical thermal conductance simulation and thermocouple measurement. (paper)

  7. Noninvasive real-time 2D imaging of temperature distribution during the plastic pellet cooling process by using electrical capacitance tomography

    Hirose, Yusuke; Sapkota, Achyut; Sugawara, Michiko; Takei, Masahiro

    2016-01-01

    This study has launched a concept to image a real-time 2D temperature distribution noninvasively by a combination of the electrical capacitance tomography (ECT) technique and a permittivity-temperature calibration equation for the plastic pellet cooling process. The concept has two steps, which are the relative permittivity calculation from the measured capacitance among the many electrodes by the ECT technique, and the temperature distribution imaging from the relative permittivity by the permittivity-temperature calibration equation. An ECT sensor with 12 electrodes was designed to image the cross-sectional temperature distribution during the polymethyl methacrylate pellets cooling process. The images of temperature distribution were successfully reconstructed from the relative permittivity distribution at every time step during the process. The images reasonably indicate the temperature diffusion in a 2D space and time within a 0.0065 and 0.0175 time-dependent temperature deviation, as compared to an analytical thermal conductance simulation and thermocouple measurement.

  8. Fully parameterized model of a voltage-driven capacitive coupled micromachined ohmic contact switch for RF applications

    A comprehensive and completely parameterized model is proposed to determine the related electrical and mechanical dynamic system response of a voltage-driven capacitive coupled micromechanical switch. As an advantage over existing parameterized models, the model presented in this paper returns within few seconds all relevant system quantities necessary to design the desired switching cycle. Moreover, a sophisticated and detailed guideline is given on how to engineer a MEMS switch. An analytical approach is used throughout the modelling, providing representative coefficients in a set of two coupled time-dependent differential equations. This paper uses an equivalent mass moving along the axis of acceleration and a momentum absorption coefficient. The model describes all the energies transferred: the energy dissipated in the series resistor that models the signal attenuation of the bias line, the energy dissipated in the squeezed film, the stored energy in the series capacitor that represents a fixed separation in the bias line and stops the dc power in the event of a short circuit between the RF and dc path, the energy stored in the spring mechanism, and the energy absorbed by mechanical interaction at the switch contacts. Further, the model determines the electrical power fed back to the bias line. The calculated switching dynamics are confirmed by the electrical characterization of the developed RF switch. The fabricated RF switch performs well, in good agreement with the modelled data, showing a transition time of 7 µs followed by a sequence of bounces. Moreover, the scattering parameters exhibit an isolation in the off-state of >8 dB and an insertion loss in the on-state of <0.6 dB up to frequencies of 50 GHz. The presented model is intended to be integrated into standard circuit simulation software, allowing circuit engineers to design the switch bias line, to minimize induced currents and cross actuation, as well as to find the mechanical structure dimensions

  9. Micromachined Integrated Transducers for Ultrasound Imaging

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...

  10. Silicon Micromachining

    Elwenspoek, Miko; Jansen, Henri V.

    2004-08-01

    This comprehensive book provides an overview of the key techniques used in the fabrication of micron-scale structures in silicon. Recent advances in these techniques have made it possible to create a new generation of microsystem devices, such as microsensors, accelerometers, micropumps, and miniature robots. The authors underpin the discussion of each technique with a brief review of the fundamental physical and chemical principles involved. They pay particular attention to methods such as isotropic and anisotropic wet chemical etching, wafer bonding, reactive ion etching, and surface micromachining. There is a special section on bulk micromachining, and the authors also discuss release mechanisms for movable microstructures. The book is a blend of detailed experimental and theoretical material, and will be of great interest to graduate students and researchers in electrical engineering and materials science whose work involves the study of micro-electromechanical systems (MEMS).

  11. 微机械加工硅电容式加速度传感器%A silicon capacitive acceleration sensor made in micromachining technology

    李跃进; 杨银堂; 朱作云; 马晓华; 陈锦杜

    2001-01-01

    The fundamental principle and fabricating process of a silicon capacitive accelerometer are described. The sensing element consists of a differential capacitor which is formed by a movable mass and two electrodes situated on anodically bonded glass plates. The application of a standard bipolar process allows the movable mass to be realized by anisotropic wet etching.The non-linearity of 10-4 magnitude is reached under a range of 20 gn.%介绍了硅电容式加速度传感器的工作原理和制作过程。传感器的敏感元件为一个差分电容器,它是由活动质量块与两个玻璃极板通过阳极键合形成。活动质量块用标准的双极工艺和各向异性腐蚀工艺制作。该传感器的量程为20?gn,线性度为10-4量级。

  12. Optical Micromachining

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  13. Micromachined Silicon Cantilever Magnetometry.

    Chaparala, M. V.

    1998-03-01

    Magnetic torque measurements give us a simple and attractive method for characterizing the anisotropic properties of magnetic materials. Silicon torque and force magnetometers have many advantages over traditional torsion fiber torque magnetometers. We have fabricated micromachined silicon torque and force magnetometers employing both capacitive(``Capacitance platform magnetometer for thin film and small crystal superconductor studies'', M. Chaparala et al.), AIP Conf. Proc. (USA), AIP Conference Proceedings, no.273, p. 407 1993. and strain dependent FET detection(``Strain Dependent Characterstics of Silicon MOSFETs and their Applications'', M. Chaparala et al.), ISDRS Conf. Proc. 1997. schemes which realize some of these gains. We will present the pros and cons of each of the different detection schemes and the associated design constraints. We have developed a feedback scheme which enables null detection thus preserving the integrity of the sample orientation. We will present a method of separating out the torque and force terms in the measured signals and will discuss the errors associated with each of the designs. Finally, we present the static magnetic torque measurements on various materials with these devices, including equilibrium properties on sub microgram specimens of superconductors, and dHvA measurements near H_c2. We will also discuss their usefulness in pulsed magnetic fields(``Cantilever magnetometry in pulsed magnetic fields", M. J. Naughton et al.), Rev. of Sci. Instrum., vol.68, p. 4061 1997..

  14. Micromachined pressure sensors: Review and recent developments

    Eaton, W.P.; Smith, J.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachines Dept.

    1997-03-01

    Since the discovery of piezoresistivity in silicon in the mid 1950s, silicon-based pressure sensors have been widely produced. Micromachining technology has greatly benefited from the success of the integrated circuits industry, burrowing materials, processes, and toolsets. Because of this, microelectromechanical systems (MEMS) are now poised to capture large segments of existing sensor markets and to catalyze the development of new markets. Given the emerging importance of MEMS, it is instructive to review the history of micromachined pressure sensors, and to examine new developments in the field. Pressure sensors will be the focus of this paper, starting from metal diaphragm sensors with bonded silicon strain gauges, and moving to present developments of surface-micromachined, optical, resonant, and smart pressure sensors. Considerations for diaphragm design will be discussed in detail, as well as additional considerations for capacitive and piezoresistive devices.

  15. Technology trends in high temperature pressure transducers: The impact of micromachining

    Mallon, Joseph R., Jr.

    1992-01-01

    This paper discusses the implications of micromachining technology on the development of high temperature pressure transducers. The introduction puts forth the thesis that micromachining will be the technology of choice for the next generation of extended temperature range pressure transducers. The term micromachining is defined, the technology is discussed and examples are presented. Several technologies for high temperature pressure transducers are discussed, including silicon on insulator, capacitive, optical, and vibrating element. Specific conclusions are presented along with recommendations for development of the technology.

  16. A silicon MEMS structure for characterization of femto-farad-level capacitive sensors with lock-in architecture

    Wei, J; Chen, Z.L.; Liu, Z. W.; Sarro, P. M.

    2010-01-01

    This paper presents a silicon MEMS capacitive structure to investigate a test methodology for fF-level capacitive sensors’ measurement. The device mimics a capacitive sensor with a changing intermediate layer between the electrodes. A single mask bulk micromachining process is used to fabricate the device, which has a nominal capacitance of 1.2 fF. A high performance measurement setup based on lock-in principle is developed to detect the capacitance variation. The maximum capacitance variatio...

  17. Wideband micromachined microphones with radio frequency detection

    Hansen, Sean Thomas

    There are many commercial, scientific, and military applications for miniature wideband acoustic sensors, including monitoring the condition or wear of equipment, collecting scientific data, and identifying and localizing military targets. The application of semiconductor micromachining techniques to sensor fabrication has the potential to transform acoustic sensing with small, reproducible, and inexpensive silicon-based microphones. However, such sensors usually suffer from limited bandwidth and from non-uniformities in their frequency response due to squeeze-film damping effects and narrow air gaps. Furthermore, they may be too fragile to be left unattended in a humid or dusty outdoor environment. Silicon microphones that incorporate capacitive micromachined ultrasonic transducer membranes overcome some of the drawbacks of conventional microphones. These micromachined membranes are small and robust enough to be vacuum-sealed, and can withstand atmospheric pressure and submersion in water. In addition, the membrane mechanical response is flat from dc up to ultrasonic frequencies, resulting in a wideband sensor for accurate spectral analysis of acoustic signals. However, a sensitive detection scheme is necessary to detect the small changes in membrane displacement that result from using smaller, stiffer membranes than do conventional microphones. We propose a radio frequency detection technique, in which the capacitive membranes are incorporated into a transmission line. Variations in membrane capacitance due to impinging sound pressure are sensed through the phase variations of a carrier signal that propagates along the line. This dissertation examines the design, fabrication, modeling, and experimental measurements of wideband micromachined microphones using sealed ultrasonic membranes and RF detection. Measurements of fabricated microphones demonstrate less than 0.5 dB variation in their output responses between 0.1 Hz to 100 kHz under electrostatic actuation of

  18. A silicon MEMS structure for characterization of femto-farad-level capacitive sensors with lock-in architecture

    Wei, J.; Chen, Z.L.; Liu, Z.W.; Sarro, P.M.

    2010-01-01

    This paper presents a silicon MEMS capacitive structure to investigate a test methodology for fF-level capacitive sensors’ measurement. The device mimics a capacitive sensor with a changing intermediate layer between the electrodes. A single mask bulk micromachining process is used to fabricate the

  19. Micro-machining.

    Brinksmeier, Ekkard; Preuss, Werner

    2012-08-28

    Manipulating bulk material at the atomic level is considered to be the domain of physics, chemistry and nanotechnology. However, precision engineering, especially micro-machining, has become a powerful tool for controlling the surface properties and sub-surface integrity of the optical, electronic and mechanical functional parts in a regime where continuum mechanics is left behind and the quantum nature of matter comes into play. The surprising subtlety of micro-machining results from the extraordinary precision of tools, machines and controls expanding into the nanometre range-a hundred times more precise than the wavelength of light. In this paper, we will outline the development of precision engineering, highlight modern achievements of ultra-precision machining and discuss the necessity of a deeper physical understanding of micro-machining. PMID:22802498

  20. Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers.

    Liu, Changgeng; Djuth, Frank T; Zhou, Qifa; Shung, K Kirk

    2013-12-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm(2) with a 16-μm kerf between elements. The active piezoelectric material is (1 - x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)/epoxy 1-3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse-echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the -6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about -33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  1. Micromachining for Microelectromechanical Systems

    K.N. Bhat

    1998-01-01

    Full Text Available The various micromachining processes required for micro engineering and for the successful realisation of micro eletro mechanical systems on Si are presented. The techniques presented include bulk and surface micro machining, Si fusion bonding, and the lithography, electroforming and micromoulding (LIGA process. The paper also includes discussion on the markets, applications and future trends for micro enginerated products.

  2. Micromachined Artificial Haircell

    Liu, Chang (Inventor); Engel, Jonathan (Inventor); Chen, Nannan (Inventor); Chen, Jack (Inventor)

    2010-01-01

    A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.

  3. A silicon MEMS structure for characterization of femto-farad-level capacitive sensors with lock-in architecture

    This paper presents a silicon MEMS capacitive structure to investigate a test methodology for fF-level capacitive sensors' measurement. The device mimics a capacitive sensor with a changing intermediate layer between the electrodes. A single mask bulk micromachining process is used to fabricate the device, which has a nominal capacitance of 1.2 fF. A high performance measurement setup based on lock-in principle is developed to detect the capacitance variation. The maximum capacitance variation of the fabricated device is 0.31 fF, and the capacitance detection limit is 0.095 aF Hz−1/2.

  4. Micromachining using focused ion beams

    Focused ion beam (FIB) systems prove to be useful precision micromachining tools for a wide variety of applications. This micromachining technique includes scanning ion microscopy (SIM), micromachining by physical sputtering, and the ion-beam induced surface chemistry for etching and deposition. This technique is applied to image and modify IC's, to micromechanical applications, to modify the tip shape of tungsten emitters, and to prepare cross sections of selected regions for inspection in a transmission electron microscope (TEM). (orig.)

  5. Micromachining and its application

    Micromachining is a useful technique for manufacturing of micrometer-dimension structures. It also has a ready-made means of mass production in wafer fabrication lines. We studied the present micromachining techniques : photo fabrication, anisotropic etching, anodic bonding and so on. Furthermore, novel process techniques using high energy ion implantation technology were developed, i.e., (1) physical property modification of monocrystalline silicon and poly-silicon, (2) formation of a monocrystalline silicon thin film structure and (3) formation of a buried resistor. In addition, we fabricated two types of mechanical sensors by way of trial ; one is a micro liquid flow sensor and the other is a vacuum sensor which contains a monocrystalline silicon resonator. (author)

  6. Micromachined chemical jet dispenser

    Swierkowski, S.; Ciarlo, D.

    1996-05-13

    Goal is to develop a multi-channel micromachined chemical fluid jet dispenser that is applicable to prototype tests with biological samples that demonstrate its utility for molecular biology experiments. Objective is to demonstrate a new device capable of ultrasonically ejecting droplets from 10-200 {mu}m diameter capillaries that are arranged in an array that is linear or focused. The device is based on several common fabrication procedures used in MEMS (micro electro mechanical systems) technology: piezoelectric actuators, silicon, etc.

  7. MEMS Capacitive Pressure Sensors: A Review on Recent Development and Prospective

    Eswaran P

    2013-06-01

    Full Text Available Recently MEMS Capacitive Pressure Sensor gains more advantage over micromachined piezoresistive pressure sensor due to high sensitivity, low power consumption, free from temperature effects, IC compatibility, etc,. The spectrum of capacitive pressure sensor application is increasing, hence it is essential to review the path of technological development and further prospective of micromachinedcapacitive pressure sensor. This paper focuses on the review of various types of capacitive pressure sensor principle, MEMS materials used in fabrication, procedures adopted in microfabrication for silicon and polymer material diaphragm, bonding and packaging techniques used. Selected result on capacitive sensitivity, effect of temperature on capacitive sensitivity was also presented. Finally, the development of smart sensor was discussed.

  8. Trends in laser micromachining

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  9. 3D proton beam micromachining

    Focused high energy ion beam micromachining is the newest of the micromachining techniques. There are about 50 scanning proton microprobe facilities worldwide, but so far only few of them showed activity in this promising field. High energy ion beam micromachining using a direct-write scanning MeV ion beam is capable of producing 3D microstructures and components with well defined lateral and depth geometry. The technique has high potential in the manufacture of 3D molds, stamps, and masks for X-ray lithography (LIGA), and also in the rapid prototyping of microcomponents either for research purposes or for components testing prior to batch production. (R.P.)

  10. Capacitive Extensometer

    Perusek, Gail P. (Inventor)

    2003-01-01

    The present invention provides for measurements of the principal strain magnitudes and directions, and maximum shear strain that occurs in a porous specimen, such as plastic, ceramic or porous metal, when it is loaded (or subjected to a load). In one embodiment the invention includes a capacitive delta extensometer arranged with six sensors in a three piece configuration, with each sensor of each pair spaced apart from each other by a predetermined angle, such as 120 degrees.

  11. Micromachined capacitive pressure sensor with signal conditioning electronics

    Fragiacomo, Giulio; Hansen, Ole; Thomsen, Erik Vilain; Kjærgaard, Claus; Christensen, Carsten

    2012-01-01

    Dette projekt vedrører kapacitive mikrotryksensorer til barske omgivelser og dertil relaterede elektroniske grænseflader. Mikroeletromekaniske systemer (MEMS) er ofte benyttede, frem for makroskopiske sensorsystmer, inden for flere forskellige felter og er i mange tilfælde den eneste løsningsmodel, f.eks. i de tilfælde hvor størrelsen af sensorelementet er en begrænsende faktor. Derudover kan brugen af MEMS reducere omkostninger og energiforbrug væsentligt, hvorfor MEMS ofte anvendes til forb...

  12. Simulating Capacitive Micromachined Ultrasonic Transducers (CMUTs) using Field II

    Bæk, David; Oralkan, Omer; Kupnik, Mario;

    2010-01-01

    Field II has been a recognized simulation tool for piezoceramic medical transducer arrays for more than a decade. The program has its strength in doing fast computations of the spatial impulse response (SIR) from array elements by dividing the elements into smaller mathematical elements (ME)s from...... which it calculates the SIR responses. The program features predefined models for classical transducer geometries, but currently none for the fast advancing CMUTs. This work addresses the assumptions required for modeling CMUTs with Field II. It is shown that rectangular array elements, populated with...... cells, can be well approximated by neglecting the cells. Further, it is demonstrated that scaling of the SIR translates into better computational efficiency....

  13. Micromachined electrode array

    Okandan, Murat (Edgewood, NM); Wessendorf, Kurt O. (Albuquerque, NM)

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  14. Micromachining with Nanostructured Cutting Tools

    Jackson, Mark J

    2013-01-01

    The purpose of the brief is to explain how nanostructured tools can be used to machine materials at the microscale.  The aims of the brief are to explain to readers how to apply nanostructured tools to micromachining applications. This book describes the application of nanostructured tools to machining engineering materials and includes methods for calculating basic features of micromachining. It explains the nature of contact between tools and work pieces to build a solid understanding of how nanostructured tools are made.

  15. Micromachining with DUV lasers

    Toenshoff, Hans K.; Kappel, Heiner; Heekenjann, Peter B.

    1997-04-01

    In many industrial branches a continuous scaling down of parts and products is observed. For example in the fields of micro-mechanics new sensors and actuators can be produced which offer the possibility of making self acting micro- systems. Other micro-components for medicine, chemistry or optics allow minimal invasive surgery and inspection. In every case conventional fabrication technologies such as turning and milling have to be carefully investigated: their appropriateness for the production of micro-parts is not always guaranteed. On the other hand new technologies such as the LIGA-process (German acronym for lithography, galvano forming and plastic molding process) open new ways to inexpensive mass-production. The following paper describes the potential of DUV-lasers (laser wavelength: lambda equals 200 - 280 nm) for micro-machining specific applications. Using excimer-lasers the machining of ceramics, glass and polymer materials is presented. The excellent beam properties of a self developed quadrupled Nd:YAG-laser are used for the repair of photolithographic masks. The mask repair using ablation and deposition of chromium on glass substrate is described.

  16. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    Weiping Zhang; Xiaosheng Wu; Wenyuan Chen; Wu Liu; Feng Cui

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micro...

  17. Laser micromachining of goldblack coatings.

    Nelms, N; Dowson, J; Rizvi, N; Rohr, T

    2006-09-20

    Goldblack deposits have been used as high-absorption coatings for thermal infrared detectors for a number of years, principally on large single, or few pixel detectors. We present a new technique that allows the benefits of goldblack to be applied to the current generation of small pixel silicon micromachined thermal infrared detectors. PMID:16946774

  18. Electron beam micromachining of plastics

    Dupák, Libor

    2014-01-01

    Roč. 49, 5-6 (2014), s. 310-314. ISSN 0861-4717 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : micromachining of plastics * Electron beam Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. False capacitance of supercapacitors

    Ragoisha, G. A.; Aniskevich, Y. M.

    2016-01-01

    Capacitance measurements from cyclic voltammetry, galvanostatic chronopotentiometry and calculation of capacitance from imaginary part of impedance are widely used in investigations of supercapacitors. The methods assume the supercapacitor is a capacitor, while real objects correspond to different equivalent electric circuits and show various contributions of non-capacitive currents to the current which is used for calculation of capacitance. Specific capacitances which are presented in F g-1...

  20. A novel model for calculating the inter-electrode capacitance of wedge-strip anode

    Zhao, Airong; Ni, Qiliang

    2016-04-01

    The wedge strip anode (WSA) detector has been widely used in particle detection. In this work, a novel model for calculating the inter-electrode capacitance of WSA was proposed on the basis of conformal transformations and the partial capacitance method. Based on the model, the inter-electrode capacitance within a period was calculated besides the total inter-electrode capacitance. As a result, the effects of the WSA design parameters on the inter-electrode capacitance are systematically analyzed. It is found that the inter-electrode capacitance monotonically increases with insulated gap and substrate permittivity but not with the period. In order to prove the validation of the model, two round WSAs were manufactured by employing the picosecond laser micro-machining technology. It is found that 9%-15% errors between the theoretical and experimental results can be obtained, which is better than that obtained by employing ANSYS software.

  1. A Surface Micromachined CMOS MEMS Humidity Sensor

    Jian-Qiu Huang; Fei Li; Min Zhao; Kai Wang

    2015-01-01

    This paper reports a CMOS MEMS (complementary metal oxide semiconductor micro electromechanical system) piezoresistive humidity sensor fabricated by a surface micromachining process. Both pre-CMOS and post-CMOS technologies were used to fabricate the piezoresistive humidity sensor. Compared with a bulk micromachined humidity sensor, the machining precision and the sizes of the surface micromachined humidity sensor were both improved. The package and test systems of the sensor were designed. A...

  2. Laser Micromachining of Glass, Silicon, and Ceramics

    L. Rihakova; Chmelickova, H.

    2015-01-01

    A brief review is focused on laser micromachining of materials. Micromachining of materials is highly widespread method used in many industries, including semiconductors, electronic, medical, and automotive industries, communication, and aerospace. This method is a promising tool for material processing with micron and submicron resolution. In this paper micromachining of glass, silicon, and ceramics is considered. Interaction of these materials with laser radiation and recent research held o...

  3. Acoustic generation of femtoliter to picoliter droplets using two-dimensional micromachined microdroplet ejector arrays

    Demirci, Utkan

    There is growing demand in the fields of semiconductor manufacturing and biotechnology to reliably generate repeatable, uniform, picoliter-size fluid droplets. Such droplets can be generated using MEMS (Micro-Electro-Mechanical Systems) technology. We propose 2-D micromachined microdroplet ejector arrays for environmentally benign deposition of photoresist and other spin-on materials, such as low-k and high-k dielectrics used in integrated circuit (IC) manufacturing. Direct deposition of these chemicals will reduce waste and production cost. These ejectors are chemically compatible with the materials used in IC manufacturing, and do not harm fluids that are heat or pressure sensitive. Moreover, these ejectors are attractive to biomedicine and biotechnology for droplet generation in applications such as printing of DNA or protein assays and drug testing. Two novel methods for generating millions of droplets per second using acoustically actuated 2-D micromachined microdroplet ejector arrays will be presented. First, membrane based 2-D micromachined ejector arrays will be introduced. Each element of a membrane based 2-D ejector array consists of a flexurally vibrating circular membrane on one face of a cylindrical fluid reservoir. The membrane has an orifice at the center. A piezoelectric transducer generating ultrasonic waves, located at the open face of the reservoir, actuates the membrane and droplets are ejected through the membrane orifice. The ejectors operated most efficiently at 1.2 MHz and generated 3--7 mum diameter droplets. Second, acoustic focus based 2-D micromachined ejector arrays will be demonstrated. The radiation pressure associated with the acoustic beam overcomes the surface tension force, and releases droplets into air in every actuation cycle. The ejectors operated most efficiently at 34.7 MHz, and generated 28 mum diameter droplets in both drop-on-demand and continuous modes of operation, as predicted by the finite element analysis

  4. Analysis of small deflection touch mode behavior in capacitive pressure sensors

    Fragiacomo, Giulio; Ansbæk, Thor; Pedersen, Thomas;

    2010-01-01

    Due to an increasing need for devices with low power consumption, capacitive pressure sensors have become good substitutes for the well known piezoresistive pressure sensors. Mathematical models are necessary to design and characterize the device, preferably the model is analytical such that...... geometrical scalings are revealed. We show that, in the case of linear elastic behavior, a simple analytical model can be found for a touch mode capacitive pressure sensor (TMCPS). With this model it is possible to readily evaluate the main features of a TMCPS such as: sensitivity (both in normal and touch...... mode), touch point pressure and parasitic capacitance. Therefore, the desired device can be designed without using finite element modeling (FEM). This reduces the effort needed to design a micromachined TMCPS. Finally, the model has been compared with a micromachined TMCPS showing an excellent...

  5. Review of polymer MEMS micromachining

    The development of polymer micromachining technologies that complement traditional silicon approaches has enabled the broadening of microelectromechanical systems (MEMS) applications. Polymeric materials feature a diverse set of properties not present in traditional microfabrication materials. The investigation and development of these materials have opened the door to alternative and potentially more cost effective manufacturing options to produce highly flexible structures and substrates with tailorable bulk and surface properties. As a broad review of the progress of polymers within MEMS, major and recent developments in polymer micromachining are presented here, including deposition, removal, and release techniques for three widely used MEMS polymer materials, namely SU-8, polyimide, and Parylene C. The application of these techniques to create devices having flexible substrates and novel polymer structural elements for biomedical MEMS (bioMEMS) is also reviewed. (topical review)

  6. Quasimetallic silicon micromachined photonic crystals

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  7. Resist materials for proton micromachining

    The production of high aspect ratio microstructures is a potential growth area. The combination of deep X-ray lithography with electroforming and micromolding (i.e. LIGA) is one of the main techniques used to produce 3D microstructures. The new technique of proton micromachining employs focused MeV protons in a direct write process which is complementary to LIGA, e.g. micromachining with 2 MeV protons results in microstructures with a height of 63 μm and lateral sub-micrometer resolution in PMMA resist. The aim of this paper is to investigate the capabilities of proton micromachining as a lithographic technique. This involves the study of different types of resists. The dose distribution of high molecular weight PMMA is compared with three other types of resist: First the positive photo resist AZ P4620 will be discussed and then PMGI SF 23, which can be used as a deep UV, e-beam or X-ray resist. Finally SU-8, a new deep UV negative type of chemically amplified resist will be discussed. All these polymers are applied using the spin coating technique at thicknesses of between 1 and 36 μm

  8. 2D solar modeling

    Ventura, P; Li, L; Sofia, S; Basu, S; Demarque, P

    2009-01-01

    Understanding the reasons of the cyclic variation of the total solar irradiance is one of the most challenging targets of modern astrophysics. These studies prove to be essential also for a more climatologic issue, associated to the global warming. Any attempt to determine the solar components of this phenomenon must include the effects of the magnetic field, whose strength and shape in the solar interior are far from being completely known. Modelling the presence and the effects of a magnetic field requires a 2D approach, since the assumption of radial symmetry is too limiting for this topic. We present the structure of a 2D evolution code that was purposely designed for this scope; rotation, magnetic field and turbulence can be taken into account. Some preliminary results are presented and commented.

  9. Vertical 2D Heterostructures

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  10. Characterization and Modeling of Subfemtofarad Nanowire Capacitance Using the CBCM Technique

    Zhao, Hui; Kim, Raseong; Paul, Abhijeet; Luisier, Mathieu; Klimeck, Gerhard; Ma, Fa-Jun; Rustagi, Subhash; Ganesh S. Samudra; Singh, Navab; Lo, Guo-Qiang; Kwong, Dim-Lee

    2009-01-01

    The experimental characterization of gate capacitance in nanoscale devices is challenging. We report an application of the charge-based capacitance measurement (CBCM) technique to measure the gate capacitance of a single-channel nanowire transistor. The measurement results are validated by 3-D electrostatic computations for parasitic estimation and 2-D self-consistent sp(3)s*d5 tight-binding computations for intrinsic gate capacitance calculations. The device simulation domains were construct...

  11. Characterization and Modeling of Subfemotofarad Nanowire Capacitance Using the CBCM Technique

    Zhao, Hui; Kim, Raseong; Paul, Abhijeet; Luisier, Mathieu; Klimeck, Gerhard; Ma, Fa-Jun; Rustagi, Subhash C.; Ganesh S. Samudra; Singh, Navab; Lo, Guo-Qiang; Kwong, Dim-Lee

    2009-01-01

    The experimental characterization of gate capacitance in nanoscale devices is challenging. We report an application of the charge-based capacitance measurement (CBCM) technique to measure the gate capacitance of a single-channel nanowire transistor. The measurement results are validated by 3-D electrostatic computations for parasitic estimation and 2-D self-consistent sp3s∗d5 tight-binding computations for intrinsic gate capacitance calculations. The device simulation domains were constructed...

  12. Micromachining of Silicon Carbide using femtosecond lasers

    Farsari, M [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, PO Box 1527, 71110 Heraklion, Crete (Greece); Filippidis, G [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, PO Box 1527, 71110 Heraklion, Crete (Greece); Zoppel, S [Vienna University of Technology, Photonics Institute, Gusshausstr. 27-29/387, 1040 Vienna (Austria); Reider, G A [Vienna University of Technology, Photonics Institute, Gusshausstr. 27-29/387, 1040 Vienna (Austria); Fotakis, C [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, PO Box 1527, 71110 Heraklion, Crete (Greece)

    2007-04-15

    We have demonstrated micromachining of bulk 3C silicon carbide (3C- SiC) wafers by employing 1028nm wavelength femtosecond laser pulses of energy less than 10 nJ directly from a femtosecond laser oscillator, thus eliminating the need for an amplified system and increasing the micromachining speed by more than four orders of magnitude.

  13. Micromachining of Silicon Carbide using femtosecond lasers

    We have demonstrated micromachining of bulk 3C silicon carbide (3C- SiC) wafers by employing 1028nm wavelength femtosecond laser pulses of energy less than 10 nJ directly from a femtosecond laser oscillator, thus eliminating the need for an amplified system and increasing the micromachining speed by more than four orders of magnitude

  14. Micromachining applications for ICF target fabrication

    Micromachining techniques used in Inertial Confinement Fusion (ICF) target fabrication encompass laser drilling, single point diamond turning, and plasma as well as chemical etching. These techniques have been developed by several laboratories to produce target components with tolerances and surface finishes in the micron to submicron regime. Some of the spherical target components produced by micromachining techniques include free standing hemispherical shells (diameters 50--500 mm), micron-sized holes in thin glass shells, and plastic-coated glass microballons with surfaces which have been smoothly machined to remove a mounting stalk. Planar targets and components produced by these techniques include small disks and washers of thin brittle materials. Micromachining techniques are also used to fabricate diagnostic instruments such as x-ray mirrors and zone plates. This paper will examine micromachining techniques used to produce target components and diagnostic instruments. The relationship of each micromachining technique to presently used target configurations will also be discussed

  15. ON-LINE SELF-TESTING FOR MICRO-MACHINED GYROSCOPES

    GAISSERAlexander; GAOZhong-yu; ZHANGRong; CHENZhi-yong; ZHOUBin

    2005-01-01

    An on line self-testing for Coriolis vibratory gyroscopes (CVGs) is realized according to a digital readout electronics for capacitive sensors and micro-machined angular rate sensors. By applying some additional signals to the micro machined structure, the actual noise performance (<0.1°/s) is not worsened. The running of the primary and the secondary oscillators of CVGs is verified by self-testing. Compared with other methods, the device needs not to check the functionality. In this new approach the on-line testing is conducted at any time without disturbing the normal operational mode. Based on the approach the performance of the micro machined gyroscope can be improved and a secure availability of the functionality of the micro-machined angular rate sensor is guaranteed. Furthermore, the error signal is generated when the sensor works incorrectly.

  16. Reduction of out-of-plane warpage in surface micromachined beams using corrugation

    Corrugation is proposed as a means of reducing the out-of-plane warpage in surface micromachined beams that result from an asymmetric vertical stress profile. Corrugation increases beam bending stiffness without increasing film thickness, making the beam more immune to intrinsic vertical stress gradients without requiring longer film deposition times, increased beam mass, or careful stress optimization. The technique was tested using a dual-thickness metal surface micromachining process with a photoresist sacrificial layer. Several corrugation patterns and geometries were tested, and the best performing pattern was implemented on a MEMS actuator array. The off-state to on-state capacitance delta of the array improved from 0.24 to 0.7pF and the beam curvature decreased from 180 to 50 nm compared with an uncorrugated array. Other device performance parameters, such as 30 V pull-in voltage and 5 billion cycle switching lifetime, were unaffected. (paper)

  17. Simulation of Thin-Film Damping and Thermal Mechanical Noise Spectra for Advanced Micromachined Microphone Structures

    Hall, Neal A.; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F. Levent

    2008-01-01

    In many micromachined sensors the thin (2–10 μm thick) air film between a compliant diaphragm and backplate electrode plays a dominant role in shaping both the dynamic and thermal noise characteristics of the device. Silicon microphone structures used in grating-based optical-interference microphones have recently been introduced that employ backplates with minimal area to achieve low damping and low thermal noise levels. Finite-element based modeling procedures based on 2-D discretization of...

  18. Mesoscopic Capacitance Oscillations

    Buttiker, Markus; Nigg, Simon

    2006-01-01

    We examine oscillations as a function of Fermi energy in the capacitance of a mesoscopic cavity connected via a single quantum channel to a metallic contact and capacitively coupled to a back gate. The oscillations depend on the distribution of single levels in the cavity, the interaction strength and the transmission probability through the quantum channel. We use a Hartree-Fock approach to exclude self-interaction. The sample specific capacitance oscillations are in marked contrast to the c...

  19. Activated sludge model No. 2d, ASM2d

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  20. Micromachined Thermal Flow Sensors—A Review

    Jonathan T. W. Kuo

    2012-07-01

    Full Text Available Microfabrication has greatly matured and proliferated in use amongst many disciplines. There has been great interest in micromachined flow sensors due to the benefits of miniaturization: low cost, small device footprint, low power consumption, greater sensitivity, integration with on-chip circuitry, etc. This paper reviews the theory of thermal flow sensing and the different configurations and operation modes available. Material properties relevant to micromachined thermal flow sensing and selection criteria are also presented. Finally, recent applications of micromachined thermal flow sensors are presented. Detailed tables of the reviewed devices are included.

  1. Micromachining process – current situation and challenges

    Lalakiya Meet Rajeshkumar

    2015-01-01

    Full Text Available The rapid progress in the scientific innovations and the hunt for the renewable energy increases the urge for producing the bio electronic products, solar cells, bio batteries, nano robots, MEMS, blood less surgical tools which can be possible with the aid of the micromachining. This article helps us to understand the evolution and the challenges faced by the micromachining process. Micro machining is an enabling technology that facilitates component miniaturization and improved performance characteristics. Growing demand for less weight, high accuracy, high precision, meagre lead time, reduced batch size, less human interference are the key drivers for the micromachining than the conventional machining process.

  2. Laser Micromachining Fabrication of THz Components

    DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.

    2001-01-01

    Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.

  3. Variable Synthetic Capacitance

    Kleinberg, L. L.

    1986-01-01

    Feedback amplifier circuit synthesizes electronically variable capacitance. Variable Synthetic Capacitor is amplifier circuit with follower/feedback configuration. Effective input capacitance depends on input set current. If synthetic capacitor is connected across resonant element of oscillator, oscillator frequency controlled via input set current. Circuit especially suitable for fine frequency adjustments of piezoelectric-crystal or inductor/capacitor resonant oscillators.

  4. Micromachining with SR and FEL

    This article describes the micromachining technologies to fabricate thick and three-dimensional microstructures. Deep X-ray lithography using an 0.6 GeV compact SR source have been realized to fabricate thick structures, developing a high transparency X-ray mask and a high sensitivity resist. Moreover, a sacrificial layer process and micro electro-discharge machining have been combined with deep X-ray lithography for the fabrication of more complicated structures such as cantilever and tapered shaped structures. Also, the prospective use of an FEL is considered towards the development of true three-dimensional microstructures. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Electrochemical micromachining of passive electrodes

    The electronic model describing the electrochemical micromachining (ECMM) of passive electrodes utilizing the transpassive dissolution is discussed. Numerical simulations are performed on a machining model circuit using measured electrochemical properties of the model system which consisted of a tungsten tool electrode, a 1 M H2SO4 electrolyte and a stainless steel work piece electrode. The results of these simulations were verified by performing machining experiments applying the same model system. For a passive stainless steel electrode it is shown that it can be treated like an actively dissolving electrode with high reaction overpotential. The efficiency of the machining process can be enhanced by polarizing the steel work piece electrode close to the transpassive potential region. Three different ways of achieving this polarization are discussed: by polarizing the work piece electrode only, by polarizing both electrodes and by adding oxidizing species to the electrolyte solution

  6. Silicon-micromachined microchannel plates

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  7. Micromachining of electret materials, advantages and possibilities

    Voorthuyzen, J.A.; Bergveld, P.

    1988-01-01

    A process is described for the micromachining of organic electret materials like Teflon FEP (fluorinated ethylene propylene). The authors have used photolithography and plasma etching, by which electrets can be etched selectively. The advantages of micromachining electrets in such a way are numerous. Miniature sensors like microphones and pressure sensors, containing local areas using Teflon, have been realized in the authors' laboratories. The process can also be used for electret research. ...

  8. Micromachining process – current situation and challenges

    Lalakiya Meet Rajeshkumar

    2015-01-01

    The rapid progress in the scientific innovations and the hunt for the renewable energy increases the urge for producing the bio electronic products, solar cells, bio batteries, nano robots, MEMS, blood less surgical tools which can be possible with the aid of the micromachining. This article helps us to understand the evolution and the challenges faced by the micromachining process. Micro machining is an enabling technology that facilitates component miniaturization and improved performance c...

  9. Realization of CMOS compatible micromachined chemical sensors

    Demirci, Tuğba; Demirci, Tugba

    2002-01-01

    The chemical sensors are fabricated using IC manufacturing technologies, providing a smaller size and lower weight, lower power consumption, and lower cost due to the automated and batch production. During the last two decades, largely two-dimensional Integrated Circuit (IC) fabrication technology has been extended into the third dimension by micromachining technologies [1]. Micromachining has been used to produce a growing variety of micromechanical structures, including automotive pressure ...

  10. The micromachined logo of Atomki

    Complete text of publication follows. Proton Beam Micromachining, also known as P-beam Writing, is a direct write 3- dimensional lithographic technique. Conventional resist types are PMMA (polymethylmethacrylate), and SU-8 (of MicroChem Corp.); they are positive and negative resists, respectively. In this work we used SU-8, the most common negative resist material. SU-8 was spun on a flat surface, typically Silicon or glass. A direct write proton beam was scanned over an arbitary structure (the Atomki logo can be replaced by any other structure), which produces chain scissioning in the polymer. Post exposure bake (PEB) is usually needed in case of conventional optical lithography, but using protons this bake is done in situ as the ions heat up the sample in vacuum. Subsequently chemical etching takes place, the solvent is available at MicroChem Corp. The schematic diagram of the above described micromachining process is shown on Fig. 1. The irradiation requires a scanning proton microbeam system equipped with suitable beam scanning and blanking facilities. This is available in the Institute, our setup has been upgraded from doublet to triplet focusing system (Oxford Microbeams Ltd.). For scanning we use a DIO card (PCI-6731 of National Instruments), and the IonScan software [1]. Sample preparation was carried out at our 'semi clean' room. This is also where chemical development of the samples and the optical microscopy have been done too. A Zeiss Axio Imager microscope is available (equipped with 5 objective lenses, 4 different contrast methods, transmitted or reflected light illumination). Fig. 2. shows a typical example of the Atomki logo. This is a bright field image, a number of different nice and colourful images can be produced with the other contrast techniques (for more images see the Institute website: http://www.atomki.hu/ ). (author)

  11. Row-Column Addressed 2-D CMUT Arrays with Integrated Apodization

    Christiansen, Thomas Lehrmann; Rasmussen, Morten Fischer; Jensen, Jørgen Arendt;

    2014-01-01

    Experimental results from row-column addressed capacitive micromachined ultrasonic transducers (CMUTs) with integrated apodization are presented. The apodization is applied by varying the density of CMUT cells in the array with the objective of damping the edge waves originating from the element...... ends. Two row-column addressed 32+32 CMUT arrays are produced using a wafer-bonding technique, one with and one without integrated apodization. Hydrophone measurements of the emitted pressure field from the array with integrated apodization show a reduction in edge wave energy of 8.4 dB (85 %) compared...

  12. Micromachined electrostatically suspended gyroscope with a spinning ring-shaped rotor

    Han, F. T.; Liu, Y. F.; Wang, L.; Ma, G. Y.

    2012-10-01

    A micromachined electrostatically suspended gyroscope is described in this paper, in which a spinning ring-shaped rotor is suspended by an electric bearing in five degrees of freedom and driven by a three-phase variable-capacitance motor. The electric bearing provides contactless suspension of the spinning rotor, allowing the rotor through a torque-rebalance loop to precess about two input axes that are orthogonal to the spin axis. In this way, the micromachined spinning-rotor gyroscope can be used as a two-degree-of-freedom angular rate sensor by detecting the precession-induced torque. Design and simulation of the dual-axis torque-rebalance loop, by considering actual negative spring effect in rotor dynamics, are presented to investigate the loop stability and explain the experimental measurement. The prototype device has been fabricated by bulk micromachining technique and tested successfully with a suspended rotor spinning at a speed of 10 085 rpm. Initial measurements of the rate gyroscope shows that an input range of ±100° s-1, a noise floor of 0.015° s-1 Hz-1/2, and a bias stability of 50.95° h-1 have been achieved. The detailed results of the prototype device, electric bearing and motor spin-up are also described.

  13. System for Measuring Capacitance

    McNichol, Randal S. (Inventor)

    2001-01-01

    A system has been developed for detecting the level of a liquid in a tank wherein a capacitor positioned in the tank has spaced plates which are positioned such that the dielectric between the plates will be either air or the liquid, depending on the depth of the liquid in the tank. An oscillator supplies a sine wave current to the capacitor and a coaxial cable connects the capacitor to a measuring circuit outside the tank. If the cable is very long or the capacitance to be measured is low, the capacitance inherent in the coaxial cable will prevent an accurate reading. To avoid this problem, an inductor is connected across the cable to form with the capacitance of the cable a parallel resonant circuit. The impedance of the parallel resonant circuit is infinite, so that attenuation of the measurement signal by the stray cable capacitance is avoided.

  14. Capacitance pressure sensor

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  15. Capacitive chemical sensor

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  16. Physics-based signal processing algorithms for micromachined cantilever arrays

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  17. Induced Charge Capacitive Deionization

    Rubin, S.; Suss, M. E.; Biesheuvel, P. M.; Bercovici, M.

    2016-01-01

    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, ...

  18. Nonlinear Quantum Capacitance

    Wang, B; Zhao, X; Guo, H; Wang, J.

    1999-01-01

    We analyze the nonlinear voltage dependence of electrochemical capacitance for nanoscale conductors. This voltage dependence is due to the finite density of states of the conductors. Within Hartree theory we derive an exact expression for the electrochemical capacitance–voltage curve for a parallel plate system. The result suggests a quantum scanning capacitance microscopy at the nanoscale: by inverting the capacitance–voltage expression one is able to deduce the local spectral function of th...

  19. Demonstration of superconducting micromachined cavities

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing

  20. Demonstration of superconducting micromachined cavities

    Brecht, T.; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-01

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  1. Micromachining for laser fusion pellet

    In laser nuclear fusion, the fusion reaction is induced by irradiating powerful laser beam on the pellets filled with fuel, and compressing and heating the fuel by implosion. At this time, in order to compress it up to high density, it is very important to compress as the spherical symmetry is maintained. The uniformity of the sphericity and wall thickness is required to be more than 98 %. Besides, in order to heighten the efficiency, it is necessary to limit the temperature of main fuel low, to ignite with hot sparks at the center, and to burn remaining fuel with the alpha particles which are generated by the nuclear fusion reaction there. For this purpose, various target structures have been proposed. The cryogenic target for ablative compression, the double shell target and the cannonball target are shown. In order to produce these targets, the development of the fuel spheres which have high uniformity and good sphericity in the required size, the development of the coating process with good surface finish which can do uniform coating at the rate of about 10 μm/h, the development of micromachining technology, the development of cryogenic technology and so on are necessary. Also the levitation of pellets by magnetic suspension method is explained. (K.I.)

  2. Demonstration of superconducting micromachined cavities

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  3. Estimation of carrier mobility at organic semiconductor/insulator interface using an asymmetric capacitive test structure

    Rajesh Agarwal; Ashish K. Agarwal; Baquer Mazhari

    2016-01-01

    Mobility of carriers at the organic/insulator interface is crucial to the performance of organic thin film transistors. The present work describes estimation of mobility using admittance measurements performed on an asymmetric capacitive test structure. Besides the advantage of simplicity, it is shown that at low frequencies, the measured capacitance comes from a large area of channel making the capacitance-voltage characteristics insensitive to contact resistances. 2-D numerical simulation a...

  4. Lectures on 2D gravity and 2D string theory

    This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions

  5. Quantum capacitance: a microscopic derivation

    Mukherjee, Sreemoyee; MANNINEN, M; Deo, P. Singha

    2010-01-01

    We start from microscopic approach to many body physics and show the analytical steps and approximations required to arrive at the concept of quantum capacitance. These approximations are valid only in the semi-classical limit and the quantum capacitance in that case is determined by Lindhard function. The effective capacitance is the geometrical capacitance and the quantum capacitance in series, and this too is established starting from a microscopic theory.

  6. Photolithographic surface micromachining of polydimethylsiloxane (PDMS).

    Chen, Weiqiang; Lam, Raymond H W; Fu, Jianping

    2012-01-21

    A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O(2) plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrication of large microfiltration membranes and free-standing beam structures in PDMS. PMID:22089984

  7. Cryogenically assisted abrasive jet micromachining of polymers

    The abrasive jet micromachining (AJM) of elastomers and polymers such as polydimethylsiloxane (PDMS), acrylonitrile butadiene styrene (ABS) and polytetrafluoroethylene (PTFE) for use in micro-fluidic devices was found to be very slow or impossible at room temperature. To enhance the material removal rate in such materials, a stream of liquid nitrogen (LN2) was injected into the abrasive jet, cooling the target to cryogenic temperatures. Erosion rate measurements on the three polymeric materials (PDMS, ABS and PTFE) with and without the use of LN2 were compared along with the profiles of micromachined channels and holes. It was found that the use of LN2 cooling caused brittle erosion in PDMS, allowing it to be micromachined successfully. An erosion rate increase was also observed in PTFE and ABS at high and intermediate impact angles. The use of LN2 also was found to reduce particle embedding

  8. Optical measurement of micromachine engine performance

    Holswade, S.C.; Dickey, F.M.

    1997-08-01

    Understanding the mechanisms that impact the performance of Microelectromechanical Systems (MEMS) is essential to the development of optimized designs and drive signals, as well as the qualification of devices for commercial applications. Silicon micromachines include engines that consist of orthogonally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {mu}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Optical techniques offer the potential for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. The authors describe the development of Micromachine Optical Probe (MOP) technology for the evaluation of micromachine performance. The MOP approach is based on the detection of optical signals scattered by the gear teeth or other physical structures. They present experimental results for a prototype system designed to measure engine parameters as well as long term performance data.

  9. Silicon Micromachining for Terahertz Component Development

    Chattopadhyay, Goutam; Reck, Theodore J.; Jung-Kubiak, Cecile; Siles, Jose V.; Lee, Choonsup; Lin, Robert; Mehdi, Imran

    2013-01-01

    Waveguide component technology at terahertz frequencies has come of age in recent years. Essential components such as ortho-mode transducers (OMT), quadrature hybrids, filters, and others for high performance system development were either impossible to build or too difficult to fabricate with traditional machining techniques. With micromachining of silicon wafers coated with sputtered gold it is now possible to fabricate and test these waveguide components. Using a highly optimized Deep Reactive Ion Etching (DRIE) process, we are now able to fabricate silicon micromachined waveguide structures working beyond 1 THz. In this paper, we describe in detail our approach of design, fabrication, and measurement of silicon micromachined waveguide components and report the results of a 1 THz canonical E-plane filter.

  10. 2D-hahmoanimaation toteuttamistekniikat

    Smolander, Aku

    2009-01-01

    Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...

  11. Design and Fabrication of Micromachined Resonators

    Chaudhuri, Ritesh Ray; Bhattacharyya, Tarun Kanti

    2012-01-01

    Microelectromechanical system (MEMS) based on-chip resonators offer great potential for sensing and high frequency signal processing applications due to their exceptional features like small size, large frequency-quality factor product, integrability with CMOS ICs, low power consumption etc. This work is mainly aimed at the design, modeling, simulation, and fabrication of micromachined polysilicon disk resonators exhibiting radial-contour mode vibrations. A few other bulk mode modified resonator geometries are also being explored. The resonator structures have been designed and simulated in CoventorWare finite-element platform and fabricated by the PolyMUMPs surface micromachining process.

  12. Tribological issues of polysilicon surface-micromachining

    Sniegowski, J.J.

    1997-12-01

    Polysilicon surface-micromachining is a Micro-Electro-Mechanical Systems (MEMS) manufacturing technology where the infrastructure for manufacturing silicon integrated circuits is used to fabricate micro-miniature mechanical devices. This presentation describes a multi-level mechanical polysilicon surface-micromachining technology and includes a discussion of the issues which affect device manufacture and performance. The multi-level technology was developed and is employed primarily to fabricate microactuated mechanisms. The intricate and complex motion offered by these devices is naturally accompanied by various forms of fraction and wear in addition to the classical stiction phenomena associated with micromechanical device fabrication and usage.

  13. Fundamental mechanisms of micromachine reliability

    DE BOER,MAARTEN P.; SNIEGOWSKI,JEFFRY J.; KNAPP,JAMES A.; REDMOND,JAMES M.; MICHALSKE,TERRY A.; MAYER,THOMAS K.

    2000-01-01

    Due to extreme surface to volume ratios, adhesion and friction are critical properties for reliability of Microelectromechanical Systems (MEMS), but are not well understood. In this LDRD the authors established test structures, metrology and numerical modeling to conduct studies on adhesion and friction in MEMS. They then concentrated on measuring the effect of environment on MEMS adhesion. Polycrystalline silicon (polysilicon) is the primary material of interest in MEMS because of its integrated circuit process compatibility, low stress, high strength and conformal deposition nature. A plethora of useful micromachined device concepts have been demonstrated using Sandia National Laboratories' sophisticated in-house capabilities. One drawback to polysilicon is that in air the surface oxidizes, is high energy and is hydrophilic (i.e., it wets easily). This can lead to catastrophic failure because surface forces can cause MEMS parts that are brought into contact to adhere rather than perform their intended function. A fundamental concern is how environmental constituents such as water will affect adhesion energies in MEMS. The authors first demonstrated an accurate method to measure adhesion as reported in Chapter 1. In Chapter 2 through 5, they then studied the effect of water on adhesion depending on the surface condition (hydrophilic or hydrophobic). As described in Chapter 2, they find that adhesion energy of hydrophilic MEMS surfaces is high and increases exponentially with relative humidity (RH). Surface roughness is the controlling mechanism for this relationship. Adhesion can be reduced by several orders of magnitude by silane coupling agents applied via solution processing. They decrease the surface energy and render the surface hydrophobic (i.e. does not wet easily). However, only a molecular monolayer coats the surface. In Chapters 3-5 the authors map out the extent to which the monolayer reduces adhesion versus RH. They find that adhesion is

  14. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    Lu, Yipeng

    phantom. Finally, a novel ultrasonic fingerprint sensor was demonstrated using a 24x8 array of 22 MHz PMUTs with 100 microm pitch, fully integrated with 180 nm CMOS circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20x8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D PDMS fingerprint phantom (10 mm by 8 mm) at a 1.2 mm distance from the array.

  15. Finite element analysis of underwater capacitor micromachined ultrasonic transducers.

    Roh, Yongrae; Khuri-Yakub, Butrus T

    2002-03-01

    A simple electro-mechanical equivalent circuit model is used to predict the behavior of capacitive micromachined ultrasonic transducers (cMUT). Most often, cMUTs are made in silicon and glass plates that are in the 0.5 mm to 1 mm range in thickness. The equivalent circuit model of the cMUT lacks important features such as coupling to the substrate and the ability to predict cross-talk between elements of an array of transducers. To overcome these deficiencies, a flnite element model of the cMUT is constructed using the commercial code ANSYS. Calculation results of the complex load impedance seen by single capacitor cells are presented, then followed by a calculation of the plane wave real load impedance seen by a parallel combination of many cells that are used to make a transducer. Cross-talk between 1-D array elements is found to be due to two main sources: coupling through a Stoneley wave propagating at the transducer-water interface and coupling through Lamb waves propagating in the substrate. To reduce the cross-talk level, the effect of structural variations of the substrate are investigated, which includes a change of its thickness and etched trenches or polymer walls between array elements. PMID:12322877

  16. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage.

    Mendoza-Sánchez, Beatriz; Gogotsi, Yury

    2016-08-01

    The unique properties and great variety of two-dimensional (2D) nanomaterials make them highly attractive for energy storage applications. Here, an insight into the progress made towards the application of 2D nanomaterials for capacitive energy storage is provided. Synthesis methods, and electrochemical performance of various classes of 2D nanomaterials, particularly based on graphene, transition metal oxides, dichalcogenides, and carbides, are presented. The factors that directly influence capacitive performance are discussed throughout the text and include nanosheet composition, morphology and texture, electrode architecture, and device configuration. Recent progress in the fabrication of 2D-nanomaterials-based microsupercapacitors and flexible and free-standing supercapacitors is presented. The main electrode manufacturing techniques with emphasis on scalability and cost-effectiveness are discussed, and include laser scribing, printing, and roll-to-roll manufacture. Various issues that prevent the use of the full energy-storage potential of 2D nanomaterials and how they have been tackled are discussed, and include nanosheet aggregation and the low electrical conductivity of some 2D nanomaterials. Particularly, the design of hybrid and hierarchical 2D and 3D structures based on 2D nanomaterials is presented. Other challenges and opportunities are discussed and include: control of nanosheets size and thickness, chemical and electrochemical instability, and scale-up of electrode films. PMID:27254831

  17. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    Dunzhu Xia

    2014-01-01

    Full Text Available This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs, piezoelectric vibrating gyroscopes (PVGs, surface acoustic wave (SAW gyroscopes, bulk acoustic wave (BAW gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs, magnetically suspended gyroscopes (MSGs, micro fiber optic gyroscopes (MFOGs, micro fluid gyroscopes (MFGs, micro atom gyroscopes (MAGs, and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.

  18. 38 GHz Antennas on Micromachined Silicon Substrates.

    Marcelli, Romolo; Dragoman, M.; Neculoiu, Dan; Giacomozzi, Flavio; Muller, Alexandru; Nitescu, N.

    2001-01-01

    A new configuration of a double folded double slot CPW feed micromachined antenna array was realized on a 1.5 µm thin three-layer dielectric membrane fabricated on a silicon substrate. The antenna was designed for an operating frequency of 38 GHz, and the double folded configuration was used for minimizing the membrane extension.

  19. Electrostatic actuators fabricated by surface micromachining techniques

    Legtenberg, Rob

    1996-01-01

    This thesis deals with "electrostatic actuators fabricated by surface micromachining techniques". It presents fabrication techniques, design issues, modelling and performance characteristics of a number of electrostatic actuators. These actuators can be used in future micromechanical devices and systems which have applications such as micropositioning, microfluidics, microsurgery etc.

  20. Optoelectronics with 2D semiconductors

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  1. A Low-noise front-end circuit for 2D cMUT arrays

    Güler, Ülkühan; Guler, Ulkuhan; Bozkurt, Ayhan

    2006-01-01

    cMUT technology enables 2D array design with front-end electronic integration through flip-chip bonding or cMUT-on-CMOS process. The size of a 2D array element is constrained in both dimensions due to the aperture sampling criteria, and therefore should be less than or equal to the half of the wavelength in both dimensions. Considering large parasitic capacitances introduced by the interconnections, such small transducer elements necessitate integrated low noise frontends for achieving accept...

  2. Membrane capacitive deionization

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions ar

  3. Steerable Capacitive Proximity Sensor

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Steerable capacitive proximity sensor of "capaciflector" type based partly on sensing units described in GSC-13377 and GSC-13475. Position of maximum sensitivity adjusted without moving sensor. Voltage of each driven shield adjusted separately to concentrate sensing electric field more toward one side or other.

  4. Digital capacitance measuring system

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  5. Accretion Disks Phase Transitions 2-D or not 2-D?

    Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.

    2000-01-01

    We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.

  6. 2D-Oide effect

    Blanco, O R; Bambade, P

    2015-01-01

    The Oide effect considers the synchrotron radiation in the final focusing quadrupole and it sets a lower limit on the vertical beam size at the Interaction Point, particularly relevant for high energy linear colliders. The theory of the Oide effect was derived considering only the radiation in the focusing plane of the magnet. This article addresses the theoretical calculation of the radiation effect on the beam size consider- ing both focusing and defocusing planes of the quadrupole, refered to as 2D-Oide. The CLIC 3 TeV final quadrupole (QD0) and beam parameters are used to compare the theoretical results from the Oide effect and the 2D-Oide effect with particle tracking in PLACET. The 2D-oide demonstrates to be important as it increases by 17% the contribution to the beam size. Further insight into the aberrations induced by the synchrotron radiation opens the possibility to partially correct the 2D-Oide effect with octupole magn

  7. SES2D user's manual

    SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run

  8. Calculating and optimizing inter-electrode capacitances of charge division microchannel plate detectors

    Xing, Yan; Chen, Bo; Zhang, Hong-Ji; Wang, Hai-Feng; He, Ling-Ping; Jin, Fang-Yuan

    2016-04-01

    Based on the principle of charge division microchannel plate detectors, the inter-electrode capacitances of charge division anodes which are related to electronic noise of the charge sensitive amplifier and crosstalk effect of the anode are presented. Under all the requirements of charge division microchannel plate detectors such as the imaging linearity and spatial resolution, decreasing the inter-electrode capacitances is one way to improve the imaging performance. In this paper, we illustrate the simulation process of calculating the inter-electrode capacitances. Moreover, a Wedge and Strip (WSZ) anode is fabricated with the picosecond laser micromachining process. Comparing the simulated capacitances and measured capacitances, the three-dimensional finite element method is proved to be valid. Furthermore, by adjusting the design parameters of the anode, the effects of the substrate permittivity, insulation width and the size of pitch on the inter-electrode capacitances have been analysed. The structure of the charge division anode has been optimized based on the simulation data.

  9. Focused high energy proton beam micromachining: A perspective view

    Micromachining techniques utilising optical, UV and X-ray photons, as well as electrons, low energy heavy ions and high energy light ions (protons), are briefly reviewed. The advantages and disadvantages of each process are discussed. High energy ion beam micromachining (proton micromachining) is a new process which exhibits a unique feature; direct-write 3-dimensional micromachining at submicron resolutions. Although this technique may not compete with conventional mask processes for producing high volume batch production of microcomponents, high energy ion beam micromachining may have a significant role in rapid prototyping, research into the characteristics of microstructures, and the manufacture of molds, stamps and thick masks. Several examples of high energy proton micromachining are presented to illustrate the potential of the technique

  10. Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores.

    Mendonca, C R; Cerami, L R; Shih, T; Tilghman, R W; Baldacchini, T; Mazur, E

    2008-01-01

    We report on the femtosecond-laser micromachining of poly(methyl methacrylate) (PMMA) films doped with nonlinear azoaromatic chromophores: Disperse Red 1, Disperse Red 13 and Disperse Orange 3. We study the conditions for controlling chromophore degradation during the micromachining of PMMA doped with each chromophore. Furthermore, we successfully used fs-micromachining to fabricate optical waveguides within a bulk sample of PMMA doped with these azochromophores. PMID:18521148

  11. Micromachining – Review of Literature from 1980 to 2010

    Zdenka Keran

    2014-01-01

    Full Text Available Trend of miniaturization of products and consequently its components nowadays can be evident in almost every production field. To accomplish requirements imposed by miniaturization micromachining proved to be a satisfied manufacturing technique. Herein the term micromachining refers to mechanical micro cutting techniques where material is removed by geometrically determined cutting edges. The aim of this review article is to summarize existing knowledge and highlight current challenges, restrictions and advantages in the field of micromachining.

  12. Induced Charge Capacitive Deionization

    Rubin, S; Biesheuvel, P M; Bercovici, M

    2016-01-01

    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, which leads to rapid and significant deionization of ionic species from a volume which is on the scale of the particle. We show by theory and experiment that the transient response around a cylindrical particle results in spatially non-uniform charging and non-steady growth of depletion regions which emerge around the particle's poles. Potentially, ICCDI can be useful in applications where fast concentration changes of ionic species are required over large volumes.

  13. Capacitance of graphene nanoribbons

    Shylau, A. A.; Klos, J. W.; Zozoulenko, I. V.

    2009-01-01

    We present an analytical theory for the gate electrostatics and the classical and quantum capacitance of the graphene nanoribbons (GNRs) and compare it with the exact self-consistent numerical calculations based on the tight-binding p-orbital Hamiltonian within the Hartree approximation. We demonstrate that the analytical theory is in a good qualitative (and in some aspects quantitative) agreement with the exact calculations. There are however some important discrepancies. In order to underst...

  14. Molecular Aspects of Capacitation

    Gulfidan Zulfikaroglu; Hulya Ozgur; Sait Polaturkey

    2010-01-01

    Male and female gamets are derived from the primordial germ cells, which migrate from the wall of the yolk sac toward the developing gonads. Following a series of mitotic divisions these cells increase in number at the gonads. The primordial germ cells differentiate into spermatogonia and take the form of mature spermatozoa after spermotogensis and spermotogenesis at puberty. Capacitation is the reaction, which includes all of the molecular and physiological events of mature sperm to gain the...

  15. Electrical capacitance clearanceometer

    Hester, Norbert J. (Inventor); Hornbeck, Charles E. (Inventor); Young, Joseph C. (Inventor)

    1992-01-01

    A hot gas turbine engine capacitive probe clearanceometer is employed to measure the clearance gap or distance between blade tips on a rotor wheel and its confining casing under operating conditions. A braze sealed tip of the probe carries a capacitor electrode which is electrically connected to an electrical inductor within the probe which is inserted into a turbine casing to position its electrode at the inner surface of the casing. Electrical power is supplied through a voltage controlled variable frequency oscillator having a tuned circuit in which the probe is a component. The oscillator signal is modulated by a change in electrical capacitance between the probe electrode and a passing blade tip surface while an automatic feedback correction circuit corrects oscillator signal drift. A change in distance between a blade tip and the probe electrode is a change in capacitance therebetween which frequency modulates the oscillator signal. The modulated oscillator signal which is then processed through a phase detector and related circuitry to provide an electrical signal is proportional to the clearance gap.

  16. Micro benchtop optics by bulk silicon micromachining

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  17. Model Design of Piezoelectric Micromachined Modal Gyroscope

    Xiaojun Hu

    2011-01-01

    Full Text Available This paper reports a novel kind of solid-state microgyroscope, which is called piezoelectric micromachined modal gyroscope (PMMG. PMMG has large stiffness and robust resistance to shake and strike because there is no evident mass-spring component in its structure. This work focused on quantitative optimization of the gyroscope, which is still blank for such gyroscope. The modal analysis by the finite element method (FEM was firstly conducted. A set of quantitative indicators were developed to optimize the operation mode. By FEM, the harmonic analysis was conducted to find the way to efficiently actuate the operational mode needed. The optimal configuration of driving electrodes was obtained. At last, the Coriolis analysis was conducted to show the relation between angular velocity and differential output voltage by the Coriolis force under working condition. The results obtained in this paper provide theoretical basis for realizing this novel kind of micromachined gyroscope.

  18. Micromachined Inclinometer Based on Fluid Convection

    Crespy, N; Combette, P; Boyer, P Temple; Giani, A; Foucaran, A

    2008-01-01

    This paper presents a numerical simulation and experimental results of a one-dimensional thermal inclinometer with the cavity filled of gas and liquid. The sensor principle consists of one heating resistor placed between two detectors. When the resistor is electrically powered, it creates a symmetrical temperature profile inside a micromachined silicon cavity. By applying a tilt to the sensor, the profile shifts in the same direction of the sensible axis corresponding to the horizontal one to one. The temperature profile and the sensitivity according to the CO2 gas and mineral oil SAE50 have been studied using numerical resolution of fluid dynamics equations with the computational fluid dynamics (CFD) software package Fluent V6.2. We have shown that the sensitivity of liquid sensors is higher than the gas sensors one. By using micromachined silicon technique, a thermal inclinometer with one pair of detectors placed at 300 um from the heater has been made. Experimental measurements corroborate with the numeric...

  19. Micromachined Piezoelectric Actuators for Cryogenic Adaptive Optics Project

    National Aeronautics and Space Administration — TRS Technologies proposes micromachined single crystal piezoelectric actuator arrays to enable ultra-large stroke, high precision shape control for large aperture,...

  20. Micromachined Horn Antenna Operating at 75 GHz

    Grzegorczyk, Tomasz M.; Zurcher, Jean-François; Renaud, Philippe; Mosig, Juan R.

    2000-01-01

    We propose in this paper an integrated cavity-backed horn antenna, generalizing the well-known SSFIP (Strip-Slot-Foam-Inverted Patch) design, operating at 75 GHz. The antenna was optimized using a full-wave software and realized using micromachining technologies. The proposed structure can be used for high radiation ef-ficiency antennas and arrays in the millimeter-wave band, since surface waves are inherently suppressed by the use of a metallic horn and a cavity configuration.

  1. Surface micromachining of unfired ceramic sheets

    Rheaume, Jonathan M.; Pisano, Albert P.

    2011-01-01

    Conventional surface micromachining techniques including photolithography and both wet and dry etching have been directly applied to an unfired sheet of yttria-stabilized zirconia ceramic material. Reversible bonding methods were investigated for affixing unfired ceramic samples to silicon handle wafers in order to perform photolithography. Three types of photoresist were investigated. Thin film photoresist allowed a line-width feature size of 8 μm to be obtained. Thick film photoresist exhib...

  2. Micromachined Parts Advance Medicine, Astrophysics, and More

    2015-01-01

    In the mid-1990s, Marshall Space Flight Center awarded two SBIR contracts to Potomac Photonics, now based in Baltimore, for the development of computerized workstations capable of mass-producing tiny, intricate, diffractive optical elements. While the company has since discontinued the workstations, those contracts set the stage for Potomac Photonics to be a leader in the micromachining industry, where NASA remains one of its clients.

  3. Tool calibration system for micromachining system

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  4. A Surface Micromachined CMOS MEMS Humidity Sensor

    Jian-Qiu Huang

    2015-10-01

    Full Text Available This paper reports a CMOS MEMS (complementary metal oxide semiconductor micro electromechanical system piezoresistive humidity sensor fabricated by a surface micromachining process. Both pre-CMOS and post-CMOS technologies were used to fabricate the piezoresistive humidity sensor. Compared with a bulk micromachined humidity sensor, the machining precision and the sizes of the surface micromachined humidity sensor were both improved. The package and test systems of the sensor were designed. According to the test results, the sensitivity of the sensor was 7 mV/%RH (relative humidity and the linearity of the sensor was 1.9% at 20 °C. Both the sensitivity and linearity were not sensitive to the temperature but the curve of the output voltage shifted with the temperature. The hysteresis of the humidity sensor decreased from 3.2% RH to 1.9% RH as the temperature increased from 10 to 40 °C. The recovery time of the sensor was 85 s at room temperature (25 °C.

  5. Design of Surface Micromachined Compliant MEMS

    Joe Anthony Bradley

    2002-12-31

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMs, most have used comb-drive actuation methods and bulk micromachining processes. This research focused on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  6. Design of Surface micromachined Compliant MEMS

    Joe Anthony Bradley

    2002-08-01

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  7. Review of micromachining of ceramics by etching

    H.T.TING; K.A.ABOU-EL-HOSSEIN; H.B.CHUA

    2009-01-01

    In the last two decades, there has been an enormous surge in interest in ceramic materials and, as a result, there have been significant advances in their development and applications. Their inherent properties, such as capability of operating at temperatures far above metals, high level of hardness and toughness, low coefficient of thermal expansion and high thermal conductivity rendered ceramics to be one of the leading engineering materials. Many research works have been conducted in the past few years on machining of advanced ceramics using different processing methods in order to obtain a better surface roughness, higher material removal rate and improved tool life. Micromachining using chemical etching is one of those methods that do not involve the problem of tool life and direct tool-work piece contact. However, only a few research works have been done on micromachining of ceramics using chemical etching. Hence, study of chemical machining of advanced ceramics is still needed as the process has found wide application in the industry because of its relative low operating costs. In this work, we summarize the recent progresses in machining of different types of advanced ceramics, material processing methods such as wet etching and dry etching, and finally the prospects for control of material removal rate and surface quality in the process of ceramic micromachining.

  8. Experimental study of a variable-capacitance micromotor with electrostatic suspension

    A variable-capacitance micromotor where the rotor is supported electrostatically in five degrees of freedom was designed, fabricated and tested in order to study the behavior of this electrostatic motor. The micromachined device is based on a glass/silicon/glass stack bonding structure, fabricated by bulk micromachining and initially operated in atmospheric environment. The analytical torque model is obtained by calculating the capacitances between different stator electrodes and the rotor. Capacitance values in the order of 10−13 pF and torque values in the order of 10−10 N m have been calculated from the motor geometry and attainable drive voltage. A dynamic model of the motor is proposed by further estimating the air-film damping effect in an effort to explain the experimental rotation measurements. Experimental results of starting voltage, continuous operation, switching response and electric bearing of the micromotor are presented and discussed. Preliminary measurements indicate that a rotor rotating speed of 73.3 r min−1 can be achieved at a drive voltage of 28.3 V, equivalent to a theoretical motive torque of 517 pN m. Starting voltage results obtained from experimental measurement are in agreement with the developed dynamic model

  9. Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields

    Jungwirth, T.; Smrcka, L.

    1995-01-01

    A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures is presented. The nonlinear dependence of the capacitance on the gate voltage and in-plane magnetic field is discussed together with the capacitance quantum steps connected with a population of higher 2D gas subbands. The results of full self-consistent numerical calculations are compared to recent experimental data.

  10. SYSTEM-LEVEL SIMULATION OF VIBRATORY MICROMACHINED GYROSCOPE WITH FENCE STRUCTURE

    Che Lufeng; Xiong Bin; Wang Yuelin

    2004-01-01

    An equivalent circuit model of a novel fence structure vibratory micromachined gyroscope's oscillating properties is modeled by electrical equivalent circuits according to its dynamics equation. Equivalent circuit model of oscillating and differential detection capacitance model are implemented in the circuit simulation tool PSPICE, which is available in oscillating properties analysis such as oscillating's transient response, steady response and frequency response to angular rate to optimize working mode of the gyroscope. The model also enables sensor simulation with the interfacing electronics to analyse the performances of the whole system. Behavioral simulation of the system is performed to prove the function of detection circuits. The simulation results and measurement results show that the design of circuits is feasible.

  11. High-frequency analysis on surface micromachined on-chip transformers with stacked interwinding coil structures

    On-chip micro-transformers with a stacked interwinding coil have been developed. The transformer is fabricated using simple and cost-effective MEMS surface micromachining. High-frequency characteristics of the transformer are analyzed by comparing its performances for various coil structures and substrate materials, respectively. The results show that the RF performance of the glass-based transformer is improved compared to that of a silicon-based transformer. An analysis of various coil configuration leads to the conclusion that the metal-to-metal capacitance has a significant influence on the RF characteristics. The process fabrication of the device is simple, highlighting good prospects for future three-dimensional RF-MEMS device application

  12. Scale Factor Determination of Micro-Machined Angular Rate Sensors Without a Turntable

    Gaisser Alexander; GAO Zhongyu; ZHOU Bin; ZHANG Rong; CHEN Zhiyong

    2006-01-01

    This paper presents a digital readout system to detect small capacitive signals of a micro-machined angular rate sensor. The flexible parameter adjustment ability and the computation speed of the digital signal processor were used to develop a new calibration procedure to determine the scale factor of a gyroscope without a turntable. The force of gravity was used to deflect the movable masses in the sensor, which resulted in a corresponding angular rate input. The gyroscope scale factor was then measured without a turntable. Test results show a maximum deviation of about 1.2% with respect to the scale factor determined on a turntable with the accuracy independent of the manufacturing process and property variations. The calibration method in combination with the improved readout electronics can minimize the calibration procedure and, thus, reduce the manufacturing costs.

  13. Equivalent Circuit Models for Large Arrays of Curved and Flat Piezoelectric Micromachined Ultrasonic Transducers.

    Akhbari, Sina; Sammoura, Firas; Lin, Liwei

    2016-03-01

    Equivalent circuit models of large arrays of curved (spherical shape) and flat piezoelectric micromachined ultrasonic transducers (pMUTs) have been developed for complex pMUT arrays design and analysis. The exact solutions for circuit parameters in the electromechanical domain, such as mechanical admittance, input electrical impedance, and electromechanical transformer ratio, were analytically derived. By utilizing the array solution methods previously established for the thickness-mode piezoelectric devices and capacitive micromachined ultrasonic transducers (cMUTs), the single pMUT circuit model can be extended to models for array structures. The array model includes both the self- and mutual-acoustic radiation impedances of individual transducers in the acoustic medium. Volumetric displacement, induced piezoelectric current, and pressure field can be derived with respect to the input voltage matrix, material, and geometrical properties of each individual transducer and the array structure. As such, the analytical models presented here can be used as a guideline for analyses and design evaluations of large arrays of curved and flat pMUTs efficiently and can be further generalized to evaluate other pMUT architectures in the form of single devices or arrays. PMID:26863658

  14. Head First 2D Geometry

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  15. 2D-animaatiotuotannon optimointi

    Saturo, Reetta

    2015-01-01

    Tämän opinnäytetyön tavoitteena on tutkia 2D-animaatiotuotannon optimoinnin mahdollisuuksia tiukan tuotantoaikataulun vaatimuksissa. Tutkielmassa tarkastellaan kahta asiakasprojektia, jotka on toteutettu pienellä tuotantotiimillä. Työkaluna animaatioissa on käytetty pääosin Adoben After Effects -ohjelmistoa. Tutkielman alussa esitellään animaatiotuotannot, joiden tuloksena syntyi kaksi lyhyttä mainoselokuvaa. Sen jälkeen käydään läpi animaatioelokuvan tuotantoprosessia vaiheittain ja tark...

  16. Capacitance of circular patch resonator

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants

  17. Capacitance of circular patch resonator

    Miano, G.; Verolino, L. [Dip. di Ingegneria Elettrica, Ist. Nazionale di Fisica Nucleare, Naples (Italy); Panariello, G. [Dip. di Ingegneria Elettronica, Naples (Italy); Vaccaro, V.G. [Ist. Nazionale di Fisica Nucleare, Naples (Italy). Dipt. di Scienze Fisiche

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants.

  18. Improved Capacitive Liquid Sensor

    Waldman, Francis A.

    1992-01-01

    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  19. Technology and applications of micromachined silicon adaptive mirrors

    Vdovin, G.; Middelhoek, S.; Sarro, P.M.

    1997-01-01

    The technology of low-cost high-quality micromachined adaptive mirrors is reported. Adaptive mirrors are fabricated by combining bulk silicon micromachining with standard electronics technologies. Mirrors with tens of control channels, having RMS initial deviation from plane of the order of λ/20 and

  20. Advanced technology trend survey of micromachines in Europe; Oshu ni okeru micromachine sentan gijutsu doko chosa

    NONE

    1996-02-01

    In this research survey, the development trend of micromachine technology in Europe was surveyed, development level of micromachine technology of European companies was grasped, and practical application fields of their target were investigated. Technology development level of private companies in Japan`s national projects and practical application fields of Japan`s target were arranged. Trends of micromachine technology development are compared between Japanese companies and European companies. Among micromachine technology development projects in Europe, ``8520 MUST`` is a part of the ESPRIT Project. About 40,000 companies among about 170,000 companies in whole Europe are relating to the MUST Project. The main fields include the manufacturing technology, process control of machines, technology of safety, sensor technology in environmental fields, and automotive technology. The marketing fields of application include the automobile, military technology, home automation, industrial process, medical technology, environmental technology, and games. The results can be compared with the direction of research and development in Japan. 22 figs., 8 tabs.

  1. A Polymer-Based Capacitive Sensing Array for Normal and Shear Force Measurement

    Ming-Yuan Cheng

    2010-11-01

    Full Text Available In this work, we present the development of a polymer-based capacitive sensing array. The proposed device is capable of measuring normal and shear forces, and can be easily realized by using micromachining techniques and flexible printed circuit board (FPCB technologies. The sensing array consists of a polydimethlysiloxane (PDMS structure and a FPCB. Each shear sensing element comprises four capacitive sensing cells arranged in a 2 × 2 array, and each capacitive sensing cell has two sensing electrodes and a common floating electrode. The sensing electrodes as well as the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrodes are patterned on the PDMS structure. This design can effectively reduce the complexity of the capacitive structures, and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions were measured and discussed. A scanning circuit was also designed and implemented. The measured maximum sensitivity is 1.67%/mN. The minimum resolvable force is 26 mN measured by the scanning circuit. The capacitance distributions induced by normal and shear forces were also successfully captured by the sensing array.

  2. Programmable electronic synthesized capacitance

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  3. Ductile mode electrochemical oxidation assisted micromachining for glassy carbon

    Recently, a new mechanical machining process using electrochemical oxidation was reported. Electrochemical oxidation assisted micromachining was applied to the machining of glassy carbon. The material removal process of the electrochemical oxidation assisted micromachining consists of repeated cycles of oxidation followed by removal of the oxide layer. In this paper, we experimentally investigate and compare the critical chip thickness for ductile mode cutting in mechanical machining and electrochemical oxidation assisted micromachining of glassy carbon. The theoretical critical chip thickness is calculated for mechanical machining of glassy carbon and experimentally verified. The effect of electrochemical oxidation on the critical chip thickness for ductile mode micromachining is also studied for glassy carbon. It is found that the critical chip thickness is increased for the electrochemical oxidation assisted micromachining. (paper)

  4. A novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances

    Dong Linxi; Chen Jindan; Yan Haixia; Huo Weihong; Li Yongjie; Sun Lingling

    2009-01-01

    The comb capacitances fabricated by deep reactive ion etching (RIE) process have high aspect ratio which is usually smaller than 30 : 1 for the complicated process factors, and the combs are usually not parallel due to the well-known micro-loading effect and other process factors, which restricts the increase of the seismic mass by increasing the thickness of comb to reduce the thermal mechanical noise and the decrease of the gap of the comb capacitances for increasing the sensitive capacitance to reduce the electrical noise. Aiming at the disadvantage of the deep RIE, a novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances is developed. One part of sensing of inertial signal of the micro-accelerometer is by the grid strip capacitances whose overlapping area is variable and which do not have the non-parallel plate's effect caused by the deep RIE process. Another part is by the sensing gap alterable capacitances whose gap between combs can be reduced by the actuators. The designed initial gap of the alterable comb capacitances is relatively large to depress the effect of the maximum aspect ratio (30 : 1) of deep RIE process. The initial gap of the capacitance of the actuator is smaller than the one of the comb capacitances. The difference between the two gaps is the initial gap of the sensitive capacitor. The designed structure depresses greatly the requirement of deep RIE process. The effects of non-parallel combs on the accelerometer are also analyzed. The characteristics of the micro-accelerometer are discussed by field emission microscopy (FEM) tool ANSYS. The tested devices based on slide-film damping effect are fabricated, and the tested quality factor is 514, which shows that grid strip capacitance design can partly improve the resolution and also prove the feasibility of the designed silicon-glass anodically bonding process.

  5. 2D SIMPLIFIED SERVO VALVE

    2003-01-01

    A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.

  6. Personalized 2D color maps

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  7. Use of chemical mechanical polishing in micromachining

    Nasby, R.D.; Hetherington, D.L.; Sniegowski, J.J.; McWhorter, P.J.; Apblett, C.A.

    1998-09-08

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface. 4 figs.

  8. Active micromachines: Microfluidics powered by mesoscale turbulence

    Thampi, Sumesh P; Shendruk, Tyler N; Golestanian, Ramin; Yeomans, Julia M

    2016-01-01

    Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterised by mesoscale turbulence, the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organises into a spin-state where neighbouring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence.

  9. Active micromachines: Microfluidics powered by mesoscale turbulence

    Thampi, Sumesh P.; Doostmohammadi, Amin; Shendruk, Tyler N.; Golestanian, Ramin; Yeomans, Julia M.

    2016-01-01

    Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterized by mesoscale turbulence, which is the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organizes into a spin state where neighboring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence. PMID:27419229

  10. Surface micromachined electrostatically actuated micro peristaltic pump

    Xie, Jun; Shih, Jason; Lin, Qiao; Yang, Bozhi; Tai, Yu-Chong

    2004-01-01

    An electrostatically actuated micro peristaltic pump is reported. The micro pump is entirely surface micromachined using a multilayer parylene technology. Taking advantage of the multilayer technology, the micro pump design enables the pumped fluid to be isolated from the electric field. Electrostatic actuation of the parylene membrane using both DC and AC voltages was demonstrated and applied to fluid pumping based on a 3-phase peristaltic sequence. A maximum flow rate of 1.7 nL min^–1 and a...

  11. Active micromachines: Microfluidics powered by mesoscale turbulence.

    Thampi, Sumesh P; Doostmohammadi, Amin; Shendruk, Tyler N; Golestanian, Ramin; Yeomans, Julia M

    2016-07-01

    Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterized by mesoscale turbulence, which is the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organizes into a spin state where neighboring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence. PMID:27419229

  12. Optimal pricing of capacitated networks

    Grigoriev, Alexander; Loon, van Joyce; Sitters, René; Uetz, Marc

    2009-01-01

    We address the algorithmic complexity of a profit maximization problem in capacitated, undirected networks. We are asked to price a set of $m$ capacitated network links to serve a set of $n$ potential customers. Each customer is interested in purchasing a network connection that is specified by a si

  13. Efficiency of Capacitively Loaded Converters

    Andersen, Thomas; Huang, Lina; Andersen, Michael A. E.;

    2012-01-01

    introduced as a definition of efficiency. The calculated and measured efficiency curves for charging DEAP actuator, polypropylene film capacitor and X7R MLCC are provided and compared. The attention has to be paid for the voltage dependent capacitive load, like X7R MLCC, when evaluating the charging......This paper explores the characteristic of capacitance versus voltage for dielectric electro active polymer (DEAP) actuator, 2kV polypropylene film capacitor as well as 3kV X7R multi layer ceramic capacitor (MLCC) at the beginning. An energy efficiency for capacitively loaded converters is...... polypropylene film capacitor can be the equivalent capacitive load. Because of the voltage dependent characteristic, X7R MLCC cannot be used to replace the DEAP actuator. However, this type of capacitor can be used to substitute the capacitive actuator with voltage dependent property at the development phase....

  14. Estimation of carrier mobility at organic semiconductor/insulator interface using an asymmetric capacitive test structure

    Rajesh Agarwal

    2016-04-01

    Full Text Available Mobility of carriers at the organic/insulator interface is crucial to the performance of organic thin film transistors. The present work describes estimation of mobility using admittance measurements performed on an asymmetric capacitive test structure. Besides the advantage of simplicity, it is shown that at low frequencies, the measured capacitance comes from a large area of channel making the capacitance-voltage characteristics insensitive to contact resistances. 2-D numerical simulation and experimental results obtained with Pentacene/Poly(4-vinyphenol system are presented to illustrate the operation and advantages of the proposed technique.

  15. Estimation of carrier mobility at organic semiconductor/insulator interface using an asymmetric capacitive test structure

    Agarwal, Rajesh; Agarwal, Ashish K.; Mazhari, Baquer

    2016-04-01

    Mobility of carriers at the organic/insulator interface is crucial to the performance of organic thin film transistors. The present work describes estimation of mobility using admittance measurements performed on an asymmetric capacitive test structure. Besides the advantage of simplicity, it is shown that at low frequencies, the measured capacitance comes from a large area of channel making the capacitance-voltage characteristics insensitive to contact resistances. 2-D numerical simulation and experimental results obtained with Pentacene/Poly(4-vinyphenol) system are presented to illustrate the operation and advantages of the proposed technique.

  16. Robust micromachining of compliant mechanisms using silicides

    We introduce an innovative sacrificial surface micromachining process that enhances the mechanical robustness of freestanding microstructures and compliant mechanisms. This process facilitates the fabrication, and improves the assembly yield of the out-of-plane micro sensors and actuators. Fabrication of a compliant mechanism using conventional sacrificial surface micromachining results in a non-planar structure with a step between the structure and its anchor. During mechanism actuation or assembly, stress accumulation at the structure step can easily exceed the yield strength of the material and lead to the structure failure. Our process overcomes this topographic issue by virtually eliminating the step between the structure and its anchor, and achieves planarization without using chemical mechanical polishing. The process is based on low temperature and post-CMOS compatible nickel silicide technology. We use a layer of amorphous silicon (a-Si) as a sacrificial layer, which is locally converted to nickel silicide to form the anchors. High etch selectivity between silicon and nickel silicide in the xenon difluoride gas (sacrificial layer etchant) enables us to use the silicide to anchor the structures to the substrate. The formed silicide has the same thickness as the sacrificial layer; therefore, the structure is virtually flat. The maximum measured step between the anchor and the sacrificial layer is about 10 nm on a 300 nm thick sacrificial layer. (paper)

  17. Micromachining using a focused ion beam miller

    Full text: The focused ion beam (FIB) miller is becoming well established as a machine for the structural analysis of materials and for the rapid preparation of transmission electron microscope specimens. It has also been used for some time in the semiconducting materials industry for the analysis, repair and redesign of device materials. However, one emerging technique is the use of the FIB for micromachining. The FIB software can also be used to manufacture and machine components. This process can occur through converting software, typically in the form of bitmaps or TIF files, to proprietary 'stream' files. These files allow, often complex, patterns to be generated and milled into the specimen and thus the generation of micro-electromechanical systems. Frequently, this involves largely two-dimensional patterns and structures, however, more complex patterns and file types can be generated which allow, for example, device prototyping or the preparation of three-dimensional structures such as atom probe field ion microscope (APFIM) specimens. In this presentation the protocols for creating and using these files will be described together with examples of the patterns and its application to micromachining, device prototyping and APFIM specimens. Copyright (2002) Australian Society for Electron Microscopy Inc

  18. Void fraction measurement with capacitance meter

    The void fraction in an air-water system has been measured using the capacitance meter. Various flow regimes including bubbly, slug, churn, annular and drop-annular flow have been investigated. The superficial air and water velocity have been varied in the range of 0.145 less than or equal to j /SUB f/ less than or equal to 3.62 ft/sec and 0.183 less than or equal to j /SUB g/ less than or equal to 63.7 ft/sec respectively and the void fraction has been varied from 0.04 to 0.94. The capacitance meter is calibrated by both quick closing valve method and theoretical calculation based on drift-flux model. The sensitivity of void fraction measurement on sensor shape has been investigated with sensors of different width. Using the conventional theoretical curves of void fraction vs. relative susceptance, the results show that the sensor width has strong effect on void fraction measurement especially annular flow regime. The results also show that significant discrepancy exists between the theoretical curve and the experimental results. The reason for this discrepancy has been identified due to two dimensional edge effect of the circular sensor. A 2-D model has been developed taking into account of both sensor width and flow regime which gives good prediction of the experimental results

  19. A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure

    Sen Ren

    2013-12-01

    Full Text Available A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of −20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.

  20. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here

  1. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here. PMID:26233342

  2. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin [High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States)

    2015-07-15

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  3. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  4. Learn Unity for 2D game development

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  5. X-ray microcalorimeter arrays fabricated by surface micromachining

    Hilton, G.C. E-mail: hilton@boulder.nist.gov; Beall, J.A.; Deiker, S.; Vale, L.R.; Doriese, W.B.; Beyer, Joern; Ullom, J.N.; Reintsema, C.D.; Xu, Y.; Irwin, K.D

    2004-03-11

    We are developing arrays of Mo/Cu transition edge sensor-based detectors for use as X-ray microcalorimeters and sub-millimeter bolometers. We have fabricated 8x8 pixel X-ray microcalorimeter arrays using surface micromachining. Surface-micromachining techniques hold the promise of scalability to much larger arrays and may allow for the integration of in-plane multiplexer elements. In this paper we describe the surface micromachining process and recent improvements in the device geometry that provide for increased mechanical strength. We also present X-ray and heat pulse spectra collected using these detectors.

  6. X-ray microcalorimeter arrays fabricated by surface micromachining

    We are developing arrays of Mo/Cu transition edge sensor-based detectors for use as X-ray microcalorimeters and sub-millimeter bolometers. We have fabricated 8x8 pixel X-ray microcalorimeter arrays using surface micromachining. Surface-micromachining techniques hold the promise of scalability to much larger arrays and may allow for the integration of in-plane multiplexer elements. In this paper we describe the surface micromachining process and recent improvements in the device geometry that provide for increased mechanical strength. We also present X-ray and heat pulse spectra collected using these detectors

  7. Micro Capacitance Measuring Circuit Based on AC Bridge%基于交流电桥的动态微弱电容检测电路

    廉德钦; 何常德; 苗静; 杜春晖; 宛克敬; 薛晨阳

    2012-01-01

    基于MEMS技术研制的微电容超声传感器,在超声波作用下其有效电容的变化量仅为飞法级,且变化速度非常快,检测很困难.本文提出的半桥式交流电容检测电路能把快速变化的电容信号转换为电压信号,并加载到高频正弦激励信号中,再通过放大、解调、滤波得出电容变化量.该电路能很好地抑制寄生电容的影响,有良好的线性和稳定性,在200kHz的超声波作用下灵敏度可以达到2.8mV/fF,基本满足对超声传感器电容变化量的检测.%The Capacitive Micromachined Ultrasonic Transducers based on MEMS technology has developed.Under the action of ultrasound,the change of its effective capacitance is only fF-level and changes very fast,so measuring is very difficult.The half AC bridge capacitance detection circuit presented in this paper can convert the rapidly changing capacitance signal into voltage signal,and load the voltage signal into high-frequency sinusoidal excitation signal,then obtain capacitance variation through amplification,demodulation and filtering.The circuit effectively inhibits the influence of stray capacitance,and the linearity and stability of the circuit are good.The sensitivity can achieve 2.8mV7fF with 200kHz ultrasonic wave,and basically meet the needs of the micro capacitance change detection of the Capacitive Micromachined Ultrasonic Transducers.

  8. A micromachined pressure/flow sensor

    Oosterbroek, R.E.; Lammerink, T.S.J.; Berenschot, J.W.; Krijnen, G.J.M.; Elwenspoek, M.C.; Berg, van den A.

    1999-01-01

    The micromechanical equivalent of a differential pressure flow-sensor, well known in macro mechanics, is discussed. Two separate pressure sensors are used for the device, enabling to measure both, pressure as well as volume flow-rate. An integrated sensor with capacitive read-out as well as a hybrid

  9. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    Liu, W.; Zagzebski, J A; Hall, T.J.; Madsen, E L; Varghese, T.; Kliewer, M.A.; Panda, S.; Lowery, C; Barnes, S.

    2008-01-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical flu...

  10. Synthesis and structure of large single crystalline silver hexagonal microplates suitable for micromachining

    We report a simple one-step synthesis method of large single crystalline Ag (111) hexagonal microplates with sharp edges and a size of up to tens of microns. Single silver crystals were produced by reduction silver nitrate aqueous solution with 4-(methylamino)phenol sulfate. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and optical microscopy techniques were combined to characterize the crystals. It is shown that the microplates can be easily dispersed and transferred as single objects onto different substrates and subsequently used as a high quality plasmonic starting material for micromachining of future nanocomponents, using modern top-down techniques like focused-ion beam milling and gas injection deposition. - Highlights: • Synthesis of large Ag hexagonal microplates with high crystallinity. • It is shown and discussed the role of twinning for the anisotropic 2D growth. • The Ag plates are stable in water and can be dispersed onto different substrates. • Their positioning and subsequent micromachining with FIB/GIS is demonstrated. • Suitable starting material for future plasmonic nanocomponents

  11. Fabrication of microfilters using excimer laser micromachining and testing of pressure drop

    The excimer laser micromachining process has displayed numerous advantages as an efficient tool for fabricating 2D and 3D micro-components, such as a high-resolution power (up to sub-micrometer range) and ablation without thermal damage. This work investigates the suitability and limitations of the process for the fabrication of microfilters using excimer laser micromachining. Their successful fabrication requires precise control over the work parameters, and deals with a number of challenges. Three microfilters of mean pore sizes 14.4 µm, 18.3 µm and 25.6 µm but with the same opening ratio, and containing up to 14 000 holes, have been fabricated. Their performance has been assessed by measuring air flow, to capture a trend in pressure drop induced by the filter for varying flow rates. The Reynolds number based on hole diameter covered is 0.0086–0.21. The key findings include development of a successful method of fabrication, a positive correlation between pressure drop and flow rate during testing, and an increase in slope of the pressure curve with a decrease in pore size. The correlation available in the literature shows a large deviation with respect to the experimental data and a new correlation has been proposed. These results are expected to help design microfilters in the very low Reynolds number range

  12. Synthesis and structure of large single crystalline silver hexagonal microplates suitable for micromachining

    Lyutov, Dimitar L.; Genkov, Kaloyan V.; Zyapkov, Anton D.; Tsutsumanova, Gichka G.; Tzonev, Atanas N. [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria); Lyutov, Lyudmil G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Sofia, 1, J. Bouchier Blvd, Sofia (Bulgaria); Russev, Stoyan C., E-mail: scr@phys.uni-sofia.bg [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria)

    2014-01-15

    We report a simple one-step synthesis method of large single crystalline Ag (111) hexagonal microplates with sharp edges and a size of up to tens of microns. Single silver crystals were produced by reduction silver nitrate aqueous solution with 4-(methylamino)phenol sulfate. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and optical microscopy techniques were combined to characterize the crystals. It is shown that the microplates can be easily dispersed and transferred as single objects onto different substrates and subsequently used as a high quality plasmonic starting material for micromachining of future nanocomponents, using modern top-down techniques like focused-ion beam milling and gas injection deposition. - Highlights: • Synthesis of large Ag hexagonal microplates with high crystallinity. • It is shown and discussed the role of twinning for the anisotropic 2D growth. • The Ag plates are stable in water and can be dispersed onto different substrates. • Their positioning and subsequent micromachining with FIB/GIS is demonstrated. • Suitable starting material for future plasmonic nanocomponents.

  13. Fabrication of silicon bolometers with bulk micromachining technology

    Faes, A. E-mail: alesfaes@itc.it; Giacomozzi, F.; Margesin, B.; Nucciotti, A

    2004-03-11

    Monolithic silicon bolometers with implanted thermistors, micromachined thermal masses and suspension beams have been developed. These devices are intended for accurate {beta}-decay spectrum measurements in the Milano neutrino mass experiment. By means of a dedicated micromachining fabrication process very small thermal masses (700x430x15 {mu}m{sup 3}) and links (2150x22x15 {mu}m{sup 3}) have been directly integrated in the device, thus obtaining reproducible bolometers which are suitable for use in detector arrays. The fabrication process involves a combination of standard IC technologies and bulk micromachining techniques, based on wet etching steps in tetramethylammonium hydroxide (TMAH) water solutions. Protection of aluminum metal lines and surface roughness control are two important features of the developed technique. The proposed micromachining approach eventually aims at fabricating hundreds of highly reproducible bolometers, to be used simultaneously in order to improve the sensitivity of the neutrino mass experiment.

  14. Surface Micromachined Arrays of Transition-Edge Detectors Project

    National Aeronautics and Space Administration — An innovative surface micromachining technique is described for the fabrication of closely-packed arrays of transition edge sensor (TES) x-ray microcalorimeters....

  15. Structure optimization and simulation analysis of the quartz micromachined gyroscope

    Xuezhong Wu

    2014-02-01

    Full Text Available Structure optimization and simulation analysis of the quartz micromachined gyroscope are reported in this paper. The relationships between the structure parameters and the frequencies of work mode were analysed by finite element analysis. The structure parameters of the quartz micromachined gyroscope were optimized to reduce the difference between the frequencies of the drive mode and the sense mode. The simulation results were proved by testing the prototype gyroscope, which was fabricated by micro-electromechanical systems (MEMS technology. Therefore, the frequencies of the drive mode and the sense mode can match each other by the structure optimization and simulation analysis of the quartz micromachined gyroscope, which is helpful in the design of the high sensitivity quartz micromachined gyroscope.

  16. Fabrication of silicon bolometers with bulk micromachining technology

    Monolithic silicon bolometers with implanted thermistors, micromachined thermal masses and suspension beams have been developed. These devices are intended for accurate β-decay spectrum measurements in the Milano neutrino mass experiment. By means of a dedicated micromachining fabrication process very small thermal masses (700x430x15 μm3) and links (2150x22x15 μm3) have been directly integrated in the device, thus obtaining reproducible bolometers which are suitable for use in detector arrays. The fabrication process involves a combination of standard IC technologies and bulk micromachining techniques, based on wet etching steps in tetramethylammonium hydroxide (TMAH) water solutions. Protection of aluminum metal lines and surface roughness control are two important features of the developed technique. The proposed micromachining approach eventually aims at fabricating hundreds of highly reproducible bolometers, to be used simultaneously in order to improve the sensitivity of the neutrino mass experiment

  17. Capacitive Position Sensor For Accelerometer

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Capacitive position sensor measures displacement of proof mass in prototype accelerometer described in "Single-Crystal Springs for Accelerometers" (NPO-18795). Sensor is ultrasensitive, miniature device operating at ultra-high frequency and described in more detail in "Ultra-High-Frequency Capacitive Displacement Sensor," (NPO-18675). Advances in design and fabrication of prototype accelerometer also applicable to magnetometers and other sensors in which sensed quantities measured in terms of deflections of small springs.

  18. Laser micromachining of sputtered DLC films

    Fu, Y.Q. [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2, 1PZ (United Kingdom)]. E-mail: yf229@cam.ac.uk; Luo, J.K. [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2, 1PZ (United Kingdom); Flewitt, A.J. [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2, 1PZ (United Kingdom); Ong, S.E. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Zhang, S. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Milne, W.I. [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2, 1PZ (United Kingdom)

    2006-04-30

    DLC films with different thicknesses (from 100 nm to 1.9 {mu}m) were deposited using sputtering of graphite target in pure argon atmosphere without substrate heating. Film microstructures (sp{sup 2}/sp{sup 3} ratio) and mechanical properties (modulus, hardness, stress) were characterized as a function of film thickness. A thin layer of aluminum about 60 nm was deposited on the DLC film surface. Laser micromachining of Al/DLC layer was performed to form microcantilever structures, which were released using a reactive ion etching system with SF{sub 6} plasma. Due to the intrinsic stress in DLC films and bimorph Al/DLC structure, the microcantilevers bent up with different curvatures. For DLC film of 100 nm thick, the cantilever even formed microtubes. The relationship between the bimorph beam bending and DLC film properties (such as stress, modulus, etc.) were discussed in details.

  19. Surface micromachining of UV transparent materials

    Kopitkovas, G.; Lippert, T.; David, C.; Wokaun, A.; Gobrecht, J

    2004-04-01

    A method which utilizes XeCl excimer laser and an absorbing liquid in contact with the material for precise structuring of UV transparent materials is presented. This one step micromachining process enables the fabrication of micro-optical elements with continuous profiles such as Fresnel micro-lenses in CaF{sub 2} and quartz with fluences well below the damage threshold of these materials. The roughness of the etched features varies from 10 nm to 3 {mu}m depending on the laser fluence and material. The etch rates of different UV transparent materials (such as CaF{sub 2}, BaF{sub 2}, sapphire and quartz) at various laser fluences suggest that several different parameters influence the etching process.

  20. Laser micromachining of sputtered DLC films

    DLC films with different thicknesses (from 100 nm to 1.9 μm) were deposited using sputtering of graphite target in pure argon atmosphere without substrate heating. Film microstructures (sp2/sp3 ratio) and mechanical properties (modulus, hardness, stress) were characterized as a function of film thickness. A thin layer of aluminum about 60 nm was deposited on the DLC film surface. Laser micromachining of Al/DLC layer was performed to form microcantilever structures, which were released using a reactive ion etching system with SF6 plasma. Due to the intrinsic stress in DLC films and bimorph Al/DLC structure, the microcantilevers bent up with different curvatures. For DLC film of 100 nm thick, the cantilever even formed microtubes. The relationship between the bimorph beam bending and DLC film properties (such as stress, modulus, etc.) were discussed in details

  1. Micromachined Tunneling Displacement Transducers for Physical Sensors

    Kenny, T. W.; Kaiser, W. J.; Podosek, J. A.; Rockstad, H. K.; Reynolds, J. K.; Vote, E. C.

    1993-01-01

    We have designed and constructed a series of tunneling sensors which take advantage of the extreme position sensitivity of electron tunneling. In these sensors, a tunneling displacement transducer, based on scanning tunneling microscopy principles, is used to detect the signal-induced motion of a sensor element. Through the use of high-resonant frequency mechanical elements for the transducer, sensors may be constructed which offer wide bandwidth, and are robust and easily operated. Silicon micromachining may be used to fabricate the transducer elements, allowing integration of sensor and control electronics. Examples of tunneling accelerometers and infrared detectors will be discussed. In each case, the use of the tunneling transducer allows miniaturization of the sensor as well as enhancement of the sensor performance.

  2. Performance Evaluation of Laser Micro-Machining Installations

    Daemi, Bita; Mattsson, Lars

    2013-01-01

    Laser micro-machining is a growing field for micro manufacturing in many different materials. To obtain a better understanding of the accuracy of laser micro-machining equipment, moreover machine’s specification, a precise verification test is needed to measure the absolute performance of the machine. Available capability information is usually based on specifications given for the machine installations by machine deliverers. But in practice the absolute performances of some of the micro lase...

  3. The concept of chemical capacitance, A critique.

    Trissl, H. W.

    1981-01-01

    The concept of chemical capacitance as introduced by Hong and Mauzerall (Proc. Natl. Acad. Sci. U.S.A. 1974. 71:1564) is critically reexamined. This novel capacitance was introduced to explain the time-course of flash-induced photocurrents observed in lipid bilayer membranes containing porphyrins. According to Hong and Mauzerall, the chemical capacitance results from a combination of three fundamental capacitances: the geometric membrane capacitance and the two interfacial double layer capaci...

  4. The Cooling and Lubrication Performance of Graphene Platelets in Micro-Machining Environments

    Chu, Bryan

    temperature and a 25% reduction in the surface roughness value over that of the baseline semi-synthetic cutting fluid. For the thermally-reduced platelets (with 4--8 graphene layers and in-solution characteristic lateral length of 562--2780 nm), a concentration of 0.2 wt% appears to be optimal. An investigation into the impingement dynamics of the graphene-laden colloidal solutions on a heated substrate reveals that the most important criterion dictating their machining performance is their ability to form uniform, submicron thick films of the platelets upon evaporation of the carrier fluid. As such, the characterization of the residual platelet film left behind on a heated substrate may be an effective technique for evaluating different graphene colloidal solutions for cutting fluids applications in micromachining. Graphene platelets have also recently been shown to reduce the aggressive chemical wear of diamond tools during the machining of transition metal alloys. However, the specific mechanisms responsible for this improvement are currently unknown. The modeling work presented in this thesis uses molecular dynamics techniques to shed light on the wear mitigation mechanisms that are active during the diamond cutting of steel when in the presence of graphene platelets. The dual mechanisms responsible for graphene-induced chemical wear mitigation are: 1) The formation of a physical barrier between the metal and tool atoms, preventing graphitization; and 2) The preferential transfer of carbon from the graphene platelet rather than from the diamond tool. The results of the simulations also provide new insight into the behavior of the 2D graphene platelets in the cutting zone, specifically illustrating the mechanisms of cleaving and interlayer sliding in graphene platelets under the high pressures in cutting zones.

  5. Surface modelling for 2D imagery

    Lieng, Henrik

    2014-01-01

    Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...

  6. Perspectives for spintronics in 2D materials

    Wei Han

    2016-03-01

    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  7. Perspectives for spintronics in 2D materials

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  8. UNITS IN $F_2D_{2p}$

    Kaur, Kuldeep; Khan, Manju

    2012-01-01

    Let $p$ be an odd prime, $D_{2p}$ be the dihedral group of order 2p, and $F_{2}$ be the finite field with two elements. If * denotes the canonical involution of the group algebra $F_2D_{2p}$, then bicyclic units are unitary units. In this note, we investigate the structure of the group $\\mathcal{B}(F_2D_{2p})$, generated by the bicyclic units of the group algebra $F_2D_{2p}$. Further, we obtain the structure of the unit group $\\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\\mathcal{U}_*(F_...

  9. Bedform characterization through 2D spectral analysis

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian

    energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...... characteristics using twodimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most...

  10. 2D Barcode for DNA Encoding

    Elena Purcaru

    2011-09-01

    Full Text Available The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  11. 2D Barcode for DNA Encoding

    Purcaru, Elena

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  12. Characterization of the tuning performance of a micro-machined Fabry–Pérot interferometer for thermal infrared

    We developed a tunable surface-micromachined Fabry–Pérot interferometer for the thermal infrared spectral region of wavelengths 7–11 µm. The device is controlled through capacitive actuation with the maximum applied voltage near 30 V. The transmission characteristics, as a function of the tuning actuation, were recorded for several samples with a Fourier-transform infrared spectrometer. Two different device designs are compared in terms of the transmission peak width and height evolution along the actuation. Numerical simulations and the established analytical Airy expression are exploited in order to bridge the gap between an ideal-model performance and the measurement results. Emphasis in the analysis is on the movable mirror unidealities and their implications in the performance. Finally, we present example data recorded with a laboratory setup of a gas spectrometer, based on the device under study. (paper)

  13. Annotated Bibliography of EDGE2D Use

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  14. 2D NMR studies of biomolecules

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  15. Applications of 2D helical vortex dynamics

    Okulov, Valery; Sørensen, Jens Nørkær

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...

  16. Annotated Bibliography of EDGE2D Use

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  17. Improving capacitance/damping ratio in a capacitive MEMS transducer

    Damping forces play an important role in capacitive MEMS (microelectromechanical systems) behavior, and typical damper design (parallel-plates) cannot address the design conflict between increase in electrical capacitance and damping reduction. Squeeze-film damping in in-plane parallel-plate MEMS is discussed here and a novel damper geometry for gap-varying parallel-plates is introduced and used to increase the capacitance/damping ratio. The new geometry is compared with a typical parallel-plate design for an silicon-on-insulator process (25 µm thick) and experimental data shows an approximate 25% to 50% reduction for the damping coefficient in structures with 500 µm long dampers (for a gap variation between 0.75 and 3.75 µm), in agreement with computational fluid dynamics simulations, without significantly affecting the capacitance value (∼4% reduction). Preliminary simulations to study the role of the different geometric parameters involved in the improved geometry are also performed and reveal that the channel width is the most critical value for effective damping reduction. (paper)

  18. An Investigation of Processes for Glass Micromachining

    Nguyen Van Toan

    2016-03-01

    Full Text Available This paper presents processes for glass micromachining, including sandblast, wet etching, reactive ion etching (RIE, and glass reflow techniques. The advantages as well as disadvantages of each method are presented and discussed in light of the experiments. Sandblast and wet etching techniques are simple processes but face difficulties in small and high-aspect-ratio structures. A sandblasted 2 cm × 2 cm Tempax glass wafer with an etching depth of approximately 150 µm is demonstrated. The Tempax glass structure with an etching depth and sides of approximately 20 μm was observed via the wet etching process. The most important aspect of this work was to develop RIE and glass reflow techniques. The current challenges of these methods are addressed here. Deep Tempax glass pillars having a smooth surface, vertical shapes, and a high aspect ratio of 10 with 1-μm-diameter glass pillars, a 2-μm pitch, and a 10-μm etched depth were achieved via the RIE technique. Through-silicon wafer interconnects, embedded inside the Tempax glass, are successfully demonstrated via the glass reflow technique. Glass reflow into large cavities (larger than 100 μm, a micro-trench (0.8-μm wide trench, and a micro-capillary (1-μm diameter are investigated. An additional optimization of process flow was performed for glass penetration into micro-scale patterns.

  19. Apparatus for precision micromachining with lasers

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  20. Method and apparatus for precision laser micromachining

    Chang, Jim; Warner, Bruce E.; Dragon, Ernest P.

    2000-05-02

    A method and apparatus for micromachining and microdrilling which results in a machined part of superior surface quality is provided. The system uses a near diffraction limited, high repetition rate, short pulse length, visible wavelength laser. The laser is combined with a high speed precision tilting mirror and suitable beam shaping optics, thus allowing a large amount of energy to be accurately positioned and scanned on the workpiece. As a result of this system, complicated, high resolution machining patterns can be achieved. A cover plate may be temporarily attached to the workpiece. Then as the workpiece material is vaporized during the machining process, the vapors condense on the cover plate rather than the surface of the workpiece. In order to eliminate cutting rate variations as the cutting direction is varied, a randomly polarized laser beam is utilized. A rotating half-wave plate is used to achieve the random polarization. In order to correctly locate the focus at the desired location within the workpiece, the position of the focus is first determined by monitoring the speckle size while varying the distance between the workpiece and the focussing optics. When the speckle size reaches a maximum, the focus is located at the first surface of the workpiece. After the location of the focus has been determined, it is repositioned to the desired location within the workpiece, thus optimizing the quality of the machined area.

  1. Silicon Micromachining in RF and Photonic Applications

    Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen

    1995-01-01

    Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.

  2. Silicon micromachined sensor for gas detection

    Moldovan, Carmen; Hinescu, Lavinia; Hinescu, Mihail; Iosub, Rodica; Nisulescu, Mihai; Firtat, Bogdan; Modreanu, Mircea; Dascalu, Dan; Voicu, Victor; Tarabasanu, Cornel

    2003-08-15

    The paper presents the layout and the technological steps for an interdigitated integrated capacitor used for gases detection. Silicon micromachining technology is applied for manufacturing the sensor substrate. The sensitive layer used is phthalocyanine (Pc) deposed by evaporation technique under high vacuum. The phthalocyanine derivatives are obtained by the same deposition technique. Considering the different sensitivities of phthalocyanines derivatives, we obtained different gas sensors. The copper phthalocyanine (CuPc), nickel phthalocyanine (NiPc) and iron phthalocyanine (FePc) have been investigated for NO{sub x} detection. The measurement of sensors for NO{sub x} and NO{sub 2} detection will be presented as gas concentration versus impedance. The microsensors testing structures deposited with phthalocyanines were investigated by impedance measurements in a vacuum chamber controlled by a gas analyser. The measurements were made at room temperature but a medium temperature is applied (<200 deg. C) after measurement, for cleaning the material in order to reuse the sensor. The sensor is integrated, MOS compatible, cheap, easy to be used and has a low power consumption.

  3. New Multipole Method for 3-D Capacitance Extraction

    Zhao-Zhi Yang; Ze-Yi Wang

    2004-01-01

    This paper describes an effcient improvement of the multipole accelerated boundary element method for 3-D capacitance extraction.The overall relations between the positions of 2-D boundary elements are considered instead of only the relations between the center-points of the elements,and a new method of cube partitioning is introduced.Numerical results are presented to demonstrate that the method is accurate and has nearly linear computational growth as O(n),where n is the number of panels/boundary elements.The proposed method is more accurate and much faster than Fastcap.

  4. Internal Photoemission Spectroscopy of 2-D Materials

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  5. Inertial solvation in femtosecond 2D spectra

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  6. A Novel Uniplanar Multi-Electrode Capacitive Sensor for In-Situ Weathering Damage Detection of Nonmetallic Materials

    Ensheng Dong; Yonggui Dong; Wener Lv; Huibo Jia; Jun Li

    2006-01-01

    A uniplanar capacitive sensor with 5-electrodes on one plane substrate and a large reflector electrode, was designed to get the corresponding capacitance information for weathering damage detection of non-metallic materials exposed to a service environment. A 2-D finite-element method was employed to simulate the electric potential distribution and capacitance measurements for the sensor. 2 marble slabs, one was healthy and the other was notched, were experimentally detected. Both the simulation and the preliminary experimental results show that the measured capacitances decrease after weathering damage occurs in nonmetallic material. The reflector can enlarge the sensitive depth. The weathering assessment of nonmetallic materials can be done by processing the measured capacitances. The proposed approach can effectively detect the weathering damage of nonmetallic material and can be practically used for in-situ weathering damage evaluation.

  7. Driven shielding capacitive proximity sensor

    Vranish, John M. (Inventor); McConnell, Robert L. (Inventor)

    2000-01-01

    A capacitive proximity sensing element, backed by a reflector driven at the same voltage as and in phase with the sensor, is used to reflect the field lines away from a grounded robot arm towards an intruding object, thus dramatically increasing the sensor's range and sensitivity.

  8. Water desalination via capacitive deionization

    Suss, M.E.; Porada, S.; Sun, X.; Biesheuvel, P.M.; Yoon, J.; Presser, V.

    2015-01-01

    Capacitive deionization (CDI) is an emerging technology for the facile removal of charged ionic species from aqueous solutions, and is currently being widely explored for water desalination applications. The technology is based on ion electrosorption at the surface of a pair of electrically charg

  9. Voltage Dependence of Supercapacitor Capacitance

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  10. 2D supergravity in p+1 dimensions

    Gustafsson, H.; Lindstrom, U.

    1998-01-01

    We describe new $N$-extended 2D supergravities on a $(p+1)$-dimensional (bosonic) space. The fundamental objects are moving frame densities that equip each $(p+1)$-dimensional point with a 2D ``tangent space''. The theory is presented in a $[p+1, 2]$ superspace. For the special case of $p=1$ we recover the 2D supergravities in an unusual form. The formalism has been developed with applications to the string-parton picture of $D$-branes at strong coupling in mind.