WorldWideScience

Sample records for 21cm angular power

  1. Detecting the 21cm Forest in the 21 cm Power Spectrum

    Ewall-Wice, Aaron; Mesinger, Andrei; Hewitt, Jacqueline

    2013-01-01

    Measurements of the 21 cm brightness temperature at high redshift are expected to yield tremendous insight into the nature of the first stars and black holes. A first generation of experiments is already underway, seeking a first detection. The brightness temperature fluctuations to be measured, also contain absorption features in the spectra of high redshift radio sources, the 21 cm forest. We describe a new technique for constraining the radio loud population of active galactic nuclei at high redshift by measuring the imprint of the 21 cm forest on the 21 cm power spectrum. We analytically relate the 21 cm forest power spectrum to the optical depth power spectrum and the radio loud luminosity function. Using semi-numeric simulations of the intergalactic medium and a semi-empirical source population, we show that the 21 cm forest dominates a distinctive region of k-space, $k \\gtrsim 0.5 \\Mpci$, allowing for the simultaneous determination of the intergalactic medium's thermal properties and the radio loud pop...

  2. Foregrounds in Wide-Field Redshifted 21 cm Power Spectra

    Thyagarajan, Nithyanandan; Bowman, Judd D; Barry, N; Beardsley, A P; Bernardi, G; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Dillon, Joshua S; Emrich, D; Ewall-Wice, A; Feng, L; Goeke, R; Greenhill, L J; Hazelton, B J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kim, Han-Seek; Kittiwisit, P; Kratzenberg, E; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Neben, A R; Oberoi, D; Offringa, A R; Ord, S M; Paul, Sourabh; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Tingay, S J; Trott, C M; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2015-01-01

    Detection of 21 cm emission of HI from the epoch of reionization, at redshifts z>6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the HI signal arise from power received far away from the primary field of view. We identify diffu...

  3. Violation of statistical isotropy and homogeneity in the 21-cm power spectrum

    Shiraishi, Maresuke; Kamionkowski, Marc; Raccanelli, Alvise

    2016-01-01

    Most inflationary models predict primordial perturbations to be statistically isotropic and homogeneous. Cosmic-Microwave-Background (CMB) observations, however, indicate a possible departure from statistical isotropy in the form of a dipolar power modulation at large angular scales. Alternative models of inflation, beyond the simplest single-field slow-roll models, can generate a small power asymmetry, consistent with these observations. Observations of clustering of quasars show, however, agreement with statistical isotropy at much smaller angular scales. Here we propose to use off-diagonal components of the angular power spectrum of the 21-cm fluctuations during the dark ages to test this power asymmetry. We forecast results for the planned SKA radio array, a future radio array, and the cosmic-variance-limited case as a theoretical proof of principle. Our results show that the 21-cm-line power spectrum will enable access to information at very small scales and at different redshift slices, thus improving u...

  4. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology

    Jacobs, Daniel C; Trott, C M; Dillon, Joshua S; Pindor, B; Sullivan, I S; Pober, J C; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Emrich, D; Ewall-Wice, A; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kim, H S; Kratzenberg, E; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Neben, A R; Thyagarajan, N; Oberoi, D; Offringa, A R; Ord, S M; Paul, S; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Tegmark, M; Tingay, S J; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2016-01-01

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple, independent, data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregr...

  5. Violation of statistical isotropy and homogeneity in the 21-cm power spectrum

    Shiraishi, Maresuke; Muñoz, Julian B.; Kamionkowski, Marc; Raccanelli, Alvise

    2016-05-01

    Most inflationary models predict primordial perturbations to be statistically isotropic and homogeneous. Cosmic microwave background (CMB) observations, however, indicate a possible departure from statistical isotropy in the form of a dipolar power modulation at large angular scales. Alternative models of inflation, beyond the simplest single-field slow-roll models, can generate a small power asymmetry, consistent with these observations. Observations of clustering of quasars show, however, agreement with statistical isotropy at much smaller angular scales. Here, we propose to use off-diagonal components of the angular power spectrum of the 21-cm fluctuations during the dark ages to test this power asymmetry. We forecast results for the planned SKA radio array, a future radio array, and the cosmic-variance-limited case as a theoretical proof of principle. Our results show that the 21-cm line power spectrum will enable access to information at very small scales and at different redshift slices, thus improving upon the current CMB constraints by ˜2 orders of magnitude for a dipolar asymmetry and by ˜1 - 3 orders of magnitude for a quadrupolar asymmetry case.

  6. Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case

    Harker, Geraint; Zaroubi, Saleem; Bernardi, Gianni; Brentjens, Michiel A.; de Bruyn, A. G.; Ciardi, Benedetta; Jelić, Vibor; Koopmans, Leon V. E.; Labropoulos, Panagiotis; Mellema, Garrelt; Offringa, André; Pandey, V. N.; Pawlik, Andreas H.; Schaye, Joop; Thomas, Rajat M.; Yatawatta, Sarod

    2010-07-01

    One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation from the EoR. The sensitivity with which this power spectrum can be estimated depends on the level of thermal noise and sample variance, and also on the systematic errors arising from the extraction process, in particular from the subtraction of foreground contamination. We model the extraction process using realistic simulations of the cosmological signal, the foregrounds and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted 21-cm power spectrum. Detection of emission from the EoR should be possible within 360 h of observation with a single station beam. Integrating for longer, and synthesizing multiple station beams within the primary (tile) beam, then enables us to extract progressively more accurate estimates of the power at a greater range of scales and redshifts. We discuss different observational strategies which compromise between depth of observation, sky coverage and frequency coverage. A plan in which lower frequencies receive a larger fraction of the time appears to be promising. We also study the nature of the bias which foreground fitting errors induce on the inferred power spectrum and discuss how to reduce and correct for this bias. The angular and line-of-sight power spectra have different merits in this respect, and we suggest considering them separately in the analysis of LOFAR data.

  7. The visibility based Tapered Gridded Estimator (TGE) for the redshifted 21-cm power spectrum

    Choudhuri, Samir; Chatterjee, Suman; Ali, Sk Saiyad; Roy, Nirupam; Ghosh, Abhik

    2016-01-01

    We present the improved visibility based Tapered Gridded Estimator (TGE) for the power spectrum of the diffuse sky signal. The visibilities are gridded to reduce the computation, and tapered through a convolution to suppress the contribution from the outer regions of the telescope's field of view. The TGE also internally estimates the noise bias, and subtracts this out to give an unbiased estimate of the power spectrum. An earlier version of the 2D TGE for the angular power spectrum $C_{\\ell}$ is improved and then extended to obtain the 3D TGE for the power spectrum $P({\\bf k})$ of the 21-cm brightness temperature fluctuations. Analytic formulas are also presented for predicting the variance of the binned power spectrum. The estimator and its variance predictions are validated using simulations of $150 \\, {\\rm MHz}$ GMRT observations. We find that the estimator accurately recovers the input model for the 1D Spherical Power Spectrum $P(k)$ and the 2D Cylindrical Power Spectrum $P(k_\\perp,k_\\parallel)$, and the...

  8. Constraining cosmology and ionization history with combined 21 cm power spectrum and global signal measurements

    Liu, Adrian

    2015-01-01

    Improvements in current instruments and the advent of next-generation instruments will soon push observational 21 cm cosmology into a new era, with high significance measurements of both the power spectrum and the mean ("global") signal of the 21 cm brightness temperature. In this paper we use the recently commenced Hydrogen Epoch of Reionization Array as a worked example to provide forecasts on astrophysical and cosmological parameter constraints. In doing so we improve upon previous forecasts in a number of ways. First, we provide updated forecasts using the latest best-fit cosmological parameters from the Planck satellite, exploring the impact of different Planck datasets on 21 cm experiments. We also show that despite the exquisite constraints that other probes have placed on cosmological parameters, the remaining uncertainties are still large enough to have a non-negligible impact on upcoming 21 cm data analyses. While this complicates high-precision constraints on reionization models, it provides an ave...

  9. Predictions for the 21cm-galaxy cross-power spectrum observable with LOFAR and Subaru

    Vrbanec, Dijana; Jelić, Vibor; Jensen, Hannes; Zaroubi, Saleem; Fernandez, Elizabeth R; Ghosh, Abhik; Iliev, Ilian T; Kakiichi, Koki; Koopmans, Léon V E; Mellema, Garrelt

    2016-01-01

    The 21cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. With upcoming observations of 21cm emission from the EoR with the Low Frequency Array (LOFAR), and of high redshift Lyalpha emitters (LAEs) with Subaru's Hyper Suprime Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z=6.6. In this paper we use N-body + radiative transfer (both for continuum and Lyalpha photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21cm-galaxy cross-power spectrum, as well as to predict the 2D 21cm-galaxy cross-power spectrum expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21cm-galaxy cross-power spectrum show clear anti-correlation on s...

  10. Predictions for the 21 cm-galaxy cross-power spectrum observable with LOFAR and Subaru

    Vrbanec, Dijana; Ciardi, Benedetta; Jelić, Vibor; Jensen, Hannes; Zaroubi, Saleem; Fernandez, Elizabeth R.; Ghosh, Abhik; Iliev, Ilian T.; Kakiichi, Koki; Koopmans, Léon V. E.; Mellema, Garrelt

    2016-03-01

    The 21 cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. With upcoming observations of 21 cm emission from the EoR with the Low Frequency Array (LOFAR), and of high-redshift Ly α emitters with Subaru's Hyper Suprime-Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z = 6.6. In this paper, we use N-body + radiative transfer (both for continuum and Ly α photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21 cm-galaxy cross-power spectrum and cross-correlation function, as well as to predict the 2D 21 cm-galaxy cross-power spectrum and cross-correlation function expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21 cm-galaxy cross-power spectrum show clear anti-correlation on scales larger than ˜60 h-1 Mpc (corresponding to k ˜ 0.1 h Mpc-1), with levels of significance p = 0.003 at z = 6.6 and p = 0.08 at z = 7.3. On smaller scales, instead, the signal is completely contaminated. On the other hand, our 21 cm-galaxy cross-correlation function is strongly contaminated by noise on all scales, since the noise is no longer being separated by its k modes.

  11. Power spectrum extraction for redshifted 21-cm epoch of reionization experiments: the LOFAR case

    Harker, Geraint; Bernardi, Gianni; Brentjens, Michiel A; de Bruyn, A G; Ciardi, Benedetta; Jelic, Vibor; Koopmans, Leon V E; Labropoulos, Panagiotis; Mellema, Garrelt; Offringa, Andre; Pandey, V N; Pawlik, Andreas H; Schaye, Joop; Thomas, Rajat M; Yatawatta, Sarod

    2010-01-01

    One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation from the EoR. The sensitivity with which this power spectrum can be estimated depends on the level of thermal noise and sample variance, and also on the systematic errors arising from the extraction process, in particular from the subtraction of foreground contamination. We model the extraction process using realistic simulations of the cosmological signal, the foregrounds and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted 21-cm power spectrum. Detection of emission from the EoR should be possible within 360 hours of observation with a single station beam. Integrating for longer, and synthesizing multiple station beams within the primary (tile) beam, then enables us to extract progressively more accurate estimates of the power at a greater range of scales and redshifts. We discuss different obs...

  12. Probing reionization with the cross power spectrum of 21 cm and near-infrared radiation backgrounds

    Mao, Xiao-Chun

    2014-01-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from the high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then the intensity of NIR background is estimated by collecting emission from stars in the first-light galaxies. On large scales, we find the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolut...

  13. PAPER-64 Constraints on Reionization: The 21cm Power Spectrum at z=8.4

    Ali, Zaki S; Zheng, Haoxuan; Pober, Jonathan C; Liu, Adrian; Aguirre, James E; Bradley, Richard F; Bernardi, Gianni; Carilli, Chris L; Cheng, Carina; DeBoer, David R; Dexter, Matthew R; Grobbelaar, Jasper; Horrell, Jasper; Jacobs, Daniel C; Klima, Pat; MacMahon, David H E; Maree, Matthys; Moore, David F; Razavi, Nima; Stefan, Irina I; Walbrugh, William P; Walker, Andre

    2015-01-01

    In this paper, we report new limits on 21cm emission from cosmic reionization based on a 135-day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. This work extends the work presented in Parsons et al. (2014) with more collecting area, a longer observing period, improved redundancy-based calibration, optimal fringe-rate filtering, and improved power-spectral analysis using optimal quadratic estimators. The result is a new $2\\sigma$ upper limit on $\\Delta^{2}(k)$ of (22.4 mK)$^2$ in the range $0.15 < k < 0.5h\\ {\\rm Mpc}^{-1}$ at $z = 8.4$. This represents a three-fold improvement over the previous best upper limit. As we discuss in more depth in a forthcoming paper (Pober et al. 2015, in prep), this upper limit supports and extends previous evidence against extremely cold reionization scenarios. We conclude with a discussion of implications for future 21cm reionization experiments, including the newly fun...

  14. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-08-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 h of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 h Mpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  15. First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating.

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-05-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 hMpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  16. Confirmation of Wide-Field Signatures in Redshifted 21 cm Power Spectra

    Thyagarajan, Nithyanandan; Bowman, Judd D; Barry, N; Beardsley, A P; Bernardi, G; Briggs, F; Cappallo, R J; Carroll, P; Deshpande, A A; de Oliveira-Costa, A; Dillon, Joshua S; Ewall-Wice, A; Feng, L; Greenhill, L J; Hazelton, B J; Hernquist, L; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kim, Han-Seek; Kittiwisit, P; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Neben, A R; Oberoi, D; Offringa, A R; Ord, S M; Paul, Sourabh; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Tingay, S J; Trott, C M; Wayth, R B; Webster, R L; Williams, A; Williams, C L; Wyithe, J S B

    2015-01-01

    We confirm our recent prediction of the "pitchfork" foreground signature in power spectra of high-redshift 21 cm measurements, wherein the interferometer is sensitive to large-scale structure on all baselines. This is due to the inherent response of a wide-field instrument and is characterized by enhanced power from foreground emission in Fourier modes adjacent to those considered to be most sensitive to the cosmological HI signal. In our recent paper, many signatures from the simulation which predicted this feature were validated against Murchison Widefield Array (MWA) data but this key pitchfork signature was close to the noise level. In this paper, we improve the data sensitivity through coherent averaging of 12 independent snapshots with identical instrument settings, and provide the first confirmation of the prediction with a signal-noise ratio > 10. This wide-field effect can be mitigated by careful antenna designs that suppress sensitivity near the horizon. Simple models for antenna apertures proposed ...

  17. First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating

    Ewall-Wice, A; Hewitt, J N; Loeb, A; Mesinger, A; Neben, A R; Offringa, A R; Tegmark, M; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Emrich, D; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hazelton, B J; Hurley-Walker, N; Johnston-Hollit, M; Jacobs, Daniel C; Kaplan, D L; Kasper, J C; Kim, HS; Kratzenberg, E; Lenc, E; Line, J; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Thyagarajan, Nithyanandan; Oberoi, D; Ord, S M; Paul, S; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tingay, S J; Trott, C M; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2016-01-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most se...

  18. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations

    Vedantham, H. K.; Koopmans, L. V. E.

    2016-05-01

    Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low-frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EoR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well-known wedge-like structure in the cylindrical (two-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.

  19. Possibility of precise measurement of the cosmological power spectrum with a dedicated survey of 21 cm emission after reionization.

    Loeb, Abraham; Wyithe, J Stuart B

    2008-04-25

    Measurements of the 21 cm line emission by residual cosmic hydrogen after reionization can be used to trace the power spectrum of density perturbations through a significant fraction of the observable volume of the Universe. We show that a dedicated 21 cm observatory could probe a number of independent modes that is 2 orders of magnitude larger than currently available, and enable a cosmic-variance limited detection of the signature of a neutrino mass approximately 0.05 eV. The evolution of the linear growth factor with redshift could also constrain exotic theories of gravity or dark energy to an unprecedented precision. PMID:18518181

  20. Measuring the 21 cm Power Spectrum from the Epoch of Reionization with the Giant Metrewave Radio Telescope

    Paciga, Gregory

    The Epoch of Reionization (EoR) is the transitional period in the universe's evolution which starts when the first luminous sources begin to ionize the intergalactic medium for the first time since recombination, and ends when the most of the hydrogen is ionized by about a redshift of 6. Observations of the 21cm emission from hyperfine splitting of the hydrogen atom can carry a wealth of cosmological information from this epoch since the redshifted line can probe the entire volume. The GMRT-EoR experiment is an ongoing effort to make a statistical detection of the power spectrum of 21cm neutral hydrogen emission due to the patchwork of neutral and ionized regions present during the transition. In this work we detail approximately five years of observations at the GMRT, comprising over 900 hours, and an in-depth analysis of about 50 hours which have lead to the first upper limits on the 21cm power spectrum in the range z = 8.1 to 9.2. This includes a concentrated radio frequency interference (RFI) mitigation campaign around the GMRT area, a novel method for removing broadband RFI with a singular value decomposition, and calibration with a pulsar as both a phase and polarization calibrator. Preliminary results from 2011 showed a 2-sigma upper limit to the power spectrum of (70 mK). 2. However, we find that foreground removalstrategies tend to reduce the cosmological signal significantly, and modeling this signal loss is crucial for interpretation of power spectrum measurements. Using a simulated signal to estimate the transfer function of the real 21cm signal through the foreground removal procedure, we are able to find the optimal level of foreground removal and correct for the signal loss. Using this correction, we report a 2-sigma upper limit of (248 mK)2 at k = 0.5 h Mpc-1.

  1. Upper Limits on the 21 cm Power Spectrum at z = 5.9 from Quasar Absorption Line Spectroscopy

    Pober, Jonathan C; Mesinger, Andrei

    2016-01-01

    We present upper limits on the 21 cm power spectrum at $z = 5.9$ calculated from the model-independent limit on the neutral fraction of the intergalactic medium of $x_{\\rm H{\\small I }} < 0.06 + 0.05\\ (1\\sigma)$ derived from dark pixel statistics of quasar absorption spectra. Using 21CMMC, a Markov chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of $\\Delta^2(k) < 10$ to $20\\ {\\rm mK}^2$ over a range of $k$ from 0.5 to $2.0\\ h{\\rm Mpc}^{-1}$, with the exact limit dependent on the sampled $k$ mode. This limit can be used as a null test for 21 cm experiments: a detection of power at $z=5.9$ in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.

  2. LOFAR insights into the epoch of reionization from the cross power spectrum of 21cm emission and galaxies

    Wiersma, R P C; Thomas, R M; Harker, G J A; Zaroubi, S; Bernardi, G; Brentjens, M; de Bruyn, A G; Daiboo, S; Jelic, V; Kazemi, S; Koopmans, L V E; Labropoulos, P; Martinez, O; Mellema, G; Offringa, A; Pandey, V N; Schaye, J; Veligatla, V; Vedantham, H; Yatawatta, S

    2012-01-01

    Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross power spectrum between galaxies and the 21cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find that the 21cm emission is initially correlated with halos on large scales (> 30 Mpc), anti-correlated on intermediate (~ 5 Mpc), and uncorrelated on small (< 3 Mpc) scales. This picture quickly changes as reionization proceeds and the two fields become anti-correlated on large scales. The normalization of the cross power spectrum can be used to set constraints on the average neutral fraction in the intergalactic medium and its shape can be a tool to study the topology of reionization. When we apply a drop-out technique to select galaxies and add to the 21cm signal the noise expected from the LOFAR telescope, we find that while the normalization of the cross power spectrum remains a useful tool for probing reionizati...

  3. Constraining High Redshift X-ray Sources with Next Generation 21 cm Power Spectrum Measurements

    Ewall-Wice, Aaron; Mesinger, Andrei; Dillon, Joshua S; Liu, Adrian; Pober, Jonathan

    2015-01-01

    We use the Fisher matrix formalism and semi-numerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high redshift intergalactic medium. Incorporating observations between $z=5$ and $z=25$, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing $\\lesssim 10\\%$ constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated "wedge" or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of ...

  4. Multi-redshift limits on the 21cm power spectrum from PAPER

    Pober, Daniel C Jacobs Jonathan C; Aguirre, James E; Ali, Zaki; Bowman, Judd; Bradley, Richard F; Carilli, Chris L; DeBoer, David R; Dexter, Matthew R; Gugliucci, Nicole E; Klima, Pat; Liu, Adrian; MacMahon, Dave H E; Manley, Jason R; Moore, David F; Stefan, Irina I; Walbrugh, William P

    2014-01-01

    The epoch of reionization power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) telescope which place new limits on the HI power spectrum over the redshift range of $7.5Power spectra at different points across the redshift range r...

  5. Effects of Antenna Beam Chromaticity on Redshifted 21~cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    Thyagarajan, Nithyanandan; DeBoer, David; Bowman, Judd; Ewall-Wice, Aaron; Neben, Abraham; Patra, Nipanjana

    2016-01-01

    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21~cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a framework to set cosmologica...

  6. Calibration Requirements for Detecting the 21 cm Epoch of Reionization Power Spectrum and Implications for the SKA

    Barry, N; Sullivan, I; Morales, M F; Pober, J C

    2016-01-01

    21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalog completeness, the calibration introduces contamination in otherwise foreground-free power spectrum modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalog and the...

  7. What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization

    A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km2 collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km2 of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.

  8. Effects of Antenna Beam Chromaticity on Redshifted 21 cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana

    2016-07-01

    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc‑1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.

  9. Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA

    Barry, N.; Hazelton, B.; Sullivan, I.; Morales, M. F.; Pober, J. C.

    2016-09-01

    21 cm epoch of reionization (EoR) observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum (PS) analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalogue completeness, the calibration introduces contamination in otherwise foreground-free PS modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalogue and the inherent spectral smoothness of antennas, and that this has significant implications for the instrumental design of the SKA (Square Kilometre Array) and other future EoR observatories.

  10. What Next-Generation 21 cm Power Spectrum Measurements Can Teach Us About the Epoch of Reionization

    Pober, Jonathan C; Dillon, Joshua S; Aguirre, James E; Bowman, Judd D; Bradley, Richard F; Carilli, Chris L; DeBoer, David R; Hewitt, Jacqueline N; Jacobs, Daniel C; McQuinn, Matthew; Morales, Miguel F; Parsons, Aaron R; Tegmark, Max; Werthimer, Dan J

    2013-01-01

    A number of experiments are currently working towards a measurement of the 21 cm signal from the Epoch of Reionization. Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by a next-generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We consider an instrument modeled after the $\\sim 0.1 \\rm{km}^2$ collecting area Hydrogen Epoch of Reionization Array (HERA) concept design, and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described "wedge" footprint in $k$-space. Uncertainties in the reionization history are accounted for using a series of simulations which vary the ionizing...

  11. Statistics of the epoch of reionization (EoR) 21-cm signal -- II. The evolution of the power spectrum error-covariance

    Mondal, Rajesh; Majumdar, Suman

    2016-01-01

    The EoR 21-cm signal is expected to become highly non-Gaussian as reionization progresses. This severely affects the error-covariance of the EoR 21-cm power spectrum which is important for predicting the prospects of a detection with ongoing and future experiments. Most earlier works have assumed that the EoR 21-cm signal is a Gaussian random field where (1) the error variance depends only on the power spectrum and the number of Fourier modes in the particular $k$ bin, and (2) the errors in the different $k$ bins are uncorrelated. Here we use an ensemble of simulated 21-cm maps to analysis the error-covariance at various stages of reionization. We find that even at the very early stages of reionization ($\\bar{x}_{\\rm HI} \\sim 0.9 $) the error variance significantly exceeds the Gaussian predictions at small length-scales ($k > 0.5 \\,{\\rm Mpc}^{-1}$) while they are consistent at larger scales. The errors in most $k$ bins (both large and small scales), are however found to be correlated. Considering the later st...

  12. 21 cm Intensity Mapping

    Peterson, Jeffrey B; Ansari, Reza; Bandura, Kevin; Bond, Dick; Bunton, John; Carlson, Kermit; Chang, Tzu-Ching; DeJongh, Fritz; Dobbs, Matt; Dodelson, Scott; Darhmaoui, Hassane; Gnedin, Nick; Halpern, Mark; Hogan, Craig; Goff, Jean-Marc Le; Liu, Tiehui Ted; Legrouri, Ahmed; Loeb, Avi; Loudiyi, Khalid; Magneville, Christophe; Marriner, John; McGinnis, David P; McWilliams, Bruce; Moniez, Marc; Palanque-Delabruille, Nathalie; Pasquinelli, Ralph J; Pen, Ue-Li; Rich, Jim; Scarpine, Vic; Seo, Hee-Jong; Sigurdson, Kris; Seljak, Uros; Stebbins, Albert; Steffen, Jason H; Stoughton, Chris; Timbie, Peter T; Vallinotto, Alberto; Wyithe, Stuart; Yeche, Christophe

    2009-01-01

    Using the 21 cm line, observed all-sky and across the redshift range from 0 to 5, the large scale structure of the Universe can be mapped in three dimensions. This can be accomplished by studying specific intensity with resolution ~ 10 Mpc, rather than via the usual galaxy redshift survey. The data set can be analyzed to determine Baryon Acoustic Oscillation wavelengths, in order to address the question: 'What is the nature of Dark Energy?' In addition, the study of Large Scale Structure across this range addresses the questions: 'How does Gravity effect very large objects?' and 'What is the composition our Universe?' The same data set can be used to search for and catalog time variable and transient radio sources.

  13. Empirical Covariance Modeling for 21 cm Power Spectrum Estimation: A Method Demonstration and New Limits from Early Murchison Widefield Array 128-Tile Data

    Dillon, Joshua S; Hewitt, Jacqueline N; Tegmark, Max; Barry, N; Beardsley, A P; Bowman, J D; Briggs, F; Carroll, P; de Oliveira-Costa, A; Ewall-Wice, A; Feng, L; Greenhill, L J; Hazelton, B J; Hernquist, L; Hurley-Walker, N; Jacobs, D C; Kim, H S; Kittiwisit, P; Lenc, E; Line, J; Loeb, A; McKinley, B; Mitchell, D A; Morales, M F; Offringa, A R; Paul, S; Pindor, B; Pober, J C; Procopio, P; Riding, J; Sethi, S; Shankar, N Udaya; Subrahmanyan, R; Sullivan, I; Thyagarajan, Nithyanandan; Tingay, S J; Trott, C; Wayth, R B; Webster, R L; Wyithe, S; Bernardi, G; Cappallo, R J; Deshpande, A A; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Srivani, K S; Williams, A; Williams, C L

    2015-01-01

    The separation of the faint cosmological background signal from bright astrophysical foregrounds remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect. Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the "EoR window" from foreground contamination. We present a method to infer the covariance of foreground residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of Delta^2(k) < 3.7 x 10^4 mK^2 at comovin...

  14. The effect of non-Gaussianity on error predictions for the Epoch of Reionization (EoR) 21-cm power spectrum

    Mondal, Rajesh; Majumdar, Suman; Bera, Apurba; Acharyya, Ayan

    2014-01-01

    The EoR 21-cm signal is expected to become increasingly non-Gaussian as reionization proceeds. We have used semi-numerical simulations to study how this affects the error predictions for the EoR 21-cm power spectrum. We expect $SNR=\\sqrt{N_k}$ for a Gaussian random field where $N_k$ is the number of Fourier modes in each $k$ bin. We find that the effect of non-Gaussianity on the $SNR$ does not depend on $k$. Non-Gaussianity is important at high $SNR$ where it imposes an upper limit $[SNR]_l$. It is not possible to achieve $SNR > [SNR]_l$ even if $N_k$ is increased. The value of $[SNR]_l$ falls as reionization proceeds, dropping from $\\sim 500$ at $\\bar{x}_{{\\rm HI}} = 0.8-0.9$ to $\\sim 10$ at $\\bar{x}_{{\\rm HI}} = 0.15$. For $SNR \\ll [SNR]_l$ we find $SNR = \\sqrt{N_k}/A$ with $A \\sim 1.5 - 2.5$, roughly consistent with the Gaussian prediction. We present a fitting formula for the $SNR$ as a function of $N_k$, with two parameters $A$ and $[SNR]_l$ that have to be determined using simulations. Our results are r...

  15. Bayesian semi-blind component separation for foreground removal in interferometric 21-cm observations

    Zhang, Le; Karakci, Ata; Korotkov, Andrei; Sutter, P M; Timbie, Peter T; Tucker, Gregory S; Wandelt, Benjamin D

    2016-01-01

    We present in this paper a new Bayesian semi-blind approach for foreground removal in observations of the 21-cm signal with interferometers. The technique, which we call HIEMICA (HI Expectation-Maximization Independent Component Analysis), is an extension of the Independent Component Analysis (ICA) technique developed for two-dimensional (2D) CMB maps to three-dimensional (3D) 21-cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from signal based on the diversity of their power spectra. Only relying on the statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21-cm signal and, the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21-cm intensity mapping observations. Based on ...

  16. Lensing of 21-cm Fluctuations by Primordial Gravitational Waves

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-01-01

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is ...

  17. 21-cm Intensity Mapping with FAST

    Smoot, George F.; Debono, Ivan

    2014-01-01

    This paper describes a program to map large-scale cosmic structures on the largest possible scales by using FAST\\cite{Nan:2011} to make a 21-cm (red-shifted) Intensity Map of the sky for the range $0.5 < z < 2.5$. The goal is to map to the angular and spectral resolution of FAST a large swath of the sky by simple drift scans with a transverse set of beams. This approach would be competitive to galaxy surveys and could be completed before SKA could begin a more detailed and precise effort. The...

  18. 21-cm Intensity Mapping with FAST

    Smoot, George F

    2014-01-01

    This paper describes a program to map large-scale cosmic structures on the largest possible scales by using FAST\\cite{Nan:2011} to make a 21-cm (red-shifted) Intensity Map of the sky for the range $0.5 < z < 2.5$. The goal is to map to the angular and spectral resolution of FAST a large swath of the sky by simple drift scans with a transverse set of beams. This approach would be competitive to galaxy surveys and could be completed before SKA could begin a more detailed and precise effort. The science would be to measure the large-scale structure on the size of the baryon acoustic oscillations and larger scale and the results would be competitive to its contemporary observations and signficant. The survey would be uniquely sensitive to the potential very large-scale features from GUT-scale Inflation and complementary to the CMB observations.

  19. On the Direct Detectability of the Cosmic Dark Ages 21-cm Emission from Minihalos

    Iliev, I T; Ferrara, A; Martel, H; Iliev, Ilian T.; Shapiro, Paul R.; Ferrara, Andrea; Martel, Hugo

    2002-01-01

    In the standard Cold Dark Matter (CDM) theory of structure formation, virialized minihalos (with T_{vir}6), during the cosmic ``dark ages.'' The hydrogen in these minihalos, the first nonlinear baryonic structures to form in the universe, is mostly neutral and sufficiently hot and dense to emit strongly at the 21-cm line. We calculate the emission from individual minihalos and the radiation background contributed by their combined effect. Minihalos create a ``21-cm forest'' of emission lines. We predict that the angular fluctuations in this 21-cm background should be detectable with the planned LOFAR and SKA radio arrays, thus providing a direct probe of structure formation during the ``dark ages.'' Such a detection will serve to confirm the basic CDM paradigm while constraining the background cosmology parameters, the shape of the power-spectrum of primordial density fluctuations, the onset and duration of the reionization epoch, and the conditions which led to the first stars and quasars. We present results...

  20. Characterizing the diffuse foreground for redshifted 21-cm HI signal: GMRT 153 MHz observation

    Detailed knowledge of the foreground structure on the angular scales of ∼ 1° to sub-arcminute will be essential for extracting the redshifted 21-cm HI signal from the observed data. We have presented results from the GMRT observations at 153 MHz, which was used to characterize the statistical properties of the diffuse radiation, using the multi-frequency angular power spectrum, across sub-degree angular scales. We have detected fluctuations in the diffuse emission on angular scales greater than 10' in a low galactic latitude area. The total intensity angular spectrum shows a power-law behaviour, while the detection of diffuse emission at smaller angular scales is limited by residual point sources. Also, we have estimated the level of foreground contamination

  1. Combining galaxy and 21-cm surveys

    Cohn, J. D.; White, Martin; Chang, Tzu-Ching; Holder, Gil; Padmanabhan, Nikhil; Doré, Olivier

    2016-04-01

    Acoustic waves travelling through the early Universe imprint a characteristic scale in the clustering of galaxies, QSOs and intergalactic gas. This scale can be used as a standard ruler to map the expansion history of the Universe, a technique known as baryon acoustic oscillations (BAO). BAO offer a high-precision, low-systematics means of constraining our cosmological model. The statistical power of BAO measurements can be improved if the `smearing' of the acoustic feature by non-linear structure formation is undone in a process known as reconstruction. In this paper, we use low-order Lagrangian perturbation theory to study the ability of 21-cm experiments to perform reconstruction and how augmenting these surveys with galaxy redshift surveys at relatively low number densities can improve performance. We find that the critical number density which must be achieved in order to benefit 21-cm surveys is set by the linear theory power spectrum near its peak, and corresponds to densities achievable by upcoming surveys of emission line galaxies such as eBOSS and DESI. As part of this work, we analyse reconstruction within the framework of Lagrangian perturbation theory with local Lagrangian bias, redshift-space distortions, {k}-dependent noise and anisotropic filtering schemes.

  2. Combining galaxy and 21cm surveys

    Cohn, J D; Chang, Tzu-Ching; Holder, Gil; Padmanabhan, Nikhil; Doré, Olivier

    2015-01-01

    Acoustic waves traveling through the early Universe imprint a characteristic scale in the clustering of galaxies, QSOs and inter-galactic gas. This scale can be used as a standard ruler to map the expansion history of the Universe, a technique known as Baryon Acoustic Oscillations (BAO). BAO offer a high-precision, low-systematics means of constraining our cosmological model. The statistical power of BAO measurements can be improved if the `smearing' of the acoustic feature by non-linear structure formation is undone in a process known as reconstruction. In this paper we use low-order Lagrangian perturbation theory to study the ability of $21\\,$cm experiments to perform reconstruction and how augmenting these surveys with galaxy redshift surveys at relatively low number densities can improve performance. We find that the critical number density which must be achieved in order to benefit $21\\,$cm surveys is set by the linear theory power spectrum near its peak, and corresponds to densities achievable by upcomi...

  3. Global 21cm signal experiments: a designer's guide

    Liu, Adrian; Tegmark, Max; Loeb, Abraham

    2013-01-01

    [Abridged] The spatially averaged global spectrum of the redshifted 21cm line has generated much experimental interest, for it is potentially a direct probe of the Epoch of Reionization and the Dark Ages. Since the cosmological signal here has a purely spectral signature, most proposed experiments have little angular sensitivity. This is worrisome because with only spectra, the global 21cm signal can be difficult to distinguish from foregrounds such as Galactic synchrotron radiation, as both are spectrally smooth and the latter is orders of magnitude brighter. We establish a mathematical framework for global signal data analysis in a way that removes foregrounds optimally, complementing spectra with angular information. We explore various experimental design trade-offs, and find that 1) with spectral-only methods, it is impossible to mitigate errors that arise from uncertainties in foreground modeling; 2) foreground contamination can be significantly reduced for experiments with fine angular resolution; 3) mo...

  4. Baryonic acoustic oscillations from 21cm intensity mapping: the Square Kilometre Array case

    Villaescusa-Navarro, Francisco; Viel, Matteo

    2016-01-01

    We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometer Array (SKA) instrument, makes it undetectable at redshifts $z\\gtrsim1$. We however demonstrate that the BAO peak can still be detected in the radial 21cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21cm power spectrum. We systematically investigate the signal-to-noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected nois...

  5. Lensing of 21-cm Fluctuations by Primordial Gravitational Waves

    Book, Laura; Schmidt, Fabian

    2011-01-01

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r ~ 10^{-9} - far smaller than those currently accessible - to be probed.

  6. Lensing of 21-cm Fluctuations by Primordial Gravitational Waves

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-01

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r˜10-9—far smaller than those currently accessible—to be probed.

  7. Lensing of 21-cm fluctuations by primordial gravitational waves.

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed. PMID:23003237

  8. Elucidating Dark Energy with Future 21 cm Observations

    Kohri, Kazunori; Sekiguchi, Toyokazu; Takahashi, Tomo

    2016-01-01

    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  9. Constraining dark matter through 21-cm observations

    Valdes, M.; Ferrara, A.; Mapelli, M.; Ripamonti, E.

    2007-01-01

    Beyond reionization epoch cosmic hydrogen is neutral and can be directly observed through its 21-cm line signal. If dark matter (DM) decays or annihilates, the corresponding energy input affects the hydrogen kinetic temperature and ionized fraction, and contributes to the Ly alpha background. The ch

  10. How accurately can 21cm tomography constrain cosmology?

    Mao, Yi; Tegmark, Max; McQuinn, Matthew; Zaldarriaga, Matias; Zahn, Oliver

    2008-07-01

    There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6noise, to uncertainties in the reionization history, and to the level of contamination from astrophysical foregrounds. We derive simple analytic estimates for how various assumptions affect an experiment’s sensitivity, and we find that the modeling of reionization is the most important, followed by the array layout. We present an accurate yet robust method for measuring cosmological parameters that exploits the fact that the ionization power spectra are rather smooth functions that can be accurately fit by 7 phenomenological parameters. We find that for future experiments, marginalizing over these nuisance parameters may provide constraints almost as tight on the cosmology as if 21 cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to ΔΩk≈0.0002 and Δmν≈0.007eV, and give a 4σ detection of the spectral index running predicted by the simplest inflation models.

  11. Prospects of probing quintessence with HI 21-cm intensity mapping survey

    Hossain, Azam; Sarkar, Tapomoy Guha; Sen, Anjan A

    2016-01-01

    We investigate the prospect of constraining scalar field dark energy models using HI 21-cm intensity mapping surveys. We consider a wide class of coupled scalar field dark energy models whose predictions about the background cosmological evolution are different from the $\\Lambda$CDM predictions by a few percent. We find that these models can be statistically distinguished from $\\Lambda$CDM through their imprint on the 21-cm angular power spectrum. At the fiducial $z= 1.5$, corresponding to a radio interferometric observation of the post-reionization HI 21 cm observation at frequency $568 \\rm MHz$, these models can infact be distinguished from the $\\Lambda$CDM model at $ {\\rm SNR }> 3 \\sigma$ level using a 10,000 hr radio observation distributed over 40 pointings of a SKA1-mid like radio-telescope. We also show that tracker models are more likely to be ruled out in comparison with $\\Lambda$CDM than the thawer models. Future radio observations can be instrumental in obtaining tighter constraints on the paramete...

  12. Prospects of probing quintessence with HI 21-cm intensity mapping survey

    Hussain, Azam; Thakur, Shruti; Sarkar, Tapomoy Guha; Sen, Anjan A.

    2016-09-01

    We investigate the prospect of constraining scalar field dark energy models using HI 21-cm intensity mapping surveys. We consider a wide class of coupled scalar field dark energy models whose predictions about the background cosmological evolution are different from the ΛCDM predictions by a few percent. We find that these models can be statistically distinguished from ΛCDM through their imprint on the 21-cm angular power spectrum. At the fiducial z = 1.5, corresponding to a radio interferometric observation of the post-reionization HI 21 cm observation at frequency 568 MHz, these models can infact be distinguished from the ΛCDM model at SNR > 3σ level using a 10,000 hr radio observation distributed over 40 pointings of a SKA1-mid like radio-telescope. We also show that tracker models are more likely to be ruled out in comparison with ΛCDM than the thawer models. Future radio observations can be instrumental in obtaining tighter constraints on the parameter space of dark energy models and supplement the bounds obtained from background studies.

  13. On the Detectability of the Cosmic Dark Ages 21-cm Lines from Minihalos

    Martel, H; Iliev, I T; Scannapieco, E S; Ferrara, A; Martel, Hugo; Shapiro, Paul R.; Iliev, Ilian T.; Scannapieco, Evan; Ferrara, Andrea

    2003-01-01

    In the standard Cold Dark Matter (CDM) theory of structure formation, virialized minihalos (with T_vir = 10,000 K or less) form in abundance at high redshift (z > 6), during the cosmic "dark ages." The hydrogen in these minihalos, the first nonlinear baryonic structures to form in the universe, is mostly neutral and sufficiently hot and dense to emit strongly at the 21-cm line. We calculate the emission from individual minihalos and the radiation background contributed by their combined effect. Minihalos create a "21-cm forest" of emission lines. We predict that the angular fluctuations in this 21-cm background should be detectable with the planned LOFAR and SKA radio arrays, thus providing a direct probe of structure formation during the "dark ages." Such a detection will serve to confirm the basic CDM paradigm while constraining the background cosmology parameters, the shape of the power-spectrum of primordial density fluctuations, the onset and duration of the reionization epoch, and the conditions which l...

  14. Precision measurement of cosmic magnification from 21 cm emitting galaxies

    Zhang, Pengjie; /Fermilab; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

    2005-04-01

    We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

  15. Redundant Array Configurations for 21 cm Cosmology

    Dillon, Joshua S

    2016-01-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays--in which the same mode on the sky is sampled by many antenna pairs--for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA's can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both ins...

  16. The foreground wedge and 21-cm BAO surveys

    Seo, Hee-Jong; Hirata, Christopher M.

    2016-03-01

    Redshifted H I 21 cm emission from unresolved low-redshift large-scale structure is a promising window for ground-based baryon acoustic oscillations (BAO) observations. A major challenge for this method is separating the cosmic signal from the foregrounds of Galactic and extra-Galactic origins that are stronger by many orders of magnitude than the former. The smooth frequency spectrum expected for the foregrounds would nominally contaminate only very small k∥ modes; however, the chromatic response of the telescope antenna pattern at this wavelength to the foreground introduces non-smooth structure, pervasively contaminating the cosmic signal over the physical scales of our interest. Such contamination defines a wedged volume in Fourier space around the transverse modes that is inaccessible for the cosmic signal. In this paper, we test the effect of this contaminated wedge on the future 21-cm BAO surveys using Fisher information matrix calculation. We include the signal improvement due to the BAO reconstruction technique that has been used for galaxy surveys and test the effect of this wedge on the BAO reconstruction as a function of signal to noises and incorporate the results in the Fisher matrix calculation. We find that the wedge effect expected at z = 1-2 is very detrimental to the angular diameter distances: the errors on angular diameter distances increased by 3-4.4 times, while the errors on H(z) increased by a factor of 1.5-1.6. We conclude that calibration techniques that clean out the foreground `wedge' would be extremely valuable for constraining angular diameter distances from intensity-mapping 21-cm surveys.

  17. Constraining dark matter through 21-cm observations

    Valdés, M.; Ferrara, A.; Mapelli, M.; Ripamonti, E.

    2007-05-01

    Beyond reionization epoch cosmic hydrogen is neutral and can be directly observed through its 21-cm line signal. If dark matter (DM) decays or annihilates, the corresponding energy input affects the hydrogen kinetic temperature and ionized fraction, and contributes to the Lyα background. The changes induced by these processes on the 21-cm signal can then be used to constrain the proposed DM candidates, among which we select the three most popular ones: (i) 25-keV decaying sterile neutrinos, (ii) 10-MeV decaying light dark matter (LDM) and (iii) 10-MeV annihilating LDM. Although we find that the DM effects are considerably smaller than found by previous studies (due to a more physical description of the energy transfer from DM to the gas), we conclude that combined observations of the 21-cm background and of its gradient should be able to put constrains at least on LDM candidates. In fact, LDM decays (annihilations) induce differential brightness temperature variations with respect to the non-decaying/annihilating DM case up to ΔδTb = 8 (22) mK at about 50 (15) MHz. In principle, this signal could be detected both by current single-dish radio telescopes and future facilities as Low Frequency Array; however, this assumes that ionospheric, interference and foreground issues can be properly taken care of.

  18. Precise measurements of inflationary features with 21 cm observations

    Xu, Yidong; Chen, Xuelei

    2016-01-01

    Future observations of 21~cm emission using HI intensity mapping will enable us to probe the large scale structure of the Universe over very large survey volumes within a reasonable observation time. We demonstrate that the three-dimensional information contained in such surveys will be an extremely powerful tool in searching for features that were imprinted in the primordial power spectrum and bispectrum during inflation. Here we focus on the "resonant" and "step" inflation models, and forecast the potential of upcoming 21~cm experiments to detect these inflationary features in the observable power- and bispectrum. We find that the full scale Tianlai experiment and the Square Kilometre Array (SKA) have the potential to improve on the sensitivity of current Cosmic Microwave Background (CMB) experiments by several orders of magnitude.

  19. The Future of Primordial Features with 21 cm Tomography

    Chen, Xingang; Münchmeyer, Moritz

    2016-01-01

    Detecting a deviation from a featureless primordial power spectrum of fluctuations would give profound insight into the physics of the primordial Universe. Depending on their nature, primordial features can either provide direct evidence for the inflation scenario or pin down details of the inflation model. Thus far, using the cosmic microwave background (CMB) we have only been able to put stringent constraints on the amplitude of features, but no significant evidence has been found for such signals. Here we explore the limit of the experimental reach in constraining such features using 21 cm tomography at high redshift. A measurement of the 21 cm power spectrum from the Dark Ages is generally considered as the ideal experiment for early Universe physics, with potentially access to a large number of modes. We consider three different categories of theoretically motivated models: the sharp feature models, resonance models, and standard clock models. We study the improvements on bounds on features as a function...

  20. Detailed modelling of the 21-cm forest

    Semelin, B.

    2016-01-01

    The 21-cm forest is a promising probe of the Epoch of Reionization. The local state of the intergalactic medium (IGM) is encoded in the spectrum of a background source (radio-loud quasars or gamma-ray burst afterglow) by absorption at the local 21-cm wavelength, resulting in a continuous and fluctuating absorption level. Small-scale structures (filaments and minihaloes) in the IGM are responsible for the strongest absorption features. The absorption can also be modulated on large scales by inhomogeneous heating and Wouthuysen-Field coupling. We present the results from a simulation that attempts to preserve the cosmological environment while resolving some of the small-scale structures (a few kpc resolution in a 50 h-1 Mpc box). The simulation couples the dynamics and the ionizing radiative transfer and includes X-ray and Lyman lines radiative transfer for a detailed physical modelling. As a result we find that soft X-ray self-shielding, Ly α self-shielding and shock heating all have an impact on the predicted values of the 21-cm optical depth of moderately overdense structures like filaments. A correct treatment of the peculiar velocities is also critical. Modelling these processes seems necessary for accurate predictions and can be done only at high enough resolution. As a result, based on our fiducial model, we estimate that LOFAR should be able to detect a few (strong) absorptions features in a frequency range of a few tens of MHz for a 20 mJy source located at z = 10, while the SKA would extract a large fraction of the absorption information for the same source.

  1. High redshift signatures in the 21 cm forest due to cosmic string wakes

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z∼>10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10−7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10−8 for the single frequency band case and 4.0 × 10−8 for the multi-frequency band case

  2. Detailed modelling of the 21-cm Forest

    Semelin, Benoit

    2015-01-01

    The 21-cm forest is a promising probe of the Epoch of Reionization. The local state of the intergalactic medium (IGM) is encoded in the spectrum of a background source (radio-loud quasars or gamma ray burst afterglow) by absorption at the local 21-cm wavelength, resulting in a continuous and fluctuating absorption level. Small-scale structures (filaments and minihaloes) in the IGM are responsible for the strongest absorption features. The absorption can also be modulated on large scales by inhomogeneous heating and Wouthuysen-Field coupling. We present the results from a simulation that attempts to preserve the cosmological environment while resolving some of the small-scale structures (a few kpc resolution in a 50 Mpc/h box). The simulation couples the dynamics and the ionizing radiative transfer and includes X-ray and Lyman lines radiative transfer for a detailed physical modelling. As a result we find that soft X-ray self-shielding, Lyman-alpha self-shielding and shock heating all have an impact on the pre...

  3. Gravitational Lensing of Pregalactic 21 cm Radiation

    Metcalf, R Benton

    2008-01-01

    Low-frequency radio observations of neutral hydrogen during and before the epoch of cosmic reionization will provide hundreds of quasi-independent source planes, each of precisely known redshift, if a resolution of ~ 1 arcminutes or better can be attained. These planes can be used to reconstruct the projected mass distribution of foreground material. A wide-area survey of 21 cm lensing would provide very sensitive constraints on cosmological parameters, in particular on dark energy. These are up to 20 times tighter than the constraints obtainable from comparably sized, very deep surveys of galaxy lensing although the best constraints come from combining data of the two types. Any radio telescope capable of mapping the 21cm brightness temperature with good frequency resolution (~ 0.05 MHz) over a band of width ~> 10 MHz should be able to make mass maps of high quality. If the reionization epoch is at z ~ 9 very large amounts of cosmological information will be accessible. The planned Square Kilometer Array (SK...

  4. Probing reionization with LOFAR using 21-cm redshift space distortions

    Jensen, Hannes; Mellema, Garrelt; Chapman, Emma; Abdalla, Filipe B; Iliev, Ilian T; Mao, Yi; Santos, Mario G; Shapiro, Paul R; Zaroubi, Saleem; Bernardi, G; Brentjens, M A; de Bruyn, A G; Ciardi, B; Harker, G J A; Jelić, V; Kazemi, S; Koopmans, L V E; Labropoulos, P; Martinez, O; Offringa, A R; Pandey, V N; Schaye, J; Thomas, R M; Veligatla, V; Vedantham, H; Yatawatta, S

    2013-01-01

    One of the most promising ways to study the epoch of reionization (EoR) is through radio observations of the redshifted 21-cm line emission from neutral hydrogen. These observations are complicated by the fact that the mapping of redshifts to line-of-sight positions is distorted by the peculiar velocities of the gas. Such distortions can be a source of error if they are not properly understood, but they also encode information about cosmology and astrophysics. We study the effects of redshift space distortions on the power spectrum of 21-cm radiation from the EoR using large scale $N$-body and radiative transfer simulations. We quantify the anisotropy introduced in the 21-cm power spectrum by redshift space distortions and show how it evolves as reionization progresses and how it relates to the underlying physics. We go on to study the effects of redshift space distortions on LOFAR observations, taking instrument noise and foreground subtraction into account. We find that LOFAR should be able to directly obse...

  5. Will point sources spoil 21 cm tomography?

    Liu, Adrian; Zaldarriaga, Matias

    2008-01-01

    21 cm tomography is emerging as a promising probe of the cosmological dark ages and the epoch of reionization, as well as a tool for observational cosmology in general. However, serious sources of foreground contamination must be subtracted for experimental efforts to be viable. In this paper, we focus on the removal of unresolved extragalactic point sources with smooth spectra, and evaluate how the residual foreground contamination after cleaning depends on instrumental and algorithmic parameters. A crucial but often ignored complication is that the synthesized beam of an interferometer array shrinks towards higher frequency, causing complicated frequency structure in each sky pixel as "frizz" far from the beam center contracts across unresolved radio sources. We find that current-generation experiments should nonetheless be able to clean out this points source contamination adequately, and quantify the instrumental and algorithmic design specifications required to meet this foreground challenge.

  6. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    Malloy, Matthew; Lidz, Adam

    2013-04-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the volume of the universe is neutral at z ~ 7, we find that a 500-tile MWA may directly identify as many as ~150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.

  7. Opening the 21cm EoR Window: Measurements of Foreground Isolation with PAPER

    Pober, Jonathan C; Aguirre, James E; Ali, Zaki; Bradley, Richard F; Carilli, Chris L; DeBoer, Dave; Dexter, Matthew; Gugliucci, Nicole E; Jacobs, Daniel C; MacMahon, Dave; Manley, Jason; Moore, David F; Stefan, Irina I; Walbrugh, William P

    2013-01-01

    We present new observations with the Precision Array for Probing the Epoch of Reionization (PAPER) with the aim of measuring the properties of foreground emission for 21cm Epoch of Reionization experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a "wedge"-like region of 2D (k-perendicular, k-parallel)-space, creating a window for cosmological studies at higher k-parallel values. We also find that the emission extends past the nominal edge of this wedge due to inherent spectral structure in the foregrounds themselves, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this "unsmooth" emission and image it. The resultant image shows an excess of power on large angular scales, but no emission can be clearly localized to any one region...

  8. The impact of point source subtraction residuals on 21 cm Epoch of Reionization estimation

    Trott, Cathryn M; Tingay, Steven J

    2012-01-01

    Precise subtraction of foreground sources is crucial for detecting and estimating 21cm HI signals from the Epoch of Reionization (EoR). We quantify how imperfect point source subtraction due to limitations of the measurement dataset yields structured residual signal in the dataset. We use the Cramer-Rao lower bound, as a metric for quantifying the precision with which a parameter may be measured, to estimate the residual signal in a visibility dataset due to imperfect point source subtraction. We then propagate these residuals into two metrics of interest for 21cm EoR experiments - the angular and two-dimensional power spectrum - using a combination of full analytic covariant derivation, analytic variant derivation, and covariant Monte Carlo simulations. This methodology differs from previous work in two ways: (1) it uses information theory to set the point source position error, rather than assuming a global root-mean-square error, and (2) it describes a method for propagating the errors analytically, thereb...

  9. 21 cm line bispectrum as a method to probe cosmic dawn and epoch of reionization

    Shimabukuro, Hayato; Yoshiura, Shintaro; Takahashi, Keitaro; Yokoyama, Shuichiro; Ichiki, Kiyotomo

    2016-05-01

    Redshifted 21 cm signal is a promising tool to investigate the state of intergalactic medium (IGM) in the cosmic dawn (CD) and epoch of reionization (EoR). In our previous work, we studied the variance and skewness of the 21 cm fluctuations to give a clear interpretation of the 21 cm power spectrum and found that skewness is a good indicator of the epoch when X-ray heating becomes effective. Thus, the non-Gaussian feature of the spatial distribution of the 21 cm signal is expected to be useful to investigate the astrophysical effects in the CD and EoR. In this paper, in order to investigate such a non-Gaussian feature in more detail, we focus on the bispectrum of the 21 cm signal. It is expected that the 21 cm brightness temperature bispectrum is produced by non-Gaussianity due to the various astrophysical effects such as the Wouthuysen-Field effect, X-ray heating and reionization. We study the various properties of 21 cm bispectrum such as scale dependence, shape dependence and redshift evolution. And also we study the contribution from each component of 21 cm bispectrum. We find that the contribution from each component has characteristic scale-dependent feature. In particular, we find that the bulk of the 21 cm bispectrum at z = 20 comes from the matter fluctuations, while in other epochs it is mainly determined by the spin and/or neutral fraction fluctuations and it is expected that we could obtain more detailed information on the IGM in the CD and EoR by using the 21 cm bispectrum in the future experiments, combined with the power spectrum and skewness.

  10. Studying the Sources of Cosmic Reionization with 21-cm Fluctuations

    Barkana, Rennan

    2008-01-01

    We explore the ability of measurements of the 21-cm power spectrum during reionization to enable the simultaneous reconstruction of the reionization history and the properties of the ionizing sources. For various sets of simulated 21-cm measurements, we perform maximum likelihood fits in order to constrain the reionization and galaxy formation histories. We employ a flexible six-parameter model that parametrizes the uncertainties in the properties of high-redshift galaxies. The computational speed needed is attained through the use of an analytical model that is in reasonable agreement with numerical simulations of reionization. We find that one-year observations with the MWA array should measure the cosmic ionized fraction to ~ 1% accuracy at the very end of reionization, and a few percent accuracy around the mid-point of reionization. The mean halo mass of the ionizing sources should be measureble to 5-10% accuracy when reionization is 2/3 of the way through, and to 20% accuracy throughout the central stage...

  11. The 21-cm emission from the reionization epoch: extended and point source foregrounds

    Di Matteo, Tiziana; Ciardi, Benedetta; Miniati, Francesco

    2004-12-01

    Fluctuations in the redshifted 21-cm emission from neutral hydrogen probe the epoch of reionization. We examine the observability of this signal and the impact of extragalactic foreground radio sources (both extended and point-like). We use cosmological simulations to predict the angular correlation functions of intensity fluctuations due to unresolved radio galaxies, cluster radio haloes and relics and free-free emission from the interstellar and intergalactic medium at the frequencies and angular scales relevant for the proposed 21-cm tomography. In accord with previous findings, the brightness temperature fluctuations due to foreground sources are much larger than those from the primary 21-cm signal at all scales. In particular, diffuse cluster radio emission, which has been previously neglected, provides the most significant foreground contamination. However, we show that the contribution to the angular fluctuations at scales θ>~ 1 arcmin is dominated by the spatial clustering of bright foreground sources. This excess can be removed if sources above flux levels S>~ 0.1 mJy (out to redshifts of z~ 1 and z~ 2 for diffuse and point sources, respectively) are detected and removed. Hence, efficient source removal may be sufficient to allow the detection of angular fluctuations in the 21-cm emission free of extragalactic foregrounds at θ>~ 1 arcmin. In addition, the removal of sources above S= 0.1 mJy also reduces the foreground fluctuations to roughly the same level as the 21-cm signal at scales θ<~ 1 arcmin. This should allow the substraction of the foreground components in frequency space, making it possible to observe in detail the topology and history of reionization.

  12. Distinctive 21-cm structures of the first stars, galaxies and quasars

    Yajima, Hidenobu; Li, Yuexing

    2014-12-01

    Observations of the redshifted 21-cm line with forthcoming radio telescopes promise to transform our understanding of the cosmic reionization. To unravel the underlying physical process, we investigate the 21-cm structures of three different ionizing sources - Population (Pop) III stars, the first galaxies and the first quasars - by using radiative transfer simulations that include both ionization of neutral hydrogen and resonant scattering of Lyα photons. We find that Pop III stars and quasars produce a smooth transition from an ionized and hot state to a neutral and cold state, because of their hard spectral energy distribution with abundant ionizing photons, in contrast to the sharp transition in galaxies. Furthermore, Lyα scattering plays a dominant role in producing the 21-cm signal because it determines the relation between hydrogen spin temperature and gas kinetic temperature. This effect, also called Wouthuysen-Field coupling, depends strongly on the ionizing source. It is strongest around galaxies, where the spin temperature is highly coupled to that of the gas, resulting in extended absorption troughs in the 21-cm brightness temperature. However, in the case of Pop III stars, the 21-cm signal shows both emission and absorption regions around a small H II bubble. For quasars, a large emission region in the 21-cm signal is produced, and the absorption region decreases as the size of the H II bubble becomes large due to the limited travelling time of photons. We predict that future surveys from large radio arrays, such as the Murchison Widefield Array, the Low Frequency Array and the Square Kilometre Array, might be able to detect the 21-cm signals of primordial galaxies and quasars, but possibly not those of Pop III stars, because of their small angular diameters.

  13. High redshift signatures in the 21 cm forest due to cosmic string wakes

    Tashiro, Hiroyuki [Physics Department, Arizona State University, Tempe, AZ, 85287 (United States); Sekiguchi, Toyokazu [Department of Physics and Astrophysics, Nagoya University, Nagoya, 464–8602 (Japan); Silk, Joseph, E-mail: hiroyuki.tashiro@asu.edu, E-mail: toyokazu.sekiguchi@nagoya-u.jp, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, Paris, 75014 (France)

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z∼>10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10{sup −7}. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10{sup −8} for the single frequency band case and 4.0 × 10{sup −8} for the multi-frequency band case.

  14. 21cm-line bispectrum as method to probe Cosmic Dawn and Epoch of Reionization

    Shimabukuro, Hayato; Takahashi, Keitaro; Yokoyama, Shuichiro; Ichiki, Kiyotomo

    2015-01-01

    Redshifted 21cm signal is a promising tool to investigate the state of intergalactic medium (IGM) in the Cosmic Dawn (CD) and Epoch of Reionization(EoR). In our previous work (Shimabukuro et al 2015), we studied the variance and skewness to give a clear interpretation of 21cm power spectrum and found that skewness is a good indicator of the epoch when X-ray heating becomes effective. Thus, the non-Gaussian feature of the spatial distribution of the 21cm signal is expected to be useful to investigate the astrophysical effects in the CD and EoR. In this paper, in order to investigate such a non-Gaussian feature in more detail, we focus on the bispectrum of the 21cm signal. It is expected that the 21cm brightness temperature bispectrum is produced by non-gaussianity due to the various astrophysical effects such as Wouthysen-Field (WF) effect, X-ray heating and reionization. We study the various properties of 21cm bispectrum such as scale dependence, shape dependence and redshift evolution. And also we study the ...

  15. Particle decay in the early universe: predictions for 21 cm

    Shchekinov, Yu. A.; Vasiliev, E. O.

    2006-01-01

    The influence of ultra-high energy cosmic rays (UHECRs) and decaying dark matter particles on the emission and absorption characteristics of neutral hydrogen in 21 cm at redshifts $z = 10-50$ is considered. In presence of UHECRs 21 cm can be seen in absorption with the brightness temperature $T_b=-(5-10)$ mK in the range $z=10-30$. Decayng particles can stimulate a 21 cm signal in emission with $T_b\\sim 50-60$ mK at $z =50$, and $T_b \\simeq 10$ mK at $z \\sim 20$. Characteristics of the fluctu...

  16. New HI 21-cm absorbers at low and intermediate redshifts

    Zwaan, M A; Péroux, C; Murphy, M T; Bouché, N; Curran, S J; Biggs, A D

    2015-01-01

    We present the results of a survey for intervening HI 21-cm absorbers at intermediate and low redshift (0180 K. A subset of our systems were also searched for OH absorption, but no detections were made.

  17. Particle decay in the early universe: predictions for 21 cm

    Shchekinov, Yu A; Shchekinov, Yu. A.

    2006-01-01

    The influence of ultra-high energy cosmic rays (UHECRs) and decaying dark matter particles on the emission and absorption characteristics of neutral hydrogen in 21 cm at redshifts $z = 10-50$ is considered. In presence of UHECRs 21 cm can be seen in absorption with the brightness temperature $T_b=-(5\\div 10)$ mK in the range $z=10-30$. Decayng particles can stimulate a 21 cm signal in emission with $T_b\\sim 50-60$~mK at $z =50$, and $T_b \\simeq 10$~mK at $z \\sim 20$. Observational possibilities to detect manifestations of UHECRs and/or decaying particles in 21 cm with the future radio telescopes (LOFAR, PAST and SKA), and to distinguish contributions from them are briefly discussed.

  18. The 21-cm Signal from the cosmological epoch of recombination

    Fialkov, A. [Departement de Physique, Ecole Normale Superieure, CNRS, 24 rue Lhomond, Paris, 75005 (France); Loeb, A., E-mail: anastasia.fialkov@phys.ens.fr, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, 60 Garden Street, MS-51, Cambridge, MA, 02138 (United States)

    2013-11-01

    The redshifted 21-cm emission by neutral hydrogen offers a unique tool for mapping structure formation in the early universe in three dimensions. Here we provide the first detailed calculation of the 21-cm emission signal during and after the epoch of hydrogen recombination in the redshift range of z ∼ 500–1,100, corresponding to observed wavelengths of 100–230 meters. The 21-cm line deviates from thermal equilibrium with the cosmic microwave background (CMB) due to the excess Lyα radiation from hydrogen and helium recombinations. The resulting 21-cm signal reaches a brightness temperature of a milli-Kelvin, orders of magnitude larger than previously estimated. Its detection by a future lunar or space-based observatory could improve dramatically the statistical constraints on the cosmological initial conditions compared to existing two-dimensional maps of the CMB anisotropies.

  19. Unveiling the nature of dark matter with high redshift 21 cm line experiments

    Evoli, Carmelo; Ferrara, Andrea

    2014-01-01

    Observations of the redshifted 21 cm line from neutral hydrogen will open a new window on the early Universe. By influencing the thermal and ionization history of the intergalactic medium (IGM), annihilating dark matter (DM) can leave a detectable imprint in the 21 cm signal. Building on the publicly available 21cmFAST code, we compute the 21 cm signal for a 10 GeV WIMP DM candidate. The most pronounced role of DM annihilations is in heating the IGM earlier and more uniformly than astrophysical sources of X-rays. This leaves several unambiguous, qualitative signatures in the redshift evolution of the large-scale ($k\\approx0.1$ Mpc$^{-1}$) 21 cm power amplitude: (i) the local maximum (peak) associated with IGM heating can be lower than the other maxima; (ii) the heating peak can occur while the IGM is in emission against the cosmic microwave background (CMB); (iii) there can be a dramatic drop in power (a global minimum) corresponding to the epoch when the IGM temperature is comparable to the CMB temperature. ...

  20. Constraining light gravitino mass with 21 cm line observation

    Oyama, Yoshihiko; Kawasaki, Masahiro

    2016-01-01

    We investigate how well we can constrain the mass of light gravitino m_3/2 by using future observations of 21 cm line fluctuations such as Square Kilometre Array (SKA) and Omniscope. Models with light gravitino with the mass m_3/2 < O(10) eV are quite interesting because they are free from the cosmological gravitino problem and consistent with many baryogenesis/leptogenesis scenarios. We evaluate expected constraints on the mass of light gravitino from the observations of 21 cm line, and show...

  1. How accurately can 21 cm tomography constrain cosmology?

    There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6k≅0.0002 and Δmν≅0.007 eV, and give a 4σ detection of the spectral index running predicted by the simplest inflation models.

  2. Reionization on large scales. IV. Predictions for the 21 cm signal incorporating the light cone effect

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H. [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Cen, R. [Department of Astrophysical Science, Princeton University, Princeton, NJ 08544 (United States); Loeb, A., E-mail: plaplant@andrew.cmu.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the 'light cone' effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h {sup –1}). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  3. Reionization on Large Scales IV: Predictions for the 21 cm signal incorporating the light cone effect

    La Plante, Paul; Natarajan, Aravind; Peterson, Jeffrey B; Trac, Hy; Cen, Renyue; Loeb, Abraham

    2013-01-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the "light cone" effect, which incorporates evolution of the 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc/h). The inclusion of the light cone effect leads to a relative increase of 2-3 orders of magnitude in the 21 cm signal power spectrum on large scales (k < 0.1 h/Mpc). When we modify the power spectrum to more closely reflect real-world measurement capabilities, we find that the light cone effect leads to a relative decrease of order unity at all scales. The light cone effect also introduces an anisotropy parallel to the line of sight. By decomposing the 3D power spectrum into components perpendicular and parallel to the line of sight, we find that parallel modes contribute about an order ...

  4. The 21 cm signature of cosmic string wakes

    We discuss the signature of a cosmic string wake in 21cm redshift surveys. Since 21cm surveys probe higher redshifts than optical large-scale structure surveys, the signatures of cosmic strings are more manifest in 21cm maps than they are in optical galaxy surveys. We find that, provided the tension of the cosmic string exceeds a critical value (which depends on both the redshift when the string wake is created and the redshift of observation), a cosmic string wake will generate an emission signal with a brightness temperature which approaches a limiting value which at a redshift of z+1 = 30 is close to 400 mK in the limit of large string tension. The signal will have a specific signature in position space: the excess 21cm radiation will be confined to a wedge-shaped region whose tip corresponds to the position of the string, whose planar dimensions are set by the planar dimensions of the string wake, and whose thickness (in redshift direction) depends on the string tension. For wakes created at zi+1 = 103, then at a redshift of z+1 = 30 the critical value of the string tension μ is Gμ = 6 × 10−7, and it decreases linearly with redshift (for wakes created at the time of equal matter and radiation, the critical value is a factor of two lower at the same redshift). For smaller tensions, cosmic strings lead to an observable absorption signal with the same wedge geometry

  5. Simulating the 21 cm signal from reionization including non-linear ionizations and inhomogeneous recombinations

    Hassan, Sultan; Davé, Romeel; Finlator, Kristian; Santos, Mario G.

    2016-04-01

    We explore the impact of incorporating physically motivated ionization and recombination rates on the history and topology of cosmic reionization and the resulting 21 cm power spectrum, by incorporating inputs from small-volume hydrodynamic simulations into our semi-numerical code, SIMFAST21, that evolves reionization on large scales. We employ radiative hydrodynamic simulations to parametrize the ionization rate Rion and recombination rate Rrec as functions of halo mass, overdensity and redshift. We find that Rion scales superlinearly with halo mass ({R_ion}∝ M_h^{1.41}), in contrast to previous assumptions. Implementing these scalings into SIMFAST21, we tune our one free parameter, the escape fraction fesc, to simultaneously reproduce recent observations of the Thomson optical depth, ionizing emissivity and volume-averaged neutral fraction by the end of reionization. This yields f_esc=4^{+7}_{-2} per cent averaged over our 0.375 h-1 Mpc cells, independent of halo mass or redshift, increasing to 6 per cent if we also constrain to match the observed z = 7 star formation rate function. Introducing superlinear Rion increases the duration of reionization and boosts small-scale 21 cm power by two to three times at intermediate phases of reionization, while inhomogeneous recombinations reduce ionized bubble sizes and suppress large-scale 21 cm power by two to three times. Gas clumping on sub-cell scales has a minimal effect on the 21 cm power. Superlinear Rion also significantly increases the median halo mass scale for ionizing photon output to ˜ 1010 M⊙, making the majority of reionizing sources more accessible to next-generation facilities. These results highlight the importance of accurately treating ionizing sources and recombinations for modelling reionization and its 21 cm power spectrum.

  6. The Rise of the First Stars: Supersonic Streaming, Radiative Feedback, and 21-cm Cosmology

    Barkana, Rennan

    2016-01-01

    Understanding the formation and evolution of the first stars and galaxies represents one of the most exciting frontiers in astronomy. Since the universe was filled with hydrogen atoms at early times, the most promising probe of the epoch of the first stars is the prominent 21-cm spectral line of hydrogen. Current observational efforts are focused on the cosmic reionization era, but observations of the pre-reionization cosmic dawn are also promising. While observationally unexplored, theoretical studies predict a rich variety of observational signatures from cosmic dawn. As the first stars formed, their radiation (plus that from stellar remnants) produced significant cosmic events including Lyman-alpha coupling at z~25, and early X-ray heating. Much focus has gone to studying the angle-averaged power spectrum of 21-cm fluctuations. Additional probes include the global (sky-averaged) 21-cm spectrum, and the line-of-sight anisotropy of the 21-cm power spectrum. A particularly striking signature may result from t...

  7. Cross-correlations between 21 cm,X-ray and infrared backgrounds

    Huan-Yuan Shan; Bo Qin

    2009-01-01

    The history of the cosmological reionization is still unclear. Two ionizing sources, stars and QSOs, are believed to play important roles during this epoch. Besides the 21 cm signals, the infrared emission from Pop Ⅲ stars and X-ray photons from QSOs can be powerful probes of the reionization. Here we present a cross-correlation study of the 21 cm, infrared and X-ray backgrounds. The advantage of doing such cross-correlations is that we could highlight the correlated signals and eliminate irrelevant fore-grounds. We develop a shell model to describe the 21 cm signals and find that PopⅢ stars can provide higher 21 cm signals than QSOs. Using the ROSAT data for X-ray and AKARI data for infrared, we predict various cross power spectra analytically and dis-cuss prospects for detecting these cross-correlation signals in future low frequency radio surveys. We find that, although these cross-correlational signals have distinct features, so far, they have been difficult to detect due to the high noise of the soft X-ray and infrared backgrounds given by ROSAT and AKARI.

  8. Constraining the EoR model parameters with the 21cm bispectrum

    Shimabukuro, Hayato; Takahashi, Keitaro; Yokoyama, Shuichiro; Ichiki, Kiyotomo

    2016-01-01

    We perform a Fisher analysis to estimate expected constraints on the Epoch of Reionization (EoR) model parameters (minimum virial temperature, ionizing efficiency, mean free path of ionizing photons) considering with thermal noise of ongoing telescopes, MWA and LOFAR. We consider how the inclusion of the 21cm bispectrum improves the constraints compared with the power spectrum alone. With assumption that we perfectly remove foreground, we found that the bispectrum, which is calculated by 21cmFAST, can constrain the EoR model parameters more tightly than the power spectrum since the bispectrum is more sensitive to the EoR model parameters than the power spectrum. We also found that degeneracy among the EoR model parameters can be broken by combining the bispectrum with the power spectrum.

  9. 21 cm cosmology in the 21st century

    Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This will transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines. (review article)

  10. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    Malloy, Matthew

    2012-01-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here we show that it may nonetheless be possible to {\\em directly identify ionized regions} in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the vo...

  11. Particle decay and 21 cm absorption from first minihaloes

    Vasiliev, E O

    2012-01-01

    We consider the influence of decaying dark matter (DM) particles on the characteristics of 21 cm absorption in spectra of distant radio-loud sources - "21 cm forest" - from minihaloes with masses $M=10^5-10^7\\msun$ virialized at $z_{vir} = 10$. We use 1D self-consistent hydrodynamic description to study evolution of minihaloes, and follow up their absorption characteristics from turnaround to virialization. We find that in the presence of decaying dark matter both thermal and dynamical evolution of minihaloes demonstrate significant deviation from those in the model without dark matter decay (standard recombination). We show that optical depth in 21 cm line is strongly suppressed in the presence of decaying particles: for $M=10^5-10^6\\msun$ decaying dark matter with the energy rate deposited in baryonic gas $\\xi_{L} = 0.59\\times 10^{-25}$ s$^{-1}$ - the current upper limit of the energy deposit - decreases the optical depth and the equivalent width by an order of magnitude compared to the standard recombinati...

  12. Organizing the Parameter Space of the Global 21-cm Signal

    Cohen, Aviad; Barkana, Rennan; Lotem, Matan

    2016-01-01

    The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources, and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming halos; the efficiency, spectral energy distribution, and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range $z = 6-40$ for each of 181 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide s...

  13. The earliest galaxies seen in 21 cm line absorption

    Xu, Yidong; Chen, Xuelei

    2010-01-01

    We investigate the 21 cm absorption lines produced by non-linear structures during the early stage of reionization, i.e. the starless minihalos and the dwarf galaxies. After a detailed modelling of their properties, with particular attention to the coupling physics, we determine their 21 cm absorption line profiles. The infalling gas velocity around minihalos/dwarf galaxies strongly affects the line shape, and with the low spin temperatures outside the virial radii of the systems, gives rise to horn-like line profiles. The optical depth of a dwarf galaxy is reduced for lines of sight penetrating through its HII region, and especially, a large HII region created by a dwarf galaxy with higher stellar mass and/or a top-heavy initial mass function results in an optical depth trough rather than an absorption line. We compute synthetic spectra of 21 cm forest for both high redshift quasars and radio afterglows of gamma ray bursts (GRBs). Even with the planned SKA, radio afterglows of most if not all GRBs would stil...

  14. INTERPRETING THE GLOBAL 21 cm SIGNAL FROM HIGH REDSHIFTS. I. MODEL-INDEPENDENT CONSTRAINTS

    The sky-averaged (global) 21 cm signal is a powerful probe of the intergalactic medium (IGM) prior to the completion of reionization. However, so far it has been unclear whether it will provide more than crude estimates of when the universe's first stars and black holes formed, even in the best case scenario in which the signal is accurately extracted from the foregrounds. In contrast to previous work, which has focused on predicting the 21 cm signatures of the first luminous objects, we investigate an arbitrary realization of the signal and attempt to translate its features to the physical properties of the IGM. Within a simplified global framework, the 21 cm signal yields quantitative constraints on the Lyα background intensity, net heat deposition, ionized fraction, and their time derivatives without invoking models for the astrophysical sources themselves. The 21 cm absorption signal is most easily interpreted, setting strong limits on the heating rate density of the universe with a measurement of its redshift alone, independent of the ionization history or details of the Lyα background evolution. In a companion paper, we extend these results, focusing on the confidence with which one can infer source emissivities from IGM properties

  15. The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes

    Lopez-Honorez, Laura; Mena, Olga; Moliné, Ángeles; Palomares-Ruiz, Sergio; Vincent, Aaron C.

    2016-08-01

    Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-α pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of ~100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21 cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21 cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from ~100 MeV.

  16. BB mode angular power spectrum of CMB from massive gravity

    Malsawmtluangi, N

    2016-01-01

    The primordial massive gravitational waves are placed in the squeezed vacuum state and corresponding $BB$-mode correlation angular power spectrum of the cosmic microwave background is obtained for various slow roll inflation models. The angular power spectrum is compared with the limit of BICEP2/Keck and Planck joint analysis data and the hybrid inflation model is found favorable.

  17. Constraining light gravitino mass with 21 cm line observation

    Oyama, Yoshihiko

    2016-01-01

    We investigate how well we can constrain the mass of light gravitino m_3/2 by using future observations of 21 cm line fluctuations such as Square Kilometre Array (SKA) and Omniscope. Models with light gravitino with the mass m_3/2 < O(10) eV are quite interesting because they are free from the cosmological gravitino problem and consistent with many baryogenesis/leptogenesis scenarios. We evaluate expected constraints on the mass of light gravitino from the observations of 21 cm line, and show that the observations are quite useful to prove the mass. If the gravitino mass is m_3/2 = 1 eV, we found expected 1 sigma errors on m_3/2 are sigma(m_3/2) = 0.25 eV (SKA phase 1), 0.16 eV (SKA phase 2) and 0.067 eV (Omniscope) in combination with Planck + Simons Array + DESI (BAO) + H_0. Additionally, we also discuss detectability of the effective number of neutrino species by varying the effective number of neutrino species for light gravitino N_3/2 and constraints on the mass of light gravitino in the presence of m...

  18. Measuring the Cosmological 21 cm Monopole with an Interferometer

    Presley, Morgan; Parsons, Aaron

    2015-01-01

    A measurement of the cosmological 21 cm signal remains a promising but as-of-yet unattained ambition of radio astronomy. A positive detection would provide direct observations of key unexplored epochs of our cosmic history, including the cosmic dark ages and reionization. In this paper, we concentrate on measurements of the spatial monopole of the 21 cm brightness temperature as a function of redshift (the "global signal"). Most global experiments to date have been single-element experiments. In this paper, we show how an interferometer can be designed to be sensitive to the monopole mode of the sky, thus providing an alternate approach to accessing the global signature. We provide simple rules of thumb for designing a global signal interferometer and use numerical simulations to show that a modest array of tightly packed antenna elements with moderately sized primary beams (full-width-half-max of $\\sim$40$^\\circ$) can compete with typical single-element experiments in their ability to constrain phenomenologi...

  19. Measuring the Cosmological 21 cm Monopole with an Interferometer

    Presley, Morgan E.; Liu, Adrian; Parsons, Aaron R.

    2015-08-01

    A measurement of the cosmological 21 {cm} signal remains a promising but as-of-yet unattained ambition of radio astronomy. A positive detection would provide direct observations of key unexplored epochs of our cosmic history, including the cosmic dark ages and reionization. In this paper, we concentrate on measurements of the spatial monopole of the 21 {cm} brightness temperature as a function of redshift (the “global signal”). Most global experiments to date have been single-element experiments. In this paper, we show how an interferometer can be designed to be sensitive to the monopole mode of the sky, thus providing an alternate approach to accessing the global signature. We provide simple rules of thumb for designing a global signal interferometer and use numerical simulations to show that a modest array of tightly packed antenna elements with moderately sized primary beams (FWHM of ∼ 40^\\circ ) can compete with typical single-element experiments in their ability to constrain phenomenological parameters pertaining to reionization and the pre-reionization era. We also provide a general data analysis framework for extracting the global signal from interferometric measurements (with analysis of single-element experiments arising as a special case) and discuss trade-offs with various data analysis choices. Given that interferometric measurements are able to avoid a number of systematics inherent in single-element experiments, our results suggest that interferometry ought to be explored as a complementary way to probe the global signal.

  20. 21 cm absorption by compact hydrogen discs around black holes in radio-loud nuclei of galaxies

    The clumpy maser discs observed in some galactic nuclei mark the outskirts of the accretion disc that fuels the central black hole and provide a potential site of nuclear star formation. Unfortunately, most of the gas in maser discs is currently not being probed; large maser gains favor paths that are characterized by a small velocity gradient and require rare edge-on orientations of the disc. Here we propose a method for mapping the atomic hydrogen distribution in nuclear discs through its 21 cm absorption against the radio continuum glow around the central black hole. In NGC 4258, the 21 cm optical depth may approach unity for high angular resolution (VLBI) imaging of coherent clumps which are dominated by thermal broadening and have the column density inferred from x-ray absorption data, ∼1023 cm−2. Spreading the 21 cm absorption over the full rotation velocity width of the material in front of the narrow radio jets gives a mean optical depth of ∼0.1. Spectroscopic searches for the 21 cm absorption feature in other galaxies can be used to identify the large population of inclined gaseous discs which are not masing in our direction. Follow-up imaging of 21 cm silhouettes of accelerating clumps within these discs can in turn be used to measure cosmological distances

  1. Parametrizations of the global 21-cm signal and parameter estimation from single-dipole experiments

    Harker, Geraint J A; Burns, Jack O; Pritchard, Jonathan R

    2015-01-01

    One approach to extracting the global 21-cm signal from total-power measurements at low radio frequencies is to parametrize the different contributions to the data and then fit for these parameters. We examine parametrizations of the 21-cm signal itself, and propose one based on modelling the Lyman-alpha background, IGM temperature and hydrogen ionized fraction using tanh functions. This captures the shape of the signal from a physical modelling code better than an earlier parametrization based on interpolating between maxima and minima of the signal, and imposes a greater level of physical plausibility. This allows less biased constraints on the turning points of the signal, even though these are not explicitly fit for. Biases can also be alleviated by discarding information which is less robustly described by the parametrization, for example by ignoring detailed shape information coming from the covariances between turning points or from the high-frequency parts of the signal, or by marginalizing over the h...

  2. A Bayesian analysis of redshifted 21-cm HI signal and foregrounds: Simulations for LOFAR

    Ghosh, Abhik; Chapman, Emma; Jelic, Vibor

    2015-01-01

    Observations of the EoR with the 21-cm hyperfine emission of neutral hydrogen (HI) promise to open an entirely new window onto the formation of the first stars, galaxies and accreting black holes. In order to characterize the weak 21-cm signal, we need to develop imaging techniques which can reconstruct the extended emission very precisely. Here, we present an inversion technique for LOFAR baselines at NCP, based on a Bayesian formalism with optimal spatial regularization, which is used to reconstruct the diffuse foreground map directly from the simulated visibility data. We notice the spatial regularization de-noises the images to a large extent, allowing one to recover the 21-cm power-spectrum over a considerable $k_{\\perp}-k_{\\para}$ space in the range of $0.03\\,{\\rm Mpc^{-1}}power-spectrum. We find that, in combination with using the GMCA, a non-parametric foreground removal...

  3. Cosmic Reionization On Computers. Mean and Fluctuating Redshifted 21 cm Signal

    Kaurov, Alexander A

    2015-01-01

    We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations of cosmic reionization from the Cosmic Reionization On Computers (CROC) project. We find that the mean signal varies between about $\\pm20\\rm{mK}$. Most significantly, we find that the negative pre-reionization dip at $z\\sim10-15$ only extends to $\\langle\\Delta T_B\\rangle\\sim-20\\rm{mK}$, in agreement with prior simulation results and in significant contrast to Pritchard & Loeb analytical model, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE). We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be mis-estimated by 25-50\\% at scales $k\\sim 0.1-1h\\rm{Mpc}^{-1}$. This scale range is of a particular interest, because the upcoming 21 cm experiments (MWA, PAPER, ...

  4. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER

    Pober, Jonathan C.; Parsons, Aaron R.; Ali, Zaki [Astronomy Department, U. California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, U. Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, U. Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, Dave; Dexter, Matthew; MacMahon, Dave [Radio Astronomy Laboratory, U. California, Berkeley, CA (United States); Gugliucci, Nicole E. [Department of Astronomy, U. Virginia, Charlottesville, VA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State U., Tempe, AZ (United States); Klima, Patricia J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2013-05-10

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a {sup w}edge{sup -}like region of two-dimensional (k , k{sub Parallel-To })-space, creating a window for cosmological studies at higher k{sub Parallel-To} values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this ''unsmooth'' emission and image its specific k{sub Parallel-To} modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  5. Studying topological structure in the epoch of reionization with 3D-Minkowski functionals of 21cm line fluctuations

    Yoshiura, Shintaro; Takahashi, Keitaro; Matsubara, Takahiko

    2016-01-01

    The brightness temperature of redshifted 21cm line brings rich information on the IGM (Inter Galactic Medium) through the Dark Ages to the Epoch of Reionization(EoR). While the power spectrum is a useful tool to statistically investigate the 21cm signal, it is not sufficient to fully understand the 21cm brightness temperature field because it is expected to be highly non-gaussian distribution. Minkowski Functionals (MFs) are a promising tool to extract non-gaussian feature of the 21cm signal and will give topological information such as morphology of ionized bubbles. The ionized bubbles make typical image on the map but the brightness temperature also consists of the matter density and the spin temperature fluctuations. In this work, we study the 21cm line signal in detail with MFs. To promote understanding of basic features of the 21cm signal, we calculate the MFs of the components which contribute to the brightness temperature fluctuations. We find that the structure of the brightness temperature mainly dep...

  6. The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line

    Pober, Jonathan C.

    2015-02-01

    The highly redshifted 21-cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ˜ 1) up through the Epoch of Reionization (EoR) (z ˜ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21-cm signal, since this approach maximizes the signal to noise in the initial measurement. However, like galaxy surveys, the 21-cm signal is affected by redshift space distortions, and is inherently anisotropic between the line of sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line of sight and transverse directions: the so-called foreground `wedge'. Although foreground subtraction techniques are actively being developed, a `foreground avoidance' approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyse the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21-cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (Hydrogen Epoch of Reionization Array and the Square Kilometre Array), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like Canadian Hydrogen Intensity Mapping Experiment can place non-trivial constraints on cosmological parameters.

  7. Dicke's Superradiance in Astrophysics. I -- The 21 cm Line

    Rajabi, Fereshteh

    2016-01-01

    We have applied the concept of superradiance introduced by Dicke in 1954 to the ISM by extending the corresponding analysis to the magnetic dipole interaction characterizing the atomic hydrogen 21 cm line. Although it is unlikely that superradiance could take place in thermally relaxed regions, in situations where the conditions necessary for superradiance are met (i.e., close atomic spacing, high velocity coherence, population inversion, and long dephasing time-scales compared to those related to coherent behavior), our results suggest that relatively low levels of population inversion over short astronomical length-scales (e.g., as compared to those required for maser amplification) can lead to the cooperative behavior required for superradiance in the ISM. Given the results of our analysis, we expect the observational properties of superradiance to be characterized by the emission of high intensity, spatially compact, burst-like features potentially taking place over short periods ranging from minutes to d...

  8. Modelling the cosmic neutral hydrogen from DLAs and 21 cm observations

    Padmanabhan, Hamsa; Refregier, Alexandre

    2015-01-01

    We review the analytical prescriptions in the literature to model the 21-cm (emission line surveys/intensity mapping experiments) and Damped Lyman-Alpha (DLA) observations of neutral hydrogen (HI) in the post-reionization universe. We attempt to reconcile the approaches towards a consistent model of the distribution and evolution of HI across redshifts. We find that a physically motivated, 21-cm based prescription, extended to account for the DLA observables provides a good fit to the majority of the available data, but predicts a bias parameter for the DLAs which is in tension with the recent estimates from the clustering of DLA systems at $z \\sim 2.3$. On the other hand, the DLA-based prescriptions reproduce the high-redshift bias measurement but overpredict the values of the HI bias and density parameter at lower redshifts. We discuss the implications of our findings for the characteristic host halo masses of the DLAs and the power spectrum of 21-cm intensity fluctuations.

  9. HI 21cm absorption beyond the epoch of re-ionization

    Carilli, C L; Owen, F

    2002-01-01

    We explore the possibility of detecting HI 21cm absorption by the neutral intergalactic medium (IGM) toward very high redshift radio sources. The epoch considered is between the time when the first ionizing sources form and when the bulk of the neutral IGM becomes ionized. Due to the extreme Ly-alpha opacities of the neutral IGM, objects within this 'gray age' can only be observed at wavelengths longer than about 1micron. We use the latest simulations of the evolution of the IGM in the context of LambdaCDM structure formation models constrained by observations of the highest redshift QSOs to predict the optical depth as a function of frequency of the neutral IGM due to the HI 21cm line. We then simulate radio spectra assuming observational parameters for future large area radio telescopes. These spectra show that HI 21cm absorption studies could be a powerful probe of the rich structure of the neutral IGM prior to the epoch of reionization, including 1% absorption by the mean neutral IGM, plus deeper, narrow ...

  10. Effects of dark matter decay and annihilation on the high-redshift 21 cm background

    The radiation background produced by the 21 cm spin-flip transition of neutral hydrogen at high redshifts can be a pristine probe of fundamental physics and cosmology. At z∼30-300, the intergalactic medium (IGM) is visible in 21 cm absorption against the cosmic microwave background (CMB), with a strength that depends on the thermal (and ionization) history of the IGM. Here we examine the constraints this background can place on dark matter decay and annihilation, which could heat and ionize the IGM through the production of high-energy particles. Using a simple model for dark matter decay, we show that, if the decay energy is immediately injected into the IGM, the 21 cm background can detect energy injection rates(greater-or-similar sign)10-24 eV cm-3 sec-1. If all the dark matter is subject to decay, this allows us to constrain dark matter lifetimes(less-or-similar sign)1027 sec. Such energy injection rates are much smaller than those typically probed by the CMB power spectra. The expected brightness temperature fluctuations at z∼50 are a fraction of a mK and can vary from the standard calculation by up to an order of magnitude, although the difference can be significantly smaller if some of the decay products free stream to lower redshifts. For self-annihilating dark matter, the fluctuation amplitude can differ by a factor(less-or-similar sign)2 from the standard calculation at z∼50. Note also that, in contrast to the CMB, the 21 cm probe is sensitive to both the ionization fraction and the IGM temperature, in principle allowing better constraints on the decay process and heating history. We also show that strong IGM heating and ionization can lead to an enhanced H2 abundance, which may affect the earliest generations of stars and galaxies

  11. Prospects for Detecting the 326.5MHz Redshifted 21-cm HI Signal with the Ooty Radio Telescope (ORT)

    Sk. Saiyad Ali; Somnath Bharadwaj

    2014-06-01

    Observations of the redshifted 21-cm HI fluctuations promise to be an important probe of the post-reionization era ( ≤ 6). In this paper we calculate the expected signal and foregrounds for the upgraded Ooty Radio Telescope (ORT) which operates at frequency = 326.5MHz which corresponds to redshift = 3.35. Assuming that the visibilities contain only the HI signal and system noise, we show that a 3 detection of the HI signal (∼ 1 mK) is possible at angular scales 11' to 3° with ≈ 1000 h of observation. Foreground removal is one of the major challenges for a statistical detection of the redshifted 21 cm HI signal. We assess the contribution of different foregrounds and find that the 326.5MHz sky is dominated by the extragalactic point sources at the angular scales of our interest. The expected total foregrounds are 104−105 times higher than the HI signal.

  12. Two-color ghost imaging with enhanced angular resolving power

    This article reports an experimental demonstration on nondegenerate, two-color, biphoton ghost imaging which reproduced a ghost image with enhanced angular resolving power by means of a greater field of view compared with that of classical imaging. With the same imaging magnification, the enhanced angular resolving power and field of view compared with those of classical imaging are 1.25:1 and 1.16:1, respectively. The enhancement of angular resolving power depends on the ratio between the idler and the signal photon frequencies, and the enhancement of the field of view depends mainly on the same ratio and also on the distances of the object plane and the imaging lens from the two-photon source. This article also reports the possibility of reproducing a ghost image with the enhancement of the angular resolving power by means of a greater imaging amplification compared with that of classical imaging.

  13. On the use of semi-numerical simulations in predicting the 21-cm signal from the epoch of reionization

    Majumdar, Suman; Datta, Kanan K; Jensen, Hannes; Choudhury, T Roy; Bharadwaj, Somnath; Friedrich, Martina M

    2014-01-01

    We perform a detailed comparison of three different simulations of the neutral hydrogen distribution during the epoch of reionization (EoR). Our benchmark is a radiative transfer simulation (C2RAY). Such simulations can produce realistic results, but are computationally expensive. We compare it with two different semi-numerical techniques: one using the same halos as C2RAY as its sources (Sem-Num), and one using a conditional Press-Schechter scheme (CPS+GS). These are more computationally efficient than C2RAY, but use more simplistic physics. We evaluate them in terms of how well they can reproduce the history and morphology of EoR. We find that Sem-Num can produce an ionization history and morphology that is very close to C2RAY. Considering the effects of redshift space distortions due to peculiar velocities, we also study a number of statistics such as: the variance, spherically averaged power spectrum and various angular multipole moments of the power spectrum of the 21-cm signal from EoR,that will be obse...

  14. The Impact of Foregrounds on Redshift Space Distortion Measurements With the Highly-Redshifted 21 cm Line

    Pober, Jonathan C

    2014-01-01

    The highly redshifted 21 cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ~ 1) up through the Epoch of Reionization (z ~ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21 cm signal, since this approach maximizes the signal-to-noise in the initial measurement. However, like galaxy surveys, the 21 cm signal is effected by redshift space distortion effects, and is inherently anisotropic between the line-of-sight and transverse directions. A full measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects at high redshifts. However, foregrounds also have an anisotropic footprint between the line-of-sight and transverse directions: the so-called foreground "wedge". Although techniques to subtract foregrounds are actively being developed, a "foreground avoidance" approach of simply ignoring cont...

  15. Probing patchy reionization through tau-21cm correlation statistics

    Meerburg, Pieter Daniel; Spergel, David N

    2013-01-01

    We consider the cross-correlation between free electrons and neutral hydrogen during the epoch of reionization. The free electrons are traced by the optical depth to reionization tau, while the neutral hydrogen can be observed through 21 cm photon emission. As expected, this correlation is sensitive to the detailed physics of reionization. Foremost, if reionization occurs through the merger of relatively large halos hosting an ionizing source, the free electrons and neutral hydrogen are anti-correlated for most of the reionization history. A positive contribution to the correlation can occur when the halos that can form an ionizing source are small. A measurement of this sign change in the cross-correlation would directly measure the bubble bias and as, such, the halo mass. We estimate the signal-to-noise of the cross-correlation using the estimator for inhomogeneous reionization tau_{lm} proposed by Dvorkin and Smith (2009). We find that with upcoming radio interferometers and CMB experiments, the cross-corr...

  16. 21-cm Tomography of the Intergalactic Medium at High Redshift

    Madau, P; Rees, Martin J; Madau, Piero; Meiksin, Avery; Rees, Martin J.

    1996-01-01

    We investigate the 21-cm signature that may arise from the intergalactic medium (IGM) prior to the epoch of full reionization (z>5). In scenarios in which the IGM is reionized by discrete sources of photoionizing radiation, the neutral gas which has not yet been engulfed by an H II region may easily be preheated to temperatures well above that of the cosmic background radiation (CBR), rendering the IGM invisible in absorption against the CBR. We identify three possible preheating mechanisms: (1) photoelectric heating by soft X-rays from QSOs, (2) photoelectric heating by soft X-rays from early galactic halos, and (3) resonant scattering of the continuum UV radiation from an early generation of stars. In the presence of a sufficiently strong ambient flux of Lyman-alpha photons, the hyperfine transition in the warmed H I will be excited. A beam differencing experiment would detect a patchwork of emission, both in frequency and in angle across the sky. This patchwork could serve as a valuable tool for understand...

  17. Cosmological signatures of tilted isocurvature perturbations: reionization and 21cm fluctuations

    We investigate cosmological signatures of uncorrelated isocurvature perturbations whose power spectrum is blue-tilted with spectral index 2∼power spectrum can promote early formation of small-scale structure, notably dark matter halos and galaxies, and may thereby resolve the shortage of ionizing photons suggested by observations of galaxies at high redshifts (z ≅ 7−8) but that are required to reionize the universe at z ∼ 10. We mainly focus on how the formation of dark matter halos can be modified. Based on the Δχ2 analysis with other cosmological parameters being fixed, we explore the connection between the spectral shape of CMB anisotropies and the reionization optical depth as a powerful probe of a highly blue-tilted isocurvature primordial power spectrum. We also study the consequences for 21cm line fluctuations due to neutral hydrogens in minihalos. Combination of measurements of the reionization optical depth and 21cm line fluctuations will provide complementary probes of a highly blue-tilted isocurvature power spectrum

  18. Cosmological signatures of tilted isocurvature perturbations: reionization and 21cm fluctuations

    Sekiguchi, Toyokazu; Sugiyama, Naoshi [Department of Physics and Astrophysics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602 (Japan); Tashiro, Hiroyuki [Physics department, Arizona State Univiersity, 650 E. Tyler Mall, Tempe, AZ, 85287 (United States); Silk, Joseph, E-mail: toyokazu.sekiguchi@helsinki.fi, E-mail: hiroyuki.tashiro@asu.edu, E-mail: j.silk1@physics.ox.ac.uk, E-mail: naoshi@nagoya-u.jp [Institut d' Astrophysique, UMR 7095 CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, Paris, 75014 (France)

    2014-03-01

    We investigate cosmological signatures of uncorrelated isocurvature perturbations whose power spectrum is blue-tilted with spectral index 2∼power spectrum can promote early formation of small-scale structure, notably dark matter halos and galaxies, and may thereby resolve the shortage of ionizing photons suggested by observations of galaxies at high redshifts (z ≅ 7−8) but that are required to reionize the universe at z ∼ 10. We mainly focus on how the formation of dark matter halos can be modified. Based on the Δχ{sup 2} analysis with other cosmological parameters being fixed, we explore the connection between the spectral shape of CMB anisotropies and the reionization optical depth as a powerful probe of a highly blue-tilted isocurvature primordial power spectrum. We also study the consequences for 21cm line fluctuations due to neutral hydrogens in minihalos. Combination of measurements of the reionization optical depth and 21cm line fluctuations will provide complementary probes of a highly blue-tilted isocurvature power spectrum.

  19. Imaging the redshifted 21-cm pattern around the first sources during the cosmic dawn using the SKA

    Ghara, Raghunath; Datta, Kanan K; Choudhuri, Samir

    2016-01-01

    Understanding properties of the first sources in the Universe using the redshifted \\HI ~21-cm signal is one of the major aims of present and upcoming low-frequency experiments. We investigate the possibility of imaging the redshifted 21-cm pattern around the first sources during the cosmic dawn using the SKA1-low. We model the \\HI ~21-cm image maps, appropriate for the SKA1-low, around the first sources consisting of stars and X-ray sources within galaxies. In addition to the system noise, we account also for the astrophysical foregrounds by adding them to the signal maps. We find that after subtracting the foregrounds using a polynomial fit and suppressing the noise by smoothing the maps over $10^{'} - 30^{'}$ angular scale, the isolated sources at $z \\sim 15$ are detectable with $\\sim 4 - 9 \\, \\sigma$ confidence level in 2000 h of observation with the SKA1-low. Although the 21-cm profiles around the sources get altered because of the Gaussian smoothing, the images can still be used to extract some of the so...

  20. Exploring the Cosmic Reionization Epoch in Frequency Space: An Improved Approach to Remove the Foreground in 21 cm Tomography

    Wang, Jingying; An, Tao; Gu, Junhua; Guo, Xueying; Li, Weitian; Wang, Yu; Liu, Chengze; Martineau-Huynh, Olivier; Wu, Xiang-Ping

    2012-01-01

    Aiming to correctly restore the redshifted 21 cm signals emitted by the neutral hydrogen during the cosmic reionization processes, we re-examine the separation approaches based on the quadratic polynomial fitting technique in frequency space to investigate whether they works satisfactorily with complex foreground, by quantitatively evaluate the quality of restored 21 cm signals in terms of sample statistics. We construct the foreground model to characterize both spatial and spectral substructures of the real sky, and use it to simulate the observed radio spectra. By comparing between different separation approaches through statistical analysis of restored 21 cm spectra and corresponding power spectra, as well as their constraints on the mean halo bias $b$ and average ionization fraction $x_e$ of the reionization processes, at $z=8$ and the noise level of 60 mK we find that, although the complex foreground can be well approximated with quadratic polynomial expansion, a significant part of Mpc-scale components ...

  1. The Evolution Of 21 cm Structure (EOS): public, large-scale simulations of Cosmic Dawn and reionization

    Mesinger, Andrei; Greig, Bradley; Sobacchi, Emanuele

    2016-07-01

    We introduce the Evolution Of 21 cm Structure (EOS) project: providing periodic, public releases of the latest cosmological 21 cm simulations. 21 cm interferometry is set to revolutionize studies of the Cosmic Dawn (CD) and Epoch of Reionization (EoR). Progress will depend on sophisticated data analysis pipelines, initially tested on large-scale mock observations. Here we present the 2016 EOS release: 10243, 1.6 Gpc, 21 cm simulations of the CD and EoR, calibrated to the Planck 2015 measurements. We include calibrated, sub-grid prescriptions for inhomogeneous recombinations and photoheating suppression of star formation in small-mass galaxies. Leaving the efficiency of supernovae feedback as a free parameter, we present two runs which bracket the contribution from faint unseen galaxies. From these two extremes, we predict that the duration of reionization (defined as a change in the mean neutral fraction from 0.9 to 0.1) should be between 2.7 ≲ Δzre ≲ 5.7. The large-scale 21 cm power during the advanced EoR stages can be different by up to a factor of ˜10, depending on the model. This difference has a comparable contribution from (i) the typical bias of sources and (ii) a more efficient negative feedback in models with an extended EoR driven by faint galaxies. We also present detectability forecasts. With a 1000 h integration, Hydrogen Epoch of Reionization Array and (Square Kilometre Array phase 1) SKA1 should achieve a signal-to-noise of ˜few to hundreds throughout the EoR/CD. We caution that our ability to clean foregrounds determines the relative performance of narrow/deep versus wide/shallow surveys expected with SKA1. Our 21-cm power spectra, simulation outputs and visualizations are publicly available.

  2. Templates for the Sunyaev-Zel'dovich Angular Power Spectrum

    Trac, Hy; Ostriker, Jeremiah P

    2010-01-01

    We present templates for the Sunyaev-Zel'dovich (SZ) angular power spectrum based on four models for the nonlinear gas distribution. The frequency-dependent SZ temperature fluctuations, with thermal (TSZ) and kinetic (KSZ) contributions, are calculated by tracing through a dark matter simulation, processed to include gas in dark matter halos and in the filamentary intergalactic medium. Different halo gas models are compared to study how star formation, energetic feedback, and nonthermal pressure support influence the angular power spectrum. The standard model has been calibrated to reproduce the stellar and gas fractions and X-ray scaling relations measured from low redshift clusters and groups. The other models illustrate the current theoretical and empirical uncertainties relating to properties of the intracluster medium. Relative to the standard model, their angular power spectra differ by approximately 50% (TSZ), 20% (KSZ), and 40% (SZ at 148 GHz) for l=3000, sigma_8=0.8, and homogeneous reionization at z...

  3. Extracting Physical Parameters for the First Galaxies from the Cosmic Dawn Global 21-cm Spectrum

    Burns, Jack O.; Mirocha, Jordan; harker, geraint; Tauscher, Keith; Datta, Abhirup

    2016-01-01

    The all-sky or global redshifted 21-cm HI signal is a potentially powerful probe of the first luminous objects and their environs during the transition from the Dark Ages to Cosmic Dawn (35 > z > 6). The first stars, black holes, and galaxies heat and ionize the surrounding intergalactic medium, composed mainly of neutral hydrogen, so the hyperfine 21-cm transition can be used to indirectly study these early radiation sources. The properties of these objects can be examined via the broad absorption and emission features that are expected in the spectrum. The Dark Ages Radio Explorer (DARE) is proposed to conduct these observations at low radio astronomy frequencies, 40-120 MHz, in a 125 km orbit about the Moon. The Moon occults both the Earth and the Sun as DARE makes observations above the lunar farside, thus eliminating the corrupting effects from Earth's ionosphere, radio frequency interference, and solar nanoflares. The signal is extracted from the galactic/extragalactic foreground employing Bayesian methods, including Markov Chain Monte Carlo (MCMC) techniques. Theory indicates that the 21-cm signal is well described by a model in which the evolution of various physical quantities follows a hyperbolic tangent (tanh) function of redshift. We show that this approach accurately captures degeneracies and covariances between parameters, including those related to the signal, foreground, and the instrument. Furthermore, we also demonstrate that MCMC fits will set meaningful constraints on the Ly-α, ionizing, and X-ray backgrounds along with the minimum virial temperature of the first star-forming halos.

  4. Reionization and Beyond: detecting the peaks of the cosmological 21cm signal

    Mesinger, Andrei; Hewitt, Jacqueline

    2013-01-01

    [ABRIDGED] The cosmological 21cm signal is set to become the most powerful probe of the early Universe, with first generation interferometers aiming to make statistical detections of reionization. There is increasing interest also in the pre-reionization epoch when the intergalactic medium was heated by an early X-ray background. Here we perform parameter studies varying the halo masses hosting galaxies, and their X-ray production efficiencies. We also relate these to popular models of Warm Dark Matter cosmologies. For each parameter combination we compute the signal-to-noise (S/N) of the large-scale (k~0.1/Mpc) 21cm power for both reionization and X-ray heating for a 2000h observation with several instruments: 128 tile Murchison Wide Field Array (MWA128T), a 256 tile extension (MWA256T), the Low Frequency Array (LOFAR), the 128 element Precision Array for Probing the Epoch of Reionization (PAPER), and the second generation Square Kilometre Array (SKA). We show that X-ray heating and reionization in many case...

  5. Impact of Wind Power on the Angular Stability of a Power System

    Djemai NAIMI; Bouktir, Tarek

    2008-01-01

    Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT). In this paper, the effect of wind power on the transient fault behavior is i...

  6. 21CMMC: An MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21cm signal

    Greig, Bradley

    2015-01-01

    We introduce 21CMMC: a parallelized, Monte Carlo Markov Chain analysis tool, incorporating the epoch of reionization (EoR) semi-numerical simulation 21CMFAST. 21CMMC estimates astrophysical parameter constraints from 21cm EoR experiments, accommodating a variety of EoR models, as well as priors on model parameters and the reionization history. To illustrate its utility, we consider two different EoR scenarios, one with a single population of galaxies (with a mass-independent ionizing efficiency) and a second, more general model with two different, feedback-regulated populations (each with mass-dependent ionizing efficiencies). As an example, combining three observations (z=8, 9 and 10) of the 21cm power spectrum with a conservative noise estimate and uniform model priors, we find that LOFAR/HERA/SKA can constrain common reionization parameters: the ionizing efficiency (or similarly the escape fraction), the mean free path of ionizing photons, and the log of the minimum virial temperature of star-forming halos...

  7. The 21-cm BAO signature of enriched low-mass galaxies during cosmic reionization

    Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan

    2016-06-01

    Studies of the formation of the first stars have established that they formed in small haloes of ˜105-106 M⊙ via molecular hydrogen cooling. Since a low level of ultraviolet radiation from stars suffices to dissociate molecular hydrogen, under the usually assumed scenario this primordial mode of star formation ended by redshift z ˜ 15 and much more massive haloes came to dominate star formation. However, metal enrichment from the first stars may have allowed the smaller haloes to continue to form stars. In this Letter, we explore the possible effect of star formation in metal-rich low-mass haloes on the redshifted 21-cm signal of neutral hydrogen from z = 6 to 40. These haloes are significantly affected by the supersonic streaming velocity, with its characteristic baryon acoustic oscillation (BAO) signature. Thus, enrichment of low-mass galaxies can produce a strong signature in the 21-cm power spectrum over a wide range of redshifts, especially if star formation in the small haloes was more efficient than suggested by current simulations. We show that upcoming radio telescopes can easily distinguish among various possible scenarios.

  8. MITEoR: A Scalable Interferometer for Precision 21 cm Cosmology

    Zheng, Haoxuan; Buza, Victor; Dillon, Joshua S; Gharibyan, Hrant; Hickish, Jack; Kunz, Eben; Liu, Adrian; Losh, Jon; Lutomirski, Andrew; Morrison, Scott; Narayanan, Sruthi; Perko, Ashley; Rosner, Devon; Sanchez, Nevada; Schutz, Katelin; Tribiano, Shana M; Valdez, Michael; Yang, Hung-I; Adami, Kristian Zarb; Zelko, Ioana; Zheng, Kevin; Armstrong, Richard; Bradley, Richard F; Dexter, Matthew R; Ewall-Wice, Aaron; Magro, Alessio; Matejek, Michael; Morgan, Edward; Neben, Abraham R; Pan, Qinxuan; Penna, Robert F; Peterson, Courtney M; Su, Meng; Villasenor, Joel; Williams, Christopher L; Zhu, Yan

    2014-01-01

    Tomographically mapping our universe using the redshifted 21 cm line of neutral hydrogen can revolutionize our picture of the early universe, providing a unique probe of the "cosmic dawn" and the Epoch of Reionization. By mapping a vast comoving volume, it can potentially overtake the cosmic microwave background as our most powerful cosmological probe. We report on MIT Epoch of Reionization (MITEoR), a pathfinder low-frequency radio interferometer whose goal is to test technologies that improve the calibration precision and reduce the cost of such high-sensitivity 3D mapping. MITEoR accomplishes this by using massive baseline redundancy, which enables both automated precision calibration and correlator cost reduction. For an $N$ antenna instrument, the cost scaling is reduced from $N^2$ to $N\\log N$. We demonstrate and quantify the power and robustness of redundancy for scalability and precision. We find that our calibration parameters precisely describe the effect of the instrument upon our measurements, all...

  9. A Three-Dimensional Angular Scattering Response Including Path Powers

    Mammasis, Kostantinos; Santi, Paolo; Goulianos, Angelos

    2011-01-01

    In this paper the angular power spectrum exhibited under a three-dimensional (3-D) Gaussian scatter distribution at fixed observation points in space is investigated. Typically, these correspond to the mobile and base units respectively. Unlike other spatial channel models, the derived model accounts for the distance to each scatterer from the observation point and transforms distances into power values under the assumption of free-space propagation. The proposed 3-D spatial channel model fol...

  10. Associated 21-cm absorption towards the cores of radio galaxies

    Chandola, Yogesh; Saikia, D J

    2012-01-01

    We present the results of Giant Metrewave Radio Telescope (GMRT) observations to detect H{\\sc i} in absorption towards the cores of a sample of radio galaxies. From observations of a sample of 16 sources, we detect H{\\sc i} in absorption towards the core of only one source, the FR\\,II radio galaxy 3C\\,452 which has been reported earlier by Gupta & Saikia (2006a). In this paper we present the results for the remaining sources which have been observed to a similar optical depth as for a comparison sample of compact steep-spectrum (CSS) and giga-hertz peaked spectrum (GPS) sources. We also compile available information on H{\\sc i} absorption towards the cores of extended radio sources observed with angular resolutions of a few arcsec or better. The fraction of extended sources with detection of H{\\sc i} absorption towards their cores is significantly smaller (7/47) than the fraction of H{\\sc i} detection towards CSS and GPS objects (28/49). For the cores of extended sources, there is no evidence of a signifi...

  11. A correlation between the HI 21-cm absorption strength and impact parameter in external galaxies

    Curran, S J; Allison, J R; Sadler, E M

    2016-01-01

    By combining the data from surveys for HI 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disk. This is consistent with the uniformity of spin temperature measured across the Galactic disk. Furthermore, comparison with the Galactic distribution suggests that intervening 21-cm absorption preferentially arises in disks of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detect...

  12. Models of the Cosmological 21 cm Signal from the Epoch of Reionization Calibrated with Lyman-alpha and CMB Data

    Kulkarni, Girish; Puchwein, Ewald; Haehnelt, Martin G

    2016-01-01

    We present here 21 cm predictions from high dynamic range simulations for a range of reionization histories that have been tested against available Lyman-alpha and CMB data. We assess the observability of the predicted spatial 21 cm fluctuations by ongoing and upcoming experiments in the late stages of reionization in the limit in which the hydrogen spin temperature is significantly larger than the CMB temperature. Models consistent with the available Lyman-alpha data and CMB measurement of the Thomson optical depth predict typical values of 10--20 mK^2 for the variance of the 21 cm brightness temperature at redshifts z=7--10 at scales accessible to ongoing and upcoming experiments (k < 1 h/cMpc). This is only a factor of a few below the sensitivity claimed to have been already reached by ongoing experiments. Our different models for the reionization history make markedly different predictions for the redshift evolution and thus frequency dependence of the 21 cm power spectrum and should be easily discerni...

  13. Unveiling the nature of dark matter with high redshift 21 cm line experiments

    Evoli, Carmelo; Mesinger , Andrei; Ferrara, Andrea

    2014-01-01

    Observations of the redshifted 21 cm line from neutral hydrogen will open a new window on the early Universe. By influencing the thermal and ionization history of the intergalactic medium (IGM), annihilating dark matter (DM) can leave a detectable imprint in the 21 cm signal. Building on the publicly available 21cmFAST code, we compute the 21 cm signal for a 10 GeV WIMP DM candidate. The most pronounced role of DM annihilations is in heating the IGM earlier and more uniformly than astrophysic...

  14. Cross-correlation of 21 cm and soft X-ray backgrounds during the epoch of reionization

    Liang, Jun-Min; Mao, Xiao-Chun; Qin, Bo

    2016-08-01

    The cross-correlation between the high-redshift 21 cm background and the Soft X-ray Background (SXB) of the Universe may provide an additional probe of the Epoch of Reionization. Here we use semi-numerical simulations to create 21 cm and soft X-ray intensity maps and construct their cross power spectra. Our results indicate that the cross power spectra are sensitive to the thermal and ionizing states of the intergalactic medium (IGM). The 21 cm background correlates positively to the SXB on large scales during the early stages of the reionization. However as the reionization develops, these two backgrounds turn out to be anti-correlated with each other when more than ∼ 15% of the IGM is ionized in a warm reionization scenario. The anti-correlated power reaches its maximum when the neutral fraction declines to 0.2–0.5. Hence, the trough in the cross power spectrum might be a useful tool for tracing the growth of HII regions during the middle and late stages of the reionization. We estimate the detectability of the cross power spectrum based on the abilities of the Square Kilometre Array and the Wide Field X-ray Telescope (WFXT), and find that to detect the cross power spectrum, the pixel noise of X-ray images has to be at least 4 orders of magnitude lower than that of the WFXT deep survey.

  15. Reconstructing the galaxy redshift distribution from angular cross power spectra

    Sun, L; Tao, C

    2015-01-01

    The control of photometric redshift (photo-$z$) errors is a crucial and challenging task for precision weak lensing cosmology. The spacial cross-correlations (equivalently, the angular cross power spectra) of galaxies between tomographic photo-$z$ bins are sensitive to the true redshift distribution $n_i(z)$ of each bin and hence can help calibrate the photo-$z$ error distribution for weak lensing surveys. Using Fisher matrix analysis, we investigate the contributions of various components of the angular power spectra to the constraints of $n_i(z)$ parameters and demonstrate the importance of the cross power spectra therein, especially when catastrophic photo-$z$ errors are present. We further study the feasibility of reconstructing $n_i(z)$ from galaxy angular power spectra using Markov Chain Monte Carlo estimation. Considering an LSST-like survey with $10$ photo-$z$ bins, we find that the underlying redshift distribution can be determined with a fractional precision ($\\sigma(\\theta)/\\theta$ for parameter $\\...

  16. THE IMPACT OF THE SUPERSONIC BARYON-DARK MATTER VELOCITY DIFFERENCE ON THE z {approx} 20 21 cm BACKGROUND

    McQuinn, Matthew; O' Leary, Ryan M. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2012-11-20

    Recently, Tseliakhovich and Hirata showed that during the cosmic Dark Ages the baryons were typically moving supersonically with respect to the dark matter with a spatially variable Mach number. Such supersonic motion may source shocks that inhomogeneously heat the universe. This motion may also suppress star formation in the first halos. Even a small amount of coupling of the 21 cm signal to this motion has the potential to vastly enhance the 21 cm brightness temperature fluctuations at 15 {approx}< z {approx}< 40, as well as to imprint distinctive acoustic oscillations in this signal. We present estimates for the size of this coupling, which we calibrate with a suite of cosmological simulations of the high-redshift universe using the GADGET and Enzo codes. Our simulations, discussed in detail in a companion paper, are initialized to self-consistently account for gas pressure and the dark matter-baryon relative velocity, v {sub bc} (in contrast to prior simulations). We find that the supersonic velocity difference dramatically suppresses structure formation on 10-100 comoving kpc scales, it sources shocks throughout the universe, and it impacts the accretion of gas onto the first star-forming minihalos (even for halo masses as large as 10{sup 7} M {sub Sun }). However, prior to reheating by astrophysical sources, we find that the v {sub bc}-sourced temperature fluctuations can contribute only as much as Almost-Equal-To 10% of the fluctuations in the 21 cm signal. We do find that v {sub bc} in certain scenarios could source an O(1) component in the power spectrum of the 21 cm background on observable scales via the X-ray (but not ultraviolet) backgrounds produced once the first stars formed. In a scenario in which {approx}10{sup 6} M {sub Sun} minihalos reheated the universe via their X-ray backgrounds, we find that the pre-reionization 21 cm signal would be larger than previously anticipated and exhibit more significant acoustic features. Such features would be a

  17. The Murchison Widefield Array 21cm Epoch of Reionization Experiment: Design, Construction, and First Season Results

    Beardsley, Adam

    The Cosmic Dark Ages and the Epoch of Reionization (EoR) remain largely unexplored chapters in the history and evolution of the Universe. These periods hold the potential to inform our picture of the cosmos similar to what the Cosmic Microwave Background has done over the past several decades. A promising method to probe the neutral hydrogen gas between early galaxies is known as 21cm tomography, which utilizes the ubiquitous hyper-fine transition of HI to create 3D maps of the intergalactic medium. The Murchison Widefield Array (MWA) is an instrument built with a primary science driver to detect and characterize the EoR through 21cm tomography. In this thesis we explore the challenges faced by the MWA from the layout of antennas, to a custom analysis pipeline, to bridging the gap with probes at other wavelengths. We discuss many lessons learned in the course of reducing MWA data with an extremely precise measurement in mind, and conclude with the first deep integration from array. We present a 2-σ upper limit on the EoR power spectrum of Δ^2(k)<1.25×10^4 mK^2 at cosmic scale k=0.236 h Mpc^{-1} and redshift z=6.8. Our result is a marginal improvement over previous MWA results and consistent with the best published limits from other instruments. This result is the deepest imaging power spectrum to date, and is a major step forward for this type of analysis. While our limit is dominated by systematics, we offer strategies for improvement for future analysis.

  18. Reionization and beyond: detecting the peaks of the cosmological 21 cm signal

    Mesinger, Andrei; Ewall-Wice, Aaron; Hewitt, Jacqueline

    2014-04-01

    The cosmological 21 cm signal is set to become the most powerful probe of the early Universe, with first-generation interferometers aiming to make statistical detections of reionization. There is increasing interest also in the pre-reionization epoch when the intergalactic medium (IGM) was heated by an early X-ray background. Here, we perform parameter studies varying the halo masses capable of hosting galaxies and their X-ray production efficiencies. These two fundamental parameters control the timing and relative offset of reionization and IGM heating, making them the most relevant for predicting the signal during both epochs. We also relate these to popular models of warm dark matter cosmologies. For each parameter combination, we compute the signal-to-noise ratio (S/N) of the large-scale (k ˜ 0.1 Mpc-1) 21 cm power for both reionization and X-ray heating for a 2000 h observation with several instruments: 128 tile Murchison Wide Field Array (MWA128T), a 256 tile extension (MWA256T), the Low Frequency Array (LOFAR), the 128 element Precision Array for Probing the Epoch of Reionization (PAPER), and the second-generation Square Kilometre Array (SKA). We show that X-ray heating and reionization in many cases are of comparable detectability. For fiducial astrophysical parameters, MWA128T might detect X-ray heating, thanks to its extended bandpass. When it comes to reionization, both MWA128T and PAPER will also only achieve marginal detections, unless foregrounds on larger scales can be mitigated. On the other hand, LOFAR should detect plausible models of reionization at S/N > 10. The SKA will easily detect both X-ray heating and reionization.

  19. Sensitive 21cm Observations of Neutral Hydrogen in the Local Group near M31

    Wolfe, Spencer A; Pisano, D J

    2015-01-01

    Very sensitive 21cm HI measurements have been made at several locations around the Local Group galaxy M31 using the Green Bank Telescope (GBT) at an angular resolution of 9.1', with a 5$\\sigma$ detection level of $\\rm{N_{HI} = 3.9 \\times 10^{17}~cm^{-2}}$ for a 30 $\\rm{km~s^{-1}}$ line. Most of the HI in a 12 square degree area almost equidistant between M31 and M33 is contained in nine discrete clouds that have a typical size of a few kpc and HI mass of $10^5$ M$_{\\odot}$. Their velocities in the Local Group Standard of Rest lie between -100 and +40 $\\rm{km~s^{-1}}$, comparable to the systemic velocities of M31 and M33. The total HI mass of all nine clouds is $1.4 \\times 10^6$ M$_{\\odot}$, with perhaps another $0.2 \\times 10^6$ M$_{\\odot}$ in smaller clouds or more diffuse emission. The HI mass of each cloud is typically three orders of magnitude less than the dynamical (virial) mass needed to bind the cloud gravitationally. Although they have the size and HI mass of dwarf galaxies, the clouds are unlikely t...

  20. Erasing the variable: empirical foreground discovery for global 21 cm spectrum experiments

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z ∼ 6-30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line of sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least ∼10–4. In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the ∼10–2 level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission.

  1. Erasing the Variable: Empirical Foreground Discovery for Global 21 cm Spectrum Experiments

    Switzer, Eric R.; Liu, Adrian

    2014-01-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z approx. 6 - 30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal, and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line-of-sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least approx. 10(exp -4). In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the approx. 10(exp -2) level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission. Subject headings: dark ages, reionization, first stars - methods: data analysis - methods: statistical

  2. Angular Power Spectrum in Modular Invariant Inflation Model

    Hayashi, M J; Takami, T; Okame, Y; Takagi, K; Watanabe, T; Hayashi, Mitsuo J.; Hirai, Shiro; Takami, Tomoyuki; Okame, Yusuke; Takagi, Kenji; Watanabe, Tomoki

    2006-01-01

    We propose a scalar potential of inflation, motivated by the modular invariant supergravity and computed the angular power spectra of the adiabatic density perturbations. The potential consists of three scalar fields S, Y and T with the two free parameters. By fitting the parameters with the cosmological data at the fixed point T=1, we find the potential behaves as that of the single field S, which slowly rolls down along the minimized trajectory in Y and gives rise the sufficient inflation matching with the recent three-year WMAP data, e.g. the spectral index n_s = 0.951. The TT and TE angular power spectra obtained from our model almost completely coincides with the fitting of the LambdaCDM model. We conclude that our model is considered to be an adequate theory of inflation to explain the present data, although more theoritical foundation of the model should be required.

  3. Angular Power Spectrum in Modular Invariant Inflation Model

    A scalar potential of inflation is proposed and the angular power spectra of the adiabatic density perturbations are computed. The potential consists of three scalar fields, S, Y and T, together with two free parameters. By fitting the parameters to cosmological data at the fixed point T = 1, we find that the potential behaves like the single-field potential of S, which slowly rolls down. We further show that the inflation predictions corresponding to this potential provide a good fit to the recent three-year WMAP data, e.g. the spectral index ns = 0.951.The TT and TE angular power spectra obtained from our model almost completely coincide with the corresponding results obtained from the ΛCDM model. We conclude that our model is considered to be an adequate theory of inflation that explains the present data

  4. The effect of peculiar velocities on the epoch of reionization (EoR) 21-cm signal

    Majumdar, Suman; Choudhury, T Roy

    2012-01-01

    We have used semi-numerical simulations of reionization to study the behaviour of the power spectrum of the EoR 21-cm signal in both real and redshift space. We have considered two models of reionization, one which has homogeneous recombination (HR) and the other incorporating inhomogeneous recombination (IR). Considering the large scales first, we find that the predictions of these two models are similar. Both the real space HI power spectrum P^r(k) and the monopole moment of the redshift space HI power spectrum P^s_0(k), fall sharply to a minima as the neutral fraction declines from x_{HI} =1 to 0.8 in the early stages of reionization. As reionization proceeds, P^r and P^s_0 subsequently rise to a maxima at x_{HI} ~ 0.4-0.5, and then declines in the later stages of reionization. In the early stages of reionization (x_{HI} >= 0.8) the quadrupole moment of the HI power spectrum has a value consistent with P^s_2 /P^s_0=50/49 predicted by the linear theory of redshift space distortion. This ratio falls abruptly...

  5. A record breaking sightline: Five DLA-strength 21 cm absorbers towards the quasar MG J0414+0534

    Tanna, Anant; Whiting, Matthew; Curran, Steve

    2013-10-01

    High redshift absorption of the HI 21 cm transition is a powerful probe of star-forming gas and hence evolution of structure in the Universe at large lookback times. Typically a rare occurrence, we have detected an unprecedented number of 21 cm absorbers along a single sightline to the red QSO J0414+0534, suggesting a population of galaxies missed by optical surveys. Extreme RFI in the spectrum of the strongest absorber requires ATCA observations to fully parameterise the system and understand the nature of the absorbing gas. We aim to confirm whether this highly unique sight-line truly does have so many dense absorbers, and use these features toward calculating the cosmic acceleration.

  6. Adaptive power-controllable orbital angular momentum (OAM) multicasting.

    Li, Shuhui; Wang, Jian

    2015-01-01

    We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, "up-down" power multicasting and "ladder" power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251

  7. Adaptive power-controllable orbital angular momentum (OAM) multicasting

    Li, Shuhui; Wang, Jian

    2015-01-01

    We report feedback-assisted adaptive multicasting from a single Gaussian mode to multiple orbital angular momentum (OAM) modes using a single phase-only spatial light modulator loaded with a complex phase pattern. By designing and optimizing the complex phase pattern through the adaptive correction of feedback coefficients, the power of each multicast OAM channel can be arbitrarily controlled. We experimentally demonstrate power-controllable multicasting from a single Gaussian mode to two and six OAM modes with different target power distributions. Equalized power multicasting, “up-down” power multicasting and “ladder” power multicasting are realized in the experiment. The difference between measured power distributions and target power distributions is assessed to be less than 1 dB. Moreover, we demonstrate data-carrying OAM multicasting by employing orthogonal frequency-division multiplexing 64-ary quadrature amplitude modulation (OFDM 64-QAM) signal. The measured bit-error rate curves and observed optical signal-to-noise ratio penalties show favorable operation performance of the proposed adaptive power-controllable OAM multicasting. PMID:25989251

  8. Bayesian constraints on the global 21-cm signal from the Cosmic Dawn

    Bernardi, G; Price, D; Greenhill, L J; Mesinger, A; Dowell, J; Eftekhari, T; Ellingson, S W; Kocz, J; Schinzel, F

    2016-01-01

    The birth of the first luminous sources and the ensuing epoch of reionization are best studied via the redshifted 21-cm emission line, the signature of the first two imprinting the last. In this work we present a fully-Bayesian method, \\textsc{hibayes}, for extracting the faint, global (sky-averaged) 21-cm signal from the much brighter foreground emission. We show that a simplified (but plausible), Gaussian model of the 21-cm emission from the Cosmic Dawn epoch ($15 \\lesssim z \\lesssim 30$), parameterized by an amplitude $A_{\\rm HI}$, a frequency peak $\

  9. NEW EVIDENCE FOR MASS LOSS FROM δ CEPHEI FROM H I 21 cm LINE OBSERVATIONS

    Recently published Spitzer Space Telescope observations of the classical Cepheid archetype δ Cephei revealed an extended dusty nebula surrounding this star and its hot companion HD 213307. At far-infrared wavelengths, the emission resembles a bow shock aligned with the direction of space motion of the star, indicating that δ Cephei is undergoing mass loss through a stellar wind. Here we report H I 21 cm line observations with the Very Large Array (VLA) to search for neutral atomic hydrogen associated with this wind. Our VLA data reveal a spatially extended H I nebula (∼13' or 1 pc across) surrounding the position of δ Cephei. The nebula has a head-tail morphology, consistent with circumstellar ejecta shaped by the interaction between a stellar wind and the interstellar medium (ISM). We directly measure a mass of circumstellar atomic hydrogen MHi∼0.07 Msun, although the total H I mass may be larger, depending on the fraction of circumstellar material that is hidden by Galactic contamination within our band or that is present on angular scales too large to be detected by the VLA. It appears that the bulk of the circumstellar gas has originated directly from the star, although it may be augmented by material swept from the surrounding ISM. The H I data are consistent with a stellar wind with an outflow velocity Vo = 35.6 ± 1.2 km s–1 and a mass-loss rate of M-dot ∼(1.0±0.8)×10-6 Msun yr–1. We have computed theoretical evolutionary tracks that include mass loss across the instability strip and show that a mass-loss rate of this magnitude, sustained over the preceding Cepheid lifetime of δ Cephei, could be sufficient to resolve a significant fraction of the discrepancy between the pulsation and evolutionary masses for this star.

  10. Sensitive 21cm Observations of Neutral Hydrogen in the Local Group near M31

    Wolfe, Spencer A.; Lockman, Felix J.; Pisano, D. J.

    2016-01-01

    Very sensitive 21 cm H i measurements have been made at several locations around the Local Group galaxy M31 using the Green Bank Telescope at an angular resolution of 9.‧1, with a 5σ detection level of NH i = 3.9 × 1017 cm-2 for a 30 km s-1 line. Most of the H i in a 12 square-degree area almost equidistant between M31 and M33 is contained in nine discrete clouds that have a typical size of a few kpc and a H i mass of 105M⊙. Their velocities in the Local Group Standard of Rest lie between -100 and +40 km s-1, comparable to the systemic velocities of M31 and M33. The clouds appear to be isolated kinematically and spatially from each other. The total H i mass of all nine clouds is 1.4 × 106M⊙ for an adopted distance of 800 kpc, with perhaps another 0.2 × 106M⊙ in smaller clouds or more diffuse emission. The H i mass of each cloud is typically three orders of magnitude less than the dynamical (virial) mass needed to bind the cloud gravitationally. Although they have the size and H i mass of dwarf galaxies, the clouds are unlikely to be part of the satellite system of the Local Group, as they lack stars. To the north of M31, sensitive H i measurements on a coarse grid find emission that may be associated with an extension of the M31 high-velocity cloud (HVC) population to projected distances of ˜100 kpc. An extension of the M31 HVC population at a similar distance to the southeast, toward M33, is not observed.

  11. 21-cm signatures of residual HI inside cosmic HII regions during reionization

    Watkinson, C A; Pritchard, J R; Sobacchi, E

    2015-01-01

    We investigate the impact of sinks of ionizing radiation on the reionization-era 21-cm signal, focusing on 1-point statistics. We consider sinks in both the intergalactic medium and inside galaxies. At a fixed filling factor of HII regions, sinks will have two main effects on the 21-cm morphology: (i) as inhomogeneous absorbers of ionizing photons they result in smaller and more widespread cosmic HII patches; and (ii) as reservoirs of neutral gas they contribute a non-zero 21-cm signal in otherwise ionized regions. Both effects damp the contrast between neutral and ionized patches during reionization, making detection of the epoch of reionization with 21-cm interferometry more challenging. Here we systematically investigate these effects using the latest semi-numerical simulations. We find that sinks dramatically suppress the peak in the redshift evolution of the variance, corresponding to the midpoint of reionization. As previously predicted, skewness changes sign at midpoint, but the fluctuations in the res...

  12. 21 cm signal from cosmic dawn: Imprints of spin temperature fluctuations and peculiar velocities

    Ghara, Raghunath; Datta, Kanan K

    2014-01-01

    Observations of fluctuations in the 21 cm brightness temperature $\\delta T_b$ from reionization promise to provide information on the physical processes during that epoch. We present a formalism for generating the distribution of $\\delta T_b$ using dark matter $N$-body simulations and an one-dimensional radiative transfer code. The spectral energy distribution of the radiation sources is assumed to consist of a stellar-like and a mini-quasar like component. Our analysis is able to take into account the fluctuations in the spin temperature $T_S$ of neutral hydrogen arising from inhomogeneous X-ray heating and Ly$\\alpha$ coupling during cosmic dawn. We find that the power spectrum at large scales ($k \\sim 0.1$ Mpc$^{-1}$), when plotted as a function of redshift, shows three peaks. The middle peak has the largest amplitude and occurs when $\\sim 10\\%$ of the gas (by volume) is heated above the CMB temperature, irrespective of the X-ray source properties. The power spectrum when plotted against $k$ shows a "bump"-...

  13. 21-cm signal from cosmic dawn - II: Imprints of the light-cone effects

    Ghara, Raghunath; Choudhury, T Roy

    2015-01-01

    Details of various unknown physical processes during the cosmic dawn and the epoch of reionization can be extracted from observations of the redshifted 21-cm signal. These observations, however, will be affected by the evolution of the signal along the line-of-sight which is known as the "light-cone effect". We model this effect by post-processing a dark matter $N-$body simulation with a 1-D radiative transfer code. We find that the effect is much stronger and dramatic in presence of inhomogeneous heating and Ly$\\alpha$ coupling compared to the case where these processes are not accounted for. One finds increase (decrease) in the coeval spherically averaged power spectrum up to a factor of 3 (0.6) at large scales ($k \\sim 0.05\\, \\rm Mpc^{-1}$), though these numbers are highly dependent on the source model. Consequently, the peak and trough-like features seen in the evolution of the large-scale power spectrum can be smoothed out to a large extent if the width of the frequency bands used in the experiment is la...

  14. The Imprint of Warm Dark Matter on the Cosmological 21-cm Signal

    Sitwell, Michael; Ma, Yin-Zhe; Sigurdson, Kris

    2013-01-01

    We investigate the effects of warm dark matter (WDM) on the cosmic 21-cm signal. If dark matter exists as WDM instead of cold dark matter (CDM), its non-negligible velocities can inhibit the formation of low-mass halos that normally form first in CDM models, therefore delaying star-formation. The absence of early sources delays the build-up of UV and X-ray backgrounds that affect the 21-cm radiation signal produced by neutral hydrogen. With use of the 21CMFAST code, we demonstrate that the pre-reionization 21-cm signal can be changed significantly in WDM models with a free-streaming length equivalent to that of a thermal relic with mass mx of up to ~ 10-20 keV. In such a WDM cosmology, the 21-cm signal traces the growth of more massive halos, resulting in a delay of the 21-cm absorption signature and followed by accelerated X-ray heating. CDM models where astrophysical sources have a suppressed photon-production efficiency can delay the 21-cm signal as well, although its subsequent evolution is not as rapid a...

  15. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  16. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-04-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disk. This is consistent with the uniformity of spin temperature measured across the Galactic disk. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in disks of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of ≈ 5× 108 Hz, compared to ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  17. Tapering the sky response for angular power spectrum estimation from low-frequency radio-interferometric data

    Choudhuri, Samir; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad

    2016-01-01

    It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase center. Here we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C_l of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it t...

  18. Tapering the sky response for angular power spectrum estimation from low-frequency radio-interferometric data

    Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk. Saiyad

    2016-06-01

    It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum Cℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of Cℓ.

  19. Impact of Wind Power on the Angular Stability of a Power System

    Djemai NAIMI

    2008-06-01

    Full Text Available Wind energy conversion systems are very different in nature from conventional generators. Therefore dynamic studies must be addressed in order to integrate wind power into the power system. Angular stability assessment of wind power generator is one of main issues in power system security and operation. The angular stability for the wind power generator is determined by its corresponding Critical Clearing Time (CCT. In this paper, the effect of wind power on the transient fault behavior is investigated by replacing the power generated by two main types of wind turbine, increasing gradually a rate of wind power penetration and changing the location of wind resources. The simulation analysis was established on a 14 bus IEEE test system by PSAT/Matlab, which gives access to an extensive library of grid components, and relevant wind turbine model.

  20. The 21-cm signature of the first stars during the Lyman-Werner feedback era

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli; Tseliakhovich, Dmitriy; Hirata, Christopher M.

    2013-07-01

    The formation of the first stars is an exciting frontier area in astronomy. Early redshifts (z ˜ 20) have become observationally promising as a result of a recently recognized effect of a supersonic relative velocity between the dark matter and gas. This effect produces prominent structure on 100 comoving Mpc scales, which makes it much more feasible to detect 21-cm fluctuations from the epoch of first heating. We use semi-numerical hybrid methods to follow for the first time the joint evolution of the X-ray and Lyman-Werner radiative backgrounds, including the effect of the supersonic streaming velocity on the cosmic distribution of stars. We incorporate self-consistently the negative feedback on star formation induced by the Lyman-Werner radiation, which dissociates molecular hydrogen and thus suppresses gas cooling. We find that the feedback delays the X-ray heating transition by Δz ˜ 2, but leaves a promisingly large fluctuation signal over a broad redshift range. The large-scale power spectrum is predicted to reach a maximal signal-to-noise ratio of S/N ˜ 3-4 at z ˜ 18 (for a projected first-generation instrument), with S/N >1 out to z ˜ 22-23. We hope to stimulate additional numerical simulations as well as observational efforts focused on the epoch prior to cosmic reionization.

  1. Lyman-alpha radiative transfer during the Epoch of Reionization: contribution to 21-cm signal fluctuations

    Semelin, B; Baek, S

    2007-01-01

    During the epoch of reionization, Ly-alpha photons emitted by the first stars can couple the neutral hydrogen spin temperature to the kinetic gas temperature, providing the opportunity to observe the gas in emission or absorption in the 21-cm line. Given the bright foregrounds, it is of prime importance to determine precisely the fluctuations signature of the signal, to be able to extract it by its correlation power. LICORICE is a Monte-Carlo radiative transfer code, coupled to the dynamics via an adaptative Tree-SPH code. We present here the Ly-alpha part of the implementation, and validate it through three classical tests. Contrary to previous works, we do not assume that P_alpha, the number of scatterings of Ly-alpha photons per atom per second, is proportional to the Ly-alpha background flux, but take into account the scatterings in the Ly-alpha line wings. The latter have the effect to steepen the radial profile of P_alpha around each source, and re-inforce the contrast of the fluctuations. In the partic...

  2. The 21-cm signature of the first stars during the Lyman-Werner feedback era

    Fialkov, Anastasia; Visbal, Eli; Tseliakhovich, Dmitriy; Hirata, Christopher M

    2012-01-01

    The formation of the first stars is an exciting frontier area in astronomy. Early redshifts z ~ 20 have become observationally promising as a result of a recently recognized effect of a supersonic relative velocity between the dark matter and gas. This effect produces prominent structure on 100 comoving Mpc scales, which makes it much more feasible to detect 21-cm fluctuations from the epoch of first heating. We use semi-numerical hybrid methods to follow for the first time the joint evolution of the X-ray and Lyman-Werner radiative backgrounds, including the effect of the supersonic streaming velocity on the cosmic distribution of stars. We incorporate self-consistently the negative feedback on star formation induced by the Lyman-Werner radiation, which dissociates molecular hydrogen and thus suppresses gas cooling. We find that the feedback delays the X-ray heating transition by a Delta z ~ 2, but leaves a promisingly large fluctuation signal over a broad redshift range. The large-scale power spectrum is pr...

  3. Coaxing cosmic 21 cm fluctuations from the polarized sky using m -mode analysis

    Shaw, J. Richard; Sigurdson, Kris; Sitwell, Michael; Stebbins, Albert; Pen, Ue-Li

    2015-04-01

    In this paper we continue to develop the m -mode formalism, a technique for efficient and optimal analysis of wide-field transit radio telescopes, targeted at 21 cm cosmology. We extend this formalism to give an accurate treatment of the polarized sky, fully accounting for the effects of polarization leakage and cross polarization. We use the geometry of the measured set of visibilities to project down to pure temperature modes on the sky, serving as a significant compression, and an effective first filter of polarized contaminants. As in our previous work, we use the m -mode formalism with the Karhunen-Loève transform to give a highly efficient method for foreground cleaning, and demonstrate its success in cleaning realistic polarized skies observed with an instrument suffering from substantial off axis polarization leakage. We develop an optimal quadratic estimator in the m -mode formalism which can be efficiently calculated using a Monte Carlo technique. This is used to assess the implications of foreground removal for power spectrum constraints where we find that our method can clean foregrounds well below the foreground wedge, rendering only scales k∥amplifier gains to be known to 1% within each minute. Finally, as an example application, we extend our forecasts to a wideband 400-800 MHz cosmological observation and consider the implications for probing dark energy, finding a pathfinder-scale medium-sized cylinder telescope improves the Dark Energy Task Force figure of merit by around 70% over Planck and Stage II experiments alone.

  4. Coaxing Cosmic 21cm Fluctuations from the Polarized Sky using m-mode Analysis

    Shaw, J Richard; Sitwell, Michael; Stebbins, Albert; Pen, Ue-Li

    2014-01-01

    In this paper we continue to develop the m-mode formalism, a technique for efficient and optimal analysis of wide-field transit radio telescopes, targeted at 21 cm cosmology. We extend this formalism to give an accurate treatment of the polarised sky, fully accounting for the effects of polarisation leakage and cross-polarisation. We use the geometry of the measured set of visibilities to project down to pure temperature modes on the sky, serving as a significant compression, and an effective first filter of polarised contaminants. We use the m-mode formalism with the Karhunen-Loeve transform to give a highly efficient method for foreground cleaning, and demonstrate its success in cleaning realistic polarised skies observed with an instrument suffering from substantial off axis polarisation leakage. We develop an optimal quadratic estimator in the m-mode formalism, which can be efficiently calculated using a Monte-Carlo technique. This is used to assess the implications of foreground removal for power spectru...

  5. Eavesdropping on Radio Broadcasts from Galactic Civilizations with Upcoming Observatories for Redshifted 21cm Radiation

    Loeb, A; Loeb, Abraham; Zaldarriaga, Matias

    2006-01-01

    The question of whether intelligent life exists elsewhere is one of the fundamental unknowns about our Universe. Over the past decade >200 extra-solar planets have been discovered, providing new urgency for addressing this question in these or other planetary systems. Independently of this perspective, new radio observatories for cosmology are currently being constructed with the goal of detecting 21cm emission from cosmic hydrogen in the redshift range 6power. We show that this and other low-frequency observatories (culminating with the Square Kilometer Array [SKA]) will be able to detect radio broadcast leakage from an Earth-like civilization out to a distance of ~10-500pc, within a spherical volume containing 10^3-10^8 stars. Such a radio signal will ...

  6. Simulating the 21-cm signal from reionisation including non-linear ionisations and inhomogeneous recombinations

    Hassan, Sultan; Finlator, Kristian; Santos, Mario G

    2015-01-01

    We explore the impact of incorporating physically motivated ionisation and recombination rates on the history and topology of cosmic reionisation, by incorporating inputs from small-volume hydrodynamic simulations into a semi-numerical code, SimFast21, that evolves reionisation on large scales. We employ radiative hydrodynamic simulations to parameterize the ionisation rate Rion and recombination rate Rrec as functions of halo mass, overdensity and redshift. We find that Rion is super-linearly dependent on halo mass (Rion ~ Mh^1.41), in contrast to previous assumptions. We implement these scalings into SimFast21 to identify the ionized regions. We tune our models to be consistent with recent observations of the optical depth, ionizing emissivity, and neutral fraction by the end of reionisation. We require an average photon escape fraction fesc=0.04 within ~ 0.5 cMpc cells, independent of halo mass or redshift, to simultaneously match these data. We present predictions for the 21cm power spectrum, and show tha...

  7. Non-parametric foreground subtraction for 21cm epoch of reionization experiments

    Harker, Geraint; Bernardi, Gianni; Brentjens, Michiel A; De Bruyn, A G; Ciardi, Benedetta; Jelic, Vibor; Koopmans, Leon V E; Labropoulos, Panagiotis; Mellema, Garrelt; Offringa, Andre; Pandey, V N; Schaye, Joop; Thomas, Rajat M; Yatawatta, Sarod

    2009-01-01

    An obstacle to the detection of redshifted 21cm emission from the epoch of reionization (EoR) is the presence of foregrounds which exceed the cosmological signal in intensity by orders of magnitude. We argue that in principle it would be better to fit the foregrounds non-parametrically - allowing the data to determine their shape - rather than selecting some functional form in advance and then fitting its parameters. Non-parametric fits often suffer from other problems, however. We discuss these before suggesting a non-parametric method, Wp smoothing, which seems to avoid some of them. After outlining the principles of Wp smoothing we describe an algorithm used to implement it. We then apply Wp smoothing to a synthetic data cube for the LOFAR EoR experiment. The performance of Wp smoothing, measured by the extent to which it is able to recover the variance of the cosmological signal and to which it avoids leakage of power from the foregrounds, is compared to that of a parametric fit, and to another non-parame...

  8. Cross-correlation of the cosmic 21-cm signal and Lyman α emitters during reionization

    Sobacchi, Emanuele; Mesinger, Andrei; Greig, Bradley

    2016-07-01

    Interferometry of the cosmic 21-cm signal is set to revolutionize our understanding of the Epoch of Reionization (EoR), eventually providing 3D maps of the early Universe. Initial detections however will be low signal to noise, limited by systematics. To confirm a putative 21-cm detection, and check the accuracy of 21-cm data analysis pipelines, it would be very useful to cross-correlate against a genuine cosmological signal. The most promising cosmological signals are wide-field maps of Lyman α emitting galaxies (LAEs), expected from the Subaru Hyper-Suprime Cam ultradeep field (UDF). Here we present estimates of the correlation between LAE maps at z ˜ 7 and the 21-cm signal observed by both the Low Frequency Array (LOFAR) and the planned Square Kilometre Array Phase 1 (SKA1). We adopt a systematic approach, varying both: (i) the prescription of assigning LAEs to host haloes; and (ii) the large-scale structure of neutral and ionized regions (i.e. EoR morphology). We find that the LAE-21cm cross-correlation is insensitive to (i), thus making it a robust probe of the EoR. A 1000 h observation with LOFAR would be sufficient to discriminate at ≳ 1σ a fully ionized Universe from one with a mean neutral fraction of bar{x}_{H I}≈ 0.50, using the LAE-21 cm cross-correlation function on scales of R ≈ 3-10 Mpc. Unlike LOFAR, whose detection of the LAE-21 cm cross-correlation is limited by noise, SKA1 is mostly limited by ignorance of the EoR morphology. However, the planned 100 h wide-field SKA1-Low survey will be sufficient to discriminate an ionized Universe from one with bar{x}_{H I}=0.25, even with maximally pessimistic assumptions.

  9. FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20

    The most promising near-term observable of the cosmic dark age prior to widespread reionization (z ∼ 15-200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered spectrally smooth). Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ∼fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum

  10. Cross-correlation of the cosmic 21-cm signal and Lyman Alpha Emitters during reionization

    Sobacchi, Emanuele; Greig, Bradley

    2016-01-01

    Interferometry of the cosmic 21-cm signal is set to revolutionize our understanding of the Epoch of Reionization (EoR), eventually providing 3D maps of the early Universe. Initial detections however will be low signal-to-noise, limited by systematics. To confirm a putative 21-cm detection, and check the accuracy of 21-cm data analysis pipelines, it would be very useful to cross-correlate against a genuine cosmological signal. The most promising cosmological signals are wide-field maps of Lyman alpha emitting galaxies (LAEs), expected from the Subaru Hyper-Suprime Cam (HSC) Ultra-Deep field. Here we present estimates of the correlation between LAE maps at z~7 and the 21-cm signal observed by both the Low Frequency Array (LOFAR) and the planned Square Kilometer Array Phase 1 (SKA1). We adopt a systematic approach, varying both: (i) the prescription of assigning LAEs to host halos; and (ii) the large-scale structure of neutral and ionized regions (i.e. EoR morphology). We find that the LAE-21cm cross-correlation...

  11. The Importance of Wide-field Foreground Removal for 21 cm Cosmology: A Demonstration with Early MWA Epoch of Reionization Observations

    Pober, J. C.; Hazelton, B. J.; Beardsley, A. P.; Barry, N. A.; Martinot, Z. E.; Sullivan, I. S.; Morales, M. F.; Bell, M. E.; Bernardi, G.; Bhat, N. D. R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Deshpande, A. A.; Dillon, Joshua. S.; Emrich, D.; Ewall-Wice, A. M.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, Han-Seek; Kittiwisit, P.; Kratzenberg, E.; Kudryavtseva, N.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, Sourabh; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Sethi, Shiv K.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.

    2016-03-01

    In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model that includes sources in both the main field of view and the first sidelobes reduces the contamination in high k∥ modes by several per cent relative to a model that only includes sources in the main field of view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any Epoch of Reionization signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the instrument’s main field of view to potentially recover the full 21 cm power spectrum.

  12. New H I 21-cm absorbers at low and intermediate redshifts

    Zwaan, M. A.; Liske, J.; Péroux, C.; Murphy, M. T.; Bouché, N.; Curran, S. J.; Biggs, A. D.

    2015-10-01

    We present the results of a survey for intervening H I 21-cm absorbers at intermediate and low redshift (0 RFI). Five of our targets are low-redshift (z detected in 21-cm absorption, showing narrow, high optical depth absorption profiles, the narrowest having a velocity dispersion of only 1.5 km s- 1, which puts an upper limit on the kinetic temperature of Tk detected in 21-cm absorption, and six were affected by RFI to a level that precludes a detection. For these two systems at z ˜ 0.6, we measure spin temperatures of Ts = (65 ± 17) K and Ts > 180 K. A subset of our systems was also searched for OH absorption, but no detections were made.

  13. The Theory and Simulation of the 21-cm Background from the Epoch of Reionization

    Shapiro, Paul R; Mellema, Garrelt; Pen, Ue-Li; Merz, Hugh

    2008-01-01

    The redshifted 21-cm line of distant neutral H atoms provides a probe of the cosmic ``dark ages'' and the epoch of reionization (``EOR'') which ended them. The radio continuum produced by this redshifted line can be seen in absorption or emission against the CMB at meterwaves, yielding information about the thermal and ionization history of the universe and the primordial density perturbation spectrum that led to galaxy and large-scale structure formation. Observing this 21-cm background is a great challenge. A new generation of low-frequency radio arrays is currently under development to search for this background. Accurate theoretical predictions of the spectrum and anisotropy of this background, necessary to guide and interpret future observations, are also quite challenging. It is necessary to model the inhomogeneous reionization of the intergalactic medium and determine the spin temperature of the 21-cm transition and its variations in time and space as it decouples from the temperature of the CMB. Here,...

  14. Distinctive 21 cm structures of the first stars, galaxies, and quasars

    Yajima, Hidenobu

    2013-01-01

    Observations of the redshifted 21 cm line with upcoming radio telescopes promise to transform our understanding of the cosmic reionization. To unravel the underlying physical process, we investigate the 21 cm structures of three different ionizing sources, Pop III stars, the first galaxies and quasars, by using radiative transfer simulations that include both ionization of neutral hydrogen and resonant scattering of Lya photons. We find that Pop III stars and quasars produce a smooth transition from an ionized and hot state to a neutral and cold one, owing to their hard spectral energy distribution with abundant ionizing photons, in contrast to the sharp transition in galaxies. Furthermore, Lya scattering plays a dominant role in producing the 21 cm signal as it determines the relation between hydrogen spin temperature and gas kinetic temperature. This effect, also called Wouthuysen-Field coupling, depends strongly on the ionizing source. It is the strongest around galaxies, where the spin temperature is high...

  15. Signatures of particle decay in 21 cm absorptions from first minihalos

    Vasiliev, E O

    2013-01-01

    The imprint of decaying dark matter (DM) particles in characteristics of the "21 cm fores" -- absorptions in 21 cm from minihalos in spectra of distant radio-loud sources -- is considered within a 1D self-consistent hydrodynamic description of minihalos from their turnaround point to virialization. The most pronounced influence of decaying DM on evolution of minihalos is found in the mass range $M=10^5-10^6\\msun$, for which unstable DM with the current upper limit of the ionization rate $\\xi_{L} = 0.59\\times 10^{-25}$ s$^{-1}$ depresses 21 cm optical depth by an order of magnitude compared to the standard recombination scenario. Even rather a modest ionization $\\xi \\sim 0.3\\xi_L$ practically "erases" absorption features and results in a considerable decrease (by factor of more than 2.5) of the number of strong ($W_\

  16. The Angular Power Spectra of Photometric SDSS LRGs

    Thomas, Shaun A; Lahav, Ofer

    2010-01-01

    We construct new galaxy angular power spectra based on the extended, updated and final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey: MegaZ DR7. Encapsulating 7746 deg^{2} we utilise 723,556 photometrically determined LRGs between 0.45 < z < 0.65 in a 3.3 (Gpc h^{-1})^3 spherical harmonic analysis of the galaxy distribution. By combining four photometric redshift bins we find preliminary parameter constraints of f_{b} = \\Omega_{b}/\\Omega_{m} = 0.173 +/- 0.046 and \\Omega_{m} = 0.260 +/- 0.035 assuming H_{0} = 75 km s^{-1} Mpc^{-1}, n_{s}=1 and \\Omega_{k} = 0. These limits are consistent with the CMB and the previous data release (DR4). The C_{\\ell} are sensitive to redshift space distortions and therefore we also recast our constraints into a measurement of \\beta ~ \\Omega_{m}^{0.55}/b in different redshift shells. The robustness of these power spectra with respect to a number of potential systematics such as extinction, photometric redshift and ANNz training set extrapolation are examined...

  17. Pulsed power for angular multiplexed laser fusion drivers

    The feasibility of using rare gas-halide lasers, in particular the KrF laser, as inertial confinement fusion (ICF) drivers has been assessed. These lasers are scalable to the required high energy (approx. =1-5 MJ) in a short pulse (approx. =10 ns) by optical angular multiplexing, and integration of the output from approx. =100 kJ laser amplifier subsystems. The e-beam current density (approx. =50A/cm2) and voltage (approx. =800 kV) required for these power amplifiers lead to an e-beam impedance of approx. =0.2Ω for approx. =300 ns pump time. This impedance level requires modularization of the large area e-gun, a) to achieve a diode inductance consistent with fast current risetime, b) to circumvent dielectric breakdown constraints in the pulse forming lines, and c) to reduce the requirement for guide magnetic fields. Pulsed power systems requirements, design concepts, scalability, tradeoffs, and performance projections are discussed in this paper

  18. Constraints on massive neutrinos from the CFHTLS angular power spectrum

    Xia, Jun-Qing [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy); Granett, Benjamin R.; Guzzo, Luigi [INAF — Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Brera (Italy); Viel, Matteo [INAF — Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste (Italy); Bird, Simeon [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Haehnelt, Martin G. [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, CB3 0HA, Cambridge (United Kingdom); Coupon, Jean [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); McCracken, Henry Joy; Mellier, Yannick, E-mail: xia@sissa.it, E-mail: ben.granett@brera.inaf.it, E-mail: viel@oats.inaf.it, E-mail: spb@ias.edu, E-mail: luigi.guzzo@brera.inaf.it, E-mail: haehnelt@ast.cam.ac.uk, E-mail: coupon@asiaa.sinica.edu.tw, E-mail: hjmcc@iap.fr, E-mail: mellier@iap.fr [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universitè Pierre et Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France)

    2012-06-01

    We use the galaxy angular power spectrum at z ∼ 0.5–1.2 from the Canada-France-Hawaii-Telescope Legacy Survey Wide fields (CFHTLS-Wide) to constrain separately the total neutrino mass Σm{sub ν} and the effective number of neutrino species N{sub eff}. This survey has recently benefited from an accurate calibration of the redshift distribution, allowing new measurements of the (non-linear) matter power spectrum in a unique range of scales and redshifts sensitive to neutrino free streaming. Our analysis makes use of a recent model for the effect of neutrinos on the weakly non-linear matter power spectrum derived from accurate N-body simulations. We show that CFHTLS, combined with WMAP7 and a prior on the Hubble constant provides an upper limit of Σm{sub ν} < 0.29 eV and N{sub eff} = 4.17{sup +1.62}{sub −1.26} (2 σ confidence levels). If we omit smaller scales which may be affected by non-linearities, these constraints become Σm{sub ν} < 0.41 eV and N{sub eff} = 3.98{sup +2.02}{sub −1.20} (2 σ confidence levels). Finally we show that the addition of other large scale structures probes can further improve these constraints, demonstrating that high redshift large volumes surveys such as CFHTLS are complementary to other cosmological probes of the neutrino mass.

  19. Reconciling Damped Ly-α Statistics and 21cm Studies at z = 0

    Zwaan, Martin; Briggs, F. H.; Verheijen, M.

    2002-01-01

    Blind 21cm surveys in the local universe have shown that the local HI mass density, Omega_HI, is dominated by luminous, high surface brightness, spiral galaxies. On the other hand, surveys for host galaxies of damped Ly-alpha (DLA) systems have not always been successful in finding bright spiral gal

  20. Bayesian constraints on the global 21-cm signal from the Cosmic Dawn

    Bernardi, G.; Zwart, J. T. L.; Price, D.; Greenhill, L. J.; Mesinger, A.; Dowell, J.; Eftekhari, T.; Ellingson, S. W.; Kocz, J.; Schinzel, F.

    2016-09-01

    The birth of the first luminous sources and the ensuing epoch of reionization are best studied via the redshifted 21-cm emission line, the signature of the first two imprinting the last. In this work, we present a fully Bayesian method, HIBAYES, for extracting the faint, global (sky-averaged) 21-cm signal from the much brighter foreground emission. We show that a simplified (but plausible) Gaussian model of the 21-cm emission from the Cosmic Dawn epoch (15 ≲ z ≲ 30), parametrized by an amplitude A_{H I}, a frequency peak ν _{H I} and a width σ _{H I}, can be extracted even in the presence of a structured foreground frequency spectrum (parametrized as a seventh-order polynomial), provided sufficient signal-to-noise (400 h of observation with a single dipole). We apply our method to an early, 19-min-long observation from the Large aperture Experiment to detect the Dark Ages, constraining the 21-cm signal amplitude and width to be -890 6.5 MHz (corresponding to Δz > 1.9 at redshift z ≃ 20) respectively at the 95-per cent confidence level in the range 13.2 ν > 50 MHz).

  1. The 21cm forest in the diffuse IGM as seen by LOFAR

    Ciardi, B; Maselli, A; Thomas, R; Zaroubi, S; Graziani, L; Bolton, J S; Bernardi, G; Brentjens, M; de Bruyn, A G; Daiboo, S; Harker, G J A; Jelic, V; Kazemi, S; Koopmans, L V E; Martinez, O; Mellema, G; Offringa, A R; Pandey, V N; Schaye, J; Veligatla, V; Vedantham, H; Yatawatta, S

    2012-01-01

    We discuss the feasibility of the detection of the 21cm forest in the diffuse IGM with the radio telescope LOFAR. The optical depth to the 21cm line has been derived using simulations of reionization which include detailed radiative transfer of ionizing photons. We find that the spectra from reionization models with similar total comoving hydrogen ionizing emissivity but different frequency distribution look remarkably similar. Thus, unless the reionization histories are very different from each other (e.g. a predominance of UV vs. x-ray heating) we do not expect to distinguish them by means of observations of the 21cm forest. Because the presence of a strong x-ray background would make the detection of 21cm line absorption impossible, the lack of absorption could be used as a probe of the presence/intensity of the x-ray background and the thermal history of the universe. Along a random line of sight LOFAR could detect a global suppression of the spectrum from z>12, when the IGM is still mostly neutral and co...

  2. A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm EPOCH OF REIONIZATION EXPERIMENTS

    Jacobs, Daniel C.; Bowman, Judd [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Parsons, Aaron R.; Ali, Zaki; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, Dave H. E. [Radio Astronomy Lab., University of California, Berkeley, CA (United States); Gugliucci, Nicole E.; Klima, Pat [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason R.; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2013-10-20

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from –46° to –40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of –0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  3. A Remark on the Estimation of Angular Power Spectra in the Presence of Foregrounds

    White, M

    1998-01-01

    It is common practice to estimate the errors on the angular power spectrum which could be obtained by an experiment with a given angular resolution and noise level. Several authors have also addressed the question of foreground subtraction using multi-frequency observations. In such observations the angular resolution of the different frequency channels is rarely the same. In this report we point out how the ``effective'' beam size and noise level change with ell in this case, and give an expression for the error on the angular power spectrum as a function of ell.

  4. Analytical model for CMB temperature angular power spectrum from cosmic (super-)strings

    Yamauchi, Daisuke; Takahashi, Keitaro; Sendouda, Yuuiti; Yoo, Chul-Moon; Sasaki, Misao

    2010-01-01

    We present a new analytical method to calculate the small angle CMB temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability $P$. We find that the power spectrum is dominated by Poisson-distributed string segments. The power spectrum for a general value of $P$ has a plateau on large angular scales and shows a power-law decrease on small angular scales. The resulting spectrum in the ca...

  5. The Importance of Wide-field Foreground Removal for 21 cm Cosmology: A Demonstration With Early MWA Epoch of Reionization Observations

    Pober, J C; Beardsley, A P; Barry, N A; Martinot, Z E; Sullivan, I S; Morales, M F; Bell, M E; Bernardi, G; Bhat, N D R; Bowman, J D; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Deshpande, A A; Dillon, Joshua S; Emrich, D; Ewall-Wice, A M; Feng, L; Goeke, R; Greenhill, L J; Hewitt, J N; Hindson, L; Hurley-Walker, N; Jacobs, D C; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kim, Han-Seek; Kittiwisit, P; Kratzenberg, E; Kudryavtseva, N; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morgan, E; Neben, A R; Oberoi, D; Offringa, A R; Ord, S M; Paul, Sourabh; Pindor, B; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Sethi, Shiv K; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tegmark, M; Thyagarajan, Nithyanandan; Tingay, S J; Trott, C M; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wyithe, J S B

    2016-01-01

    In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model which includes sources in both the main field-of-view and the first sidelobes reduces the contamination in high k_parallel modes by several percent relative to a model which only includes sources in the main field-of-view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. ...

  6. The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes

    Lopez-Honorez, Laura; Moliné, Ángeles; Palomares-Ruiz, Sergio; Vincent, Aaron C

    2016-01-01

    Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-$\\alpha$ pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time s...

  7. Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations

    We focus on the ongoing and future observations for both the 21 cm line and the CMB B-mode polarization produced by a CMB lensing, and study their sensitivities to the effective number of neutrino species, the total neutrino mass, and the neutrino mass hierarchy. We find that combining the CMB observations with future square kilometer arrays optimized for 21 cm line such as Omniscope can determine the neutrino mass hierarchy at 2σ. We also show that a more feasible combination of Planck + POLARBEAR and SKA can strongly improve errors of the bounds on the total neutrino mass and the effective number of neutrino species to be ΔΣmν∼0.12 eV and ΔNν∼0.38 at 2σ, respectively.

  8. Signatures of clumpy dark matter in the global 21 cm background signal

    We examine the extent to which the self-annihilation of supersymmetric neutralino dark matter, as well as light dark matter, influences the rate of heating, ionization, and Lyman-α pumping of interstellar hydrogen and helium and the extent to which this is manifested in the 21 cm global background signal. We fully consider the enhancements to the annihilation rate from dark matter halos and substructures within them. We find that the influence of such structures can result in significant changes in the differential brightness temperature, δTb. The changes at redshifts zb, relative to its value in the absence of self-annihilating dark matter, of up to ≅20 mK at z=30 can occur. Thus we conclude that, in order to exclude these models, experiments measuring the global 21 cm signal, such as EDGES and CORE, will need to reduce the systematics at 50 MHz to below 20 mK.

  9. Mapping Cosmic Structure Using 21-cm Hydrogen Signal at Green Bank Telescope

    Voytek, Tabitha; GBT 21-cm Intensity Mapping Group

    2011-05-01

    We are using the Green Bank Telescope to make 21-cm intensity maps of cosmic structure in a 0.15 Gpc^3 box at redshift of z 1. The intensity mapping technique combines the flux from many galaxies in each pixel, allowing much greater mapping speed than the traditional redshift survey. Measurement is being made at z 1 to take advantage of a window in frequency around 700 MHz where terrestrial radio frequency interference (RFI) is currently at a minimum. This minimum is due to a reallocation of this frequency band from analog television to wide area wireless internet and public service usage. We will report progress of our attempt to detect autocorrelation of the 21-cm signal. The ultimate goal of this mapping is to use Baryon Acoustic Oscillations to provide more precise constraints to dark energy models.

  10. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 HI bHI r = [0.43 ± 0.07(stat.) ± 0.04(sys.)] × 10–3, where ΩHI is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and bHI is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z ∼ 0.8 both in its precision and in the range of scales probed.

  11. The Global 21-cm Signal in the Context of the High-z Galaxy Luminosity Function

    Mirocha, Jordan; Sun, G

    2016-01-01

    Motivated by recent progress in studies of the high-$z$ Universe, we build a new model for the global 21-cm signal that is explicitly calibrated to measurements of the galaxy luminosity function (LF) and further tuned to match the Thomson scattering optical depth of the cosmic microwave background, $\\tau_e$. Assuming that the $z \\lesssim 8$ galaxy population can be smoothly extrapolated to higher redshifts, the recent decline in best-fit values of $\\tau_e$ and the inefficient heating induced by X-ray binaries (HMXBs; the presumptive sources of the X-ray background at high-$z$) imply that the entirety of cosmic reionization and reheating occurs at redshifts $z \\lesssim 12$. In contrast to past global 21-cm models, whose $z \\sim 20$ ($\

  12. 21-cm H I emission from the Damped Lyman-alpha absorber SBS 1543+593

    Bowen, D V; Brinks, E; Tripp, T M; Jenkins, E B; Bowen, David V.; Huchtmeier, Walter; Brinks, Elias; Tripp, Todd M.; Jenkins, Edward B.

    2001-01-01

    We detect 21-cm emission from the Low Surface Brightness (LSB) galaxy SBS 1543+593, which gives rise to a Damped Lyman-alpha (DLA) absorption line in the spectrum of the background QSO HS 1543+5921 (z=0.807). We obtain an accurate measure of the velocity of the H I gas in the LSB galaxy, v=2868 km/s, and derive a mass of 1.3e9 solar masses. We compare this value with limits obtained towards two other z~0.1 DLA systems, and show that SBS 1543+593 would not have been detected. Hence LSB galaxies similar to SBS 1543+593 can be responsible for DLA systems at even modest redshifts without being detectable from their 21-cm emission.

  13. A synthetic 21-cm Galactic Plane Survey of a smoothed particle hydrodynamics galaxy simulation

    Douglas, Kevin A.; Acreman, David M.; Dobbs, Clare L.; Brunt, Christopher M.

    2010-01-01

    We have created synthetic neutral hydrogen (HI) Galactic Plane Survey data cubes covering 90 degrees < l < 180 degrees, using a model spiral galaxy from SPH simulations and the radiative transfer code TORUS. The density, temperature and other physical parameters are fed from the SPH simulation into TORUS, where the HI emissivity and opacity are calculated before the 21-cm line emission profile is determined. Our main focus is the observation of Outer Galaxy `Perseus Arm' HI, with a view to tr...

  14. The 21-cm signature of the first stars during the Lyman–Werner feedback era

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli; Tseliakhovich, Dmitriy; Hirata, Christopher M.

    2013-01-01

    The formation of the first stars is an exciting frontier area in astronomy. Early redshifts z ~ 20 have become observationally promising as a result of a recently recognized effect of a supersonic relative velocity between the dark matter and gas. This effect produces prominent structure on 100 comoving Mpc scales, which makes it much more feasible to detect 21-cm fluctuations from the epoch of first heating. We use semi-numerical hybrid methods to follow for the first time the joint evolutio...

  15. Eavesdropping on Radio Broadcasts from Galactic Civilizations with Upcoming Observatories for Redshifted 21cm Radiation

    Loeb , Abraham; Zaldarriaga, Matias

    2006-01-01

    The question of whether intelligent life exists elsewhere is one of the fundamental unknowns about our Universe. Over the past decade more than 200 extra-solar planets have been discovered, providing new urgency for addressing this question in these or other planetary systems. Independently of this perspective, new radio observatories for cosmology are currently being constructed with the goal of detecting 21cm emission from cosmic hydrogen in the redshift range 6

  16. The Rise of the First Stars: Supersonic Streaming, Radiative Feedback, and 21-cm Cosmology

    Barkana, Rennan

    2016-01-01

    Understanding the formation and evolution of the first stars and galaxies represents one of the most exciting frontiers in astronomy. Since the universe was filled with hydrogen atoms at early times, the most promising probe of the epoch of the first stars is the prominent 21-cm spectral line of hydrogen. Current observational efforts are focused on the cosmic reionization era, but observations of the pre-reionization cosmic dawn are also promising. While observationally unexplored, theoretic...

  17. Numerical simulation of soil brightness temperatures at wavelength of 21 cm

    Mo, T.; Schmugge, T. J.

    1981-01-01

    A simulation model is applied to reproduce some observed brightness temperatures at a wavelength of 21 cm. The simulated results calculated with two different soil textures are compared directly with observations measured over fields in Arizona and South Dakota. It is found that good agreement is possible by properly adjusting the surface roughness parameter. Correlation analysis and linear regression of the brightness temperatures versus soil moistures are also carried out.

  18. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    Tanaka, Takamitsu L.; O'Leary, Ryan M.; Perna, Rosalba

    2016-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at `cosmic dawn', during the emergence of the first luminous astrophysical objects (˜100 Myr after the big bang) but before these objects ionized the IGM (˜400-800 Myr after the big bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays - and thus the primary driver of IGM heating and the 21 cm signature - at redshifts z ≳ 20, if (i) they grow readily from the remnants of Population III stars and (ii) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at z ≳ 20. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.

  19. 21-cm signature of the first sources in the Universe: prospects of detection with SKA

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2016-07-01

    Currently several low-frequency experiments are being planned to study the nature of the first stars using the redshifted 21-cm signal from the cosmic dawn and Epoch of Reionization. Using a one-dimensional radiative transfer code, we model the 21-cm signal pattern around the early sources for different source models, i.e. the metal-free Population III (PopIII) stars, primordial galaxies consisting of Population II (PopII) stars, mini-QSOs and high-mass X-ray binaries (HMXBs). We investigate the detectability of these sources by comparing the 21-cm visibility signal with the system noise appropriate for a telescope like the SKA1-low. Upon integrating the visibility around a typical source over all baselines and over a frequency interval of 16 MHz, we find that it will be possible to make a ˜9σ detection of the isolated sources like PopII galaxies, mini-QSOs and HMXBs at z ˜ 15 with the SKA1-low in 1000 h. The exact value of the signal-to-noise ratio (SNR) will depend on the source properties, in particular on the mass and age of the source and the escape fraction of ionizing photons. The predicted SNR decreases with increasing redshift. We provide simple scaling laws to estimate the SNR for different values of the parameters which characterize the source and the surrounding medium. We also argue that it will be possible to achieve an SNR ˜9 even in the presence of the astrophysical foregrounds by subtracting out the frequency-independent component of the observed signal. These calculations will be useful in planning 21-cm observations to detect the first sources.

  20. 21-cm signature of the first sources in the Universe: Prospects of detection with SKA

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2016-04-01

    Currently several low-frequency experiments are being planned to study the nature of the first stars using the redshifted 21-cm signal from the cosmic dawn and epoch of reionization. Using a one-dimensional radiative transfer code, we model the 21-cm signal pattern around the early sources for different source models, i.e., the metal-free Population III (PopIII) stars, primordial galaxies consisting of Population II (PopII) stars, mini-QSOs and high-mass X-ray binaries (HMXBs). We investigate the detectability of these sources by comparing the 21-cm visibility signal with the system noise appropriate for a telescope like the SKA1-low. Upon integrating the visibility around a typical source over all baselines and over a frequency interval of 16 MHz, we find that it will be possible make a ˜9 - σ detection of the isolated sources like PopII galaxies, mini-QSOs and HMXBs at z ˜ 15 with the SKA1-low in 1000 hours. The exact value of the signal to noise ratio (SNR) will depend on the source properties, in particular on the mass and age of the source and the escape fraction of ionizing photons. The predicted SNR decreases with increasing redshift. We provide simple scaling laws to estimate the SNR for different values of the parameters which characterize the source and the surrounding medium. We also argue that it will be possible to achieve a SNR ˜9 even in the presence of the astrophysical foregrounds by subtracting out the frequency-independent component of the observed signal. These calculations will be useful in planning 21-cm observations to detect the first sources.

  1. Exploiting 21cm - Ly$\\alpha$ emitter synergies: constraints on reionization

    Hutter, Anne; Müller, Volker; Trott, Cathryn

    2016-01-01

    We couple a $z \\simeq 6.6$ hydrodynamical simulation (GADGET-2) with a radiative transfer code (pCRASH) and a dust model to simultaneously obtain the 21cm emission from the spin-flip transition of neutral hydrogen (HI) as well as the sub-population of galaxies visible as Lyman Alpha Emitters (LAEs). Cross-correlating 21cm data with the underlying galaxy population, and especially the subset visible as LAEs, our aim is to constrain both the average intergalactic medium (IGM) ionization state ($\\langle \\chi_{HI} \\rangle$) and the reionization topology (outside-in versus inside-out). We find that LAEs occupy the densest and most-ionized regions resulting in a very strong anti-correlation between the LAEs and the 21cm emission. Within errors, a 1000h SKA-LOW1 - Subaru Hyper Suprime Cam experiment can provide exquisite constraints on $\\langle \\chi_{HI} \\rangle$, allowing us to distinguish between IGM ionization levels of 50%, 25%, 10% and fully ionized at scales $\\leq 10$ comoving Mpc. Our results support the insi...

  2. 21-cm signature of the first sources in the Universe: Prospects of detection with SKA

    Ghara, Raghunath; Datta, Kanan K

    2015-01-01

    Currently several low-frequency experiments are being planned to study the nature of the first stars using the redshifted 21-cm signal from the cosmic dawn and epoch of reionization. Using a one-dimensional radiative transfer code, we model the 21-cm signal pattern around the early sources for different source models, i.e., the metal-free Population III (PopIII) stars, primordial galaxies consisting of Population II (PopII) stars, mini-QSOs and high-mass X-ray binaries (HMXBs). We investigate the detectability of these sources by comparing the 21-cm visibility signal with the system noise appropriate for a telescope like the SKA1-low. Upon integrating the visibility around a typical source over all baselines and over a frequency interval of 16 MHz, we find that it will be possible make a $\\sim 9-\\sigma$ detection of the isolated sources like PopII galaxies, mini-QSOs and HMXBs at $z \\sim 15$ with the SKA1-low in 1000 hours. The exact value of the signal to noise ratio (SNR) will depend on the source propertie...

  3. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    Tanaka, Takamitsu L; Perna, Rosalba

    2015-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at "cosmic dawn," during the emergence of the first luminous astrophysical objects (~100 Myr after the Big Bang) but before these objects ionized the IGM (~400-800 Myr after the Big Bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays---and thus the primary driver of IGM heating and the 21 cm signature---at redshifts $z 20$. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies ...

  4. Accurate measurement of the HI column density from HI 21cm absorption-emission spectroscopy

    Chengalur, Jayaram N; Roy, Nirupam

    2013-01-01

    We present a detailed study of an estimator of the HI column density, based on a combination of HI 21cm absorption and HI 21cm emission spectroscopy. This "isothermal" estimate is given by $N_{\\rm HI,ISO} = 1.823 \\times 10^{18} \\int \\left[ \\tau_{\\rm tot} \\times {\\rm T_B} \\right] / \\left[ 1 - e^{-\\tau_{\\rm tot}} \\right] {\\rm dV}$, where $\\tau_{\\rm tot}$ is the total HI 21cm optical depth along the sightline and ${\\rm T_B}$ is the measured brightness temperature. We have used a Monte Carlo simulation to quantify the accuracy of the isothermal estimate by comparing the derived $N_{\\rm HI,ISO}$ with the true HI column density $N_{\\rm HI}$. The simulation was carried out for a wide range of sightlines, including gas in different temperature phases and random locations along the path. We find that the results are statistically insensitive to the assumed gas temperature distribution and the positions of different phases along the line of sight. The median value of the ratio of the true H{\\sc i} column density to the...

  5. Foregrounds for observations of the cosmological 21 cm line: II. Westerbork observations of the fields around 3C196 and the North Celestial Pole

    Bernardi, G; Brentjens, M A; Ciardi, B; Jelić, V; Koopmans, L V E; Labropoulos, P; Offringa, A; Pandey, V N; Schaye, J; Thomas, R M; Yatawatta, S; Zaroubi, S

    2010-01-01

    In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotatio...

  6. Spatially Extended 21 cm Signal from Strongly Clustered UV and X-Ray Sources in the Early Universe

    Ahn, Kyungjin; Norman, Michael L; Alvarez, Marcelo A; Wise, John H

    2014-01-01

    We present our prediction for the local 21 cm differential brightness temperature ($\\delta T_{b}$) from a set of strongly clustered sources of Population III (Pop III) and II (Pop II) objects in the early Universe, by a numerical simulation of their formation and radiative feedback. These objects are located inside a highly biased environment, which is a rare, high-density peak ("Rarepeak") extending to $\\sim7$ comoving Mpc. We study the impact of ultraviolet (UV) and X-ray photons on the intergalactic medium (IGM) and the resulting $\\delta T_{b}$, when Pop III stars are assumed to emit X-ray photons by forming X-ray binaries after their death. We parameterize the rest-frame spectral energy density (SED) of X-ray photons, which regulates X-ray photon-trapping, IGM-heating, secondary Lyman-alpha pumping and the resulting morphology of $\\delta T_{b}$. A combination of emission ($\\delta T_{b}>0$) and absorption ($\\delta T_{b}<0$) regions appears in varying amplitudes and angular scales. The boost of the signa...

  7. Adding Context to JWST Surveys with Current and Future 21cm Radio Observations

    Beardsley, Adam P; Lidz, Adam; Malloy, Matthew; Sutter, Paul M

    2014-01-01

    Infrared and radio observations of the Epoch of Reionization promise to revolutionize our understanding of the cosmic dawn, and major efforts with the JWST, MWA and HERA are underway. While measurements of the ionizing sources with infrared telescopes and the effect of these sources on the intergalactic medium with radio telescopes \\emph{should} be complementary, to date the wildly disparate angular resolutions and survey speeds have made connecting proposed observations difficult. In this paper we develop a method to bridge the gap between radio and infrared studies. While the radio images may not have the sensitivity and resolution to identify individual bubbles with high fidelity, by leveraging knowledge of the measured power spectrum we are able to separate regions that are likely ionized from largely neutral, providing context for the JWST observations of galaxy counts and properties in each. By providing the ionization context for infrared galaxy observations, this method can significantly enhance the s...

  8. On the Detection of Global 21-cm Signal from Reionization Using Interferometers

    Singh, Saurabh; Subrahmanyan, Ravi; Udaya Shankar, N.; Raghunathan, A.

    2015-12-01

    Detection of the global redshifted 21-cm signal is an excellent means of deciphering the physical processes during the Dark Ages and subsequent Epoch of Reionization (EoR). However, detection of this faint monopole is challenging due to the high precision required in instrumental calibration and modeling of substantially brighter foregrounds and instrumental systematics. In particular, modeling of receiver noise with mK accuracy and its separation remains a formidable task in experiments aiming to detect the global signal using single-element spectral radiometers. Interferometers do not respond to receiver noise; therefore, here we explore the theory of the response of interferometers to global signals. In other words, we discuss the spatial coherence in the electric field arising from the monopole component of the 21-cm signal and methods for its detection using sensor arrays. We proceed by first deriving the response to uniform sky of two-element interferometers made of unit dipole and resonant loop antennas, then extend the analysis to interferometers made of one-dimensional arrays and also consider two-dimensional aperture antennas. Finally, we describe methods by which the coherence might be enhanced so that the interferometer measurements yield improved sensitivity to the monopole component. We conclude (a) that it is indeed possible to measure the global 21-cm from EoR using interferometers, (b) that a practically useful configuration is with omnidirectional antennas as interferometer elements, and (c) that the spatial coherence may be enhanced using, for example, a space beam splitter between the interferometer elements.

  9. Power law in the angular velocity distribution of a granular needle

    Piasecki, J.; Viot, P.

    2005-01-01

    We show how inelastic collisions induce a power law with exponent -3 in the decay of the angular velocity distribution of anisotropic particles with sufficiently small moment of inertia. We investigate this question within the Boltzmann kinetic theory for an elongated granular particle immersed in a bath. The power law persists so long as the collisions are inelastic for a large range of angular velocities provided the mass ratio of the anisotropic particle and the bath particles remains smal...

  10. Invisible Active Galactic Nuclei. II Radio Morphologies & Five New HI 21 cm Absorption Line Detections

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2015-01-01

    We have selected a sample of 80 candidates for obscured radio-loud active galactic nuclei and presented their basic optical/near-infrared (NIR) properties in Paper 1. In this paper, we present both high-resolution radio continuum images for all of these sources and HI 21cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz VLA continuum observations find that 52 sources are compact or have substantial compact components with size

  11. Using 21-cm absorption surveys to measure the average HI spin temperature in distant galaxies

    Allison, J R; Duchesne, S W; Curran, S J

    2016-01-01

    We present a statistical method for measuring the average HI spin temperature in distant galaxies using the expected detection yields from future wide-field 21-cm absorption surveys. As a demonstrative case study we consider a simulated survey with the Australian Square Kilometre Array Pathfinder for intervening HI absorbers at intermediate cosmological redshifts between $z = 0.4$ and 1. If such a survey yielded $\\sim 1000$ absorbers we would infer a harmonic-mean spin temperature of $\\overline{T}_\\mathrm{spin} \\sim 100$K for the population of Damped Lyman-$\\alpha$ absorbers at these redshifts, indicating that more than $50$ percent of the neutral gas in these systems is in a cold neutral medium (CNM). Conversely, a lower yield of only 100 detections would imply $\\overline{T}_\\mathrm{spin} \\sim 1000$K and a correspondingly lower CNM fraction. We propose that this method can be used to provide independent verification of the spin temperature evolution reported in recent 21-cm surveys of known DLAs at high reds...

  12. Constraints on the neutrino parameters by future cosmological 21cm line and precise CMB polarization observations

    Oyama, Yoshihiko; Hazumi, Masashi

    2015-01-01

    Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Also, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We will show that by combining a precise CMB polarization observations such as Simons Array with a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1eV. Additionally, the combinations can strongly improve errors of the bounds on the effect...

  13. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z {approx} 0.8 IN CROSS-CORRELATION

    Masui, K. W.; Switzer, E. R.; Calin, L.-M.; Pen, U.-L.; Shaw, J. R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George St., Toronto, Ontario, M5S 3H8 (Canada); Banavar, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4 (Canada); Bandura, K. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Blake, C. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Chang, T.-C.; Liao, Y.-W. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Chen, X.; Li, Y.-C. [National Astronomical Observatories, Chinese Academy of Science, 20A Datun Road, Beijing 100012 (China); Natarajan, A.; Peterson, J. B.; Voytek, T. C. [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States)

    2013-01-20

    In this Letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling {approx}41 deg. sq. and 190 hr of radio integration time. The cross-correlation constrains {Omega}{sub HI} b{sub HI} r = [0.43 {+-} 0.07(stat.) {+-} 0.04(sys.)] Multiplication-Sign 10{sup -3}, where {Omega}{sub HI} is the neutral hydrogen (H I) fraction, r is the galaxy-hydrogen correlation coefficient, and b{sub HI} is the H I bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z {approx} 0.8 both in its precision and in the range of scales probed.

  14. Invisible Active Galactic Nuclei. II Radio Morphologies & Five New HI 21 cm Absorption Line Detections

    Yan, Ting; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2015-01-01

    We have selected a sample of 80 candidates for obscured radio-loud active galactic nuclei and presented their basic optical/near-infrared (NIR) properties in Paper 1. In this paper, we present both high-resolution radio continuum images for all of these sources and HI 21cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz VLA continuum observations find that 52 sources are compact or have substantial compact components with size 0.1 Jy at 4.9 GHz. The most compact 36 sources were then observed with the VLBA at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, a detection rate of CSOs ~3 times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty seven sources were observed for HI 21cm absorption at their photometric or spectroscopic redshifts with only ...

  15. Pilot observations at 74 MHz for global 21cm cosmology with the Parkes 64 m

    Bannister, Keith; McConnell, David; Reynolds, John; Chippendale, Aaron; Landecker, Tom L.; Dunning, Alex

    2013-10-01

    We propose a single pilot observing session using the existing 74 MHz feed at Parkes to evaluate tools and techniques to optimise low frequency (44-88 MHz) observing. 1. A continuum map of the diffuse emission in the Southern sky at 74 MHz. Such a map would be of great help to single-dipole 21cm cosmology experiments, whose diffuse Galactic foregrounds are currently poorly constrained (Pritchard & Loeb, 2010b; de Oliveira-Costa et al., 2008). 2. A wideband (44-88 MHz) map of of the Southern sky, which can be used as a direct detection of the dark ages global signal. Recent theoretical work has shown that the Parkes aperture of 64 m is the optimal size for such a direct detection, which could be achieved at 25? in as little as 100 hrs of observing (Liu et al., 2012). After receiving a 4.1 grade in the previous round, our observations were not scheduled due to limited receiver changes. We are therefore re-proposing as formality. Since the proposal, we have obtained RFI measurements with the feed pointed at zenith. We are confident the dominant source of RFI can be found and removed. If observing at this band is possible, at least two scientific outputs relevant to global 21cm cosmology (among many others) are put within reach:

  16. The existence and detection of optically dark galaxies by 21cm surveys

    Davies, J I; Minchin, R F; Auld, R; Smith, R

    2006-01-01

    One explanation for the disparity between Cold Dark Matter (CDM) predictions of galaxy numbers and observations could be that there are numerous dark galaxies in the Universe. These galaxies may still contain baryons, but no stars, and may be detectable in the 21cm line of atomic hydrogen. The results of surveys for such objects, and simulations that do/do not predict their existence, are controversial. In this paper we use an analytical model of galaxy formation, consistent with CDM, to firstly show that dark galaxies are certainly a prediction of the model. Secondly, we show that objects like VIRGOHI21, a dark galaxy candidate recently discovered by us, while rare are predicted by the model. Thirdly, we show that previous 'blind' HI surveys have placed few constraints on the existence of dark galaxies. This is because they have either lacked the sensitivity and/or velocity resolution or have not had the required detailed optical follow up. We look forward to new 21cm blind surveys (ALFALFA and AGES) using t...

  17. Dicke’s Superradiance in Astrophysics. I. The 21 cm Line

    Rajabi, Fereshteh; Houde, Martin

    2016-08-01

    We have applied the concept of superradiance introduced by Dicke in 1954 to astrophysics by extending the corresponding analysis to the magnetic dipole interaction characterizing the atomic hydrogen 21 cm line. Although it is unlikely that superradiance could take place in thermally relaxed regions and that the lack of observational evidence of masers for this transition reduces the probability of detecting superradiance, in situations where the conditions necessary for superradiance are met (close atomic spacing, high velocity coherence, population inversion, and long dephasing timescales compared to those related to coherent behavior), our results suggest that relatively low levels of population inversion over short astronomical length-scales (e.g., as compared to those required for maser amplification) can lead to the cooperative behavior required for superradiance in the interstellar medium. Given the results of our analysis, we expect the observational properties of 21 cm superradiance to be characterized by the emission of high-intensity, spatially compact, burst-like features potentially taking place over short periods ranging from minutes to days.

  18. A comparative study of intervening and associated HI 21-cm absorption profiles in redshifted galaxies

    Curran, S J; Divoli, A; Allison, J R

    2016-01-01

    The star-forming reservoir in the distant Universe can be detected through HI 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sight-line to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z > 0.1) HI 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are on average, wider than their intervening counterparts. It is widely hypothesised that this is due to high velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. W...

  19. Fisher Matrix Predictions for Detecting the Cosmological 21-cm Signal with the Ooty Wide Field Array (OWFA)

    S. Bharadwaj; A. K. Sarkar; Sk. Saiyad Ali

    2015-09-01

    We have used the Fisher matrix formalism to quantify the prospects of detecting the = 3.35 redshifted 21-cm HI power spectrum with the upcoming radio-imterferometric array OWFA. OWFA’s frequency and baseline coverage spans comoving Fourier modes in the range 1.8 × 10−2 ≤ k ≤ 2.7 Mpc−1. The OWFA HI signal, however, is predominantly from the range ≤ 0.2 Mpc−1. The larger modes, though abundant, do not contribute much to the HI signal. In this work, we have focused on combining the entire signal to achieve a detection. We find that a 5 - detection of HI is possible with ∼ 150 h of observations, here $A^{2}_{\\text{HI}}$ is the amplitude of the HI power spectrum. We have also carried out a joint analysis for HI and the redshift space distortion parameter. Our study shows that OWFA is very sensitive to the amplitude of the HI power spectrum. However, the anisotropic distribution of the k modes does not make it very suitable for measuring .

  20. Fisher matrix predictions for detecting the cosmological 21 cm signal with the Ooty Wide Field Array (OWFA)

    Bharadwaj, Somnath; Ali, Sk Saiyad

    2015-01-01

    We have used the Fisher matrix formalism to quantify the prospects of detecting the z = 3.35 redshifted 21-cm HI power spectrum with the upcoming radio-imterferometric array OWFA. OWFA's frequency and baseline coverage spans comoving Fourier modes (k) in the range 0.018 to 2.7 [1/Mpc]. The OWFA HI signal, however, is predominantly from the range k below 0.2 [1/Mpc]. The larger modes, though abundant, do not contribute much to the HI signal. In this work we have focused on combining the entire signal to achieve a detection. We find that a 5-sigma detection of A_{HI} is possible with ~ 150 hr of observations, here A^2 _{HI} is the amplitude of the HI power spectrum. We have also carried out a joint analysis for A_{HI} and the redshift space distortion parameter. Our study shows that OWFA is very sensitive to the amplitude of the HI power spectrum. However, the anisotropic distribution of the k modes does not make it very suitable for measuring the redshift space distortion parameter.

  1. A Synthetic 21-cm Galactic Plane Survey of an SPH Galaxy Simulation

    Douglas, Kevin A; Dobbs, Clare L; Brunt, Christopher M

    2010-01-01

    We have created synthetic neutral hydrogen (HI) Galactic Plane Survey data cubes covering 90 degrees < l < 180 degrees, using a model spiral galaxy from SPH simulations and the radiative transfer code TORUS. The density, temperature and other physical parameters are fed from the SPH simulation into TORUS, where the HI emissivity and opacity are calculated before the 21-cm line emission profile is determined. Our main focus is the observation of Outer Galaxy `Perseus Arm' HI, with a view to tracing atomic gas as it encounters shock motions as it enters a spiral arm interface, an early step in the formation of molecular clouds. The observation of HI self-absorption features at these shock sites (in both real observations and our synthetic data) allows us to investigate further the connection between cold atomic gas and the onset of molecular cloud formation.

  2. A synthetic 21-cm Galactic Plane Survey of a smoothed particle hydrodynamics galaxy simulation

    Douglas, Kevin A.; Acreman, David M.; Dobbs, Clare L.; Brunt, Christopher M.

    2010-09-01

    We have created synthetic neutral hydrogen (HI) Galactic Plane Survey data cubes covering 90° code TORUS. The density, temperature and other physical parameters are fed from the SPH simulation into TORUS, where the HI emissivity and opacity are calculated before the 21-cm line emission profile is determined. Our main focus is the observation of outer Galaxy `Perseus arm' HI, with a view to tracing atomic gas as it encounters shock motions as it enters a spiral arm interface, an early step in the formation of molecular clouds. The observation of HI self-absorption features at these shock sites (in both real observations and our synthetic data) allows us to investigate further the connection between cold atomic gas and the onset of molecular cloud formation.

  3. Interferometer detection of cosmological global 21-cm signal from EoR

    Singh, Saurabh; Shankar, N Udaya; Raghunathan, A

    2015-01-01

    Detection of the global redshifted 21~cm signal is an excellent means of deciphering the physical processes during the Dark Ages and subsequent Epoch of Reionization (EoR). However, the detection of this faint signal is challenging due to the high precision required in instrumental calibration and modeling of substantially brighter foregrounds and instrumental systematics. In particular, modeling and removal of receiver noise with mK accuracy remains a formidable task in experiments aiming to detect the global signal using single-element spectral radiometers. Interferometers do not respond to receiver noise; therefore, we explore here the theory of the response of interferometers to global signals. We first derive the response to uniform sky of interferometers made of element antennas, then extend the analysis to interferometers made of 1-D arrays and finally consider 2-D aperture antennas. The analysis suggests that short-spacing interferometers made of omnidirectional antennas have the best sensitivity for ...

  4. HI 21 cm Emission Line Study of Southern Galactic Supernova Remnants

    Koo, B C; McClure-Griffiths, N M; Koo, Bon-Chul; Kang, Ji-hyun

    2004-01-01

    We have searched for HI 21 cm line emission from shocked atomic gas associated with southern supernova remnants (SNRs) using data from the Southern Galactic Plane Survey. Among the 97 sources studied, we have detected 10 SNRs with high-velocity HI emission confined to the SNR. The large velocity and the spatial confinement suggest that the emission is likely from the gas accelerated by the SN blast wave. We also detected 22 SNRs which show HI emission significantly brighter than the surrounding regions over a wide ($>10$\\kms) velocity interval. The association with these SNRs is less certain. We present the parameters and maps of the excess emission in these SNRs. We discuss in some detail the ten individual SNRs with associated high-velocity HI emission.

  5. Direct measurement of the cosmic acceleration by 21cm absorption systems

    Yu, Hao-Ran; Pen, Ue-Li

    2013-01-01

    So far there is only indirect evidence that the universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances, and requires invoking the Copernican cosmological principle, and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the {\\it same} objects separate by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a $\\Lambda$CDM universe with $\\sim 6\\sigma$ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing, and cannot be recovered retroactively.

  6. Estimating the angular power spectrum of z > 2 BOSS QSOs using the MASTER method

    Maldonado, Felipe; Huffenberger, Kevin; Rotti, Aditya

    2016-01-01

    We implement the MASTER method for angular power spectrum estimation and apply it to z > 2 quasars selected by the SDSS-III BOSS survey. Quasars are filtered for completeness and bad spectra, and include ~100,000 QSOs in the CORE sample and ~75,000 in the non-uniform BONUS sample. We estimate the angular power spectrum in redshift shells to constrain the matter power spectrum and quasar properties. In the future, we will jointly analyze overlapping Cosmic Microwave Background lensing maps from the Atacama Cosmology Telescope to place further constraints.

  7. New Limits on 21cm EoR From PAPER-32 Consistent with an X-Ray Heated IGM at z=7.7

    Parsons, Aaron R; Aguirre, James E; Ali, Zaki S; Bradley, Richard F; Carilli, Chris L; DeBoer, David R; Dexter, Matthew R; Gugliucci, Nicole E; Jacobs, Daniel C; Klima, Pat; MacMahon, David H E; Manley, Jason R; Moore, David F; Pober, Jonathan C; Stefan, Irina I; Walbrugh, William P

    2013-01-01

    We present new constraints on the 21cm Epoch of Reionization (EoR) power spectrum derived from 3 months of observing with a 32-antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over 8 orders of magnitude of foreground suppression (in mK^2). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2-sigma upper limit of 52 mK^2 for k=0.11 h Mpc^-1 at z=7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21cm emission in neutral regions for various reionization models. We show that for several ionization models, heating of the neutral intergalactic medium (IGM) is...

  8. Using 21cm Absorption in Small Impact Parameter Galaxy-QSO Pairs to Probe Low-Redshift Damped and Sub-Damped Lyman $\\alpha$ System

    Borthakur, Sanchayeeta; Yun, Min S; Momjian, Emmanuel; Meiring, Joseph D; Bowen, David V; York, Donald G

    2009-01-01

    To search for low-redshift damped Lyman $\\alpha$ (DLA) and sub-DLA quasar absorbers, we have conducted a 21cm absorption survey of radio-loud quasars at small impact parameters to foreground galaxies selected from the Sloan Digital Sky Survey (SDSS). Here we present the first results from this survey based on observations of SDSS J104257.58+074850.5 ($z_{QSO}$ = 2.66521), a quasar at an angular separation from a foreground galaxy ($z_{gal}$ = 0.03321) of 2.5" (1.7 kpc in projection). The foreground galaxy is a low-luminosity spiral with on-going star formation (0.004 M$_{\\odot}$ yr$^{-1}$ kpc$^{-2}$) and a metallicity of $-0.27 \\pm 0.05$ dex. We detect 21cm absorption from the galaxy with the Green Bank Telescope (GBT), the Very Large Array (VLA), and the Very Long Baseline Array (VLBA). Only two components separated by approximately 6 km/s are detected; the absorption appears to be quiescent disk gas corotating with the galaxy. The width of the main absorption line indicates that the gas is cold, $T_{k} <...

  9. Estimating Discrete Power Angular Spectra in Multiprobe OTA Setups

    Fan, Wei; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2014-01-01

    accurate direction-of-arrival estimates as well as power estimates of the impinging signals in the test zone. Simulation results match well with the target, as expected. Measurement results based on a virtual UCA in a practical 3-D multiprobe setup further support the simulation results. Possible reasons...

  10. Low Power Compact Radio Galaxies at High Angular Resolution

    Giroletti, Marcello; Giovannini, G.; /Bologna U. /Bologna, Ist. Radioastronomia; Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro

    2005-06-30

    We present sub-arcsecond resolution multi-frequency (8 and 22 GHz) VLA images of five low power compact (LPC) radio sources, and phase referenced VLBA images at 1.6 GHz of their nuclear regions. At the VLA resolution we resolve the structure and identify component positions and flux densities. The phase referenced VLBA data at 1.6 GHz reveals flat-spectrum, compact cores (down to a few milliJansky) in four of the five sources. The absolute astrometry provided by the phase referencing allows us to identify the center of activity on the VLA images. Moreover, these data reveal rich structures, including two-sided jets and secondary components. On the basis of the arcsecond scale structures and of the nuclear properties, we rule out the presence of strong relativistic effects in our LPCs, which must be intrinsically small (deprojected linear sizes {approx}< 10 kpc). Fits of continuous injection models reveal break frequencies in the GHz domain, and ages in the range 10{sup 5}-10{sup 7} yrs. In LPCs, the outermost edge may be advancing more slowly than in more powerful sources or could even be stationary; some LPCs might also have ceased their activity. In general, the properties of LPCs can be related to a number of reasons, including, but not limited to: youth, frustration, low kinematic power jets, and short-lived activity in the radio.

  11. 21-cm synthesis observations of VIRGOHI 21 - a possible dark galaxy in the Virgo Cluster

    Minchin, Robert; Disney, Michael; Grossi, Marco; Sabatini, Sabina; Boyce, Peter; Garcia, Diego; Impey, Chris; Jordan, Christine; Lang, Robert; Marble, Andrew; Roberts, Sarah; van Driel, Wim

    2007-01-01

    Many observations indicate that dark matter dominates the extra-galactic Universe, yet no totally dark structure of galactic proportions has ever been convincingly identified. Previously we have suggested that VIRGOHI 21, a 21-cm source we found in the Virgo Cluster using Jodrell Bank, was a possible dark galaxy because of its broad line-width (~200 km/s) unaccompanied by any visible gravitational source to account for it. We have now imaged VIRGOHI 21 in the neutral-hydrogen line and find what could be a dark, edge-on, spinning disk with the mass and diameter of a typical spiral galaxy. Moreover, VIRGOHI 21 has unquestionably been involved in an interaction with NGC 4254, a luminous spiral with an odd one-armed morphology, but lacking the massive interactor normally linked with such a feature. Numerical models of NGC 4254 call for a close interaction ~10^8 years ago with a perturber of ~10^11 solar masses. This we take as additional evidence for the massive nature of VIRGOHI 21 as there does not appear to be...

  12. A Dark Galaxy in the Virgo Cluster Imaged at 21-cm

    Minchin, R F; Disney, M J; Marble, A R; Impey, C D; Boyce, P J; García, D A; Grossi, M; Jordan, C A; Lang, R H; Roberts, S; Sabatini, S; Van Driel, W

    2005-01-01

    Dark Matter supposedly dominates the extragalactic, yet no totally dark structure of galactic proportions has ever been convincingly identified. Earlier (Minchin et al. 2005) we suggested that VIRGOHI 21, a 21-cm source we found in the Virgo Cluster at Jodrell Bank using single-dish observations (Davies et al. 2004), was probably such a dark galaxy because of its broad line-width (~ 200 km/s) unaccompanied by any visible gravitational source to account for it. Now we have managed to image VIRGOHI 21 in the neutral-hydrogen line, and indeed we find what appears to be a dark, edge-on, spinning disc with the mass and diameter of a typical spiral galaxy. Moreover the disc has unquestionably interacted with NGC 4254, a luminous spiral with an odd one-armed morphology, but lacking the massive interactor invariably responsible for such a feature. Published numerical models (Vollmer, Huchtmeier & van Driel 2005) of NGC 4254 call for a close interaction ~ 10^8 years ago with a perturber of 10^11 solar masses. This...

  13. A practical theorem on using interferometry to measure the global 21-cm signal

    Venumadhav, Tejaswi; Doré, Olivier; Hirata, Christopher M

    2015-01-01

    The sky-averaged, or global, background of redshifted 21-cm radiation is expected to be a rich source of information on the history of re-heating and re-ionization of the intergalactic medium. However, measuring the signal is technically challenging: one must extract the small, frequency-dependent signal from under the much brighter spectrally smooth foregrounds. Traditional approaches to study the global signal have used single-antenna systems, where one must calibrate out frequency-dependent structure in the overall system gain (due e.g. to internal reflections) as well as remove the noise bias from auto-correlating a single amplifier output. This has motivated several proposals to measure the global background using interferometric setups, where the signal appears in cross-correlation and where additional calibration techniques are available. In this paper, we focus on the general principles that drive the sensitivity of any interferometric setup to the global signal. In particular, we prove that this sens...

  14. 2MTF III. HI 21cm observations of 1194 spiral galaxies with the Green Bank Telescope

    Masters, Karen L; Hong, Tao; Jarrett, T H; Koribalski, Baerbel S; Macri, Lucas; Springob, Christopher M; Staveley-Smith, Lister

    2014-01-01

    We present HI 21cm observations of 1194 galaxies out to a redshift of 10,000 km/s selected as inclined spirals (i>60deg) from the 2MASS Redshift Survey. These observations were carried out at the National Radio Astronomy Observatory Robert C. Byrd Green Bank Telescope (GBT). This observing program is part of the 2MASS Tully-Fisher (2MTF) survey. This project will combine HI widths from these GBT observations with those from further dedicated observing at the Parkes Telescope, from the ALFALFA survey at Arecibo, and S/N>10 and spectral resolution, v_res < 10km/s published widths from a variety of telescopes. We will use these HI widths along with 2MASS photometry to estimate Tully-Fisher distances to nearby spirals and investigate the peculiar velocity field of the local Universe. In this paper we report on detections of neutral hydrogen in emission in 727 galaxies, and measure good signal-to-noise and symmetric HI global profiles suitable for use in the Tully-Fisher relation in 484.

  15. A 21 cm redshift survey and the large scale distribution of dwarf galaxies

    The first results of an all-sky 21-cm redshift survey of all 1849 galaxies classified as dwarf, magellanic irregular or irregular are presented. The detection rate is∼85 %. The survey reveals a broad continuum of galaxies with absolute blue luminosities. Detailed comparison of the spatial distributions of dwarf and bright galaxies shows that there is no difference between the two distributions. Dwarf galaxies do not fill the voids seen in the bright galaxy distribution. This rules out a certain class of biased galaxy formation theories. If biasing occurs, the dark matter which is in the voids cannot be traced by dwarf and LSB galaxies, and biasing must be equally effective for both bright and faint galaxies. The dwarf redshift sample has been used in conjunction with other redshift samples to measure the topology of the universe out to∼21 000 km s-1. The universe shows a sponge-like topology, which implies random phase Gaussian initial density fluctuations. This topology is inconsistent with explosive amplification or cosmic string galaxy formation models. The cold dark matter model withω=1 and H=50 km s-1 Mpc-1 fits best the topology of the universe on different length scales

  16. Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band

    Tarter, J.

    1989-01-01

    Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.

  17. The rich complexity of 21-cm fluctuations produced by the first stars

    Fialkov, Anastasia

    2014-01-01

    We explore the complete history of the 21-cm signal in the redshift range z = 7-40. This redshift range includes various epochs of cosmic evolution related to primordial star formation, and should be accessible to existing or planned low-frequency radio telescopes. We use semi-numerical computational methods to explore the fluctuation signal over wavenumbers between 0.03 and 1 Mpc$^{-1}$, accounting for the inhomogeneous backgrounds of Ly-$\\alpha$, X-ray, Lyman-Werner and ionizing radiation. We focus on the recently noted expectation of heating dominated by a hard X-ray spectrum from high-mass X-ray binaries. We study the resulting delayed cosmic heating and suppression of gas temperature fluctuations, allowing for large variations in the minimum halo mass that contributes to star formation. We show that the wavenumbers at which the heating peak is detected in observations should tell us about the characteristic mean free path and spectrum of the emitted photons, thus giving key clues as to the character of t...

  18. Rotation Measures in AGN jets seen by VLA at 21 cm to 6 mm

    Kravchenko, E V; Kovalev, Y Y

    2014-01-01

    We present Faraday Rotation Measure (RM) properties of seven active galactic nuclei (AGN), observed with the NRAO VLA at three epochs in 2012-2014. Data was taken at 1.4, 2.2, 5.0, 8.2, 15.4, 22.4, 33.5 and 43.1 GHz quasi simultaneously in full polarization mode. For the first time RMs were calculated in a range of wavelengths covering more than one order of magnitude: from 21 cm up to 6 mm. We measured RM for each source and showed a tendency to increase its value toward high frequencies according to the law |RM|~f^a with a=1.6+/-0.1. For 0710+439, we observed an increase over the frequency range of 4 orders of magnitude and measured one of the highest RM ever, (-89+/-1)*10^3 rad/m^2. Analysis of different epochs shows variations of the value and the sign of RM on short and long time-scales. This may be caused by changing physical conditions in the compact regions of the AGN jets, e.g. strength of magnetic field, particle density and so on.

  19. Nancay blind 21cm line survey of the Canes Venatici group region

    Kraan-Korteweg, R C; Briggs, F; Binggeli, B; Mostefaoui, T I

    1998-01-01

    A radio spectroscopic driftscan survey in the 21cm line with the Nancay Radio Telescope of 0.08 steradians of sky in the direction of the constellation Canes Venatici covering a heliocentric velocity range of -350 < V_hel < 2350 km/s produced 53 spectral features, which was further reduced to a sample of 33 reliably detected galaxies by extensive follow-up observations. With a typical noise level of rms = 10 mJy after Hanning smoothing, the survey is -- depending on where the detections are located with regard to the center of the beam -- sensitive to M(HI)=1-2x10^8 Msun at 23 Mpc and to M(HI)=4-8x10^7 Msun throughout the CVn Groups (Ho=100). The survey region had been previously examined on deep optical plates by Binggeli et al. 1990 and contains loose groups with many gas-rich galaxies as well as voids. No galaxies that had not been previously identified in these deep optical surveys were uncovered in our HI survey, neither in the groups nor the voids. The implication is that no substantial quantity o...

  20. Tracing the Milky Way Nuclear Wind with 21cm Atomic Hydrogen Emission

    Lockman, Felix J

    2016-01-01

    There is evidence in 21cm HI emission for voids several kpc in size centered approximately on the Galactic centre, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of HI at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii $R\\lesssim 2.4$ kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM $\\sim 125$ pc. An anti-correlation between HI and $\\gamma$-ray emission at latitudes $10^{\\circ} \\leq |b| \\leq 20^{\\circ}$ suggests that the boundary of the extended HI layer marks the walls of the Fermi Bubbles. With HI we are able to trace the edges of the voids from $|z| > 2$ kpc down to $z\\approx0$, where they have a radius $\\sim 2$ kpc. The extended HI layer likely results from star formation in the disk, which is limited largely to $R \\gtrsim 3$ kpc, so the wind may be expanding into an area of rela...

  1. Constraining Quasar Parameters Through Bubble Detection in Redshifted 21-cm Maps

    Majumdar, Suman; Bharadwaj, Somnath

    2011-01-01

    A growing bubble of ionized hydrogen (HII) around a very high redshift quasar will have many anisotropic features in its shape mainly due to finite light travel time (FLTT), neutral hydrogen density fluctuations in the IGM and clustering of stellar sources. Detection of such a bubble in redshifted 21-cm observations, will not only be a direct probe to the epoch of reionization but will also provide us insight about the quasars' luminosity and age. We simulate a growing HII bubble around a quasar at z ~ 8 in an IGM with mean neutral fraction x_HI = 0.5, using a semi-numerical formalism. A targeted matched filter bubble search on this simulated visibility data is performed with spherical and anisotropic filters, considering 1000 hrs of GMRT observation. We simulate our search at five different stage of growth of the target HII bubble. We find that, in almost all realizations of our simulations the search results over estimate the photon emission rate (N_phs) and the age (tau_Q) of the quasar, due to the effect ...

  2. Constraining the redshifted 21-cm signal with the unresolved soft X-ray background

    Fialkov, Anastasia; Barkana, Rennan; Silk, Joseph

    2016-01-01

    We use the observed unresolved cosmic X-ray background (CXRB) in the soft 0.5-2 keV band to constrain the population of high redshift X-ray sources existing before the end of reionization. Because the nature of these sources is poorly understood, we consider hot gas, X-ray binaries and mini-quasars (i.e., sources with soft and hard X-ray spectra) as possible candidates. We show that all types of the considered sources naturally generate a soft band CXRB, but if they actually generate the observed background their efficiency in producing X-rays must be one-to-two orders of magnitude higher than what is normally assumed. We find that the efficiency of hard sources does not have to be increased as strongly as that of the soft ones in order to generate the observed background. In addition, we show that when models are normalized to the CXRB, cosmic heating occurs quite early, and in some cases X-rays become a significant driver of reionization competing with the UV photons, while the expected high-redshift 21-cm ...

  3. A Practical Theorem on Using Interferometry to Measure the Global 21-cm Signal

    Venumadhav, Tejaswi; Chang, Tzu-Ching; Doré, Olivier; Hirata, Christopher M.

    2016-08-01

    The sky-averaged, or global, background of redshifted 21 cm radiation is expected to be a rich source of information on cosmological reheating and reionization. However, measuring the signal is technically challenging: one must extract a small, frequency-dependent signal from under much brighter spectrally smooth foregrounds. Traditional approaches to study the global signal have used single antennas, which require one to calibrate out the frequency-dependent structure in the overall system gain (due to internal reflections, for example) as well as remove the noise bias from auto-correlating a single amplifier output. This has motivated proposals to measure the signal using cross-correlations in interferometric setups, where additional calibration techniques are available. In this paper we focus on the general principles driving the sensitivity of the interferometric setups to the global signal. We prove that this sensitivity is directly related to two characteristics of the setup: the cross-talk between readout channels (i.e., the signal picked up at one antenna when the other one is driven) and the correlated noise due to thermal fluctuations of lossy elements (e.g., absorbers or the ground) radiating into both channels. Thus in an interferometric setup, one cannot suppress cross-talk and correlated thermal noise without reducing sensitivity to the global signal by the same factor—instead, the challenge is to characterize these effects and their frequency dependence. We illustrate our general theorem by explicit calculations within toy setups consisting of two short-dipole antennas in free space and above a perfectly reflecting ground surface, as well as two well-separated identical lossless antennas arranged to achieve zero cross-talk.

  4. The impact of spin-temperature fluctuations on the 21-cm moments

    Watkinson, C. A.; Pritchard, J. R.

    2015-12-01

    This paper considers the impact of Lyman α coupling and X-ray heating on the 21-cm brightness-temperature one-point statistics (as predicted by seminumerical simulations). The X-ray production efficiency is varied over four orders of magnitude and the hardness of the X-ray spectrum is varied from that predicted for high-mass X-ray binaries, to the softer spectrum expected from the hot interstellar medium. We find peaks in the redshift evolution of both the variance and skewness associated with the efficiency of X-ray production. The amplitude of the variance is also sensitive to the hardness of the X-ray spectral energy distribution. We find that the relative timing of the coupling and heating phases can be inferred from the redshift extent of a plateau that connects a peak in the variance's evolution associated with Lyman α coupling to the heating peak. Importantly, we find that late X-ray heating would seriously hamper our ability to constrain reionization with the variance. Late X-ray heating also qualitatively alters the evolution of the skewness, providing a clean way to constrain such models. If foregrounds can be removed, we find that LOFAR, MWA and PAPER could constrain reionization and late X-ray heating models with the variance. We find that HERA and SKA (phase 1) will be able to constrain both reionization and heating by measuring the variance using foreground-avoidance techniques. If foregrounds can be removed they will also be able to constrain the nature of Lyman α coupling.

  5. It's Always Darkest Before the Cosmic Dawn: Early Results from Novel Tools and Telescopes for 21 cm Cosmology

    Dillon, Joshua S

    2015-01-01

    21 cm cosmology, the statistical observation of the high redshift universe using the hyperfine transition of neutral hydrogen, has the potential to revolutionize our understanding of cosmology and the astrophysical processes that underlie the formation of the first stars, galaxies, and black holes during the "Cosmic Dawn." By making tomographic maps with low frequency radio interferometers, we can study the evolution of the 21 cm signal with time and spatial scale and use it to understand the density, temperature, and ionization evolution of the intergalactic medium over this dramatic period in the history of the universe. For my Ph.D. thesis, I explore a number of advancements toward detecting and characterizing the 21 cm signal from the Cosmic Dawn, especially during its final stage, the epoch of reionization. In seven different previously published papers, I explore new techniques for the statistical analysis of interferometric measurements, apply them to data from current generation telescopes like the Mu...

  6. A High Galactic Latitude HI 21 cm-line Absorption Survey using the GMRT: I. Observations and Spectra

    Rekhesh Mohan; K. S. Dwarakanath; G. Srinivasan

    2004-09-01

    We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|| > 15°) Galactic latitudes. The Declination coverage of the present survey is ≳ -45°. With a mean rms optical depth of ∼ 0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.

  7. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK2). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK)2 for k = 0.27 h Mpc–1 at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  8. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, CA (United States); Aguirre, James E.; Moore, David F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Bradley, Richard F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM (United States); DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); Gugliucci, Nicole E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Klima, Pat [National Radio Astronomy Observatory, Charlottesville, VA (United States); Manley, Jason R.; Walbrugh, William P. [Square Kilometer Array, South Africa Project, Cape Town (South Africa); Stefan, Irina I. [Cavendish Laboratory, Cambridge (United Kingdom)

    2014-06-20

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK{sup 2}). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK){sup 2} for k = 0.27 h Mpc{sup –1} at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  9. A Giant Metrewave Radio Telescope search for associated HI 21cm absorption in high-redshift flat-spectrum sources

    Aditya, J N H S; Kurapati, Sushma

    2015-01-01

    We report results from a Giant Metrewave Radio Telescope search for "associated" redshifted HI 21cm absorption from 24 active galactic nuclei (AGNs), at $1.1 < z < 3.6$, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical $3\\sigma$ optical depth detection limits of $\\approx 0.01$ at a velocity resolution of $\\approx 30$~km~s$^{-1}$. A single tentative absorption detection was obtained at $z \\approx 3.530$ towards TXS0604+728. If confirmed, this would be the highest redshift at which HI 21cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted HI 21cm absorption in the literature, mostly at $z < 1$, we construct a sample of 52 uniformly-selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at $\\approx 3\\sigma$ significance) that the strength of HI 21cm absorption is weaker in the high-$z$ sample than in the low-$z$ sample, this is th...

  10. The Evolution of 21-cm Structure (EOS): public, large-scale simulations of Cosmic Dawn and Reionization

    Mesinger, Andrei; Sobacchi, Emanuele

    2016-01-01

    We introduce the Evolution of 21-cm Structure (EOS) project: providing periodic, public releases of the latest cosmological 21-cm simulations. 21-cm interferometry is set to revolutionize studies of the Cosmic Dawn (CD) and epoch of reionization (EoR), eventually resulting in 3D maps of the first billion years of our Universe. Progress will depend on sophisticated data analysis pipelines, which are in turn tested on large-scale mock observations. Here we present the 2016 EOS data release, consisting of the largest (1.6 Gpc on side with a 1024^3 grid), public 21-cm simulations of the CD and EoR. We include calibrated, sub-grid prescriptions for inhomogeneous recombinations and photo-heating suppression of star formation in small mass galaxies. We present two simulation runs that approximately bracket the contribution from faint unseen galaxies. From these two extremes, we predict that the duration of reionization (defined as a change in the mean neutral fraction from 0.9 to 0.1) should be between 2.7 < Delt...