WorldWideScience

Sample records for 241-z building decontamination

  1. The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z

  2. Building 003 decontamination and disposition. Final report

    The decontamination and disposition (D and D) of the contaminated facilities in Building 003 are complete. The Hot Cave, the building radioactive exhaust system, the radioactive liquid waste system, and the fume hoods were removed. The more significant D and D activities are summarized, special techniques are noted, and problems and their resolution are discussed. Results of the radiological monitoring are presented

  3. Tank 241-Z-361 process and characterization history

    Jones, S.A.

    1998-08-06

    An Unreviewed Safety Question (Wagoner, 1997) was declared based on lack of adequate authorization basis for Tank 241-Z-361 in the 200W Area at Hanford. This document is a summary of the history of Tank 241-Z-361 through December 1997. Documents reviewed include engineering files, laboratory notebooks from characterization efforts, waste facility process procedures, supporting documents and interviews of people`s recollections of over twenty years ago. Records of transfers into the tank, past characterization efforts, and speculation were used to estimate the current condition of Tank 241-Z-361 and its contents. Information about the overall waste system as related to the settling tank was included to help in understanding the numbering system and process relationships. The Plutonium Finishing Plant was built in 1948 and began processing plutonium in mid-1949. The Incinerator (232-Z) operated from December 1961 until May 1973. The Plutonium Reclamation Facility (PRF, 236-Z) began operation in May 1964. The Waste Treatment Facility (242-Z) operated from August 1964 until August 1976. Waste from some processes went through transfer lines to 241-Z sump tanks. High salt and organic waste under normal operation were sent to Z-9 or Z-18 cribs. Water from the retention basin may have also passed through this tank. The transfer lines to 241-Z were numbered D-4 to D-6. The 241-Z sump tanks were numbered D-4 through D-8. The D-4, 5, and 8 drains went to the D-6 sump tank. When D-6 tank was full it was transferred to D-7 tank. Prior to transfer to cribs, the D-7 tank contents was sampled. If the plutonium content was analyzed to be more than 10 g per batch, the material was (generally) reprocessed. Below the discard limit, caustic was added and the material was sent to the cribs via the 241-Z-361 settling tank where solids settled out and the liquid overflowed by gravity to the cribs. Waste liquids that passed through the 241-Z-361 settling tank flowed from PFP to ground in

  4. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    ' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D and D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion

  5. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    JOHNSTON GA

    2008-01-15

    Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile

  6. Decontamination of the 233-S building loadout hood

    This paper concerns the decontamination experience gained during the decontamination and decommissioning (DandD) operations on the Loadout Hood within the 233-S Building. The retired 233-S Building (Plutonium Concentration Facility) is being decommissioned as a demonstration project to develop baseline cost, technology, and operational data for DandD of alpha contaminated facilities. The Loadout Hood within the facility is a plutonium nitrate loadout system highly contaminated with transuranics. The paper consists of a brief description of the facility and Loadout Hood, a summary of the engineering and field work performed, and an evaluation of the technology and methods used

  7. Tank 241-Z-361 vapor sampling and analysis plan

    BANNING, D.L.

    1999-02-23

    Tank 241-Z-361 is identified in the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement), Appendix C, (Ecology et al. 1994) as a unit to be remediated under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). As such, the U.S. Environmental Protection Agency will serve as the lead regulatory agency for remediation of this tank under the CERCLA process. At the time this unit was identified as a CERCLA site under the Tri-Party Agreement, it was placed within the 200-ZP-2 Operable Unit. In 1997, The Tri-parties redefined 200 Area Operable Units into waste groupings (Waste Site Grouping for 200 Areas Soils Investigations [DOE-RL 1992 and 1997]). A waste group contains waste sites that share similarities in geological conditions, function, and types of waste received. Tank 241-Z-361 is identified within the CERCLA Plutonium/Organic-rich Process Condensate/Process Waste Group (DOE-RL 1992). The Plutonium/Organic-rich Process Condensate/Process Waste Group has been prioritized for remediation beginning in the year 2004. Results of Tank 216-Z-361 sampling and analysis described in this Sampling and Analysis Plan (SAP) and in the SAP for sludge sampling (to be developed) will determine whether expedited response actions are required before 2004 because of the hazards associated with tank contents. Should data conclude that remediation of this tank should occur earlier than is planned for the other sites in the waste group, it is likely that removal alternatives will be analyzed in a separate Engineering Evaluation/Cost Analysis (EE/CA). Removal actions would proceed after the U.S. Environmental Protection Agency (EPA) signs an Action Memorandum describing the selected removal alternative for Tank 216-Z-361. If the data conclude that there is no immediate threat to human health and the environment from this tank, remedial actions for the tank will be defined in a

  8. Radioactive decontamination

    This Code of Practice covers: (a) the decontamination of plant items, buildings and associated equipment; (b) decontamination of protective clothing; (c) simple personal decontamination; and (d) the basic mechanisms of contamination and their influence on decontaminability. (author)

  9. TMI-2 auxiliary building elevator shaft and pit decontamination

    Decontamination of the elevator pit and shaft in the auxiliary building at Three Mile Island Unit 2 (TMI-2) was performed to remove high radiation and contamination levels which prevented personnel from utilizing the elevator. The radiation and contamination levels in the TMI-2 auxiliary building elevator shaft have been reduced to the point where plant personnel are again permitted to ride in the elevator without a radiation work permit, with the exception of access to the 281-ft (basement) level. Based on the declassification and expanded use of the elevator, the task goal has been met. The tax expended 16.16 man-rem and 621 man-hours

  10. Engineering study of the criticality issues associated with tank 241-Z-361

    Tank 241-Z-361 is associated with the Plutonium Finishing Plant (PFP). Uncertainty about the contents of the tank have led to the declaration of an Unreviewed Safety Question (USQ) and the preparation of a Justification for Continued Operation (JCO) to address flammable gas and other authorization basis issued. A Criticality Safety Team was assembled to review old data, determine its validity, and reevaluate the tank. It was concluded that the tank has a sufficient margin of safety to allow opening, sampling, and other characterizing activities. The team concluded that a criticality in Tank 241-Z-361 was extremely unlikely

  11. Studies of radioactive deposition on farm buildings and testing of some methods for decontamination

    Studies were made of radioactive fallout on roofs of farm buildings and of some methods of decontamination. The aim was to find ways of reducing the external radiation dose to farmers working and farm animals housed in stables in a fallout situation. The roof material studied was steel plate (A) and tile (B,C, D), each with four sample areas of ca. 1 m2. The roof samples were collected at three places and from totally four building in regions which in 1986 (after the Chernobyl fallout) has a 137Cs ground depositions of 3040 kBq/m2 (A, B, C) and > 100 kBq/m2 (D). Four different decontamination methods were tested: 1. High pressure washing with water. 2. Repeated high pressure washing with water. 3. Application of foam of a sanitizing chemical for livestock buildings followed by high pressure washing with water. 4. Application of a solution of KCl followed by high pressure washing with water. In C, the effect of decontamination expressed as the percentage decrease of the 137Cs activity was on average for all methods, 55%. This material was coated before the decontamination by a marked growth of algae or moss, which was effectively washed off during the sanitizing procedure. In B, the average activity decontamination effect was 25%, while in D (with the highest original activity, but without growth of organic material) the effect was very small, 3%. In A, the activity level before decontamination was so low that measurements after decontamination were considered unnecessary. Method number 4 was the most effective in B and C, 32% and 64%, respectively, while method number 3 was the most effective in D, 5.7%. The results indicate that good effects can be achieved in radioactivity decontamination of roof material with equipment and chemicals which are normally available on farms

  12. Radioactivity build-up and decontamination (part 4)

    To establish a decontamination method of radioactive corrosion products in BWR primary coolant system, the radioactivity buildup after the decontamination was investigated for 304 stainless steel using a test loop simulating a BWR condition for 400 hours. The results show that; (1) Removal of the chromium in crud may be necessary to supress the activity re-buildup and the validity of Oxidation-reduction method with this process was proved. (2) The most significant activity re-buildup was shown when the original surface layer was exposed after complete removal of the crud. The exposure of chromium rich surface layer may account for the acceralation of activity buildup. (3) The re-buildup was supressed when a pre-filming by H2O2 (8 ppm 140 0C 24 hr) was applied after the electro-polishing up to the original surface layer. This supressing effect was also seen on new SUS304 surface. (author)

  13. 324 and 325 Building hot cell cleanout program: Decontamination of C-Cell

    During FY 1989 the decontamination of C-Cell of Hanford's 324 Building was completed as part of the 324 and 325 Building Hot Cell Cleanout Program sponsored by the DOE Nuclear Energy's Surplus Facilities Management Program. The decontamination effort was completed using a series of remote and contact decontamination techniques. Initial radiation readings in C-Cell averaged 50 rad/hr and were reduced remotely to less than 200 mrad/hr using an alkaline foam cleaner followed by a 5000-psi water flush. Contact decontamination was then permissible using ultra high-pressure water, at 36,000 psi, further reducing the average radiation level in the cell to less than 86 mrem/hr. The approach used in decontaminating C-Cell resulted in a savings in radiation exposure of 87% and a cost savings of 39% compared to a hands-on procedure used in A-Cell, 324 Building in 1987. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 1.65 mrem per ft2 and $96 per ft2 of cell surface area. 14 figs., 4 tabs

  14. Building Toxic Metal Characterization and Decontamination Report: Area 6, Building 914

    NSTec Industrial Hygiene

    2011-08-15

    The purpose of this report is to outline the toxic metal characterization and decontamination efforts in Area 6, Building 914. This includes the initial building inspection, the hotspot sampling, results/findings, building cleanup, and the verification sampling. Building 914 is a steel light frame building that was constructed in 1992. It is about 16,454 square feet, and five employees are assigned to this building. According to the building's floor plan blueprints, it could be inferred that this building was once a Wiremen/Lineman shop. In 2002-2004, the National Nuclear Security Administration Nevada Site Office embarked on a broad characterization of beryllium (Be) surface concentrations throughout the North Las Vegas Facility, the Nevada National Security Site (NNSS), and ancillary facilities like the Special Technologies Laboratory, Remote Sensing Laboratory, etc. Building 914 was part of this characterization. The results of the 2002 study illustrated that the metal housekeeping limits were within acceptable limits and from a Be standpoint, the building was determined to be fit for occupancy. On March 2, 2011, based on a request from Building 914 users, National Security Technologies, LLC (NSTec) Industrial Hygiene (IH) collected bulk samples from the southwest corner of Building 914 at heights above 6 feet where black dust had been noticed on this particular wall. IH conducted surface swipe sampling of the area and analyzed the samples for toxic metals, namely, beryllium (Be), cadmium (Cd), chromium (Cr), lead (Pb), and manganese (Mn). The sample results indicated values two to four times above the housekeeping threshold for Be, Cd, Cr, Pb, and Mn. Subsequently, the facility was closed and posted; the necessary personnel were notified; and controls were instituted for ingress and egress of the building. On March 17, 2011, IH performed an extensive sampling event involving the entire warehouse in accordance with NSTec Organization Procedure OP-P250

  15. Destruction of Spores on Building Decontamination Residue in a Commercial Autoclave▿

    Lemieux, P.; Sieber, R; Osborne, A; Woodard, A.

    2006-01-01

    The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently r...

  16. Decontamination and decommission of a radiochemical laboratory building complex

    Full text: Handling of unsealed radioactive substances for research and development purposes in chemical or pharmaceutical industries or research centres as well as production of radioactive substances (e.g. for applications in nuclear medicine or industry) requires operation of special radiochemical laboratories. In general, operation of radiochemical laboratories is strongly regulated by the government and national authorities. The operator needs a permit related to radiological protection. In general, technical requirements for such facilities are very high. To ensure high safety standards with respect to the employees and the environment, several radiological protection measures have to be taken. These measures (for example special shielding or ventilation and waste water systems) depend on various factors, e.g. activity in use, kind of nuclides, chemical properties and volatility of substances. In order to close-down such radiochemical laboratories some radiological protection measures have to be maintained to ensure protection of both humans and the environment induced by possible residual contaminations within the facility including technical inventory. However, a later reuse of the facility as a non-radioactive facility requires removal of all radioactive contamination with respect to national regulation. Resulting radioactive wastes have to be disposed of under control of competent authorities. Based on the experience of a decontamination and decommission project for a former radiochemical laboratory complex, the main steps necessary to release such a facility are discussed. Analytical aspects of initial conditions, necessary organisational structures within the project, resources needed estimation and exploration of the radiological situation in the laboratory, elaboration of a measuring strategy and decontamination methods as well as different waste disposal routes in relation to different waste types are reported. (author)

  17. Decontamination Data - Blister Agents

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions This dataset is associated with the following...

  18. Psychological stress for alternatives of decontamination of TMI-2 reactor building atmosphere. Technical report

    The purpose of the report is to consider the nature and level of psychological stress that may be associated with each of several alternatives for decontamination. The report briefly reviews some of the literature on stress, response to major disaster or life stressors, provides opinion on each decontamination alternative, and considers possible mitigative actions to reduce psychological stress. The report concludes that any procedure that is adapted for the decontamination of the reactor building atmosphere will result in some psychological stress. The stress, however, should abate as contamination is reduced and uncertainty is diminished. The advantages of the purge alternative are the rapid completion of the decontamination and the consequent elimination of future uncontrolled release. Severe stress effects are less likely if the duration of stressor exposure is reduced, if the feeling of public control is increased and if the degree of perceived safety is increased. The long delays, continued uncertainty, and possibility of uncontrolled release that characterize the other alternatives may offset the perception that they are safer. In addition, chronic stress could be a consequence of long delays and continued uncertainty

  19. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D ampersand D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project

  20. Decontamination of clothing and building materials associated with the clandestine production of methamphetamine.

    Serrano, Kate A; Martyny, John W; Kofford, Shalece; Contreras, John R; Van Dyke, Mike V

    2012-01-01

    This study was designed to determine how easily methamphetamine can be removed from clothing and building materials, utilizing different cleaning materials and methods. The study also addressed the penetration of methamphetamine into drywall and the ability of paints to encapsulate the methamphetamine on drywall. Clothing and building materials were contaminated in a stainless steel chamber by aerosolizing methamphetamine in a beaker heater. The amount of methamphetamine surface contamination was determined by sampling a grid pattern on the material prior to attempting to clean the materials. After cleaning, the materials were again sampled, and the degree of decontamination noted. We found that household clothing and response gear worn by first responders was easily decontaminated using a household detergent in a household washing machine. A single wash removed over 95% of the methamphetamine from these materials. The study also indicated that methamphetamine-contaminated, smooth non-porous surfaces can be easily cleaned to below detectable levels using only mild cleaners. More porous surfaces such as plywood and drywall were unlikely to be decontaminated to below regulatory levels even with three washes using a mild cleaner. This may be due to methamphetamine penetration into the paint on these surfaces. Evaluation of methamphetamine contamination on drywall indicated that approximately 40% of the methamphetamine was removed using a wipe, while another 60% remained in the paint layer. Stronger cleaners such as those with active ingredients including sodium hypochlorite or quaternary ammonia and commercial decontamination agents were more effective than mild detergent-based cleaners and may reduce methamphetamine contamination to below regulatory levels. Results from the encapsulation studies indicate that sprayed on oil-based paint will encapsulate methamphetamine on drywall and plywood surfaces up to 4.5 months, while latex paints were less effective. PMID

  1. Surface activity and radiation field measurements of the TMI-2 reactor building gross decontamination experiment

    McIsaac, C V

    1983-10-01

    Surface samples were collected from concrete and metal surfaces within the Three Mile Island Unit 2 Reactor Building on December 15 and 17, 1981 and again on March 25 and 26, 1982. The Reactor Building was decontaminated by hydrolasing during the period between these dates. The collected samples were analyzed for radionuclide concentration at the Idaho National Engineering Laboratory. The sampling equipment and procedures, and the analysis methods and results are discussed. The measured mean surface concentrations of /sup 137/Cs and /sup 90/Sr on the 305-ft elevation floor before decontamination were, respectively, 3.6 +- 0.9 and 0.17 +- 0.04 ..mu..Ci/cm/sup 2/. Their mean concentrations on the 347-ft elevation floor were about the same. On both elevations, walls were found to be considerably less contaminated than floors. The fractions of the core inventories of /sup 137/Cs, /sup 90/Sr, and /sup 129/I deposited on Reactor Building surfaces prior to decontamination were calculated using their mean concentrations on various types of surfaces. The calculated values for these three nuclides are 3.5 +- 0.4 E-4, 2.4 +- 0.8 E-5, and 5.7 +- 0.5 E-4, respectively. The decontamination operations reduced the /sup 137/Cs surface activity on the 305- and 347-ft elevations by factors of 20 and 13, respectively. The /sup 90/Sr surface activity reduction was the same for both floors, that being a factor of 30. On the whole, decontamination of vertical surfaces was not achieved. Beta and gamma exposure rates that were measured during surface sampling were examined to determine the degree to which they correlated with measured surface activities. The data were fit with power functions of the form y = ax/sup b/. As might be expected, the beta exposure rates showed the best correlation. Of the data sets fit with the power function, the set of December 1981 beta exposure exhibited the least scatter. The coefficient of determination for this set was calculated to be 0.915.

  2. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation

  3. Decontamination of radium from a commercial building located in a large Canadian city

    In August 1975, the Ministry of Health of the Province of Ontario at the request of one of the tenants of a building in a large Canadian city conducted a radiation survey of the third floor of the building. The survey, although preliminary, showed that high radiation existed on the third and second floors and that significant contamination existed in some other parts of the six-floor building. The contamination was identified as radium-226. An investigation revealed that the third floor of the building had been used during World War II for processing radium and also for some radium dial painting work. The Atomic Energy Control Board (AECB) requested Atomic Energy of Canada Limited (AECL) to remove the radium contaminant from the building. AECL assigned the job to its Chalk River Nuclear Laboratories (CRNL). The objectives were to reduce the radium concentration throughout the building so that radon decay products would be less than 0.02 Working Levels (WL) and exposure rates would be less than 50 μR/h. The techniques used and the extent of decontamination achieved are reported

  4. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part B: Decontamination, robotics/automation, waste management

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the decontamination, robotics/automation, and WM data sheets

  5. Development of standards for chemical and biological decontamination of buildings and structures affected by terrorism

    Lumley, T.C.; Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Hay, A.W.M. [Leeds Univ., Leeds (United Kingdom)

    2006-07-01

    Currently, there are no suitable standards for determining levels of safety when reoccupying a building that has been recommissioned following a biological or chemical attack. For that reason, this study focused on developing clean-up standards for decontaminating buildings and construction materials after acts of terrorism. Several parameters must be assessed when determining the course of action to decontaminate toxic agents and to rehabilitate facilities. First, the hazardous substance must be positively identified along with the degree of contamination and information on likely receptors. Potential exposure route is also a key consideration in the risk assessment process. A key objective of the study was to develop specific guidelines for ascertaining and defining clean. In particular, standards for chemical and biological agents that pose a real or potential risk for use as agents of terrorism will be developed. The selected agents for standards development were ammonia, fentanyl, malathion, mustard gas, potassium cyanide, ricin, sarin, hepatitis A virus, and bacillus anthracis. The standards will be developed by establishing the relationship between the amount of exposure and expected health effects; assessing real and potential risks by identifying individuals at risk and consideration of all exposure routes; and, characterizing the risk to determine the potential for toxicity or infectivity. For non-carcinogens, this was done through the analysis of other known guidelines. Cancer-slope factors will be considered for carcinogens. The standards will be assessed in the laboratory using animal models. The guidelines and standards are intended for first-responders and are scheduled for development by the end of 2006. 15 refs., 3 tabs.

  6. PROPERTIES AND BEHAVIOR OF 238PU RELEVANT TO DECONTAMINATION OF BUILDING 235-F

    Duncan, A.; Kane, M.

    2009-11-24

    This report was prepared to document the physical, chemical and radiological properties of plutonium oxide materials that were processed in the Plutonium Fuel Form Facility (PuFF) in building 235-F at the Savannah River Plant (now known as the Savannah River Site) in the late 1970s and early 1980s. An understanding of these properties is needed to support current project planning for the safe and effective decontamination and deactivation (D&D) of PuFF. The PuFF mission was production of heat sources to power Radioisotope Thermoelectric Generators (RTGs) used in space craft. The specification for the PuO{sub 2} used to fabricate the heat sources required that the isotopic content of the plutonium be 83 {+-} 1% Pu-238 due to its high decay heat of 0.57 W/g. The high specific activity of Pu-238 (17.1 Ci/g) due to alpha decay makes this material very difficult to manage. The production process produced micron-sized particles which proved difficult to contain during operations, creating personnel contamination concerns and resulting in the expenditure of significant resources to decontaminate spaces after loss of material containment. This report examines high {sup 238}Pu-content material properties relevant to the D&D of PuFF. These relevant properties are those that contribute to the mobility of the material. Physical properties which produce or maintain small particle size work to increase particle mobility. Early workers with {sup 238}PuO{sub 2} felt that, unlike most small particles, Pu-238 oxide particles would not naturally agglomerate to form larger, less mobile particles. It was thought that the heat generated by the particles would prevent water molecules from binding to the particle surface. Particles covered with bound water tend to agglomerate more easily. However, it is now understood that the self-heating effect is not sufficient to prevent adsorption of water on particle surfaces and thus would not prevent agglomeration of particles. Operational

  7. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis

    Wood, Joseph P., E-mail: wood.joe@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Homeland Security Research Center, MC-E343-06, Research Triangle Park, NC 27711 (United States); Blair Martin, G., E-mail: martin.blair@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, MC-E340-C, Research Triangle Park, NC 27711 (United States)

    2009-05-30

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO{sub 2}) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO{sub 2} introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24 h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO{sub 2} was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO{sub 2} levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO{sub 2} emissions below the limit. Numerous lessons were learned in the field trials of this ClO{sub 2} decontamination technology.

  8. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO2) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO2 introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24 h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO2 was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO2 levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO2 emissions below the limit. Numerous lessons were learned in the field trials of this ClO2 decontamination technology.

  9. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor building decontamination. Summary status report. Volume 2

    This document summarizes information relating to decontamination of the Three Mile Island Unit 2 (TMI-2) reactor building. The report covers activities for the period of June 1, 1979 through March 29, 1985. The data collected from activity reports, reactor containment entry records, and other sources were entered into a computerized data system which permits extraction/manipulation of specific information which can be used in planning for recovery from an accident similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during decontamination of the reactor building. Support activities conducted outside of radiation areas are excluded from the scope of this report. Computerized reports included in this document are: a chronological summary listing work performed relating to reactor building decontamination for the period specified; and summary reports for each major task during the period. Each task summary is listed in chronological order for zone entry and subtotaled for the number of personnel entries, exposures, and man-hours. Manually-assembled table summaries are included for: labor and exposures by department and labor and exposures by major activity

  10. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor building decontamination. Summary status report. Volume 2

    Doerge, D.H.; Miller, R.L.; Scotti, K.S.

    1986-05-01

    This document summarizes information relating to decontamination of the Three Mile Island Unit 2 (TMI-2) reactor building. The report covers activities for the period of June 1, 1979 through March 29, 1985. The data collected from activity reports, reactor containment entry records, and other sources were entered into a computerized data system which permits extraction/manipulation of specific information which can be used in planning for recovery from an accident similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during decontamination of the reactor building. Support activities conducted outside of radiation areas are excluded from the scope of this report. Computerized reports included in this document are: a chronological summary listing work performed relating to reactor building decontamination for the period specified; and summary reports for each major task during the period. Each task summary is listed in chronological order for zone entry and subtotaled for the number of personnel entries, exposures, and man-hours. Manually-assembled table summaries are included for: labor and exposures by department and labor and exposures by major activity.

  11. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  12. Alternatives evaluation for the decontamination and decommissioning of buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    This is an alternative evaluation document that records the evaluation process and justification for choosing the alternative recommended for the decontamination and decommissioning (D ampersand D) of the 3506 and 3515 buildings at the Oak Ridge National Laboratory (ORNL). The alternatives for the D ampersand D of the two buildings were: (1) no action (continued surveillance and maintenance), (2) decontamination for free release, (3) entombment in place, (4) partial dismantlement, and (5) complete dismantlement. Soil remediation is not included in any of the alternatives. The recommended alternative for the D ampersand D of Building 3506 is partial dismantlement at an estimated cost of $936, 000 in escalated dollars. The cost estimate for complete dismantlement is $1,384,000. The recommended alternative for the D ampersand D of Building 3515 is complete dismantlement at an estimated cost of $3,733,000 in escalated dollars. This alternative is recommended, because the soils below the foundation of the 3515 building are highly contaminated, and removing the foundation in the D ampersand D project results in lower overall worker risk, costs, and improved post-D ampersand D site conditions. A further recommendation is to revise these cost estimates after the conclusion of the ongoing characterization study. The results of the characterization of the two buildings is expected to change some of the assumptions and resolve some of the uncertainties in the development of these estimates

  13. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  14. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge

  15. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    NONE

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  16. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft2 of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL

  17. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  18. Results of the radiological characterization survey of the Building 7819 Decontamination Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Rodriguez, R.E.; Brown, K.S.; Rice, D.E.; Gosslee, R.C.; Patania, V.P.

    1993-12-01

    A radiological characterization survey of the interior of the Building 7819 Decontamination Facility at Oak Ridge National Laboratory (ORNL) was conducted during July 1993. The interior of Building 7819 is grossly contaminated, and the contamination is highly transferable. Levels of alpha and beta contamination inside the building exceed ORNL guidelines for zoning as a Contamination Area. Gamma whole-body exposure rates generally ranged from 0.1 to 20 mR/h. Total beta-gamma surface contamination ranged from 1,000 to 520,000 dpm/100 cm{sup 2}, and transferable beta-gamma contamination ranged from 200 to 174,000 dpm/100 cm{sup 2}. A pump and a metal table near the pit exhibited beta dose rates of 3 rad/h and 300 mrad/h, respectively, and gamma exposure rates of 250 mR/h and 25 mR/h at contact, respectively. Total alpha contamination levels ranged from 100 to 110,000 dpm/100 cm{sup 2}, and transferable contamination ranged from 21 to 440 dpm/100 cm{sup 2}. The ledge at the north end of the pit above the sink demonstrated alpha contamination of approximately 100,000 dpm/100 cm{sup 2}. Radionuclide analysis of 11 smear samples showed the primary beta emitters to be {sup 90}Sr and {sup 137}Cs with trace amounts of {sup 60}Co. The Building 7819 Decontamination Facility was zoned as a Contamination Area and Radiation Area at the time of this survey, and the zoning is justified by the results of the survey. The building will also be zoned as an Airborne Radioactivity Area, based on the results of air sampling. Recommendations for corrective actions are included.

  19. Site Characterization Plan for decontamination and decommissioning of Buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Buildings 3506, the Waste Evaporator Facility, and 3515, the Fission Product Pilot Plant, at Oak Ridge National Laboratory (ORNL), are scheduled for decontamination and decommissioning (D and D). This Site Characterization Plan (SCP) presents the strategy and techniques to be used to characterize Buildings 3506/3515 for the purpose of planning D and D activities. The elements of the site characterization for Buildings 3506/3515 are planning and preparation, field investigation, and characterization reporting. Other level of effort activities will include management and oversight, project controls, meetings, and progress reporting. The objective of the site characterization is to determine the nature and extent of radioactive and hazardous materials and other industrial hazards in and around the buildings. This information will be used in subsequent planning to develop a detailed approach for final decommissioning of the facilities: (1) to evaluate decommissioning alternatives and design the most cost-effective D and D approach; (2) to determine the level and type of protection necessary for D and D workers; and (3) to estimate the types and volumes of wastes generated during D and D activities. The current D and D characterization scope includes the entire building, including the foundation and equipment or materials within the building. To estimate potential worker exposure from the soil during D and D, some subfoundation soil sample collection is planned. Buildings 3506/3515 are located in the ORNL main plant area, to the west and east, respectively, of the South Tank Farm. Building 3506 was built in 1949 to house a liquid waste evaporator and was subsequently used for an incinerator experiment. Partial D and D was done prior to abandonment, and most equipment has been removed. Building 3515 was built in 1948 to house fission product separation equipment. In about 1960, all entrances were sealed with concrete block and mortar. Building 3515 is expected to be

  20. Lessons Learned from Decontamination Experiences

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  1. System DECON - an innovative solution for the decontamination of surfaces in buildings

    One of the most important tasks in decommissioning nuclear facilities is, in disposal-oriented dismantling, the removal of contaminated surfaces. These coatings are traditionally removed manually by chiseling, abrasive blasting or sanding. With these processes it is often the case that the dust particles are then released into the air and settle on surrounding surfaces (secondary contamination); the material lands on the floor. The time limits set by the Nuclear Energy Withdrawal Act increase the demand by the industry for a suitable system for decontamination work. Since the end of 2000 the tool-head DECON 300 is being used in connection with a powerful DECON vacuum system from HOCHTIEF for decontamination work. The initial experiences were gained in the pilot nuclear plant Kahl (VAK) and in the former fuel rods factory NUKEM-Alt, Hanau, and the performance specifications determined. The system was used for both the removal of concrete as well as for the removal of the decontamination coating, bricks and plaster. With the DECON system the entire range of contaminated surfaces on floors, masonries and ceilings can be handled ''in situ''. The efficiency of this mechanical removal process is proven by the total of the removal performance, the quality of the surface, the lack of dust and handling, while simultaneously meeting the requirements of the StrSchV (German Radiation Protection Ordinance). (orig.)

  2. BNL Building 650 lead decontamination and treatment feasibility study. Final report

    Lead has been used extensively at Brookhaven National Laboratory (BNL) for radiation shielding in numerous reactor, accelerator and other research programs. A large inventory of excess lead (estimated at 410,000 kg) in many shapes and sizes is currently being stored. Due to it's toxicity, lead and soluble lead compounds are considered hazardous waste by the Environmental Protection Agency. Through use at BNL, some of the lead has become radioactive, either by contamination of the surface or through activation by neutrons or deuterons. This study was conducted at BNL's Environmental and Waste Technology Center for the BNL Safety and Environmental Protection Division to evaluate feasibility of various treatment options for excess lead currently being stored. The objectives of this effort included investigating potential treatment methods by conducting a review of the literature, developing a means of screening lead waste to determine the radioactive characteristics, examining the feasibility of chemical and physical decontamination technologies, and demonstrating BNL polyethylene macro-encapsulation as a means of treating hazardous or mixed waste lead for disposal. A review and evaluation of the literature indicated that a number of physical and chemical methods are available for decontamination of lead. Many of these techniques have been applied for this purpose with varying degrees of success. Methods that apply mechanical techniques are more appropriate for lead bricks and sheet which contain large smooth surfaces amenable to physical abrasion. Lead wool, turnings, and small irregularly shaped pieces would be treated more effectively by chemical decontamination techniques. Either dry abrasion or wet chemical methods result in production of a secondary mixed waste stream that requires treatment prior to disposal

  3. BNL Building 650 lead decontamination and treatment feasibility study. Final report

    Kalb, P.D.; Cowgill, M.G.; Milian, L.W. [and others

    1995-10-01

    Lead has been used extensively at Brookhaven National Laboratory (BNL) for radiation shielding in numerous reactor, accelerator and other research programs. A large inventory of excess lead (estimated at 410,000 kg) in many shapes and sizes is currently being stored. Due to it`s toxicity, lead and soluble lead compounds are considered hazardous waste by the Environmental Protection Agency. Through use at BNL, some of the lead has become radioactive, either by contamination of the surface or through activation by neutrons or deuterons. This study was conducted at BNL`s Environmental and Waste Technology Center for the BNL Safety and Environmental Protection Division to evaluate feasibility of various treatment options for excess lead currently being stored. The objectives of this effort included investigating potential treatment methods by conducting a review of the literature, developing a means of screening lead waste to determine the radioactive characteristics, examining the feasibility of chemical and physical decontamination technologies, and demonstrating BNL polyethylene macro-encapsulation as a means of treating hazardous or mixed waste lead for disposal. A review and evaluation of the literature indicated that a number of physical and chemical methods are available for decontamination of lead. Many of these techniques have been applied for this purpose with varying degrees of success. Methods that apply mechanical techniques are more appropriate for lead bricks and sheet which contain large smooth surfaces amenable to physical abrasion. Lead wool, turnings, and small irregularly shaped pieces would be treated more effectively by chemical decontamination techniques. Either dry abrasion or wet chemical methods result in production of a secondary mixed waste stream that requires treatment prior to disposal.

  4. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  5. Final report of the decontamination and decommissioning of Building 18 at the Grand Junction Projects Office Facility

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. The soil beneath Building 18 was found to be radiologically contaminated; the building was not contaminated. The soil was remediated in accordance with identified standards. Building 18 and the underlying soil can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  6. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  7. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  8. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report.

    Wiese, E. C.

    1998-11-23

    The Building 594 D&D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 {micro}Ci (175 kBq). The radionuclides of concern were Co{sup 60}, Cs{sup 137}, and Am{sup 241}. The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  9. Gross decontamination experiment report

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  10. Gross decontamination experiment report

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment

  11. Environmental decontamination

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination

  12. Environmental decontamination

    Cristy, G.A.; Jernigan, H.C. (eds.)

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  13. Decontamination operations

    Paper presents the chronological description of the undertaken measures with decontamination in case of the elimination of the Chernobyl accident consequences. Attention is focused on decontamination of the NPP site and of Pripyat river, on decontamination of the habitations, of equipment, clothes, shoes, sanitary treatment of people, as well as, on the decontamination of roads and dust suppression. 4 figs.; 2 tabs

  14. Determination of the Efficacy of Two Building Decontamination Strategies by Surface Sampling with Culture and Quantitative PCR Analysis

    Buttner, Mark P.; Cruz, Patricia; Stetzenbach, Linda D.; Klima-Comba, Amy K.; Stevens, Vanessa L.; Cronin, Tracy D.

    2004-01-01

    The efficacy of currently available decontamination strategies for the treatment of indoor furnishings contaminated with bioterrorism agents is poorly understood. Efficacy testing of decontamination products in a controlled environment is needed to ensure that effective methods are used to decontaminate domestic and workplace settings. An experimental room supplied with materials used in office furnishings (i.e., wood laminate, painted metal, and vinyl tile) was used with controlled dry aeros...

  15. Safety Analysis (SA) of the decontamination facility, Building 419, at the Lawrence Livermore National Laboratory

    This safety analysis was performed for the Manager, Plant Services at LLNL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the maximum quantities of radioactive materials that safety procedures allow to be handled in this building do not pose undue risks on- or off-site even in postulated severe accidents. Risk from the various hazards at this facility vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for improvements that will reduce risks even further

  16. Decontamination and decommissioning of the Argonne National Laboratory Building 350 Plutonium Fabrication Facility. Final report

    In 1973, Argonne National Laboratory began consolidating and upgrading its plutonium-handling operations with the result that the research fuel-fabrication facility located in Building 350 was shut down and declared surplus. Sixteen of the twenty-three gloveboxes which comprised the system were disassembled and relocated for reuse or placed into controlled storage during 1974 but, due to funding constraints, full-scale decommissioning did not start until 1978. Since that time the fourteen remaining contaminated gloveboxes, including all internal and external equipment as well as the associated ventilation systems, have been assayed for radioactive content, dismantled, size reduced to fit acceptable packaging and sent to a US Department of Energy (DOE) transuranic retrievable-storage site or to a DOE low-level nuclear waste burial ground. The project which was completed in 1983, required 5 years to accomplish, 32 man years of effort, produced some 540 m3 (19,000 ft3) of radioactive waste of which 60% was TRU, and cost 2.4 million dollars

  17. Radioactive decontamination

    It discusses radioactive decontamination from the practical point of view with aim of contributions to safety control of radioisotopes. As general knowledges, contamination forms are explained from physical states of solid materials' surfaces and classification of contaminative mechanism are conducted in each contamination form. Furthermore, the decontaminants selcted for each classified contaminative mechanism are indicated from pH-effect and concentration effect. Decontamination on laboratory, using wet method generally as a decontamination technic includes irrigation method by decontaminant solution and scrubbing method. Decontamination of machinery and tools includes scrubbing method and the methods using ultrasonic decontamination equipment and semiautomatic decontamination equipment of which flow-diagram is illustrated. The methods of decontamination of clothing include its disposal or the use of tightly-closed full automatic washing machine. The general irrigation method are indicated as decontamination of skin. Furthermore, neutral cleaning material method for elimination of short-term elapsed contamination and Titanium oxide paste method for elimination of long-term elapsed contamination are explained. (Kanao, N.)

  18. Environmental assessment for decontamination of the Three Mile Island Unit 2 reactor building atmosphere. Draft NRC staff report for public comment

    The krypton-85 (Kr-85) released to the reactor building during the accident at TMI-2 must be removed from the reactor building in order to permit greater access to the building than is currently possible. The gases currently in the building emit sufficient radiation (1.2 rem/hr total body, 150 rad/hr skin dose) that occupation of the reactor building is severely limited even with protective clothing. Greater access is likely to be necessary to maintain instrumentation and equipment required to keep the reactor in a safe shutdown condition. In addition greater access would facilitate the gathering of data needed for planning the building decontamination program. An additional consideration is that prolonged enclosure of the Kr-85 within the building greatly increases the risk of its successive uncontrolled releases to the outside environment. The staff's evaluation of alternative methods for removing the krypton shows that each could be implemented with little risk to the health and safety of the public. The reactor building purge system, charcoal adsorption system, gas compression, selective absorption process system, and cryogenic processing system could each be operated to keep levels of airborne radioactive materials to unrestricted areas in compliance with the requirements of 10 CFR Part 20, and the design objectives of Appendix 1 to 10 CFR Part 50 of the Commission's regulations, and with the applicable requirements of 40 CFR Part 190.10

  19. Surface decontamination

    The general methods of surface decontamination used in laboratory and others nuclear installations areas, as well as the procedures for handling radioactive materials and surfaces of work are presented. Some methods for decontamination of body external parts are mentioned. The medical supervision and assistance are required for internal or external contamination involving or not lesion in persons. From this medical radiation protection decontamination procedures are determined. (M.C.K.)

  20. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  1. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets

  2. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  3. Electrokinetic decontamination of concrete

    Lomasney, H. [ISOTRON Corp., New Orleans, LA (United States)

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  4. Radioactivity decontamination device and method

    The present invention provides a method of decontaminating floors and walls of large-scaled equipments and buildings (large-sized members to be decontaminated) in a radioactive material handling facility. Namely, supersonic vibrations are applied to a low pressure running water to form water vibrating at fine frequency of supersonic waves. It is jetted to the large-scaled members to be decontaminated to remove radiation-contaminated materials from the surface of the large-scaled members to be decontaminated by friction of the vibrations. Specifically, when the decontaminating water is jetted out from a nozzle at a hydraulic pressure of from 0.02 to 0.1kg/cm2G, supersonic waves at a variable oscillation frequency of from 100 to 800kHz and an output of from 5 to 15W/cm2 per a unit area of vibrator are applied to the water stream. Fine decontamination for large-scaled members can be conducted by the decontamination method of the present invention. Since decontamination of radioactivity does not occur, and unevenness and remaining of contamination are eliminated, the decontamination operation can be made efficient. (I.S.)

  5. Decontamination method

    Tsujimura, Hiroshi; Ono, Shigeki; Tada, Nobuo; Tamai, Yasumasa; Okada, Masaya; Kurihara, Masayuki [Hitachi Ltd., Tokyo (Japan); Onuki, Toyomitsu; Toyota, Seiichi

    1998-10-27

    Before contamination of materials to be decontaminated, a surface of a region where a strippable paint is to be coated is smoothed by an epoxy resin previously. Then, a waterproof sheet is extended to the material to be decontaminated, and the strippable paint is applied to the periphery or the entire surface of the sheet. In order to facilitate peeling, the strippable paint is not applied to a portion of the outer circumference of the sheet. Even if the contaminating circumstance is an air atmosphere or a liquid such as reactor water, since the sheet itself has waterproofness and the strippable paint excellent in gas and water tightness is applied to the periphery, contamination is eliminated. When decontaminating the material to be decontaminated having contaminated surfaces, if the sheet for the start of peeling is picked up and the sheet is peeled, the strippable paint at the periphery thereof can be peeled off together with the sheet. (N.H.)

  6. Decontamination and decommissioning of 61 plutonium gloveboxes in D-Wing, Building 212 Argonne National Laboratory-East: Final project report

    Argonne National Laboratory-East (ANL-E) is a government-owned, contractor operated, multipurpose research facility located 25 miles southwest of downtown Chicago on 689 hectares (1,700 acres) in DuPage County, Illinois, as shown in Figure 1.1. Building 212 is located in the central area of ANL-E, as shown in Figure 1.2. The purpose of this project was to eliminate the risk of radioactive material release from the contaminated glovebox systems and to make the laboratories available for unrestricted use. The following work objectives were established: (1) Identify and remove radioactive materials for return to ANL-E Special Materials control. (2) Remove and package the radioactively contaminated materials and equipment from the gloveboxes. (3) Decontaminate the gloveboxes to nontransuranic (non-TRU) levels. (4) Size-reduce and package the gloveboxes and support systems. (5) Document and dispose of the radioactive and mixed waste. (6) Decontaminate, survey, and release the nine laboratories and corridor areas for unrestricted use

  7. Development of decontamination agent for radioactively contaminated urban surface and its decontamination properties

    Ahn, B. G.; Won, H. J.; Jyung, K. J.; Lee, B. G.; Oh, W. Z. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The decontamination of the urban building surfaces, based on the covering of clay suspensions, has been studied. An ammonium ion was effective as an ion exchanger of contaminated radionuclides. But, ammonium ion appears to be a powerful flocculant for clay suspension. We overcomes the phenomena by adding the hectorite as an additive, and developed stable clay decontamination agent which contained 15 times ammonium ion of cation exchange capacity of the natural clay. From the fluid behavior experiments of the developed clay decontamination agent were non-Newtonian and shear thinning fluid. The agents would be effectively sprayed on the contaminated building surfaces with very low spraying energy. Optimum synthetic condition were determined by the experiments of surface contact angle, fluid characteristics and decontamination behaviors. The decontamination performance of the clay decontamination agents on typical urban building construction materials, the flow behaviors of the suspensions, decontamination characteristics on specimen are reported in this paper. (author) 11 refs., 5 figs.

  8. Development of decontamination agent for radioactively contaminated urban surface and its decontamination properties

    The decontamination of the urban building surfaces, based on the covering of clay suspensions, has been studied. An ammonium ion was effective as an ion exchanger of contaminated radionuclides. But, ammonium ion appears to be a powerful flocculant for clay suspension. We overcomes the phenomena by adding the hectorite as an additive, and developed stable clay decontamination agent which contained 15 times ammonium ion of cation exchange capacity of the natural clay. From the fluid behavior experiments of the developed clay decontamination agent were non-Newtonian and shear thinning fluid. The agents would be effectively sprayed on the contaminated building surfaces with very low spraying energy. Optimum synthetic condition were determined by the experiments of surface contact angle, fluid characteristics and decontamination behaviors. The decontamination performance of the clay decontamination agents on typical urban building construction materials, the flow behaviors of the suspensions, decontamination characteristics on specimen are reported in this paper. (author) 11 refs., 5 figs

  9. Decontamination of nuclear facilities

    Thirty-seven papers were presented at this conference in five sessions. Topics covered include regulation, control and consequences of decontamination; decontamination of components and facilities; chemical and non-chemical methods of decontamination; and TMI decontamination experience

  10. Decontaminating method

    Purpose: To enable to decontaminate an object having a complicate surface and also remove hard cruds by a simple device. Method: An object to be decontaminated is placed in a water vessel and steams jetted out from a steam nozzle are condensated at the surface of the object to be decontaminated and decontamination is conducted by impact shocks upon elimination of bubbles. The inside of the water vessel is filled with liquid and steams jetted out from the steam nozzle are cooled by the liquid and condensated. The steams are supplied with a steam supply device by way of steam supply pipeways to the steam nozzle. Since the temperature of the liquid in the water vessel is elevated upon condensation of the jetted steams, the liquids are cooled by the cooling device. Further, since the steams condensated at the surface of the decontaminated object forms water of condensation to increase the water level in the water vessel, the water corresponding to the elevated level is discharged from an overflow pipe. (Kawakami, Y.)

  11. Decontaminating method

    Sakurai, Mikio; Hayashi, Tsutomu; Izumi, Masayuki; Sasaki, Hiroshi; Sato, Toru; Owada, Kazuo.

    1987-11-21

    Purpose: To enable to decontaminate an object having a complicate surface and also remove hard cruds by a simple device. Method: An object to be decontaminated is placed in a water vessel and steams jetted out from a steam nozzle are condensated at the surface of the object to be decontaminated and decontamination is conducted by impact shocks upon elimination of bubbles. The inside of the water vessel is filled with liquid and steams jetted out from the steam nozzle are cooled by the liquid and condensated. The steams are supplied with a steam supply device by way of steam supply pipeways to the steam nozzle. Since the temperature of the liquid in the water vessel is elevated upon condensation of the jetted steams, the liquids are cooled by the cooling device. Further, since the steams condensated at the surface of the decontaminated object forms water of condensation to increase the water level in the water vessel, the water corresponding to the elevated level is discharged from an overflow pipe. (Kawakami, Y.).

  12. Decontamination and protection

    Maloney, J.C.; Dhein, E.H.; Morgenthau, M.

    1954-01-01

    Test panels, four ft square, of 14 building materials were mounted on the weather surfaces of two remotely controlled liberty ships and on a stationary barge. One of the ships was protected by a washdown system. All surfaces were contaminated significantly with tenacious fallout. Vertical surfaces facing upwind became equally or more highly contaminated than horizontal or pitched surfaces, probably due to wind currents impacting the tenacious contaminant onto surfaces normal to it. A sequence of hosing and vigorous scrubbing operations resulted in contamination reductions of 40 to 70%, but with reductions on most surfaces being less than 50%. The most effective decontamination method was scrubbing. Under the conditions of this test, painting and joint sealing had little effect while the washdown countermeasure reduced the initial contamination over 90%. It is concluded that contamination from fallout encountered in these tests presents a serious decontamination problem on buildings and paved areas and further development of effective countermeasures is necessary.

  13. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  14. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  15. Decontamination apparatus

    The apparatus for decontaminating radioactive components consists of an attachment mechanism for completely suspending the apparatus from the tube sheet of a nuclear steam generator, a first drive mechanism for moving the apparatus in a first direction, a second drive mechanism for pivoting the apparatus in a second direction, and a third drive mechanism for moving the apparatus in a third independent direction. The apparatus also has a dual nozzle arrangement attached to the third drive mechanism for directing a water-grit mixture toward the component to be decontaminated. The apparatus provides a mechanism for remotely decontaminating the channel head of a nuclear steam generator so as to allow working personnel to enter therein. It is likely that less than 0.001 inches of metal surface will be removed from the steam generator using alumina or magnetite grit

  16. Decontamination glass

    Glass for the decontamination of the furnace for vitrification of radioactive wastes contains 50 to 60 wt.% of waste glass, 15 to 30 wt.% of calcium oxide, 1 to 6 wt.% sodium oxide, 1 to 5 wt.% phosphorus pentoxide and 5 to 20 wt.% boron oxide. The melting furnace is flushed with the glass such that it melts in the furnace for at least 60 mins and is then poured out of the furnace. After the furnace has cooled down the settled glass spontaneously cracks and peels off the walls leaving a clean surface. The glass may be used not only for decontamination of the furnace but also for decontamination of melting crucibles and other devices contaminated with radioactive glass. (J.B.)

  17. Decontamination in the Republic of Belarus

    To continue the decontamination work in the Republic of Belarus, which was carried out by the military troops, the state specialized enterprises were formed in Gomel and Mogilev in 1991. The organization and regulations were developed inside the country: instructions, rules, radiological and hygienic criteria and norms. The enterprises concentrated on decontamination of the most socially significant facilities: kindergartens, schools, medical institutions and industrial enterprises. During 9 years Gomel State Specialized Enterprise 'Polessje' decontaminated 130 kindergartens, schools and hospitals. The total decontaminated area was 450 000 m2. The ventilation systems and equipment at 27 industrial enterprises in Gomel were decontaminated. The practical decontamination methods for areas, buildings, roofs, industrial equipment, ventilation systems were developed and tested. The special rules for handling wastes contaminated with Cs were elaborated. The paper analyzes and sums up the acquired experience which is important for implementation of rehabilitation programs and improvement of decontamination methods. (author)

  18. Optimization of decontamination strategy for CANDU-PHW reactors

    Theoretical models of the decontamination process are developed and combined with an existing model of 60Co production in CANDU PHW reactors to predict the effects of decontamination on long term 60Co build-up in reactor primary heat transport systems. The effects of decontamination interval, decontamination factor, and post-decontamination corrosion release are calculated. An optimum decontamination strategy for a Pickering G.S. type reactor is developed on the basis of a cost-benefit analysis. This study indicates that the optimum decontamination interval is approximately six years. This optimum interval is relatively insensitive to variations in the costs of personnel exposure, the cost of a decontamination, the decontamination factor, and the post-decontamination corrosion model used. (author)

  19. Contamination with radioactive materials and decontamination

    The content of the monograph mainly designed for personnel in nuclear power plants, radiochemical laboratories and laboratories of nuclear medicine departments is basically divided into two parts. In the general part, the contamination of persons and objects with radioactive substances is discussed and the physico-chemical principles of decontamination are presented. The main part of the publication is devoted to concrete practical decontamination procedures. Special attention is devoted to the decontamination of components of nuclear power plants with WWER reactors and to the decontamination of the equipment of radiochemical and radiological laboratories (in-service, after accidents and during decommissioning). Also described is the decontamination of garments, underwear, protective aids, rooms, buildings, terrain and water. Also included is a chapter on the disposal of radioactive wastes generated during decontamination. (A.K.)

  20. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H3 or C14. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994

  1. Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D ampersand D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities

  2. Development of economical decontamination processes

    The activity inventary of the Nuclear Power Plant Gundremmingen (BWR, 250 MWel) had been investigated. In the turbine hall, reactor annulus and auxiliary building two years after shut down a remaining activity of 3.5 E10 Bq was found. The main nuclide was Cobalt 60 which is accounting for more than 70 % of the total activity. The different decontamination methods were proved by laboratory tests on originally contaminated pipe samples. With respect to high efficiency, minimizing secondary waste and easy handling, the electrochemical decontamination proved to be the most economical decontamination method. This decontamination procedure had been tested on primary steam valves and the feedwater pumps. 10-20 manhours were needed for the decontamination of each ton of material. The specific secondary waste amount was 95 kg per ton of steel. Those figures were evaluated for the dismantling of a 250 MWel Boiling Water Reactor (except of the containment). After the decontamination of 3400 tons of metal about 260 tons of secondary waste will remain. The dismantling will need 5.9 years. The same evaluation has been performed too for a 1300 MWel Boiling Water Reactor

  3. Large-bore pipe decontamination

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  4. Large-bore pipe decontamination

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  5. The Walls Come Tumbling Down: Decontamination and Demolition of 29 Manhattan Project and Cold War-Era Buildings and Structures at Los Alamos National Laboratory-12301

    When the nation's top scientists and military leaders converged on Los Alamos, New Mexico in the 1943, to work on the Manhattan Project, the facilities they used to conduct their top-secret work were quickly constructed and located in the middle of what eventually became the Los Alamos town site. After one of these early facilities caught on fire, it seemed wise to build labs and production facilities farther away from the homes of the town's residents. They chose to build facilities on what was then known as Delta Prime (DP) Mesa and called it Technical Area 21, or TA-21. With wartime urgency, a number of buildings were built at TA-21, some in as little as a few months. Before long, DP Mesa was populated with several nondescript metal and cinder-block buildings, including what became, immediately following the war, the world's first plutonium production facility. TA-21 also housed labs that used hazardous chemicals and analyzed americium, tritium and plutonium. TA-21 was a bustling center of research and production for the next several decades. Additional buildings were built there in the 1960's, but by the 1990's many of them had reached the end of their service lives. Labs and offices were moved to newer, more modern buildings. When Los Alamos National Laboratory received $212 million in funding from the American Recovery and Reinvestment Act in July 2009 for environmental cleanup projects, about $73 million of the funds were earmarked to decontaminate and demolish 21 of the old buildings at TA-21. Although some D and D of TA-21 buildings was performed in the 1990's, many of the facilities at DP Site remained relatively untouched for nearly three decades following their final operational use. In 2006, there were over three dozen buildings or structures on the mesa to be removed so that soil cleanup could be completed (and the land made available for transfer and reuse). The total footprint of buildings across the mesa was approximately 18,580 m2 (200,000 ft2

  6. Vibratory finishing as a decontamination process

    The major objective of this research is to develop vibratory finishing into a large-scale decontamination technique that can economicaly remove transuranic and other surface contamination from large volumes of waste produced by the operation and decommissioning of retired nuclear facilities. The successful development and widespread application of this decontamination technique would substantially reduce the volume of waste requiring expensive geologic disposal. Other benefits include exposure reduction for decontamination personnel and reduced risk of environmental contamination. Laboratory-scale studies showed that vibratory finishing can rapidly reduce the contamination level of transuranic-contaminated stainless steel and Plexiglas to well below the 10-nCi/g limit. The capability of vibratory finishing as a decontamination process was demonstrated on a large scale. The first decontamination demonstration was conducted at the Hanford N-Reactor, where a vibratory finisher was installed to reduce personnel exposure during the summer outage. Items decontaminated included fuel spacers, process-tube end caps, process-tube inserts, pump parts, ball-channel inspection tools and miscellaneous hand tools. A second demonstration is currently being conducted in the decontamination facility at the Hanford 231-Z Building. During this demonstration, transuranic-contaminated material from decommissioned plutonium facilities is being decontaminated to <10 nCi/g to minimize the volume of material that will require geologic disposal. Items that are being decontaminated include entire glove boxes, process-hood structural material and panels, process tanks, process-tank shields, pumps, valves and hand tools used during the decommissioning work

  7. Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East

    The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 microSv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 microSv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey

  8. LASL experience in decontamination of the environment

    This discussion represents one part of a major effort in soil decontamination at the Los Alamos site. A contaminated industrial waste line in the Los Alamos townsite was removed, and a plutonium incineration facility, and a filter building contaminated with actinium-227 were dismantled. The former plutonium handling facility has been decontaminated, and canyons and an old firing site contaminated with strontium-90 have been surveyed

  9. Decontaminating pesticide protective clothing.

    Laughlin, J

    1993-01-01

    The review of recent work on the mechanisms of soil removal from textiles assists in understanding decontamination of pesticide protective clothing. The current work provides explanatory conclusions about residue retention as a basis of making recommendations for the most effective decontamination procedures. A caution about generalizations: Some pesticides produce very idiosyncratic responses to decontamination. An example is the paraquat/salt response. Other pesticides exhibit noticeable and unique responses to a highly alkaline medium (carbaryl), or to bleach (chlorpyrifos), or are quickly volatilized (methyl parathion). Responses such as these do not apply to other pesticides undergoing decontamination. Given this caution, there are soil, substrate, and solvent responses that do maximize residue removal. Residue removal is less complete as the concentration of pesticide increases. The concentration of pesticide in fabric builds with successive exposures, and the more concentrated the pesticide, the more difficult the removal. Use a prewash product and/or presoak. The surfactant and/or solvent in a prewash product is a booster in residue removal. Residues transfer from contaminated clothing to other clothing during the washing cycle. Use a full washer of water for a limited number of garments to increase residue removal. The hotter the washing temperature, the better. Generally, this means a water temperature of at least 49 degrees C, and preferably 60 degrees C. Select the detergent shown to be more effective for the formulation: heavy-duty liquid detergents for emulsifiable concentrate formulations and powdered phosphate detergents for wettable powder formulations. If the fabric has a soil-repellent finish, use 1.25 times the amount recommended on the detergent label. For water hardness above 300 ppm, an additional amount of powdered phosphate detergent is needed to obtain the same level of residue removal as obtained with the heavy-duty liquid detergent when

  10. Researches on skin decontamination

    Living 4∼6 week-aged San Yuan white pigs (Suzhou, China) were used in skin decontamination experiments. Following a standard procedure, SM series of decontamination agents were used for decontamination of liquid nuclides. The results of immediate decontamination were as follows: K(decontamination efficiency) = 97.7% (decontamination factor DF = 43.5) for 131I; K>99% (DF>100) for 90Sr/90Y, MFP and U + TRU; K = 99.9% (DF 1000) for 137Cs. In 3 h-delayed decontamination, DF = 27∼67 (K 96.3%∼98.5) for the nuclides mentioned above. When the initiatory MFP contamination increased from 20 to 300 s-1·cm-2, the value of DF by immediate decontamination increased from 20 to 173 with the remaining activity not higher than 10 Bq·cm-2, and no additional decontamination was needed. For radioactive ash contamination of skin, DF 57∼1000 (K = 98.2%∼99.9%) in 4 h-delayed decontamination. SM series of decontamination agents are neutral liquid or cream without any irritative effect on skin. They are effective and easy to use in skin decontamination. (5 refs., 4 figs., 3 tabs.)

  11. Ontario Hydro decontamination experience

    Ontario Hydro currently operates 18 nuclear electric generating units of the CANDU design with a net capacity of 12,402 MW(e). An additional 1,762 MW(e) is under construction. The operation of these facilities has underlined the need to have decontamination capability both to reduce radiation fields, as well as to control and reduce contamination during component maintenance. This paper presents Ontario Hydro decontamination experience in two key areas - full heat transport decontamination to reduce system radiation fields, and component decontamination to reduce loose contamination particularly as practised in maintenance and decontamination centres. (author)

  12. Study on skin decontamination

    Chinese San-Yuan white pigs 4∼6 weeks old were used in skin decontamination experiments. The decontamination agents used were the SM series of decontamination agents. In immediate decontamination test, K 97.7% (DF = 43.5) was obtained for 131I, K>99%(DF>100) for 90Sr/90Y, MFP and U + TRU, K = 99.9%(DF = 1000) for 137Cs. DF = 27∼67 (K 96.3%∼98.5%) was obtained for the nuclides mentioned above in 3 h delayed decontamination test. When the initial contamination level of MFP increased from 200 to 3000 cps/10 cm2, the remained activity was still lower than 10 Bq/cm2 after decontamination, and no additional decontamination is needed. For radioactive ashes contamination, DF = 57∼1000 (K 98.2%∼99.9%) was reached in 4 h-delayed decontamination. The SM series of decontamination agents are neutral liquid or cream having no stimulating effect to skin. It is effective and easy to use in skin decontamination

  13. Pickering NGS decontaminations

    In early 1984, decontaminations of the Pickering NGS Units 1 and 2 heat transport systems were carried out. These decontaminations reduced radiation fields in front of the reactor face by up to a factor of 10, and resulted in radiation fields of 50 to 140 mR/h. These decontaminations were carried out using an improved version of the CAN-DECON process. This paper describes the development of the process and its successful applications at Pickering NGS

  14. Foam Decontamination of Metals

    The foam decontamination is quite promising method for purifying radioactive contaminated surfaces. Foam decontamination solutions allow creating the necessary volume of deactivating medium and forming a relatively small amount of secondary liquid waste so that this method may be applicable to bulky objects. Also it should be noted that foam compositions can be effective for objects with a complex geometry. Despite the numerous advantages the well known foam decontamination methods are unpopular today due to their low efficiency and difficulties of recycling waste decontamination solutions. We have made some attempts to improve the attractiveness of foam decontamination process. Currently two compositions (acidic and alkaline) for foam decontamination have been tested. The main advantage of both tested compositions is that they are based on easily degradable surfactants. At the same time the acidic composition has a very low salt content. The preliminary results of tests carried out in real production conditions showed that such approach for metal decontamination was very promising. Metal decontamination factors over 2500 were achieved for consequent treating of metal surfaces with acidic and alkali foam solutions in industrial conditions. The total flow rate of foam generating solutions was 1 L/m2 and processing time was 1 hour. Presently we are trying to modify the foam physical properties to improve the process of decontamination of vertical, inclined and inverted surfaces. Also methods and scheme of spent foam generating solutions treatment are under development. (authors)

  15. Decontamination of body surface

    There are two important points for an effective application of decontamination procedures. One is the organizing method of responsible decontamination teams. The team should be directed by medical doctor with the knowledge of decontamination of radionuclides. The other point is the place of application of the decontamination. Hospitals and clinics, especially with a department of nuclear medicine, or specialized units such as an emergency medical center are preferable. Before decontamination procedures are initiated, adequate monitoring of the body surface should be undertaken by a competent person in order to demarcate the areas which are contaminated. There are fundamental principles which are applicable to all decontamination procedures. (1) Precautions must always be taken to prevent further spread of contamination during decontamination operations. (2) Mild decontamination methods should be tried before resorting to treatment which can damage the body surface. The specific feature of each contamination varies widely in radionuclides involved, place and area of the contamination, condition of the contaminated skin such as whether the skin is wounded or not, and others. Soap and water are usually good detergents in most cases. If they fail, orange oil cream (SUPERDECONCREAM, available from Tokyo Engineering Co.) specially prepared for decontamination of radionuclides of most fission and corrosion products may be used. Contaminated hair should be washed several times with an efficient shampoo. (author)

  16. Influence of Decontamination

    This paper describes the influence of several decontamination techniques on the decommissioning of nuclear facilities. There are different kinds of decontamination methods like mechanical and chemical processes. The techniques specified, and their potential to change measured characteristics like the isotope vector of the contamination is demonstrated. It is common for all these processes, that the contamination is removed from the surface. Slightly adhered nuclides can be removed more effectively than strongly sticking nuclides. Usually a mixture of these nuclides forms the contamination. Problematically any kind of decontamination will influence the nuclide distribution and the isotope vector. On the one hand it is helpful to know the nuclide distribution and the isotope vector for the radiological characterization of the nuclear facility and on the other hand this information will be changed in the decontamination process. This is important especially for free release procedures, radiation protection and waste management. Some questions on the need of decontamination have been discussed. (authors)

  17. Long lasting decontamination foam

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  18. PWR decontamination feasibility study

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations

  19. Decontamination of radionuclides on construction materials

    A wide variety of materials can become contaminated by radionuclides, either from a terrorist attack or an industrial or nuclear accident. The final disposition of these materials depends, in large part, on the effectiveness of decontamination measures. This study reports on investigations into the decontamination of a selection of building materials. The aim has been to find an effective, easy-to-use and inexpensive decontamination system for radionuclides of cesium and cobalt, considering both the chemical and physical nature of these potential contaminants. The basic method investigated was surface washing, due to its ease and simplicity. In the present study, a basic decontamination formulation was modified by adding isotope-specific sequestering agents, to enhance the removal of cesium(I) and cobalt(II) from such construction materials as concrete, marble, aluminum and painted steel. Spiking solutions contained 134Cs or 60Co, which were prepared by neutron activation in the SLOWPOKE-2 nuclear reactor facility at the Royal Military College of Canada. Gamma spectroscopy was used to determine the decontamination efficiency. The results showed that the addition of sequestering agents generally improved the radiological decontamination. Although the washing of both cesium and cobalt from non-porous materials, such as aluminum and painted steel, achieved a 90-95 % removal, the decontamination of concrete and marble was more challenging, due to the porous nature of the materials. Nevertheless, the removal efficiency from 6-year-old concrete increased from 10 % to approximately 50 % for cobalt(II), and from 18 to 55 % for cesium(I), with the use of isotope binding agents, as opposed to a simple water wash. (author)

  20. Anthrax Sampling and Decontamination: Technology Trade-Offs

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  1. W-12 valve pit decontamination demonstration

    Waste tank W-12 is a tank in the ORNL Low-Level Liquid Waste (LLLW) system that collected waste from Building 3525. Because of a leaking flange in the discharge line from W-12 to the evaporator service tank (W-22) and continual inleakage into the tank from an unknown source, W-12 was removed from service to comply with the Federal Facilities Agreement requirement. The initial response was to decontaminate the valve pit between tank W-12 and the evaporator service tank (W-22) to determine if personnel could enter the pit to attempt repair of the leaking flange. Preventing the spread of radioactive contamination from the pit to the environment and to other waste systems was of concern during the decontamination. The drain in the pit goes to the process waste system; therefore, if high-level liquid waste were generated during decontamination activities, it would have to be removed from the pit by means other than the available liquid waste connection. Remote decontamination of W-12 was conducted using the General Mills manipulator bridge and telescoping trolley and REMOTEC RM-10 manipulator. The initial objective of repairing the leaking flange was not conducted because of the repair uncertainty and the unknown tank inleakage. Rather, new piping was installed to empty the W-12 tank that would bypass the valve pit and eliminate the need to repair the flange. The radiological surveys indicated that a substantial decontamination factor was achieved

  2. Food decontamination using nanomaterials

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  3. Concrete decontamination scoping tests

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete

  4. Decommissioning and Decontamination

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised

  5. Tritium contamination and decontamination

    Establishment of tritium safe handling technology is required with the development of fusion reactor research. Tritium is contained by multiple-barriers containment due to the difficulty in perfect containment of hydrogen isotopes. Tritium contamination of materials and subsequent desorption are one of the critical issues in tritium containment. And the development of tritium decontamination technology is also a critical issue in tritium safe handling. The status of tritium contamination study and tritium decontamination technology are reviewed. (author)

  6. Facility decontamination technology workshop

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  7. KEWB facilities decontamination and disposition. Final report

    The decontamination and disposition of the KEWB facilities, Buildings 073, 643, 123, and 793, are complete. All of the facility equipment, including reactor enclosure, reactor vessel, fuel handling systems, controls, radioactive waste systems, exhaust systems, electrical services, and protective systems were removed from the site. Buildings 643, 123, and 793 were completely removed, including foundations. The floor and portions of the walls of Building 073 were covered over by final grading. Results of the radiological monitoring and the final survey are presented. 9 tables, 19 figures

  8. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the

  9. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers

  10. Decontamination and decommissioning

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. These four phases of work were conducted in accordance with applicable regulations for D and D of research facilities and applicable regulations for packaging, transportation, and burial and storage of radioactive materials. The final result is that the Advanced Fuel Laboratories now meet requirements of ANSI 13.12 and can be released for unrestricted use. The four principal documents utilized in the D and D of the Cheswick Site were: (1) Plan for Fully Decontaminating and Decommissioning, Revision 3; (2) Environmental Assessment for Decontaminating and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pa.; (3) WARD-386, Quality Assurance Program Description for Decontaminating and Decommissioning Activities; and (4) Health Physics, Fire Control, and Site Emergency Manual. These documents are provided as Attachments 1, 2, 3 and 4

  11. Building

    Seavy, Ryan

    2014-01-01

    Building for concrete is temporary. The building of wood and steel stands against the concrete to give form and then gives way, leaving a trace of its existence behind. Concrete is not a building material. One does not build with concrete. One builds for concrete.

  12. Decontamination method for radioactive waste

    Metallic radioactive wastes are immersed in a liquid nitrogen vessel above a freezing crusher and they are frozen to about -196degC. Then, impact shocks are applied to crush the radioactive wastes frozen by a rotary shearing shock crusher disposed below the freezing crusher. The thus obtained crushed materials are sent to a decontamination device and decontaminated. In this case, since the objective materials are crushed, any of a blast decontamination method, an electrolytic polishing decontamination method, a redox decontamination method and a chemical agent immersion decontamination method can be applied. Thereafter, the dose of remaining radioactivity of the decontaminated crushed materials is measured. With such procedures, the decontamination and the subsequent measurement for the radiation contamination dose can easily and certainly be conducted for metallic radioactive wastes such as pipes of a small diameter and complicated structures. (I.N.)

  13. Radiation decontamination of spices

    In this report radiation decontamination was initiated to investigate the red pepper, which is widely consumed in all parts of Pakistan. The samples were collected from local market and prepared for gamma radiation at dose level of 0, 2.5, 5.0, 7.5, and 10.0 kGy. The measurement of total fungal count was carried out immediately after irradiation and the at two months storage interval. It was reported that radiation dose 10.0 kGy is suitable for complete decontamination of red pepper. (A.B.)

  14. Decontamination and dismantlement of the building 200/205 pneumatic transfer tube at Argonne National Laboratory-East project final report.

    Wiese, E. C.

    1998-12-11

    The Building 200/205 Pneumatic Transfer Tube D&D Project was directed toward the following goals: Remove any radioactive and hazardous materials associated with the transfer tube; Survey the transfer tube to identify any external contamination; Remove the transfer tube and package for disposal; Survey the soil and sand surrounding the transfer tube for any contamination; and Backfill the trench in which the tube sat and restore the area to its original condition. These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the buried transfer tube and to allow, upon completion of the project, the removal of this project from the ANL-E action item list. The physical condition of the transfer tube and possible nuclear fuel samples lost in the tube were the primary areas of concern, while the exact location of the transfer tube was of secondary concern. ANL-E health physics technicians collected characterization data from the ends of the Building 200/205 pneumatic transfer tube in January 1998. The characterization surveys identified contamination to a level of 67,000 dpm (1,117 Bq) ({beta}/{gamma}) and 20,000 dpm (333 Bq) {alpha} smearable at the opening.

  15. A chemical decontamination process for decontaminating and decommissioning nuclear reactors

    Five chemical decontamination processes have been developed for nuclear reactor applications. One of these processes is the cerium decontamination process (CDP). This method uses a cerium acid reagent to rapidly decontaminate surfaces, obtaining decontamination factors in excess of 300 in 6 h on pressurized water reactor specimens. Sound volume reduction and waste management techniques have been demonstrated, and solidified waste volume fractions as low as 9% experimentally obtained. The CDP method represents the hybrid decontamination technique often sought for component replacement and decommissioning operations: high effectiveness, rapid kinetics, simple waste treatment, and a low solidified waste volume

  16. Decontamination of operational nuclear power plants

    In order to reduce the radiation fields around nuclear power plants, and, consequently, to limit the radiation exposure of and dose commitments to the operating and maintenance personnel, the contamination build-up should be kept to a minimum. The most fruitful approach, from the point of view of economics and efficiency, is to tackle the problems of contamination and decontamination in the design and construction phases of the reactor. To do this, knowledge gained from the operation of existing power reactors should be used to make improvements in new designs. New structural materials with low corrosion rates or whose constituents are not activated by neutrons should also be used. For older reactors, in most cases it is already too late to incorporate design changes without extensive and expensive modifications. For these plants, decontamination remains the most efficient way to reduce radiation fields. The aim of this report is to deal with the different decontamination methods that may be applied to nuclear power plant circuits and equipment during operation. The factors that have to be considered in determining the type and the extent of the methods used are the engineering and the planning of the decontamination operation and the treatment of the resulting waste generated during the process are also discussed

  17. Floating decontamination apparatus

    Apparatus is disclosed for decontaminating a nuclear reactor pressure vessel. It comprises a buoyant annular frame which descends into the vessel as the water level within it is lowered. Spray nozzles move around the frame on trolleys in a reciprocating fashion and spray water under high pressure on the inner surface of the vessel wall, resulting in automatic washdown of the reactor vessel

  18. Study on the effectiveness of some decontamination agents against skin contamination of {sup 137}Cs and {sup 60}Co

    Chon, Je Keun; Ji, Pyung Kook; Kwak, Sang Soo; Kim, Byung Tae; Park, Chong Mook [Nuclear Environment Technology Institute, Taejon (Korea, Republic of)

    1998-03-01

    In order to evaluate the effectiveness of some decontamination agents against skin contamination of {sup 60}Co and {sup 137}Cs, the experiments were carried out in this study. In the experiments, pig skin was used instead of human skin, {sup 60}CoCl{sub 2} and {sup 137}CsCl were used the liquid sources of skin contamination. To examine the effectiveness of decontamination agents, skin decontamination was tried using soup, EDTA, DAERICON which was developed for decontamination of radionuclides on the surface of building structure, and new decontamination agents such as IOCON, TRICON, and CHARCON, which were developed in this study. The absorption of radionuclides through the skin was evaluated by the gamma-ray detection on the surface of sample skin after radionuclides were penetrated into the skin during 16 hour soiling time. The results of this absorption experiment indicated that 11.5% and 3.2% of initial amounts of {sup 137}Cs and {sup 60}Co, respectively, were penetrated into the skin. In the experiment to remove the residual radioactivity fixed on the skin, KAERICON showed the decontamination rates up to 52.1%(decontamination factor of 2.1) and IOCON showed the equivalent decontamination rate (decontamination factor 1.9) for {sup 137}Cs. However, IOCON and CHARCON showed the poor decontamination rates of less than 20%(decontamination factor of 1.2) for {sup 60}Co, and KAERICON showed the poor decontamination rate (decontamination factor 1.1) for {sup 60}Co.

  19. Study on the effectiveness of some decontamination agents against skin contamination of 137Cs and 60Co

    In order to evaluate the effectiveness of some decontamination agents against skin contamination of 60Co and 137Cs, the experiments were carried out in this study. In the experiments, pig skin was used instead of human skin, 60CoCl2 and 137CsCl were used the liquid sources of skin contamination. To examine the effectiveness of decontamination agents, skin decontamination was tried using soup, EDTA, DAERICON which was developed for decontamination of radionuclides on the surface of building structure, and new decontamination agents such as IOCON, TRICON, and CHARCON, which were developed in this study. The absorption of radionuclides through the skin was evaluated by the gamma-ray detection on the surface of sample skin after radionuclides were penetrated into the skin during 16 hour soiling time. The results of this absorption experiment indicated that 11.5% and 3.2% of initial amounts of 137Cs and 60Co, respectively, were penetrated into the skin. In the experiment to remove the residual radioactivity fixed on the skin, KAERICON showed the decontamination rates up to 52.1%(decontamination factor of 2.1) and IOCON showed the equivalent decontamination rate (decontamination factor 1.9) for 137Cs. However, IOCON and CHARCON showed the poor decontamination rates of less than 20%(decontamination factor of 1.2) for 60Co, and KAERICON showed the poor decontamination rate (decontamination factor 1.1) for 60Co

  20. Soil decontamination with Extraksol

    The Extraksol process is a mobile decontamination technology which treats unconsolidated materials by solvent extraction. Treatment with Extraksol involves material washing, drying and solvent regeneration. Contaminant removal is achieved through desorption/dissolution mechanisms. The treated material is dry and acceptable to be reinstalled in its original location. The process provides a fast, efficient and versatile alternative for decontamination of soil and sludge. The organic contaminants extracted from the matrix are transferred to the extraction fluids. These are thereafter concentrated in the residues of distillation after solvent regeneration. Removal and concentration of the contaminants ensures an important waste volume reduction. This paper presents the process is operational principles and the steps involved in Extraksol's development with results of the pilot tests and full-scale demonstrations

  1. Ultrasonic decontamination robot

    A method is described of removing radioactive contamination from a primary fluid header of a steam generator between periods of active operation thereof, the header having a sealable access manway therein to permit access to interior surfaces of the header. The method consists of: inserting through the header manway into the interior thereof a robotic arm having a base portion sized to fit sealably in the manway, an ultrasonic decontamination head disposed to be movable at an end of the robotic arm, a solvent supply tube connected to the decontamination head, and a fluid removal conduit disposed at a low point in the interior of the header; sealing the base portion in the header manway

  2. Decontamination for free release

    Many countries are seeking to treat radioactive waste in ways which meet the local regulatory requirements, but yet are cost effective when all contributing factors are assessed. In some countries there are increasing amounts of waste, arising from nuclear plant decommissioning, which are categorized as low level waste: however with suitable treatment a large part of such wastes might become beyond regulatory control and be able to be released as non-radioactive. The benefits and disadvantages of additional treatment before disposal need to be considered. Several processes falling within the overall description of decontamination for free release have been developed and applied, and these are outlined. In one instance the process seeks to take advantage of techniques and equipment used for decontaminating water reactor circuits intermittently through reactor life. (author). 9 refs, 1 fig., 3 tabs

  3. Sunflowers to decontaminate water

    Sunflowers offer a new method of decontamination. 55 kilograms (dry weight) of sunflowers are able to decontaminate all the cesium 137 and the strontium 90 polluting a pond situated at one kilometer from Tchernobyl. These flowers are able to decrease 95% in 24 hours the uranium concentration in the american site of Ashtabula in Ohio getting this water from 350 parts by milliards to less than 5 parts by milliards. The radioactivity should stocked in the roots at concentrations 5 000 to 10 000 times higher than water concentration. The cost is cheaper than micro filtration and precipitation (2-6 dollars for 4 000 liters of water against 80 dollars for others technologies). when sunflowers are radioactive they can be reduced in dust and vitrified and stocked as solid radioactive wastes. (N.C.)

  4. Decontaminating radioactive lead solids

    Lead has been and continues to be used extensively at nuclear facilities and DOE/DOD sites to shield workers from ionizing radiation. Because it is often used in highly contaminated areas, the lead itself often becomes radioactively contaminated, thus creating a Mixed Waste. If the lead is contaminated above specified limits, it must be decontaminated prior to release for unrestricted use. In most cases, where the lead cannot be decontaminated using conventional methods, the lead is stored until a viable decontamination method and/or disposal alternative is determined. At many facilities, large quantities of stored lead are creating a significant problem. The U.S. EPA treatment standard for radioactive lead is, 'Macroencapsulafion with surface coating materials such as polymeric organics (e.g. resins and plastics) or with a jacket of inert inorganic materials to substantially reduce surface exposure to potential leaching media'. Since the Toxicity Characteristic Leaching Procedure (TCLP) requires size reduction to less than 9.5 mm particles for solid waste, macroencapsulation is not a practical or economically feasible option for processing lead. The U.S. EPA originally proposed 'Surface Deactivation' as the treatment standard. Because there exists no demonstrated available technology, this method was dropped from the final treatment standard. (author)

  5. Local strategies for decontamination

    The efficiencies of a great number of techniques for decontamination or dose reduction in contaminated areas have been investigated by several teams of E.C. and CIS scientists (ECP4 project). Modelling, laboratory and field experiments, t and return from experience allowed to assess radiological efficiencies (e.g. 'decontamination factor') and requirements for the operation of numerous practical solutions. Then, those data were supplemented with data on cost and waste generation in order to elaborate all the information for the optimization of decontamination strategies. Results will be presented for about 70 techniques. However, a technique cannot be compared to another from a generic point of view. Rather it is designed for a specific target and the best technology depends on the objectives. It has been decided to implement decision analyses on case studies, and the local conditions and objectives have been investigated. Individual doses ranged from 1 to 5 mSv, with contrasted contributions of internal and external doses. The desire to restore a normal activity in a partially depopulated settlement, and concerns about the recent increase in internal doses were typical incentives for action. The decision aiding analysis illustrated that actions can be usually recommended. Results are outlined here

  6. Results of 'decontamination model project' and application to decontamination operations

    This paper describes 'Decontamination Model Project,' which aims to collect the data related to decontamination and to arrange them for providing the results, for the purpose of judgment on how to implement radioactive decontamination in wide areas as the first experience in Japan. This was the project that Japan Atomic Energy Agency was entrusted by the government, and it was completed in June 2012. This project arranged the following items as information. (1) Various decontamination technologies and methods including applicability / effects, cost, necessary manpower, required time, and technological detail such as the treatment method of waste generated from decontamination and storage method of the waste, (2) Radiation control such as exposure control for workers and securement of general work safety, and (3) Communication with related local governments and local residents. This project is a pilot-trial work in order to measure to what extent decontamination is possible for what substances by what method, but numerical target such as the goal depletion ratio of air dose rate is not specified. However, this project comparatively arranged the results on how much extents the individual item affected surface decontamination. As the conclusion, this paper picks out the points that should be considered in the future full-scale decontamination work, from the results obtained by the experience of this project. (1) preliminary monitoring, (2) safety and operation / maintenance of temporary storage sites, and (3) radiation control involved in decontamination work. (O.A.)

  7. Report on decontamination pilot projects to establish guidelines for environmental remediation of residential areas contaminated with radioactive materials discharged from the Fukushima Daiichi Nuclear Power Station accident

    JAEA performed decontamination experiments at two test sites that combined a range of buildings and different types of land use, located in Date and Minami Soma municipalities as field pilot projects in order to accumulate knowledge and data for full-scale decontamination activities performed by local governments. In the pilot projects, we established its plan using practical decontamination methods that can be easily implemented, according to decontamination targets (e.g., forests, agricultural land, residential house and roads) at each site. As a result of the decontamination, the average air dose rates were reduced to approximately one half of the values before decontamination. (author)

  8. Manual on decontamination of surfaces

    The manual is intended for those who are responsible for the organization and implementation of decontamination programmes for facilities where radioactive materials are handled mainly on a laboratory scale. It contains information and guidelines on practical methods for decontaminating working spaces, equipment, laboratory benches and protective clothing. Useful information is also provided on the removal of loose skin contamination from personnel by mild, non-medical processes. Methods of removing skin contamination needing medical supervision, or of internal decontamination, which is entirely a medical process, are not covered in this manual. Large-scale decontamination of big nuclear facilities is also considered as outside its scope

  9. Study on LOMI decontamination technology

    The results of decontamination technique of Low-Oxidation-State Metal-Ion (LOMI) reagents developed from 1986 to 1991 in the laboratory are introduced. The experiments included preparation of LOMI reagents, de-filming efficiency, corrosion behavior of typical alloys, decontamination factors of reagents for contaminated materials and components have proved that the NP/LOMI decontamination method and treatment technique of waste water are feasible and have some advantages. The preparation of LOMI reagent with low concentration of formic acid by reduced pressure distilling technique and the utilization ratio of vanadium reached to 95% by second electrolysis are the main contributions of the study to the decontamination technique

  10. Decontamination of radioisotope production facility

    The strippable coating method use phosphoric glycerol and irradiated latex as supporting agents have been investigated. The investigation used some decontaminating agents: EDTA, citric acid, oxalic acid and potassium permanganate were combined with phosphoric glycerol supporting agent, then EDTA Na2, sodium citric, sodium oxalic and potassium permanganate were combined with irradiated latex supporting agent. The study was needed to obtain the representative operating data, will be implemented to decontamination the Hot Cell for radioisotope production. The experiment used 50x50x1 mm stainless steel samples and contaminated by Cs-137 about 1.1x10-3 μCi/cm2. This samples according to inner cover of Hot Cell material, and Hot Cell activities. The decontamination factor results of the investigation were: phosphoric glycerol as supporting agent, about 20 (EDTA as decontaminating agent) to 47 (oxalic acid as decontaminating agent), and irradiated latex as supporting agent, about 11.5 (without decontamination agent) to 27 (KMnO4 as decontaminating agent). All composition of the investigation have been obtained the good results, and can be implemented for decontamination of Hot Cell for radioisotope production. The irradiated latex could be recommended as supporting agent without decontaminating agent, because it is very easy to operate and very cheap cost. (author)

  11. Unit for air decontamination

    To fulfill the applicable requirements of safety to the ventilation systems in nuclear facilities, it is necessary to make a cleaning of the air that hurtles to the atmosphere. For that which was designed and it manufactured an unit for decontamination of the air for the Pilot plant of production of Nuclear Fuel that this built one with national parts, uses Hepa national filters and the design can adapt for different dimensions of filters, also can be added a lodging for a prefilter or to adopt two Hepa filters. (Author)

  12. Decontamination of latex gloves

    Initially the latex gloves used in controlled zones were processed after use as radioactive waste. In view of the continually increasing number used, however, the persons in charge of the SPRAR have considered the possibility of decontaminating the gloves and using them again after control. The recovery installations which have been developed were initially designed rather crudely and operated irregularly; they have been progressively improved as a result of the experience acquired; today they are more really an industrial concern, equipped with automatic machinery. In 1967 it has been possible with this set-up to recover 247000 pairs of gloves, representing nearly 70 per cent of the number treated. (author)

  13. Decontamination of radioactive corrosion products by KAERI decontamination process

    Jung, Chong-Hun; Park, Sang-Yoon; Ahn, Byung-Gil; Lee, Byung-Jik; Oh, Won-Zin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-31

    A study was performed to develop the chemical decontamination process, which is effective in removing the radioactive corrosion products with large amounts of Ni and Cr. The dissolution characteristics of decontamination agents and the material integrity of disk arm holder with Type 304 stainless steel were examined in high temperature conditions and the results have been compared with low temperature decontamination process. Dissolution tests revealed that oxides on disk arm holder had a spinel-type structure in the form of Fe{sub 1.7}Ni{sub 0.5}Cr{sub 0.8}O{sub 4}. In the dissolution steps, component metals were dissolved fast from the oxide in the early stage, while were dissolved very slowly in the later stage. This might be caused by reduction in metal concentration in the near surface of the oxide and by precipitation of reaction by product, MnO{sub 2}, which prevents reactants in solution from diffusion to the oxide surface. The average DF(Decontamination Factor) after a chemical decontamination, consisting of 3 oxidation-reduction steps, was 75 and an improved DF, of 150, was observed when a ultrasonic treatment was applied after a chemical decontamination, since the corrosion oxide become soft by the dissolution of grain boundary and crack of the oxide during chemical decontamination process. High temperature decontamination process showed remarkable improvement in decontamination effectiveness compared with traditional low temperature process. An examination of corrosion rates monitored during the decontamination, using corrosion coupons, showed that all process reagents caused minimal corrosion(Type 304 stainless steel: 1.7 x 10{sup -3} mil, Inconel 600: 6.6 x 10{sup -3} mil, Stellite-6: 1.2 x 10{sup -2} mil). (author). 19 refs., 4 tabs., 9 figs.

  14. Recontamination following dilute chemical decontamination

    Decontamination is beneficial in reducing radiation fields before inspection, maintenance, or repair work has to be performed on reactor systems. If the fields remain low at subsequent shutdowns, further benefit is attributable to the decontamination. Conversely, if fields rapidly become as high as before the decontamination, no residual benefit derives. In the case where the field rapidly becomes higher than before the decontamination, a detriment from the decontamination is experienced at subsequent shutdowns. In this paper the recontamination data following six separate dilute chemical decontaminations are reported for surveillance periods of up to two years. Surfaces operating at low temperature hardly recontaminated at all over the two-year period; surfaces exposed to high temperatures recontaminated to about 95% of their predecontamination level over a two-year period. A rapid recontamination rate for about three months following the decontamination was followed by recontamination at a rate which is significantly below the published rates for most BWRs in the USA, and for these two plants in particular. In all six cases studied, residual benefit from the decontamination was experienced at subsequent shutdowns. (author)

  15. Decontamination and decommissioning costing efforts

    The US Department of Energy (DOE), Office of Environmental Management (EM) is responsible for decontamination and decommissioning (D and D) of a wide variety of facilities ranging from reactors to fuel cycle processing buildings throughout the country. The D and D effort represents a large financial investment and a considerable challenge for the DOE and contractor program and project managers. Specifically, the collection and sharing of useful cost data and development of cost estimates are difficult in an environment in which the availability of these data is limited and the technologies and project methods are evolving. Sound cost data are essential for developing project cost estimates; baselines; and project management, benchmarking, and continuous improvement purposes. This paper will focus on some initiatives that in coordination with other federal agencies and international organizations, the DOE Environmental Management Applied Cost Engineering (ACE) Team is taking to standardize cost definitions; to collect, analyze, and report D and D cost data; and to develop fast, accurate, and easy-to-use cost-estimating models for D and D work

  16. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    walls are welded gap-free and all rough edges are rounded off. All wetted parts are steel grade 1.4301 or higher. In an extension to the high pressure water decontamination box, 2 ultrasonic ponds and one washing station for small components as provide by new construction. A long pond with 3.25 m length for the decontamination of large components (e.g. turbine blades, pump rotors, driving rods) was installed. For the handling heavy components, a 2 t crane was installed. New construction of a mechanical effluent treatment facility including oil separator was connected to the existing effluent storage tank provided by the customer. One exhaust air filtration system is provided for each decontamination box, with the following requirements. The exhaust air is sent back to the room (recirculated air system). Dry blasting box including raw separator with dust collection in 200 l drum, filter for suspended particles; High pressure water decontamination box and wet area with water separator, pre-separator, filter for suspended particles. Installation of a steel platform at building height +12.85 above the decontamination boxes + 8.50 m for the erection of the high pressure water facilities, the recirculating air filter system, the air compressor and the respiratory air supply unit. The aforementioned components are placed on the steel platform and have been encased in a sound-lowering and accessible manner. New construction of the entire E and C technology for the TU system including modification of the supply lines from the switch gear. All devices are to be operated automatically. Dry blasting box, high pressure water decontamination box and wet area are designed to guarantee a unitary 'exterior view' of the decontamination facility. (authors)

  17. Granulated decontamination formulations

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  18. Decontamination & decommissioning focus area

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  19. Ultrasonic decontamination robot

    An ultrasonic decontamination robot removes radioactive contamination from the internal surface of the inlet and outlet headers, divider plate, tube sheet, and lower portions of tubes of a nuclear power plant steam generator. A programmable microprocessor controller guides the movement of a robotic arm mounted in the header manway. An ultrasonic transducer having a solvent delivery subsystem through which ultrasonic action is achieved is moved by the arm over the surfaces. A solvent recovery suction tube is positioned within the header to remove solvent therefrom while avoiding interference with the main robotic arm. The solvent composition, temperature, pressure, viscosity, and purity are controlled to optimize the ultrasonic scrubbing action. The ultrasonic transducer is controlled at a power density, frequency, and on-off mode cycle such as to optimize scrubbing action within the range of transducer-to-surface distance and solvent layer thickness selected for the particular conditions encountered. Both solvent and transducer control actions are optimized by the programmable microprocessor. (author)

  20. Electrokinetic decontamination of concrete

    Concrete structures which have been contaminated with uranium and other radioisotopes may be decontaminated using in-situ electrokinetic remediation. By placing an electrode cell on the concrete surface and using the concrete's rebar, a ground rod, or another surface cell as the counter electrode, the radioisotopes may be migrated from the concrete into this cell. The process is highly dependent upon the chemical parameters of the species involved; namely, the concrete, the contaminants, and the solubilizers used to mobilize the contaminants. In a preliminary study conducted at the K-25 Site of the Oak Ridge National Labs, an estimated removal of >40 percent of uranium has been observed for a short duration run. This removal occurred using traditional uranium solubilizers in contact with the contaminated surface

  1. Decontamination characteristics of inorganic surface contaminated with Cs(134+137), Am241, Eu(154+155) and Ce144 radionuclides using bentonite decontamination agent

    The decontamination of the urban building surfaces, based on the covering of bentonite suspensions, has been studied. A bentonite suspension as a decontaminant has a lot of merits; chemically unharmful substance, low price, prevalence of raw material, nondestructive, applicable to large area, and simplicity of preparation and application. The cation converting conditions of bentonite suspensions were determined by the experiments of swelling and stability of suspension. Contaminated samples for test purpose were prepared by application of radioactive solution which was extracted from the soil of the Chernobyl Nuclear Power Plant. The results of this study showed that bentonite suspension technology is effective for decontamination of urban environment

  2. Decontamination of HEPA filters

    Mound Facility, during many years of plutonium-238 experience, has recovered over 150 kg of plutonium-238. Much of this material was recovered from HEPA filters or from solid wastes such as sludge and slag. The objective of this task was to modify and improve the existing nitric acid leaching process used at Mound so that filters from the nuclear fuel cycle could be decontaminated effectively. Various leaching agents were tested to determine their capability for dissolving PuO2, UO2, U3O8, AmO2, NpO2, CmO2, and ThO2 in mixtures of the following: HNO3-HF; HNO3-HF-H2SO4; and HNO3-(NH4)2Ce(NO3)6. Adsorption isotherms were obtained for two leaching systems. In some tests simulated contaminated HEPA filter material was used, while in others actual spent glovebox filters were used. The maximum decontamination factor of 833 was achieved in the recovery of plutonium-238 from actual filters. The dissolution was accomplished by using a six-stage process with 4N HNO3-0.23M (NH4)2Ce(NO3)6 as the leaching agent. Thorium oxide was also effectively dissolved from filter media using a mixture of nitric acid and ceric ammonium nitrate. Sodium carbonate and Na2CO3-KNO3 fusion tests were performed using simulated PuO2-contaminated filter media at various temperatures. Approximately 70 wt% of the PuO2 was soluble in a mixture composed of 70 wt% Na2CO3-30 wt% KNO3 (heated for 1 h at 9500C). 23 figs., 14 tables

  3. Nova target chamber decontamination study

    An engineering study was performed to determine the most effective method for decontamination of the Nova target chamber. Manual and remote decontamination methods currently being used were surveyed. In addition, a concept that may not require in-situ decontamination was investigated. Based on the presently available information concerning material and system compatibility and particle penetration, it is recommended that a system of removable aluminum shields be considered. It is also recommended that a series of tests be performed to more precisely determine the vacuum compatibility and penetrability of other materials discussed in this report

  4. Decontamination and coating of lead

    Technology is being developed to decontaminate lead used in shielding applications in contaminated environments for recycle as shieldings. Technology is also being developed to coat either decontaminated lead or new lead before it is used in contaminated environments. The surface of the coating is expected to be much easier to decontaminate than the original lead surface. If contamination becomes severely embedded in the coating and cannot be removed, it can be easily cut with a knife and removed from the lead. The used coating can be disposed of as radioactive (hot hazardous) waste. The lead can then be recoated for further use as a shielding material

  5. Survey of decontamination and decommissioning techniques

    Reports and articles on decommissioning have been reviewed to determine the current technology status and also attempt to identify potential decommissioning problem areas. It is concluded that technological road blocks, which limited decommissioning facilities in the past have been removed. In general, techniques developed by maintenance in maintaining the facility have been used to decommission facilities. Some of the more promising development underway which will further simplify decommissioning activities are: electrolytic decontamination which simplifies some decontaminating operations; arc saw and vacuum furnace which reduce the volume of metallic contaminated material by a factor of 10; remotely operated plasma torch which reduces personnel exposure; and shaped charges, water cannon and rock splitters which simplify concrete removal. Areas in which published data are limited are detailed costs identifying various components included in the total cost and also the quantity of waste generated during the decommissioning activities. With the increased awareness of decommissioning requirements as specified by licensing requirements, design criteria for new facilities are taking into consideration final decommissioning of buildings. Specific building design features will evolve as designs are evaluated and implemented

  6. Chemical decontamination for decommissioning (DFD) and DFDX

    is to design, build and implement a system for the chemical decontamination for decommissioning of larger reactor systems and components, and Full System Decontamination (FSD). The purpose of this paper is to provide a reference point for those planning future chemical decontaminations for plant decommissioning. It is based on actual experience from the work already performed to date and the planned development of the DFDX process. (author)

  7. Laryngoscope decontamination techniques: A survey

    Chawla, Rajiv; Gupta, Akhilesh; Gupta, Anshu; Kumar, Mritunjay

    2016-01-01

    Background and Aims: India is a vast country with variable, nonuniform healthcare practices. A laryngoscope is an important tool during general anesthesia and resuscitation. The study aimed to determine the current practices of laryngoscope decontamination in India. Material and Methods: An online survey was conducted amongst 100 anesthesiologists to determine the common methods of laryngoscope decontamination adopted in their settings. The survey was done over 6 months after validating the questionnaire. Results: A total of 73 responses were received out of 100. The result of the survey revealed that there is no uniform technique of laryngoscope decontamination. There is marked variability in techniques followed not only among different institutions, but also within the same institution. Conclusion: There are no fixed protocols adopted for laryngoscope decontamination. Thus, there is a need to develop definitive guidelines on this subject, which can be implemented in India. PMID:27006551

  8. Laryngoscope decontamination techniques: A survey

    Rajiv Chawla; Akhilesh Gupta; Anshu Gupta; Mritunjay Kumar

    2016-01-01

    Background and Aims: India is a vast country with variable, nonuniform healthcare practices. A laryngoscope is an important tool during general anesthesia and resuscitation. The study aimed to determine the current practices of laryngoscope decontamination in India. Material and Methods: An online survey was conducted amongst 100 anesthesiologists to determine the common methods of laryngoscope decontamination adopted in their settings. The survey was done over 6 months after validating t...

  9. Presolidification treatment of decontamination wastes

    Unsatisfactory leaching performance of several solidified decontamination solutions indicated a need for presolidification treatments to reduce the water sensitivity of the active chemicals. Chemical treatments examined in this work include pH adjustment, precipitation and oxidation-reduction reactions. The reactions involved in these treatments are discussed. The most suitable presolidification treatment for each decontamination solution has been identified. Further research is needed to test the effectivenss of these treatments

  10. Chemical Gel for Surface Decontamination

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  11. Decontamination of HEPA filters

    Koenst, J.W. Jr.; Lewis, E.L.; Luthy, D.F.

    1978-01-01

    Mound Facility, during many years of plutonium-238 experience, has recovered over 150 kg of plutonium-238. Much of this material was recovered from HEPA filters or from solid wastes such as sludge and slag. The objective of this task was to modify and improve the existing nitric acid leaching process used at Mound so that filters from the nuclear fuel cycle could be decontaminated effectively. Various leaching agents were tested to determine their capability for dissolving PuO/sub 2/, UO/sub 2/, U/sub 3/O/sub 8/, AmO/sub 2/, NpO/sub 2/, CmO/sub 2/, and ThO/sub 2/ in mixtures of the following: HNO/sub 3/-HF; HNO/sub 3/-HF-H/sub 2/SO/sub 4/; and HNO/sub 3/-(NH/sub 4/)/sub 2/Ce(NO/sub 3/)/sub 6/. Adsorption isotherms were obtained for two leaching systems. In some tests simulated contaminated HEPA filter material was used, while in others actual spent glovebox filters were used. The maximum decontamination factor of 833 was achieved in the recovery of plutonium-238 from actual filters. The dissolution was accomplished by using a six-stage process with 4N HNO/sub 3/-0.23M (NH/sub 4/)/sub 2/Ce(NO/sub 3/)/sub 6/ as the leaching agent. Thorium oxide was also effectively dissolved from filter media using a mixture of nitric acid and ceric ammonium nitrate. Sodium carbonate and Na/sub 2/CO/sub 3/-KNO/sub 3/ fusion tests were performed using simulated PuO/sub 2/-contaminated filter media at various temperatures. Approximately 70 wt% of the PuO/sub 2/ was soluble in a mixture composed of 70 wt% Na/sub 2/CO/sub 3/-30 wt% KNO/sub 3/ (heated for 1 h at 950/sup 0/C). 23 figs., 14 tables.

  12. Decontamination of surfaces, contaminated with radioisotopes

    A classification is given of processes taking place during decontamination. The effect of surfaces of various geometry and materials on the rate of decontamination is discussed. The factors influencing the choice of the decontamination method and the main requirements laid to decontaminating agents are reviewed. The decontaminating processes of synthetic washing igredients, detergents, complex-making compounds, caustic solutions, acids, and other compounds, their advantageous and detrimental properties at decontaminating are summarized. The indices of suspectibility to contamination and decontaminability are given. Various measuring methods for decontamination of stains produced by dropping 0.1 ml of isotope solutions on plates of 4x4 cm made of several materials gave different results of the same tendency. It was the heaviest to decontaminate iron plates. According to the investigations a satisfactory combination of surface and agents can be found for each isotope. (K.A.)

  13. Decontamination technology assessment

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE) to identify and technically assess foreign decontamination and decommissioning (D and D) technology developments that may represent significant improvements over D and D technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water rector (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign D and D technologies of potential interest to the U.S. were identified through personal contacts and the collection and review of an extensive body of D and D literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in D and D costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to U.S. needs

  14. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    Vogt (Sorensen), B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  15. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail

  16. New decontamination technologies for environmental applications

    The technologies discussed represent a versatile collection of tools and approaches for environmental decontamination applications. The fixatives provide a means for gaining and maintaining control of large contaminated areas, for decontaminating large surface areas, and for protecting equipment and supplies used in decontamination operations. The other decontamination techniques together provide a method for removing loose surface contamination from almost all classes of materials and surfaces. These techniques should have wide application both as direct decontamination processes and for the cleaning of tools and equipment used in the decontamination operations

  17. Decontamination and inspection plan for phase 2 closure of the 300 Area waste acid treatment system

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 2 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 2, the second phase of three proposed phases of closure for WATS, provides for closure of all WATS portions of the 334-A Building and some, but not all, WATS portions of the 333 and 303-F Buildings. Closure of the entire unit will not occur until all three closure phases have been completed. The DIP also describes the designation and management-process for waste and debris generated during Phase 2 closure activities. Information regarding the decontamination and verification methods for Phase 1 closure can be found in Decontamination and Inspection Plan, for Phase 1 closure of the 300 Area Waste Acid Treatment System, 21 WHC-SD-ENV-AP-001. Information regarding Phase 3 closure will be provided in later documents

  18. Decontaminating products for routine decontamination in nuclear power plants

    Routine decontamination work that has to be carried out in practical operation includes the cleaning of all kinds of surfaces such as floors, walls and apparatus, the decontamination of professional clothes and of the personnel. In order to ensure a trouble-free functioning of plants for the treatment of waste water and concentrate in nuclear power plants, radioactive liquid wastes appearing in the controlled area should be compatible with the treatment methods in practice. Radioactive concentrates and resides obtained from the treatment methods are mixed with matrix materials like cement or bitumen or treated by roller frame drying and thus are conditioned for intermediate or final storage. Several requirements should be made on decontaminating agents used in the controlled area. Some of these physical-chemical criteria will be described in detail. (R.P.)

  19. Toshiba's decontamination technologies for the decommissioning

    For the decommissioning, two types of decontamination process are necessary, 1) system decontamination before dismantling and 2) decontamination of dismantling waste. Toshiba has been developing the decontamination technologies for the both purposes from the viewpoint of minimizing the secondary waste. For the system decontamination before dismantling, chemical decontamination process, such as T-OZON, can be applicable for stainless steel or carbon steel piping. For the decontamination of dismantling waste, several types of process have been developed to apply variety of shapes and materials. For the simple shape materials, physical decontamination process, such as blast decontamination, is effective. We have developed new blast decontamination process with highly durable zirconia particle. It can be used repeatedly and secondary waste can be reduced compared with conventional blast particle. For the complex shape materials, chemical decontamination process can be applied that formic acid decontamination process for carbon steel and electrolytic reduction decontamination process with organic acid for stainless steel. These chemicals can be decomposed to carbon dioxide and water and amount of secondary waste can be small. (author)

  20. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  1. Radioactive Decontamination by Strippable Paint

    The strippable paint, one of the adhesion method, is to decontaminate solid surface of materials or/and a large area. Two kinds of specimen planchet, SUS 304 stainless steel and polycarbonate plastic, contaminated with radioactive 137Cs were studied under various conditions. It included surface bottom types, the flat and convex concentric circle type, normal condition at room temperature and overheat condition (∼80 degree celsius). This method used coating paints which contains some elements to have a reaction with radioactive materials selectively. ALARA-Decon clear, Rempack-X200 clear, JD-P5-Mrs.Coat and Pro-Blue-color guard were selected to use as the coating paints. The contaminated surface was coated by the strippable paint under the optimum time, followed by peeling the paint seal. The Rempack-X200 showed the best result, the highest decontamination efficiency which are about 99-100% for all conditions of specimens. The JD-P5 and ALARA-Decon showed good results, which are 98-99% decontamination efficiency for the normal condition set of specimens and about 94-97% for the overheat set of specimens. They can decontaminate polycarbonate specimens better than stainless steel specimens. The Pro-Blue-color guard showed the lowest decontamination efficiency of which 60% for polycarbonate specimens at normal condition and 40%, 30% for stainless steel specimens at normal and overheat conditions respectively. There was no effects of surface bottom types significantly

  2. Decontaminating lead bricks and shielding

    Lead used for shielding is often surface contaminated with radionuclides and is therefore a Resource Conservation and Recovery Act (RCRA) D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Lab. decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 100 metric tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 280 kPa (40 psig) rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a pump. A pump sends the slurry mixture back to the spray gun, creating a continuous process

  3. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D and D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D and D activities beginning in 1997

  4. Tritium permeation, contamination and decontamination

    As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated three research programs on the tritium permeation, contamination and decontamination have been conducted by the CO2 team. The results are summarized as follows: (1) Study for the development of the tritium permeation barrier was carried out. A ZrO2 film with a magnesium phosphate layer sintered on a SUS 430 steel plate showed excellent reduction in the hydrogen permeation. (2) The non-destructive method using an imaging plate was proposed to monitor tritium release from contaminated materials. The method was applied to SUS 316 steel and revealed that the tritium release from SUS 316 steel was diffusion-limited. (3) As for contamination-protection and decontamination techniques, improvement in the decontamination rate from SUS 316 steel was obtained by providing CrO2 coating. (J.P.N.)

  5. EDF guide book for decontamination at power plant

    This paper addresses EDF quality organization in the decontamination field: policy includes: decontamination activities, how to reach quality, who is doing what, qualification of decontamination personnel, and acceptance and qualification of a decontamination process. Implementation includes: why planning a decontamination? Responsibility of the initiator, responsibility of the planner, and responsibility of the decontamination crew leader

  6. Handbook of radioactive contamination and decontamination

    In this book the fundamentals of radioactive contamination and the general principles of decontamination are set out. Topics covered include the evaluation of risk after human exposure and the decontamination of persons and their clothing and food and the decontamination of reactor components. The assessment of contamination after possible reactor accidents or nuclear explosions is discussed. The various methods of decontamination appropriate to specific incidents are discussed. (UK)

  7. Building for animal production

    In order to limit the radiation dose to persons working with animal husbandry in severe fallout situations, it was considered necessary to make an inventory of the Swedish livestock buildings as to number, location, use and size. These data as well as data on geometry of buildings, building material and thickness of the material in walls and roofs are given in the present work. On the basis of the mentioned data, calculations were made of the shielding factors of different types of livestock buildings. The collected data can also be used in preparedness planning in relation to housing facilities for livestock and location and size of animal production in situations of crises or war. The calculations show shielding factors for different types of livestock buildings of normal ground area within the range of 0.18-0.71. The higher value indicates a fairly poor shielding effect. The inventory and the calculations show that in those regions in Sweden where the main part of the livestock is managed, the types of buildings are, however, characterized by radiation shielding factors of 0.3-0.4. Calculation were also made of the radiation level inside the buildings following decontamination of roofs or of surrounding ground. Ground decontamination only, i.e., removal of the upper contaminated surface layer, will reduce the radiation level inside the building. For most buildings the radius of the surrounding area to be decontaminated has to be 15-30 times larger than the width of the building in order to achieve a 50 percentage reduction of the radiation level inside the building. For buildings of medium or large size and with thick walls the radiation contribution from the roof is greater than the radiation from the ground, and regardless of the size of the ground areas decontaminated the radiation level inside these buildings will only be reduced by 20-30%. 15 refs, 11 figs, 14 tabs

  8. Optimization of electrochemical soil decontamination

    Nemec, M. [Czech Technical Univ., Prague (Czech Republic). Dept. of Nuclear Chemistry; John, J. [Czech Technical Univ., Prague (Czech Republic). Centre for Radiochemistry and Radiation Chemistry

    2004-07-01

    At the Czech Technical University in Prague, soil decontamination techniques have been studied for several years. The leaching procedures (batch or 'sorption' leaching) did not allow to achieve more than 30% caesium desorption. Caesium thermodesorption was demonstrated not to be very efficient either; quantitative caesium separation could be achieved only from solutions resulting from fusion of the soil with special fluxes. The most promising results were achieved by electrolytic decontamination. In preliminary experiments, more than 97% of caesium was released from soils contaminated long time ago. The aim of this study was to perform optimisation of the parameters of this method. (orig.)

  9. Decontamination in a Russian settlement

    Fogh, C.L.; Andersson, Kasper Grann; Barkovsky, A.N.; Mishine, A.S.; Ponamarjov, A.V.; Ramzaev, V.P.; Roed, Jørn

    1999-01-01

    Decontamination was carried out in an area with three houses in Novo Bobovichi, Bryansk region, Russia, in the autumn of 1995. It was demonstrated that significant reductions in the dose rate both indoor (DRF = 0.34) and outdoor (DRF = 0.20) can be achieved when a controlled cleaning is undertaken....... This paper describes the decontamination work carried out and the results obtained, The roofs of the houses were swept and cleaned by special roof cleaning equipment. The soil around the houses was removed by hand while carefully monitoring the ground for residual contamination, By monitoring the...

  10. Contamination and decontamination of fabrics

    An analysis is made of the problems of contamination and decontamination of clothes and underwear. Possible ways are described of contamination of fabrics (dry, wet) and in this connection the contaminant-fabric binding is underlined (in dry state, at different relative air humidity, in wet conditions in an environment of polar solvents). A survey is presented of decontamination methods and their importance. Dry methods include beatino., brushing and vacuum cleaning, wet methods include soaking and washing, dry cleaning in non-polar solvents, and the Intensol and Dual methods which combine dry cleaning and washing in one process. (B.S.)

  11. 46 CFR 154.1410 - Decontamination shower.

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  12. 40 CFR 170.250 - Decontamination.

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Decontamination. 170.250 Section 170... PROTECTION STANDARD Standard for Pesticide Handlers § 170.250 Decontamination. (a) Requirement. During any..., decontamination supplies for washing off pesticides and pesticide residues. (b) General conditions. (1)...

  13. 40 CFR 170.150 - Decontamination.

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Decontamination. 170.150 Section 170... PROTECTION STANDARD Standard for Workers § 170.150 Decontamination. (a)(1) Requirement. The agricultural employer must provide decontamination supplies for workers in accordance with this section whenever:...

  14. Nuclear and radiological emergency preparedness: decontamination issues

    There are varieties of radiological decontamination methods available. Extensive research efforts are made in this direction for development of effective multi-purpose decontamination formulations and tremendous progress has been made in this field. It is pertinent to develop effective, easily available, cheap decontamination alternatives which can be usable directly by community itself during any radiological terrorism activity

  15. NOVEL LASER ABLATION TECHNOLOGY FOR SURFACE DECONTAMINATION

    The objective of this project is to develop a novel Laser Ablation Decontamination in Liquid (LADIL) technology for surface decontamination and safe removal of radioactive and/or toxic contaminants. It aims to achieve more efficient surface decontamination without secondary conta...

  16. Justification for Continued Operation for Tank 241-Z-361

    BOGEN, D.M.

    1999-09-01

    This justification for continued operations (JCO) summarizes analyses performed to better understand and control the potential hazards associated with Tank 241-2-361. This revision to the JCO has been prepared to identify and control the hazards associated with sampling the tank using techniques developed and approved for use in the Tank Waste Remediation System (TWRS) at Hanford.

  17. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    BANNING, D.L.

    1999-07-29

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  18. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    BANNING, D.L.

    1999-08-05

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  19. Justification for Continued Operation for Tank 241-Z-361

    This justification for continued operations (JCO) summarizes analyses performed to better understand and control the potential hazards associated with Tank 241-2-361. This revision to the JCO has been prepared to identify and control the hazards associated with sampling the tank using techniques developed and approved for use in the Tank Waste Remediation System (TWRS) at Hanford

  20. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    Moore, Murray E [Los Alamos National Laboratory

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  1. Methods of decontaminating metal surfaces

    Decontamination methods are discussed for internal and external surfaces of facilities and spaces in nuclear power plants. The problem area is divided into mechanical, chemical, electrochemical, steam emulsion and dry methods. For each group of methods the principle, most suitable application and effectiveness are given. (B.S.)

  2. Decontaminating reagents for radioactive systems

    A decontaminating reagent composition has been developed comprising EDTA, citric acid, oxalic acid, and formic acid. Formic acid inhibits the decomposition of both EDTA and citric acid, and yields oxalic acid as a result of its own radiolysis. The invention includes the improvement of initially incorporating formic acid in the mixture and maintaining the presence of formic acid by at least one further addition

  3. Advances in PCB decontamination technologies

    Since 1985 several million kilograms of PCB equipment and millions of litres of PCB contaminated oil have been processed in Canada for reduction of PCB concentrations below government guidelines. Advances in extraction and metal recovery from electrical equipment, chemical dechlorination and distillation of PCB-contaminated oils were the significant technological options utilized. For example, using the Decontaksolv technology owners of PCB equipment in Canada have decontaminated three million kilograms of electrical equipment, which resulted in the reintegration of 2.7 million kilograms of useful metals (steel, copper, aluminium) into the economic circuit. The equipment decontaminated included transformers, electromagnets, relays, radiators, circuit breakers, tanks, pipes, valves, and drums. The most recent advances in this technology include improvements that makes the economical processing of capacitors, possible. Chemical dechlorination has virtually eliminated PCB-contaminated oils which are normally present in large transformers, to the point where some service companies have curtailed or discontinued their oil decontamination activities in Canada. Recent advances in this technology center around techniques for the decontamination of waste hydrocarbons, and to a lesser extent, dielectric fluids. Two example projects to illustrate recent advances have been briefly described

  4. Radiation decontamination of poultry viscera

    Jamdar, S. N.; Harikumar, P.

    2008-04-01

    Application of gamma radiation for decontamination of poultry viscera was examined. Exposure to a dose of 20 kGy rendered the viscera sterile (proteolytic enzymes, except acid protease, did not show any significant change during post-irradiation storage at either temperature.

  5. ORNL decontamination and decommissioning program

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed

  6. Decontamination in a Russian settlement

    Fogh, C.L.; Andersson, Kasper Grann; Barkovsky, A.N.;

    1999-01-01

    . This paper describes the decontamination work carried out and the results obtained, The roofs of the houses were swept and cleaned by special roof cleaning equipment. The soil around the houses was removed by hand while carefully monitoring the ground for residual contamination, By monitoring the...

  7. Remote decontamination system for contaminated water tanks

    Based on the experience of decontamination works and achievements of construction with remote- handling/unmanned technologies, Obayashi Corporation has developed technologies for the decontamination of contaminated water tanks at the Fukushima Daiichi NPS as an entity to implement with subsidies the 'Validation of technologies for contaminated water management' project in the FY2013 Supplementary Budget. Our remote decontamination system requires no manned operation inside tanks during decontamination work and contributes to exposure reduction. The decontamination performance and system practicality have been confirmed by full-scale demonstration test. This report describes the technology outline of present system and its demonstration test results. (author)

  8. Decontamination Planning and Approach to its Methodology

    The research of the approach to the decontamination is required since Korea doesn't have the NPP decommissioning experience. In this paper, the process flow of decontamination is described throughout the foreign case study. And, factors needed to be considered to progress decontamination smoothly are introduced. For the planning of the decontamination, there are several important decisions to be made as follows : - whether the large components are included in the decontamination items or not - whether there are a delay factors like the fuel failure - what items applied to before/after decontamination - applied technologies - using what equipment. The decontamination plan is not fixed. It can be changed by the circumstances of progress. The schedule can be shortened by the good efficiency

  9. Decontamination Planning and Approach to its Methodology

    Park, Geun-young; Kim, Chang-Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    The research of the approach to the decontamination is required since Korea doesn't have the NPP decommissioning experience. In this paper, the process flow of decontamination is described throughout the foreign case study. And, factors needed to be considered to progress decontamination smoothly are introduced. For the planning of the decontamination, there are several important decisions to be made as follows : - whether the large components are included in the decontamination items or not - whether there are a delay factors like the fuel failure - what items applied to before/after decontamination - applied technologies - using what equipment. The decontamination plan is not fixed. It can be changed by the circumstances of progress. The schedule can be shortened by the good efficiency.

  10. The use of chemical gel for decontamination during decommissioning of nuclear facilities

    A technical research study was developed for testing the decontamination using chemical gels. The study was realized for different type of samples, systems often encountered in the VVR-S nuclear research reactor from Magurele–Romania. The results obtained in the study have demonstrated that the decontamination gels could be an efficient way to reduce or to eliminate the surface contamination of buildings or equipment’s, minimizing the potential for spreading contamination during decommissioning activities. - Highlights: • A research study was developed for testing the decontamination using chemical gels. • The purpose was realized by artificial contamination of eight types of materials. • Decontamination gels are an efficient way to reduce the surface contamination. • Minimize the potential for spreading contamination during decommissioning activities

  11. Decontamination of Battelle-Columbus' Plutonium Facility. Final report

    The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980

  12. Metal Decontamination, Magnox, United Kingdom

    Ultra high pressure (UHP) water blasting was a successful technique deployed at Hinkley Point A, in the United Kingdom, for an isolated population of pond skips. UHP blasting achieved levels that allowed the skips to be routed via metal melt to the Energy Solutions Bear Creek facility, in the United States of America, which allowed the beneficial reuse of metal in accordance with the waste hierarchy. However, owing to higher levels of 90Sr in the remaining Magnox skips, metal melt was not an acceptable option for the skips. Decontamination trials were conducted on a representative population of remaining Magnox skips using UHP blasting and UHP blasting with abrasive. The trials demonstrated that for the remaining population of Magnox skips, and skips shared between sites via Sellafield and existing fuel routes, UHP blasting (and other techniques) could not deliver a consistent decontamination factor, or a high enough decontamination factor to significantly and reliably reduce intermediate level waste (ILW) skips to LLW or LLW skips to metal melt acceptance criteria. Based on the trial results, there was a significant risk that many ILW skips would remain ILW after decontamination with UHP blasting, along with the creation of a secondary wet ILW arising. This, coupled with a significant amount of worker dose expended for no apparent benefit, made direct disposal of the skips as LLW the only viable option. It also demonstrated that a significant amount of the radioactivity was in the base metal, or driven into the base metal by the decontamination processes. This left disposal as the only remaining option. The skips were combined with other low activity waste streams and disposed of as LLW, using averaging techniques. This technique was viable until recent restrictive guidance was received from the LLW repository regarding methods of averaging the activity of discrete waste items over a waste consignment. The added restrictions from the guidance eliminated the

  13. Surface Decontamination Using Laser Ablation Process - 12032

    A new decontamination method has been investigated and used during two demonstration stages by the Clean-Up Business Unit of AREVA. This new method is based on the use of a Laser beam to remove the contaminants present on a base metal surface. In this paper will be presented the type of Laser used during those tests but also information regarding the efficiency obtained on non-contaminated (simulated contamination) and contaminated samples (from the CEA and La Hague facilities). Regarding the contaminated samples, in the first case, the contamination was a quite thick oxide layer. In the second case, most of the contamination was trapped in dust and thin grease layer. Some information such as scanning electron microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. Laser technology appears to be an interesting one for the future of the D and D applications. As shown in this paper, the results in terms of efficiency are really promising and in many cases, higher than those obtained with conventional techniques. One of the most important advantages is that all those results have been obtained with no generation of secondary wastes such as abrasives, chemicals, or disks... Moreover, as mentioned in introduction, the Laser ablation process can be defined as a 'dry' process. This technology does not produce any liquid waste (as it can be the case with chemical process or HP water process...). Finally, the addition of a vacuum system allows to trap the contamination onto filters and thus avoiding any dissemination in the room where the process takes place. The next step is going to be a commercial use in 2012 in one of the La Hague buildings. (authors)

  14. Verification of wet blasting decontamination technology

    Macoho Co., Ltd. participated in the projects of 'Decontamination Verification Test FY 2011 by the Ministry of the Environment' and 'Decontamination Verification Test FY 2011 by the Cabinet Office.' And we tested verification to use a wet blasting technology for decontamination of rubble and roads contaminated by the accident of Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. As a results of the verification test, the wet blasting decontamination technology showed that a decontamination rate became 60-80% for concrete paving, interlocking, dense-grated asphalt pavement when applied to the decontamination of the road. When it was applied to rubble decontamination, a decontamination rate was 50-60% for gravel and approximately 90% for concrete and wood. It was thought that Cs-134 and Cs-137 attached to the fine sludge scraped off from a decontamination object and the sludge was found to be separated from abrasives by wet cyclene classification: the activity concentration of the abrasives is 1/30 or less than the sludge. The result shows that the abrasives can be reused without problems when the wet blasting decontamination technology is used. (author)

  15. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination

    Cheng, M.D.

    2005-06-01

    Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for prediction of particle generation such that an effective operational strategy can be devised to facilitate worker protection.

  16. Decontamination of surfaces contaminated by radioactivity

    The framework of the dissertation has been developed by the combination of research results at EIR/PSI and their subsequent application and further development as an entrepreneur at decontamination jobs throughout the nuclear industry. The work presented is arranged into 3 categories correpsonding to the chronological sequence of the decontamination process: 1) Decontamination process: preliminary investigations, theoretical elements about the formation of the contamination-layer and the decontamination mechanisms, analysis of activity profiles in contaminated materials, scale-up issues: laboratory-industrial project and decontamination model, method for treatment of boric acid and its use as deco-medium, economic aspects of the decontamination problem and test method for decontamination processes. 2) Description of the newly developed decontamination processes: formic acid/formaldehyd deco-process for steels. Key advantages: effective decontamination with generation of small quantities of an easily disposable secondary waste, universal DECOHA-decontamination process for metals on HBF4-basis for decommissioning. Key advantages: minimal radiation exposure for personnel, total regeneration of the deco-medium, minimal secondary waste, low-investment- and operating costs. This process was transfered to Recytec S.A. and was selected by UDSSR and, subsequently, a decontamination plant has been built in Chernobyl for the processing of 5 tons per day of stainless steel for unrestricted use, chemical decontamination process for concrete and brickwork. Key advantages: quick, economical, independent of geometry, little secondary waste, no damage to concrete surface. 3) Method for free release measurement of decontaminated materials for unrestricted use, by modification of geometry. The mentioned innovation have been applied several times in industry, for instance on the nuclear ship 'Otto Hahn', in the nuclear power plants Niederaichbach, Lingen, Juelich, in a Swiss watch

  17. Development and assessment of two decontamination processes: closed electropolishing system for decontamination of underwater surfaces -vibratory decontamination with abrasives

    Two decontamination processes have been developed to decontaminate the stainless steel components of nuclear power plants. The first process uses an underwater closed electropolishing system for the decontamination of large stainless steel surfaces in flooded systems without loss of electrolyte. Large underwater contaminated areas can be treated with an electropolishing head covering an area of 2 m2 in one step. The decontamination factors achieved with this technique range between 100 and 1000. The second process consists in the decontamination of nuclear components using vibratory equipment with self-cleaning abrasives generating a minimum quantity of waste. This technique may reach contamination factors similar to those obtained with other abrasive methods (brush abrasion, abrasive blasting, etc...). The obtained decontamination factors range between 5 and 50. Only a small quantity of waste is generated, which is treated and reduced in volume by filtration and evaporation

  18. Decontamination in a Russian settlement

    Decontamination was carried out in and around three houses in Novo Bobovichi, Russia, in the autumn of 1995. It was demonstrated that significant reductions in the dose rate both indoor (DRF = 0.34) and outdoor (DRF = 0.20) can be achieved when a careful cleaning is undertaken. This report describes the decontamination work carried out and the results obtained. The roofs of the houses were swept and cleaned by special roof cleaning equipment. The soil around the houses was removed by hand while carefully monitoring the ground for residual contamination. By monitoring the decline in the dose rate during the different stages of the work the dose reducing effect of each action has been estimated. This report also describes a test of a triple digging method that reduces the dose rate without generating waste. In the appendices of the report the measurement data are available for further analysis. (au) 16 tabs., 15 ills

  19. Decontamination in a Russian settlement

    Roed, J.; Lange, C.; Andersson, K.G. [and others

    1996-03-01

    Decontamination was carried out in and around three houses in Novo Bobovichi, Russia, in the autumn of 1995. It was demonstrated that significant reductions in the dose rate both indoor (DRF = 0.34) and outdoor (DRF = 0.20) can be achieved when a careful cleaning is undertaken. This report describes the decontamination work carried out and the results obtained. The roofs of the houses were swept and cleaned by special roof cleaning equipment. The soil around the houses was removed by hand while carefully monitoring the ground for residual contamination. By monitoring the decline in the dose rate during the different stages of the work the dose reducing effect of each action has been estimated. This report also describes a test of a triple digging method that reduces the dose rate without generating waste. In the appendices of the report the measurement data are available for further analysis. (au) 16 tabs., 15 ills.

  20. Mobile worksystems for decontamination and dismantlement

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of. The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes a mobile workstation termed ROSIE, which provides remote work capabilities for D ampersand D activities

  1. Mobile workstation for decontamination and decommissioning operations

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D ampersand D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D ampersand D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D ampersand D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D ampersand D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility

  2. Mobile worksystems for decontamination and dismantlement

    Osborn, J. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bares, L.C.; Thompson, B.R. [RedZone Robotics, Inc., Pittsburgh, PA (United States)

    1995-10-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of. The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes a mobile workstation termed ROSIE, which provides remote work capabilities for D&D activities.

  3. Mobile worksystems for decontamination and dismantlement

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes two technologies that are viable solutions for facility D ampersand D

  4. Bacterial infections: antibiotics and decontamination.

    Gould, Dinah

    Infectious disease is caused by bacteria, viruses, fungi, protozoa and micro-organisms including the mycoplasmas, rickettsiae and chlamydiae. Most of the infections commonly encountered in the UK are caused either by bacteria or viruses. This article describes bacterial structure and function to explain how antibiotics work and the processes of decontamination such as cleaning, disinfection and sterilisation, which are important in infection control. PMID:15224613

  5. Decontamination of radionuclides in food

    The release of radionuclides arising from the Chernobyle accident led to widespread contamination of the northern hemisphere through fallout. This accident provided again an opportunity to investigate how and to what extent the radionuclides contamination in crops and animal derived foods could be reduced. The following topics are included in this paper. (1) How to reduce the transfer of radiostrontium and/or cesium from soil to crops: A pH increase of soil is effective for reducing their plant uptake. (2) How to reduce the transfer of radiocesium to animal derived foods: Ammonium-ferric-cyanoferrate (AFCF) should be the most effective compound for radiocesium excretion in the feces. Experiments with lactating cows and/or poultry gave extremely good results with respect to low radiocesium concentrations in milk, meat and eggs. (3) Removal coefficients of radiostrontium, cesium and iodine from contaminated leaf vegetables and cereals during food processing and culinary preparation: Though different by species, more than 80% of cesium and about 50% of strontium and iodine can be removed during culinary preparation of washing and boiling. (4) Simultaneous decontamination of radiocesium and iodine from drinking water and liquid milk: Metal ferrocyanide-anion exchange resin, specifically Fe ferrocyanide one, was successfully used for a rapid and simple decontamination of radiocesium and iodine in the liquid samples arising from the Chernobyle accident. (5) Removal of radiocesium from meat: The meat structurally contaminated with radiocesium is easily and very successfully decontaminated by pickling in NaCl solution and the decontamination is much speeded up by freezing meat before pickling. (author)

  6. Radiation decontamination of poultry viscera

    Application of gamma radiation for decontamination of poultry viscera was examined. Exposure to a dose of 20 kGy rendered the viscera sterile (10 cycles, respectively, eliminating the coliforms to oC) produced enhanced levels of TVBN and TCA soluble products accompanied by higher drip loss. Activities of proteolytic enzymes, except acid protease, did not show any significant change during post-irradiation storage at either temperature

  7. Decontamination of Surfaces by Ultrasonics

    A study was made of factors such as frequency, intensity, and time in the case of steel and of cotton cloth contaminated by fission products. Results show that the method is only of value in the case of steel and that it is necessary to operate at an optimum frequency of 80 khz and with an intensity of at least 4 W/cm2. The difficulty of proposing a valid explanation for the decontamination mechanism is discussed. (authors)

  8. Skin contamination - prevention and decontaminating

    A detailed examination is made of the structure of human skin. Measures were drawn up to prevent skin contamination in nuclear installations as well as contaminated skin was decontaminated from the personnel. By systematically applying these measures a significant level of success was achieved in preventing contamination in nuclear installations. Cases where more far-reaching chemical methods had to be used were kept to a minimum. (R.P.)

  9. New decontamination techniques generating a low volume of effluent

    This document presents some decontamination techniques, their principles, characteristics and advantages and provides references on the subject. Techniques as foam and spray foam decontamination, dry steam decontamination, electro-decontamination and gel decontamination are presented. A presentation of TRIADE, cleanup dismantling servicing, is also provided. (A.L.B.)

  10. New decontamination techniques generating a low volume of effluent

    NONE

    2002-07-01

    This document presents some decontamination techniques, their principles, characteristics and advantages and provides references on the subject. Techniques as foam and spray foam decontamination, dry steam decontamination, electro-decontamination and gel decontamination are presented. A presentation of TRIADE, cleanup dismantling servicing, is also provided. (A.L.B.)

  11. Pickering emulsions for skin decontamination.

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. PMID:27021875

  12. Dose and Risk Calculations for Decontamination of a Hot Cell Dose and Risk Calculations for Decontamination of a Hot Cell

    Transporting and processing of radioisotopes and irradiated targets inside hot cells generate a significant contamination. The majority of contamination comes from dispersion of radioactive materials during processing the samples after irradiation. Processing includes opening, extracting the irradiated samples, and preparing the samples in a shield prior to transportation. A model of dispersion of radioactive products inside the cell is postulated. Before decontaminating the cell, the expected dose received by the worker must be evaluated. A RESRAD-BUILD code is used in this study to calculate the dose and the corresponding risk. The calculated dose received during the decontamination process is more than the permissible dose and many proposals are presented in the study to decrease the level of received doses

  13. Specific decontamination methods: water nozzle, cavitation erosion

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel

  14. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency

  15. The effect of communication during mass decontamination

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlot, Richard

    2013-01-01

    Purpose – Reports from small-scale incidents in which decontamination was conducted suggest that a successful communication strategy is vital in order to increase public compliance with, and reduce public anxiety about, decontamination. However, it has not been possible to examine public behaviour during large scale incidents involving decontamination. The aim of the research reported here was to examine the relationship between people’s positive perceptions of responding agencies...

  16. Public experiences of mass casualty decontamination

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2012-01-01

    In this article, we analyze feedback from simulated casualties who took part in field exercises involving mass decontamination, to gain an understanding of how responder communication can affect people’s experiences of and compliance with decontamination. We analyzed questionnaire data gathered from 402 volunteers using the framework approach, to provide an insight into the public’s experiences of decontamination and how these experiences are shaped by the actions of emergency responders. Fac...

  17. Decontamination efficiency of selected locally produced detergents

    The efficiency was tested of 32 different detergents in the decontamination of PVC floorings and plastic concretes. Radionuclides 85Sr, 137Cs separately and in mixtures were used for contamination. The samples were contaminated with aqueous soulutions of radionuclides and then decontaminated using 1% solutions of the individual detergents. All studied detergents reduce the initial level of contamination by 50 to 90%, this also in decontamination under static conditions. (M.D.)

  18. Soil decontamination at Rocky Flats Plant

    A description is given of work being done at Rocky Flats Plant (RFP) to decontaminate soil contaminated with plutonium-239. How the contamination came about is described, as well as what has been done to contain it while decontamination methods are being developed. The purpose of the work is to decontaminate the soil so that it can be returned to the site instead of having to package, ship, and store it

  19. Geographic assistance of decontamination strategy elaboration

    Those who elaborates the strategy of decontamination of vast territories is to take into consideration the heterogeneity of such elements of landscape as relief, lithology, humidity and types of soils and, vegetation, both on local and regional level. Geographic assistance includes evaluation of efficacy of decontamination technologies in different natural conditions, identification of areas of their effective application and definition of ecological damage, estimation of balances of the radionuclides in the landscapes to create background of the decontamination strategy

  20. Cold atmospheric plasma decontamination against nosocomial bacteria

    Klämpfl , Tobias Gabriel

    2014-01-01

    Nosocomial pathogens are a considerable public threat. In order to limit their spread, cold atmospheric plasma (CAP) was investigated as new alternative to common decontamination strategies. During my work I developed a Surface micro-discharge (SMD) electrode system, characterized the CAP generated at ambient air conditions, studied its decontaminating behavior against nosocomial bacteria such as Clostridium difficile endospores and revealed factors influencing the decontamination. All in all...

  1. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    Chad W Stratilo; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in ...

  2. Decontamination of protective clothing against radioactive contamination

    The aim of this study is to describe the experimental results of external surface mechanical decontamination of the studied materials forming selected suits. Seven types of personal protective suits declaring protection against radioactive aerosol contamination in different price ranges were selected for decontamination experiments. The outcome of this study is to compare the efficiency of a double-step decontamination process on various personal protective suits against radioactive contamination. A comparison of the decontamination effectiveness for the same type of suit, but for the different chemical mixtures (140La in a water-soluble or in a water-insoluble compound), was performed. (authors)

  3. Proceedings of the concrete decontamination workshop

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors

  4. Proceedings of the concrete decontamination workshop

    Halter, J.M.; Sullivan, R.G.; Currier, A.J.

    1980-05-28

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors.

  5. Handbook of radioactive contamination and decontamination

    The objective of this book is to present a comprehensive picture of the fundamentals of general decontamination of solid surfaces and water. This concerns primarily decontamination of the operational facilities in nuclear power plants equipped with pressure water reactors, and decontamination of the equipment systems in radiochemical laboratories and nuclear medicine departments. Other special decontamination branches of current interest are also dealt with briefly. In common other branches of applied science and technology, the art of decontamination is being continuously enriched by the progress achieved in a variety of relevant scientific disciplines, and it employs the advances in the practice. To keep pace with the rapidly developing technology, and to prevent a lagging art of decontamination from becoming a limiting factor in the further development of nuclear energetics and other utilization of radionuclides, it seems that for some time to come main trends in the development of decontamination will include: development and use of new decontamination methods; utilization of progressive elements of automation and robotics; development and use of such decontamination formulations as would minimize the volume of radioactive wastes and that would produce wastes in a form in which they could be either easily further treated or safely disposed of without any undue risk of endangering human health or polluting human environment. (author). refs.; figs.; tabs

  6. Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks

    The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO2 pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams

  7. Decontamination Technology Development for Nuclear Research Facilities

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  8. Advanced remote decontamination techniques reduce costs and radiation doses

    A highly contaminated cell in the Pacific Northwest Laboratory's (PNL) 324 Building Radiochemical Engineering Facilities was recently decontaminated using a series of remote and contact techniques. The approach used in decontaminating the cell was very successful: It resulted in an 87% lower radiation dose to workers and a cost saving of 39% compared with a hands-on procedure used in another cell 2 yr earlier. Eight cycles of remote decontamination, combining use of an alkaline cleaner foam spray and pressurized water rinse, preceded manned entry. Initial radiation readings in cell C, averaging 50 rad/h, were first reduced to 2 and $1033/m2 of cell surface area. This paper is part of a larger effort sponsored by the U.S. Department of Energy's Surplus Facilities Management Program to clean out six radioactive cells and to dismantle PNL's pilot-scale radioactive liquid-fed ceramic melter. In this program, numerous other advanced techniques are being developed and are proving valuable, particularly in lowering radiation doses

  9. R and D of remote decontamination technique in reactor building (2-(1)-1) towards the decommissioning of Fukushima Daiichi Nuclear Power Plant. Results of examinations of contaminated samples at JAEA hot laboratories

    Due to the massive earthquake and tsunami on March 11, 2011, and the following severe accident at the Fukushima Daiichi Nuclear Power Plant, concrete surfaces within the reactor buildings were exposed to radioactive liquid and vapor phase contaminants. In order to clarify the situation of this contamination in the reactor buildings of Units 1, 2 and 3, selected samples were transported to the Fuels Monitoring Facility in the Oarai Engineering Center of JAEA where they were subjected to analysis to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. In particular, penetration of radiocesium in the surface coatings layer and sub-surface concrete was evaluated. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. The localized penetration of contamination in the concrete floors was found to be confined within a millimeter of the surface of the coating layer of some millimeters. (author)

  10. Magnetic separation for soil decontamination

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology

  11. Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada

    The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document

  12. Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada

    C. M. Obi

    2000-12-01

    The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document.

  13. Garigliano Nuclear Power Plant, Italy: Decontamination and Rearranging of Reactor Canal and Spent Fuel Pool

    Garigliano nuclear power plant was a 506 MW(th), first generation, dual cycle BWR. It started operation in 1964 and finally shut down in 1978, following the discovery of serious damage to a secondary steam generator. This section describes decontamination activities carried out in 1991–1993 in preparation for safe enclosure of Garigliano reactor building.1 Activities were carried out after completion of spent fuel transport off-site (1985–1987). A schematic of the spent fuel pool and adjacent areas is provided. Decontamination activities included the following: (a) Agitation and resuspension of pool sediments using water jets and water filtration. (b) Lowering of water level and parallel decontamination of pool walls with high pressure water jets of approximately 700 kg/cm2. (c) Removal, decontamination and interim storage on gangways of equipment located on the pool south-east wall. (d) Removal, decontamination and storage of the fuel transport container platform. (e) Removal of four fuel racks to their pool wall bearings, decontamination and transfer to the fresh fuel room. (f) Decontamination of the vessel head platform, removal from the reactor canal, brushing and coating to allow preservation and fixing of loose contamination. Eventually, this component was placed back in the reactor canal. (g) Construction in the reactor canal of an interim structure supporting fuel racks. At the completion of the work, this structure was dismounted, decontaminated and removed. (h) Removal of fuel racks (five at a time) to their pool wall bearings, decontamination and interim storage in the reactor canal. (i) Gradual lowering of the pool water level to some 50 cm from the pool floor and parallel decontamination of fixed structures and walls. (j) Discovery by visual inspection and radiological checks, of activated components on the floor of the pool. Retrieval of all this material, segmentation as needed, temporary storage in containers and later transfer to the high

  14. Recent advances in Canadian decontamination technologies

    From 1973 to 1994, 15 full- and one sub-system decontaminations of CANDU®reactors were carried out using CAN-DECON™ and CAN-DEREM Plus™ processes. The CAN-DECON™ process was developed in the late 1960s and was initially applied in Nuclear Power Demonstration Reactor and Gentilly-1 Nuclear Generating Station on a trial basis, before it was applied as full-system decontamination at Douglas Point in 1975. The decontaminations of the CANDU® reactors, although successful, did highlight some short-comings of the process, and the CAN-DEREM™ and CAN-DEREM Plus™ processes were developed to address these. This paper presents a brief review of the previous decontamination of CANDU® reactors, discussing some key process issues (e.g., carbon steel corrosion, waste volume and low decontamination factors). The paper reviews advances in these decontamination processes, focusing on several major improvements to the process. These include the development of CAN-DEREM™ and CAN-DEREM Plus™ processes to improve process effectiveness, reduction in carbon steel corrosion by use of an effective corrosion inhibitor and the development of a reducing agent to improve process effectiveness. The paper also provides an overview of some of the recent application of the decontamination processes at Chalk River Laboratories, and recent decontamination process qualification for a CANDU® reactor. (author)

  15. Decontamination manual of RI handling laboratory

    Based on experiences in Japan Atomic Energy Research Institute (JAERI), the essential and practical knowledge of radioactive contamination and its decontamination, and the method and procedure of floor decontamination are described for researcher and managing person in charge of handling radioisotopes (RI) in RI handling laboratories. Essential knowledge concerns the uniqueness of solid surface contamination derived from RI half lives and quantities, surface contamination density limit, and mode/mechanism of contamination. The principle of decontamination is a single conduct with recognition of chemical form of the RI under use. As the practical knowledge, there are physical and chemical methods of solid surface decontamination. The latter involves use of inorganic acids, chelaters and surfactants. Removal and replacement of contaminated solid like floor material are often effective. Distribution mapping of surface contamination can be done by measuring the radioactivity in possibly contaminated areas, and is useful for planning of effective decontamination. Floor surface decontamination is for the partial and spread areas of the floor. It is essential to conduct the decontamination with reagent from the highly to less contaminated areas. Skin decontamination with either neutral detergent or titanium oxide is also described. (N.I.)

  16. The 3rd power unit roofing decontamination

    The most features of the 3rd power unit (PU) roofing decontamination are described: 1) the most active materials were thrown into the 4th PU ruins before the Ukrytie construction completion; 2) the decontamination was fulfilled using remote-controlled mechanisms and manual devices (the main part). 6 figs.; 1 tab

  17. Chemically reducing decontamination method for radioactive metal

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  18. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION SYSTEM

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the activities performed during FY98 and describes the planned activities for FY99. Accomplishments for FY98 include identifying and selecting decontamination, the screening of potential characterization technologies, development of minimum performance factors for the decontamination technology, and development and identification of Applicable, Relevant and Appropriate Regulations (ARARs).

  19. Testing and evaluation of eight decontamination chemicals

    This report covers experimental work comparing eight different decontamination chemicals. Seven of these chemicals have some novelty, or are not currently in use at the ICPP. The eighth is a common ICPP decontamination reagent used as a baseline for effective comparison. Decontamination factors, waste generation values, and corrosion rates are tabulated for these chemicals. Recommendations are given for effective methods of non-sodium or low-sodium decontamination chemicals. The two most effective chemical for decontamination found in these test were a dilute hydrofluoric and nitric acid (HF/HNO3) mixture and a fluoroboric acid solution. The fluoroboric acid solution (1 molar) was by far the most effective decontamination reagent, but suffered the problem of generating significant final calcine volume. The HF/HNO3 solution performed a very good decontamination of the SIMCON coupons while generating only small amounts of calcine volume. Concentration variables were also tested, and optimized for these two solutions. Several oxidation/reduction decon chemical systems were also tested. These systems were similar to the TURCO 4502 and TURCO 4521 solutions used for general decontamination at the ICPP. A low sodium alternative, nitric acid/potassium permanganate, to the ''high sodium'' TURCO 4502 was tested extensively, optimized and recommended for general ICPP use. A reductive chemical solution, oxalic acid/nitric acid was also shown to have significant advantages

  20. Cost effectiveness of dilute chemical decontamination

    The basic principles of dilute chemical decontamination are described, as well as the method of application. Methods of computing savings in radiation dose and costs are presented, with results from actual experience and illustrative examples. It is concluded that dilute chemical decontamination is beneficial in many cases. It reduces radiation exposure of workers, saves money, and simplifies maintenance work

  1. Project gnome decontamination and decommissioning plan

    The document presents the operational plan for conducting the final decontamination and decommissioning work at the site of the first U.S. nuclear detonation designed specifically for peaceful purposes and the first underground event on the Plowshare Program to take place outside the Nevada Test Site. The plan includes decontamination and decommissioning procedures, radiological guidelines, and the NV concept of operations

  2. PND fuel handling decontamination: facilities and techniques

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at Ontario Hydro's Pickering Nuclear Division. This paper presents an overview of the set up and techniques used for decontamination in the PND Fuel Handling Maintenance Facility and the effectiveness of each. (author). 1 tab., 9 figs

  3. Electrochemical decontamination system for actinide processing gloveboxes

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  4. Decontamination of Steam Generator tube using Abrasive Blasting Technology

    As a part of a technology development of volume reduction and self disposal for large metal waste project, We at KAERI and our Sunkwang Atomic Energy Safety (KAES) subcontractor colleagues are demonstrating radioactively contaminated steam generator tube by abrasive blasting technology at Kori-1 NPP. A steam generator is a crucial component in a PWR (pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary waste-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tube, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be cause of tube leakage, more and more steam generators are replaced today. Only in Korea, already 2 of them are replaced and will be replaced in the near future. The retired 300 ton heavy Steam generator was stored at the storage waste building of Kori NPP site. The steam generator waste has a large volume, so that it is necessary to reduce its volume by decontamination. A waste reduction effect can be obtained through decontamination of the inner surface of a steam generator. Therefore, it is necessary to develop an optimum method for decontamination of the inner surface of bundle tubes. The dry abrasive blasting is a very interesting technology for the realization of three-dimensional microstructures in brittle materials like glass or silicon. Dry abrasive blasting is applicable to most surface materials except those that might be shattered by the abrasive. It is most effective on flat surface and because the abrasive is sprayed and can also applicable on 'hard to reach' areas such as inner tube ceilings or behind equipment. Abrasive decontamination techniques have been applied in several countries, including Belgium, the CIS, France, Germany, Japan, the UK and the USA

  5. Decontamination and decommissioning of nuclear facilities

    The objectives of this coordinated research programme (CRP) were to promote the exchange of information on the practical experience by Member States in decontamination and decommissioning. The scope of the programme included several areas of decontamination and decommissioning rather than focusing on a single aspect of it, in line with recommendation of the experts who participated in Phase 1 of the CRP. Experts felt that this format would generate better awareness of decontamination and decommissioning and would be more effective vehicle for the exchange of information by stimulating broader discussion on all aspects of decontamination and decommissioning. Special emphasis was given to the development of principles and methodologies to facilitate decommissioning and to the new methods and techniques for optimization of decontamination and disassembly of equipment. Refs, figs, tabs

  6. Decontamination and modification of liquid scintillators

    A new technique for decontaminating and recyling used liquid scintillator (LS) is discussed. A modification of hydrophobic scintillator for use with aqueous samples is also described. Both aliphatic and aromatic based LS (Dioxane and Tritol) are effectively decontaminated by extraction with NaOH. A single extraction gives a decontamination factor (DF) of about 90%. Thus 3-4 such extractions decontaminate the LS to background level. Toluene scintillator is unsuitable for aqueous samples because it does not hold water. However, it can be solubilised by alcohol. This LS is decontaminated by separating two phases with excess of water. Recovered LS after proper dilutions gives about 96% efficiency with respect to fresh LS. In all the systems studied generation of active waste ranges from 12-47% depending upon the activity present in the sample. (H.K.)

  7. Psychosocial considerations for mass decontamination

    Mass exposure to explosions, infectious agents, food-borne illnesses, chemicals or radiological materials may require mass decontamination that have critical psychosocial implications for the public and for both traditional and non-traditional responders in terms of impact and of response. Five main issues are common to mass decontamination events: (i) perception, (ii) somatisation, (iii) media role and communication, (iv) information sharing, (v) behavioural guidance and (vi) organisational issues. Empirical evidence is drawn from a number of cases, including Chernobyl; Goiania, Brazil; the sarin gas attack in Tokyo; the anthrax attacks in the USA; Three Mile Island; and by features of the 2003 severe acute respiratory syndrome pandemic. In this paper, a common platform for mass casualty management is explored and suggestions for mass interventions are proposed across the complete event timeline, from pre-event threat and warning stages through to the impact and reconstruction phases. Implication for responders, health care and emergency infrastructure, public behaviour, screening processes, risk communication and media management are described. (authors)

  8. Concrete decontamination and demolition methods

    The US Department of Energy (DOE), Division of Environmental Control Technology, requested Nuclear Energy Services to prepare a handbook for the decontamination and decommissioning (D and D) of DOE-owned and commercially-owned radioactive facilities. the objective of the handbook is to provide the nuclear industry with guidance on the state-of-the-art methods and equipment available for decommissioning and to provide the means to estimate decommissioning costs and environmental impact. The methods available for concrete decontamination and demolition are summarized to provide an overview of some of the state-of-the-art techniques to be discussed at this workshop. The pertinent information on each method will include the selection factors such as the rate of performance in terms of concrete removal per unit time (cubic yards per day), manpower required by craft, unit cost (dollars per cubic yard) and the advantages and disadvantages. The methods included in this overview are those that have been routinely used in nuclear and nonnuclear applications or demonstrated in field tests. These methods include controlled blasting, wrecking ball or slab, backhoe mounted ram, flame torch, thermic lance, rock splitter, demolition compound, sawing, core stitch drilling, explosive cutting, paving breaker and power chisel, drill and spall, scarifying, water cannon and grinding

  9. Decontamination Technology Development for Nuclear Research Facilities

    The originative CO2 pellet blasting equipment was developed by improving additional components such as feed screw, idle roller and air-lock feeder to clear up the problems of freezing and discontinuity of blasting and by adopting pneumatically operated vacuum suction head and vacuum cup to prevent recontamination by collecting contaminant particulates simultaneously with the decontamination. The optimum decontamination process was established according to the kind of materials such as metal, concrete and plastic and the type of contaminants such as particulate, fixed chemical compound and oil. An excellent decontamination performances were verified by means of the lab-scale hot test with radioactive specimen and the technology demonstration in IMEF hot cell. The PFC dry decontamination equipment applicable to the surface contaminated with high radioactive particulate was developed. This equipment consists of the unit processes such as spray, collection, filtration and dry distillation designed originatively applicable to inside of dry hot cell. Through the demonstration of PFC spray decontamination process in IMEF hot cell, we secured on-site applicability and the decontamination efficiency more than 90 %. We investigated the characteristics of dismantled metal waste melting and the radionuclide(Co, Cs, U) distribution into ingot and slag by melting decontamination experiments using electric arc melter. We obtained the decontamination factors greater than 100 for Cs and of 10∼100 for uranium. The pilot scale(200 kg/batch) demonstration for melting decontamination was carried out successfully using high temperature melting facility at KAERI. The volume reduction factor of 1/7 and the economical feasibility of the melting decontamination were verified.

  10. Decontamination

    Contamination is the presence of radioactive substances in or on the materials, human body or other places where it is undesirable or could be harmful. Contamination in nuclear installation may occur during normal operation or due to occurrences of incident or accident. Contamination may result in external as well as internal exposure of the radiation workers. External exposure is from the deposited activity in or on the surfaces. Internal exposure is either due to inhalation of resuspended activity or due to skin absorption through cross contamination and failure of protective barriers or inadvertent ingestion, by mouth due to wrong hygienic habits. To prevent contamination in nuclear installations, efforts are to be made at each stage i.e., design, construction, commissioning, operation, maintenance and decommissioning