WorldWideScience

Sample records for 25-kpa altitude exposures

  1. Pupillary Light Reaction during High Altitude Exposure

    Schultheiss, Maximilian; Schommer, Kai; Schatz, Andreas; Wilhelm, Barbara; Peters, Tobias; Fischer, M. Dominik; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian; Willmann, Gabriel, 1977-

    2014-01-01

    Purpose This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP) and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS). This work is related to the Tübingen High Altitude Ophthalmology (THAO) study. Methods Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity) were quantified in 14...

  2. Ambulation Increases Decompression Sickness in Altitude Exposure

    Conkin, Johnny; Pollock, N. W.; Natoli, M. J.; Wessel, J. H., III; Gernhardt, M. L.

    2014-01-01

    INTRODUCTION - Exercise accelerates inert gas elimination during oxygen breathing prior to decompression (prebreathe), but may also promote bubble formation and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of exercise are likely critical to the net effect. The NASA Prebreathe Reduction Program (PRP) combined oxygen prebreathe and exercise preceding a 4.3 psi exposure in non-ambulatory subjects (a microgravity analog) to produce two protocols now used by astronauts preparing for extravehicular activity (CEVIS and ISLE). Additional work is required to investigate whether exercise normal to 1 G environments increases the risk of DCS over microgravity simulation. METHODS - The CEVIS protocol was replicated with one exception. Our subjects completed controlled ambulation (walking in place with fixed cadence and step height) during both preflight and at 4.3 psi instead of remaining non-ambulatory throughout. Decompression stress was graded with aural Doppler (Spencer 0-IV scale). Two-dimensional echocardiographic imaging was used to look for left heart gas emboli (the presence of which prompted test termination). Venous blood was collected at three points to correlate Doppler measures of decompression stress with microparticle (cell fragment) accumulation. Fisher Exact Tests compared test and control groups. Trial suspension would occur when DCS risk >15% or grade IV venous gas emboli (VGE) risk >20% (at 70% confidence). RESULTS - Eleven person-trials were completed (9 male, 2 female) when DCS prompted suspension. DCS was greater than in CEVIS trials (3/11 [27%] vs. 0/45 [0%], respectively, p=0.03). Statistical significance was not reached for peak grade IV VGE (2/11 [18%] vs. 3/45 [7%], p=0.149) or cumulative grade IV VGE observations per subject-trial (8/128 [6%] vs. 26/630 [4%], p=0.151). Microparticle data were collected for 5/11 trials (3 with DCS outcomes), with widely varying patterns that could not be resolved statistically

  3. Long-Term Exposure to High Altitude Affects Conflict Control in the Conflict-Resolving Stage

    Ma, Hailin; Wang, Yan; Wu, Jianhui; Wang, Baoxi; Guo, Shichun; Luo, Ping; Han, Buxin

    2015-01-01

    The neurocognitive basis of the effect of long-term high altitude exposure on conflict control is unclear. Event related potentials (ERPs) were recorded in a flanker task to investigate the influence of high altitude on conflict control in the high-altitude group (who had lived at high altitude for three years but were born at low altitude) and the low-altitude group (living in low altitude only). Although altitude effect was not significant at the behavioral level, ERPs showed cognitive conf...

  4. Modelling of radiation exposure at high altitudes during solar storms

    A transport code analysis using Monte Carlo N-Particle extended code, MCNPX, has been used to propagate an extrapolated particle spectrum based on satellite measurements through the atmosphere to estimate radiation exposure during solar storms at high altitudes. Neutron monitor count rate data from stations around the world were used to benchmark the model calculations during a ground-level event (GLE). A comparison was made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during GLE 60. A computer code has been developed to implement the model for routine analysis. (authors)

  5. Long-Term Exposure to High Altitude Affects Response Inhibition in the Conflict-monitoring Stage

    Ma, Hailin; Wang, Yan; Wu, Jianhui; Luo, Ping; Han, Buxin

    2015-01-01

    To investigate the effects of high-altitude exposure on response inhibition, event-related potential (ERP) components N2 and P3 were measured in Go/NoGo task. The participants included an ‘immigrant’ high-altitude group (who had lived at high altitude for three years but born at low altitude) and a low-altitude group (living in low altitude only). Although the behavioural data showed no significant differences between the two groups, a delayed latency of NoGo-N2 was found in the high-altitude...

  6. [Should hypertensive patients adapt their antihypertensive drugs during high altitude exposure?].

    Wuerzner, G; Allemann, Y

    2015-09-01

    High altitude exposure during leisure time is becoming more and more frequent. Due to the high prevalence of hypertension in the general population, high altitude exposure in hypertensive patients may not be uncommon. The increase in blood pressure with altitude has been confirmed by ambulatory blood pressure measurement in normotensive as well as in hypertensive patients. Compared to a placebo, most hypertensive drugs keep their blood pressure lowering effect up to a certain altitude. It is recommended that hypertensive patients measure their blood pressure during high altitude, exposure and plan a possible adaptation of treatment with their physician before their sojourn. PMID:26540993

  7. Continuous positive airway pressure increases haemoglobin O2 saturation after acute but not prolonged altitude exposure.

    p. Agostoni, Caldara G, Bussotti M, Revera M, Valentini M, Gregorini F, Faini A, Lombardi C, Bilo G, Giuliano A, Veglia F, Savia G, P.A. Modesti, Mancia G, Parati G

    2010-01-01

    Abstract: It is unknown whether subclinical high-altitude pulmonary oedema reduces spontaneously after prolonged altitude exposure. Continuous positive airway pressure (CPAP) removes extravascular lung fluids and improves haemoglobin oxygen saturation in acute cardiogenic oedema. We evaluated the presence of pulmonary extravascular fluid increase by assessing CPAP effects on haemoglobin oxygen saturation under acute and prolonged altitude exposure. We applied 7 cm H2O CPAP for 30 min to he...

  8. Acclimatisation in trekkers with and without recent exposure to high altitude.

    MacNutt, Meaghan J; Laursen, Paul B; Kedia, Shiksha; Neupane, Maniraj; Parajuli, Parash; Pokharel, Jhapindra; Sheel, A William

    2012-09-01

    In mountaineers, recent altitude exposure has been shown to improve climbing performance and clinical outcomes during re-exposure to high altitude. However, the timing of previous altitude exposure has not been clearly reported and previous findings might be driven by individuals who were still acclimatised at the time of re-exposure. Our goal was to determine whether recent altitude exposure would confer an advantage even in individuals who had de-acclimatised for ≥ 1 week before being re-exposure. Low-altitude natives kept a daily trekking log throughout 7- to 8-day trek from Lukla (2,840 m) to Gokyo Ri (5,360 m). Trekkers with recent altitude exposure (re-acclimatisers, RA; n = 20) walked 20% faster (p < 0.01), reported lower acute mountain sickness scores (9 ± 8 vs. 15 ± 13; p = 0.02), and used less medication to treat headache (p < 0.05) compared to trekkers with no recent altitude exposure (initial acclimatisers, IA; n = 30). On Gokyo Ri, S(p)O(2) was significantly higher in RA than IA trekkers (85 ± 6 vs. 78 ± 6; p = 0.01). These data indicate improved functional outcomes and physiological compensation for hypoxia in RA. However, even after de-acclimatisation for 7-30 days, it is possible that RA trekkers began the trek in a more acclimatised state than IA trekkers. RA trekkers might represent a self-selected group that has previously tolerated altitude well and has therefore opted to return. Some findings might also reflect improved psychological altitude tolerance in RA. A direct comparison of the functional and physiological responses to hypoxia throughout an initial and re-acclimatisation to high altitude is needed. PMID:22252248

  9. Ozone Exposure System Designed and Used to High-Altitude Airship Materials

    Miller, Sharon K.

    2005-01-01

    High-altitude airships can receive high doses of ozone over short mission durations. For example, in 1 year at an altitude of 70,000 ft, the ozone fluence (number arriving per unit area) can be as high as 1.2 1024 molecules/sq cm. Ozone exposure at these levels can embrittle materials or change the performance of solar cells. It is important to expose components and materials to the expected ozone dosage to determine if the ozone exposure could cause any mission-critical failures.

  10. Mitochondrial function in human skeletal muscle following high-altitude exposure

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia; Calbet, Jose A L; Robach, Paul; Gnaiger, Erich; Lundby, Carsten

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  11. Changes of pathological and physiological indicators affecting drug metabolism in rats after acute exposure to high altitude

    Li, Wenbin; Wang, Rong; Xie, Hua; ZHANG, JUANHONG; Jia, Zhengping

    2014-01-01

    High altitude environments cause the human body to undergo a series of pathological, physiological and biochemical changes, which have a certain effect on drug pharmacokinetics. The objective of the present study was to observe changes in factors affecting pharmacokinetics in rats following acute exposure to high altitude and return to low altitude. A total of 21 male Wistar rats were randomly assigned to three groups. The rats in group A were maintained at low altitude in Shanghai, 55 m abov...

  12. Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude

    Siebenmann, C; Cathomen, A; Hug, M; Keiser, S; Lundby, A K; Hilty, M P; Goetze, J P; Rasmussen, P; Lundby, C

    2015-01-01

    High altitude (HA) exposure facilitates a rapid contraction of plasma volume (PV) and a slower occurring expansion of hemoglobin mass (Hbmass). The kinetics of the Hbmass expansion has never been examined by multiple repeated measurements, and this was our primary study aim. The second aim was to...

  13. Altitude Exposure at 1800 m Increases Haemoglobin Mass in Distance Runners

    Laura A. Garvican-Lewis, Iona Halliday, Chris R. Abbiss, Philo U. Saunders, Christopher J. Gore

    2015-06-01

    Full Text Available The influence of low natural altitudes (< 2000 m on erythropoietic adaptation is currently unclear, with current recommendations indicating that such low altitudes may be insufficient to stimulate significant increases in haemoglobin mass (Hbmass. As such, the purpose of this study was to determine the influence of 3 weeks of live high, train high exposure (LHTH at low natural altitude (i.e. 1800 m on Hbmass, red blood cell count and iron profile. A total of 16 elite or well-trained runners were assigned into either a LHTH (n = 8 or CONTROL (n = 8 group. Venous blood samples were drawn prior to, at 2 weeks and at 3 weeks following exposure. Hbmass was measured in duplicate prior to exposure and at 2 weeks and at 3 weeks following exposure via carbon monoxide rebreathing. The percentage change in Hbmass from baseline was significantly greater in LHTH, when compared with the CONTROL group at 2 (3.1% vs 0.4%; p = 0.01; and 3 weeks (3.0% vs -1.1%; p < 0.02, respectively following exposure. Haematocrit was greater in LHTH than CONTROL at 2 (p = 0.01 and 3 weeks (p = 0.04 following exposure. No significant interaction effect was observed for haemoglobin concentration (p = 0.06, serum ferritin (p = 0.43, transferrin (p = 0.52 or reticulocyte percentage (p = 0.16. The results of this study indicate that three week of natural classic (i.e. LHTH low altitude exposure (1800 m results in a significant increase in Hbmass of elite distance runners, which is likely due to the continuous exposure to hypoxia.

  14. Threshold altitude for bubble decay and stabilization in rat adipose tissue at hypobaric exposures

    Randsoe, Thomas; Larsen, Ole Hyldegaard

    2013-01-01

    Bubble formation during altitude exposures, causing altitude decompression sickness (aDCS), has been referred to in theoretical models as venous gas embolisms (VGE). This has also been demonstrated by intravascular gas formation. Previous reports indicate that the formation of VGE and aDCS incide......Bubble formation during altitude exposures, causing altitude decompression sickness (aDCS), has been referred to in theoretical models as venous gas embolisms (VGE). This has also been demonstrated by intravascular gas formation. Previous reports indicate that the formation of VGE and a......DCS incidence increase abruptly for exposures exceeding 40-44 kPa ambient pressures. Further, extravascular micro air bubbles injected into adipose tissue grow transiently, then shrink and disappear while breathing oxygen (F1O2 = 1.0) at 71 kPa. At 25 kPa similar air bubbles will grow and stabilize during...... oxygen breathing without disappearing. We hypothesize that an ambient pressure threshold for either extravascular bubble stabilization or disappearance may be identified between 71 and 25 kPa. Whether extravascular bubbles will stabilize above a certain threshold has not been demonstrated before....

  15. Pre-Altitude Serum Ferritin Levels and Daily Oral Iron Supplement Dose Mediate Iron Parameter and Hemoglobin Mass Responses to Altitude Exposure.

    Andrew D Govus

    Full Text Available To investigate the influence of daily oral iron supplementation on changes in hemoglobin mass (Hbmass and iron parameters after 2-4 weeks of moderate altitude exposure.Hematological data collected from 178 athletes (98 males, 80 females exposed to moderate altitude (1,350-3,000 m were analysed using linear regression to determine how altitude exposure combined with oral iron supplementation influenced Hbmass, total iron incorporation (TII and blood iron parameters [ferritin and transferrin saturation (TSAT].Altitude exposure (mean ± s: 21 ± 3 days increased Hbmass by 1.1% [-0.4, 2.6], 3.3% [1.7, 4.8], and 4.0% [2.0, 6.1] from pre-altitude levels in athletes who ingested nil, 105 mg and 210 mg respectively, of oral iron supplement daily. Serum ferritin levels decreased by -33.2% [-46.9, -15.9] and 13.8% [-32.2, 9.7] from pre-altitude levels in athletes who supplemented with nil and 105 mg of oral iron supplement daily, but increased by 36.8% [1.3, 84.8] in athletes supplemented with 210 mg of oral iron daily. Finally, athletes who ingested either 105 mg or 210 mg of oral iron supplement daily had a greater TII compared with non-supplemented athletes (0 versus 105 mg: effect size (d = -1.88 [-2.56, -1.17]; 0 versus 210 mg: effect size (d = -2.87 [-3.88, -1.66].Oral iron supplementation during 2-4 weeks of moderate altitude exposure may enhance Hbmass production and assist the maintenance of iron balance in some athletes with low pre-altitude iron stores.

  16. Risk factors for high-altitude headache upon acute high-altitude exposure at 3700 m in young Chinese men: a cohort study

    Bian, Shi-Zhu; Zhang, Ji-Hang; Xu-bin GAO; Li, Ming; Yu, Jie; Liu, Xi; Dong, Jun-Qing; Chen, Guo-Zhu; Huang, Lan

    2013-01-01

    Background This prospective and observational study aimed to identify demographic, physiological and psychological risk factors associated with high-altitude headache (HAH) upon acute high-altitude exposure. Methods Eight hundred fifty subjects ascended by plane to 3700 m above Chengdu (500 m) over a period of two hours. Structured Case Report Form (CRF) questionnaires were used to record demographic information, physiological examinations, psychological scale, and symptoms including headache...

  17. Sperm forward motility is negatively affected by short-term exposure to altitude hypoxia.

    Verratti, V; Di Giulio, C; D'Angeli, A; Tafuri, A; Francavilla, S; Pelliccione, F

    2016-09-01

    Human exposure to altitude is a model to study the role of oxygen in different areas of physiology and pathophysiology. The aim of this study was to evaluate whether a short exposure to hypoxia (5 days) combined with exercise, at altitude ranging from 900 m above sea level to 5895 m above sea level (Kilimanjaro Expedition) can modify seminal and reproductive hormonal parameter levels in human beings. During the ascent, blood oxygen saturation at 3.848 m above sea level was found to be decreased when compared to sea level (P hypoxia on spermatozoa during the epididymal transit where they mature acquiring their motility. PMID:26762696

  18. Quantification of Optic Disc Edema during Exposure to High Altitude Shows No Correlation to Acute Mountain Sickness

    Willmann, Gabriel, 1977-; Fischer, M. Dominik; Schatz, Andreas; Schommer, Kai; Messias, Andre; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian

    2011-01-01

    Background The study aimed to quantify changes of the optic nerve head (ONH) during exposure to high altitude and to assess a correlation with acute mountain sickness (AMS). This work is related to the Tuebingen High Altitude Ophthalmology (THAO) study. Methodology/Principal Findings A confocal scanning laser ophthalmoscope (cSLO, Heidelberg Retina Tomograph, HRT3®) was used to quantify changes at the ONH in 18 healthy participants before, during and after rapid ascent to high altitude (4559 ...

  19. Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia.

    Belén Feriche

    Full Text Available When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17 in conditions of normoxia (N1 and hypobaric hypoxia (HH and G2 (n = 11 in conditions of normoxia (N2 and normobaric hypoxia (NH. Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax was recorded as the highest P(mean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max (∼ 3% and maximal strength (1 RM (∼ 6% in G1 attributable to the climb to altitude (P<0.05. We also observed a stimulating effect of natural hypoxia on P(mean and P(peak in the middle-high part of the curve (≥ 60 kg; P<0.01 and a 7.8% mean increase in barbell displacement velocity (P<0.001. No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press.

  20. Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia.

    Feriche, Belén; García-Ramos, Amador; Calderón-Soto, Carmen; Drobnic, Franchek; Bonitch-Góngora, Juan G; Galilea, Pedro A; Riera, Joan; Padial, Paulino

    2014-01-01

    When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest P(mean) obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max) (∼ 3%) and maximal strength (1 RM) (∼ 6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on P(mean) and P(peak) in the middle-high part of the curve (≥ 60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press. PMID:25474104

  1. Hemodynamic characteristics of high-altitude headache following acute high altitude exposure at 3700 m in young Chinese men

    Bian, Shi-Zhu; JIN, JUN; Li, Qian-Ning; Yu, Jie; Tang, Cai-Fa; Rao, Rong-Sheng; Yu, Shi-Yong; Zhao, Xiao-Hui; Qin, Jun; Huang, Lan

    2015-01-01

    Background This study aimed to identify the systemic and cerebral hemodynamic characteristics and their roles in high-altitude headache (HAH) among young Chinese men following acute exposure. Methods The subjects (n = 385) were recruited in June and July of 2012. They completed case report form questionnaires, as well as heart rate (HR), blood pressure, echocardiogram and transcranial Doppler examinations at 3700 m following a two-hour plane flight. A subgroup of 129 participants was examined...

  2. Deviations from uniform power-law scaling due to exposure to high altitude

    Posiewnik, A.

    2002-12-01

    A major challenge in biological physics is the analysis of time series that are typically highly nonstationary. Viswanathan et al. (Phys. Rev. E 55 (1) (1997) 845-899) using techniques based on the Fano factor and the Allan factor functions, as well as on detrended fluctuation analysis showed that the scaling properties of the dynamics of healthy physiological systems in normal conditions are more stable than those of pathological systems-there is underlying loss of uniform power-law scaling in disease. Here we test, using the same techniques as Viswanathan et al. (1997), the hypothesis that deviations from uniform power-law scaling, similar to those seen in heart failure and deep apnea syndrome occur also for healthy subjects under pathological conditions (hypoxaemic stress during exposure to high altitude, over 6000 m).

  3. Changes of body fluid and hematology in toad and their rehabilitation following intermittent exposure to simulated high altitude

    Biswas, H. M.; Boral, M. C.

    1986-06-01

    Three groups of adult male toads were exposed intermittently in a decompression chamber for a daily period of 4 and 8 hours at a time for 6 consecutive days to an “altitude” of 12,000; 18,000 and 24,000 feet (3658; 5486; 7315 m) respectively. Most of the exposed animals were sacrificed immediately after the last exposure, but only a few animals experiencing 8 hours of exposure were sacrificed after a further 16 hours of exposure at normal atmospheric pressure. Eight hours of daily exposure for 6 days causes a decrease of body fluids and an increase of hematological parameters in all the altitude exposed animals compared with to the changes noted in the animals having 4 hours of daily exposure for 6 days at the same altitude levels. The animals that were exposed to pressures equivalent to altitudes of 12,000 and 18,000 feet daily for 8 hours were found to return nearly to their normal body fluids and hematological balance after 16 hours of exposure to normal atmospheric pressure, whereas the animals exposed for a similar period at an equivalent 24,000 feet failed to get back their normal balance of body fluids and hematology after 16 hours of exposure at normal atmospheric pressure. The present experiment shows that the body weight loss and changes of body fluid and hematological parameters in the toad after exposure to simulated high altitude are due not only to dehydration, but suggest that hypoxia may also have a role.

  4. Tissue weights and adaptation response of the toad after 96 hours of exposure to simulated high altitude — A body fluid and hematological study

    Biswas, H. M.; Boral, M. C.

    1985-12-01

    Adult male toads were exposed to simulated high altitude of 24,000 feet for 96 hrs of continuous exposure in a decompression chamber. The animals were sacrificed immediately after the exposure period. Significant increase of the weight of the ventricle and spleen is observed in altitude exposed animals. Red blood cell, hemoglobin concentration, hematocrit ratio and red cell mass are significantly increased in high altitude exposed animals in comparison to control. MCV (mean corpuscular volume) and MCH (mean corpuscular hemoglobin) are decreased in altitude exposed group. Plasma volume, blood volume, extracellular fluid volume, intracellular fluid volume and total body water are decreased significantly after altitude exposure for 96 hrs. These physiological changes are thought to be due to dehydration of this animal at simulated high altitude and it is highly affected after 96 hrs of exposure as evidenced by the significant reduction of total body water and intracellular fluid volume.

  5. Relationship between daily exposure to biomass fuel smoke and blood pressure in high-altitude Peru

    Peña, Melissa Burroughs; Romero, Karina M.; Velazquez, Eric J.; Davila-Roman, Victor G.; Gilman, Robert H.; Wise, Robert A; Miranda, J. Jaime; Checkley, William

    2015-01-01

    Household air pollution from biomass fuel use affects three billion people worldwide; however, few studies have examined the relationship between biomass fuel use and blood pressure. We sought to determine if daily biomass fuel use was associated with elevated blood pressure in high altitude Peru and if this relationship was affected by lung function. We analyzed baseline information from a population-based cohort study of adults aged ≥35 years in Puno, Peru. Daily biomass fuel use was self-reported. We used multivariable regression models to examine the relationship between daily exposure to biomass fuel smoke and blood pressure outcomes. Interactions with sex and quartiles of forced vital capacity (FVC) were conducted to evaluate for effect modification. Data from 1004 individuals (mean age 55.3 years, 51.7% female) were included. We found an association between biomass fuel use with both prehypertension (adjusted relative risk ratio 5.0, 95% CI 2.6 to 9.9) and hypertension (adjusted relative risk ratio 3.5, 95% CI 1.7 to 7.0). Biomass fuel users had a higher SBP (7.01 mmHg, 95% CI 4.4 to 9.6) and a higher DBP (5.9 mmHg, 95% CI 4.2 to 7.6) when compared to nonusers. We did not find interaction effects between daily biomass fuel use and sex or percent predicted FVC for either SBP or DBP. Biomass fuel use was associated with an increased risk of hypertension and higher blood pressure in Peru. Reducing exposure to household air pollution from biomass fuel use represents an opportunity for cardiovascular prevention. PMID:25753976

  6. COMPARISON OF LIVE HIGH: TRAIN LOW ALTITUDE AND INTERMITTENT HYPOXIC EXPOSURE

    Clare E. Humberstone-Gough

    2013-09-01

    Full Text Available Live High:Train Low (LHTL altitude training is a popular ergogenic aid amongst athletes. An alternative hypoxia protocol, acute (60-90 min daily Intermittent Hypoxic Exposure (IHE, has shown potential for improving athletic performance. The aim of this study was to compare directly the effects of LHTL and IHE on the running and blood characteristics of elite triathletes. Changes in total haemoglobin mass (Hbmass, maximal oxygen consumption (VO2max, velocity at VO2max (vVO2max, time to exhaustion (TTE, running economy, maximal blood lactate concentration ([La] and 3 mM [La] running speed were compared following 17 days of LHTL (240 h of hypoxia, IHE (10.2 h of hypoxia or Placebo treatment in 24 Australian National Team triathletes (7 female, 17 male. There was a clear 3.2 ± 4.8% (mean ± 90% confidence limits increase in Hbmass following LHTL compared with Placebo, whereas the corresponding change of -1.4 ± 4.5% in IHE was unclear. Following LHTL, running economy was 2.8 ± 4.4% improved compared to IHE and 3mM [La] running speed was 4.4 ± 4.5% improved compared to Placebo. After IHE, there were no beneficial changes in running economy or 3mM [La] running speed compared to Placebo. There were no clear changes in VO2max, vVO2max and TTE following either method of hypoxia. The clear difference in Hbmass response between LHTL and IHE indicated that the dose of hypoxia in IHE was insufficient to induce accelerated erythropoiesis. Improved running economy and 3mM [La] running speed following LHTL suggested that this method of hypoxic exposure may enhance performance at submaximal running speeds. Overall, there was no evidence to support the use of IHE in elite triathletes

  7. Going High with Heart Disease: The Effect of High Altitude Exposure in Older Individuals and Patients with Coronary Artery Disease.

    Levine, Benjamin D

    2015-06-01

    Levine, Benjamin D. Going high with heart disease: The effect of high altitude exposure in older individuals and patients with coronary artery disease. High Alt Med Biol 16:89-96, 2015.--Ischemic heart disease is the largest cause of death in older men and women in the western world (Lozano et al., 2012 ; Roth et al., 2015). Atherosclerosis progresses with age, and thus age is the dominant risk factor for coronary heart disease in any algorithm used to assess risk for cardiovascular events. Subclinical atherosclerosis also increases with age, providing the substrate for precipitation of acute coronary syndromes. Thus the risk of high altitude exposure in older individuals is linked closely with both subclinical and manifest coronary heart disease (CHD). There are several considerations associated with taking patients with CHD to high altitude: a) The reduced oxygen availability may cause or exacerbate symptoms; b) The hypoxia and other associated environmental conditions (exercise, dehydration, change in diet, thermal stress, emotional stress from personal danger or conflict) may precipitate acute coronary events; c) If an event occurs and the patient is far from advanced medical care, then the outcome of an acute coronary event may be poor; and d) Sudden death may occur. Physicians caring for older patients who want to sojourn to high altitude should keep in mind the following four key points: 1). Altitude may exacerbate ischemic heart disease because of both reduced O2 delivery and paradoxical vasoconstriction; 2). Adverse events, including acute coronary syndromes and sudden cardiac death, are most common in older unfit men, within the first few days of altitude exposure; 3). Ensuring optimal fitness, allowing for sufficient acclimatization (at least 5 days), and optimizing medical therapy (especially statins and aspirin) are prudent recommendations that may reduce the risk of adverse events; 4). A graded exercise test at sea level is probably sufficient for

  8. Studies on some biochemical aspects in the toad after 48 hours of exposure to simulated high altitude

    Biswas, H. M.; Boral, M. C.

    1983-06-01

    Blood glucose, tissue carbohydrate, total plasma and tissue protein and plasma electrolyte concentrations were estimated in male toads, exposed to simulated high altitude of 12,000, 18,000 and 24,000 feet respectively for 48 hours of continuous exposure in a decompression chamber. Blood glucose and muscle carbohydrate were decreased significantly in animals exposed to 18,000 and 24,000 feet altitude, without having any change in the liver carbohydrate. Muscle carbohydrate was also decreased in 12,000 feet altitude exposed animals. Plasma protein content was increased significantly in 18,000 and 24,000 feet altitude exposed animals, whereas no such change was noted in tissue protein content. A slight increase of plasma sodium concentration was found in animals exposed to 24,000 feet, and a decrease of potassium concentration was also noted in 18,000 and 24,000 feet exposed animals. Magnesium concentration of the plasma was increased in 18,000 and 24,000 feet exposed animals. This animal had also shown an eosinopenia, lymphopenia and neutrophilia when exposed at 24,000 feet high altitude.

  9. Caffeine improves performance in double poling during acute exposure to 2,000-m altitude.

    Stadheim, H K; Nossum, E M; Olsen, R; Spencer, M; Jensen, J

    2015-12-15

    There is limited research on the physiological effects of caffeine (CAF) ingestion on exercise performance during acute hypoxia. The aim of the present study was therefore to test the effect of placebo (PLA) and CAF (4.5 mg/kg) on double poling (DP) performance during acute hypoxia. Thirteen male subelite cross-country skiers (V̇o2max 72.6 ± 5.68 ml·kg(-1)·min(-1)) were included. Performance was assessed as 1) an 8-km cross-country DP time-trial (C-PT), and 2) time until task failure at a set workload equal to ∼90% of DP V̇o2max. Testing was carried out in a hypobaric chamber, at 800 mbar (Pio2: ∼125 mmHg) corresponding to ∼2,000 m above sea level in a randomized double-blinded, placebo-controlled, cross-over design. CAF improved time to task failure from 6.10 ± 1.40 to 7.22 ± 1.30 min (P exercise subjects reported lower pain in arms and rate of perceived exertion (RPE) following CAF ingestion. Throughout C-PTs similar RPE and pain was shown between treatments. However, higher heart rate was observed during the CAF 8 km (187 ± 7 vs. 185 ± 7; P < 0.05) and 90% C-PT (185 ± 7 vs. 181 ± 9) associated with increased ventilation, blood lactate, glucose, adrenaline, decreased pH, and bicarbonate. The present study demonstrates for the first time that CAF ingestion improves DP time to task failure although not consistently time trial performance during acute exposure to altitude. Mechanisms underpinning improvements seem related to reduced pain RPE and increased heart rate during CAF C-PTs. PMID:26494444

  10. High Altitude Hearts: Genetic Basis of Cardiac Responses to Long-term Hypoxia Exposures in Drosophila

    Zarndt, Rachel Margaret

    2016-01-01

    Cardiomyopathy is a feature of many hypoxia-induced diseases, and affects millions of people worldwide suffering conditions including pulmonary disease, inflammation, and high altitude. Interestingly, highlanders with beneficial genetic adaptations to high altitude have remarkably low incidence of cardiomyopathies. In contrast, pathological cardiac hypertrophy is the hallmark feature of disease in other, poorly adapted highland populations. Detailed mechanisms of these cardiac responses remain...

  11. Hemopoiesis in the pig-tailed monkey Macaca nemestrina during chronic altitude exposure.

    Buderer, M. C.; Pace, N.

    1972-01-01

    Study of monkeys for 180 days at 3800 m altitude to examine their hemopoietic response. Plasma volume was found to be reduced while red cell volume increased steadily for four to five months. Reduction in mean corpuscular hemoglobin content was observed from day 30 to day 120 at altitude. Total plasma protein concentration was unchanged at altitude, but marked reduction in the albumin/globulin ratio occurred. Total circulating plasma protein and albumin were reduced in amount, whereas nonalbumin protein was unchanged. These results imply loss of albumin coupled with a corresponding loss of water from the blood and maintenance of normal plasma osmotic pressure. The body/venous hematocrit ratio was found to be reduced at altitude, possibly as a consequence of the expanded capillary volume of the body. The hemopoietic responses of the pig-tailed monkey at altitude require at least several months for completion, and closely resemble those seen in man; thus, the monkey can serve well for long-term studies of high-altitude acclimatization.

  12. Physiological responses of mules on prolonged exposure to high altitude (3 650 m)

    Riar, S. S.; Shankar Bhat, K.; Sen Gupta, J.

    1982-06-01

    Eight healthy male animals were inducted and kept for 2 1/2 years at 3 650 m altitude and subjected to normal work schedules. Physiological measurements viz. heart rate, blood pressure, minute ventilation, oxygen consumption, respiration rate, hemoglobin, packed cell haematocrit volume and eosinophil count were made on these animals at periodic intervals. On acute induction to an altitude of 3 650 m these animals demonstrated a sudden increase in tidal volume, a decrease in Rf and no change in VE, suggesting a decreased dead space/tidal volume ratio at altitude. However, all these changes stabilised within 3 weeks but on prolongation of stay, the physical state of these animals was adversely affected. The respiratory adjustments occurring on return to sea level appear to be a response to thermal stress. The initial increase in heart rate and blood pressure stabilised by the 2nd week.

  13. High altitude subhyaloid hemorrhage

    Abdul Hanifudin; Lik Thai Lim; Elliott Yann Ah-Kee; Tarek El-Khashab

    2015-01-01

    Subhyaloid hemorrhages can occur as a result of exposure to high altitude. We hereby report a clinical picture of subhyaloid hemorrhage associated with high altitude. The case demonstrates optical coherence tomography findings that aid diagnosis of subhyaloid hemorrhage.

  14. High altitude radiation exposure in the SR-71: a preliminary report. Professional study

    DeHart, R.M.

    1974-04-01

    A study to measure radiation received by SR-71 crews at high altitudes began at Beale AFB, California in 1971. Data gathered during the first eighteen months are presented. Radiation was measured by a thermoluminescent dosimeter provided by the USAF Radiological Health Laboratory (AFLC).

  15. Left Ventricular Function during Acute High-Altitude Exposure in a Large Group of Healthy Young Chinese Men

    Rao, Mingyue; Li, Jiabei; Qin, Jun; Zhang, Jihang; Gao, Xubin; Yu, Shiyong; Yu, Jie; Chen, Guozhu; Xu, Baida; Li, Huijie; Rao, Rongsheng; Huang, Lan; JIN, JUN

    2015-01-01

    Objective The purpose of this study was to observe left ventricular function during acute high-altitude exposure in a large group of healthy young males. Methods A prospective trial was conducted in Szechwan and Tibet from June to August, 2012. By Doppler echocardiography, left ventricular function was examined in 139 healthy young Chinese men at sea level; within 24 hours after arrival in Lhasa, Tibet, at 3700 m; and on day 7 following an ascent to Yangbajing at 4400 m after 7 days of acclim...

  16. Hydration and tissue solid content of the lean body on prolonged exposure to altitude

    Bharadwaj, H.; Singh, M. V.; Rawal, S. B.; Zachariah, T.; Kishnani, S.; Pramanik, S. N.; Gupta, A.; Rai, R. M.

    1989-03-01

    Using densitometric, hydrometric and anthropometric techniques, body fat, tissue solids, water and mineral content were quantitatively measured on two groups each of 26 young and healthy Indian soldiers of mixed ethnic composition. The experimental group was exposed to 3500 m altitude for 2 years and the experiments were carried out after 48 h and 3 weeks rehabilitation in Delhi (300 m). The control group was never exposed to high altidues. Inspite of the experimental group being fed with superior rations at high altitude, this group showed significantly hyperhydrated lean body with reduced tissue solids in comparison to the control group which was fed with identical rations in Delhi. The calculated mean density of the fat free body had declined to 0.092×103 kg/m3. The 3 week stay at low altitude had little influence on body composition. Hyperhydration, with reduced tissue solids, would cause reduction in the density of fat free body, and would thus interfere with the estimates of total body fat based on densitometric procedures alone. In the hyperhydrated state, Siri's formula overestimated fat by 22.8% of the true value.

  17. ANTI-HYPOXIA AND ANTI-OXIDATION EFFECTS OF AMINOPHYLLINE ON HUMAN WITH ACUTE HIGH-ALTITUDE EXPOSURE

    Bo Yang; Guang-yi Wang; Bin Chen; Rong-bin Qin; Si Lang Zha Xi; Lian Chen

    2007-01-01

    Objective To investigate the anti-hypoxia and anti-oxidation effects of aminophylline on human with acute high-altitude exposure.Methods Totally 100 young male army members newly recruited from Sichuan province (400 meters above sea level) were enrolled. They were randomly divided into two groups; 50 in aminophylline group (A group) and 50 in control group (C group). A group and C group orally took aminophylline and placebo respectively for 10 days, 7 days before entering Lhasa (3 658 meters above sea level) by air and 3 days after it Several parameters were measured at three time points: before drug taken, 7 days after drug taken, and 3 days after ascending high altitude. These parameters included serum levels of nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), hydrogen dioxide (H2O2), lactic acid (LA), as well as arterial oxygen saturation (SO2) , arterial oxygen partial pressure (PaO2), and arterial carbon dioxide partial pressure (PaCO2). Statistical analysis was conducted to compare the difference between two groups with Stata 7.0 software system.Results There were no statistical differences between groups in hypoxia and oxidation indicators before and after drug taken in plain area. Three days after ascending high altitude, the serum levels of SOD, CAT, H2O2, LA, PaCO2 increased in both groups, yet to a much larger degree in C group than A group (P < 0.01); and NO, SO2, PaO2 decreased more markedly in C group (P < 0.05 for NO, P < 0.0001 for SO2 and PaO2).Conclusion Aminophylline has significant anti-hypoxia and anti-oxidation effects at high altitude.

  18. Sleep quality changes in insomniacs and non-insomniacs after acute altitude exposure and its relationship with acute mountain sickness

    Tang XG

    2014-07-01

    Full Text Available Xu-gang Tang,1 Ji-hang Zhang,1 Xu-bin Gao,1 Qian-ning Li,2 Jia-bei Li,1 Jie Yu1 Jun Qin,1 Lan Huang11Institute of Cardiovascular Diseases, 2Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of ChinaObjective: We aimed to observe the changes in subjective sleep quality among insomniacs and non-insomniacs after acute ascending to 3,700 m and its possible relationship with acute mountain sickness (AMS. Methods: A total of 600 adult men were recruited. Subjects’ subjective sleep quality was evaluated by the Athens Insomnia Scale. AMS was assessed using the Lake Louise scoring system. Arterial oxygen saturation was measured. Results: Despite insomnia resolution in only a few subjects, the prevalence of insomnia among insomniacs remained stable at 90% after rapid ascent to 3,700 m. However, among non-insomniacs, the prevalence of insomnia sharply increased to 32.13% in the first day of altitude exposure and progressively reduced to 4.26% by the 60th day of altitude stay. Moreover, the prevalences of insomnia symptoms decreased more markedly from day 1 to day 60 at 3,700 m among non-insomniacs than among insomniacs. At 3,700 m, the prevalence of AMS among insomniacs was 79.01%, 60.49%, and 32.10% on the first, third, and seventh days, respectively, which was significantly higher than that among non-insomniacs. Multivariate regression revealed that elevated Athens Insomnia Scale scores are an independent risk factor for AMS (adjusted odds ratio 1.388, 95% confidence interval: 1.314–1.464, P<0.001, whereas high arterial oxygen saturation and long duration of altitude exposure are protective factors against AMS. Conclusion: Our results suggest that the effect of high-altitude exposure on subjective sleep quality is more marked, but disappears more quickly, among non-insomniacs than among insomniacs, whereas AMS is especially common among insomniacs. Moreover, poor subjective sleep

  19. Fulminant high altitude blindness.

    Mashkovskiy, Evgeny; Szawarski, Piotr; Ryzhkov, Pavel; Goslar, Tomaz; Mrak, Irena

    2016-06-01

    Prolonged altitude exposure even with acclimatization continues to present a physiological challenge to all organ systems including the central nervous system. We describe a case of a 41-year-old Caucasian female climber who suffered severe visual loss that was due to possible optic nerve pathology occurring during a high altitude expedition in the Himalayas. This case is atypical of classic high altitude cerebral oedema and highlights yet another danger of prolonged sojourn at extreme altitudes. PMID:27601532

  20. Oxidative stress in erythrocytes: a study on the effect of antioxidant mixtures during intermittent exposures to high altitude

    Vani, R.; Shiva Shankar Reddy, C. S.; Asha Devi, S.

    2010-09-01

    The aim of our study was to compare and assess the effectiveness of antioxidant mixtures on the erythrocytes (RBC) of adult male albino rats (Wister) subjected to simulated intermittent high altitudes—5,100 m (AL1) and 6,700 m (AL2)—to induce oxidative stress (OS). To achieve our objective, we pre-supplemented four sets of animals with different antioxidant mixtures [vitamin E (vit.E; 50 IU/kg BW), vitamin C (vit.C; 400 mg/kg) and l-carnitine (400 mg/kg)] in different combinations [M1 (vit.E+vit.C), M2 (vit.C+carnitine), M3 (vit.E+carnitine) and M4 (vit.C+vit.E+carnitine)] for 30 days prior to as well during exposure to intermittent hypobaric hypoxia (IHH). Membrane instability, in terms of osmotic fragility and hemolysis, decreased in RBCs of supplemented animals. There was a significant increase in the activity of glutathione peroxidase in the RBCs of supplemented animals. We confirmed OS imposed by IHH with assays relating to lipid [thiobarbituric acid reactive substances (TBARS) and lipofuscin (LF)] and protein (carbonyl, PrC) oxidation, and found a positive correlation between PrC and hemolysis, with a decrease in both upon supplementation with M3 and M4 mixtures. Fluorescence microscopic observation showed a maximum decrease in the LF content in rats administered M4 and M1 compared to those on M2 and M3 mixtures at both altitudes. We suggest that multiple antioxidant fortifications are effective in overcoming increased OS experienced by RBCs at high altitudes.

  1. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures

    Randsoe, Thomas; Hyldegaard, Ole

    2012-01-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing...... at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen...... prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently...

  2. Ice-based altitude distribution of natural radiation annual exposure rate in the Antarctica zone over the latitude range 69 deg S-77 deg S using a pair-filter thermoluminescence method

    Both ice-based altitude distributions of natural ionizing radiation exposure and the quasi-effective energy of natural radiation over Antarctica over the latitude range 69oS-77oS during approx. 500 days were measured using thermoluminescent dosimeters. The results shows that dependence on altitude above sea level of the exposure rate increases by almost three-fold with each increase of 2000 m of altitude, thus deviating from the general rule stating that the exposure rate should double with each 2000 m. Although the exposure rate shows a dependence on altitude, altitude dependence of the quasi-effective energy of natural radiation over Antarctica is not observed. In the present study it is observed that natural radiation occurring over the ice base of Antarctica consists mainly of cosmic rays. (Author)

  3. Ice-based altitude distribution of natural radiation annual exposure rate in the Antarctica zone over the latitude range 69 degrees S-77 degrees S using a pair-filter thermoluminescence method.

    Nakajima, T; Kamiyama, T; Fujii, Y; Motoyama, H; Esumi, S

    1995-12-01

    Both ice-based altitude distributions of natural ionizing radiation exposure and the quasi-effective energy of natural radiation over Antartica over the latitude range 69 degrees S - 77 degrees S during approx. 500 days were measured using thermoluminescent dosimeters. The results shows that dependence on altitude above sea level of the exposure rate increases by almost three-fold with each increase of 2000 m of altitude, thus deviating from the general rule stating that the exposure rate should double with each 2000 m. Although the exposure rate shows a dependence on altitude, altitude dependence of the quasi-effective energy of natural radiation over Antartica is not observed. In the present study it is observed that natural radiation occurring over the ice base of Antartica consists mainly of cosmic rays. PMID:8563705

  4. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures

    Randsoe, T.; Kvist, T.M.; Hyldegaard, O.

    2008-01-01

    .7) after which they started shrinking or remained stable throughout the observation period. Bubble growth time was significantly longer during oxygen breathing compared with heliox breathing and preoxygenated animals. Significantly more bubbles disappeared in preoxygenated animals compared with oxygen and......At altitude, bubbles are known to form and grow in blood and tissues causing altitude decompression sickness. Previous reports indicate that treatment of decompression sickness by means of oxygen breathing at altitude may cause unwanted bubble growth. In this report we visually followed the in vivo...... changes of micro air bubbles injected into adipose tissue of anesthetized rats at 101.3 kPa (sea level) after which they were decompressed from 101.3 kPa to and held at 25 kPa (10,350 m), during breathing of oxygen or a heliox(34:66) mixture (34% helium and 66% oxygen). Furthermore, bubbles were studied...

  5. Exposure to intermittent high altitude induces different changes in adenylyl cyclase activity in hearts of young and adult Wistar rats

    Hynie, S.; Šída, P.; Klenerová, V.; Asemu, Girma; Ošťádal, Bohuslav

    2003-01-01

    Roč. 23, č. 1 (2003), s. 53-67. ISSN 1079-9893 R&D Projects: GA MŠk LN00A069; GA MZd NF6627 Institutional research plan: CEZ:AV0Z5011922 Keywords : heart * high altitude * adenylylcyclase Subject RIV: ED - Physiology Impact factor: 1.093, year: 2003

  6. Sensitivity of HRV parameters including pNNxx proven by short-term exposure to 2700 m altitude

    Analysis of heart rate variability (HRV) is increasingly applied in research and intervention. However, the sensitivity of the variety of HRV parameters for changes in cardiovascular reactivity remains unclear. This study investigated effect sizes of HRV parameters in an experimental field study, exposing persons to 2700 m altitude. Parameters analyzed were mean heart rate (HR), atrioventricular conduction time, SDNNi, rMSSD, pNN50, pNNxx (xx = pNN05, pNN10, pNN20, pNN25, pNN30, pNN40), LF, HF, LFnu, LF/HF ratio, and Total Power, as well as ratings of arousal and mood. Forty-five persons were taken to the Dachstein mountain by cable car. HRV parameters of 40 min epochs and ratings at 170 m and 2700 m were compared. At altitude, HR increased and HRV decreased in all parameters. Although moods were not changed, test persons experienced higher arousal at altitude. Besides for HR, analysis revealed the highest effect size for SDNNi, followed by pNN20 and pNN25 and was much lower for HF. As pNNxx parameters were highly correlated with HF, they are discussed to reflect vagal activity. Moreover, pNNxx parameters are clearly defined, whereas HF is susceptible to variations in computation; thus pNNxx parameters seem preferable due to higher effect sizes and better comparability

  7. Treatment of micro air bubbles in rat adipose tissue at 25 kPa altitude exposures with perfluorocarbon emulsions and nitric oxide

    Randsøe, Thomas; Hyldegaard, O

    2014-01-01

    INTRODUCTION: Perfluorocarbon emulsions (PFC) and nitric oxide (NO) releasing agents have on experimental basis demonstrated therapeutic properties in treating and preventing the formation of venous gas embolism as well as increased survival rate during decompression sickness from diving. The eff......INTRODUCTION: Perfluorocarbon emulsions (PFC) and nitric oxide (NO) releasing agents have on experimental basis demonstrated therapeutic properties in treating and preventing the formation of venous gas embolism as well as increased survival rate during decompression sickness from diving....... The effect is ascribed to an increased solubility and transport capacity of respiratory gases in the PFC emulsion and possibly enhanced nitrogen washout through NO-increased blood flow rate and/or the removal of endothelial micro bubble nuclei precursors. Previous reports have shown that metabolic gases (i.......e., oxygen in particular) and water vapor contribute to bubble growth and stabilization during altitude exposures. Accordingly, we hypothesize that the administration of PFC and NO donors upon hypobaric pressure exposures either (1) enhance the bubble disappearance rate through faster desaturation...

  8. Coronary heart disease at altitude.

    Alexander, J K

    1994-01-01

    In the past, it has been assumed that some basic physiologic responses to altitude, exposure in coronary patients are comparable to those in normal young subjects. In fact there are similar changes in sympathetic activation, heart rate, and blood pressure early after ascent, with decrements in plasma volume, cardiac output, and stroke volume as acclimatization proceeds. These responses are described, and experience with coronary patients is reviewed. During the 1st 2 to 3 days at altitude, co...

  9. Hormonal Changes Under Altitude Stress

    H.D Brahmachari

    1977-04-01

    Full Text Available The separate effects of exposure for six hours to cold (8 degree Celsius, hypoxia (4267 m. and simulated altitude (8 degree Celsius at 4267 m.have been studied on ten human subjects in a decompression chamber, with respect to the changes in blood cortisol, ADH and urinary catecholamines. Changes in blood cortisol, PBI, ADH urinary excretion of 17-keto steroids and urine volume have been recorded on another ten subjects on acute exposure to high altitude (3505 m.. Changes in the same parameters alongwith urinary testosterone level, have been recorded on another 20 subjects on prolonged exposure for two years to high altitude (3505 m.. The results have been discussed.

  10. Effects of Prebiotics on the Expression of the Integral Membrane Protein Occludin and Cytokines in Rats after Acute High Altitude Exposure

    Fang-Xin Zhang; Zhi-Yun Deng; Ju-Zi Dong; Yun Duan; Shang-Xin Deng; Jia-Yu Chen; Qiang Ma; Ti-Dong Shan

    2013-01-01

    This study is aimed to investigate the effects of prebiotics on the expression of occludin and cytokines in the intestinal mucosal barrier of stressed rats in a high altitude environment. Forty-eight rats were acutely stressed in a high altitude hypoxia environment (3848 m). Rats in the hypoxia control group (n = 24) and prebiotics group (n = 24) were stressed for 2, 4 and 6 days before harvesting the intestinal mucosa. The expression of the occludin protei...

  11. The effect of altitude hypoxia on glucose homeostasis in men

    Larsen, J J; Hansen, J M; Olsen, Niels Vidiendal;

    1997-01-01

    1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia...

  12. Adaptation to High Altitude

    H. S. Nayar

    1984-10-01

    Full Text Available Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude natives is well documented. RBC count, haemoglobin and haematocrit increase whereas arterial oxyhaemoglobin saturation percentage decreases at high altitude. Diuretics (Furosemide have no role in adaptation to high altitude and adequate body hydration must be maintained.The ultimate adaptive mechanisms occur at tissue level which facilitate the diffusion of oxygen from blood to tissue and its utilization. The work capacity decreases at high altitude and a relationship between load carried and speed of marching has been determined at various altitudes. Although altitude has an adverse effect on process of cold acclimatization, yet it is possible to induce cold acclimatization by exposing subjects to a temperature of 0° to -5°C for a period of three hours daily for three weeks. The caloric requirements increase at high altitudes and are 4,286 K Cal and 4,380 K Cal at 13000 feet (3950 m and 17000 feet (5170 m, respectively.

  13. Delayed appearance of high altitude retinal hemorrhages.

    Daniel Barthelmes

    Full Text Available BACKGROUND: Retinal hemorrhages have been described as a component of high altitude retinopathy (HAR in association with altitude illness. In this prospective high altitude study, we aimed to gain new insights into the pathophysiology of HAR and explored whether HAR could be a valid early indicator of altitude illness. METHODOLOGY/PRINCIPAL FINDINGS: 28 mountaineers were randomly assigned to two ascent profiles during a research expedition to Mt. Muztagh Ata (7546 m/24,751 ft. Digital fundus photographs were taken prior to expedition at 490 m (1,607 ft, during expedition at 4497 m (14,750 ft = base camp, 5533 m (18,148 ft, 6265 m (20,549 ft, 6865 m (22,517 ft and 4.5 months thereafter at 490 m. Number, size and time of occurrence of hemorrhages were recorded. Oxygen saturation (SpO₂ and hematocrit were also assessed. 79% of all climbers exhibited retinal hemorrhages during the expedition. Number and area of retinal bleeding increased moderately to medium altitudes (6265 m. Most retinal hemorrhages were detected after return to base camp from a high altitude. No post-expeditional ophthalmic sequelae were detected. Significant negative (SpO₂ Beta: -0.4, p<0.001 and positive (hematocrit Beta: 0.2, p = 0.002, time at altitude Beta: 0.33, p = 0.003 correlations with hemorrhages were found. CONCLUSIONS/SIGNIFICANCE: When closely examined, a very large amount of climbers exhibit retinal hemorrhages during exposure to high altitudes. The incidence of retinal hemorrhages may be greater than previously appreciated as a definite time lag was observed between highest altitude reached and development of retinal bleeding. Retinal hemorrhages should not be considered warning signs of impending severe altitude illness due to their delayed appearance.

  14. Work at high altitude and oxidative stress: antioxidant nutrients.

    Askew, E W

    2002-11-15

    A significant portion of the world's geography lies above 10,000 feet elevation, an arbitrary designation that separates moderate and high altitude. Although the number of indigenous people living at these elevations is relatively small, many people travel to high altitude for work or recreation, exposing themselves to chronic or intermittent hypoxia and the associated risk of acute mountain sickness (AMS) and less frequently, high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). The symptoms of AMS (headache, nausea, anorexia, fatigue, lassitude) occur in those who travel too high, too fast. Some investigators have linked the development of these symptoms with the condition of altered blood-brain barrier permeability, possibly related to hypoxia induced free radical formation. The burden of oxidative stress increases during the time spent at altitude and may even persist for some time upon return to sea level. The physiological and medical consequences of increased oxidative stress engendered by altitude is unclear; indeed, hypoxia is believed to be the trigger for the cascade of signaling events that ultimately leads to adaptation to altitude. These signaling events include the generation of reactive oxygen species (ROS) that may elicit important adaptive responses. If produced in excess, however, these ROS may contribute to impaired muscle function and reduced capillary perfusion at altitude or may even play a role in precipitating more serious neurological and pulmonary crisis. Oxidative stress can be observed at altitude without strenuous physical exertion; however, environmental factors other than hypoxia, such as exercise, UV light exposure and cold exposure, can also contribute to the burden. Providing antioxidant nutrients via the diet or supplements to the diet can reduce oxidative stress secondary to altitude exposure. In summary, the significant unanswered question concerning altitude exposure and antioxidant supplementation is

  15. HIGH-ALTITUDE ILLNESS

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  16. Cosmic rays and dosimetry at aviation altitudes

    Recent concerns regarding the effects of the cosmic radiation field at aircraft altitudes on aircrew have resulted in a renewed interest in detailed measurements of the neutral and charged particle components in the atmosphere. CR-39 nuclear track detectors have been employed on a number of subsonic and supersonic aircraft to measure charge spectra and LET spectra at aircraft altitudes. These detectors are ideal for long term exposures required for these studies and their passive nature makes them suitable for an environment where interference with flight instrumentation could be a problem. We report here on measurements and analysis of short range tracks which were produced by high LET particles generated mainly by neutron interactions at aviation altitudes. In order to test the overall validity of the technique measurements were also carried out at the CERN-CEC field which simulates the radiation field at aviation altitudes and good agreement was found with dose values obtained using mainly heavy ion calibration

  17. Blood Coagulation Changes at High Altitude

    I. S. Chohan

    1984-10-01

    Full Text Available The current concepts of blood coagulation changes in the pathogenesis of acute mountain sickness (AMS, high altitude pulmonary oedema (HAPO, high altitude pulmonary hypertension (HAPH and chronic mountain sickness(CMS which afflict the inductees and residents at high altitude have been reviewed. Hypercoagulable state which is more marked during the first few days of exposure is countered by enhanced fibrinolytic activity and accelerated cell mediated immunity. Magnesium levels are increased in normal residents at high altitudes and may be responsible for enhancing fibrinolytic activity and accelerating immune responses. Magnesium levels are significantly reduced in HAPO patients. Judicious use of furosemide in lower dosage is still the mainstay of treatment of HAPO and AMS.

  18. High altitude pulmonary edema in mountain climbers.

    Korzeniewski, Krzysztof; Nitsch-Osuch, Aneta; Guzek, Aneta; Juszczak, Dariusz

    2015-04-01

    Every year thousands of ski, trekking or climbing fans travel to the mountains where they stay at the altitude of more than 2500-3000m above sea level or climb mountain peaks, often exceeding 7000-8000m. High mountain climbers are at a serious risk from the effects of adverse environmental conditions prevailing at higher elevations. They may experience health problems resulting from hypotension, hypoxia or exposure to low temperatures; the severity of those conditions is largely dependent on elevation, time of exposure as well as the rate of ascent and descent. A disease which poses a direct threat to the lives of mountain climbers is high altitude pulmonary edema (HAPE). It is a non-cardiogenic pulmonary edema which typically occurs in rapidly climbing unacclimatized lowlanders usually within 2-4 days of ascent above 2500-3000m. It is the most common cause of death resulting from the exposure to high altitude. The risk of HAPE rises with increased altitude and faster ascent. HAPE incidence ranges from an estimated 0.01% to 15.5%. Climbers with a previous history of HAPE, who ascent rapidly above 4500m have a 60% chance of illness recurrence. The aim of this article was to present the relevant details concerning epidemiology, pathophysiology, clinical symptoms, prevention, and treatment of high altitude pulmonary edema among climbers in the mountain environment. PMID:25291181

  19. [Mountaineering and altitude sickness].

    Maggiorini, M

    2001-06-01

    Almost every second trekker or climber develops two to three symptoms of the high altitude illness after a rapid ascent (> 300 m/day) to an altitude above 4000 m. We distinguish two forms of high altitude illness, a cerebral form called acute mountain sickness and a pulmonary form called high altitude pulmonary edema. Essentially, acute mountain sickness is self-limiting and benign. Its symptoms are mild to moderate headache, loss of appetite, nausea, dizziness and insomnia. Nausea rarely progresses to vomiting, but if it does, this may anticipate a progression of the disease into the severe form of acute mountain sickness, called high altitude cerebral edema. Symptoms and signs of high altitude cerebral edema are severe headache, which is not relieved by acetaminophen, loss of movement coordination, ataxia and mental deterioration ending in coma. The mechanisms leading to acute mountain sickness are not very well understood; the loss of cerebral autoregulation and a vasogenic type of cerebral edema are being discussed. High altitude pulmonary edema presents in roughly twenty percent of the cases with mild symptoms of acute mountain sickness or even without any symptoms at all. Symptoms associated with high altitude pulmonary edema are incapacitating fatigue, chest tightness, dyspnoe at the minimal effort that advances to dyspnoe at rest and orthopnoe, and a dry non-productive cough that progresses to cough with pink frothy sputum due to hemoptysis. The hallmark of high altitude pulmonary edema is an exaggerated hypoxic pulmonary vasoconstriction. Successful prophylaxis and treatment of high altitude pulmonary edema using nifedipine, a pulmonary vasodilator, indicates that pulmonary hypertension is crucial for the development of high altitude pulmonary edema. The primary treatment of high altitude illness consists in improving hypoxemia and acclimatization. For prophylaxis a slow ascent at a rate of 300 m/day is recommended, if symptoms persist, acetazolamide at a

  20. Plasticity of the muscle proteome to exercise at altitude

    Flueck, Martin

    2009-01-01

    The ascent of humans to the summits of the highest peaks on Earth initiated a spurt of explorations into the physiological consequences of physical activity at altitude. The past three decades have demonstrated that the resetting of respiratory and cardiovascular control with chronic exposure to altitudes above 4000 m is accompanied by important structural-functional adjustments of skeletal muscle. The fully altitude-adapted phenotype preserves energy charge at reduced aerobic capacity throug...

  1. An oxygen enrichment device for lowlanders ascending to high altitude

    Shen, Guanghao; Wu, Xiaoming; Tang, Chi; Yan, Yili; LIU, JUAN; Guo, Wei; Jing, Da; Lei, Tao; Tian, Yue; Xie, Kangning; Luo, Erping; Zhang, Jianbao

    2013-01-01

    Background When ascending to the high altitude, people living in low altitude areas will suffer from acute mountain sickness. The aim of this study is to test the hypothesis that whether an oxygen concentration membrane can be made and used to construct a new portable oxygen enrichment device for individuals in acute exposure to the high altitude. Methods The membrane was fabricated using vinylsiloxane rubber, polyphenylene oxide hydrogen silicone polymers, chloroplatinic acid and isopropyl a...

  2. Common High Altitudes Illnesses a Primer for Healthcare Provider

    Mohsenin, Vahid

    2015-01-01

    Exposure to high altitude imposes significant strain on cardiopulmonary system and the brain. As a consequence, sojourners to high altitude frequently experience sleep disturbances, often reporting restless and sleepless nights. At altitudes above 3,000 meters (9,800 ft) almost all healthy subjects develop periodic breathing especially during NREM sleep. Sleep architecture gradually improves with increased NREM and REM sleep despite persistence of periodic breathing. The primary reason for pe...

  3. Ear - blocked at high altitudes

    High altitudes and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... you are going up or coming down from high altitudes. Chewing gum the entire time you are changing ...

  4. High Altitude and Heart

    Murat Yalcin; Ejder Kardesoglu; Zafer Isilak

    2011-01-01

    Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altit...

  5. Altitude Modulates Concussion Incidence

    Smith, David W.; Myer, Gregory D; Currie, Dustin W.; Comstock, R Dawn; Clark, Joseph F.; Bailes, Julian E.

    2013-01-01

    Background: Recent research indicates that the volume and/or pressure of intracranial fluid, a physiology affected by one’s altitude (ie, elevation above sea level), may be associated with the likelihood and/or severity of a concussion. The objective was to employ an epidemiological field investigation to evaluate the relationship between altitude and concussion rate in high school sports. Hypothesis: Because of the physiologies that occur during acclimatization, including a decline in intrac...

  6. Endurance training at altitude.

    Saunders, Philo U; Pyne, David B; Gore, Christopher J

    2009-01-01

    Since the 1968 Olympic Games when the effects of altitude on endurance performance became evident, moderate altitude training ( approximately 2000 to 3000 m) has become popular to improve competition performance both at altitude and sea level. When endurance athletes are exposed acutely to moderate altitude, a number of physiological responses occur that can comprise performance at altitude; these include increased ventilation, increased heart rate, decreased stroke volume, reduced plasma volume, and lower maximal aerobic power ((.)Vo(2max)) by approximately 15% to 20%. Over a period of several weeks, one primary acclimatization response is an increase in the volume of red blood cells and consequently of (.)Vo(2max). Altitudes > approximately 2000 m for >3 weeks and adequate iron stores are required to elicit these responses. However, the primacy of more red blood cells for superior sea-level performance is not clear-cut since the best endurance athletes in the world, from Ethiopia (approximately 2000 to 3000 m), have only marginally elevated hemoglobin concentrations. The substantial reduction in (.)Vo(2max) of athletes at moderate altitude implies that their training should include adequate short-duration (approximately 1 to 2 min), high-intensity efforts with long recoveries to avoid a reduction in race-specific fitness. At the elite level, athlete performance is not dependent solely on (.)Vo(2max), and the "smallest worthwhile change" in performance for improving race results is as little as 0.5%. Consequently, contemporary statistical approaches that utilize the concept of the smallest worthwhile change are likely to be more appropriate than conventional statistical methods when attempting to understand the potential benefits and mechanisms of altitude training. PMID:19519223

  7. Child health and living at high altitude.

    Niermeyer, S; Andrade Mollinedo, P; Huicho, L

    2009-10-01

    The health of children born and living at high altitude is shaped not only by the low-oxygen environment, but also by population ancestry and sociocultural determinants. High altitude and the corresponding reduction in oxygen delivery during pregnancy result in lower birth weight with higher elevation. Children living at high elevations are at special risk for hypoxaemia during infancy and during acute lower respiratory infection, symptomatic high-altitude pulmonary hypertension, persistence of fetal vascular connections, and re-entry high-altitude pulmonary oedema. However, child health varies from one population group to another due to genetic adaptation as well as factors such as nutrition, intercurrent infection, exposure to pollutants and toxins, socioeconomic status, and access to medical care. Awareness of the risks uniquely associated with living at high altitude and monitoring of key health indicators can help protect the health of children at high altitude. These considerations should be incorporated into the scaling-up of effective interventions for improving global child health and survival. PMID:19066173

  8. High Altitude and Heart

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  9. High-altitude medicine

    Paralikar Swapnil

    2010-01-01

    Full Text Available Sojourns to high altitude have become common for recreation and adventure purposes. In most individuals, gradual ascent to a high altitude leads to a series of adaptive changes in the body, termed as acclimatization. These include changes in the respiratory, cardiovascular, hematologic systems and cellular adaptations that enhance oxygen delivery to the tissues and augment oxygen uptake. Thus there is an increase in pulmonary ventilation, increase in diffusing capacity in the lung, an increase in the cardiac output and increase in the red blood cell count due to an increase in erythropoietin secretion by the kidney, all of which enhance oxygen delivery to the cells. Cellular changes like increase in the number of mitochondria and augmentation of cytochrome oxidase systems take months or years to develop. Too rapid an ascent or inability to acclimatize leads to high-altitude illnesses. These include acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high-altitude pulmonary edema (HAPE. Acute mountain sickness is self limiting if recognized early. Both HACE and HAPE are life threatening and need to be treated aggressively. The key to treatment of these illnesses is early recognition; administration of supplemental oxygen; and descent if required. Drugs like acetazolamide, dexamethasone, nifedipine may be administered as recommended.

  10. Exercise and Training at Altitudes: Physiological Effects and Protocols

    Olga Cecilia Vargas Pinilla

    2014-01-01

    Full Text Available An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.

  11. Animal Metabolism and Nutritional Requirements Under Physiological Stress Effect of High Altitude

    K. K. Srivastava

    1966-11-01

    Full Text Available Various biochemical and physiological aspects of high altitude exposure and an integrated picture of metabolism of the organism during stress has been reviewed in this paper. This has been further utilised to point out specific nutrient requirement, if any, for survival of the organism during stress and to develop increased resistance towards high altitude exposure. Carbohydrates appear to be the best calorific food material under conditions prevailing at high altitude.

  12. Acute and Chronic Altitude-Induced Cognitive Dysfunction in Children and Adolescents.

    Rimoldi S.F.; Rexhaj E.; Duplain H.; Urben S.; Billieux J.; Allemann Y.; Romero C.; Ayaviri A.; Salinas C.; Villena M.; Scherrer U.; Sartori C.

    2016-01-01

    OBJECTIVE: To assess whether exposure to high altitude induces cognitive dysfunction in young healthy European children and adolescents during acute, short-term exposure to an altitude of 3450 m and in an age-matched European population permanently living at this altitude. STUDY DESIGN: We tested executive function (inhibition, shifting, and working memory), memory (verbal, short-term visuospatial, and verbal episodic memory), and speed processing ability in: (1) 48 healthy nonacclimatized Eu...

  13. Cerebrovascular stroke at high altitude

    Objective: To asses the high altitude as a risk factor for cerebrovascular stroke in people residing at a height greater than 15,000 feet above sea level. Results: Ten patients suffered from stroke at high altitude while just one case had stroke in indexed age group at lower heights (p-value<0.05). Relative risk was 10 times greater at high altitude. Conclusion: High altitude is a risk factor for stroke in persons residing at altitudes of over 15, 000 ft. (author)

  14. The cerebral effects of ascent to high altitudes.

    Wilson, Mark H; Newman, Stanton; Imray, Chris H

    2009-02-01

    Cellular hypoxia is the common final pathway of brain injury that occurs not just after asphyxia, but also when cerebral perfusion is impaired directly (eg, embolic stroke) or indirectly (eg, raised intracranial pressure after head injury). We Review recent advances in the understanding of neurological clinical syndromes that occur on exposure to high altitudes, including high altitude headache (HAH), acute mountain sickness (AMS), and high altitude cerebral oedema (HACE), and the genetics, molecular mechanisms, and physiology that underpin them. We also present the vasogenic and cytotoxic bases for HACE and explore venous hypertension as a possible contributory factor. Although the factors that control susceptibility to HACE are poorly understood, the effects of exposure to altitude (and thus hypobaric hypoxia) might provide a reproducible model for the study of cerebral cellular hypoxia in healthy individuals. The effects of hypobaric hypoxia might also provide new insights into the understanding of hypoxia in the clinical setting. PMID:19161909

  15. Dietary Recommendations for Cyclists during Altitude Training

    Małgorzata Michalczyk

    2016-06-01

    Full Text Available The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like “live high, train high” (LH-TH, “live high, train low” (LH-TL or “intermittent hypoxic training” (IHT. Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.

  16. Dietary Recommendations for Cyclists during Altitude Training.

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-01-01

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented. PMID:27322318

  17. Pulmonary artery pressure limits exercise capacity at high altitude.

    Naeije, Robert; Huez, Sandrine; Lamotte, Michel; Retailleau, Kathleen; Neupane, S; Abramowicz, Daniel; Faoro, Vitalie

    2010-01-01

    Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic breathing (1 h, 12% oxygen in nitrogen), and in 22 healthy subjects after acclimatisation to an altitude of 5,050 m. The measurements were obtained after randomisation, double-blinded to the intake ...

  18. Iron Supplementation and Altitude: Decision Making Using a Regression Tree

    Laura A. Garvican-Lewis, Andrew D. Govus, Peter Peeling, Chris R. Abbiss, Christopher J. Gore

    2016-01-01

    Altitude exposure increases the body’s need for iron (Gassmann and Muckenthaler, 2015), primarily to support accelerated erythropoiesis, yet clear supplementation guidelines do not exist. Athletes are typically recommended to ingest a daily oral iron supplement to facilitate altitude adaptations, and to help maintain iron balance. However, there is some debate as to whether athletes with otherwise healthy iron stores should be supplemented, due in part to concerns of iron overload. Excess iro...

  19. Effects of high altitude and exercise on marksmanship.

    Tharion, W J; Hoyt, R W; Marlowe, B E; Cymerman, A

    1992-02-01

    The effects of exercise and high altitude (3,700 m to 4,300 m) on marksmanship accuracy and sighting time were quantified in 16 experienced marksmen. Subjects dry-fired a disabled rifle equipped with a laser-based system from a free-standing position. The 2.3-cm circular target was at a distance of 5 m. Marksmanship was assessed under the following conditions: 1) at rest at sea level; 2) immediately after a 21-km run/walk ascent from 1,800 m to 4,300 m elevation; 3) at rest during days 1 to 3 at altitude; 4) at rest during days 14 to 16 at altitude; and 5) immediately after a second ascent after 17 d at altitude. Exercise reduced marksmanship accuracy (p less than 0.05) but did not affect sighting time. Acute altitude exposure reduced marksmanship accuracy, and decreased sighting time (p less than 0.05). However, after residence at altitude, accuracy and sighting time at rest returned to sea level values. Exercise and acute altitude exposure had similar but independent detrimental effects on marksmanship. PMID:1546938

  20. Can patients with coronary heart disease go to high altitude?

    Dehnert, Christoph; Bärtsch, Peter

    2010-01-01

    Tourism to high altitude is very popular and includes elderly people with both manifest and subclinical coronary heart disease (CHD). Thus, risk assessment regarding high altitude exposure of patients with CHD is of increasing interest, and individual recommendations are expected despite the lack of sufficient scientific evidence. The major factor increasing cardiac stress is hypoxia. At rest and for a given external workload, myocardial oxygen demand is increased at altitude, particularly in nonacclimatized individuals, and there is some evidence that blood-flow reserve is reduced in atherosclerotic coronary arteries even in the absence of severe stenosis. Despite a possible imbalance between oxygen demand and oxygen delivery, studies on selected patients have shown that exposure and exercise at altitudes of 3000 to 3500 m is generally safe for patients with stable CHD and sufficient work capacity. During the first days at altitude, patients with stable angina may develop symptoms of myocardial ischemia at slightly lower heart rate x  blood-pressure products. Adverse cardiac events, however, such as unstable angina coronary syndromes, do not occur more frequently compared with sea level except for those who are unaccustomed to exercise. Therefore, training should start before going to altitude, and the altitude-related decrease in exercise capacity should be considered. Travel to 3500 m should be avoided unless patients have stable disease, preserved left ventricular function without residual capacity, and above-normal exercise capacity. CHD patients should avoid travel to elevations above 4500 m owing to severe hypoxia at these altitudes. The risk assessment of CHD patients at altitude should always consider a possible absence of medical support and that cardiovascular events may turn into disaster. PMID:20919884

  1. High Altitude Emissions

    Bulzan, Dan

    2007-01-01

    An overview of emissions related research being conducted as part of the Fundamental Aeronautics Supersonics Project is presented. The overview includes project objectives, milestones, and descriptions of major research areas. The overview also includes information on the emissions research being conducted under NASA Research Announcements. Technical challenges include: 1) Environmental impact of supersonic cruise emissions is greater due to higher flight altitudes which makes emissions reduction increasingly important. 2) Accurate prediction tools to enable combustor designs that reduce emissions at supersonic cruise are needed as well as intelligent systems to minimize emissions. 3) Combustor operating conditions at supersonic cruise are different than at subsonic cruise since inlet fuel and air temperatures are considerably increased.

  2. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude

    Stacie L. Wing-Gaia

    2014-02-01

    Full Text Available Exposure to extreme altitude presents many physiological challenges. In addition to impaired physical and cognitive function, energy imbalance invariably occurs resulting in weight loss and body composition changes. Weight loss, and in particular, loss of fat free mass, combined with the inherent risks associated with extreme environments presents potential performance, safety, and health risks for those working, recreating, or conducting military operations at extreme altitude. In this review, contributors to muscle wasting at altitude are highlighted with special emphasis on protein turnover. The article will conclude with nutritional strategies that may potentially attenuate loss of fat free mass during high altitude exposure.

  3. Dose-response of altitude training: how much altitude is enough?

    Levine, Benjamin D; Stray-Gundersen, James

    2006-01-01

    Altitude training continues to be a key adjunctive aid for the training of competitive athletes throughout the world. Over the past decade, evidence has accumulated from many groups of investigators that the "living high--training low" approach to altitude training provides the most robust and reliable performance enhancements. The success of this strategy depends on two key features: 1) living high enough, for enough hours per day, for a long enough period of time, to initiate and sustain an erythropoietic effect of high altitude; and 2) training low enough to allow maximal quality of high intensity workouts, requiring high rates of sustained oxidative flux. Because of the relatively limited access to environments where such a strategy can be practically applied, numerous devices have been developed to "bring the mountain to the athlete," which has raised the key issue of the appropriate "dose" of altitude required to stimulate an acclimatization response and performance enhancement. These include devices using molecular sieve technology to provide a normobaric hypoxic living or sleeping environment, approaches using very high altitudes (5,500m) for shorter periods of time during the day, and "intermittent hypoxic training" involving breathing very hypoxic gas mixtures for alternating 5 minutes periods over the course of 60-90 minutes. Unfortunately, objective testing of the strategies employing short term (less than 4 hours) normobaric or hypobaric hypoxia has failed to demonstrate an advantage of these techniques. Moreover individual variability of the response to even the best of living high--training low strategies has been great, and the mechanisms behind this variability remain obscure. Future research efforts will need to focus on defining the optimal dosing strategy for these devices, and determining the underlying mechanisms of the individual variability so as to enable the individualized "prescription" of altitude exposure to optimize the performance of

  4. Regression of altitude-produced cardiac hypertrophy.

    Sizemore, D. A.; Mcintyre, T. W.; Van Liere, E. J.; Wilson , M. F.

    1973-01-01

    The rate of regression of cardiac hypertrophy with time has been determined in adult male albino rats. The hypertrophy was induced by intermittent exposure to simulated high altitude. The percentage hypertrophy was much greater (46%) in the right ventricle than in the left (16%). The regression could be adequately fitted to a single exponential function with a half-time of 6.73 plus or minus 0.71 days (90% CI). There was no significant difference in the rates of regression for the two ventricles.

  5. Re-exposure to the hypobaric hypoxic brain injury of high altitude: plasma S100B levels and the possible effect of acclimatisation on blood-brain barrier dysfunction.

    Winter, C D; Whyte, T; Cardinal, J; Kenny, R; Ballard, E

    2016-04-01

    Hypobaric hypoxic brain injury results in elevated peripheral S100B levels which may relate to blood-brain barrier (BBB) dysfunction. A period of acclimatisation or dexamethasone prevents altitude-related illnesses and this may involve attenuation of BBB compromise. We hypothesised that both treatments would diminish the S100B response (a measure of BBB dysfunction) on re-ascent to the hypobaric hypoxia of high altitude, in comparison to an identical ascent completed 48 h earlier by the same group. Twelve healthy volunteers, six of which were prescribed dexamethasone, ascended Mt Fuji (summit 3700 m) and serial plasma S100B levels measured. The S100B values reduced from a baseline 0.183 µg/l (95 % CI 0.083-0.283) to 0.145 µg/l (95 % CI 0.088-0.202) at high altitude for the dexamethasone group (n = 6) and from 0.147 µg/l (95 % CI 0.022-0.272) to 0.133 µg/l (95 % CI 0.085-0.182) for the non-treated group (n = 6) [not statistically significant (p = 0.43 and p = 0.82) for the treated and non-treated groups respectively]. [These results contrasted with the statistically significant increase during the first ascent, S100B increasing from 0.108 µg/l (95 % CI 0.092-0.125) to 0.216 µg/l (95 % CI 0.165-0.267) at high altitude]. In conclusion, an increase in plasma S100B was not observed in the second ascent and this may relate to the effect of acclimatisation (or hypoxic pre-conditioning) on the BBB. An exercise stimulated elevation of plasma S100B levels was also not observed during the second ascent. The small sample size and wide confidence intervals, however, precludes any statistically significant conclusions and a larger study would be required to confirm these findings. PMID:26924650

  6. Energy metabolism and the high-altitude environment.

    Murray, Andrew J

    2016-01-01

    At high altitude the barometric pressure falls, challenging oxygen delivery to the tissues. Thus, whilst hypoxia is not the only physiological stress encountered at high altitude, low arterial P(O2) is a sustained feature, even after allowing adequate time for acclimatization. Cardiac and skeletal muscle energy metabolism is altered in subjects at, or returning from, high altitude. In the heart, energetic reserve falls, as indicated by lower phosphocreatine-to-ATP ratios. The underlying mechanism is unknown, but in the hypoxic rat heart fatty acid oxidation and respiratory capacity are decreased, whilst pyruvate oxidation is also lower after sustained hypoxic exposure. In skeletal muscle, there is not a consensus. With prolonged exposure to extreme high altitude (>5500 m) a loss of muscle mitochondrial density is seen, but this was not observed in a simulated ascent of Everest in hypobaric chambers. At more moderate high altitude, decreased respiratory capacity may occur without changes in mitochondrial volume density, and fat oxidation may be downregulated, although this is not seen in all studies. The underlying mechanisms, including the possible role of hypoxia-signalling pathways, remain to be resolved, particularly in light of confounding factors in the high-altitude environment. In high-altitude-adapted Tibetan natives, however, there is evidence of natural selection centred around the hypoxia-inducible factor pathway, and metabolic features in this population (e.g. low cardiac phosphocreatine-to-ATP ratios, increased cardiac glucose uptake and lower muscle mitochondrial densities) share similarities with those in acclimatized lowlanders, supporting a possible role for the hypoxia-inducible factor pathway in the metabolic response of cardiac and skeletal muscle energy metabolism to high altitude. PMID:26315373

  7. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    ROACH, Gregory D.; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training c...

  8. Physiological adaptation of the cardiovascular system to high altitude.

    Naeije, Robert

    2010-01-01

    Altitude exposure is associated with major changes in cardiovascular function. The initial cardiovascular response to altitude is characterized by an increase in cardiac output with tachycardia, no change in stroke volume, whereas blood pressure may temporarily be slightly increased. After a few days of acclimatization, cardiac output returns to normal, but heart rate remains increased, so that stroke volume is decreased. Pulmonary artery pressure increases without change in pulmonary artery wedge pressure. This pattern is essentially unchanged with prolonged or lifelong altitude sojourns. Ventricular function is maintained, with initially increased, then preserved or slightly depressed indices of systolic function, and an altered diastolic filling pattern. Filling pressures of the heart remain unchanged. Exercise in acute as well as in chronic high-altitude exposure is associated with a brisk increase in pulmonary artery pressure. The relationships between workload, cardiac output, and oxygen uptake are preserved in all circumstances, but there is a decrease in maximal oxygen consumption, which is accompanied by a decrease in maximal cardiac output. The decrease in maximal cardiac output is minimal in acute hypoxia but becomes more pronounced with acclimatization. This is not explained by hypovolemia, acid-bases status, increased viscosity on polycythemia, autonomic nervous system changes, or depressed systolic function. Maximal oxygen uptake at high altitudes has been modeled to be determined by the matching of convective and diffusional oxygen transport systems at a lower maximal cardiac output. However, there has been recent suggestion that 10% to 25% of the loss in aerobic exercise capacity at high altitudes can be restored by specific pulmonary vasodilating interventions. Whether this is explained by an improved maximum flow output by an unloaded right ventricle remains to be confirmed. Altitude exposure carries no identified risk of myocardial ischemia in

  9. Fit for high altitude: are hypoxic challenge tests useful?

    Matthys Heinrich

    2011-02-01

    Full Text Available Abstract Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax, sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient. Instead of the hypoxia altitude simulation test (HAST, which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists including mechanical aids to

  10. Autonomic Cardiovascular Responses in Acclimatized Lowlanders on Prolonged Stay at High Altitude: A Longitudinal Follow Up Study

    Dhar, Priyanka; Sharma, Vijay K.; Hota, Kalpana B.; Das, Saroj K; Hota, Sunil K.; Srivastava, Ravi B.; Singh, Shashi B

    2014-01-01

    Acute exposure to hypobaric hypoxia at high altitude is reported to cause sympathetic dominance that may contribute to the pathophysiology of high altitude illnesses. The effect of prolonged stay at high altitude on autonomic functions, however, remains to be explored. Thus, the present study aimed at investigating the effect of high altitude on autonomic neural control of cardiovascular responses by monitoring heart rate variability (HRV) during chronic hypobaric hypoxia. Baseline electrocar...

  11. Countermeasures on Mobile Health Service Detachment in the Field Training at Acute High Altitude Exposure%机动卫勤分队急进高海拔地区驻训的对策

    贺巍; 范兴爱; 朱琳

    2014-01-01

    本文根据某军队医院机动卫勤分队参加高海拔地区野外驻训的实践,总结分析在高海拔地区驻训容易出现的高原反应、人员的不良情绪、劳动效率下降等方面的问题及产生原因,并提出加强学习、充分准备、教育疏导、科学组训等对策,增强卫勤保障能力。%Combining with own practice in high altitude field training of mobile health service detachment , the authors summarized the main problems and reasons of high altitude sickness , unhealthy emotions of the staff , labor efficiency decline, etc.Moreover, some countermeasures were put forward as follows so as to improve the medical support capability of mobile health service detachment , reinforce learning, adequate preparation, education channel, scientific organization, etc.

  12. Reactive hyperemia of rat brain following high altitude hypoxia

    Radioactive 85Sr microparticles were used to assess the cardiac output and blood flow through medulla oblongata, cerebellum, subcortical portions and cerebral cortex in adult laboratory rats 20 hours after 8-hour exposure to 7000 m high altitude hypoxia. The local blood supply increased in all parts of the brain, in particular in medulla oblongata and cerebellum. (author). 10 figs., 9 refs

  13. Physiological responses to exercise at altitude : an update.

    Mazzeo, Robert S

    2008-01-01

    Studies performed over the past decade have yielded new information related to the physiological and metabolic adjustments made in response to both short- and long-term high-altitude exposure. These investigations have examined the potential mechanisms responsible for the alterations observed in such key variables as heart rate, stroke volume, cardiac output, muscle blood flow, substrate utilization and mitochondrial function, both at rest and during exercise of varying intensities. Additionally, the occurrence and mechanisms related to the 'lactate paradox' continues to intrigue investigators. It is apparent that exposure to high altitude is an environmental stressor that elicits a robust sympathoadrenal response that contributes to many of the critical adjustments and adaptations mentioned above. Furthermore, as some of these important physiological adaptations are known to enhance performance, it has become popular to incorporate an aspect of altitude living/training into the training regimens of endurance athletes (e.g. 'live high-train low'). Finally, it is important to note that many factors influence the extent to which individuals adjust and adapt to the stress imposed by exposure to high altitude. Included among these are (i) the degree of hypoxia; (ii) the duration of exposure to hypoxic conditions; (iii) the exercise intensity (absolute vs relative workload); and (iv) the inter-individual variability in adapting to hypoxic environments ('responders' vs 'non-responders'). PMID:18081363

  14. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  15. Venus Altitude Cycling Balloon Project

    National Aeronautics and Space Administration — The ISTAR Group ( IG) and team mate Thin Red Line Aerospace (TRLA) propose a Venus altitude cycling balloon (Venus ACB), an innovative superpressure balloon...

  16. High-altitude pulmonary hypertension

    X-Q. Xu; Z-C. Jing

    2009-01-01

    High-altitude pulmonary hypertension (HAPH) is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenes...

  17. A Start Toward Micronucleus-Based Decompression Models; Altitude Decompression

    Van Liew, H. D.; Conkin, Johnny

    2007-01-01

    Do gaseous micronuclei trigger the formation of bubbles in decompression sickness (DCS)? Most previous instructions for DCS prevention have been oriented toward supersaturated gas in tissue. We are developing a mathematical model that is oriented toward the expected behavior of micronuclei. The issue is simplified in altitude decompressions because the aviator or astronaut is exposed only to decompression, whereas in diving there is a compression before the decompression. The model deals with four variables: duration of breathing of 100% oxygen before going to altitude (O2 prebreathing), altitude of the exposure, exposure duration, and rate of ascent. Assumptions: a) there is a population of micronuclei of various sizes having a range of characteristics, b) micronuclei are stable until they grow to a certain critical nucleation radius, c) it takes time for gas to diffuse in or out of micronuclei, and d) all other variables being equal, growth of micronuclei upon decompression is more rapid at high altitude because of the rarified gas in the micronuclei. To estimate parameters, we use a dataset of 4,756 men in altitude chambers exposed to various combinations of the model s variables. The model predicts occurrence of DCS symptoms quite well. It is notable that both the altitude chamber data and the model show little effect of O2 prebreathing until it lasts more than 60 minutes; this is in contrast to a conventional idea that the benefit of prebreathing is directly due to exponential washout of tissue nitrogen. The delay in response to O2 prebreathing can be interpreted as time required for outward diffusion of nitrogen; when the micronuclei become small enough, they are disabled, either by crushing or because they cannot expand to a critical nucleation size when the subject ascends to altitude.

  18. Change of plasma hormone levels at acute exposure to 4500 meters altitude and its significance%模拟急进4500米高原血浆去甲肾上腺素等激素水平变化及意义

    隆敏; 田开新; 喻杨; 于世勇; 覃军

    2011-01-01

    Objective To explore changes of plasma noradrenaline (NA), adrenaline (ADR), atrial natriuretic peptide (ANP) levels, and plasma renin activity (PRA) at acute exposure to 4500m altitude and their significances. Methods A set of hypobaric chamber was applied to simulate 4500 m altitude. Venous blood samples of 43 healthy young males were obtained before and at 22 hours after acute exposure to simulate 4500 m altitude. High-performance liquid chromatography-electrochemical method was used to detect plasma NA and ADR concentrations, while plasma ANP concentration and PRA were detected by radioimmunoassay. Subjects whose scores were higher than 10 were allocated into acute mountain sickness (AMS) group, and those less than 10 into non-AMS Group. Results After acute exposure to high altitude, concentrations of plasma NA and PRA significantly decreased[NA: (3.7 ± 0.8) vs (2.9 ±0.5) μg/L; PRA: (2.9 ±1.8) vs (1.3 ±1.1) μg/(L·h); P<0.01], however plasma ADR, ANP concentrations significantly increased [ADR: (2.0 ± 0.6) vs (2.5 ± 0.5) μg/L, P < 0.01; ANP: (79 ± 31) vs (100 ± 42) μg/L, P < 0.05]. Plasma NA concentration was significantly higher in AMS group than in non-AMS group after exposure to 4500 m altitude[(3.1 ±0.4) vs (2.8 ±0.5) μg/L, P<0.05], although it was not different at plain. AMS score was positively correlated with plasma NA concentrations either at plain or at 4500 m altitude ( r = 0.435, 0.391, P < 0.05 ) . Conclusion Apparent nerve-endocrine changes occur at acute exposure to high altitude, and these changes may be related to AMS.%目的 探讨急进4500m高原血浆去甲肾上腺素(NA)、肾上腺素(ADR)、心钠素(ANP)浓度、肾素活性(PRA)变化及意义.方法采用低压氧舱模拟急进4500m高原,43名健康青年男性分别在进舱前和模拟高原22h后接受静脉采血.高效液相色谱-电化学法检测NA及ADR浓度,放射免疫方法检测ANP浓度及PRA.急性高原反应(AMS)评分大于10分受试者

  19. Diagnostic criteria of high-altitude de-adaptation for high-altitude migrants returning to the plains: a multicenter, randomized controlled trial

    Qi-quan ZHOU

    2012-02-01

    Full Text Available Objective  To investigate the diagnostic method of high-altitude de-adaptation and constitute the diagnostic criteria of high-altitude de-adaptation for people returning to the plains from high-altitude. Methods  Epidemiological survey and clinical multicenter randomized controlled studies were used to determine/perform blood picture, routine urine analysis, routine stool examination, myocardial enzymes, liver and kidney functions, nerve function, sex hormone, microalbuminuria, ECG, echocardiography, pulmonary function tests, and so on, in 3011 subjects after they returned to the plains from high-altitude. The diagnostic criteria of high-altitude de-adaptation were formulated by a comparative analysis of the obtained data with those of healthy subjects living in the same area, altitude, and age. The regularity and characteristics of high-altitude de-adaptation syndrome were found and diagnostic criteria for high-altitude de-adaptation was established based on the results. Results  The investigative results showed that the incidence of high-altitude de-adaptation syndrome was found in 84.36% of population returning to the plains from high-altitude. About 60% of them were considered to have mild reactions, 30% medium, and only 10% were severe. The lower the altitude they returned to, the longer the duration of stay in highland, and the heavier the labor they engaged in high altitude, the higher the incidence rate of high-altitude de-adaptation syndrome was. Patients with high-altitude de-adaptation syndrome exhibited hematological abnormality and abnormal ventricular function, especially the right ventricular diastolic function after returning for 1 year to 5 years. Long-term hypoxia exposure often caused obvious change in cardiac morphology with left and right ventricular hypertrophy, particularly the right ventricle. In addition, low blood pressure and low pulse pressure were found at times. Microalbuminuria was found in some high-altitude de

  20. Timing the arrival at 2340m altitude for aerobic performance

    Schuler, B; Thomsen, JJ; Gassmann, M;

    2007-01-01

    This study tested the hypothesis that maximal oxygen uptake (VO2max) and performance increase upon altitude acclimatization at moderate altitude. Eight elite cyclists were studied at sea level, and after 1 (Day 1), 7 (Day 7), 14 (Day 14) and 21 (Day 21) days of exposure to 2340 m. Capillary blood...... samples were taken on these days before performing two consecutive maximal exercise trials. Acclimatization reased hemoglobin concentration and arterial oxygen content. On Day 1, VO2max and time to exhaustion (at 80% of sea-level maximal power output) decreased by 12.8% (P<0.05) and 25.8% (P<0...

  1. Effect of high altitude hypoxia on changes of plasma CNP, ET and CGRP contents in healthy young males

    Objective: To explore the changes of plasma CNP, ET and (CGR contents in healthy young males with exposure to high altitude hypoxia. Methods: Plasma CNP, ET and CGRP contents were measured with RIA in 50 healthy young males at the altitude of 1000 m (as control), 2260 m (medium altitude) and 3780 m (high altitude for 1d, 5d and 15d) successively. Results: 1) Plasma CNP contents increased gradually as the altitude rose (at high altitude for 15d vs all other 4 settings, P<0.01). 2)Plasma ET contents were significantly lower at high altitude for 5d than those at medium altitude, P<0.01. However, prolonged stay at high altitude for 15d would significantly increase the plasma ET contents (vs all other 4 settings, P<0.01). 3)Plasma CGRP contents reached peak at medium altitude (vs medium altitude, P<0.01). 4)Plasma ET contents were positively correlated with CNP contents (r=0.470, P<0.01) but negatively correlated with CGRP contents (r = - 0.425, P<0.05). Conclusion: ET, CGRP and CNP participate in the physiologic regulation of pulmonary circulation under hypoxia. CGRP, a strong vaso dilator, modulates pulmonary vascular dilatation at the early stage of hypoxia. After prolonged exposure to high altitude hypoxia ET and CNP contents increase significantly. (authors)

  2. High-altitude pulmonary hypertension

    X-Q. Xu

    2009-03-01

    Full Text Available High-altitude pulmonary hypertension (HAPH is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenesis of HAPH, data published to date are insufficient for the identification of a significant number of gene polymorphims in HAPH. The clinical presentation of HAPH is nonspecific. Exertional dyspnoea is the most common symptom and signs related to right heart failure are common in late stages of HAPH. Echocardiography is the most useful screening tool and right heart catheterisation is the gold standard for the diagnosis of HAPH. The ideal management for HAPH is migration to lower altitudes. Phosphodiesterase 5 is an attractive drug target for the treatment of HAPH. In addition, acetazolamide is a promising therapeutic agent for high-altitude pulmonary hypertension. To date, no evidence has confirmed whether endothelin-receptor antagonists have efficacy in the treatment of high-altitude pulmonary hypertension.

  3. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Hu, Sheng Li; Xiong, Wei; Dai, Zhi Qiang; Zhao, Heng Li; Feng, Hua

    2016-01-01

    Hypersensitive C-reaction protein (hsCRP) may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD), stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200) detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6), and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m), and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m). P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction. PMID:26731740

  4. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Sheng Li Hu

    Full Text Available Hypersensitive C-reaction protein (hsCRP may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD, stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200 detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6, and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m, and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m. P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  5. Changes in physical performance parameters during and after moderate altitude training in elite cross country skiers

    Jensen, Kurt; Höög, Martina; Willis, Sarah;

    2013-01-01

    INTRODUCTION: The Olympic cross country skiing competitions in 2014 will be held in Sochi, Russia at an altitude of approximately 1500m. Although moderate, this altitude is known to reduce performance in highly trained endurance athletes. It is also known that individuals react differently during...... altitude exposure. The purpose of this study was to evaluate performance changes during and after three weeks of training in moderate altitude in elite skiers. METHOD: Four male and three female skiers were tested on a roller skiing treadmill using the classic technique at sea level (NORM1), after 3 and 20...... days at 1500m altitude (ALT1 and ALT2), and 10 days after altitude at sea level (NORM2). The test protocol was a standardized progressive submaximal session of 4 min exercise with 1 min rest between each stage, followed by a 6-10 min progressive “all out” exercise with an increase in first speed and...

  6. Altitude precipitation gradient in Serbia

    Živković Nenad M.

    2004-01-01

    Full Text Available Using average annual precipitations data for period 1961-90. from all rain gauges in Serbia, southern of Sava and Danube rivers, the map of altitude precipitations gradient is constructed. 59 regions homogeneous for relation X=f(H are obtained by regression analysis method (two-dimensional type, X precipitation height and H - altitude. Some new method are applied, some limitations are shown, some regularities are found in disposition of precipitation growth and it is indicated on practical application of this method in physico-geographical research.

  7. Iron Supplementation and Altitude: Decision Making Using a Regression Tree

    Laura A. Garvican-Lewis, Andrew D. Govus, Peter Peeling, Chris R. Abbiss, Christopher J. Gore

    2016-03-01

    Full Text Available Altitude exposure increases the body’s need for iron (Gassmann and Muckenthaler, 2015, primarily to support accelerated erythropoiesis, yet clear supplementation guidelines do not exist. Athletes are typically recommended to ingest a daily oral iron supplement to facilitate altitude adaptations, and to help maintain iron balance. However, there is some debate as to whether athletes with otherwise healthy iron stores should be supplemented, due in part to concerns of iron overload. Excess iron in vital organs is associated with an increased risk of a number of conditions including cancer, liver disease and heart failure. Therefore clear guidelines are warranted and athletes should be discouraged from ‘self-prescribing” supplementation without medical advice. In the absence of prospective-controlled studies, decision tree analysis can be used to describe a data set, with the resultant regression tree serving as guide for clinical decision making. Here, we present a regression tree in the context of iron supplementation during altitude exposure, to examine the association between pre-altitude ferritin (Ferritin-Pre and the haemoglobin mass (Hbmass response, based on daily iron supplement dose. De-identified ferritin and Hbmass data from 178 athletes engaged in altitude training were extracted from the Australian Institute of Sport (AIS database. Altitude exposure was predominantly achieved via normobaric Live high: Train low (n = 147 at a simulated altitude of 3000 m for 2 to 4 weeks. The remaining athletes engaged in natural altitude training at venues ranging from 1350 to 2800 m for 3-4 weeks. Thus, the “hypoxic dose” ranged from ~890 km.h to ~1400 km.h. Ethical approval was granted by the AIS Human Ethics Committee, and athletes provided written informed consent. An in depth description and traditional analysis of the complete data set is presented elsewhere (Govus et al., 2015. Iron supplementation was prescribed by a sports physician

  8. Sleep and Breathing at High Altitude.

    Wickramasinghe, Himanshu; Anholm, James D.

    1999-01-01

    Sleep at high altitude is characterized by poor subjective quality, increased awakenings, frequent brief arousals, marked nocturnal hypoxemia, and periodic breathing. A change in sleep architecture with an increase in light sleep and decreasing slow-wave and REM sleep have been demonstrated. Periodic breathing with central apnea is almost universally seen amongst sojourners to high altitude, although it is far less common in long-standing high altitude dwellers. Hypobaric hypoxia in concert with periodic breathing appears to be the principal cause of sleep disruption at altitude. Increased sleep fragmentation accounts for the poor sleep quality and may account for some of the worsened daytime performance at high altitude. Hypoxic sleep disruption contributes to the symptoms of acute mountain sickness. Hypoxemia at high altitude is most severe during sleep. Acetazolamide improves sleep, AMS symptoms, and hypoxemia at high altitude. Low doses of a short acting benzodiazepine (temazepam) may also be useful in improving sleep in high altitude. PMID:11898114

  9. Altitude, Acute Mountain Sickness and Headache

    ... Follow us on Instagram DONATE TODAY Altitude, Acute Mountain Sickness and Headache Abuse, Maltreatment, and PTSD and Their Relationship to Migraine Altitude, Acute Mountain Sickness and Headache Alcohol and Migraine Anxiety and ...

  10. Cold Stress at High Altitudes

    N. C. Majumdar

    1983-04-01

    Full Text Available The problem of cold at high altitudes has been analysed from a purely physical standpoint. It has been shown that Siple's Wind-Chill Index is not reliable because (i it does not make use of the well established principles governing the physical processes of heat transfer by convection and radiation, and (ii it assumes that the mean radiant temperature of the surroundings is the same as the ambient dry bulb temperature. A Cold Stress Index has been proposed which is likely to be a more reliable guide for assessing the climatic hazards of high altitude environments. The Index can be quickly estimated with the help of two nomograms devised for the purpose.

  11. Altitude Control Feasibility for a Seaweed Harvester

    Gallieri, Marco; Ringwood, John

    2010-01-01

    In this paper, the feasibility of the altitude control of a seaweed harvester is examined. The harvesting system consists of a vessel and a suspended harvester device, the altitude of which is controlled by a winch. The goal of the control action is to maintain the harvester at a constant altitude with respect to the seabed profile. A control strategy is proposed, including a vessel motion feed-forward action, using a motion reference unit (MRU), and an altitude feedback ...

  12. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis

    Gore, Christopher J; Sharpe, Ken; Garvican-Lewis, Laura A; Saunders, Philo U.; Humberstone, Clare E; Robertson, Eileen Y; Wachsmuth, Nadine B.; Clark, Sally A; McLean, Blake D.; Friedmann-Bette, Birgit; Neya, Mitsuo; Pottgiesser, Torben; Schumacher, Yorck O; Schmidt, Walter F

    2013-01-01

    Objective To characterise the time course of changes in haemoglobin mass (Hbmass) in response to altitude exposure. Methods This meta-analysis uses raw data from 17 studies that used carbon monoxide rebreathing to determine Hbmass prealtitude, during altitude and postaltitude. Seven studies were classic altitude training, eight were live high train low (LHTL) and two mixed classic and LHTL. Separate linear-mixed models were fitted to the data from the 17 studies and the resultant estimates of...

  13. Effect of altitude on the protein metabolism of Bolivian children

    The malnutrition is prevalent and is a major problem among Bolivian children. It is caused by several interacting factors: (1) inadequate protein energy intake due to low socio-economic status; (ii) exposure to acute, repeated and chronic bacterial infections; (iii) exposure to multiple and chronic parasitic infections; (iv) high altitude of the capital, La Paz, 3600 m, with a numerous populations compared to the rest of the country. The research objectives in the first phase are: (i) determination of protein utilization with a non-invasive method using stable isotope tracer among children living at high and low altitude; (ii) determination of protein metabolism among eutrophic children without parasitic or acute bacterial infections at both altitudes; (iii) determination of protein requirement among these children. Two groups of 10 pubertal children, matched for age and sex, of same socio-economic status, eutrophic, without malnutrition, infections or intestinal parasites will be studied; the different status being arrived by anthropometric, nutritional intake, biochemical and pediatrical evaluation. For the metabolic study, stable isotopes L-[1-13C] leucine labelled casein will be used and 13CO2 excreted will be measured. All the basic nutritional assessment and VCO2 measurements will be performed in Bolivia, while the samples of expired gas will be stored in Vacutainers for further analysis by isotope radio mass spectrometer (IRMS), in Clermont-Ferrand, France. The plans for future work is based on the study of the effects of the different variables and their interactions. The following will be evaluated: (i) the socio-economic status; (ii) the bacterial infections: (iii) the parasitic infections; (iv) the altitude. As published by Obert, et al., the socio-economic variable is more connected with the nutritional status than with the altitude. 12 refs, 1 fig., 1 tab

  14. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives

    Lundby, Carsten; Sander, Mikael; van Hall, Gerrit;

    2006-01-01

    The tight relation between arterial oxygen content and maximum oxygen uptake (Vv(o2max)within a given person at sea level is diminished with altitude acclimatization. An explanation often suggested for this mismatch is impairment of the muscle O(2) extraction capacity with chronic hypoxia, and is...... the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4,100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial...... muscle O(2) extraction at maximal exercise was 90.0+/-1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O(2) extraction was 83.2+/-2.8% in the high altitude natives, and did not change with the induction of normoxia...

  15. Effects of High Altitude on Sleep and Respiratory System and Theirs Adaptations

    Turhan San; Senol Polat; Cemal Cingi; Gorkem Eskiizmir; Fatih Oghan; Burak Cakir

    2013-01-01

    High-altitude (HA) environments have adverse effects on the normal functioning body of people accustomed to living at low altitudes because of the change in barometric pressure which causes decrease in the amount of oxygen leading to hypobaric hypoxia. Sustained exposure to hypoxia has adverse effects on body weight, muscle structure and exercise capacity, mental functioning, and sleep quality. The most important step of acclimatization is the hyperventilation which is achieved by hypoxic ven...

  16. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein

    Hu, Sheng Li; Xiong, Wei; Dai, Zhi Qiang; Zhao, Heng Li; Feng, Hua

    2016-01-01

    Hypersensitive C-reaction protein (hsCRP) may be a risk factor for cognitive impairment resulting from Alzheimer’s disease (AD), stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200) detection, and neurocognitive assessment wa...

  17. High Altitude and Intracardiac Devices(Pacemaker and Intracardiac Defibrillator andCardiac Resynchronisation Therapy)

    Gürsoy, Mustafa Ozan; Yıldız, Banu Şahin; Yıldız, Mustafa

    2013-01-01

    Cardiovascular system responds to high altitude short after exposure. Hypoxia induces increase in heart rate, myocardial contractility, and cardiac output. This may have clinical implications in patients with underlying heart disease such as coronary artery disease, heart failure and rhythm disorders. Past studies have showed that patients may experience altitude-induced arrhythmias. However, there are conflicting data for patients with cardiac devices such as permanent pacemaker, intracardia...

  18. The role of oxygen-increased respirator in humans ascending to high altitude

    Shen Guanghao; Xie Kangning; Yan Yili; Jing Da; Tang Chi; Wu Xiaoming; Liu Juan; Sun Tao; Zhang Jianbao; Luo Erping

    2012-01-01

    Abstract Background Acute mountain sickness (AMS) is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. Methods Oxygen-increased respirator (OIR) has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total ...

  19. Acetazolamide pre-treatment before ascending to high altitudes: when to start?

    Burtscher, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Johannes

    2014-01-01

    Hypoxia is the main responsible factor initiating the symptoms of acute mountain sickness (AMS) in susceptible individuals. Measures that improve oxygenation and/or hasten acclimatization like pre-treatment with acetazolamide will prevent the development of AMS. We hypothesized that pre-treatment with acetazolamide the day before arrival at high altitude would elicit improved oxygenation compared to placebo not until the second day of high-altitude exposure. Fifteen study participants were ra...

  20. Non-high altitude methods for rapid screening of susceptibility to acute mountain sickness

    Song, Han; Ke, Tao; Luo, Wen-Jing; Chen, Jing-Yuan

    2013-01-01

    Background Acute mountain sickness (AMS) refers to the cerebral abnormalities typically triggered by exposure to hypobaric hypoxia at high altitude. Although AMS is not often life threatening, it can seriously impact health quality and decrease productivity. Thus, detection of potential susceptibility to AMS has become important for people arriving at high-altitude plateaus for the first time, including laborers and military staff. The aim of this review was to examine techniques which effici...

  1. Heart rate and respiratory rhythm dynamics on ascent to high altitude.

    Lipsitz, L.A.; Hashimoto, F; Lubowsky, L. P.; Mietus, J.; Moody, G.B.; Appenzeller, O.; Goldberger, A.L.

    1995-01-01

    OBJECTIVE--To investigate the alterations in autonomic control of heart rate at high altitude and to test the hypothesis that hypoxaemic stress during exposure to high altitude induces non-linear, periodic heart rate oscillations, similar to those seen in heart failure and the sleep apnoea syndrome. SUBJECTS--11 healthy subjects aged 24-64. MAIN OUTCOME MEASURES--24 hour ambulatory electrocardiogram records obtained at baseline (1524 m) and at 4700 m. Simultaneous heart rate and respiratory d...

  2. Acetazolamide pre-treatment before ascending to high altitudes: when to start?

    Burtscher, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Johannes

    2014-01-01

    Hypoxia is the main responsible factor initiating the symptoms of acute mountain sickness (AMS) in susceptible individuals. Measures that improve oxygenation and/or hasten acclimatization like pre-treatment with acetazolamide will prevent the development of AMS. We hypothesized that pre-treatment with acetazolamide the day before arrival at high altitude would elicit improved oxygenation compared to placebo not until the second day of high-altitude exposure. Fifteen study participants were randomly assigned in a double blind fashion to receive placebo or acetazolamide (2 × 125 mg) before (10 hours and 1 hour) exposure to high altitude (Monte Rosa plateau, 3480 m). Beside AMS scoring, heart rate, minute ventilation, and blood gas analyses were performed during rest and submaximal exercise at low altitude and on day 1, 2 and 3 at high altitude. From low altitude to day 1 at high altitude changes of pH (7.41 ± 0.01 vs. 7.48 ± 0.04) and HCO3 (24.0 ± 0.46 vs. 24.6 ± 2.6 mmol/L) within the placebo group differed significantly from those within the acetazolamide group (7.41 ± 0.01 vs. 7.41 ± 0.02; 23.6 ± 0.38 vs. 20.7 ± 1.8 mmol/L) (P effect on AMS development. PMID:25550957

  3. Time-varying signal analysis to detect high-altitude periodic breathing in climbers ascending to extreme altitude.

    Garde, A; Giraldo, B F; Jané, R; Latshang, T D; Turk, A J; Hess, T; Bosch, M M; Barthelmes, D; Merz, T M; Hefti, J Pichler; Schoch, O D; Bloch, K E

    2015-08-01

    This work investigates the performance of cardiorespiratory analysis detecting periodic breathing (PB) in chest wall recordings in mountaineers climbing to extreme altitude. The breathing patterns of 34 mountaineers were monitored unobtrusively by inductance plethysmography, ECG and pulse oximetry using a portable recorder during climbs at altitudes between 4497 and 7546 m on Mt. Muztagh Ata. The minute ventilation (VE) and heart rate (HR) signals were studied, to identify visually scored PB, applying time-varying spectral, coherence and entropy analysis. In 411 climbing periods, 30-120 min in duration, high values of mean power (MP(VE)) and slope (MSlope(VE)) of the modulation frequency band of VE, accurately identified PB, with an area under the ROC curve of 88 and 89%, respectively. Prolonged stay at altitude was associated with an increase in PB. During PB episodes, higher peak power of ventilatory (MP(VE)) and cardiac (MP(LF)(HR) ) oscillations and cardiorespiratory coherence (MP(LF)(Coher)), but reduced ventilation entropy (SampEn(VE)), was observed. Therefore, the characterization of cardiorespiratory dynamics by the analysis of VE and HR signals accurately identifies PB and effects of altitude acclimatization, providing promising tools for investigating physiologic effects of environmental exposures and diseases. PMID:25820153

  4. Changes in maximal double poling performance during and after moderate altitude training in elite cross country skiers

    Höög, Martina; Jensen, Kurt; Willis, Sarah; Holmberg, Hans-Christer

    2013-01-01

    INTRODUCTION: In 2014, the Olympic cross-country ski competitions will be held in Sochi, Russia at approximately 1500m altitude. Even moderate altitude can have negative effects on performance in highly trained endurance athletes and individuals may adapt and react differently to altitude exposure...... trained elite skiers seems to be less affected by moderate altitude indicating a greater dependence of the anaerobic energy system during upper body exercise. REFERENCES 1. Chapman, R.F., et al Journal of applied physiology, 1998. 85: p. 1448-1456. 2. Ainegren, M., et al . Engineering of Sport 7, Vol 2...

  5. Rocket Engine Altitude Simulation Technologies

    Woods, Jody L.; Lansaw, John

    2010-01-01

    John C. Stennis Space Center is embarking on a very ambitious era in its rocket engine propulsion test history. The first new large rocket engine test stand to be built at Stennis Space Center in over 40 years is under construction. The new A3 Test Stand is designed to test very large (294,000 Ibf thrust) cryogenic propellant rocket engines at a simulated altitude of 100,000 feet. A3 Test Stand will have an engine testing chamber where the engine will be fired after the air in the chamber has been evacuated to a pressure at the simulated altitude of less than 0.16 PSIA. This will result in a very unique environment with extremely low pressures inside a very large chamber and ambient pressures outside this chamber. The test chamber is evacuated of air using a 2-stage diffuser / ejector system powered by 5000 lb/sec of steam produced by 27 chemical steam generators. This large amount of power and flow during an engine test will result in a significant acoustic and vibrational environment in and around A3 Test Stand.

  6. Radiation doses at high altitudes and during space flights

    There are three main sources of radiation exposure during space flights and at high altitudes--galactic cosmic radiation, solar cosmic radiation and radiation of the earth's radiation belt. Their basic characteristics are presented in the first part of this paper.Man's exposure during space flights is discussed in the second part of the paper. Particular attention is devoted to the quantitative and qualitative characteristics of the radiation exposure on near-earth orbits: both theoretical estimation as well as experimental data are presented. Some remarks on radiation protection rules on-board space vehicles are also given.The problems connected with the radiation protection of air crew and passengers of subsonic and supersonic air transport are discussed in the last part of the paper. General characteristics of on-board radiation fields and their variations with flight altitude, geomagnetic parameters of a flight and the solar activity are presented, both based on theoretical estimates and experimental studies. The questions concerning air crew and passenger radiation protection arising after the publication of ICRP 60 recommendation are also discussed. Activities of different institutions relevant to the topic are mentioned; strategies to manage and check this type of radiation exposure are presented and discussed. Examples of results based on the author's personal experience are given, analyzed and discussed. (author)

  7. High-altitude cerebral oedema mimicking stroke

    Yanamandra, Uday; Gupta, Amul; Patyal, Sagarika; Varma, Prem Prakash

    2014-01-01

    High-altitude cerebral oedema (HACO) is the most fatal high-altitude illness seen by rural physicians practising in high-altitude areas. HACO presents clinically with cerebellar ataxia, features of raised intracranial pressure (ICP) and coma. Early identification is important as delay in diagnosis can be fatal. We present two cases of HACO presenting with focal deficits mimicking stroke. The first patient presented with left-sided hemiplegia associated with the rapid deterioration in the sens...

  8. Dosimetry at aviation altitudes (2006-2008)

    Based upon the European Union (EU)-Directive 96/29/EURATOM, legal regulations on the radiation protection of aircrew had to be implemented into the corresponding national law within the member states of the EU by 13 May 2000. In Article 42 the directive stipulates, among other things, that the exposure of the crew concerned shall be assessed. This requirement has been implemented by dose calculations for most aircrew members in the EU. Some airlines and research institutes regularly spot check the calculated doses by measuring flights. The solar minimum is a time period of particular interest since the dose rates at aviation altitudes reach their maximum within the 11-year solar cycle. For this reason, the German Aerospace Center (DLR) performed repeated measuring flights in cooperation with several German airlines during the past solar minimum from March 2006 to August 2008. The measuring devices used consisted of a tissue equivalent proportional counter, various types of Liulin semiconductor detectors and several bubble detectors. (authors)

  9. Aspirated Compressors for High Altitude Engines Project

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been...

  10. Fire Fighting from High Altitude

    Cobleigh, Brent; Ambrosia, Vince

    2007-01-01

    A viewgraph presentation on high altitude fire fighting is shown. The topics include: 1) Yellowstone Fire - 1988; 2) 2006 Western States Fire Mission Over-View; 3) AMS-Wildfire Scanner; 4) October 24-25 Mission: Yosemite NP and NF; 5) October 24-25 Mission MODIS Overpass; 6) October 24-25 Mission Highlights; 7) October 28-29 Mission Esperanza Fire, California; 8) Response to the Esperanza Fire in Southern California -- Timeline Oct 27-29 2006; 9) October 28-29 Mission Esperanza Fire Altair Flight Routing; 10) October 28-29 Mission Esperanza Fire Altair Over-Flights; 11) October 28-29 Mission Highlights; 12) Results from the Esperanza Fire Response; 13) 2007 Western States Fire Mission; and 14) Western States UAS Fire Mission 2007

  11. Increased Hypoxic Dose After Training at Low Altitude with 9h Per Night at 3000m Normobaric Hypoxia.

    Carr, Amelia J; Saunders, Philo U; Vallance, Brent S; Garvican-Lewis, Laura A; Gore, Christopher J

    2015-12-01

    This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities) on haemoglobin mass (Hbmass), maximum oxygen consumption (VO2max), time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10) or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night(-1) at a simulated altitude of 3000 m using hypoxic tents; n = 8). A control group (CON; n = 10) lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p night (p = 0.03) and a ~8% pre to post-intervention difference (p = 0.006) after lowHH only. We recommend low altitude (1380 m) combined with sleeping in altitude tents (3000 m) as one effective alternative to traditional altitude training methods, which can improve Hbmass. Key pointsIn some countries, it may not be possible to perform classical altitude training effectively, due to the low elevation at altitude training venues. An additional hypoxic stimulus can be provided by simulating higher altitudes overnight, using altitude tents.Three weeks of combined (living and training at 1380 m) and simulated altitude exposure (at 3000 m) can improve haemoglobin mass by over 3% in comparison to control values, and can also improve time to exhaustion by ~9% in comparison to baseline.We recommend that, in the context of an altitude training camp at low altitudes (~1400 m) the addition of a relatively short

  12. Physiological aspects of altitude training and the use of altitude simulators

    Ranković Goran; Radovanović Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training thr...

  13. Altitude as handicap in rank-order football tournaments

    Fawaz, Yarine; Casas, Agustin

    2013-01-01

    In 2007, based on medical reports, FIFA ruled that no international football competition could be played in stadiums with an altitude higher than 2500 meters. We provide stark evidence which supports the claim that playing in high altitude benefits the home team through two channels. First, in these scenarios, high altitude teams (HAT) do better against low altitude teams than against other high altitude teams. Second, every time that low altitude teams visit other high altitude teams they ge...

  14. Remote ischemic preconditioning for prevention of high-altitude diseases: fact or fiction?

    Berger, Marc Moritz; Macholz, Franziska; Mairbäurl, Heimo; Bärtsch, Peter

    2015-11-15

    Preconditioning refers to exposure to brief episodes of potentially adverse stimuli and protects against injury during subsequent exposures. This was first described in the heart, where episodes of ischemia/reperfusion render the myocardium resistant to subsequent ischemic injury, which is likely caused by reactive oxygen species (ROS) and proinflammatory processes. Protection of the heart was also found when preconditioning was performed in an organ different from the target, which is called remote ischemic preconditioning (RIPC). The mechanisms causing protection seem to include stimulation of nitric oxide (NO) synthase, increase in antioxidant enzymes, and downregulation of proinflammatory cytokines. These pathways are also thought to play a role in high-altitude diseases: high-altitude pulmonary edema (HAPE) is associated with decreased bioavailability of NO and increased generation of ROS, whereas mechanisms causing acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) seem to involve cytotoxic effects by ROS and inflammation. Based on these apparent similarities between ischemic damage and AMS, HACE, and HAPE, it is reasonable to assume that RIPC might be protective and improve altitude tolerance. In studies addressing high-altitude/hypoxia tolerance, RIPC has been shown to decrease pulmonary arterial systolic pressure in normobaric hypoxia (13% O2) and at high altitude (4,342 m). Our own results indicate that RIPC transiently decreases the severity of AMS at 12% O2. Thus preliminary studies show some benefit, but clearly, further experiments to establish the efficacy and potential mechanism of RIPC are needed. PMID:26089545

  15. The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude

    Van Hall, Gerrit; Calbet, J A; Søndergaard, H; Saltin, B

    1. One to five weeks of chronic exposure to hypoxia has been shown to reduce peak blood lactate concentration compared to acute exposure to hypoxia during exercise, the high altitude 'lactate paradox'. However, we hypothesize that a sufficiently long exposure to hypoxia would result in a blood...... lowlanders acclimatized for 9 weeks to an altitude of 5260 m, the arterial lactate concentration was similar at 0 m acute hypoxia and 5260 m chronic hypoxia. The net lactate release from the active leg was higher at 5260 m chronic hypoxia compared to 0 m acute hypoxia, implying an enhanced lactate...... utilization with prolonged acclimatization to altitude. The present study clearly shows the absence of a lactate paradox in lowlanders sufficiently acclimatized to altitude....

  16. Jupiter's High-Altitude Clouds

    2007-01-01

    The New Horizons Multispectral Visible Imaging Camera (MVIC) snapped this incredibly detailed picture of Jupiter's high-altitude clouds starting at 06:00 Universal Time on February 28, 2007, when the spacecraft was only 2.3 million kilometers (1.4 million miles) from the solar system's largest planet. Features as small as 50 kilometers (30 miles) are visible. The image was taken through a narrow filter centered on a methane absorption band near 890 nanometers, a considerably redder wavelength than what the eye can see. Images taken through this filter preferentially pick out clouds that are relatively high in the sky of this gas giant planet because sunlight at the wavelengths transmitted by the filter is completely absorbed by the methane gas that permeates Jupiter's atmosphere before it can reach the lower clouds. The image reveals a range of diverse features. The south pole is capped with a haze of small particles probably created by the precipitation of charged particles into the polar regions during auroral activity. Just north of the cap is a well-formed anticyclonic vortex with rising white thunderheads at its core. Slightly north of the vortex are the tendrils of some rather disorganized storms and more pinpoint-like thunderheads. The dark 'measles' that appear a bit farther north are actually cloud-free regions where light is completely absorbed by the methane gas and essentially disappears from view. The wind action considerably picks up in the equatorial regions where giant plumes are stretched into a long wave pattern. Proceeding north of the equator, cirrus-like clouds are shredded by winds reaching speeds of up to 400 miles per hour, and more pinpoint-like thunderheads are visible. Although some of the famous belt and zone structure of Jupiter's atmosphere is washed out when viewed at this wavelength, the relatively thin North Temperate Belt shows up quite nicely, as does a series of waves just north of the belt. The north polar region of Jupiter in

  17. High altitude aircraft flight tests

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  18. Haematological Studies in High Altitude Natives at Plains and on Return to High Altitude

    S. C. Jain

    1988-04-01

    Full Text Available Haematologic studies were carried out in 20 high altitude natives during two months stay at plains (200 m and on their return to an altitude of 3,500 m. Haemoglobin, erythrocyte count, haematocrit and reticulocyte count decreased rapidly on arrival to plains and attained minimum level by the end of fourth week. All these parameters increased rapidly on return to high altitude and were found to attain maximum values by 23rd day on return to high altitude. Mean cell volume and mean cell haemoglobin showed significant increase at altitude. Blood volume and red cell mass increased significantly at altitude. It is concluded that the high altitude natives of Ladakh were well adapted to hypoxic environment due to normocythaemic hypervolemia.

  19. Heart rate and respiratory rhythm dynamics on ascent to high altitude

    Lipsitz, L. A.; Hashimoto, F.; Lubowsky, L. P.; Mietus, J.; Moody, G. B.; Appenzeller, O.; Goldberger, A. L.

    1995-01-01

    OBJECTIVE--To investigate the alterations in autonomic control of heart rate at high altitude and to test the hypothesis that hypoxaemic stress during exposure to high altitude induces non-linear, periodic heart rate oscillations, similar to those seen in heart failure and the sleep apnoea syndrome. SUBJECTS--11 healthy subjects aged 24-64. MAIN OUTCOME MEASURES--24 hour ambulatory electrocardiogram records obtained at baseline (1524 m) and at 4700 m. Simultaneous heart rate and respiratory dynamics during 2.5 hours of sleep by fast Fourier transform analysis of beat to beat heart rate and of an electrocardiographically derived respiration signal. RESULTS--All subjects had resting hypoxaemia at high altitude, with an average oxyhaemoglobin saturation of 81% (5%). There was no significant change in mean heart rate, but low frequency (0.01-0.05 Hz) spectral power was increased (P high altitude. Time series analysis showed a complex range of non-linear sinus rhythm dynamics. Striking low frequency (0.04-0.06 Hz) heart rate oscillations were observed during sleep in eight subjects at high altitude. Analysis of the electrocardiographically derived respiration signal indicated that these heart rate oscillations correlated with low frequency respiratory oscillations. CONCLUSIONS--These data suggest (a) that increased low frequency power during high altitude exposure is not simply attributable to increased sympathetic modulation of heart rate, but relates to distinctive cardiopulmonary oscillations at approximately 0.05 Hz and (b) that the emergence of periodic heart rate oscillations at high altitude is consistent with an unstable cardiopulmonary control system that may develop on acute exposure to hypoxaemic stress.

  20. Persistent organic pollutants (POPs) as environmental risk factors in remote high-altitude ecosystems.

    Kallenborn, Roland

    2006-01-01

    Persistent organic pollutants (POPs), and their transformation products, are the most investigated organic environmental contaminants within the past five decades. Organochlorines have been found in virtually all environmental compartments on the globe. Severe environmental implications have been shown to be associated with the presence of the POP group of contaminants in the environment. However, in the late 1990s, Canadian scientists first pinpointed the implication of POPs for high-altitude environments in a comprehensive way (Blais et al., 1998, Nature 395, 585-588). Under certain meteorological and geographic conditions, high-altitude environments can serve as "cold condensers" for atmospheric POP loadings. Subsequent investigations in high-altitude environments in Asia, Europe, and North and South America have confirmed suspicions that high-altitude mountainous regions have the potential to serve as focus regions for POPs and even for nonpersistent, medium-lived contaminants, such as "currently used pesticides", due to cold condensation and deposition in high altitudes. Although the presence and the altitude-dependent increase of POP levels in mountainous regions are confirmed by many international studies, the ecotoxicological consequences still remain largely unknown. At present, only a few studies have been published describing the biological effects in high-altitude environments due to increased POP exposure. Therefore, in this early stage of the international research effort on the ecotoxicological risk evaluation of persistent contaminants in high-altitude, pristine ecosystems, the present review intends to summarize the current state of research on POPs in high-altitude environments and draw preliminary conclusions on possible consequences of the presence of POPs in mountainous ecosystems based on currently available information from alpine and related Arctic environments. PMID:16399161

  1. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  2. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  3. [Sildenafil and exercise performance at altitude].

    Peidro, Roberto M

    2015-01-01

    Barometric pressure and partial oxygen pressure decrease with increasing altitude. Hypobaric hypoxia produced is responsible for altitude-related diseases and it can cause severe decrements in exercise performance. The physiological adaptations to the altitude are multiple and they contribute to alter different athletic qualities. The VO2 worsening could be associated to increased pulmonary vascular resistance and nitric oxide diffusion alteration. Performance impairments at altitude can also be accentuated by hypoxia-induced elevations in pulmonary arterial pressure. Clinical studies have demonstrated the beneficial effects of sildenafil on the treatment of pulmonary hypertension. These effects have led to suggest that its indication for competitions at altitude might improve athletic performance. The investigations demonstrate different results depending on the altitude level and times and intensities of exercise. Some studies show performance improvements, although not in all participants. Individual responses vary widely between different athletes. This presentation examines the effects of altitude on exercise capacity and shows studies about the use of sildenafil to improve sport performance. This text also discusses the possible side effects and implications for the use of sildenafil in athletes, indication that is not the basic one of the drug. The physicians must know in each athlete the individual sildenafil side effects that could arise and that would influence negatively on health and performance. PMID:26339884

  4. High-Altitude Hydration System

    Parazynski, Scott E.; Orndoff, Evelyne; Bue, Grant C.; Schaefbauer, Mark E.; Urban, Kase

    2010-01-01

    Three methods are being developed for keeping water from freezing during high-altitude climbs so that mountaineers can remain hydrated. Three strategies have been developed. At the time of this reporting two needed to be tested in the field and one was conceptual. The first method is Passive Thermal Control Using Aerogels. This involves mounting the fluid reservoir of the climber s canteen to an inner layer of clothing for better heat retention. For the field test, bottles were mounted to the inner fleece layer of clothing, and then aerogel insulation was placed on the outside of the bottle, and circumferentially around the drink straw. When climbers need to drink, they can pull up the insulated straw from underneath the down suit, take a sip, and then put it back into the relative warmth of the suit. For the field test, a data logger assessed the temperatures of the water reservoir, as well as near the tip of the drink straw. The second method is Passive Thermal Control with Copper-Shielded Drink Straw and Aerogels, also mounted to inner layers of clothing for better heat retention. Braided wire emanates from the inside of the fleece jacket layer, and continues up and around the drink straw in order to use body heat to keep the system-critical drink straw warm enough to keep water in the liquid state. For the field test, a data logger will be used to compare this with the above concept. The third, and still conceptual, method is Active Thermal Control with Microcontroller. If the above methods do not work, microcontrollers and tape heaters have been identified that could keep the drink straw warm even under extremely cold conditions. Power requirements are not yet determined because the thermal environment inside the down suit relative to the external environment has not been established. A data logger will be used to track both the external and internal temperatures of the suit on a summit day.

  5. Acute high-altitude illness: a clinically orientated review

    Smedley, Tom; Grocott, Michael PW

    2013-01-01

    Acute high-altitude illness is an encompassing term for the range of pathology that the unacclimatised individual can develop at increased altitude. This includes acute mountain sickness, high-altitude cerebral oedema and high-altitude pulmonary oedema. These conditions represent an increasing clinical problem as more individuals are exposed to the hypobaric hypoxic environment of high altitude for both work and leisure. In this review of acute high-altitude illness, the epidemiology, risk fa...

  6. Renin and aldosterone at high altitude in man.

    Keynes, R J; Smith, G W; Slater, J D; Brown, M M; Brown, S E; Payne, N N; Jowett, T P; Monge, C C

    1982-01-01

    Measurements have been made of hormonal changes relevant to salt and water balance during prolonged exposure to hypoxia to improve our understanding of the syndrome of acute mountain sickness. We have attempted to delineate the detailed inter-relationships between the renin-aldosterone and the vasopressin systems by a metabolically controlled study, involving an orthostatic stress (45 degrees head-up tilt) and an injection of a standard dose of ACTH to test adrenal responsiveness. Three Caucasian medical students underwent a 7-day equilibration at 150 m (Lima, Peru), followed by a 6-day sojourn at 4350 m (Cerro de Pasco, Peru) and a final 7 days at 150 m. Measurements were made of sodium and potassium balance, body weight and the 24-h renal excretion of vasopressin, cortisol and aldosterone 18-glucuronide. These variables showed little change, except for that of aldosterone 18-glucuronide, which fell sharply at altitude and rebounded even more sharply on return to sea level. At altitude, basal plasma levels of renin activity and aldosterone fell, and the response to orthostasis was attenuated, but the fall of plasma renin activity, as compared to plasma aldosterone, was delayed; on return to sea level this dissociation was exacerbated with the return of normal renin responsiveness lagging behind that of aldosterone. We suggest that unknown factors which dissociate the orthodox renin-aldosterone relationship, other than the activity of the angiotensin I-converting enzyme, are operative on exposure to hypoxia. PMID:7057120

  7. Radiation doses at high altitudes and during space flights

    There are three main sources of the radiation exposure during space flight and at high altitudes: galactic cosmic radiation; solar cosmic radiation; and the radiation of Earth's radiation belts. The first is coming to the Earth's surroundings from the deep cosmos, the second from the Sun. Two radiation belts are centered at thousands of km from the Earth's surface. All the three sources are briefly characterized to give a general idea on their composition, their variations over time and the level of exposure due to them. Radiation doses during space flights will be discussed in the second part of the invited paper, including the possible radiation barriers of long time space exploration missions. Particular attention will be devoted to the quantitative and qualitative characterization of radiation exposure on near-Earth orbits, both theoretical estimation as well as experimental data will be presented. Some remarks on radiation protection philosophy on the board of space vehicles will be also given. The problems concerning the radiation protection of air crew and passengers of subsonic and supersonic air transport will be discussed in the last part of the lecture. General characteristics of on-board radiation fields and their variations with the flight altitude, geomagnetic parameters of a flight and the solar activity will be presented, both based on the theoretical estimation and experimental studies. The questions concerning of aircrew and passengers radiation protection arising after the publication of ICRP 60 recommendations will be also arisen. Activities of different international bodies in this field will be mentioned, the approaches how to manage and check this type of radiation exposure will be presented and discussed. Some examples based on the author's personal experience will be given. (author)

  8. Long-term stay at low altitude (1,200 m) promotes better hypoxia adaptation and performance.

    Singh, Krishan; Gupta, R K; Soree, Poonam; Rai, Lokesh; Himashree, G

    2014-01-01

    Acute exposure to high altitude hypoxia is known to decrease physical performance. The exercise performance increases during moderate altitude training (2000-3000 m) but benefits are overshadowed by adverse effect associated with hypoxia. Therefore, the study was designed to address whether low altitude of 1200 m could increase exercise performance without any adverse effects and a correlation with stay period (stay > 6 month) was optimized. In the present study residents of lower altitude (1200 m altitude) (LA) and sea level (SL) residents were subjected to sub-maximal exercise test and their exercise response in terms of post-exercise heart rate and change in oxygen saturation was compared. Post-exercise peak heart rate (129.89 ± 13.42 vs 146.00 ± 11.81, p exercise had a significant fall (95.3 ± 2.26% vs 98 ± 0% p exercise response and hematological benefit compared to sea level residents. PMID:26215004

  9. High Altitude Clear Air Turbulence Project

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  10. High-altitude cerebral oedema mimicking stroke.

    Yanamandra, Uday; Gupta, Amul; Patyal, Sagarika; Varma, Prem Prakash

    2014-01-01

    High-altitude cerebral oedema (HACO) is the most fatal high-altitude illness seen by rural physicians practising in high-altitude areas. HACO presents clinically with cerebellar ataxia, features of raised intracranial pressure (ICP) and coma. Early identification is important as delay in diagnosis can be fatal. We present two cases of HACO presenting with focal deficits mimicking stroke. The first patient presented with left-sided hemiplegia associated with the rapid deterioration in the sensorium. Neuroimaging revealed features suggestive of vasogenic oedema. The second patient presented with monoplegia of the lower limb. Neuroimaging revealed perfusion deficit in anterior cerebral artery territory. Both patients were managed with dexamethasone and they improved dramatically. Clinical picture and neuroimaging closely resembled acute ischaemic stroke in both cases. Thrombolysis in these patients would have been disastrous. Recent travel to high altitude, young age, absence of atherosclerotic risk factors and features of raised ICP concomitantly directed the diagnosis to HACO. PMID:24671373

  11. Python Engine Installed in Altitude Wind Tunnel

    1949-01-01

    An engine mechanic checks instrumentation prior to an investigation of engine operating characteristics and thrust control of a large turboprop engine with counter-rotating propellers under high-altitude flight conditions in the 20-foot-dianieter test section of the Altitude Wind Tunnel at the Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics, Cleveland, Ohio, now known as the John H. Glenn Research Center at Lewis Field.

  12. Does high altitude increase risks of the elderly patients with coronary artery disease?

    Tian-Yi Wu; Zhong-Yan Zhan; Qin-Li Wu; Suo-Lung Baomu; Yu-Ling Jie; Min Sun

    2009-01-01

    Objective To assess the effect of altitude hypoxia on the elderly patients with coronary artery disease (CAD). Methods Three subject groups were surveyed during their train trip on the highest railroad--the Qinghai-Tibet Railway: 22 elderly individuals with documented CAD, 20 healthy elderly controls, and 20 healthy young controls, all of whom from Beijing near the sea level (76 m). Survey questions addressed clinical features of their healthy conditions and aspects of their coronary disease. The baseline study was performed at Xining at an altitude of 2261 m, and then during acute exposure to altitudes of 2808 m, 4768m, 5072 m and 4257 m by train for 24 hours. Resting pulse rate, blood pressure, oxygen saturation, electrocardiograph (ECG), and cardiac work estimated by the heart rate-blood pressure double product were obtained five times in each subject at different altitudes. Results On arrival to altitudes between 4768 m and 5072 m, the older passengers, especially those with preexisting coronary disease, had higher HR, higher BP, and lower SaO2, as well as more frequent abnormalities on ECG, as compared to the younger healthy subjects. As compared with the healthy elderly controls, incomplete right bundle branch block, left ventricular hypertrophy, and ST segment depression were more frequently seen in the elderly coronary patients (P<0.01). Cardiac work in group 1 was increased by 13% 12 hours after arrival to altitudes between 2808 m and 5072 m. Oxygen saturation decreased significantly with the altitude increasing by train ascent but improved after inhalation of oxygen. Most of the older subjects tolerated their sojourn at high altitude well except one who developed angina repeatedly with a significant ST segment depression. Conclusions Coronary events and ECG signs of myocardial ischemia are rare in elderly individuals with CAD who travel from sea level to moderate altitudes of 1500m to 2800 m. Patients with CAD who are well compensated at sea level

  13. Airway responses to methacholine and exercise at high altitude in healthy lowlanders.

    Pellegrino, Riccardo; Pompilio, Pasquale; Quaranta, Marco; Aliverti, Andrea; Kayser, Bengt; Miserocchi, Giuseppe; Fasano, Valter; Cogo, Annalisa; Milanese, Manlio; Cornara, Giuseppe; Brusasco, Vito; Dellacà, Raffaele

    2010-02-01

    Peribronchial edema has been proposed as a mechanism enhancing airway responses to constrictor stimuli. Acute exposure to altitude in nonacclimatized lowlanders leads to subclinical interstitial pulmonary edema that lasts for several days after ascent, as suggested by changes in lung mechanics. We, therefore, investigated whether changes in lung mechanics consistent with fluid accumulation at high altitude within the lungs are associated with changes in airway responses to methacholine or exercise. Fourteen healthy subjects were studied at 4,559 and at 120 m above sea level. At high altitude, both static and dynamic lung compliances and respiratory reactance at 5 Hz significantly decreased, suggestive of interstitial pulmonary edema. Resting minute ventilation significantly increased by approximately 30%. Compared with sea level, inhalation of methacholine at high altitude caused a similar reduction of partial forced expiratory flow but less reduction of maximal forced expiratory flow, less increments of pulmonary resistance and respiratory resistance at 5 Hz, and similar effects of deep breath on pulmonary and respiratory resistance. During maximal incremental exercise at high altitude, partial forced expiratory flow gradually increased with the increase in minute ventilation similarly to sea level but both achieved higher values at peak exercise. In conclusion, airway responsiveness to methacholine at high altitude is well preserved despite the occurrence of interstitial pulmonary edema. We suggest that this may be the result of the increase in resting minute ventilation opposing the effects and/or the development of airway smooth muscle force, reduced gas density, and well preserved airway-to-parenchyma interdependence. PMID:19940099

  14. Considerations for resuscitation at high altitude in elderly and untrained populations and rescuers.

    Suto, Takashi; Saito, Shigeru

    2014-03-01

    With the development of transportation technologies, elderly people with chronic diseases are increasingly enjoying trekking and tours of nature resorts that include mountain highlands. Because of problems related to circulation, respiration, metabolism, and/or the musculoskeletal system in this population, the impact of high altitude on cardiopulmonary function is increased. Alpine accidents, therefore, tend to be more common in this population, and cases of cardiopulmonary arrest (CPA) at high altitudes seem to be increasing. However, relatively few studies have described cardiopulmonary resuscitation (CPR) at high altitudes. Although insufficient studies are available to standardize CPR guidelines at high altitude at this time, the aim of this review is to summarize previous studies relevant to physiologic changes after exposure to high-altitude environments and exercise, which may be a risk factor for CPA in elderly trekkers. In addition, we summarize our previous studies that described the effect of CPR procedures on cardiopulmonary function in untrained rescuers. The available data suggest that prolonged CPR at high altitudes requires strenuous work from rescuers and negatively affects their cardiopulmonary physics and subjectively measured fatigue. Alpine rescue teams should therefore be well prepared for their increased physical burden and difficult conditions. Elderly travelers should be made aware of their increased risk of CPA in alpine settings. The use of mechanical devices to assist CPR should be considered wherever possible. PMID:24388065

  15. Physiological aspects of altitude training and the use of altitude simulators

    Ranković Goran

    2005-01-01

    Full Text Available Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training, live low and train high (training through hypoxia, and live high and train low (the new trend. In an effort to reduce the financial and logistical challenges of traveling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters. Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarized.

  16. Haematological Studies in High Altitude Natives at Plains and on Return to High Altitude

    Jain, S C; H. M. Divekar; Jaya Bardhan; R S Sharma; Swamy, Y. V.

    1988-01-01

    Haematologic studies were carried out in 20 high altitude natives during two months stay at plains (200 m) and on their return to an altitude of 3,500 m. Haemoglobin, erythrocyte count, haematocrit and reticulocyte count decreased rapidly on arrival to plains and attained minimum level by the end of fourth week. All these parameters increased rapidly on return to high altitude and were found to attain maximum values by 23rd day on return to high altitude. Mean cell volume and mean cell haemog...

  17. Comparative study of acetazolamide and spironolactone on body fluid compartments on induction to high altitude

    Singh, M. V.; Jain, S. C.; Rawal, S. B.; Divekar, H. M.; Parshad, Rajinder; Tyagi, A. K.; Sinha, K. C.

    1986-03-01

    Studies were conducted on 29 male healthy subjects having no previous experience of living at high altitude. These subjects were divided into three groups, i.e., subjects treated with placebo, acetazolamide and spironolactone. These subjects were first studied in Delhi. The drug schedule was started 24 hour prior to the airlift of these subjects to an altitude of 3,500 m and was continued for 48 hour after arrival at high altitude. Total body water, extra cellular water, plasma volume, blood electrolytes, pH, pO2, pCO2 and blood viscosity were determined on 3rd and 12th day of their stay at high altitude. Total body water, extra cellular water intracellular water and plasma volume decreased on high altitude exposure. There was a further slight decrease in these compartments with acetazolamide and spironolactone. It was also observed that spironolactone drives out more water from the extracellular compartment. Loss of plasma water was also confirmed by increased plasma osmolality. Increase in arterial blood pH was noticed on hypoxic exposure but the increase was found less in acetazolamide and spironolactone cases. This decrease in pH is expected to result in better oxygen delivery to the tissues at the low oxygen tension. It was also confirmed because blood pO2 increased in both the groups. No significant change in plasma electrolytes was observed in subjects of various groups. Blood viscosity slightly increased on exposure to high altitude. The degree of rise was found less in the group treated with spironolactone. This study suggests that both the drugs are likely to be beneficial in ameliorating/prevention of AMS syndrome.

  18. Effect of altitude on solar UVR and spectral and spatial variations of UV irradiances measured inWagrain, Austria in winter

    Baczynska, Katarzyna A; Pearson, Andy J; O'Hagan, John B;

    2013-01-01

    Ultraviolet radiation spectral irradiance was measured at different altitudes on horizontal and tilted planes in different azimuth directions on cloudless days in Austria, in March 2010, within the Impact of Climatic and Environmental factors on Personal Ultraviolet Radiation Exposure project...

  19. Neutral Wind Observations below 200 km altitudes

    Watanabe, S.; Abe, T.; Habu, H.; Kakinami, Y.; Larsen, M. F.; Pfaff, R. F., Jr.; Yamamoto, M.

    2015-12-01

    Neutral Wind Observations below 200 km altitudesS. Watanabe1, T. Abe2, H. Habu2, Y. Kakinami3, M. Larsen4, R. Pfaff5, M. Yamamoto6, M-Y. Yamamoto31Hokkaido University/Hokkaido Information University, 2JAXA/ISAS, 3Kochi University of Technology, 4Clemson University, 5NASA/Goddard Space Flight Center, 6Kyoto University, Neutral wind in the thermosphere is one of the key parameters to understand the ionosphere-thermosphere coupling process. JAXA/ISAS successfully launched sounding rockets from Uchinoura Space Center (USC) on September 2, 2007, January 12, 2012, and July 20, 2013, and NASA launched sounding rockets from Kwajalein on May 7, 2013 and from Wallops on July 4, 2013. The rockets installed Lithium and/or TMA canisters as well as instruments for plasma and electric and magnetic fields. The atomic Lithium gases were released at altitudes between 150 km and 300 km in the evening on September 2, 2007, at altitude of ~100 km in the morning on January 12, 2012, at altitude of ~120km in the midnight on July 20, 2013, at altitude between 150 km and 300 km in the evening on May 7, 2013 and at altitude of ~150 km in the noon on July 4, 2013. The Lithium atoms were scattering sunlight by resonance scattering with wavelength of 670nm. However, the Lithium atoms scattered moon light on July 20, 2013. The moon light scattering is the first time to use for thermospheric wind measurement in the midnight. The Lithium clouds/trails and TMA trails showed clearly the neutral wind shears and atmospheric waves at ~150 km altitude in the lower thermosphere for all local time.

  20. An Undergraduate-Built Prototype Altitude Determination System (PADS) for High Altitude Research Balloons.

    Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.

    2014-12-01

    In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented

  1. The effect of chronic erythrocytic polycythemia and high altitude upon plasma and blood volumes.

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Comparison of two kinds of physiological chronic erythrocytic polycythemias in order to differentiate the specific effect of erythrocytic polycythemia from the general effects of high altitude upon the plasma volume. The two kinds were produced hormonally in female chickens, at sea level, or by protracted high-altitude exposures. It appears that the vascular system of the body may account for an increase in red blood cell mass either by reduction in plasma volume, or by no change in plasma volume, resulting in differential changes in total blood volumes.

  2. Reversibility of electrophysiological changes induced by chronic high-altitude hypoxia in adult rat heart.

    Chouabe, C; Amsellem, J; Espinosa, L; Ribaux, P; Blaineau, S; Mégas, P; Bonvallet, R

    2002-04-01

    Recent studies indicate that regression of left ventricular hypertrophy normalizes membrane ionic current abnormalities. This work was designed to determine whether regression of right ventricular hypertrophy induced by permanent high-altitude exposure (4,500 m, 20 days) in adult rats also normalizes changes of ventricular myocyte electrophysiology. According to the current data, prolonged action potential, decreased transient outward current density, and increased inward sodium/calcium exchange current density normalized 20 days after the end of altitude exposure, whereas right ventricular hypertrophy evidenced by both the right ventricular weight-to-heart weight ratio and the right ventricular free wall thickness measurement normalized 40 days after the end of altitude exposure. This morphological normalization occurred at both the level of muscular tissue, as shown by the decrease toward control values of some myocyte parameters (perimeter, capacitance, and width), and the level of the interstitial collagenous connective tissue. In the chronic high-altitude hypoxia model, the regression of right ventricular hypertrophy would not be a prerequisite for normalization of ventricular electrophysiological abnormalities. PMID:11893582

  3. MIBG scintigraphic assessment of cardiac adrenergic activity in response to altitude hypoxia

    High altitude hypoxia induces a decrease in the cardiac chronotropic function at maximal exercise or in response to isoproterenol infusion, suggesting an alteration in the cardiac sympathetic activation. Iodine-123 metaiodobenzylguanidine [(123I]MIBG) was used to map scintigraphically the cardiac sympathetic neuronal function in six male subjects (aged 32 ± 7 yr) after an exposure to high altitude that created hypoxic conditions. Results obtained just after return to sea level (RSL) were compared with the normal values obtained after 2 or 3 mo of normoxia (N). A static image was created as the sum of the 16-EKG gated images recorded for 10 min in the anterior view of the chest at 20, 60, 120, and 240 min after injection. Regions of interest were located over the heart (H), lungs (L), and mediastinum (M) regions. There was a significant decrease in the H/M and the L/M ratios in RSL compared to N condition. Plasma norepinephrine concentration was elevated during the stay at altitude but not significantly different in RSL compared to N. In conclusion, cardiac [123I]MIBG uptake is reduced after an exposure to altitude hypoxia, supporting the hypothesis of an hypoxia-induced reduction of adrenergic neurotransmitter reserve in the myocardium. Furthermore, the observed significant decrease in pulmonary MIBG uptake suggests an alteration of endothelial cell function after exposure to chronic hypoxia

  4. The Impact of Altitude on Infant Health in South America

    Wehby, George L; Eduardo E. Castilla; Lopez-Camelo, Jorge

    2010-01-01

    Previous Studies have reported that altitude reduces birth weight in South America. However, much remains unknown about the heterogeneities in altitude effects by fetal health endowments and about the effects in various ranges of altitude. This study estimates the effects of altitude on the means and quantiles of birth weight and gestational age separately for two large samples o...

  5. HIGH ALTITUDE TESTING OF RESIDENTIAL WOOD-FIRED COMBUSTION EQUIPMENT

    To determine whether emissions from operating a wood stove at high altitude differ from those at low altitude, a high altitude sampling program was conducted which was compared to previously collected low altitude data. Emission tests were conducted in the identical model stove u...

  6. Patients with Obstructive Sleep Apnea at Altitude.

    Bloch, Konrad E; Latshang, Tsogyal D; Ulrich, Silvia

    2015-06-01

    Bloch, Konrad E., Tsogyal D. Latshang, and Silvia Ulrich. Patients with obstructive sleep apnea at altitude. High Alt Med Biol 16:110-116, 2015.--Obstructive sleep apnea (OSA) is highly prevalent in the general population, in particular in men and women of older age. In OSA patients sleeping near sea level, the apneas/hypopneas associated with intermittent hypoxemia are predominantly due to upper airway collapse. When OSA patients stay at altitudes above 1600 m, corresponding to that of many tourist destinations, hypobaric hypoxia promotes frequent central apneas in addition to obstructive events, resulting in combined intermittent and sustained hypoxia. This induces strong sympathetic activation with elevated heart rate, cardiac arrhythmia, and systemic hypertension. There are concerns that these changes expose susceptible OSA patients, in particular those with advanced age and co-morbidities, to an excessive risk of cardiovascular and other adverse events during a stay at altitude. Based on data from randomized trials, it seems advisable for OSA patients to use continuous positive airway pressure treatment with computer controlled mask pressure adjustment (autoCPAP) in combination with acetazolamide during an altitude sojourn. If CPAP therapy is not feasible, acetazolamide alone is better than no treatment at all, as it improves oxygenation and sleep apnea and prevents excessive blood pressure rises of OSA patients at altitude. PMID:25973669

  7. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  8. Radiation environment at aviation altitudes and in space

    On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that air crews that could receive dose of >1 mSv y-1 must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and

  9. Effects of Ascent to High Altitude on Human Antimycobacterial Immunity

    Eisen, S; Pealing, L.; Aldridge, RW; Siedner, MJ; Necochea, A.; Leybell, I.; Valencia, T; Herrera, B.; Wiles, S; Friedland, JS; Gilman, RH; Evans, CA

    2013-01-01

    BACKGROUND: Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity. METHODS: Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they a...

  10. Sonic Thermometer for High-Altitude Balloons

    Bognar, John

    2012-01-01

    The sonic thermometer is a specialized application of well-known sonic anemometer technology. Adaptations have been made to the circuit, including the addition of supporting sensors, which enable its use in the high-altitude environment and in non-air gas mixtures. There is a need to measure gas temperatures inside and outside of superpressure balloons that are flown at high altitudes. These measurements will allow the performance of the balloon to be modeled more accurately, leading to better flight performance. Small thermistors (solid-state temperature sensors) have been used for this general purpose, and for temperature measurements on radiosondes. A disadvantage to thermistors and other physical (as distinct from sonic) temperature sensors is that they are subject to solar heating errors when they are exposed to the Sun, and this leads to issues with their use in a very high-altitude environment

  11. Atmospheric electron flux at airplane altitude

    We have developed a new detector to systematically measure the cosmic-ray electron flux at airplane altitudes. We loaded a lead-glass-based electron telescope onto a commercial cargo airplane. The first experiment was carried out using the air route between Narita (Japan) and Sydney (Australia); during this flight we measured the electron flux at various altitudes and latitudes. The thresholds of the electron energies were 1, 2, and 4 GeV. The results agree with a simple estimation using one-dimensional shower theory. A comparison with a Monte Carlo calculation was made

  12. Image Positioning Accuracy Analysis for the Super Low Altitude Remote Sensing Satellite

    Ming Xu

    2012-10-01

    Full Text Available Super low altitude remote sensing satellites maintain lower flight altitudes by means of ion propulsion in order to improve image resolution and positioning accuracy. The use of engineering data in design for achieving image positioning accuracy is discussed in this paper based on the principles of the photogrammetry theory. The exact line‐of‐sight rebuilding of each detection element and this direction precisely intersecting with the Earth’s elliptical when the camera on the satellite is imaging are both ensured by the combined design of key parameters. These parameters include: orbit determination accuracy, attitude determination accuracy, camera exposure time, accurately synchronizing the reception of ephemeris with attitude data, geometric calibration and precise orbit verification. Precise simulation calculations show that image positioning accuracy of super low altitude remote sensing satellites is not obviously improved. The attitude determination error of a satellite still restricts its positioning accuracy.

  13. EFFECT OF MODERATE ALTITUDE ON PERIPHERAL MUSCLE OXYGENATION DURING LEG RESISTANCE EXERCISE IN YOUNG MALES

    Toshio Matsuoka

    2004-09-01

    Full Text Available Training at moderate altitude (~1800m is often used by athletes to stimulate muscle hypoxia. However, limited date is available on peripheral muscle oxidative metabolism at this altitude (1800AL. The purpose of this study was to determine whether acute exposure to 1800AL alters muscle oxygenation in the vastus lateralis muscle during resistance exercise. Twenty young active male subjects (aged 16 - 21 yr performed up to 50 repetitions of the parallel squat at 1800AL and near sea level (SL. They performed the exercise protocol within 3 h after arrival at 1800 AL. During the exercise, the changes in oxygenated hemoglobin (OxyHb in the vastus lateralis muscle, arterial oxygen saturation (SpO2, and heart rate were measured using near infrared continuous wave spectroscopy (NIRcws and pulse oximetry, respectively. Changes in OxyHb were expressed by Deff defined as the relative index of the maximum change ratio (% from the resting level. OxyHb in the vastus lateralis muscle decreased dramatically from the resting level immediately after the start of exercise at both altitudes. The Deff during exercise was significantly (p < 0.001 lower at 1800AL (60.4 ± 6.2 % than at near SL (74.4 ± 7.6 %. SpO2 during exercise was significantly (p < 0.001 lower at 1800AL (92.0 ± 1.7 % than at near SL (96.7 ± 1.2 %. Differences (SL - 1800AL in Deff during exercise correlated fairly strongly with differences in SpO2 during exercise (r = 0.660. These results suggested that acute exposure to moderate altitude caused a more dramatical decrease in peripheral muscle oxygenation during leg resistance exercise. It is salient to note, therefore , that peripheral muscle oxygenation status at moderate altitude could be evaluated using NIRcws and that moderate altitudes might be effectively used to apply hypoxic stress on peripheral muscles.

  14. Sextant measures spacecraft altitude without gravitational reference

    1966-01-01

    Horizon-sensing sextant measures the altitude of an orbiting spacecraft without gravitational reference by optically measuring the dip angle to the horizon along a line of sight in each of two planes. The sextant scans over a relatively limited field of view.

  15. High-altitude physiology: lessons from Tibet

    Wagner, Peter D.; Simonson, Tatum S.; Wei, Guan; Wagner, Harrieth; Wuren, Tanna; Yan, Ma; Qin, Ga; Ge, Rili

    2013-05-01

    Polycythemia is a universal lowlander response to altitude; healthy Andean high-altitude natives also have elevated [Hb]. While this may enhance O2 transport to tissues, studies have shown that acute isovolumic changes in [Hb] do not affect exercise capacity. Many high-altitude Tibetans have evolved sea-level values of [Hb], providing a natural opportunity to study this issue. In 21 young healthy male Tibetans with [Hb] between 15 and 23 g/dl, we measured VO2MAX and O2 transport capacity at 4200m. VO2MAX was higher when [Hb] was lower (Phigh altitude natives remain polycythemic with larger lungs and higher lung diffusing capacity, a smaller exercising AaPO2, and lower ventilation. The challenges now are (1) to understand the different adaptive pathways used by Andeans and Tibetans, and (2) to determine in Tibetans whether, during evolution, reduced [Hb] appeared first, causing compensatory cardiac and muscle adaptations, or if enhanced cardiac function and muscle O2 transport capacity appeared first, permitting secondary reduction in [Hb]. For (2), further research is necessary to determine the basis of enhanced cardiac function and muscle O2 transport, and identify molecular targets of evolution in heart and muscle. Putative mutations can then be timed and compared to appearance of those affecting [Hb].

  16. Estimation of high altitude Martian dust parameters

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  17. High altitude pulmonary edema among "Amarnath Yatris"

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  18. Pathology of high altitude pulmonary oedema

    Objective: To describe autopsy findings in fatal cases of high altitude pulmonary oedema. Study Design: Descriptive study. Place and Duration of Study: The study was carried out between 1999 and 2002 at an army field medical unit in Baltistan, Armed Forces Institute of Pathology, Rawalpindi and Army Medical College, Rawalpindi, Pakistan. Patients and Methods:Autopsies were performed in 17 fatal cases of High Altitude Pulmonary Edema (HAPE) occurring among soldiers serving in Siachen. Results:All cases were males with a mean age of 26.8 years (19-35). The mean altitude at which HAPE occurred was 5192 meters (2895-6492), and the mean duration of stay at these altitudes was 15.3 days (1-30). Eleven individuals had undergone proper acclimatization. The commonest clinical findings were cough (70%), dyspnoea (53%), nausea (47%), headache (41%), vomiting (35%), chest pain (35%) and tightness in chest (24%). Cyanosis and frothy secretions in the nostrils and mouth were present in all but one case. Mean combined weight of lungs was 1470 grams (1070-1810). There was marked congestion of outer and cut surfaces. Interstitial oedema was present in all cases. RBCs and leukocyte infiltrates were seen in 13 and alveolar hyaline membranes in 9 cases. Thrombi were seen in 2 cases. Cerebral oedema was present in 9 cases. Conclusion:HAPE can occur after more than two weeks of stay at high altitudes despite proper acclimatization. Concomitant cerebral oedema is frequently present. Our autopsy findings are consistent with what has been reported previously. (author)

  19. Nutrição para os praticantes de exercício em grandes altitudes Nutritional strategy for exercising in high altitudes

    Caroline Buss

    2006-02-01

    Full Text Available Quando o atleta ascende a uma grande altitude, ele é exposto a uma pressão barométrica reduzida, e os efeitos fisiológicos que acompanham estas mudanças da pressão atmosférica podem ter grande influência sobre o seu organismo e seu desempenho físico. Acredita-se que a hipóxia seja responsável pelo início de uma cascata de eventos sinalizadores que, ao final, levam à adaptação à altitude. A exposição aguda à hipóxia provoca sonolência, fadiga mental e muscular e prostração. Cefaléia, náusea e anorexia são sintomas provocados pela Doença Aguda das Montanhas, que pode ocorrer nos primeiros dias de permanência na altitude. Uma estratégia nutricional adequada é fundamental para que o organismo não sofra nenhum estresse adicional. O objetivo deste trabalho foi apresentar os principais efeitos da altitude sobre o organismo e sobre o desempenho físico, discutir e/ou sugerir recomendações nutricionais para esta situação e, se possível, apresentar uma orientação nutricional prática para o atleta na altitude. Algumas das principais conclusões encontradas foram: o consumo energético deve ser aumentado; é fundamental monitorar a quantidade de líquidos ingeridos e escolher alimentos agradáveis ao paladar, ricos em energia e nutrientes. Recomenda-se trabalhar com um nutricionista do esporte com antecedência, para que um plano alimentar individual seja elaborado e colocado em prática antes mesmo da viagem à altitude.When athletes are subject to high altitudes, they are exposed to a lower barometric pressure and the physiological effects that accompany these atmospheric pressure changes can have a strong influence on their bodies and performance. Hypoxia is thought to be responsible for triggering a cascade of signaling events that eventually leads to altitude acclimatization. Acute exposure to hypoxia causes sleepiness, mental and muscle fatigue and prostration. Headache, nausea and anorexia are some of the

  20. Why Are High-Altitude Natives So Strong at Altitude? Maximal Oxygen Transport to the Muscle Cell in Altitude Natives.

    Lundby, Carsten; Calbet, Jose A L

    2016-01-01

    In hypoxia aerobic exercise performance of high-altitude natives is suggested to be superior to that of lowlanders; i.e., for a given altitude natives are reported to have higher maximal oxygen uptake (VO2max). The likely basis for this is a higher pulmonary diffusion capacity, which in turn ensures higher arterial O2 saturation (SaO2) and therefore also potentially a higher delivery of O2 to the exercising muscles. This review focuses on O2 transport in high-altitude Aymara. We have quantified femoral artery O2 delivery, arterial O2 extraction and calculated leg VO2 in Aymara, and compared their values with that of acclimatizing Danish lowlanders. All subjects were studied at 4100 m. At maximal exercise SaO2 dropped tremendously in the lowlanders, but did not change in the Aymara. Therefore arterial O2 content was also higher in the Aymara. At maximal exercise however, fractional O2 extraction was lower in the Aymara, and the a-vO2 difference was similar in both populations. The lower extraction levels in the Aymara were associated with lower muscle O2 conductance (a measure of muscle diffusion capacity). At any given submaximal exercise intensity, leg VO2 was always of similar magnitude in both groups, but at maximal exercise the lowlanders had higher leg blood flow, and hence also higher maximum leg VO2. With the induction of acute normoxia fractional arterial O2 extraction fell in the highlanders, but remained unchanged in the lowlanders. Hence high-altitude natives seem to be more diffusion limited at the muscle level as compared to lowlanders. In conclusion Aymara preserve very high SaO2 during hypoxic exercise (likely due to a higher lung diffusion capacity), but the effect on VO2max is reduced by a lower ability to extract O2 at the muscle level. PMID:27343089

  1. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W.

    1990-01-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness

  2. Pulmonary Function Parameters Changes at Different Altitudes in Healthy Athletes

    Vahid Ziaee

    2008-06-01

    It could be concluded that changes in some pulmonary ventilatory parameters were proportional to the magnitude of change in altitude during a high-altitude trek. These changes are significant at the beginning of ascending.

  3. Dust observations at orbital altitudes surrounding Mars.

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere. PMID:26542578

  4. Dust observations at orbital altitudes surrounding Mars

    Andersson, L.; Weber, T. D.; Malaspina, D.; Crary, F.; Ergun, R. E.; Delory, G. T.; Fowler, C. M.; Morooka, M. W.; McEnulty, T.; Eriksson, A. I.; Andrews, D. J.; Horanyi, M.; Collette, A.; Yelle, R.; Jakosky, B. M.

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars’s atmosphere.

  5. The visual control of simulated altitude

    Johnson, Walter W.; Bennett, C. Thomas; Tsang, Pamela S.; Phatak, Anil V.

    1987-01-01

    The ability of a subject flying an experimental flight to use the different sources of visual information by looking at the vertical tracking error was investigated using a 3 (altitude) x 3 (texture) x 2 (replication) factorial design. Each subject flew these 18 flights in the same partially counterbalanced order, constructed such that there was one flight at each of the three altitudes, and over each of the three surface textures within each successive set of three flights. The three ground-surface textures used consisted of meridian, latitudinal, and square textures described by Wolpert et al. (1983). The results showed that, in displays where only splay information was available, the subjects tended to confuse lateral motion with vertical.

  6. HAWC - The High Altitude Water Cherenkov Detector

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  7. CT diagnosis of high altitude pulmonary edema

    Objective: To explore the value of CT diagnosis of high altitude pulmonary edema (HAPE). Methods: The CT findings in 16 patients unfit to high altitude were analyzed. Results: The findings on CT were as follows: (1) The early stage of HAPE showed ground glass opacity, most of which located at the superior segment and posterior basis segment of inferior lobes, with the right lung to occur earlier than that of the left lung. (2) The advanced stage showed shaggy opacity. (3) The late stage lesions developed to posterior and apical segment of the superior lobes, air bronchus sign could be seen on involved segments. (4) Right lung was more serious than left lung. Conclusion: CT was an ideal method to find HAPE. The accuracy of CT diagnosis in HAPE was 100%

  8. Pulmonary embolism in young natives of high altitude

    Sanjay Singhal

    2016-01-01

    Full Text Available Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude.

  9. Predator foraging altitudes reveal the structure of aerial insect communities

    Helms, Jackson A.; Aaron P. Godfrey; Tayna Ames; Bridge, Eli S.

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins...

  10. The yak genome and adaptation to life at high altitude

    Qiu, Qiang; Zhang, Guojie; Ma, Tao; Qian, Wubin; Wang, Junyi; Ye, Zhiqiang; Cao, Changchang; Hu, Quanjun; Kim, Jaebum; Larkin, Denis M; Auvil, Loretta; Capitanu, Boris; Ma, Jian; Lewin, Harris A; Qian, Xiaoju; Lang, Yongshan; Zhou, Ran; Wang, Lizhong; Wang, Kun; Xia, Jinquan; Liao, Shengguang; Pan, Shengkai; Lu, Xu; Hou, Haolong; Wang, Yan; Zang, Xuetao; Yin, Ye; Ma, Hui; Zhang, Jian; Wang, Zhaofeng; Zhang, Yingmei; Zhang, Dawei; Yonezawa, Takahiro; Hasegawa, Masami; Zhong, Yang; Liu, Wenbin; Zhang, Yan; Huang, Zhiyong; Zhang, Shengxiang; Long, Ruijun; Yang, Huanming; Lenstra, Johannes A; Cooper, David N; Wu, Yi; Wang, Jun; Shi, Peng; Wang, Jian; Liu, Jianquan

    2012-01-01

    Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude...... important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans....

  11. Is High Altitude Pulmonary Edema Relevant to Hawai‘i?

    Cornell, Seth Lewis

    2014-01-01

    High altitude clinical syndromes have been described in the medical literature but may be under recognized in the state of Hawai‘i. As tourism increases, high altitude injuries may follow given the easy access to high altitude attractions. Visitors and clinicians should be aware of the dangers associated with the rapid ascent to high altitudes in the perceived comfort of a vehicle. This paper will review the basic pathophysiology, prevention, and treatment of the most serious of the high alti...

  12. Pulse oximetry reference values at high altitude.

    Lozano, J.M.; Duque, O R; Buitrago, T; Behaine, S

    1992-01-01

    Pulse oximetry is becoming popular for measuring oxygen saturation of haemoglobin in paediatric patients. There are no reference values for children living at high altitudes, and the aim of this study was to determine the values of oxygen saturation of haemoglobin in healthy children in Bogota (2640 m above sea level). The saturation was determined in 189 children aged 5 days to 24 months with a Nellcor N10 oximeter. Mean values and 95% confidence intervals (CI) were calculated. Analysis of v...

  13. Cardiovascular Response to High Altitude Hypoxia

    Manchanda, S C

    1984-01-01

    Normal and abnormal cardiovascular response to high altitude (HA) hypoxia were studied in 98 healthy subjects and in 15 patients with HA pulmonary oedema (HAPO) and acute mountain sickness (AMS) at an altitudeof 3,658 m. The healthy sea level (SL) residents showed marked blood volume changes during the first week with pulmonary hypotension and depression of left ventricular (LV) performance and physical work capacity (PWC). The HA natives, however, had better LV performance and PWC indicating...

  14. Is high-altitude mountaineering Russian roulette?

    Cheng Edward K.

    2013-01-01

    Whether the nature of the risks associated with climbing high-altitude (8000 m) peaks is in some sense “controllable” is a longstanding debate in the mountaineering community. Well-known mountaineers David Roberts and Ed Viesturs explore this issue in their recent memoirs. Roberts views the primary risks as “objective” or uncontrollable, whereas Viesturs maintains that experience and attention to safety can make a significant difference. This study sheds light on the Roberts-Viesturs debate u...

  15. Magion-4 High-Altitude Cusp Study

    Merka, J.; Šafránková, J.; Němeček, Z.; Šimůnek, Jiří

    2005-01-01

    Roč. 26, č. 1-3 (2005), s. 57-69. ISSN 0169-3298 R&D Projects: GA ČR(CZ) GA205/02/0947 Institutional research plan: CEZ:AV0Z30420517 Keywords : cusp-like plasma * dipole tilt angle * high - altitude cusp * magnetopause * magnetopause * reconnection Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.975, year: 2005

  16. The High Altitude Water Cherenkov Observatory

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  17. Nutritional Aspects of High Altitude and Snow Bound Areas

    K. Sridharan; R. M. Rai

    1984-01-01

    The precise nutritional requirement of humans at high altitude area is not well defined. Further there are many conflicting reports on the effects of hypoxia on digestion, absorption and utilization of food at high altitude. In this review the nutritional requirements at high altitude and the effects of hypoxia on humans in relation to nutrition have been discussed.

  18. Nutritional Aspects of High Altitude and Snow Bound Areas

    K. Sridharan

    1984-10-01

    Full Text Available The precise nutritional requirement of humans at high altitude area is not well defined. Further there are many conflicting reports on the effects of hypoxia on digestion, absorption and utilization of food at high altitude. In this review the nutritional requirements at high altitude and the effects of hypoxia on humans in relation to nutrition have been discussed.

  19. Sleep quality alterations in healthy workers at high altitude in Yushu area

    Wu Tianyi; Li Wenxiang; Zhang Jianqing; Qi Shengui; Hao Lijuan; Wen Jialin

    2013-01-01

    During the period of reconstruction after Yushu Earthquake,a large number of sea-level or lowland workers ascended there and worked at altitudes between 3750 m and 4878 m which is a hypoxic environment.To investigate the sleep quality at that altitude,we performed two full polysomnographies (PSGs) in 10 volunteers,who were healthy male workers,aged 31±6.6,born and living at sea level,without experience of pre-altitude exposure.The assessment of subjective sleep quality was performed twice in each volunteer.The first investigations were carried out at sea level in Jinan city (pB=760 torr,1 torr=133.322 4 Pa).The second studies were performed at an altitude of 3750 m (pB=416 tonr) in Yushu Jiegu in the same 10 workers after they lived and worked at that altitude for 5 months.At sea level,workers presented a normal sleep structure and a higher oxygenation during sleep.However,as compared to sea-level sleep,at 3750 m,workers had a shorter total sleep time (TST) (p < 0.001),a longer stage 1 non-rapid eye movement (nREM) sleep (p < 0.05) and a shorter 3+4 nREM and rapid eye movement (REM) sleep (p < 0.05) with a severe sleep hypoxemia (p < 0.01).Our data suggested that sea-level workers revealed a disturbed sleep and a bad sleep quality with a significant sleep hypoxemia at altitude of 3750 m.Strengthening the prevention and treatment are thereby sorely necessary.

  20. Pulmonary vascular reserve and exercise capacity at sea level and at high altitude.

    Pavelescu, Adriana; Faoro, Vitalie; Guenard, Hervé; de Bisschop, Claire; Martinot, Jean-Benoit; Mélot, Christian; Naeije, Robert

    2013-03-01

    It has been suggested that increased pulmonary vascular reserve, as defined by reduced pulmonary vascular resistance (PVR) and increased pulmonary transit of agitated contrast measured by echocardiography, might be associated with increased exercise capacity. Thus, at altitude, where PVR is increased because of hypoxic vasoconstriction, a reduced pulmonary vascular reserve could contribute to reduced exercise capacity. Furthermore, a lower PVR could be associated with higher capillary blood volume and an increased lung diffusing capacity. We reviewed echocardiographic estimates of PVR and measurements of lung diffusing capacity for nitric oxide (DL(NO)) and for carbon monoxide (DL(CO)) at rest, and incremental cardiopulmonary exercise tests in 64 healthy subjects at sea level and during 4 different medical expeditions at altitudes around 5000 m. Altitude exposure was associated with a decrease in maximum oxygen uptake (VO2max), from 42±10 to 32±8 mL/min/kg and increases in PVR, ventilatory equivalents for CO2 (V(E)/VCO2), DL(NO), and DL(CO). By univariate linear regression VO2max at sea level and at altitude was associated with V(E)/VCO2 (pstroke volume index (SVI, paltitude was associated with V(E)/VCO2, mPpa, SVI, and DL(NO). The multivariable analysis also showed that the altitude-related decrease in VO2max was associated with increased PVR and V(E)/VCO2. These results suggest that pulmonary vascular reserve, defined by a combination of decreased PVR and increased DL(NO), allows for superior aerobic exercise capacity at a lower ventilatory cost, at sea level and at high altitude. PMID:23537256

  1. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  2. Longterm monitoring of ambient dose equivalent rates at aviation altitudes

    The complex radiation field at flight altitudes results mainly from the interaction of energetic charged particles with atmospheric molecules and atoms and consists of secondary neutrons, protons, gamma rays, electrons, positrons and muons. Due to the continuous interactions of primary and secondary particles within the atmosphere, the intensity of each component depends on the height. Since the Earth's magnetic field acts as rigidity filter for the charged primary particles, the flux of the primary particles into the atmosphere and the resulting intensity of secondary particles depend on the geomagnetic latitude being highest over the geomagnetic poles. The main primary component consists of Galactic Cosmic Rays (GCRs), mainly protons and alpha particles, whose flux is modulated in the heliosphere. Beside this slowly varying galactic component, solar energetic particle events may temporarily increase the intensity of this radiation field. In the frame of the Radiation Monitoring on Board Aircraft (RAMONA) collaboration, three NAVIgation and DOSimetry (NAVIDOS) systems were installed in 2008 and 2009 on board of three Lufthansa Airbus A340 aircraft. They have been maintained since then by the consortium. Two of the NAVIDOS units rely on the DOSimetry TELescopes (DOSTELs), one is based on a LIULIN detector. This unique setup is ideally suited to investigate variations in the radiation field at different flight altitudes and geomagnetic positions and has been used to measure the radiation exposure during the recent extended solar minimum and thereafter. With increasing solar activity in 2010 the measured dose rates have been decreasing. Since these variations depend on the location of the aircraft, a detailed data analysis is required and presented.

  3. Altitude training and its influence on physical endurance in swimmers.

    Strzała, Marek; Ostrowski, Andrzej; Szyguła, Zbigniew

    2011-06-01

    It is possible to plan an altitude training (AT) period in such a way that the enhanced physical endurance obtained as a result of adaptation to hypoxia will appear and can be used to improve performance in competition. Yet finding rationales for usage of AT in highly trained swimmers is problematic. In practice AT, in its various forms, is still controversial, and an objective review of research concentrating on the advantages and disadvantages of AT has been presented in several scientific publications, including in no small part the observations of swimmers. The aim of this article is to review the various methods and present both the advantageous and unfavourable physiological changes that occur in athletes as a result of AT. Moreover, AT results in the sport of swimming have been collected. They include an approach towards primary models of altitude/hypoxic training: live high + train high, live high + train low, live low + train high, as well as subsequent methods: Intermittent Hypoxic Exposure (IHE) and Intermittent Hypoxic Training (IHT). Apnoea training, which is descended from freediving, is also mentioned, and which can be used with, or as a substitute for, the well-known IHE or IHT methods. In conclusion, swimmers who train using hypoxia may be among the best-trained athletes, and that even a slight improvement in physical endurance might result in the shortening of a swimming time in a given competition, and the achievement of a personal best, which is hard to obtain by normal training methods, when the personal results of the swimmer have reached a plateau. PMID:23486564

  4. Division I College Football Concussion Rates Are Higher at Higher Altitudes.

    Lynall, Robert C; Kerr, Zachary Y; Parr, Matthew S; Hackney, Anthony C; Mihalik, Jason P

    2016-02-01

    Study Design Retrospective cohort. Background Participating in sports at high altitude may have a protective effect on the brain, according to research studies. Research using validated data-collection methods in a previously unexplored cohort may better estimate the association between concussion injury risk and altitude. Objectives To determine the association between concussion rates and altitude during college football games. Methods Athletic trainers from 21 Division I football programs provided exposure and injury data to the National Collegiate Athletic Association (NCAA) Injury Surveillance Program (ISP) from the 2009-2010 to 2013-2014 academic years. The elevation of each stadium was determined. Concussion rates per 1000 athlete-exposures (AEs) were compared in 2 ways, based on the sample of stadium elevations: (1) median split (elevation higher than 178 m or lower than 178 m), and (2) quartile split. Rate ratios (RRs), rate differences, and 95% confidence intervals (CIs) were computed. Results One hundred sixty-nine concussions were reported over 49 040 AEs (3.45/1000 AEs). Using the median split, the concussion rate above 178 m (RR = 4.18/1000 AEs) was 1.47 times the concussion rate below 178 m (RR = 2.84/1000 AEs; 95% CI: 1.09, 2.00; P = .01). The concussion rate at the highest altitude quartile (higher than 284 m; RR = 5.01/1000 AEs) was 1.67 times greater than the concussion rate at the lowest altitude quartile (lower than 43 m; RR = 3.00/1000 AEs; 95% CI: 1.13, 2.48; P = .01). Conclusion College football game concussion rates appear to increase at higher altitudes. The clinical significance of this relatively small increase is unknown. Future research should explore potential physiologic underpinnings associated with concussion risk at relatively higher and lower altitudes. Level of Evidence Prognosis, level 2b. J Orthop Sports Phys Ther 2016;46(2):96-103. Epub 11 Jan 2016. doi:10.2519/jospt.2016.6315. PMID:26755407

  5. Physiological and Clinical Implications of Adrenergic Pathways at High Altitude.

    Richalet, Jean-Paul

    2016-01-01

    The adrenergic system is part of a full array of mechanisms allowing the human body to adapt to the hypoxic environment. Triggered by the stimulation of peripheral chemoreceptors, the adrenergic centers in the medulla are activated in acute hypoxia and augment the adrenergic drive to the organs, especially to the heart, leading to tachycardia. With prolonged exposure to altitude hypoxia, the adrenergic drive persists, as witnessed by elevated blood concentrations of catecholamines and nerve activity in adrenergic fibers. In response to this persistent stimulation, the pathways leading to the activation of adenylate cyclase are modified. A downregulation of β-adrenergic and adenosinergic receptors is observed, while muscarinic receptors are upregulated. The expression and activity of Gi and Gs proteins are modified, leading to a decreased response of adenylate cyclase activity to adrenergic stimulation. The clinical consequences of these cellular and molecular changes are of importance, especially for exercise performance and protection of heart function. The decrease in maximal exercise heart rate in prolonged hypoxia is fully accounted for the observed changes in adrenergic and muscarinic pathways. The decreased heart rate response to isoproterenol infusion is another marker of the desensitization of adrenergic pathways. These changes can be considered as mechanisms protecting the heart from a too high oxygen consumption in conditions where the oxygen availability is severely reduced. Similarly, intermittent exposure to hypoxia has been shown to protect the heart from an ischemic insult with similar mechanisms involving G proteins and downregulation of β receptors. Other pathways with G proteins are concerned in adaptation to hypoxia, such as lactate release by the muscles and renal handling of calcium. Altogether, the activation of the adrenergic system is useful for the acute physiological response to hypoxia. With prolonged exposure to hypoxia, the autonomous

  6. Short-term cardiorespiratory adaptation to high altitude in children compared with adults.

    Kriemler, S; Radtke, T; Bürgi, F; Lambrecht, J; Zehnder, M; Brunner-La Rocca, H P

    2016-02-01

    As short-term cardiorespiratory adaptation to high altitude (HA) exposure has not yet been studied in children, we assessed acute mountain sickness (AMS), hypoxic ventilatory response (HVR) at rest and maximal exercise capacity (CPET) at low altitude (LA) and HA in pre-pubertal children and their fathers. Twenty father-child pairs (11 ± 1 years and 44 ± 4 years) were tested at LA (450 m) and HA (3450 m) at days 1, 2, and 3 after fast ascent (HA1/2/3). HVR was measured at rest and CPET was performed on a cycle ergometer. AMS severity was mild to moderate with no differences between generations. HVR was higher in children than adults at LA and increased at HA similarly in both groups. Peak oxygen uptake (VO2 peak) relative to body weight was similar in children and adults at LA and decreased significantly by 20% in both groups at HA; maximal heart rate did not change at HA in children while it decreased by 16% in adults (P altitude seems to be at least partly hereditary. Even though children and their fathers lose similar fractions of aerobic capacity going to high altitude, the mechanisms might be different. PMID:25648726

  7. The role of oxygen-increased respirator in humans ascending to high altitude

    Shen Guanghao

    2012-08-01

    Full Text Available Abstract Background Acute mountain sickness (AMS is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. Methods Oxygen-increased respirator (OIR has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total atmospheric pressure in a mask. Male subjects were screened, and eighty-eight were qualified to perform the experiments. The subjects were divided into 5 groups and were involved in some of the tests at 4 different altitudes (Group 1, 2: 3700 m; Group 3,4,5: 4000 m, 4700 m, 5380 m with and without OIR. These tests include heart rate, saturation of peripheral oxygen (SpO2, malondialdehyde (MDA, superoxide dismutase (SOD, blood lactate (BLA and PWC (physical work capacity -170. Results The results showed that higher SpO2, lower heart rate (except during exercise and better recovery of heart rate were observed from all the subjects ’with OIR’ compared with ’without OIR’ (P Conclusions We suggested that OIR may play a useful role in protecting people ascending to high altitude before acclimatization.

  8. The assessment of the aircrew exposure

    In 1991 ICRP first included exposure of aircraft crew to cosmic radiation as occupational exposure. The European Dosimetry Group (EURADOS) established a working group in 1992 to address this issue. The report 'Exposure of Air Crew to Cosmic Radiation' was published in the European Commission's Radiation Protection series as report 85. The first section of the report assesses the existing data on radiation exposure, describes the radiation environment at civil aviation altitudes and summarizes the computational models that have been developed to describe the cosmic ray radiation field in the atmosphere. The second section describes the quantities used to assess the radiation doses. It is clear that conventional radiation protection dosimetry as applied on the ground is not quite applicable to the situation for air crews. A multinational European research project was launched to investigate the problem of cosmic rays and dosimetry at aviation altitudes. The major objective was to measure the flux and energy spectra of neutrons and charged particles over a wide energy interval at aviation altitudes and compare the results with those calculated with various computer codes. Within the project much progress was made in different areas, for instance the determination of the fundamental physical characteristics of the cosmic radiation field at aircraft altitudes, development of instrumentation, measurements of dose rates and route doses and application of routine radiation protection. Surveys of air crew exposure have been carried out with different advanced dosimetric systems and comparisons were made between passive and real-time detector systems

  9. High-altitude adaptations in vertebrate hemoglobins

    Weber, Roy E.

    2007-01-01

    ’s intrinsic O2-affinity and its allosteric interaction with cellular effectors (organic phosphates, protons and chloride). Whereas short-term altitudinal adaptations predominantly involve adjustments in allosteric interactions, long-term, genetically-coded adaptations typically involve changes in the....... Molecular heterogeneity (multiple isoHbs with differentiated oxygenation properties) can further broaden the range of physico-chemical conditions where Hb functions under altitudinal hypoxia. This treatise reviews the molecular and cellular mechanisms that adapt haemoglobin-oxygen affinities in mammals......, birds and ectothermic vertebrates at high altitude....

  10. Ion gun operations at high altitudes

    Werner, Paul W.

    1988-01-01

    Experiments in charge control were conducted on the P78-2 (SCATHA) satellite as part of a program on spacecraft charging at high altitudes. Experiments with the SCATHA ion gun were monitored by charged particle detectors and the electric field experiment. It was found that the electric field experiment could be used to measure satellite potential during ion beam emission in sunlight and eclipse. Unneutralized ion beam emission in high energy (1-2 KeV) and high current (1-2 mA) modes resulted ...

  11. High altitude balloon experiments at IIA

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  12. Ascent schedules, acute altitude illness, and altitude acclimatization: Observations on the Yushu Earthquake

    Wu Tianyi; Hou Shike; Li Shuzhi; Li Wenxiang; Gen Deng

    2013-01-01

    During the Yushu Earthquake on April 14,2010,a large number of rescuers from sea level or lowlands ascended to the quake areas very rapidly or rapidly less than 24 h.However,Yushu Earthquake is the highest quake in the world at altitudes between 3750 m and 4878 m where is a serious hypoxic environment.A high incidence of acute altitude illness was found in the unacclimatized rescuers; the mountain rescue operation changed as "rescue the rescuers".Lesson from the Yushu Earthquake is that the occurrence of acute altitude illness may be closely related to the ascent schedules.This prompted us to study the relationship between ascent rate and the incidence and severity of acute altitude illness; five different groups were compared.The first group was 42 sea level male young soldiers who ascended to quake area very rapidly within 8 h at 4000 m; the second group was 48 sea level male young soldiers who ascended to 4000 m rapidly less than 18 h; the third group was 66 acclimatized medical workers from 2261 m who ascended to 4000 m rapidly within 12 h; the fourth group was 56 Tibetan medical workers from 2800 m who ascended to 4000 m rapidly within 8 h; the fifth group was 50 male sea level workers who ascended to 4000 m gradually over a period of 4 d.The results showed that the sea level rescuers ascended to 4000 m very rapidly or rapidly had the highest incidence of acute mountain sickness (AMS) with the greatest AMS scores and the lowest arterial oxygen saturation (SaO2) ; the sea level workers ascended to 4000 m gradually had moderate incidence of AMS with moderate AMS scores and SaO2 values; whereas the acclimatized and adapted rescuers had the lowest incidence of AMS,lowest AMS scores and higher SaO2; especially none AMS occurred in Tibetan rescuers.AMS score is inversely related to the ascent rate (r=-0.24,p<0.001).Additionally,acute altitude illness is significantly influenced by altitude acclimatization.The ascent rate is inversely related to

  13. Effects of High Altitude on Sleep and Respiratory System and Theirs Adaptations

    Turhan San

    2013-01-01

    Full Text Available High-altitude (HA environments have adverse effects on the normal functioning body of people accustomed to living at low altitudes because of the change in barometric pressure which causes decrease in the amount of oxygen leading to hypobaric hypoxia. Sustained exposure to hypoxia has adverse effects on body weight, muscle structure and exercise capacity, mental functioning, and sleep quality. The most important step of acclimatization is the hyperventilation which is achieved by hypoxic ventilatory response of the peripheral chemoreceptors. Hyperventilation results in increase in arterial carbondioxide concentration. Altitude also affects sleep and cardiac output, which is the other determinant of oxygen delivery. Upon initial exposure to HA, the resting pulse rate increases rapidly, but with acclimatization, heart rate and cardiac output tend to fall. Another important component that leads to decrease in cardiac output is the reduction in the stroke volume with acclimatization. During sleep at HA, the levels of CO2 in the blood can drop very low and this can switch off the drive to breathe. Only after the body senses a further drop in O2 levels breathing is started again. Periodic breathing is thought to result from instability in the control system through the hypoxic drive or the response to CO2.

  14. Effects of high altitude on sleep and respiratory system and theirs adaptations.

    San, Turhan; Polat, Senol; Cingi, Cemal; Eskiizmir, Gorkem; Oghan, Fatih; Cakir, Burak

    2013-01-01

    High-altitude (HA) environments have adverse effects on the normal functioning body of people accustomed to living at low altitudes because of the change in barometric pressure which causes decrease in the amount of oxygen leading to hypobaric hypoxia. Sustained exposure to hypoxia has adverse effects on body weight, muscle structure and exercise capacity, mental functioning, and sleep quality. The most important step of acclimatization is the hyperventilation which is achieved by hypoxic ventilatory response of the peripheral chemoreceptors. Hyperventilation results in increase in arterial carbon-dioxide concentration. Altitude also affects sleep and cardiac output, which is the other determinant of oxygen delivery. Upon initial exposure to HA, the resting pulse rate increases rapidly, but with acclimatization, heart rate and cardiac output tend to fall. Another important component that leads to decrease in cardiac output is the reduction in the stroke volume with acclimatization. During sleep at HA, the levels of CO2 in the blood can drop very low and this can switch off the drive to breathe. Only after the body senses a further drop in O2 levels breathing is started again. Periodic breathing is thought to result from instability in the control system through the hypoxic drive or the response to CO2. PMID:23690739

  15. Impact of high altitude on the hepatic fatty acid oxidation and synthesis in rats

    Highlights: • Acute exposure to high altitude (HA) increased hepatic fatty acid (FA) β-oxidation. • Acute exposure of rats to HA increased hepatic FA synthesis. • PPARα and AMPK can regulate the FA metabolism. • FA may be a key energy fuel and a compensation for CHO during acute exposure to HA. • The acute changes of FA metabolism may be a mechanism of acclimatization. - Abstract: High altitude (HA) affects energy metabolism. The impact of acute and chronic HA acclimatization on the major metabolic pathways is still controversial. In this study, we aimed to unveil the impact of HA on the key enzymes involved in the fatty acid (FA) metabolism in liver. Rats were exposed to an altitude of 4300 m for 30 days and the expressions of two key proteins involved in FA β-oxidation (carnitine palmitoyl transferase I, CPT-I; and peroxisome proliferator-activated receptor alpha, PPARα), two proteins involved in FA synthesis (acetyl CoA carboxylase-1, ACC-1; and AMP-activated protein kinase, AMPK), as well as the total ketone body in the liver and the plasma FFAs were examined. Rats without HA exposure were used as controls. We observed that the acute exposure of rats to HA (3 days) led to a significant increase in the expressions of CPT-I and PPARα and in the total hepatic ketone body. Longer exposure (15 days) caused a marked decrease in the expression of CPT-I and PPARα. By 30 days after HA exposure, the expression levels of CPT-I and PPARα returned to the control level. The hepatic ACC-1 level showed a significant increase in rats exposed to HA for 1 and 3 days. In contrast, the hepatic level of AMPK showed a significant reduction throughout the experimental period. Plasma FFA concentrations did not show any significant changes following HA exposure. Thus, increased hepatic FA oxidation and synthesis in the early phase of HA exposure may be among the important mechanisms for the rats to respond to the hypoxic stress in order to acclimatize themselves to the

  16. Impact of high altitude on the hepatic fatty acid oxidation and synthesis in rats

    Ni, Qian [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou (China); Shao, Yuan; Wang, Ying Zhen [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Jing, Yu Hong [Institute of Anatomy, School of Basic Medicine, Lanzhou University, Lanzhou (China); Zhang, You Cheng, E-mail: zhangychmd@126.com [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China)

    2014-04-04

    Highlights: • Acute exposure to high altitude (HA) increased hepatic fatty acid (FA) β-oxidation. • Acute exposure of rats to HA increased hepatic FA synthesis. • PPARα and AMPK can regulate the FA metabolism. • FA may be a key energy fuel and a compensation for CHO during acute exposure to HA. • The acute changes of FA metabolism may be a mechanism of acclimatization. - Abstract: High altitude (HA) affects energy metabolism. The impact of acute and chronic HA acclimatization on the major metabolic pathways is still controversial. In this study, we aimed to unveil the impact of HA on the key enzymes involved in the fatty acid (FA) metabolism in liver. Rats were exposed to an altitude of 4300 m for 30 days and the expressions of two key proteins involved in FA β-oxidation (carnitine palmitoyl transferase I, CPT-I; and peroxisome proliferator-activated receptor alpha, PPARα), two proteins involved in FA synthesis (acetyl CoA carboxylase-1, ACC-1; and AMP-activated protein kinase, AMPK), as well as the total ketone body in the liver and the plasma FFAs were examined. Rats without HA exposure were used as controls. We observed that the acute exposure of rats to HA (3 days) led to a significant increase in the expressions of CPT-I and PPARα and in the total hepatic ketone body. Longer exposure (15 days) caused a marked decrease in the expression of CPT-I and PPARα. By 30 days after HA exposure, the expression levels of CPT-I and PPARα returned to the control level. The hepatic ACC-1 level showed a significant increase in rats exposed to HA for 1 and 3 days. In contrast, the hepatic level of AMPK showed a significant reduction throughout the experimental period. Plasma FFA concentrations did not show any significant changes following HA exposure. Thus, increased hepatic FA oxidation and synthesis in the early phase of HA exposure may be among the important mechanisms for the rats to respond to the hypoxic stress in order to acclimatize themselves to the

  17. Glycolytic intermediates and adenosine phosphates in rat liver at high altitude /3,800 m/.

    Cipriano, L. F.; Pace, N.

    1973-01-01

    Liver tissue obtained from adult rats exposed to 3800 m altitude for intervals ranging from 1.5 hr to 63 days was examined by enzymatic analysis. During the first 3 hr of exposure, an immediate decrease in rephosphorylation of high-energy phosphates led to reduced glycogenesis and eventual pileup of AMP, pyruvate, fructose 1,6-diphosphate, glucose 6-phosphate, and glucose. This was accompanied by a reduction of pentose phosphate pathway activity. After 3 to 6 hr, a secondary adjustment of substrate concentrations occurred along with the apparent facilitation of phosphofructokinase. This secondary adjustment appears to increase anaerobic production of ATP and represents a significant intracellular contribution to the acclimatization process at high altitude.

  18. Bronchial asthma: advice for patients traveling to high altitude.

    Cogo, Annalisa; Fiorenzano, Giuseppe

    2009-01-01

    This article examines the possibility of traveling to altitude for patients suffering from bronchial asthma. The mountain environment, the adaptations of the respiratory system to high altitude, the underlying patho-physiologies of asthma, and the recommendations for patients, according to altitude, are discussed. In summary, staying at low altitude has a significant beneficial effect for asthmatic patients, due to the reduction of airway inflammation and the lower response to bronchoconstrictor stimuli; for staying at moderate altitude, there is conflicting information and no clinical data; at high altitude, the environment seems beneficial for well-controlled asthmatics, but intense exercise and upper airway infections (frequent during trekking) can be additional risks and should be avoided. Further, in remote areas health facilities are often difficult to reach. PMID:19519226

  19. Altitude, Immigration and Suicide Rates: A Study from Turkey

    Selek, Salih

    2013-01-01

    Objective To investigate the altitude, immigration and suicide rates association in Turkey. Methods Suicide and immigration rates of 81 provinces and their elevation data were obtained. Results There were not significant correlations between country elevation, immigration and mean suicide rate. Conclusion The findings of this study points out that altitude related hypoxia and suicide association may not be generalized and further research will be needed to clarify the effects of altitude on s...

  20. The physiology and biomechanics of avian flight at high altitude

    Altshuler, Douglas L.; Dudley, Robert

    2006-01-01

    Many birds fly at high altitude, either during long-distance flights or by virtue of residence in high-elevation habitats. Among the many environmental features that vary systematically with altitude, five have significant consequences for avian flight performance: ambient wind speeds, air temperature, humidity, oxygen availability, and air density. During migratory flights, birds select flight altitudes that minimize energy expenditure via selection of advantageous tail- and cross-winds. Oxy...

  1. Genomic insights into adaptation to high-altitude environments

    Cheviron, Z A; Brumfield, R. T.

    2011-01-01

    Elucidating the molecular genetic basis of adaptive traits is a central goal of evolutionary genetics. The cold, hypoxic conditions of high-altitude habitats impose severe metabolic demands on endothermic vertebrates, and understanding how high-altitude endotherms cope with the combined effects of hypoxia and cold can provide important insights into the process of adaptive evolution. The physiological responses to high-altitude stress have been the subject of over a century of research, and r...

  2. The effect of acetazolamide on breath holding at high altitude.

    Morrissey, S. C.; Keohane, K.; Coote, J.H.

    1987-01-01

    The effect of altitude and acetazolamide on breath holding was studied in 20 individuals. Breath holding time was reduced progressively during ascent. There was an additional reduction in the acetazolamide group at low but not at high altitude. The initial difference between the two groups may have been related to a lower CSF pH when on acetazolamide. At high altitude the finding of similar breath holding times in the two groups may have been due to acclimatization in the placebo group.

  3. High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment

    Taylor, Andrew T.

    2011-01-01

    High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS) which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute m...

  4. Respiratory Function of University Students Living at High Altitude

    Roh, HyoLyun; Lee, Daehee

    2014-01-01

    [Purpose] This study compared the respiratory function and oxygen saturation levels of university students living at high altitude, to present a new approach for improving respiratory function using high altitudes above sea level. [Subjects and Methods] The subjects were 100 female students attending a university located approximately 850 m above sea level and 104 female students attending a university located at low altitude. Oxygen saturation, heart rate (HR), and respiratory function level...

  5. Genetic and phenotypic differentiation of an Andean intermediate altitude population

    Eichstaedt, Christina A; Antão, Tiago; Cardona, Alexia; Pagani, Luca; Kivisild, Toomas; Mormina, Maru

    2015-01-01

    Highland populations living permanently under hypobaric hypoxia have been subject of extensive research because of the relevance of their physiological adaptations for the understanding of human health and disease. In this context, what is considered high altitude is a matter of interpretation and while the adaptive processes at high altitude (above 3000 m) are well documented, the effects of moderate altitude (below 3000 m) on the phenotype are less well established. In this study, we compar...

  6. Exercise at simulated high altitude facilitates the increase in capillarity in skeletal muscle of rats

    2001-01-01

    AIM: To study the changes in capillarity of skeletal muscle during acclimation to high altitude, and explore the effects of a certain extent physical activity under hypoxia on capillary formation and the role of vascular endothelial growth factor (VEGF) in this process. METHODS: 48 Wistar rats were divided into 3 groups: Ⅰ normoxic control; Ⅱ hypoxia and Ⅲ hypoxia+exercise. Rats of Ⅱ and Ⅲ groups were subjected to hypobaric hypoxia for 5 weeks (23 h/d). They were first brought to simulated 4 000 m altitude, where rats of the Ⅲgroup were forced to swim for 1 h/d (6 d/week). Then the animals were ascent to 5 000 m. Biomicrosphere method was used to determine blood flow of skeletal muscle. The mean fiber cross-sectional area (FCSA), capillary density (CD) and capillary/fiber ratio (C/F) of red portion of the lateral head of the gastrocneminus were assayed by myofibrillar ATPase histochemistry. VEGF and its receptor KDR were assayed with immunohistochemistry method.RESULTS: By comparison with the normoxic control, 5-week hypoxic exposure resulted in a decrease in cross-sectional area of skeletal muscle fiber and an increase in CD, but the C/F remained unchanged. The blood supply to the gastrocnemius was not changed. After 5-week-exercise at high altitude, the muscle fibers did not undergo atrophy. CD, C/F, and the blood flow at rest increased significantly. VEGF protein was found primarily in the matrix between muscle fibers; KDR were shown mainly in endothelial cells of capillary. VEGF was more strongly stained in the skeletal muscle of hypoxia-exercise rats.CONCLUSION: Hypoxia itself can not induce neovascularization. While exercise during hypoxic exposure can lead to capillary formation. VEGF and KDR may play roles in it. New capillary formation benefits the blood supply, oxygen delivery and working performance at high altitude.

  7. Exposure Forecaster

    U.S. Environmental Protection Agency — The Exposure Forecaster Database (ExpoCastDB) is EPA's database for aggregating chemical exposure information and can be used to help with chemical exposure...

  8. Neurophysiological Problems in Snow Bound High Altitude Areas

    W. Selvamurthy

    1984-10-01

    Full Text Available A series of studies have been conducted to evaluate the neurophysiological responses in young healthy soldiers during acclimatization at 3,500m altitude in Western Himalayas. The responses of autonomic nervous system, electroencephalogram hypothalamic thermoregulatory efficiency, orthostatic tolerance, sleep profile and effects of sleep deprivation have been studied in fresh inductees during three to five weeks of acclimatization at high altitude and compared with those of one year acclimatized lowlanders and high altitude natives. Physiological significance of these neurophysiological responses in the process of altitude adaptation is discussed in the light of current knowledge in the field.

  9. Cardiovascular Response to High Altitude Hypoxia

    S. C. Manchanda

    1984-10-01

    Full Text Available Normal and abnormal cardiovascular response to high altitude (HA hypoxia were studied in 98 healthy subjects and in 15 patients with HA pulmonary oedema (HAPO and acute mountain sickness (AMS at an altitudeof 3,658 m. The healthy sea level (SL residents showed marked blood volume changes during the first week with pulmonary hypotension and depression of left ventricular (LV performance and physical work capacity (PWC. The HA natives, however, had better LV performance and PWC indicating a better adaptation to HA hypoxia. HAPO subjects showed evidence of severe pulmonary hypertension with normal left atrial pressures but the exact mechanism of this condition is still not clear. AMS subjects showed no circulatory abnormalities 'but had relative hypercapnia and severe hypoxemia suggesting that AMS may be causcd by relative hyposensitiveness of the respiratory centre to hypoxia or hypercapnia.

  10. Aviation fuel property effects on altitude relight

    Venkataramani, K.

    1987-01-01

    The major objective of this experimental program was to investigate the effects of fuel property variation on altitude relight characteristics. Four fuels with widely varying volatility properties (JP-4, Jet A, a blend of Jet A and 2040 Solvent, and Diesel 2) were tested in a five-swirl-cup-sector combustor at inlet temperatures and flows representative of windmilling conditions of turbofan engines. The effects of fuel physical properties on atomization were eliminated by using four sets of pressure-atomizing nozzles designed to give the same spray Sauter mean diameter (50 + or - 10 micron) for each fuel at the same design fuel flow. A second series of tests was run with a set of air-blast nozzles. With comparable atomization levels, fuel volatility assumes only a secondary role for first-swirl-cup lightoff and complete blowout. Full propagation first-cup blowout were independent of fuel volatility and depended only on the combustor operating conditions.

  11. Anticoagulation Considerations for Travel to High Altitude.

    DeLoughery, Thomas G

    2015-09-01

    DeLoughery, Thomas G. Anticoagulation considerations for travel to high altitude. High Alt Med Biol 16:181-185, 2015.-An increasing percentage of the population are on anticoagulation medicine for clinical reasons ranging from stroke prevention in atrial fibrillation to long term prevention of deep venous thrombosis. In recent years, several new direct oral anticoagulants have entered the market. The key questions that should be kept in mind when approaching a potential traveler on anticoagulation are: 1) why is the patient on anticoagulation? 2) do they need to stay on anticoagulation? 3) what are the choices for their anticoagulation? 4) will there be any drug interactions with medications needed for travel? and 5) how will they monitor their anticoagulation while traveling? Knowing the answers to these questions then can allow for proper counseling and planning for the anticoagulated traveler's trip. PMID:26186419

  12. High Altitude Supersonic Decelerator Test Vehicle

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  13. Mechanisms of Altitude-Related Cough/Mécanismes de la Toux Liée à l’Altitude

    Mason, Nicholas

    2012-01-01

    The original work presented in this thesis investigates some of the mechanisms that may be responsible for the aetiology of altitude-related cough. Particular attention is paid to its relationship to the long recognised, but poorly understood, changes in lung volumes that occur on ascent to altitude. The literature relevant to this thesis is reviewed in Chapter 1. Widespread reports have long existed of a debilitating cough affecting visitors to high altitude that can incapacitate the suff...

  14. Radiation exposure profile and dose estimates to flyers en route Frankfurt to Mumbai

    The earth is continuously bombarded by the high energy radiation (galactic radiation) from solar system commonly known as cosmic radiation. Intensity of cosmic ray radiation exposures change with altitude and increases rapidly with the increase in altitude from the earth. Passenger and cargo flights fly at different altitudes and therefore the crew and passengers are exposed to radiation levels significantly higher than the average background levels on the earth. A typical commercial jet aircraft fly at an altitude of 30,000 - 40,000 feet (9-12 km) and at these heights radiation exposure rates increase by about 100 times from the background levels. European countries have guidelines and suggestions on radiation exposure to air crew members in sectors that may potentially expose them to levels exceeding 1 mSv per annum. The paper details the radiation exposure profile recorded in Frankfurt-Dubai-Mumbai sector and evaluation of average radiation exposure received by the flyers and air crew members

  15. The effect of high altitude on platelet counts, thrombopoietin and erythropoietin levels in young Bolivian airmen visiting the Andes

    Hudson, J. G.; Bowen, Angela L.; Navia, Pilar; Rios-Dalenz, Jaime; Pollard, Andrew J.; Williams, David; Heath, Donald

    Recognition of thrombosis as a complication of exposure to high altitude has stimulated interest in rheological changes resulting from hypobaric hypoxia. Previous studies of platelet counts at high altitude have yielded conflicting results and have not been studied in conjunction with potential mediating cytokines. We studied the effects of high-altitude exposure on platelet numbers, thrombopoietin (tpo) and erythropoietin (epo) levels in man. A group of 28 volunteers from the Bolivian Airforce stationed at Santa Cruz (600 m altitude) were studied 48 h and 1 week after their ascent to La Paz (3600 m). In addition 105 volunteers based at Santa Cruz for at least 1 year were compared with 175 age- and sex-matched residents at El Alto (4200 m). Platelet counts were measured immediately after sampling and serum samples assayed for tpo and epo. In the ascending group, mean platelet counts were 251×109, 367×109 and 398×109/l at 600 m and following 48 h and 1 week at 3600 m respectively. Mean tpo levels were 132.5, 76 and 92 pg/ml with epo values of 2.98, 11.6 and 7.9 mIU/ml respectively. In the resident populations mean platelet counts were 271×109/l in the low- and 471×109/l in the high-altitude groups. Mean tpo and epo levels measured 69.3 pg/ml and 4.5 mIU/ml respectively at 600 m and 58.5 pg/ml and 5.1 mIU/ml at 4200 m. In conclusion we have demonstrated a significant and sustained elevation in platelet numbers within 48 h of ascent to high altitude. Our findings do not support a role for tpo as a mediator of the increased platelet count. However, these data do not discount epo as a potential candidate.

  16. Effects of ascent to high altitude on human antimycobacterial immunity.

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  17. 14 CFR 91.177 - Minimum altitudes for IFR operations.

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Minimum altitudes for IFR operations. 91.177 Section 91.177 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Instrument Flight Rules § 91.177 Minimum altitudes for IFR operations. (a) Operation of aircraft at...

  18. Sequencing of 50 human exomes reveals adaptation to high altitude

    Yi, Xin; Liang, Yu; Huerta-Sanchez, Emilia;

    2010-01-01

    Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which repres...... in genetic adaptation to high altitude....

  19. Visual-Motion Cueing in Altitude and Yaw Control

    Johnson, Walter W.; Schroeder, Jeffery; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Research conducted using the Vertical Motion Simulator at the NASA Ames Research Center examined the contributions of platform motion and visual level-of-detail (LOD) cueing to tasks that required altitude and/or yaw control in a simulated AH-64 Apache helicopter. Within the altitude control tasks the LOD manipulation caused optical density to change across altitudes by a small, moderate, or large amount; while platform motion was either present or absent. The results from these tasks showed that both constant optical density and platform motion improved altitude awareness in an altitude repositioning task, while the presence of platform motion also led to improved performance in a vertical rate control task. The yaw control tasks had pilots'sit 4.5 ft in front of the center of rotation, thus subjecting them to both rotational and lateral motions during a yaw. The pilots were required to regulate their yaw, while the platform motion was manipulated in order to present all combinations of the resulting rotational and lateral motion components. Ratings of simulation fidelity and sensed platform motion showed that the pilots were relatively insensitive to the rotational component, but highly aware of the lateral component. Together these findings show that: 1) platform motion cues are important when speed regulation is required during altitude change; 2) platform motion contributes to the perception of movement amplitude; 3) lateral, but not rotational, motion cues are essential to the perception of vehicle yaw; and 4) LOD management yielding constant optical density across altitudes improves altitude awareness.

  20. 14 CFR 121.661 - Initial approach altitude: Flag operations.

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Initial approach altitude: Flag operations... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.661 Initial approach altitude: Flag operations. When making an initial approach to a...

  1. Increased resting bronchial tone in normal subjects acclimatised to altitude

    Wilson, C.; Bakewell, S; M. Miller; Hart, N; McMorrow, R; BARRY, P.; Collier, D; Watt, S; Pollard, A.

    2002-01-01

    Background: Normal subjects frequently experience troublesome respiratory symptoms when acclimatised to altitude. Bronchial hyperresponsiveness (BHR) and full and partial flow-volume loops were measured before and after ascent to 5000 m altitude to determine if there are changes in resting bronchial tone and BHR that might explain the symptoms.

  2. Altitude acclimatization. Citations from the International Aerospace Abstracts data base

    Mauk, S. C.

    1980-01-01

    This bibliography of citations to the international literature covers aspects of altitude acclimatization. Included are articles concerning high altitude environments, hypoxia, heart function and hemodynamic responses, physical exercise, human tolerances and reactions, physiological responses, and oxygen consumption. This updated bibliography contains 164 citations, 35 of which are new entries to the previous edition.

  3. Microgravity combustion experiment using high altitude balloon.

    Kan, Yuji

    In JAXA, microgravity experiment system using a high altitude balloon was developed , for good microgravity environment and short turn-around time. In this publication, I give an account of themicrogravity experiment system and a combustion experiment to utilize the system. The balloon operated vehicle (BOV) as a microgravity experiment system was developed from 2004 to 2009. Features of the BOV are (1) BOV has double capsule structure. Outside-capsule and inside-capsule are kept the non-contact state by 3-axis drag-free control. (2) The payload is spherical shape and itsdiameter is about 300 mm. (3) Keep 10-4 G level microgravity environment for about 30 seconds However, BOV’s payload was small, and could not mount large experiment module. In this study, inherits the results of past, we established a new experimental system called “iBOV” in order toaccommodate larger payload. Features of the iBOV are (1) Drag-free control use for only vertical direction. (2) The payload is a cylindrical shape and its size is about 300 mm in diameter and 700 mm in height. (3) Keep 10-3-10-4 G level microgravity environment for about 30 seconds We have "Observation experiment of flame propagation behavior of the droplets column" as experiment using iBOV. This experiment is a theme that was selected first for technical demonstration of iBOV. We are conducting the flame propagation mechanism elucidation study of fuel droplets array was placed at regular intervals. We conducted a microgravity experiments using TEXUS rocket ESA and drop tower. For this microgravity combustion experiment using high altitude balloon, we use the Engineering Model (EM) for TEXUS rocket experiment. The EM (This payload) consists of combustion vessel, droplets supporter, droplets generator, fuel syringe, igniter, digital camera, high-speed camera. And, This payload was improved from the EM as follows. (1) Add a control unit. (2) Add inside batteries for control unit and heater of combustion

  4. General introduction to altitude adaptation and mountain sickness

    Bartsch, P.; Saltin, B.

    2008-01-01

    over 24-48 h to improve the oxygen-carrying capacity of the blood, and is further improved during a prolonged sojourn at altitude through an enhanced erythropoiesis and larger Hb mass, allowing for a partial or full restoration of the blood volume and arterial oxygen content. Most of these adaptations......-30% of subjects at altitudes between 2500 and 3000 m a.s.l. Pulmonary edema is rarely seen below 3000 m a.s.l. and brain edema is not seen below 4000 m a.s.l. It is possible to travel to altitudes of 2500-3000 m a.s.l., wait for 2 days, and then gradually start to train. At higher altitudes, one should...... modalities using hypoxia and altitude for improvement of performance Udgivelsesdato: 2008/8...

  5. Incidence and possible causes of dental pain during simulated high altitude flights.

    Kollmann, W

    1993-03-01

    Of 11,617 personnel participating in simulated high altitude flights up to 43,000 feet, only 30 (0.26%) complained of toothache (barodontalgia). The cause of the barodontalgia in 28 episodes of pain in 25 of these subjects was investigated. Chronic pulpitis was suspected as the cause in 22 cases and maxillary sinusitis in 2. No pathosis was detected in the other four. In 10 cases in which the pulpitis was treated by root filling or replacing a deep filling, subsequent exposure to low pressure caused no pain. PMID:8509756

  6. The energy spectrum of high energy gamma rays observed at an airplane altitude

    In order to get some knowledge of altitude variation of high energy cosmic rays in the atmosphere, an emulsion chamber (EC) has been flown at the atmospheric depth of 260 g/cm2 on an airplane jet cargo. The total amount of exposure is 165 m2hour. Approximately 400 showers with energy greater than 1.0 TeV are observed. The energy spectrum of high energy gamma rays is presented. The comparison with similar measurement at greater depth is made. (orig.)

  7. Impact of Altitude on Power Output during Cycling Stage Racing.

    Laura A Garvican-Lewis

    Full Text Available The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour.Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000 m (3000 m according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin.Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5-600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005 during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001 while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p < 0.001 during racing at moderate-high altitude compared with the race simulation near sea-level.A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes.

  8. Accuracy of handheld blood glucose meters at high altitude.

    Pieter de Mol

    Full Text Available BACKGROUND: Due to increasing numbers of people with diabetes taking part in extreme sports (e.g., high-altitude trekking, reliable handheld blood glucose meters (BGMs are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs. METHODOLOGY/PRINCIPAL FINDINGS: Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias 6.5 mmol/L and <1 mmol/L from reference glucose (when <6.5 mmol/L. No significant difference was observed between measurements at simulated altitude and sea level for either glucose oxidase based BGMs or glucose dehydrogenase based BGMs as a group phenomenon. Two GDH based BGMs did not meet set performance criteria. Most BGMs are generally overestimating true glucose concentration at high altitude. CONCLUSION: At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy.

  9. Spatial sensitivities of human health risk to intercontinental and high-altitude pollution

    Koo, Jamin; Wang, Qiqi; Henze, Daven K.; Waitz, Ian A.; Barrett, Steven R. H.

    2013-06-01

    We perform the first long-term (>1 year) continuous adjoint simulations with a global atmospheric chemistry-transport model focusing on population exposure to fine particulate matter (PM2.5) and associated risk of early death. Sensitivities relevant to intercontinental and high-altitude PM pollution are calculated with particular application to aircraft emissions. Specifically, the sensitivities of premature mortality risk in different regions to NOx, SOx, CO, VOC and primary PM2.5 emissions as a function of location are computed. We apply the resultant sensitivity matrices to aircraft emissions, finding that NOx emissions are responsible for 93% of population exposure to aircraft-attributable PM2.5. Aircraft NOx accounts for all of aircraft-attributable nitrate exposure (as expected) and 53% of aircraft-attributable sulfate exposure due to the strong "oxidative coupling" between aircraft NOx emissions and non-aviation SO2 emissions in terms of sulfate formation. Of the health risk-weighted human PM2.5 exposure attributable to aviation, 73% occurs in Asia, followed by 18% in Europe. 95% of the air quality impacts of aircraft emissions in the US are incurred outside the US. We also assess the impact of uncertainty or changes in (non-aviation) ammonia emissions on aviation-attributable PM2.5 exposure by calculating second-order sensitivities. We note the potential application of the sensitivity matrices as a rapid policy analysis tool in aviation environmental policy contexts.

  10. The high-altitude water Cherenkov Observatory

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)