WorldWideScience

Sample records for 200-zp-1 groundwater operable

  1. FEASIBILITY STUDY REPORT FOR THE 200-ZP-1 GROUNDWATER OPERABLE UNIT

    BYRNES ME

    2008-07-18

    The Hanford Site, managed by the U.S. Department of Energy (DOE), encompasses approximately 1,517 km{sup 2} (586 mi{sup 2}) in the Columbia Basin of south-central Washington State. In 1989, the U.S. Environmental Protection Agency (EPA) placed the 100, 200, 300, and 1100 Areas of the Hanford Site on the 40 Code of Federal Regulations (CFR) 300, 'National Oil and Hazardous Substances Pollution Contingency Plan' National Contingency Plan [NCPD], Appendix B, 'National Priorities List' (NPL), pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The 200 Areas NPL sites consist of the 200 West and 200 East Areas (Figure 1-1). The 200 Areas contain waste management facilities, inactive irradiated fuel reprocessing facilities, and the 200 North Area (formerly used for interim storage and staging of irradiated fuel). Several waste sites in the 600 Area, located near the 200 Areas, also are included in the 200 Areas NPL site. The 200 Areas NPL site is in a region referred to as the 'Central Plateau' and consists of approximately 700 waste sites, excluding sites assigned to the tank farm waste management areas (WMAs). The 200-ZP-1 Groundwater Operable Unit (OU) consists of the groundwater located under the northern portion of the 200 West Area. Waste sources that contributed to the 200-ZP-1 OU included cribs and trenches that received liquid and/or solid waste in the past from the Z Plant and T Plant aggregate areas, WMA-T, WMA-TX/TY, and the State-Approved Land Disposal Site (SALDS). This feasibility study (FS) for the 200-ZP-1 Groundwater OU was prepared in accordance with the requirements of CERCLA decision documents. These decision documents are part of the Administrative Record for the selection of remedial actions for each waste site and present the selected remedial actions that are chosen in accordance with CERCLA, as amended by the Superfund Amendments and Reauthorization Act of 1986

  2. FEASIBILITY STUDY REPORT FOR THE 200-ZP-1 GROUNDWATER OPERABLE UNIT

    BYRNES ME

    2008-07-18

    The Hanford Site, managed by the U.S. Department of Energy (DOE), encompasses approximately 1,517 km{sup 2} (586 mi{sup 2}) in the Columbia Basin of south-central Washington State. In 1989, the U.S. Environmental Protection Agency (EPA) placed the 100, 200, 300, and 1100 Areas of the Hanford Site on the 40 Code of Federal Regulations (CFR) 300, 'National Oil and Hazardous Substances Pollution Contingency Plan' National Contingency Plan [NCPD], Appendix B, 'National Priorities List' (NPL), pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The 200 Areas NPL sites consist of the 200 West and 200 East Areas (Figure 1-1). The 200 Areas contain waste management facilities, inactive irradiated fuel reprocessing facilities, and the 200 North Area (formerly used for interim storage and staging of irradiated fuel). Several waste sites in the 600 Area, located near the 200 Areas, also are included in the 200 Areas NPL site. The 200 Areas NPL site is in a region referred to as the 'Central Plateau' and consists of approximately 700 waste sites, excluding sites assigned to the tank farm waste management areas (WMAs). The 200-ZP-1 Groundwater Operable Unit (OU) consists of the groundwater located under the northern portion of the 200 West Area. Waste sources that contributed to the 200-ZP-1 OU included cribs and trenches that received liquid and/or solid waste in the past from the Z Plant and T Plant aggregate areas, WMA-T, WMA-TX/TY, and the State-Approved Land Disposal Site (SALDS). This feasibility study (FS) for the 200-ZP-1 Groundwater OU was prepared in accordance with the requirements of CERCLA decision documents. These decision documents are part of the Administrative Record for the selection of remedial actions for each waste site and present the selected remedial actions that are chosen in accordance with CERCLA, as amended by the Superfund Amendments and Reauthorization Act of 1986

  3. Safety assessment for the proposed pilot-scale treatability tests for the 200-UP-1 and 200-ZP-1 groundwater operable units. Revision 1

    This safety assessment provides an analysis of the proposed pilot-scale treatability test activities to be and conducted within the 200 Area groundwater operable units on the Hanford Site. The 200-UP-1 and 200-ZP-1 operable units are located in the 200 West Area of the Hanford Site. These tests will evaluate an ion exchange (IX) water purification treatment system and granular activated carbon (GAC). A detailed engineering analysis of (GAC) adsorption for remediation of groundwater contamination. A detailed engineering analysis of the IX treatment system. The principal source of information for this assessment, states that the performance objective of the treatment systems is to remove 90% of the uranium and technetium-99 (99Tc) from the extracted groundwater at the 200-UP-1 site. The performance objective for 200-ZP-1 is to remove 90% of the carbon tetrachloride (CCl4), chloroform, and trichloroethylene (TCE) from the extracted groundwater

  4. Interim remedial measures proposed plan for the 200-ZP-1 Operable Unit, Hanford Site, Washington

    The purpose of this interim remedial measures (IRM) proposed plan is to present and solicit public comments on the IRM planned for the 200-ZP-1 Operable Unit at the Hanford Site in Washington state. The 200-ZP-1 is one of two operable units that envelop the groundwater beneath the 200 West Area of the Hanford Site

  5. Aquifer Testing Recommendations for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design

    Spane, Frank A.; Newcomer, Darrell R.

    2009-03-10

    Aquifer characterization needs are currently being assessed to optimize pump-and-treat remedial strategies within the 200-ZP-1 Operable Unit (OU), specifically for the immediate area of the 241-TX-TY Tank Farm. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system to remediate the existing groundwater contamination within this general area. Four of these wells (299-W15-40, 299-W15-43, 299-W15-44, and 299-W15-765) are targeted to remediate contamination within the immediate 241-TX-TY Tank Farm area. The major contaminant of concern (COC) for the 200-ZP-1 OU is carbon tetrachloride. Other COC’s include total chromium (trivalent [III] and hexavalent [VI], nitrate, trichloroethlyene, iodine-129, technetium-99, and tritium.

  6. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  7. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE, IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT, HANFORD SITE

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU

  8. Spatial Analysis of Contaminants in 200 West Area Groundwater in Support of the 200-ZP-1 Operable Unit Pre-Conceptual Remedy Design

    Murray, Christopher J.; Bott, Yi-Ju

    2008-12-30

    This report documents a preliminary spatial and geostatistical analysis of the distribution of several contaminants of interest (COIs) in groundwater within the unconfined aquifer beneath the 200 West Area of the Hanford Site. The contaminant plumes of interest extend within the 200-ZP-1 and 200-UP-1 groundwater operable units. The COIs included in the PNNL study were carbon tetrachloride (CTET), technetium-99 (Tc-99), iodine-129 (I-129), chloroform, plutonium, uranium, trichloroethylene (TCE), and nitrate. The project included three tasks. Task 1 involved the development of a database that includes all relevant depth-discrete data on the distribution of COIs in the study area. The second task involved a spatial analysis of the three-dimensional (3D) distribution of data for the COIs in the study area. The main focus of the task was to determine if sufficient data are available for geostatistical mapping of the COIs in 3D. Task 3 involved the generation of numerical grids of the concentration of CTET, chloroform, and Tc-99.

  9. 200-ZP-1 phase II and III IRM groundwater pump and treat site safety plan

    This safety plan covers operations, maintenance, and support activities related to the 200-ZP-1 Phase II and III Ground Water Pump- and-Treat Facility. The purpose of the facility is to extract carbon tetrachloride contaminated groundwater underlying the ZP-1 Operable Unit; separate the contaminant from the groundwater; and reintroduce the treated water to the aquifer. An air stripping methodology is employed to convert volatile organics to a vapor phase for absorption onto granular activated carbon. The automated process incorporates a variety of process and safety features that shut down the process system in the event that process or safety parameters are exceeded or compromised

  10. Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design

    Spane, Frank A.; Newcomer, Darrell R.

    2009-09-23

    This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

  11. Readiness evaluation plan for operation of the 200-ZP-1 pump-and-treat system

    The Project Readiness Evaluation (RE) process will show that the 200-ZP-1 Phase 2 and Phase 3 Interim Response Measure (IRM) remedial activity is prepared to safely and effectively commence work activities. In order to ensure readiness to commence the 200-ZP-1 Pump-and-Treat (P and T) activities, a formal RE will be performed in accordance with this plan. A Readiness Evaluation Team (RET) will evaluate and confirm readiness by reviewing the work activities and by conducting field verifications. The Project Final Hazard Classification (FHC) prepared for the 200-ZP-1 P and T IRM has determined that the operation is a Non-Nuclear Low Hazard activity. The goal of this IRM is to reduce further migration of the carbon tetrachloride, chloroform, and trichloroethylene (TCE) in the groundwater of the 200 West Area. The Phase 2 and Phase 3 IRM treatment system will be designed to initiate hydraulic containment of the contaminant mass in the high-concentration portion (i.e., the 2,000- to 3,000-ppb contour) of the CCl4 plume. This system will be located just north of the Plutonium Finishing Plant in the 200 West Area and will utilize air stripping and vapor-phase granular activated carbon (GAC) adsorption of the CCl4. Air stripping is performed by forcing clean air through the contaminated groundwater stream. Based on chemical equilibrium, volatile organic compounds are transferred from the groundwater stream into the air stream. The air stream, containing the contamination in vapor phase, will be passed through vapor-phase GAC columns to remove and collect the organic contaminants. Saturated GAC will then be shipped offsite for carbon regeneration, where the contamination will be destroyed at a permitted facility

  12. TREATABILITY TEST FOR REMOVING TECHNETIUM-99 FROM 200-ZP-1 GROUNDWATER HANFORD SITE

    PETERSEN SW; TORTOSO AC; ELLIOTT WS; BYRNES ME

    2007-11-29

    The 200-ZP-1 Groundwater Operable Unit (OU) is one of two groundwater OUs located within the 200 West groundwater aggregate area of the Hanford Site. The primary risk-driving contaminants within the 200-ZP-1 OU include carbon tetrachloride and technetium-99 (Tc-99). A pump-and-treat system for this OU was initially installed in 1995 to control the 0.002 kg/m{sup 3} (2000 {micro}g/L) contour of the carbon tetrachloride plume. Carbon tetrachloride is removed from groundwater with the assistance of an air-stripping tower. Ten extraction wells and three injection wells operate at a combined rate of approximately 0.017m{sup 3}/s (17.03 L/s). In 2005, groundwater from two of the extraction wells (299-W15-765 and 299-W15-44) began to show concentrations greater than twice the maximum contaminant level (MCL) of Tc-99 (33,309 beq/m{sup 3} or 900 pCi/L). The Tc-99 groundwater concentrations from all ten of the extraction wells when mixed were more than one-half of the MCL and were slowly increasing. If concentrations continued to rise and the water remained untreated for Tc-99, there was concern that the water re-injected into the aquifer could exceed the MCL standard. Multiple treatment technologies were reviewed for selectively removing Tc-99 from the groundwater. Of the treatment technologies, only ion exchange was determined to be highly selective, commercially available, and relatively low in cost. Through research funded by the U.S. Department of Energy, the ion-exchange resin Purolite{reg_sign} A-530E was found to successfully remove Tc-99 from groundwater, even in the presence of competing anions. For this and other reasons, Purolite{reg_sign} A-530E ion exchange resin was selected for treatability testing. The treatability test required installing resin columns on the discharge lines from extraction wells 299-W15-765 and 299-W15-44. Preliminary test results have concluded that the Purolite{reg_sign} A-530E resin is effective at removing Tc-99 from groundwater to

  13. 200-ZP-1 operable unit borehole summary report for FY 1995 and FY 1996

    This document details the well construction, sampling, analyses, and geologic character of the Ringold Formation fluvial unit E gravels as encountered in 16 boreholes in the 200-ZP-1 Operable Unit. These boreholes were drilled by Water Development Hanford Corporation during fiscal years 1995 and 1996. Two of the sixteen boreholes were abandoned; the remaining 14 boreholes were completed as functioning production and compliance wells. The borehole logs and well summary sheets included as Appendices A and B of this document, respectively, depict and describe the vadose zone stratigraphic units encountered during the course of drilling. Appendix C contains the results of sieve analyses conducted on samples obtained via resonant sonic coring and standard split-spoon methods. The sieve analyses were the driver behind the majority of the well designs. Also, for completeness, Appendices D and E contain the well design calculations and the well development process

  14. Systematic Application of Flow-and-Transport Modeling for Wellfield Design: the Hanford 200-ZP-1 Groundwater Pump-and-Treat Remedy - 10320

    During 2007 a Feasibility Study and Proposed Plan were completed that describe the selection of a combined groundwater pump-and-treat, monitored natural attenuation, and flow-path-control remedy for contaminants present in the Hanford 200-ZP-1 groundwater operable unit. In anticipation of the September 2008 signing of the final record of decision, work began on the development of a groundwater flow and contaminant transport model encompassing the 200-ZP-1 OU. The model was developed to support the preparation of the remedial design/remedial action work plan and subsequent design documents; to provide estimates of influent concentrations and mass removal rates for several contaminants of concern, including carbon tetrachloride, technetium-99, and hexavalent chromium; and to assist in the integration of remedial decision making across the Hanford Central Plateau. This paper describes the initial development and application of the flow and transport model, through Spring 2009.

  15. Fiscal Year 1997 Annual Report for the 100-NR-2, 200-UP-1, and 200-ZP-1 Pump and Treat Operations and Operable Units

    The Environmental Restoration Contractor (ERC), Bechtel Hanford, Inc., conducts groundwater remediation activities across the Hanford Site for the U.S. Department of Energy. Operable units, as defined under CERCLA, have been established to address groundwater contamination issues in various areas of the Site. Groundwater within these operable units has been contaminated by a variety of chemical and radiological constituents associated with past-practices liquid effluent disposal, as well as accidental leaks and spills. The ERC is currently operating three pump-and-treat systems in the 100 Area: Strontium-90 is being addressed in the 100-NR-2 Operable Unit, while hexavalent chromium is being addressed in the 100-KR-4 and 100-HR-3 Operable Units. In the 200 Area, technetium-99, uranium, carbon tetrachloride, and nitrate are being addressed in the 200-UP-1 Operable Unit, while carbon tetrachloride, trichloroethene, and chloroform are being addressed in the 200-ZP-1 Operable Unit

  16. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon

  17. 200-ZP-1 IRM phase 2 and 3 remedial design report, Revision 1

    This 200-ZP-1 remedial design report presents the objectives and rationale developed for the design and implementation of the selected interim remedial measure (IRM) for the 200-ZP-1 Operable Unit, located in the 200 West Area of the Hanford Site.The IRM was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986, the Hanford Federal Facility Agreement and Consent Order (also known as the Tri- party Agreement), and the National Oil and Hazardous Substance Pollution Contingency Plan

  18. Characterization of 200-UP-1 and 200-ZP-1 Operable Unit Aquifer Sediments and Batch Adsorption Distribution Coefficients for Contaminants of Concern--Fiscal Year 2006 Progress

    A total of six core samples from 200-UP/ZP-1 OUs and two additional outcrop samples were characterized during FY2006 by PNNL. One sample (C4971) was identified as slough and not used, but the five other samples identified as intact core samples were used for further analyses. The C4977 sample is gravel-sandy silt and C4990 samples are fine-sandy silt from the Ringold formation. Although the sediments from these two boreholes have similar mineralogical composition, C4990 samples show higher values of Fe oxide content, clay/silt content, and surface area compared those in C4977. The measured Tc Kd values ranged 0-0.2 mg/L for both samples, while U(VI) Kd for C4990 (4.23 mg/L) is much higher than that for C4977 (0.76 mg/L). A key finding from the Kd measurements is that detailed sediment and pore water characterization is necessary to understand the variation in Kd values seen in the empirical batch tests. Without the ancillary characterization of the sediments and pore waters, one might form misleading interpretations of the mechanisms that control the Kd values. Thus, physical, geochemical, and hydrological characterization of the sediments and pore waters should be conducted to increase our understanding of the site-specific Kd measurements. More details for methods and results will be provided in the formal technical report in FY 2007.

  19. Limited field investigation for the 200-UP-1 operable unit

    The 200-UP-1 Groundwater Operable Unit is located in the southern portion of the 200 West Area on the Hanford Site in Washington State. The operable unit is located adjacent to the 200-ZP-1 Groundwater Operable Unit and underlies a significant part of seven source operable units: 200-RO-1, 200-RO-2, 200-RO-3, 200-RO-4, 200-SS-2, 200-UP-2, and 200-UP-3. Remedial efforts in the 100-ZP-1 Operable Unit focus on addressing volatile organic contamination in the aquifer. The focus of the 200-UP-1 limited field investigation (LFI) is on contaminated aquifer soils and groundwater within its boundary, with the exception of uranium and technetium-99 plumes, which are addressed by an existing 200-UP-1 interim remedial measure (IRM). The LFI approach is driven by general and specific data needs required to refine the site conceptual model and conduct a risk assessment. Activities supporting the LFI include drilling, well construction, sampling and analysis, data validation, geologic and geophysical logging, aquifer testing, measuring depth to water, and evaluating geodetic survey and existing analytical data

  20. Limited field investigation for the 200-UP-1 operable unit

    NONE

    1996-11-01

    The 200-UP-1 Groundwater Operable Unit is located in the southern portion of the 200 West Area on the Hanford Site in Washington State. The operable unit is located adjacent to the 200-ZP-1 Groundwater Operable Unit and underlies a significant part of seven source operable units: 200-RO-1, 200-RO-2, 200-RO-3, 200-RO-4, 200-SS-2, 200-UP-2, and 200-UP-3. Remedial efforts in the 100-ZP-1 Operable Unit focus on addressing volatile organic contamination in the aquifer. The focus of the 200-UP-1 limited field investigation (LFI) is on contaminated aquifer soils and groundwater within its boundary, with the exception of uranium and technetium-99 plumes, which are addressed by an existing 200-UP-1 interim remedial measure (IRM). The LFI approach is driven by general and specific data needs required to refine the site conceptual model and conduct a risk assessment. Activities supporting the LFI include drilling, well construction, sampling and analysis, data validation, geologic and geophysical logging, aquifer testing, measuring depth to water, and evaluating geodetic survey and existing analytical data.

  1. Soil, groundwater cleanup takes the gamble out of casino operation

    Colorado's rich stores of gold and silver sparked development of towns like Black Hawk and Central City in the 1890s. Today, these communities are the homes of limited-stakes gaming operations. However casino operators are discovering that having gold and silver underground in the form of tailings is not as desirable as collecting it aboveground in slot machines. A unique environmental engineering approach allowed construction of two new casinos and reclamation of the tailings, as well as cleanup of petroleum-saturated soils and groundwater. A treatment system was designed and constructed to treat groundwater at the Black Hawk site. The most economical alternative for disposing treated groundwater was to discharge it into nearby North Clear Creek. An NPDES permit was obtained requiring treatment of the groundwater for petroleum, heavy metals and pH before discharging it

  2. Impact of pending groundwater issues on coal operations

    The EPA Ground-water Task Force has embraced the concept of pollution prevention. This approach moves away from the historic reliance on water quality standards, which has been a source of contention for both industry and the environmental community, toward a system of state implemented design and operational controls which allow for rational decision making on the part of industry and an improvement in ground-water protection for the environmental community. Most states are in the process of developing their own ground-water protection programs, which will require coal mine operators to participate in pollution prevention just like any other activity in the state. EPA suggests that ground-water protection can be achieved through a variety of means including: pollution prevention programs; source controls; siting controls; the designation of well head protection areas and future public water supply areas; and the protection of aquifer recharge areas. Developing a Ground-water Protection Plan (GPP) at each mine allows the mine operator to retain control of the operation instead of following a rigid regulatory scheme. Changes and improvements can be phased in without the chaos of a regulatory deadline, and environmental clean-up liability can be avoided in a cost effective way

  3. Groundwater flow modelling of the excavation and operational phases - Laxemar

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Laxemar. The inflow calculations were accompanied by a sensitivity study, which among other matters handled the impact of different deposition hole rejection criteria. The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  4. Groundwater flow modelling of the excavation and operational phases - Laxemar

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Laxemar. The inflow calculations were accompanied by a sensitivity study, which among other matters handled the impact of different deposition hole rejection criteria. The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  5. Ground-water contribution to dose from past Hanford Operations

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ''ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated

  6. Groundwater flow modelling of the excavation and operational phases - Forsmark

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  7. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-07-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.

  8. Groundwater.

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  9. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  10. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  11. Impacts of Continuous Electron Beam Accelerator Facility operations on groundwater and surface water: Appendix 9

    The operation of the proposed Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia, is expected to result in the activation and subsequent contamination of water resources in the vicinity of the accelerator. Since the proposed site is located in the headwaters of the watershed supplying Big Bethel Reservoir, concern has been expressed about possible contamination of water resources used for consumption. Data characterizing the surface water and groundwater regime in the site area are limited. A preliminary geotechnical investigation of the site has been completed (LAW 1985). This investigation concluded that groundwater flow is generally towards the southeast at an estimated velocity of 2.5 m/y. This conclusion is based on groundwater and soil boring data and is very preliminary in nature. This analysis makes use of the data and conclusions developed during the preliminary geotechnical investigation to provide an upper-bound assessment of radioactive contamination from CEBAF operations. A site water balance was prepared to describe the behavior of the hydrologic environment that is in close agreement with the observed data. The transport of contamination in the groundwater regime is assessed using a one-dimensional model. The groundwater model includes the mechanisms of groundwater flow, groundwater recharge, radioactive decay, and groundwater activation. The model formulation results in a closed-form, exact, analytic solution of the concentration of contamination in the groundwater. The groundwater solution is used to provide a source term for a surface-water analysis. The surface-water and groundwater models are prepared for steady state conditions such that they represent conservative evaluations of CEBAF operations

  12. Qualitative risk assessment for the 100-KR-4 groundwater operable unit

    Biggerstaff, R.L.

    1994-06-30

    This report provides the qualitative risk assessment (QRA) for the 100-KR-4 groundwater operable unit at the US Department of Energy`s (DOE) Hanford Site in southeastern Washington State. The extent of the groundwater beneath the 100 K Area is defined in the Remedial Investigation/Feasibility Study Work Plan for the 100-KR-4 Operable Unit (DOE-RL 1992a). The QRA is an evaluation or risk using a limited amount of data and a predefined set of human and environmental exposure scenarios and is not intended to replace or be a substitute for a baseline risk assessment.

  13. Groundwater Monitoring and Field Sampling Plan for Operable Unit 10-08

    M. S. Roddy

    2007-05-01

    This plan describes the groundwater sampling and water level monitoring that will be conducted to evaluate contaminations in the Snake River Plain Aquifer entering and leaving the Idaho National Laboratory. The sampling and monitoring locations were selected to meet the data quality objectives detailed in this plan. Data for the Snake River Plain Aquifer obtained under this plan will be evaluated in the Operable Unit 10-08 Remedial Investigation/Feasibility Study report and will be used to support the Operable Unit 10-08 Sitewide groundwater model.

  14. Qualitative risk assessment for the 100-KR-4 groundwater operable unit

    This report provides the qualitative risk assessment (QRA) for the 100-KR-4 groundwater operable unit at the US Department of Energy's (DOE) Hanford Site in southeastern Washington State. The extent of the groundwater beneath the 100 K Area is defined in the Remedial Investigation/Feasibility Study Work Plan for the 100-KR-4 Operable Unit (DOE-RL 1992a). The QRA is an evaluation or risk using a limited amount of data and a predefined set of human and environmental exposure scenarios and is not intended to replace or be a substitute for a baseline risk assessment

  15. Current Conditions Risk Assessment for the 300-FF-5 Groundwater Operable Unit

    Miley, Terri B.; Bunn, Amoret L.; Napier, Bruce A.; Peterson, Robert E.; Becker, James M.

    2007-11-01

    This report updates a baseline risk assessment for the 300 Area prepared in 1994. The update includes consideration of changes in contaminants of interest and in the environment that have occurred during the period of interim remedial action, i.e., 1996 to the present, as well as the sub-regions, for which no initial risk assessments have been conducted. In 1996, a record of decision (ROD) stipulated interim remedial action for groundwater affected by releases from 300 Area sources, as follows: (a) continued monitoring of groundwater that is contaminated above health-based levels to ensure that concentrations continue to decrease, and (b) institutional controls to ensure that groundwater use is restricted to prevent unacceptable exposure to groundwater contamination. In 2000, the groundwater beneath the two outlying sub-regions was added to the operable unit. In 2001, the first 5-year review of the ROD found that the interim remedy and remedial action objectives were still appropriate, although the review called for additional characterization activities. This report includes a current conditions baseline ecological and human health risk assessment using maximum concentrations in the environmental media of the 300-FF-5 Operable Unit and downstream conditions at the City of Richland, Washington. The scope for this assessment includes only current measured environmental concentrations and current use scenarios. Future environmental concentrations and future land uses are not considered in this assessment.

  16. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs137). The Tank 16 bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action

  17. Fiscal Year 2009 Annual Report for Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater

    Forsythe, Howard S.

    2010-04-10

    This annual report summarizes maintenance, monitoring, and inspection activities performed to implement the selected remedy for Waste Area Group 3, Operable Unit 3-14, Tank Farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Results from monitoring perched water and groundwater at the Idaho Nuclear Technology and Engineering Center are also presented.

  18. The SADC Groundwater Data and Information Archive, Knowledge Sharing and Co-operation Project. Final report

    Davies, J.; Cobbing, J; Robins, N.S.; Talbot, J. C.

    2011-01-01

    The Southern African Development Community (SADC) Groundwater Data and Information Archive, Knowledge Sharing and Co-operation Project, funded by the German Development Cooperation (GIZ) and Department for International Development, UK (DFID), was initiated in September 2009 to identify, catalogue and subsequently promote access to the large collection of reports held in the UK by the British Geological Survey (BGS). The work has focused on a wealth of unpublished so-called “gr...

  19. Interim action record of decision remedial alternative selection: TNX area groundwater operable unit

    This document presents the selected interim remedial action for the TNX Area Groundwater Operable Unit at the Savannah River Site (SRS), which was developed in accordance with CERCLA of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and to the extent practicable, the National Oil and Hazardous Substances Pollution contingency Plan (NCP). This decision is based on the Administrative Record File for this specific CERCLA unit

  20. Columbia River System Operation Review final environmental impact statement. Appendix L: Soils, geology and groundwater

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix addresses the study of geology, soils, and groundwater concerns relative to the System Operation Review (SOR). Chapter 1 provides an overview of the study, scope, and process for this resource area. In order, the respective sections of this chapter discuss the relevant issues for the study, and the means by which the SOR team carried out the study

  1. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-99 Tc-Nitrate multi-contaminant IRM plume identified beneath U Plant

  2. MODELING ON THE CYCLIC OPERATION OF STANDING COLUMN WELLS UNDER REGIONAL GROUNDWATER FLOW*

    LEE Kun Sang

    2011-01-01

    Coupled hydrogeological-thermal simulation of the Standing Column Well (SCW) system is essential to provide an optimized configuration and operation schedule for boreholes on the site.This paper presents numerical investigations and thermo-hydraulic evaluation of standing column well system operating under cyclic flow regime.A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the heat exchange in the ground.The model includes the effects of convective and conductive heat transfer, heat loss to the adjacent confining strata, and hydraulic anisotropy.The operation scenario consists of cyclic injection and recovery and four periods per year to simulate the seasonal temperature conditions.For different parameters of the system, performances have been evaluated in terms of variations in recovery temperature.The calculated temperatures at the producing pipe are relatively constant within a certain range through the year and fluctuating quarterly a year.Pipe-to-pipe distance, injection/production rate, ground thickness, and permeability considered in the model are shown to impact the predicted temperature profiles at each stage and the recovery water temperature.The influence of pressure gradient, which determines the velocity of regional groundwater flow, is most substantial.

  3. Pilot-scale treatability test plan for the 200-UP-1 groundwater Operable Unit

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-UP-1 Operable Unit. This treatability test plan has been prepared in response to an agreement between the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology, as documented in Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994). The agreement also requires that, following completion of the activities described in this test plan, a 200-UP-1 Operable Unit interim remedial measure (IRM) proposed plan be developed for use in preparing an interim action record of decision (ROD). The IRM Proposed Plan will be supported by the results of the testing described in this treatability test plan, as well as by other 200-UP-1 Operable Unit activities (e.g., limited field investigation, development of a qualitative risk assessment). Once issued, the interim action ROD will specify the interim action for groundwater contamination at the 200-UP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-UP-1 Operable Unit. Primary contaminants of concern are uranium and technetium-99; the secondary contaminant of concern is nitrate. The pilot-scale treatability testing presented in this test plan has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants in groundwater withdrawn from the contaminant plume

  4. Groundwater phosphorus in forage-based landscape with cow-calf operation.

    Sigua, Gilbert C; Chase, Chad C

    2014-02-01

    Forage-based cow-calf operations may have detrimental impacts on the chemical status of groundwater and streams and consequently on the ecological and environmental status of surrounding ecosystems. Assessing and controlling phosphorus (P) inputs are, thus, considered the key to reducing eutrophication and managing ecological integrity. In this paper, we monitored and evaluated P concentrations of groundwater (GW) compared to the concentration of surface water (SW) P in forage-based landscape with managed cow-calf operations for 3 years (2007-2009). Groundwater samples were collected from three landscape locations along the slope gradient (GW1 10-30% slope, GW2 5-10% slope, and GW3 0-5% slope). Surface water samples were collected from the seepage area (SW 0% slope) located at the bottom of the landscape. Of the total P collected (averaged across year) in the landscape, 62.64% was observed from the seepage area or SW compared with 37.36% from GW (GW1 = 8.01%; GW2 = 10.92%; GW3 = 18.43%). Phosphorus in GW ranged from 0.02 to 0.20 mg L(-1) while P concentration in SW ranged from 0.25 to 0.71 mg L(-1). The 3-year average of P in GW of 0.09 mg L(-1) was lower than the recommended goal or the Florida's numeric nutrients standards (NNS) of 0.12 mg P L(-1). The 3-year average of P concentration in SW of 0.45 mg L(-1) was about fourfold higher than the Florida's NNS value. Results suggest that cow-calf operation in pasture-based landscape would contribute more P to SW than in the GW. The risk of GW contamination by P from animal agriculture production system is limited, while the solid forms of P subject to loss via soil erosion could be the major water quality risk from P. PMID:24150714

  5. Data validation report for the 100-HR-3 Operable Unit first quarter 1994 groundwater sampling data

    Westinghouse-Hanford has requested that a minimum of 20% of the total number of Sample Delivery Groups be validated for the 100-HR-3 Operable Unit First Quarter 1994 Groundwater Sampling Investigation. Therefore, the data from the chemical analysis of twenty-four samples from this sampling event and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. The samples were analyzed by Thermo-Analytic Laboratories (TMA) and Roy F. Weston Laboratories (WESTON) using US Environmental Protection Agency (EPA) CLP protocols. Sample analyses included: inorganics; and general chemical parameters. Forty-two samples were validated for radiochemical parameters by TMA and Teledyne

  6. Data validation report for the 100-HR-3 Operable Unit first quarter 1994 groundwater sampling data

    Biggerstaff, R.L.

    1994-06-24

    Westinghouse-Hanford has requested that a minimum of 20% of the total number of Sample Delivery Groups be validated for the 100-HR-3 Operable Unit First Quarter 1994 Groundwater Sampling Investigation. Therefore, the data from the chemical analysis of twenty-four samples from this sampling event and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. The samples were analyzed by Thermo-Analytic Laboratories (TMA) and Roy F. Weston Laboratories (WESTON) using US Environmental Protection Agency (EPA) CLP protocols. Sample analyses included: inorganics; and general chemical parameters. Forty-two samples were validated for radiochemical parameters by TMA and Teledyne.

  7. Data validation summary report for the 100-NR-2 operable unit groundwater sampling round 8

    The information provided in this validation summary report includes data from the chemical analyses of samples from the 100-NR-2 Operable Unit Round 8 Groundwater Sampling Investigation. Data from this sampling event and their related quality assurance (QA) samples were reviewed and validated in accordance with Westinghouse Hanford Company (WHC) guidelines at the requested level. Sample analyses included metals, general chemistry, and radiochemistry. Forty-eight (48) metals samples were analyzed by Quanterra Environmental Services (QES) and Lockheed Analytical Services (LAS). The metals samples were validated using WHC protocols specified in WHC (1992a). All metals data were qualified based on this guidance. The container for sample number BOGJW7 in Sample Delivery Group (SDG) No. W0721-QES was broken in transit and therefore no results were available for validation. Table 1 lists the metals SDGs that were validated for this sampling event

  8. Record of Decision for Tank Farm Soil and INTEC Groundwater, Operable Unit 3-14

    L. S. Cahn

    2007-05-16

    This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact to groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank farm soil and groundwater at INTEC. The response action selected in this ROD is necessary to protect the public health, welfare, or the environment from actual or threatened releases of hazardous substances into the environment. Such a release or threat of release may present an imminent and substantial endangerment to public health, welfare, or the environment. The remedial actions selected in this ROD are designed to reduce the potential threats to human health and the environment to acceptable levels. In addition, DOE-ID, EPA, and DEQ (the Agencies) have determined that no action is necessary under CERCLA to protect public health, welfare, or the environment at 16 sites located outside the tank farm boundary. The purposes of the selected remedy are to (1) contain contaminated soil as the radionuclides decay in place, (2) isolate current and future workers and biological receptors from contact with contaminated soil, and (3) restore the portion of Snake River Plain Aquifer contaminated by INTEC releases to Idaho Ground Water Quality

  9. Evaluating Impact of Confined Livestock Operations on Water Use and Groundwater Resources in the Texas High Plains

    Amosson, Stephen H.; Bridgett Guerrero; Jackie Smith; Jeffrey Johnson; Phillip Johnson; Justin Weinheimer; Lal Almas; Jacob Roberts

    2011-01-01

    The ever-growing livestock industry in the Texas High Plains has a significant impact on water usage and groundwater resources throughout the region.  The groundwater sources are depleting at an excessive rate and have low-recharge while precipitation is scarce in this region.  The regional economy depends on the irrigated agriculture and livestock industry.  The collection of data on direct and indirect water usage by confined livestock operations will aid the industry, policy makers, and ci...

  10. Contaminants of Potential Concern in the 300-FF-5 Operable Unit: Expanded Annual Groundwater Report for Fiscal Year 2004

    This report satisfies requirements in the Operations and Maintenance Plan for the 300-FF-5 Operable Unit (DOE/RL-95-73/Rev.1) to provide detailed information, beyond that provided in the regular annual groundwater report (e.g., PNNL-15070), on groundwater conditions. The purpose is to characterize current conditions; provide a basis for changes to the monitoring schedules; and provide technical information to support the second 5-year review of the record-of-decision for the operable unit. Key topics include historical trends in the levels of various contaminants; updating the list of contaminants of potential concern; conceptual site models for uranium (300 Area) and tritium (618-11 waste site sub-region); performance of the interim actions under the current record-of-decision; and analysis of the applicability of Monitored Natural Attenuation as a remedial action alternative

  11. Data validation report for the 100-FR-3 Operable Unit, third round groundwater samples

    Ayres, J.M.

    1994-03-31

    Westinghouse-Hanford has requested that a minimum of 20% of the total number of Sample Delivery Groups be validated for the 100-FR-3 operable Unit Third Round Groundwater sampling investigation. Therefore, the data from the chemical analysis of 51 samples from this sampling event and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. The report is broken down into sections for each chemical analysis and radiochemical analysis type. Each section addresses the data package completeness, holding time adherence, instrument calibration and tuning acceptability, blank results, accuracy, precision, system performance, as well as the compound identification and quantitation. In addition, each section has an overall assessment and summary for the data packages reviewed for the particular chemical/radiochemical analyses. Detailed backup information is provided to the reader by SDG No. and sample number. For each data package, a matrix of chemical analyses per sample number is presented, as well as data qualification summaries.

  12. Development of operational system for monitoring and studying groundwater discharge and seawater intrusion in coastal zones

    One of the important challenges facing coastal zone managers today is how to identify, measure and monitor coastal submarine groundwater discharge (SGD) and seawater intrusion (SWI) and how to evaluate its influence on cumulative impacts of coastal land use decisions over distance and time. Several geochemical and geophysical techniques can help to solve the problem and provide direct or indirect monitoring of saltwater in coastal aquifers. We report here the results of a three dimensional (3D) geoelectrical survey carried out near the harbour in Donnalucata along the southeastern coast of Sicily. A geoelectrical survey and geo-mapping of the spatial distribution of the saltwater-freshwater interface in the coastal zone was conducted during the IAEA- SGD experiment in Sicily (IAEA SGD CRP 2001-2006). The Transient Electromagnetic Method (TEM) allows a subsurface sounding up to 300 m deep. This study shows the presence of two layers with various types of salt mineralization of subsurface waters in the coastal zone of Donnalucata. Geoelectrical data were taken for two subsurface layers with different types of subsurface water: resistivity = 5.37 Ω. m and with mineralization of the groundwater between 2000 - 2500 mg/L (basic water-saturated horizon from 5 to 15 m deep), and a second zone (depths from 50 to 70 m deep) with resistivity = 3.32 Ω. m and mineralization of groundwater between 4500 - 5000 mg/L. Analysis of the geoelectrical data has shown that there is a zone of maximum discharge located in the channel between two piers of the harbour. This maximum discharge reflects the existence of a known specific local karstic groundwater phenomena off the coastal zone of Donnalucata, which was confirmed with the method presented here. The geoelectromagnetic data confirmed the observations made by seepage meters and in situ measurements of 222Rn concentration and salinity, which showed at some places high seepage rates of recirculated seawater. Although overuse and

  13. Comparative analysis of the effect of closed and operational land-fills on groundwater quality in Solous, Lagos Nigeria

    Afolayan O.S

    2012-04-01

    Full Text Available Waste is discarded materials of no further use to the owners and the pattern of its generation is a function of the level of urbanization, industrialization and economic status of society. The most convenient strategy of solid waste disposal is land-fill which is usually sited in abandoned excavated site. The quality of the groundwater which is the major source of potable water are affected by the waste disposal site. The objective of this work is to examine the impact of solid waste disposal site on the ground water quality of the residential areas boundary the site. For empirical and experimental examination of the concentration of contaminant in the groundwater of the studied area, fifteen (15 wells were sampled and three (3 leachates for laboratory analysis. The results were analyzed with standard statistical package and compared with WHO, 2004 and NSDWQ, 2007 standards. The statistic correlation analysis indicated that pH of the water has close relationship with many heavy metals and physicochemical parameters. In other to verify the actual concentration of the examined variable, correlated parameters in heavy metals were subjected to regression model. Spatial variation between closed and operational land-fills were compared. Therefore, concentration of some parameters like heavy metals diminished with time as a result of the analysis of the sampled around closed land-fill and many parameters reduced with distance while other increased. Closed land-fill has the capability of generating certain pollutants than existing land-fill; conversely some pollutants can also be highly generated in operational land-fill than the former. In conclusion, groundwater contamination is the function of time, types of waste, topography, soil, underlying geology, surface water ingression and direction of groundwater flow. The research recommends appropriate materials to cap the closed site and treatment after disposal.

  14. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  15. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy's (DOE's) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow

  16. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  17. Data management implementation plan for the site characterization of the Waste Area Grouping 1 Groundwater Operable Unit at Oak Ridge National Laboratory

    Ball, T.S.; Nickle, E.B.

    1994-10-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization. This project is not mandated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); therefore, no formalized meetings for data quality objective (DQO) development were held. Internally, DQOs were generated by the project team based on the end uses of the data to be collected. The 150-acre WAG 1 is contained within the ORNL security area. It includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative facilities. The goal of the WAG 1 Groundwater Site Characterization is to provide the necessary data on the nature and extent of groundwater contamination with an acceptable level of uncertainty to support the selection of remedial alternatives and to identify additional data needs for future actions. Primary objectives for the site characterization are: (1) To identify and characterize contaminant migration pathways based on the collection of groundwater data; (2) to identify sources of groundwater contamination and evaluate remedial actions which could be implemented to control or eliminate these sources; and (3) To conduct groundwater monitoring in support of other OUs in WAG 1 and the ORNL Groundwater OU.

  18. Data management implementation plan for the site characterization of the Waste Area Grouping 1 Groundwater Operable Unit at Oak Ridge National Laboratory

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization. This project is not mandated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); therefore, no formalized meetings for data quality objective (DQO) development were held. Internally, DQOs were generated by the project team based on the end uses of the data to be collected. The 150-acre WAG 1 is contained within the ORNL security area. It includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative facilities. The goal of the WAG 1 Groundwater Site Characterization is to provide the necessary data on the nature and extent of groundwater contamination with an acceptable level of uncertainty to support the selection of remedial alternatives and to identify additional data needs for future actions. Primary objectives for the site characterization are: (1) To identify and characterize contaminant migration pathways based on the collection of groundwater data; (2) to identify sources of groundwater contamination and evaluate remedial actions which could be implemented to control or eliminate these sources; and (3) To conduct groundwater monitoring in support of other OUs in WAG 1 and the ORNL Groundwater OU

  19. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 μg/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 μg/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  20. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    NONE

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit.

  1. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit

  2. B-10 enriched boric acid, bromide, and heat as tracers of recycled groundwater flow near managed aquifer recharge operations

    Clark, J. F.; Becker, T.; Johnson, T. A.

    2013-12-01

    Recycling wastewater for potable and nonpotable use by artificially recharging aquifers is a decades-old but increasingly popular practice. Natural attenuation processes in the subsurface, known as soil aquifer treatment (SAT), purify recycled water during recharge and subsequent groundwater flow. Travel time criteria are often used to regulate managed aquifer recharge (MAR) operations. California state draft regulations currently gives preference to groundwater tracers to quantify underground residence time, with a target retention time of >6 months from infiltration to drinking water extraction for surface spreading projects using tertiary treated wastewater (less time may be possible if full advanced treated water is utilized). In the past sulfur hexafluoride, a very strong greenhouse gas, has been the principle deliberate tracer for this work. However, its emission has recently become regulated in California and new tracers are needed. Here, two prospective tracers are evaluated: boron-10 (B-10), the least abundant boron isotope, and heat (with recharging water naturally warmed at the sewage treatment plants and in surface-spreading basins). An additional deliberate tracer, bromide (Br), which is a well-studied conservative tracer, was released as a control. Tracer injection occurred at the San Gabriel Spreading Grounds research test basin in Los Angeles County, CA, USA. The basin was constructed and characterized by the US Geological Survey in the mid-1990s. Recycled wastewater was piped directly to this basin at a known rate (about 1.5 m3/day). Down gradient from the test basin are nine high quality monitoring wells in a line that extends from the center of the basin to 150 m down gradient. All of the wells were equipped with temperature loggers that recorded groundwater temperatures every hour with an accuracy of one thousandth of a degree. The pre-experiment expected arrival times ranged from less than one day to six months. Arrival of Br was always

  3. Response of ground-water levels of flood control operations in three basins, south-eastern Florida

    Pitt, William A.J.

    1974-01-01

    Three basins in southeastern Florida were investigated to determine the changes in ground-water levels and canal flows that occurred in response to operation of coastal water-control structures in each canal. All three basins are underlain by the Biscayne aquifer. They are, Snapper Creek Canal basin, where the Biscayne aquifer is of high permeability; the Snake Creek Canal basin, where the aquifer is of moderate permeability; and the Pompano-Cypress Canal basin, where the aquifer is of low permeability. In each basin, drainage is a function of permeability; thus, where the permeability of the aquifer is high, drainage is excellent. The coastal water-conrol structures are intended to afford flood protection in the three basins. In general the control operation criteria for flood control in newly developing areas in southeastern Florida do not provide adequate protection from flooding because of the time required for the aquifer to respond to changes in the controls. Adequate protection would require increasing the density of secondary drainage canals, but this could achieved only by reducing the quantity of water available for recharging those segments of the Biscayne aquifer adjacent to the canals. (Woodrad-USGS)

  4. Qualitative risk assessment for the 100-HR-3 groundwater operable unit

    Vukelich, S.E. [Golder Associates, Inc., Richland, WA (United States)

    1994-09-22

    This report provides the qualitative risk assessment for the 100-HR-3 operable unit on the Hanford Reservation. 100-HR-3 is a ground water unit. The purpose of the QRA at the 100-HR-3 operable unit is to focus on a predefined set of human and environmental exposure scenarios in order to provides sufficient information that will assist the Tri-Party signatories (Washington State Department of Ecology, EPA and US DOE) in making defensible decisions on the necessity of Interim Remedial Measures. Frequent- and occasional-use exposure scenarios are evaluated in the human health risk assessment to provide bounding estimates of risk. The ecological risk assessment consists of an evaluation of the risks to riparian and aquatic receptors which live in or near the Columbia River.

  5. Qualitative risk assessment for the 100-HR-3 groundwater operable unit

    This report provides the qualitative risk assessment for the 100-HR-3 operable unit on the Hanford Reservation. 100-HR-3 is a ground water unit. The purpose of the QRA at the 100-HR-3 operable unit is to focus on a predefined set of human and environmental exposure scenarios in order to provides sufficient information that will assist the Tri-Party signatories (Washington State Department of Ecology, EPA and US DOE) in making defensible decisions on the necessity of Interim Remedial Measures. Frequent- and occasional-use exposure scenarios are evaluated in the human health risk assessment to provide bounding estimates of risk. The ecological risk assessment consists of an evaluation of the risks to riparian and aquatic receptors which live in or near the Columbia River

  6. Baseline risk assessment for groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    NONE

    1999-07-14

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnance works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 {micro}g/L (EPA 1996c). Concentrations of other radionuclides (e

  7. Ground-water activation from the upcoming operation of MI40 beam absorber

    During the course of normal operation, a particle accelerator can produce radionuclides in the adjacent soil and in the beam line elements through the interactions of accelerated particles and/or secondary particles produced in the beam absorbers, targets, and sometimes elsewhere through routine beam losses. The production and concentration of these radionuclides depends on the beam parameters such as energy, intensity, particle type, and target configuration. The radionuclides produced in the soil can potentially migrate to the ground water. Soil activation and migration to the ground water depends on the details of the local hydrogeology. Generally, very few places such as the beam stops, target stations, injection and extraction sectors can have high enough radiation fields to produce radionuclides in the soil outside the enclosures. During the design, construction, or an upgrade in the intensity of existing beams, measures are taken to minimize the production of activated soil. The only leachable radionuclides known to be produced in the Fermilab soil are 3H, 7Be , 22Na, 45Ca and 54Mn and it has been determined that only 3H, and 22Na, because of their longer half lives and greater leachabilities, may significantly impact ground water resources.In the past, Fermilab has developed and used the Single Resident Well Model (SRWM) to estimate the ground water activation. Recently, the Concentration Model (CM), a more realistic method which depends on the site hydrogeology has been developed to decide the shielding requirements of the high radiation sites, and to calculate the ground water activation and its subsequent migration to the aquifer. In this report, the concentration of radionuclide released to the surface waters and the aquifer around the MI40 beam absorber are calculated. Subsequently, the ultimate limit on the primary proton beam intensity to be aborted on the Main Injector beam absorber is determined

  8. Groundwater and Distribution Workbook.

    Ekman, John E.

    Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…

  9. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  10. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area at the Weldon Spring Site, Weldon Spring, Missouri

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  11. Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities.

    Drollette, Brian D; Hoelzer, Kathrin; Warner, Nathaniel R; Darrah, Thomas H; Karatum, Osman; O'Connor, Megan P; Nelson, Robert K; Fernandez, Loretta A; Reddy, Christopher M; Vengosh, Avner; Jackson, Robert B; Elsner, Martin; Plata, Desiree L

    2015-10-27

    Hundreds of organic chemicals are used during natural gas extraction via high-volume hydraulic fracturing (HVHF). However, it is unclear whether these chemicals, injected into deep shale horizons, reach shallow groundwater aquifers and affect local water quality, either from those deep HVHF injection sites or from the surface or shallow subsurface. Here, we report detectable levels of organic compounds in shallow groundwater samples from private residential wells overlying the Marcellus Shale in northeastern Pennsylvania. Analyses of purgeable and extractable organic compounds from 64 groundwater samples revealed trace levels of volatile organic compounds, well below the Environmental Protection Agency's maximum contaminant levels, and low levels of both gasoline range (0-8 ppb) and diesel range organic compounds (DRO; 0-157 ppb). A compound-specific analysis revealed the presence of bis(2-ethylhexyl) phthalate, which is a disclosed HVHF additive, that was notably absent in a representative geogenic water sample and field blanks. Pairing these analyses with (i) inorganic chemical fingerprinting of deep saline groundwater, (ii) characteristic noble gas isotopes, and (iii) spatial relationships between active shale gas extraction wells and wells with disclosed environmental health and safety violations, we differentiate between a chemical signature associated with naturally occurring saline groundwater and one associated with alternative anthropogenic routes from the surface (e.g., accidental spills or leaks). The data support a transport mechanism of DRO to groundwater via accidental release of fracturing fluid chemicals derived from the surface rather than subsurface flow of these fluids from the underlying shale formation. PMID:26460018

  12. Control of Groundwater Pollution from Animal Feeding Operations: A Farm-Level Dynamic Model for Policy Analysis

    Wang, J.; Baerenklau, K.

    2012-12-01

    Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being

  13. Remedial design report and remedial action work plan for the 100-HR-3 and 100-KR-4 groundwater operable units' interim action

    This document is a combination remedial design report and remedial action work plan for the 100-HR-3 and 100-KR-4 Operable Units (located on the Hanford Site in Richland, Washington) interim action. The interim actions described in this document represent the first of an ongoing program to address groundwater contamination in each operable unit. This document describes the design basis, provides a description of the interim action, and identifies how they will meet the requirements set forth in the interim action Record of Decision

  14. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.

  15. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

  16. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime's, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives

  17. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives

  18. Groundwater Waters

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  19. Evaluating 10B-enriched Boric Acid, Bromide, and Heat as Tracers of Recycled Groundwater Flow near MAR Operations

    Becker, T.; Clark, J. F.

    2012-12-01

    Coupled with the unpredictability of a changing climate, the projected growth in human population over the next century requires new and innovative ways to augment already-depleted water supplies. An increasingly popular and promising development is managed aquifer recharge (MAR), a cost-effective method of intentionally storing potable water in groundwater aquifers at engineered sites worldwide. Reclaimed (or recycled) water, defined as cleaned and treated wastewater, will account for a larger portion of MAR water in future years. A crucial component for managing groundwater recharged with reclaimed water is its subsurface travel time. The California Department of Public Health (CDPH), with the most recent draft of regulations issued on November 21, 2011, requires the application of groundwater tracers to demonstrate subsurface residence time. Residence time increases the quality of reclaimed water via soil-aquifer treatment (SAT), which includes mechanisms such as sorption, biological degradation, and microbial inactivation to remove potential contaminants or pathogens. This study addresses the need for an appropriate tracer to determine groundwater residence times near MAR facilities. Standard shallow groundwater dating techniques, such as T/3He and chlorofluorocarbon (CFC) methods, cannot be used because their uncertainties are typically ± 2 years, longer than the target CDPH retention time of ~6 months. These methods also cannot map preferential flow paths. Sulfur hexafluoride (SF6), a nonreactive synthetic gas, is well-established as a deliberate tracer for determining subsurface travel time; however, SF6 is a very strong greenhouse gas and the California Air Resources Board (CARB) is regulating its emission. Other tracers, such as noble gas isotopes, that have successfully determined subsurface retention times are impractical due to their high cost. A multi-tracer experiment at the San Gabriel Spreading Grounds test basin (Montebello Forebay, Los Angeles

  20. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented

  1. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  2. Superfund Record of Decision (EPA Region 7): 29th and mead groundwater contamination, Coleman Operable Unit, Wichita, KS. (First remedial action), September 1992. Final report

    1992-09-29

    The 1,440-acre 29th and Mead Groundwater Contamination site is an active manufacturing facility in north-central Wichita, Sedgwick County, Kansas. Since 1887, land use in the area has been predominantly industrial. In 1947, the property was purchased by Coleman, Inc., for the manufacture of household furnace and air conditioning units. The ROD, which focuses on the Coleman Operable Unit, addresses soil contamination as a final remedial action and interim measures for the contaminated ground water. The primary contaminants of concern affecting the soil and ground water are VOCs, including 1,1-DCE, 1,1-DCA, TCE, PCE, and 1,2-DCE. The selected remedial action for the site is included.

  3. Superfund Record of Decision (EPA Region 6): United Nuclear Corporation, Mckinley County, New Mexico, ground-water operable unit (first remedial action) September 1988

    The United Nuclear Corporation (UNC) site is located approximately 17 miles northeast of Gallup, New Mexico in McKinley County. The site operated as a State-licensed uranium mill facility from June 1977 to May 1982. It includes an ore-processing mill (about 25 acres) and an unlined tailings pond area (about 100 acres). In July 1979, approximately 23 million gallons of tailings and pond water were released to a nearby river as a result of a dam breach in the tailings pond area. The site damage was repaired; however, attention was focused on ground-water contamination resulting from tailings seepage. Nevertheless, the offsite migration of radionuclides and chemical constituents from uranium milling byproduct materials into the ground water, as well as to surface water and air, are still principal threats at the site. The remedial action will address onsite ground water contamination. Source control and onsite surface reclamation will be implemented under the direction of the Nuclear Regulatory Commission and integrated with this ground water operable unit. The primary contaminants of concern affecting the ground water are metals including arsenic, and radioactive substances including radium-226/228 and gross alpha. The selected remedial action for the site is included

  4. Systematic Method for Evaluating Extraction and Injection Flow Rates for 100-KR-4 and 100-HR-3 Groundwater Operable Unit Pump-and-Treat Interim Actions for Hydraulic Containment

    Spiliotopoulos, Alexandros A.

    2013-03-20

    This document describes a systematic method to develop flow rate recommendations for Pump-and-Treat (P&T) extraction and injection wells in 100-KR-4 and 100-HR-3 Groundwater Operable Units (OU) of the Hanford Site. Flow rate recommendations are developed as part of ongoing performance monitoring and remedy optimization of the P&T interim actions to develop hydraulic contairnnent of the dissolved chromium plume in groundwater and protect the Columbia River from further discharges of groundwater from inland. This document details the methodology and data required to infer the influence of individual wells near the shoreline on hydraulic containment and river protection and develop flow rate recommendations to improve system performance and mitigate potential shortcomings of the system configuration in place.

  5. Isotope field applications for groundwater studies in the Middle East. Proceedings of the final co-ordination meeting of a regional technical co-operation project

    In recent years, the IAEA has placed emphasis on the use of isotope techniques over a wide spectrum of hydrological problems encountered in the assessment and management of water resources in arid and semi-arid regions. A regional technical co-operation project entitled ''Isotope Hydrology in the Middle East'' (RER/8/002) was implemented by the IAEA during the period 1990-1994. Since available water resources in arid and semi-arid regions of the Middle East are often restricted to groundwater, the subject matter of the project was limited to isotope applications in hydrogeology. Applied isotope field investigations were carried out in selected major aquifer systems which are of immediate priority in the participating countries as a source of water. The results obtained from applied isotope field investigations and the overall findings of the studies were presented and discussed at the final coordination meeting held in Ankara, Turkey, during 21-25 November 1994. This publication compiles the papers presented at this final meeting of the regional project. While these reports provide in-depth analyses of isotope results in the aquifer systems studied, they also provide background isotope data from the region as a basis for more effective planning of future isotope investigations. Refs, figs, tabs

  6. Baseline risk assessment for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnance works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 microg/L (EPA 1996c). Concentrations of other radionuclides (e

  7. Groundwater exposed

    2016-02-01

    Groundwater flow meddles with hydrological, environmental and geological processes. As water scarcity issues mount for people living above ground, the vast stores of freshwater in the subsurface require research attention.

  8. Groundwater animals

    Maurice, Louise; Bloomfield, John; Robertson, Anne; Allen, Debbie

    2010-01-01

    Groundwater animals are adapted to live in environments with no light and limited nutrients, They can provide insights into fundamental questions of evolution, ecology and biodiversity. They also have an important role to play in informing the reconstruction of past changes in geomorphology and climate, and can be used for characterising aquifers. The BGS is undertaking a systematic survey of selected areas and lithologies in the UK where groundwater animals have not been inves...

  9. Wetland survey of the X-10 Bethel Valley and Melton Valley groundwater operable units at Oak Ridge National Labortory Oak Ridge, Tennessee

    Rosensteel, B.A.

    1996-03-01

    Executive Order 11990, Protection of Wetlands, (May 24, 1977) requires that federal agencies avoid, to the extent possible, adverse impacts associated with the destruction and modification of wetlands and that they avoid direct and indirect support of wetlands development when there is a practicable alternative. In accordance with Department of Energy (DOE) Regulations for Compliance with Floodplains and Wetlands Environmental Review Requirements (Subpart B, 10 CFR 1022.11), surveys for wetland presence or absence were conducted in both the Melton Valley and the Bethel Valley Groundwater Operable Units (GWOU) on the DOE Oak Ridge Reservation (ORR) from October 1994 through September 1995. As required by the Energy and Water Development Appropriations Act of 1992, wetlands were identified using the criteria and methods set forth in the Wetlands Delineation Manual (Army Corps of Engineers, 1987). Wetlands were identified during field surveys that examined and documented vegetation, soils, and hydrologic evidence. Most of the wetland boundary locations and wetland sizes are approximate. Boundaries of wetlands in Waste Area Grouping (WAG) 2 and on the former proposed site of the Advanced Neutron Source in the upper Melton Branch watershed were located by civil survey during previous wetland surveys; thus, the boundary locations and areal sizes in these areas are accurate. The wetlands were classified according to the system developed by Cowardin et al. (1979) for wetland and deepwater habitats of the United States. A total of 215 individual wetland areas ranging in size from 0.002 ha to 9.97 ha were identified in the Bethel Valley and Melton Valley GWOUs. The wetlands are classified as palustrine forested broad-leaved deciduous (PFO1), palustrine scrub-shrub broad-leaved deciduous (PSS1), and palustrine persistent emergent (PEM1).

  10. Wetland survey of the X-10 Bethel Valley and Melton Valley groundwater operable units at Oak Ridge National Labortory Oak Ridge, Tennessee

    Executive Order 11990, Protection of Wetlands, (May 24, 1977) requires that federal agencies avoid, to the extent possible, adverse impacts associated with the destruction and modification of wetlands and that they avoid direct and indirect support of wetlands development when there is a practicable alternative. In accordance with Department of Energy (DOE) Regulations for Compliance with Floodplains and Wetlands Environmental Review Requirements (Subpart B, 10 CFR 1022.11), surveys for wetland presence or absence were conducted in both the Melton Valley and the Bethel Valley Groundwater Operable Units (GWOU) on the DOE Oak Ridge Reservation (ORR) from October 1994 through September 1995. As required by the Energy and Water Development Appropriations Act of 1992, wetlands were identified using the criteria and methods set forth in the Wetlands Delineation Manual (Army Corps of Engineers, 1987). Wetlands were identified during field surveys that examined and documented vegetation, soils, and hydrologic evidence. Most of the wetland boundary locations and wetland sizes are approximate. Boundaries of wetlands in Waste Area Grouping (WAG) 2 and on the former proposed site of the Advanced Neutron Source in the upper Melton Branch watershed were located by civil survey during previous wetland surveys; thus, the boundary locations and areal sizes in these areas are accurate. The wetlands were classified according to the system developed by Cowardin et al. (1979) for wetland and deepwater habitats of the United States. A total of 215 individual wetland areas ranging in size from 0.002 ha to 9.97 ha were identified in the Bethel Valley and Melton Valley GWOUs. The wetlands are classified as palustrine forested broad-leaved deciduous (PFO1), palustrine scrub-shrub broad-leaved deciduous (PSS1), and palustrine persistent emergent (PEM1)

  11. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation

  12. Isotope hydrology: Investigating groundwater contamination

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  13. Development of an operational index of water quality (PoS) as a versatile tool to assist groundwater resources management and strategic planning

    Tziritis, Evangelos; Panagopoulos, Andreas; Arampatzis, George

    2014-09-01

    Groundwater quality assessment and evaluation is of paramount importance in strategic planning and management at river basin scale or even larger. Depending on the available infrastructure data upon which such assessments are carried out, significant variations in terms of measured parameters and time span covered occur frequently and pose objective difficulties to environmental assessments. Still, there is a need for evaluation across such basins at regional, national or even continental scales under a common reference base. Existing methods so far focus on the comparative evaluation of a single parameter or a common set of parameters that needs to be available throughout all examined basins. Moreover, existing approaches and practices are assessing groundwater in comparison to the quality standards set for a specific use despite the fact that often these resources are covering a multitude of functions. This paper presents an index that attempts to perform a comparative assessment of groundwater quality across basins controlled by the same or different factors, subject to the same or different pressures and characterized by different availability of water quality measurements spread over the same or different time periods. It serves as an easy to implement and unbiased approach to identify water quality controlling factors. The proposed method offers on the spot assessment of groundwater quality characteristics visualized in a way that is easily conceived and comprehended.

  14. Water use and groundwater contamination

    A general review of the groundwater resources in Saskatchewan and their vulnerability to contamination was provided. In particular, the use of water and the effects on water by the oil and gas industry in Saskatchewan were discussed. It was suggested that public concerns over scarcity and contamination of water are gradually changing perceptions about Canada's abundance of water. Saskatchewan's surface water covers 12 per cent of the province. About 90 per cent of the rural populations and 80 per cent of municipalities depend on groundwater supplies. Regulations affecting oil and gas operations that could affect water resources have become more stringent. Techniques used in the detection and monitoring of groundwater affected by salt and petroleum hydrocarbons were described. Electromagnetic surveys are used in detecting salt-affected soils and groundwater. Laboratory analysis of chloride concentrations are needed to define actual chloride concentrations in groundwater. Wells and barriers can be installed to control and recover chloride plumes. Deep well injection and reverse osmosis are other methods, but there is no cheap or simple treatment or disposal method for salt-impacted groundwater. Spills or leaks of petroleum hydrocarbons from various sources can also lead to contamination of groundwater. Various assessment and remediation methods are described. Although there is no scarcity of techniques, all of them are difficult, costly, and may take several years to complete. 11 refs., 1 tab

  15. Groundwater flood or groundwater-induced flood?

    Robins, N.S.; Finch, J. W.

    2012-01-01

    A number of ‘groundwater flood’ events have been recorded over the Chalk aquifer in southern England since the 1994 occurrence at Chichester, Sussex. Reporting of this event and subsequent groundwater floods indicates that there are two types of groundwater flood event. Type 1 is the true groundwater flood in which the water table elevation rises above the ground elevation, and Type 2 occurs when intense groundwater discharge via bourne springs and highly permeable shallow horizons discharges...

  16. Groundwater Waters

    Ramón Llamas; Emilio Custodio

    1999-01-01

    The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction a...

  17. HANFORD GROUNDWATER REMEDIATION

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  18. Hanford Groundwater Remediation

    By 1990 nearly 50 years of producing plutonium put approximately 1.70 E+12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  19. Designing groundwater visualization interfaces

    Médard De Chardon, Cyrille

    2009-01-01

    Groundwater systems are inherently complex owing to their three-dimensional nature. The impacts of land use activities on groundwater quality and quantity, groundwater pumping, and the interaction of groundwater with surface waters are fundamental hydrogeologic concepts that require effective communication strategies. Using interactive visual interfaces may improve upon current educational techniques and encourage increased public participation in groundwater protection, conservation, and man...

  20. SSCL groundwater model

    Activation of groundwater due to accelerator operations has been a consideration since the conceptual stages of the SSC. Prior to site selection, an elementary hydrological model assuming a porous medium with a shallow well in proximity to the tunnel was used to determine the radionuclide concentrations in the water pumped from a well. The model assumed that radionuclides produced within a few feet of the tunnel would migrate to the shallow well and be diluted as the well drew water from a conically symmetric region. After the Ellis County site was selected, the compatibility of this model with the site specific geology was evaluated. The host geology at the selected site is low permeability rock, Austin chalk, shale, and marl, however, vertical fractures do exist. Since the host rock has a low permeability, groundwater in proximity to the tunnel would have to travel primarily through fractures. This hydrology is not compatible with the above mentioned model since water does not percolate uniformly from the surrounding rock into local wells. The amount of dilution of activated water will vary significantly depending on the specific relationship of the well to the activation zone. A further complication in the original model is that it assumes the high energy particles escaping from the accelerator enclosure are localized. The model does not provide for particles being lost over a large area as will happen with routine operational losses. These losses will be distributed along the accelerator over the life of the project. The SSCL groundwater model has been recast to account for the site specific hydrology and both point and distributed losses. Using the new groundwater model, the SSC accelerators are designed to limit the activation concentration in the water located one meter outside the accelerator enclosure to meet the federal drinking water standards. This technical note provides the details of this model

  1. Hanford sitewide groundwater remediation strategy - groundwater contaminant predictions

    Since the shutdown of the last major operating plants in 1987, the mission of the Hanford Site has changed from nuclear materials production to environmental restoration and waste management. The principal goals of the ongoing cleanup programs include the protection of the Columbia River and control of the spread of groundwater contamination

  2. Sunndalsøra groundwater works: Water quality assessments

    Vestland, Mari

    2010-01-01

    factors controlling groundwater quality is of great importance in the context of exploiting and supplying groundwater of good quality for public use. Groundwater quality is conditioned by aspects of geological and hydrological character, as well as involving physical, chemical and biological processes. Groundwater quality also depends on factors controlled by well performances and characteristics, as well as the operational routines at the waterworks in question. This research combines discip...

  3. Supplemental feasibility study for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    Site data evaluated indicate that after source removal, dilution and dispersion appear to be the primary processes that would further attenuate groundwater contaminant concentrations. On the basis of these attenuation processes, the calculations presented in Chapter 2 indicate that it would take several years to decades (approximately 60 to 150 and 14 years, respectively, for Zones 1 and 2) for TCE concentrations in Zones 1 and 2 to attenuate to the MCL (or ARAR) of 5 pg/L. The estimates for Zones 1 through 3, where the higher nitrate concentrations are clustered, indicate that it would likely take at least 80 years for nitrate concentrations to attenuate to the MCL (or ARAR) of 10 mg/L. Costs for implementing NINA for groundwater at the chemical plant area are primarily associated with those incurred for monitoring contaminant concentrations and the replacement costs for monitoring wells. Cost estimates are relatively high because a rather lengthy period of monitoring would be involved. Calculations performed to evaluate the feasibility of groundwater removal and subsequent treatment of the extracted water included determinations for the number of extraction wells needed, required number of pore volumes, and the number of years of implementation required to attain bench marks. The calculations were performed per zone of contamination, as discussed in Chapter 1. Several observations can be made about the results presented in Chapter 3 regarding Alternative 4. The first is that by looking at the results for Zones 1 and 2 evaluated under Alternative 4, one can also assess the feasibility of Alternative 7, because Alternative 7 addresses this particular subset of Alternative 4 (i.e., Zones 1 and 2). TCE contamination has been observed in Zones 1 and 2, but has not been reported in any of the remaining five zones. Nitrate, nitroaromatic compounds, and uranium have also been reported in Zones 1 and 2. The present-worth costs for implementing the pump and treat

  4. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure

  5. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    NONE

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

  6. Groundwater ecology literature review

    Maurice, L.

    2009-01-01

    Groundwater ecology is the study of ecosystems that occur in the subsurface within groundwater. Groundwater often contains a diverse range of organisms, and those that live in groundwater and generally do not live above the ground surface are called Stygobites. Stygobites species come from several different taxonomic groups of animals. Many animals found in groundwater are Crustaceans (Copepoda, Ostracoda, Amphipoda, Isopoda, Syncarida, Cladocera) but species of Oligocheata and...

  7. INTEC Groundwater Monitoring Report 2006

    J. R. Forbes

    2007-02-01

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  8. Current Status of Groundwater Monitoring Networks in Korea

    Jin-Yong Lee

    2016-04-01

    Full Text Available Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN, Groundwater Quality Monitoring Network (GQMN, Seawater Intrusion Monitoring Network (SIMN, Rural Groundwater Monitoring Network (RGMN, Subsidiary Groundwater Monitoring Network (SGMN, and Drinking Water Monitoring Network (DWMN. The Networks have a total of over 3500 monitoring wells and the majority of them are now equipped with automatic data loggers and remote terminal units. Most of the monitoring data are available to the public through internet websites. These Networks have provided scientific data for designing groundwater management plans and contributed to securing the groundwater resource particularly for recent prolonged drought seasons. Each Network, however, utilizes its own well-specifications, probes, and telecommunication protocols with minimal communication with other Networks, and thus duplicate installations of monitoring wells are not uncommon among different Networks. This mini-review introduces the current regulations and the Groundwater Monitoring Networks operated in Korea and provides some suggestions to improve the sustainability of the current groundwater monitoring system in Korea.

  9. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  10. Bioremediation of Hanford groundwater

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40 years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate (NO3-), carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. A research and development program is presently underway to develop bioremediation technologies for treating contaminated Hanford groundwaters. The program includes development of both ex situ and in situ treatment methods, with primary emphasis on developing an in situ treatment process. The goal of the in situ process is to stimulate the native microorganisms and accelerate the natural degradation of NO3- and CCl4. A demonstration site at Hanford for in situ biological treatment was selected in 1990, and extensive hydrological, chemical, and biological characterization of the site is underway. Current research and development activities are focusing on developing methods for supplying nutrients to the subsurface, evaluating the effect of in situ bioremediation on the long-term mobility of metal and radionuclide co-contaminants, and modeling the bioremediation process using three-dimensional visualization tools to help design the field-scale demonstration site and predict performance

  11. Groundwater Managment Districts

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  12. Hanford groundwater cleanup and restoration conceptual study

    The purpose of the sitewide groundwater restoration study is to (1)develop groundwater use scenarios, (2) identify potential groundwater restoration technologies that may be appropriate at the Hanford Site, (3) recommend sitewide engineering systems.that satisfy the restoration objectives for each groundwater-use scenario, and (4) identify emerging technologies or research and development (R ampersand D) needs that have potential at the Hanford Site. Three groundwater restoration-use scenarios have been developed to meet specific objectives and land uses at the Hanford Site. These scenarios are described in detail within the next section. This report presents three recommended sitewide systems, one for each scenario, that are engineered to a preconceptual level of detail. Within each scenario, the engineered system is intended to restore groundwater on a sitewide basis, rather than to collect individual systems for each operable unit. Although aggregate areas (100, 200, 300, and 600) may have distinct restoration systems, these systems must be compatible and integrated for successful implementation and operation within each scenario. This report also identifies technologies that were considered during the formulation of the sitewide engineered systems. New and emerging technologies or R ampersand D needs are discussed along with their application and potential to each groundwater-use scenario

  13. The impact of groundwater depletions on groundwater surface water interactions and streamflow across the contiguous US

    Condon, L. E.; Maxwell, R. M.

    2015-12-01

    Over the past 50 years, connections between climate change and streamflow trends have been observed in many regions of the Western US. However, much of the work to detect climate change signals in historical hydrologic records has focused on surface water changes in relatively undeveloped basins. While this is necessary to isolate any climate change signal from uncertain water management operations, it also excludes interactions with the concurrent human development that has occurred over the last 100 years. In highly utilized groundwater systems, such as the High Plains Aquifer, groundwater mining has already been linked to streamflow depletions at local to regional scales; but no prior studies have evaluated the role of groundwater declines in historical changes of groundwater surface water interactions at the continental scale. Here we isolate the influence of groundwater depletions from water management operations (e.g. irrigation and surface water diversions) to systematically evaluate how subsurface storage losses alter large-scale hydrologic interactions. Using a fully integrated groundwater surface water model of the contiguous US we simulate dynamic equilibrium conditions of a predevelopment system and a system with groundwater depletions equivalent to all of the groundwater development of the 20th century. Results illustrate the effect of persistent drawdown on streamflows, recharge and groundwater surface water exchanges across many spatial scales. In addition, we run transient simulations to evaluate the effect of these shifts on seasonal surface water variability. Simulations demonstrate the widespread trends in groundwater surface water interactions that have already resulted from ubiquitous groundwater mining in the United States and the potential for such changes to influence future response to climate variability.

  14. Development and Testing of Active Groundwater Samplers

    Nilsson, Bertel; Jakobsen, Rasmus; Andersen, Lars Jørgen

    1995-01-01

    Active groundwater sampling techniques are methods where the aquifer is flushed by pumping. The methods developed and tested represent non-dedicated methods for use in existing water wells. This paper describes two different sampling techniques: the Separation Pumping Technique (SP) and the Packer...... on numerical modelling and controlled laboratory experiments. Active groundwater sampling techniques can be used for remedial pumping optimization and in obtaining hydraulic data and represent a fast operational and reliable sampling tool, also under heterogeneous and low permeability conditions....

  15. Hanford Site ground-water surveillance for 1989

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  16. DOE groundwater protection strategy

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  17. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste fadities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCIA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RIFA)/RCRA Facility Investigation (RFI)/Coffective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the Pre at sign ary Assessment/Site Investigation (PA/Sl) Remedial Investigation Feasibility Study (RI/FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCIA into an RI Work Plan for the lint phase of characterization of Bear Creek Valley (BCV) Operable Unit (OU) 4

  18. EPRI nuclear power plant groundwater protection program - 59341

    Document available in abstract form only. Full text of publication follows: The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Groundwater Protection Program conducts research related to the management of groundwater at nuclear power plant sites. Experiences at decommissioned and operating nuclear power plants show that leaks and spills from plant systems, structures, and components and work practices can lead to contamination on on-site soils and groundwater. While the levels of radioactivity resulting from such contamination events do not pose health and safety threats to the public, they have raised stakeholder concerns and, in some cases, have required remediation during decommissioning to meet site-release criteria. The EPRI Nuclear Power Plant Groundwater Protection Program provides technical support and guidance to the industry for prevention of leaks and spills, early detection of leaks and spills, monitoring of groundwater contamination, prevention of off-site migration of groundwater contamination, and remediation of groundwater and soil contamination. The EPRI Groundwater Protection Program is composed of two main objectives: 1) provide technical guidance and 2) develop advanced technologies. The cornerstones of the EPRI Groundwater Protection Program are the EPRI Groundwater Protection Guidelines for Nuclear Power Plants and the EPRI Groundwater and Soil Remediation Guidelines

  19. Assignment of the Groundwater Level at the Leachate Collection Pipe for the Waste Landfill Groundwater Simulation : Combination of the Two Dimensional Saturated - Unsaturated Vertical and Horizontal Groundwater Flow Model

    Dang, Thuong Huyen; Jinno, Kenji; Tsutsumi, Atsushi

    2009-01-01

    The landfill construction has caused many negative impacts on the surrounding environment, particularly groundwater. Evaluation of the function of the leachate collection pipe at the landfill site is indispensable for managing the landfill operation. 3D groundwater flow simulation may be applicable but it requires much capacity of computer and time consumption comparing with 2D groundwater flow simulation due to the huge calculations. Therefore, the 2D horizontal groundwater flow simulation (...

  20. 1998 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Chase, J.

    1999-06-02

    Shallow groundwater beneath the TNX Area at the Savannah River Site has been contaminated with chlorinated volatile organic compounds such as trichloroethylene and carbon tetrachloride. The Interim Action T-1 Air Stripper System began operation on September 16, 1996. A comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. The Interim Action is meeting its objectives and is capable of continuing to do so until the final groundwater remedial action is in place.

  1. Groundwater infiltration by herbicides

    A variety of herbicides, applied in various ways, are used by Canadian utilities to control the undesirable vegetation on rights-of-way under transmission and distribution lines, and at transformer stations. Above a soil organic carbon content of 0.1% the herbicide sorption on the immobile organic phase is best described by organic carbon partitioning coefficients. Order of magnitude estimates of these partitioning coefficients were to be derived from the octanol/herbicide partitioning coefficients. At dissolved organic matter contents above 30 mg/L (in bogs and swamps) the herbicide mobility is enhanced, below 1 mg/L the effect of sorption on the immobile phase of organic matter prevails. For all herbicides in question and most of the field conditions it can be safely assumed that transformation of the infiltrated amount will occur with a half-life of more than 30 days. The degradation is temperature dependent and ceases below 0 degree C. Assuming the water movement in sandy, loamy and clay soils as 2, 1 and 0.5 m/year, the transport rate of 2,4-D is calculated to be approximately 0.92, 0.46 and 0.23 m/year, respectively. The overall evaluation of herbicide mobility showed that the potential for groundwater contamination most sensitively depends on organic carbon content of soil, herbicide half-life, deep percolation, and depth to groundwater table. It was recommended that the use of herbicides in hydrogeologically sensitive areas be restricted and fast degrading herbicides be used in other areas. For continued use of herbicides, the implementation of an operation decision-making model combined with a migration model is suggested. 44 refs., 3 tabs

  2. Hydrodynamic aspects of carbon-14 groundwater dating

    The influence of man-made hydraulic disturbances on the 14C ages of groundwater from confined aquifers is examined, also taking into account 14C diffusion, which has an effect on 14C ages only if the hydrostatic pressure in the lower, confined aquifer is not more than 0.5m higher than that in the upper, unconfined aquifer. If the water head of the lower aquifer exceeds this value, the 14C ages of the confined groundwater are reliable. If the water head is lower, the 14C water ages rapidly approach values of a few thousand years, which no longer reflect the history of the groundwater regeneration. With regard to the palaeohydrogeological situation in Central Europe and the Central Sahara during the last 40,000 years, the 14C ages of Holocene groundwater, and the duration of the preceding hiatus of the groundwater regeneration during the last glacial period, can be determined reliably. 14C ages older than that are too small in many cases; thus, groundwater velocities derived from such data are too great. Recently operations were started to use the groundwater from confined aquifers associated with rates for lowering the water table at 0.1-0.5m/a that result in a rapid decrease in the 14C ages determined for these aquifers, delayed for one or two decades after the beginning of the withdrawal. The 3H level and the chemical content of the groundwater may also be changed after the same delay period. Changes of this kind can be used to estimate the hydraulic properties of the aquifer system. In conclusion, an interpretation of the 14C content of the groundwater from confined aquifers in terms of its age is only possible if the water head of the confined aquifer has not been lower than that of the upper aquifer for even a relatively short period. (author)

  3. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  4. Groundwater sustainability strategies

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  5. Nonlinearity in groundwater flow

    Barends, F.B.J.

    1980-01-01

    Since 1856 when Darcy laid the basis for the calculation of the flow of water through sands, researchers have been interested in groundwater flow. Groundwater is essential for agriculture and water supply, but it also plays an important role when soil is used as a construction element, such as for dykes, roads and foundations. The mechanical behaviour of saturated or dry, fine graded or coarse soils are quite different. The theory of groundwater mechanics must be based on the system: water-so...

  6. Ground-water quality and effects of poultry confined animal feeding operations on shallow ground water, upper Shoal Creek basin, Southwest Missouri, 2000

    Mugel, Douglas N.

    2002-01-01

    Forty-seven wells and 8 springs were sampled in May, October, and November 2000 in the upper Shoal Creek Basin, southwest Missouri, to determine if nutrient concentrations and fecal bacteria densities are increasing in the shallow aquifer as a result of poultry confined animal feeding operations (CAFOs). Most of the land use in the basin is agricultural, with cattle and hay production dominating; the number of poultry CAFOs has increased in recent years. Poultry waste (litter) is used as a source of nutrients on pasture land as much as several miles away from poultry barns.Most wells in the sample network were classified as ?P? wells, which were open only or mostly to the Springfield Plateau aquifer and where poultry litter was applied to a substantial acreage within 0.5 mile of the well both in spring 2000 and in several previous years; and ?Ag? wells, which were open only or mostly to the Springfield Plateau aquifer and which had limited or no association with poultry CAFOs. Water-quality data from wells and springs were grouped for statistical purposes as P1, Ag1, and Sp1 (May 2000 samples) and P2, Ag2, and Sp2 (October or November 2000 samples). The results of this study do not indicate that poultry CAFOs are affecting the shallow ground water in the upper Shoal Creek Basin with respect to nutrient concentrations and fecal bacteria densities. Statistical tests do not indicate that P wells sampled in spring 2000 have statistically larger concentrations of nitrite plus nitrate or fecal indicator bacteria densities than Ag wells sampled during the same time, at a 95-percent confidence level. Instead, the Ag wells had statistically larger concentrations of nitrite plus nitrate and fecal coliform bacteria densities than the P wells.The results of this study do not indicate seasonal variations from spring 2000 to fall 2000 in the concentrations of nutrients or fecal indicator bacteria densities from well samples. Statistical tests do not indicate statistically

  7. Ground-water monitoring and modeling at the Hanford Site

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  8. Ground-water monitoring and modeling at the Hanford Site

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  9. 地下水与地表水联合调度智能监控系统%Intelligent monitoring system for joint operation of surface water and groundwater

    高胜国; 黄修桥; 贾艳辉; 李中生; 段福义

    2011-01-01

    The intelligent monitoring system for joint operation of surface water and groundwater, which purpose is to control the groundwater level,consists of two relatively independence parts;the numerical simulation system of both surface water and groundwater and the computer monitoring system. The two parts could exchange data by Access. The internal system and the operational flow were information collecting layer, scheduling decision layer and decision execution layer. The external structure was composed of one data analysis and treatment center station and some control slave stations which set from monitoring spots. The wireless data transmission was used for the connection from the center station to the slave stations. Data were acquired by a computer monitor part, and divided into different water distribution ratios, then sent to the numerical simulation system for simlation and prediction. The optimal water distribution plan would be chosen in human-computer mode. Then the control instructions would be sent from the computer screen virtual operating panel. The concrete irrigation would be actualized by computer monitoring system. The intelligent monitoring system was modular design, distributing, human computer interaction, information collection, scheduling decision and decisionexecution. The sub-monitoring-system-station CPU with the sleep and wake up working mode could reduce the interfered probability. The AC 100 V,25 mA was applied to the contact and to improve reliability in long term operation in moist environment. The system design concept was advanced and the structure was rational. Field test proved that this system works reliably. This system could provide reference for the further study of same system.%以控制地下水位在合理范围为目的的地下水与地表水联合调度智能监控系统,由相对独立的地下水与地表水联合调度数值模拟和计算机监控两部分组成,数据交换通过Access数据库实现.系统的内部

  10. Performance assessment techniques for groundwater recovery and treatment systems

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  11. Groundwater in Science Education

    Dickerson, Daniel L.; Penick, John E.; Dawkins, Karen R.; Van Sickle, Meta

    2007-01-01

    Although clean, potable groundwater constitutes one of our most valuable resources, few students or science educators hold complete and appropriate understandings regarding the concept. Recent studies that focus on secondary students' and preservice science teachers' understandings of groundwater found little difference between the groups'…

  12. Groundwater dating and flow-model calibration in the Kern Water Bank, California

    Loáiciga, HA; Meillier, L; Clark, JF

    2008-01-01

    This paper describes a study of groundwater characteristics and groundwater dating in the Kern Water Bank, west of Bakersfield, Calif. The paper also presents the results of developing a calibrated groundwater-flow model for the Kern Water Bank's aquifer. The Kern Water Bank is one of the largest artificial storage and recovery operations in the southwestern United States. This study sheds light on the chemical characteristics of groundwater, on the nature of the recharge water, on the subseq...

  13. Trends in groundwater quality in relation to groundwater age

    de Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this work was to develop and improve tools to detect trends in groundwater quality considering the reactive transport of pollutants from the ground surface to the monitoring screen. The study area of th...

  14. Groundwater contamination in Japan

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  15. Saline groundwater in crystalline bedrock

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  16. 200-BP-5 operable unit treatability test report

    The 200-BP-5 Operable Unit was established in response to recommendations presented in the 200 East Groundwater Aggregate Area Management Study Report (AAMSR) (DOE-RL 1993a). Recognizing different approaches to remediation, the groundwater AAMSR recommended separating groundwater from source and vadose zone operable units and subdividing 200 East Area groundwater into two operable units. The division between the 200-BP-5 and 200-PO-1 Operable Units was based principally on source operable unit boundaries and distribution of groundwater plumes derived from either B Plant or Plutonium/Uranium Extraction (PUREX) Plant liquid waste disposal sites

  17. Groundwater isotope survey in the Southern Gobi Region, Mongolia

    Bayanzul, B. B.; Nemer, B.; Kaland, V.; Groen, K.; Naidan, J.; Linden, W. V. D.

    2014-12-01

    The strategically biggest mineral deposits are located in South Gobi Region, Mongolia and the Mongolian government has been adhering the policy to operate them in near short terms. Groundwater is one of the important resources since rainfall and surface water availability are limited. This survey was made for the purpose to determination to principle of originating groundwater potentials. For the purpose, groundwater age was investigated with the stable isotope, radiocarbon and tritium method. They were analyzed in the laboratory of CIO of Rijksuniversiteit Groningen (The Centre of Isotope Research), Institute of Groundwater Ecology from the Helmholtz Zentrum and the German Research Center for Environmental Health (GmbH) in Munich, Germany. Deep groundwater has radiocarbon ages from 13,000 to 45,000 years before present (0.4-18.4% modern C) and δ13C values from -10.0 to -4.6‰, for which it is difficult to assign absolute ages, although these values probably represent the Late Glacial period and late Pleistocene age. Shallow groundwater had tritium values of <1 to 20.8 TU, from which only 2 locations can be referred as recently infiltrated (since 1953) - or recent mixed with fossil groundwater. Groundwater aquifers were mainly found in Cretaceous sediments that have filled-up large basins in the Gobi and there is a good possibility that aquifers are interconnected via these basin sediments, although sedimentary facies changes and geological faults may form barriers to groundwater flow.

  18. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Chase, J.

    1998-04-01

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health {ampersand} Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a `capture zone` that stabilized the plume of contaminated groundwater.

  19. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health ampersand Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a 'capture zone' that stabilized the plume of contaminated groundwater

  20. Groundwater and Ecosystems

    Ribeiro, Luís; Stigter, Tibor; Chambel, António; Condesso de Melo, Maria Teresa; Monteiro, José Paulo; Medeiros, Albino

    2013-01-01

    Scientific contributions in 24 chapters of authors of different parts of the World, with great diversity of areas and investigation topics on the important temathic of groundwater and its dependent ecosystems.

  1. Groundwater Capture Zones

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  2. Humic substances in groundwater

    Humic substances and their importance in groundwater is shortly outlined. A description of a method for isolating humic substances from groundwater in the field and for further characterisation is being tested with commercial humic acid (Aldrich), as well as gel-permeation method for determining the molecular weight. bedrock, it affords the opportunity of studying the stability and alteration of uraninite as an analogue for spent nuclear fuel under various redox conditions. (orig.) (6 refs.)

  3. Human health and groundwater

    Candela Lledó, Lucila

    2016-01-01

    Strategic overview series of the International Association of Hydrogeologists-IAH. This Series is designed both to inform professionals in other sectors of key interactions with groundwater resources and hydrogeological science, and to guide IAH members in their outreach to related sectors. The naturally high microbiological and chemical quality of groundwater, captured at springheads and in shallow galleries and dugwells, has been vital for human survival, wellbeing and development from o...

  4. The Economics of Groundwater

    James Roumasset; Christopher Wada

    2012-01-01

    We provide a synthesis of the economics of groundwater with a focus on optimal management and the Pearce equation for renewable resources. General management principles developed through the solution of a single aquifer optimization problem are extended to the management of multiple resources including additional groundwater aquifers, surface water, recycled wastewater, and upland watersheds. Given an abundant (albeit expensive) substitute, optimal management is sustainable in the long run. W...

  5. Applications of Groundwater Helium

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  6. In situ bioremediation of Hanford groundwater

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl4, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  7. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  8. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  9. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume One - Main Text and Appendices A and B

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    The laboratory investigation was performed to evaluate the feasibility of utilizing in situ chemical oxidation for remediating the secondary source of groundwater contaminants at the Idaho National Engineering and Environmental Laboratory (INEEL) Test Area North (TAN) Site. The study involved trichloroethene (TCE) contaminated media (groundwater, soil, and sludge) from TAN. The effectiveness of the selected oxidant, potassium permanganate (KMn0(sub4)), was evaluated at multiple oxidant and contaminant concentrations. Experiments were performed to determine the oxidant demand of each medium and the rate of TCE oxidation. The experiments were performed under highly controlled conditions (gas-tight reactors, constant 12C temperature). Multiple parameter were monitored over time including MN0(sub 4) and TCE concentrations and pH.

  10. Hanford Site ground-water monitoring for 1995

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  11. Belgrade waterworks groundwater source

    Paper deals with Belgrade Waterworks groundwater source, its characteristics, conception of protection programme, contaminations on source and with parameters of groundwater quality degradation. Groundwaters present natural heritage with their strategic and slow renewable natural resources attributes, and as such they require priority in protection. It is of greatest need that existing source is to be protected and used optimally for producing quality drinkable water. The concept of source protection programme should be based on regular water quality monitoring, identification of contaminators, defining areas of their influences on the source and their permanent control. However, in the last 10 years, but drastically in the last 3, because of the overall situation in the country, it is very characteristic downfall in volume of business, organisation and the level of supply of the technical equipment

  12. DS796 California Groundwater Units

    U.S. Geological Survey, Department of the Interior — The California Groundwater Units dataset classifies and delineates the State into one of three groundwater based polygon units: (1) those areas defined as alluvial...

  13. Monitoring effects of river restoration on groundwater with radon

    The restoration of the perialpine river Toess in a floodplain of northern Switzerland (Linsental) included the removal of bank reinforcements and tracer studies in the river and in oberservation wells of the adjacent alluvial groundwater. The river water is continuously recharging the aquifer system and the groundwater is used extensively as drinking water. Radon activity concentrations of freshly infiltrated groundwater are interpreted as radon groundwater age between the river and a well. A first flood after the restoration operations resulted in a widening of the river bed and in a reduction of the flow distance to the wells. Sixteen days after a second flood, the results of radon measurements were compared with those from before the restoration. The radon age of the groundwater between the river and the wells decreased, probably as a result of the reduction of the flow distances. Concentrations of autochthonous and coliform bacteria increased after the restoration operation and even more one day after the first flood. Thus the findings on the bacteria corroborate the interpretation of the radon concentrations. The restoration has not yet reduced the quality of the groundwater, which is pumped for drinking water. The study is contributing to the solution of land-use conflicts between river restoration and the supply of drinking water from the alluvial groundwater. (orig.)

  14. In situ groundwater bioremediation

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  15. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated

  16. Groundwater: A Community Action Guide.

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  17. Kenya Groundwater Governance Case Study

    Mumma, Albert; Lane, Michael; Kairu, Edward; Tuinhof, Albert; Hirji, Rafik

    2011-01-01

    This report presents a case study on groundwater governance in Kenya. The objectives of the study were to: (a) describe groundwater resource and socioeconomic settings for four selected aquifers; (b) describe governance arrangements for groundwater management in Kenya; and (c) identify the relevance of these arrangements for planning and implementing climate change mitigation measures. The ...

  18. Petroleum contaminated ground-water: Remediation using activated carbon.

    Ayotamuno, M. J.; Kogbara, R. B.; Ogaji, S. O. T.; Probert, S. D.

    2006-01-01

    Ground-water contamination resulting from the leakage of crude oil and refined petroleum products during extraction and processing operations is a serious and a growing environmental problem in Nigeria. Consequently, a study of the use of activated carbon (AC) in the clean up was undertaken with the aim of reducing the water contamination to a more acceptable level. In the experiments described, crude-oil contamination of ground water was simulated under laboratory conditions using ground-wat...

  19. Hanford Sitewide Groundwater Remediation Strategy. Groundwater Contaminant Predictions

    The DOE and other signatories of the Tri-Party Agreement recognized that the complexity of the groundwater cleanup necessitated the development of a Hanford Sitewide Groundwater Remediation Strategy to guide the effort and the Groundwater Protection Management Plan to help coordinate and manage the program. The groundwater remediation and associated technology development activities are directly related to the initial approach to groundwater remediation as defined in the Strategy. Active projects to remediate groundwater are ongoing in the 200 Areas for uranium, technetium-99, and organics, and in the 100 Area for chromium and strontium-90.It was also recognized that final remediation decisions needed information collected from field activities and predictions of groundwater conditions over time. Field-scale remediation will define the effectiveness of the selected approaches in Hanford geohydrologic conditions. Future predictions will be used to define the scope of the remediation effort needed to meet specific water quality or risk-based numerical goals

  20. Groundwater-surface water interaction

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  1. Modeling groundwater with ocean and river interaction

    Carabin, Guy; Dassargues, Alain

    1999-01-01

    We develop and implement the groundwater model, Saturated/Unsaturated Flow and Transport in 3D (SUFT3D), to integrate water quantity/quality data and simulations with models of other hydrologic cycle components, namely, rivers and the ocean. This work was done as part of the Sea Air Land Modeling Operational Network (SALMON) project supported by the IBM International Foundation through its Environmental Research Program. The first research steps, presented here, address the simulation of typi...

  2. A study on determining the location of groundwater divide using a mathematical morphology method

    PAN; Yun; GONG; Huili; DUAN; Fuzhou; HU; Zhuowei

    2006-01-01

    Placement of a groundwater divide indicates sink areas and spatial distribution, knowledge of which helps in the mapping of regional aquifer properties and the management of groundwater resources. By applying mathematical morphology to a conceptual model of a watershed and characteristic erosion and dilation operations, this paper proposes a structuring element with which to extract the shape and location of groundwater divide. With due consideration to watershed linearity, a structuring element with three origins is designed to connect watershed points. After erosion, closing, and dilation operations, the groundwater divide is determined; the results indicate this method's feasibility and accuracy.

  3. Groundwater management under sustainable yield uncertainty

    Delottier, Hugo; Pryet, Alexandre; Dupuy, Alain

    2015-04-01

    The definition of the sustainable yield (SY) of a groundwater system consists in adjusting pumping rates so as to avoid groundwater depletion and preserve environmental flows. Once stakeholders have defined which impacts can be considered as "acceptable" for both environmental and societal aspects, hydrogeologists use groundwater models to estimate the SY. Yet, these models are based on a simplification of actual groundwater systems, whose hydraulic properties are largely unknown. As a result, the estimated SY is subject to "predictive" uncertainty. We illustrate the issue with a synthetic homogeneous aquifer system in interaction with a stream for steady state and transient conditions. Simulations are conducted with the USGS MODFLOW finite difference model with the river-package. A synthetic dataset is first generated with the numerical model that will further be considered as the "observed" state. In a second step, we conduct the calibration operation as hydrogeologists dealing with real word, unknown groundwater systems. The RMSE between simulated hydraulic heads and the synthetic "observed" values is used as objective function. But instead of simply "calibrating" model parameters, we explore the value of the objective function in the parameter space (hydraulic conductivity, storage coefficient and total recharge). We highlight the occurrence of an ellipsoidal "null space", where distinct parameter sets lead to equally low values for the objective function. The optimum of the objective function is not unique, which leads to a range of possible values for the SY. With a large confidence interval for the SY, the use of modeling results for decision-making is challenging. We argue that prior to modeling operations, efforts must be invested so as to narrow the intervals of likely parameter values. Parameter space exploration is effective to estimate SY uncertainty, but not efficient because of its computational burden and is therefore inapplicable for real world

  4. Hanford Site ground-water monitoring for 1994

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  5. Hanford Site ground-water monitoring for 1994

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  6. Impacts of swine manure pits on groundwater quality

    New information is presented on impacts on groundwater by manure storage in deep ground pits. - Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and δ15N and δ18O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal

  7. Groundwater Mounding Beneath Stormwater Infiltration Basins

    Nimmer, M.; Thompson, A. M.; Misra, D.

    2007-12-01

    An accurate understanding of groundwater mound formation is important in the proper design of stormwater infiltration basins since these basins are often required to recharge a portion of pre-development infiltration volume. Mound formation due to localized recharge may reduce the infiltration rate of the basin and the ability of the soil to filter pollutants. The goal of this research was to understand groundwater mounding and the potential for contaminant transport resulting from recharge beneath stormwater infiltration basins. A 0.10 ha infiltration basin serving a 9.4 ha residential subdivision in Oconomowoc, Wisconsin was used in this study. Subsurface conditions included sand and gravel material and a groundwater table at 2.3 m below grade. Three storm events, 4.9 cm, 2.8 cm, and 4.3 cm, between August 2006 and April 2007 were modeled using the two-dimensional numerical model HYDRUS. The calibrated model was used to evaluate hypothetical basin operation scenarios for various basin sizes, soil types, ponding depths, and water table depths. The groundwater mound intersected the basin floor in most scenarios with loamy sand and sandy loam soils, an unsaturated thickness of 1.52 m, and a ponding depth of 0.61 m. No groundwater table response was observed with ponding depths less than 0.31 m with an unsaturated zone thickness of 6.09 m. The mound height was most sensitive to hydraulic conductivity and unsaturated zone thickness. A 7.6 cm sediment layer delayed the time to reach maximum mound height, but had a minimal effect on the magnitude of the mound. Mound heights increased as infiltration basin size increased.

  8. Emerging contaminants in groundwater

    Stuart, M.E.; Manamsa, K.; J. C. Talbot; Crane, E.J.

    2011-01-01

    The term ‘emerging contaminants’ is generally used to refer to compounds previously not considered or known to be significant to groundwater (in terms of distribution and/or concentration) which are now being more widely detected. As analytical techniques improve, previously undetected organic micropollutants are being observed in the aqueous environment. Many emerging contaminants remain unregulated, but the number of regulated contaminants will continue to grow slowly over th...

  9. Development and Testing of Active Groundwater Samplers

    Nilsson, Bertel; Jakobsen, Rasmus; Andersen, Lars Jørgen

    numerical modelling and controlled laboratory experiments. Active groundwater sampling techniques can be used for remedial pumping optimization and in obtaining hydraulic data and represent a fast operational and reliable sampling tool, also under heterogeneous and low permeability conditions....... Baffle System (PBS). The methodology and design of the two systems is presented and the operational application is demonstrated by examples from full-scale field experiments. The methods are validated and their sensitivity to the well construction and the hydrogeological environment is assessed based on...

  10. Design and Operation of a Borehole Straddle Packer for Ground-Water Sampling and Hydraulic Testing of Discrete Intervals at U.S. Air Force Plant 6, Marietta, Georgia

    Holloway, Owen G.; Waddell, Jonathan P.

    2008-01-01

    A borehole straddle packer was developed and tested by the U.S. Geological Survey to characterize the vertical distribution of contaminants, head, and hydraulic properties in open-borehole wells as part of an ongoing investigation of ground-water contamination at U.S. Air Force Plant 6 (AFP6) in Marietta, Georgia. To better understand contaminant fate and transport in a crystalline bedrock setting and to support remedial activities at AFP6, numerous wells have been constructed that include long open-hole intervals in the crystalline bedrock. These wells can include several discontinuities that produce water, which may contain contaminants. Because of the complexity of ground-water flow and contaminant movement in the crystalline bedrock, it is important to characterize the hydraulic and water-quality characteristics of discrete intervals in these wells. The straddle packer facilitates ground-water sampling and hydraulic testing of discrete intervals, and delivery of fluids including tracer suites and remedial agents into these discontinuities. The straddle packer consists of two inflatable packers, a dual-pump system, a pressure-sensing system, and an aqueous injection system. Tests were conducted to assess the accuracy of the pressure-sensing systems, and water samples were collected for analysis of volatile organic compound (VOCs) concentrations. Pressure-transducer readings matched computed water-column height, with a coefficient of determination of greater than 0.99. The straddle packer incorporates both an air-driven piston pump and a variable-frequency, electronic, submersible pump. Only slight differences were observed between VOC concentrations in samples collected using the two different types of sampling pumps during two sampling events in July and August 2005. A test conducted to assess the effect of stagnation on VOC concentrations in water trapped in the system's pump-tubing reel showed that concentrations were not affected. A comparison was conducted

  11. Monitoring of landfill influences on groundwater

    Mihael Brenčič

    2004-01-01

    Landfills of waste present serious threat to groundwater. To prevent groundwater pollution from landfill monitoring is performed. Rule of groundwater pollution monitoring from dangerous substances implements principles in Slovene legislation. In everyday practice certain questions arose since validity of the rule. These questions are about responsible parties in monitoring, groundwater distribution in space, target groundwater units, characterization level of the landfill and its surroundings...

  12. Hanford Site groundwater monitoring for fiscal year 1996

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  13. Hanford Site groundwater monitoring for fiscal year 1996

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems

  14. 222Rn at a Groundwater Treatment Plant

    Groundwater is a source of drinking water, usually of good quality, but compared with surface water the concentrations of radionuclides of natural origin are higher. A drinking water treatment plant for treating groundwater was monitored. The raw water is aerated, filtered through gravity sand filters and then aerated again. Radium-226 extracted from the raw water is partially retained in the filtration sand. Decay of the accumulated 226Ra generates gaseous 222Rn which is released into the treated water and into the air of the plant hall, especially during the washing of the filters. Radon-222 can pose a health risk to the operating personnel or to the public. The study evaluated the following factors: 222Ra and 226Ra concentrations in the raw and treated water, the amount of 226Ra accumulated in the filtration sand and the 222Rn concentration in the air of the plant. (author)

  15. Ground-water travel time

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  16. Groundwater types in Southeast Srem

    Gregorić Enike

    2009-01-01

    Full Text Available The region of Southeast Srem is rich in ground waters, which is of great significance to agricultural production. The objective of this paper was to designate the zones of different groundwater types from the aspect of recharge, based on the analysis of groundwater regimes in the study area. A very complex groundwater regime in Southeast Srem, which depends on a great number of natural and some anthropogenic factors, makes it difficult to designate clearly the zones of the three main types of groundwater regime. Still, the boundaries of the zones of groundwater regime types were defined based on the results of correlation analysis of the basic factors affecting the groundwater regime. Zone I includes the climatic type of groundwater. Its fluctuation corresponds to the vertical factors of water balance (precipitation and evaporation and it is not affected by the river water level. This zone extends North and East of the line Putinci, Golubinci, Stara Pazova, Batajnica, Dobanovci, mainly in the area of the loess plateau. Within the zone, groundwater is at a relatively great depth. Only exceptionally, in the valleys, it appears almost on the surface. Zone II includes the climatic-hydrological groundwater type, which is the transition between the climatic type and the hydrological type. The fluctuation of groundwater regime is affected both by the effect of vertical balance factors, and by the effect of watercourses. Climatic-hydrological groundwater type covers the central and the lowest part of the study area and the South part of the middle terrace. Zone III is classified as the hydrological groundwater type and it covers the riparian areas along the Sava and the Danube. The aquifer is hydraulically connected with the river Sava.

  17. Optimal and Sustainable Groundwater Extraction

    Wada, Christopher A.; Roumasset, James A.

    2010-01-01

    With climate change exacerbating over-exploitation, groundwater scarcity looms as an increasingly critical issue worldwide. Minimizing the adverse effects of scarcity requires optimal as well as sustainable patterns of groundwater management. We review the many sustainable paths for groundwater extraction from a coastal aquifer and show how to find the particular sustainable path that is welfare maximizing. In some cases the optimal path converges to the maximum sustainable yield. For suffici...

  18. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  19. Arkansas Groundwater-Quality Network

    Pugh, Aaron L.; Jackson, Barry T.; Miller, Roger

    2014-01-01

    Arkansas is the fourth largest user of groundwater in the United States, where groundwater accounts for two-thirds of the total water use. Groundwater use in the State increased by 510 percent between 1965 and 2005 (Holland, 2007). The Arkansas Groundwater-Quality Network is a Web map interface (http://ar.water.usgs.gov/wqx) that provides rapid access to the U.S. Geological Survey’s (USGS) National Water Information System (NWIS) and the U.S. Environmental Protection Agency’s (USEPA) STOrage and RETrieval (STORET) databases of ambient water information. The interface enables users to perform simple graphical analysis and download selected water-quality data.

  20. The groundwater subsidy to vegetation: groundwater exchanges between landcover patches

    Steven, L. I.; Gimenez, R.; Jobbagy, E. G.

    2015-12-01

    The Gran Chaco is a hot, dry plain, that spans over 60 million hectares across Bolivia, Paraguay, Brazil and Argentina. It supports high biodiversity in its dry forest and savannahs, but is rapidly being converted to agriculture in response to growing soy demand and technology including genetic modification and zero-till, that has made cultivation in drier landscapes more viable. Under natural conditions, the deep-rooted, native vegetation of the Chaco effectively captured all rainfall for evapotranspiration resulting in near zero groundwater recharge under the dry forest. Conversion to shallower rooted soy and corn, combined with the fallow period prior to the growing season, reduces evapotranspiration and allows some water to percolate through the root zone and recharge the groundwater system. When this groundwater recharge occurs, it creates groundwater mounding and a hydraulic gradient that drives flow to adjacent landcover patches where recharge does not occur. As the watertable rises, groundwater becomes available to the deep-rooted, dry forest vegetation. We develop a soil and groundwater flow model to simulate infiltration, percolation, evaporation, rootwater uptake, groundwater recharge and the lateral transfer of water between adjacent landcover patches to quantify this groundwater subsidy from converted agricultural lands to remnant patches of dry forest.

  1. Nitrate pollution of groundwater

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  2. Solutions Remediate Contaminated Groundwater

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  3. LLNL Livermore site Groundwater Surveillance Plan

    Department of Energy (DOE) Order 5400.1 establishes environ-mental protection program requirements, authorities, and responsibilities for DOE operations to assume compliance with federal, state, and local environmental protection laws and regulations; Federal Executive Orders; and internal DOE policies. ne DOE Order contains requirements and guidance for environmental monitoring programs, the objectives of which are to demonstrate compliance with legal and regulatory requirements imposed by federal, state, and local agencies; confirm adherence to DOE environmental protection polices; and support environmental management decisions. The environmental monitoring programs consist of two major activities: (1) measurement and monitoring of effluents from DOE operations, and (2) surveillance through measurement, monitoring, and calculation of the effects of those operations on the environment and public health. The latter concern, that of assessing the effects, if any, of Lawrence Livermore National Laboratory (LLNL) operations and activities on on-site and off-site surface waters and groundwaters is addressed by an Environmental Surveillance Program being developed by LLNL. The Groundwater Surveillance Plan presented here has been developed on a sitespecific basis, taking into consideration facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, the extent and use of local water resources, and specific local public interest and concerns

  4. Ground-water protection activities of the US Nuclear Regulatory Commission

    This report evaluates the internal consistency of NRC's ground-water protection programs. These programs have evolved consistently with growing public concerns about the significance of ground-water contamination and environmental impacts. Early NRC programs provided for protection of the public health and safety by minimizing releases of radionuclides. More recent programs have included provisions for minimizing releases of nonradiological constituents, mitigating environmental impacts, and correcting ground-water contamination. NRC's ground-water protection programs are categorized according to program areas, including nuclear materials and waste management (NMSS), nuclear reactor operation (NRR), confirmatory research and standards development (RES), inspection and enforcement (IE), and agreement state programs (SP). Based on analysis of existing ground-water protection programs within NRC, the interoffice Ground-water Protection Group has identified several inconsistencies between and within program areas. These inconsistencies include: (1) different definitions of the term ''ground-water,'' (2) variable regulation of nonradiological constituents in ground water, (3) different design periods for ground-water protection, and (4) different scopes and rigor of ground-water assessments. The second inconsistency stems from differences in statutory authority granted to the NRC. The third inconsistency is rationalized by recognizing differences in perceived risks associated with nuclear facilities. The Ground-water Protection Group will document its analysis of the remaining inconsistencies and make recommendations to reconcile or eliminate them in a subsequent report

  5. Monitoring of landfill influences on groundwater

    Mihael Brenčič

    2004-06-01

    Full Text Available Landfills of waste present serious threat to groundwater. To prevent groundwater pollution from landfill monitoring is performed. Rule of groundwater pollution monitoring from dangerous substances implements principles in Slovene legislation. In everyday practice certain questions arose since validity of the rule. These questions are about responsible parties in monitoring, groundwater distribution in space, target groundwater units, characterization level of the landfill and its surroundings, background values in groundwater, table of content of groundwater monitoring plan, quality of groundwater monitoring network, phases of monitoring, maintenance of monitoring network and activation of piezometers.

  6. Quarterly report of RCRA groundwater monitoring data for period July 1, 1991 through September 30, 1991

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and 40 CFR 265, Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (EPA 1989). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303 (Ecology 1991). This submittal provides data obtained from groundwater monitoring activities for July 1, 1991 through September 30, 1991. This report contains groundwater monitoring data from Hanford Site groundwater projects. A RCRA network is currently being established at the 100-D Pond. Groundwater chemistry analyses have not yet been performed

  7. Hanford Sitewide Groundwater Remediation Strategy

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  8. Technical approach to groundwater restoration

    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) and minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures

  9. Groundwater maps of the Hanford Site, June 1992

    Kasza, G.L.; Hartman, M.J.; Hodges, F.N.; Weekes, D.C.

    1992-12-01

    The Groundwater Maps of the Hanford Site, June 1992 is an update to the series of reports that document the configuration of the water table in the unconsolidated sediments beneath the Hanford Site (Figure 1). Water level measurements for these reports are collected from site groundwater monitoring wells each June and December. The groundwater data are portrayed on a series of maps to illustrate the hydrologic conditions at the Hanford Site and are also tabulated in an appendix. The purpose of this report series is to document the changes in the groundwater level at Hanford as the site transitions from a nuclear material production role to environmental restoration and remediation. In addition, these reports provide water level data in support of the site characterization and groundwater monitoring programs on the Hanford Site. Groundwater maps of the Hanford Site are prepared for the US Department of Energy, Office of Environmental Restoration and Waste Management, by the Hanford Site Operations and Engineering Contractor, Westinghouse Hanford Company (WHC).

  10. Review: Optimization methods for groundwater modeling and management

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  11. Integrated technologies for expedited soil and groundwater remediation

    A fast-track and economic approach was necessary to meet the needs of a property transfer agreement and to minimize impact to future usage of a site in the Los Angeles Basin. Woodward-Clyde responded by implementing site investigation, remedial action plan preparation for soil and groundwater, and selection and installation of remedial alternatives in an aggressive schedule of overlapped tasks. Assessment of soil and groundwater was conducted at the site, followed by design and construction of remediation systems. This phase of activity was completed within 2 years. Soil and groundwater were found to be impacted by chlorinated solvents and petroleum hydrocarbons. A vapor extraction system (2,000 scfm capacity) was installed for soil remediation, and an innovative air sparging system was installed for cost effective groundwater cleanup. A bioventing system was also applied in selected areas. The vapor extraction wellfield consists of 26 extraction and monitoring well points, with multiple screened casings. The air sparging wellfield consists of 32 sparging wells with a designed maximum flow of 400 scfm. The systems began operation in 1993, and have resulted in the estimated removal of approximately 30,000 pounds of contaminants, or about 90% of the estimated mass in place. The combined vapor extraction/air sparging system is expected to reduce the time for on-site groundwater remediation from 1/3 to 1/6 the time when compared to the conventional pump and treat method for groundwater remediation

  12. Issues in groundwater management

    It is now widely recognized that the solution to future water problems in Texas will require more effective management of the water resources. New supplies to meet future needs are not without limit; therefore, the solution to the problem will have to come from better water conservation as well as by providing new supplies. In some cases, conservation and reuse may be the only feasible answer. To accomplish what is needed will require the best efforts of all Texans. And good research programs will be required to discover ways to improve on what has been done in the past. This publication contains the proceedings of a symposium entitled ''Groundwater--Crisis or Opportunity,'' which was held in San Antonio October 29-31, 1984. It was one of several efforts related to water resources undertaken cooperatively in recent years by The University of Texas at Austin and The Texas A and M University System. The papers in this proceedings discuss the groundwater problems of the future in Texas

  13. Groundwater flow across spatial scales: importance for climate modeling

    Current regional and global climate models generally do not represent groundwater flow between grid cells as a component of the water budget. We estimate the magnitude of between-cell groundwater flow as a function of grid cell size by aggregating results from a numerical model of equilibrium groundwater flow run and validated globally. We find that over a broad range of cell sizes spanning that of state-of-the-art regional and global climate models, mean between-cell groundwater flow magnitudes scale with the reciprocal of grid cell length. We also derive this scaling a priori from a simple statistical model of a flow network. We offer operational definitions of ‘significant’ groundwater flow contributions to the grid cell water budget in both relative and absolute terms (between-cell flow magnitude exceeding 10% of local recharge or 10 mm y−1, respectively). Groundwater flow is a significant part of the water budget, as measured by a combined test requiring both relative and absolute significance, over 42% of the land area at 0.1° grid cell size (typical of regional and mesoscale models), decreasing to 1.5% at 1° (typical of global models). Based on these findings, we suggest that between-cell groundwater flow should be represented in regional and mesoscale climate models to ensure realistic water budgets, but will have small effects on water exchanges in current global models. As well, parameterization of subgrid moisture heterogeneity should include the effects of within-cell groundwater flow. (paper)

  14. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  15. Groundwater: from mystery to management

    Narasimhan, T. N.

    2009-07-01

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  16. Groundwater: from mystery to management

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  17. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  18. POSIVA groundwater flow measuring techniques

    Posiva Oy has carried out site characterisation for the final disposal of spent nuclear fuel in Finland since 1987. To meet the demanding needs to measure the hydraulic parameters in bedrock Posiva launched development of new flowmeter techniques including measuring methods and equipment in co-operation with PRG-Tec Oy. The techniques have been tested and used in the ongoing site investigations in Finland, in the underground Hard Rock Laboratory (HRL) at Aespoe in Sweden and in URL in Canada. The new methods are called difference flow and transverse flow methods. The difference flow method includes two modes, normal and detailed flow logging methods. In the normal mode the flow rate measurement is based on thermal pulse and thermal dilution methods, in the detailed logging mode only on thermal dilution method. The measuring ranges for flow rate with thermal pulse and dilution methods are 0.1-10 ml/min and 2-5000 ml/min, respectively. The difference flow method(normal mode) for small flows (0.1-10 ml/min) is based on measuring the pulse transit time and direction of a thermal pulse in the sensor. For high flows (2-5000 ml/min) the method is based on thermal dilution rate of a sensor. Direction is measured with monitoring thermistors. Inflow or outflow in the test interval is created due to natural or by pumping induced differences between heads in the borehole water and groundwater around the borehole. The single point resistance (and the temperature of borehole water) measurement is carried out simultaneously with the difference flow measurements, both in normal and detailed flow logging modes, while the tool is moving. The result is utilised for checking the exact depth of the tool. As the result a continuous log is obtained from which single fractures can be detected. The transverse flowmeter is able to measure the groundwater flow across a borehole. A special packer system guides the flow through the flow sensors. Four inflatable seals between conventional

  19. POSIVA groundwater flow measuring techniques

    Oehberg, A. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland)

    2000-08-01

    Posiva Oy has carried out site characterisation for the final disposal of spent nuclear fuel in Finland since 1987. To meet the demanding needs to measure the hydraulic parameters in bedrock Posiva launched development of new flowmeter techniques including measuring methods and equipment in co-operation with PRG-Tec Oy. The techniques have been tested and used in the ongoing site investigations in Finland, in the underground Hard Rock Laboratory (HRL) at Aespoe in Sweden and in URL in Canada. The new methods are called difference flow and transverse flow methods. The difference flow method includes two modes, normal and detailed flow logging methods. In the normal mode the flow rate measurement is based on thermal pulse and thermal dilution methods, in the detailed logging mode only on thermal dilution method. The measuring ranges for flow rate with thermal pulse and dilution methods are 0.1-10 ml/min and 2-5000 ml/min, respectively. The difference flow method(normal mode) for small flows (0.1-10 ml/min) is based on measuring the pulse transit time and direction of a thermal pulse in the sensor. For high flows (2-5000 ml/min) the method is based on thermal dilution rate of a sensor. Direction is measured with monitoring thermistors. Inflow or outflow in the test interval is created due to natural or by pumping induced differences between heads in the borehole water and groundwater around the borehole. The single point resistance (and the temperature of borehole water) measurement is carried out simultaneously with the difference flow measurements, both in normal and detailed flow logging modes, while the tool is moving. The result is utilised for checking the exact depth of the tool. As the result a continuous log is obtained from which single fractures can be detected. The transverse flowmeter is able to measure the groundwater flow across a borehole. A special packer system guides the flow through the flow sensors. Four inflatable seals between conventional

  20. Groundwater monitoring for deep-well injection

    A groundwater monitoring system for detecting waste migration would not only enhance confidence in the long-term containment of injected waste, but would also provide early warnings of contamination for prompt responses to protect underground sources of drinking water (USDWs). Field experiences in Florida have demonstrated monitoring water quality and fluid pressure changes in overlying formations is useful in detecting the upward migration of injected waste. Analytical and numerical solutions indicate changes in these two monitoring parameters can vary on the basis of hydrogeologic characteristics, operation conditions, and the distances from the injection well to the monitoring wells and to the preferential hydrologic conduits. To detect waste migration through defects around the wellbore or the leaky containment interval, groundwater monitoring wells should be placed as close as possible to an injection well. In the vertical direction, a monitoring well completed in a permeable interbed within the containment interval is expected to have the highest potential for detecting upward migration. Another acceptable horizon for groundwater monitoring is the lower portion of the buffer brine aquifer immediately above the containment interval. Monitoring wells in USDWs may be needed when waste has been detected in deeper formations or when leakage out of well casings poses a concern. A monitoring well open to the injection interval is of little value in alleviating the concerns of long-term upward migration. Moreover, the installation of the well could create additional preferential pathways. Complications in groundwater monitoring may arise at existing injection sites, especially with prior releases. It is also important to recognize that monitoring in the vicinity of the wellbore may not be effective for detecting waste migration through unidentified unplugged wells or undetected transmissive fractures

  1. A Contamination Vulnerability Assessment for the Sacramento Area Groundwater Basin

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-03-10

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement the groundwater assessment program in cooperation with local water purveyors. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basin of Sacramento suburban area, located to the north of the American River and to the east of the Sacramento River. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3

  2. Characterization of colloids in groundwater

    Natural colloids in the Gorleben aquifer systems have been investigated as for their chemical composition, quantification and size distribution. Humic substances appear to be the major organic materials in these groundwaters, generating humic colloids which are analysed to be humic acid (and fulvic acid) loaded with a large number of trace heavy metal ions. These metal ions include natural homologues of actinides and some fission products in trivalent, tetravalent and hexavalent state. Concentrations of trivalent and tetravalent heavy metal ions are linearly correlated with the dissolved organic carbon (DDC) concentration in different groundwaters. The DOC is found to be present as humic colloids. The Am3+ ions introduced in such a groundwater readily undergo the generation of its pseudocolloids through sorption or ion exchange reactions with humic colloids. The chemical behaviour of Am(III), being similar to the trivalent metal ions, e.g. Fe3+, REE etc. found in natural colloids, has been investigated by laser induced photoacoustic spectroscopy (LPAS). Groundwaters from Ispra, Markham Clinton and Felslabor Grimsel. Bidistilled water and one of Gorleben groundwaters, Gohy 1011, are taken for the purpose of comparison. This groundwater contains the least amount of natural colloids of all Gorleben groundwaters hitherto investigated. An indirect quantification is made by comparison of the LPAS results with experiment from Latex solution. (orig./IRB)

  3. Calculation of groundwater travel time

    Pre-waste-emplacement groundwater travel time is one indicator of the isolation capability of the geologic system surrounding a repository. Two distinct modeling approaches exist for prediction of groundwater flow paths and travel times from the repository location to the designated accessible environment boundary. These two approaches are: (1) the deterministic approach which calculates a single value prediction of groundwater travel time based on average values for input parameters and (2) the stochastic approach which yields a distribution of possible groundwater travel times as a function of the nature and magnitude of uncertainties in the model inputs. The purposes of this report are to (1) document the theoretical (i.e., mathematical) basis used to calculate groundwater pathlines and travel times in a basalt system, (2) outline limitations and ranges of applicability of the deterministic modeling approach, and (3) explain the motivation for the use of the stochastic modeling approach currently being used to predict groundwater pathlines and travel times for the Hanford Site. Example calculations of groundwater travel times are presented to highlight and compare the differences between the deterministic and stochastic modeling approaches. 28 refs

  4. 40 CFR 264.92 - Ground-water protection standard.

    2010-07-01

    ....92 Section 264.92 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or...

  5. Sources of groundwater contamination

    In spite of the importance of water for life, either for drinking, irrigation, industry or other wide uses in many fields, human beings seem to contaminate it and make it unsuitable for human uses. This is due to disposal of wastes in the environment without treatment. In addition to population increase and building expanding higher living costs, industrial and economical in growth that causes an increase in water consumption. All of these factors have made an increase pressure on our water environment quantitatively and qualitatively. In addition, there is an increase of potential risks to the water environmental due to disposal of domestic and industrial wastewater in areas near the water sources. Moreover, the use of unacceptable irrigation systems may increase soil salinity and evaporation rates. The present report discusses the some groundwater sources and problem, hot and mineral waters that become very important in our life and to our health due to its chemical and radioactivity characteristics.(authors)

  6. Deep groundwater chemistry

    Starting in 1977 and up till now a number of places in Sweden have been investigated in order to collect the necessary geological, hydrogeological and chemical data needed for safety analyses of repositories in deep bedrock systems. Only crystalline rock is considered and in many cases this has been gneisses of sedimentary origin but granites and gabbros are also represented. Core drilled holes have been made at nine sites. Up to 15 holes may be core drilled at one site, the deepest down to 1000 m. In addition to this a number of boreholes are percussion drilled at each site to depths of about 100 m. When possible drilling water is taken from percussion drilled holes. The first objective is to survey the hydraulic conditions. Core drilled boreholes and sections selected for sampling of deep groundwater are summarized. (orig./HP)

  7. One-year measurements of chloroethenes in tree cores and groundwater at the SAP Mimoň Site, Northern Bohemia

    Wittlingerova, Z.; Machackova, J.; Petruzelkova, A.;

    2013-01-01

    . Four areas of interest were chosen at the experimental site with CE groundwater contamination and observed fluctuations in groundwater concentrations. CE concentrations in groundwater and tree cores were observed for a 1-year period. The aim was to determine how the CE concentrations in obtained tree...... core samples correlate with the level of contamination of groundwater. Other factors which can affect the transfer of contaminants from groundwater to wood were also monitored and evaluated (e.g., tree species and age, level of groundwater table, river flow in the nearby Ploučnice River, seasonal...... effects, and the effect of the remediation technology operation). Factors that may affect the concentration of CE in wood were identified. The groundwater table level, tree species, and the intensity of transpiration appeared to be the main factors within the framework of the experiment. Obtained values...

  8. Global scale groundwater flow model

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  9. Groundwater impact assessment report for the 100-D Ponds

    The 183-D Water Treatment Facility (WTF) discharges effluent to the 120-0-1 Ponds (100-D Ponds) located north of the 100-D Area perimeter fence. This report satisfies one of the requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00B as agreed by the US Department of Energy, Washington State Department of Ecology, and the US Environmental Protection Agency. Tri-Party Agreement Milestone M-17-00B includes a requirement to assess impacts to groundwater from disposal of the 183-D WTF effluent to the 100-D Ponds. In addition, the 100-D Ponds are a Resource Conservation and Recovery Act of 1976 treatment, storage, and disposal facility covered by the 100-D Ponds Closure Plan (DOE-RL 1993a). There is evidence of groundwater contamination, primarily nitrate, tritium, and chromium, in the unconfined aquifer beneath the 100-D Area and 100 Areas in general. The contaminant plumes are area wide and are a result of past-practice reactor and disposal operations in the 100-D Area currently being investigated as part of the 100-DR-1 and 100-HR-3 Operable Units (DOE-RL 1992b, 1992a). Based on current effluent conditions, continued operation of the 100-D Ponds will not adversely affect the groundwater quality in the 100-D Area. Monitoring wells near the pond have slightly higher alkaline pH values than wells in the rest of the area. Concentrations of known contaminants in these wells are lower than ambient 100-D Area groundwater conditions and exhibit a localized dilution effect associated with discharges to the pond. Hydraulic impact to the local groundwater system from these discharges is minor. The groundwater monitoring well network for the 100-D Ponds is adequate

  10. Estimating global groundwater withdrawal and depletion using an integrated hydrological model, GRACE, and in situ observations

    Pokhrel, Y. N.; Koirala, S.; Hanasaki, N.; Yeh, P. J.; Kanae, S.; Oki, T.

    2012-12-01

    In the past several decades extensive use of groundwater, particularly for irrigation, has led to rapid groundwater depletion in many regions. This has not only affected the terrestrial water cycle but also resulted in global sea level rise because a large portion of unsustainably pumped groundwater eventually ends up in the ocean. Therefore, monitoring groundwater resources and their use has become increasingly important. While in situ observations are invaluable for assessing and monitoring groundwater availability, global models and satellite-based observations provide further insights into groundwater dynamics in regions where observations are scarce. In this study, we highlight the major hotspots of global groundwater depletion and the consequent sea level change by using an integrated modeling framework. The model was developed by incorporating a dynamic groundwater scheme and a pumping scheme into a global land surface model (MATSIRO: Minimal Advanced Treatments of Surface Interaction and Runoff) which also accounts for the effects of major human activities (e.g., reservoir operation, irrigation, and water withdrawal) on the terrestrial water cycle. All components of the model are fully coupled and the model tracks the flow of water taking into account the withdrawals of water for agricultural, domestic, and industrial uses from various sources such as river networks, medium-sized reservoirs, and groundwater reservoir. Using model results, GRACE measurement, and ground-based observations by the United States Geological Survey, we demonstrate that groundwater has been declining in many regions with a particular focus on the major aquifers in the United States. In the region overlying the High Plains aquifer, which is extensively irrigated mainly by using groundwater, the simulated groundwater withdrawal of ~23 km3/yr agrees well with the observational record of ~24 km3/yr for circa 2000. Moreover, corresponding closely with the USGS water level observations

  11. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.

    Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. PMID:26745299

  12. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Ping Li

    Full Text Available A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs. Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-, SO4(2-/total sulfur ratio, and Fe(2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  13. First and second quarters 1999 -- TNX Area groundwater and effectiveness monitoring strategy data only report

    Chase, J.

    1999-12-17

    This report presents data of groundwater monitoring conducted during the first and second quarters of 1999 in support of the Interim Remedial Action. The data is from groundwater monitoring wells described in this report as the primary, secondary, and recovery wells of the initial operation of the Effectiveness Monitoring Strategy (EMS) as stipulated in Revision 1.3 (WSRC, 1996), the proposed wells for the full operation of the EMS as described in Revision 1.5 (WSRC, 1999), and general wells pertinent to the report. Also included are data from SRTC projects in the TNX Area that are deemed useful for groundwater characterization.

  14. Groundwater protection in Russia, Finland and EU

    Orlova, Liubov

    2015-01-01

    Groundwater is a major source of fresh drinking water. Since groundwater is unevenly distributed, it is quite a strong effect on the problem of shortage of drinking water in some states. However, the importance of groundwater as the primary source of drinking water varies within countries, depending on the amount and quality of groundwater, and conditions of its use and geographic characteristics of the state. This thesis describes characteristics of groundwater in the territory of Russia...

  15. Groundwater Vulnerability Regions of Iowa

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  16. Age dating of hyporheic groundwater with radon (Rn-222)

    short residence time in the subsurface of up to a few days. Radon-222 (Rn) activities were measured in hyporheic and alluvial groundwaters of two perialpine flood plains in northern Switzerland (river Toess, and river Thur). The studied rivers were subjected to rehabilitation operations. At the sites of rehabilitation operations, piezometer wells were drilled at different depths. Ages of older alluvial groundwaters were calculated with the tritium/helium-3 (3H/3He) dating method and compared with those of the Rn method. Mixing tracer measurements (chlorofluorocarbons, specific electric conductivity, temperature, and chloride) in these wells were interpreted as mixtures between river water and older groundwater. The fractional mixing with water that has recently infiltrated from the river Toess seemed to be higher in summer than in winter. Where the rivers were allowed to reshape banks and beds following rehabilitation operations, measurements in wells near the bank revealed differences in Rn activity before and after the rehabilitation of more than a factor of two. (author)

  17. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and

  18. Collaborative trial on groundwater sampling

    Ghestem, Jean Philippe; Fisicaro, Paula; Champion, Rachel

    2011-01-01

    The trial presented here was conducted by BRGM in collaboration with LNE under the work program AQUAREF 2009 with the support of ONEMA. This is a collaborative trial on groundwater sampling and on field physico chemical measurement. It is not a proficiency test. He had three goals: * Observe and evaluate the practices of groundwater sampling to improve future guides, standards and specifications. * Assess the impact of sampling on variability of results. * Study the accuracy of field measurem...

  19. Irrigation and groundwater in Pakistan

    Ertsen, Maurits; Iftikhar Kazmi, Syed

    2010-05-01

    Introduction of large gravity irrigation system in the Indus Basin in late nineteenth century without a drainage system resulted in water table rise consequently giving rise to water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem government initiated salinity control and reclamation project (SCARP) in 1960. Initially 10,000 tube wells were installed in different areas, which not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the full irrigation motivated framers to install private tube wells. Present estimate of private tube wells in Punjab alone is around 0.6 million and 48 billion cubic meter of groundwater is used for irrigation, contributing is 1.3 billion to the economy. The Punjab meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tubewells, creating a pattern of private and public water control. As the importance of groundwater in sustaining human life and ecology is evident so are the threats to its sustainability due to overexploitation, but sufficient information for its sustainable management especially in developing countries is still required. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. Groundwater recharge is broadly defined as water that reaches the aquifer from any direction (Lerner 1997). Sustainability and proper management of groundwater resource requires reliable quantification of the resource. In order to protect the resource from contamination and over exploitation, identification of recharge sources and their contribution to resource is a basic requirement. Physiochemical properties of some pesticides and their behavior in soil and water can make them potential tracers of subsurface moisture movement. Pesticides are intensively used in the area to

  20. Hanford Site ground-water monitoring for 1993

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  1. Hanford Site ground-water monitoring for 1993

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  2. Optimal and Sustainable Groundwater Extraction

    Christopher A. Wada

    2010-08-01

    Full Text Available With climate change exacerbating over-exploitation, groundwater scarcity looms as an increasingly critical issue worldwide. Minimizing the adverse effects of scarcity requires optimal as well as sustainable patterns of groundwater management. We review the many sustainable paths for groundwater extraction from a coastal aquifer and show how to find the particular sustainable path that is welfare maximizing. In some cases the optimal path converges to the maximum sustainable yield. For sufficiently convex extraction costs, the extraction path converges to an internal steady state above the level of maximum sustainable yield. We describe the challenges facing groundwater managers faced with multiple aquifers, the prospect of using recycled water, and the interdependence with watershed management. The integrated water management thus described results in less water scarcity and higher total welfare gains from groundwater use. The framework also can be applied to climate-change specifications about the frequency, duration, and intensity of precipitation by comparing before and after optimal management. For the case of South Oahu in Hawaii, the prospect of climate change increases the gains of integrated groundwater management.

  3. Characterization of shallow groundwater at TNX

    Nichols, R.L.

    1993-01-01

    The Savannah River Site (SRS), located on 300 square miles along the Savannah River near Aiken, South Carolina, is owned by the Department of Energy and operated by Westinghouse Savannah River Company. The site`s mission is to support the national security through the production of nuclear weapons material. With the recent reduction of the nation`s nuclear stockpile and the stronger focus on the cleanup of sites where nuclear operations activities have left behind soil and groundwater contamination, identifying and remediating all inactive wastes has become a primary goal.The TNX Area is located adjacent to the Savannah River in the western portion of SRS (Figure 1). The area is a pilot-scale test facility for the Savannah River Technology Center. Pilot-scale testing and evaluation of chemical processes at TNX have included support of the Defense Waste Processing Facility (DWPF), Separations Area, and fuel and target manufacturing areas. Wastewater generated during tests was discharged to unlined basins through a network of underground process sewers.A discussion of waste disposal activities for the TNX Area is included in this report to identify the major sources of contaminants that have impacted the groundwater.

  4. Characterization of shallow groundwater at TNX

    The Savannah River Site (SRS), located on 300 square miles along the Savannah River near Aiken, South Carolina, is owned by the Department of Energy and operated by Westinghouse Savannah River Company. The site''s mission is to support the national security through the production of nuclear weapons material. With the recent reduction of the nation''s nuclear stockpile and the stronger focus on the cleanup of sites where nuclear operations activities have left behind soil and groundwater contamination, identifying and remediating all inactive wastes has become a primary goal.The TNX Area is located adjacent to the Savannah River in the western portion of SRS (Figure 1). The area is a pilot-scale test facility for the Savannah River Technology Center. Pilot-scale testing and evaluation of chemical processes at TNX have included support of the Defense Waste Processing Facility (DWPF), Separations Area, and fuel and target manufacturing areas. Wastewater generated during tests was discharged to unlined basins through a network of underground process sewers.A discussion of waste disposal activities for the TNX Area is included in this report to identify the major sources of contaminants that have impacted the groundwater

  5. Record of Decision Tank Farm Soil and INTEC Groundwater

    L. S. Cahn

    2007-05-01

    This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact of groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank far soil and groundwater at INTEC.

  6. Kinetics of in situ bioremediation of Hanford groundwater

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and may require the remediation of existing contaminated groundwaters. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl4, nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to quantify the biological and chemical reactions that would occur during in situ bioremediation

  7. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2009

    Elvado Environmental LLC

    2008-12-01

    . The following sections of this report provide details regarding the CY 2009 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information.

  8. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Famiglietti, James S; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long‐term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remot...

  9. Saline Groundwater from Coastal Aquifers As a Source for Desalination.

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yoseph; Rahav, Eyal; Oren, Yoram; Kasher, Roni

    2016-02-16

    Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs. PMID:26810309

  10. Costs of groundwater contamination

    Two factors determine the cost of groundwater contamination: (1) the ways in which water was being used or was expected to be used in the future and (2) the physical characteristics of the setting that constrain the responses available to regain lost uses or to prevent related damages to human health and the environment. Most contamination incidents can be managed at a low enough cost that uses will not be foreclosed. It is important to take into account the following when considering costs: (1) natural cleansing through recharge and dilution can take many years; (2) it is difficult and costly to identify the exact area and expected path of a contamination plume; and (3) treatment or replacement of contaminated water often may represent the cost-effective strategy for managing the event. The costs of contamination include adverse health effects, containment and remediation, treatment and replacement costs. In comparing the costs and benefits of prevention programs with those of remediation, replacement or treatment, it is essential to adjust the cost/benefit numbers by the probability of their actual occurrence. Better forecasts of water demand are needed to predict more accurately the scarcity of new supply and the associated cost of replacement. This research should include estimates of the price elasticity of water demand and the possible effect on demand of more rational cost-based pricing structures. Research and development of techniques for in situ remediation should be encouraged

  11. Bikini Atoll groundwater development

    Nuclear weapons testing during the 1950's has left the soil and ground water on Bikini Atoll contaminated with cesium-137, and to a lesser extent, strontium-90. Plans currently are underway for the clean-up and resettlement of the atoll by removal of approximately the upper 30 cm of soil. Any large-scale resettlement program must include provisions for water supply. This will be achieved principally by catchment and storage of rain water, however, since rainfall in Bikini is highly seasonal and droughts occur frequently, ground water development must also be considered. The quantity of potable ground water that can be developed is limited by its salinity and radiological quality. The few ground water samples available from Bikini, which have been collected from only about the top meter of the groundwater body, indicate that small bodies of potable ground water exist on Bikini and Eneu, the two principal living islands, but that cesium and strontium in the Bikioni ground water exceed drinking water standards. In order to make a reasonable estimate of the ground water development potential for the atoll, some 40 test boreholes will be drilled during July/August 1985, and a program of water quality monitoring initiated. This paper will describe preliminary results of the drilling and monitoring work

  12. Urban groundwater age modeling under unconfined condition - Impact of underground structures on groundwater age: Evidence of a piston effect

    Attard, Guillaume; Rossier, Yvan; Eisenlohr, Laurent

    2016-04-01

    In this paper, underground structures are shown to have a major influence on the groundwater mean age distribution described as a dispersive piston effect. Urban underground development does not occur without impacts on subsoil resources. In particular, groundwater resources can be vulnerable and generate disturbances when this space is exploited. Groundwater age spatial distribution data are fundamental for resource management as it can provide operational sustainability indicators. However, the application of groundwater age modeling is neglected regarding the potential effect of underground structures in urban areas. A three dimensional modeling approach was conducted to quantify the impact of two underground structures: (1) an impervious structure and (2) a draining structure. Both structures are shown to cause significant mixing processes occurring between shallow and deeper aquifers. The design technique used for draining structures is shown to have the greatest impact, generating a decrease in mean age of more than 80% under the structure. Groundwater age modeling is shown to be relevant for highlighting the role played by underground structures in advective-dispersive flows in urban areas.

  13. Groundwater Risk Assessment Model (GRAM: Groundwater Risk Assessment Model for Wellfield Protection

    Nara Somaratne

    2013-09-01

    Full Text Available A groundwater risk assessment was carried out for 30 potable water supply systems under a framework of protecting drinking water quality across South Australia. A semi-quantitative Groundwater Risk Assessment Model (GRAM was developed based on a “multi-barrier” approach using likelihood of release, contaminant pathway and consequence equation. Groundwater vulnerability and well integrity have been incorporated to the pathway component of the risk equation. The land use of the study basins varies from protected water reserves to heavily stocked grazing lands. Based on the risk assessment, 15 systems were considered as low risk, four as medium and 11 systems as at high risk. The GRAM risk levels were comparable with indicator bacteria—total coliform—detection. Most high risk systems were the result of poor well construction and casing corrosion rather than the land use. We carried out risk management actions, including changes to well designs and well operational practices, design to increase time of residence and setting the production zone below identified low permeable zones to provide additional barriers to contaminants. The highlight of the risk management element is the well integrity testing using down hole geophysical methods and camera views of the casing condition.

  14. An analysis of potential impacts to the groundwater monitoring networks in the Central Plateau. Revision 1

    This report presents the results of an evaluation of potential impacts caused by groundwater remediation activities to the four groundwater monitoring programs operating in the Central Plateau of the Hanford Site. It specifically fulfills Milestone M-15-81A of the Hanford Federal Facility Agreement and Consent Order. Milestone M-15-81A specifies the evaluation of the potential impacts to the groundwater monitoring well systems in the Central Plateau caused by various groundwater remediation activities. Most of the impacts will be caused by local changes to groundwater flow directions that will potentially reduce the ability of the RCRA well network to monitor a limited number of RCRA facilities. It is recommended that a compliance evaluation be made of the regulatory impacts of the technical evaluations contained in this report

  15. Speciation, Mobility and Fate of Actinides in the Groundwater at the Hanford Site

    Plutonium and other actinides represent important contaminants in the groundwater and vadose zone at Hanford and other DOE sites. The distribution and migration of these actinides in groundwater must be understood so that these sites can be carefully monitored and effectively cleaned up, thereby minimizing risks to the public. The objective of this project was to obtain field data on the chemical and physical forms of plutonium in groundwater at the Hanford site. We focused on the 100-k and 100-n areas near the Columbia River, where prior reactor operations and waste storage was in close proximity to the river. In particular, a unique set of technical approaches were combined to look at the details of Pu speciation in groundwater, as thus its chemical affinity for soil surfaces and solubility in groundwater, as these impact directly the migration rates off site and possible mitigation possibilities one might undertake to control, or at least better monitor these releases

  16. Groundwater sampling from borehole KR6 during long-term pumping test at olkiluoto, Eurajoki in 2002

    A long-term pumping test from borehole KR6 at Olkiluoto was initiated in 2001. Both flow and in situ EC measurements as well as groundwater samplings from specific sections are being performed. The aim is to get information on the potential connections via fractures both to the sea and to the deep saline groundwater during long term pumping of the borehole. In 2002 and at the beginning of 2003 six groundwater samples were collected from borehole KR6 at three different sampling depths (98,5-100,5 m, 125-130 m and 135-137 m). Groundwater samples were taken from the packed-off sections by a membrane pump. Salinities of two groundwater samples from depths 98,5-100,5 m and 135-137 m were increasing due to the long term pumping of the borehole KR6. Whereas the salinity of the groundwater samples taken from section 125-130 m was decreasing between two groundwater samplings done in 2002. All taken groundwater samples represent water type Na-Ca-Cl and they are brackish (1 000 mg/l < TDS< 10 000 mg/l). Electrical conductivity, which was measured during the groundwater sampling, was compared to the in situ electrical conductivity measurements. The results achieved with different methods agreed well except for one sample. Based on EC results it can be concluded that groundwater samples taken from borehole KR6 represent good groundwater from a single fracture or narrow fracture zone. This study presents sampling methods and the results of analyses of groundwater samples from the deep borehole KR6. Beside these the report presents operating principles of the in situ EC measurements and also comparison of the results to the EC results measured during groundwater sampling. This report also contains a short comparison of the groundwater sampling results achieved in 2002 and 2003. (orig.)

  17. Understanding arsenic contamination of groundwater in Bangladesh

    The problem of water contamination by naturally occurring arsenic confronts governments, public and private utilities, and the development community with a new challenge for implementing operational mitigation activities under difficult conditions of imperfect knowledge - especially for arsenic mitigation for the benefit of the rural poor. With more than a conservative estimate of 20 million of its 130 million people assumed to be drinking contaminated water and another 70 million potentially at risk, Bangladesh is facing what has been described as perhaps the largest mass poisoning in history. High concentrations of naturally occurring arsenic have already been found in water from tens of thousands of tube wells, the main source of potable water, in 59 out of Bangladesh's 64 districts. Arsenic contamination is highly irregular, so tube wells in neighboring locations or even different depths can be safe. Arsenic is extremely hazardous if ingested in drinking water or used in cooking in excess of the maximum permissible limit of 0.01 mg/liter over an extended period of time. Even in the early 1970s, most of Bangladesh's rural population got its drinking water from surface ponds and nearly a quarter of a million children died each year from water-borne diseases. Groundwater now constitutes the major source of drinking water in Bangladesh with 95% of the drinking water coming from underground sources. The provision of tube well water for 97 percent of the rural population has been credited with bringing down the high incidence of diarrheal diseases and contributing to a halving of the infant mortality rate. Paradoxically, the same wells that saved so many lives now pose a threat due to the unforeseen hazard of arsenic. The provenance of arsenic rich minerals in sediments of the Bengal basin as a component of geological formations is believed to be from the Himalayan mountain range. Arsenic has been found in different uncropped geological hard rock formations

  18. Isotopic identification of Saharian groundwaters, groundwater formation in the past

    Frequency distributions of 14C groundwater ages for various regions of the Sahara and the adjacent Sahel Zone reflect the alternating sequence of humid and arid periods in the late Pleistocene and Holocene. The groundwaters from deep aquifer systems have mainly been formed in a long wet period from more than 50000 years B.P. till 20000 y B.P. At that time the Northern Sahara has received winter rain from the western drift. This is shown by a west-east decrease in the deuterium and 18O content of these paleowaters (continental effect in groundwater). The lower deuterium excess d = delta D - 8 x delta 18O in Northern Saharian paleowaters is interpreted to be due to a lower moisture deficit over the ocean during the ice-age. A hydrogeological model of the paleowaters in the Western Desert of Egypt is presented. (author)

  19. Environmental Effects of Groundwater Development in Xuzhou City, China

    2006-01-01

    Xuzhou City is located in the most northwestern portion of Jiangsu Province, P. R. China. Karst groundwater in the Ordovician and Cambrian Limestone aquifers is the main source of water supply. There are 527 wells in urban areas to exploit the karst groundwater, yielding up to 35 000 m3 per day. After 1978, urbanization and industrialization of Xuzhou City have continued at a greatly accelerated pace; the population increased from 670 700 (1978) to 1 645 500 (2002), its GDP from 0.71 × 109$ to 42.7×109$ and the urban area from 184 km2 to 1,038 km2 (built-up city area from 41.3 km2 to 81.9 km2). The volume of karst groundwater withdrawal increased yearly before the operation of a supply plant of surface water in 1992, from 3.85×107 m3 (1978) to 1.34×108 m3 (1991) and now maintained at 0.1×109 m3 (2002). Intensive overexploitation of karst groundwater has caused a continuous descending of the piezometric level and the area of the depression cone increases year after year. These changes have increased the vulnerability of the karst groundwater system and have induced environmental problems such as depletion of water resources, water quality deterioration, groundwater contamination and karst collapse. The largest buried depth of karst groundwater is up to 100 m in the dry season in some areas, while 66 exhausted wells have been abandoned. A change in the thickness of the unsaturated zone due to the drawdown of the piezometric level has caused a change of the chemical environment which has an impact on the physical state and major chemical compositions in groundwater. The contents of Ca2+, Mg2+, NO3-, SO42- and Cl- in karst groundwater has increased significantly, total hardness (CaCO3 content) rises annually in most pumping wells and exceeds the Standard of Drinking Water of P.R. China. Point source pollution and belt-like pollution along the rivers has caused water quality deterioration. The sudden loss of buoyant support due to rapid drawdown of the

  20. Groundwater and Terrestrial Water Storage

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  1. Groundwater recharge and agricultural contamination

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  2. Geochemical Investigations of Groundwater Stability

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  3. Innovative technologies for groundwater cleanup

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  4. Geochemical Investigations of Groundwater Stability

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  5. Groundwater maps of the Hanford site, June 1995

    The Groundwater Maps of the Hanford Site, June 1995 is a continuation of a series of reports (see Serkowski et al. 1995) that document the configuration of the water table aquifer beneath the Hanford Site (Figure 1). This series presents the results of the semiannual water level measurement program and the water table maps generated from these measurements. The reports document the changes in the groundwater level at the Hanford Site during the transition from nuclear material production to environmental restoration and remediation. In addition, these reports provide water level data to support the various site characterization and groundwater monitoring programs currently in progress on the Hanford Site. Groundwater Maps of the Hanford Site is prepared for the U.S. Department of Energy by the Hanford Site Operations and Engineering Contractor, Westinghouse Hanford Company (WHC). This document fulfills reporting requirements specified in WHC-CM-7-5, Section 8.0 ''Water Quality'' and described in the environmental monitoring plan for the Hanford Site. (DOE-RL 1993a) This document highlights the three major operations areas (the 100, 200 and 300/1100 Areas) where wastes were discharged to the soil. Each area includes a summary discussion of the data, a well index map, and a contoured map of the water table surface. Appendix A contains all of the data collected for this program

  6. Groundwater Availability Within the Salton Sea Basin Final Report

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    in the Salton Sea Basin is the subject of the project described in this report. Much of the project work was done in cooperation with the US Bureau of Reclamation, Lower Colorado Region Office ('Reclamation'), which manages the Salton Sea Restoration project for the US Department of the Interior, and complements other recent assessment efforts (e.g., Imperial County, 1995). In this context, the notion of groundwater availability is defined by four separate, but interrelated concepts or components: (1) Volume and Capacity--This refers to the volume of groundwater available in storage in (or the related storage capacity of) the sediments and geologic media that comprise a groundwater basin. The volume of groundwater in a basin will vary in time as a function of recharge, well production, and land subsidence. (2) Producibility--This refers to the ease or difficulty of extracting groundwater in a basin from wells. Groundwater producibility will be affected by well depth and the formation permeability surrounding the open intervals in wells. (3) Quality--This refers to the extent that water produced from wells is potable or otherwise suitable for domestic or other uses. It may also refer to the chemical compositions of groundwater that are unrelated to potability or suitability issues. Groundwater quality will be affected by its residence time and flow pathway in the formation and will also be influenced by the quality of its original source before entering the groundwater regime. (4) Renewability and Recharge--This refers to the extent that groundwater is recharged to the basin as part of the natural hydrologic cycle or other artificial means. Groundwater renewability is normally a function of recharge derived from precipitation (and thus a function of regional climate), but may also be affected in local areas by irrigation, leaking canals, aquifer storage and recovery operations, and so forth. Along with the other factors, renewability will strongly affect how

  7. Bromine as a Potential Threat to the Aquatic Environment in Areas of Mining Operations

    Winid Bogumiła

    2013-01-01

    Fresh water normally contains limited quantities of bromine. The average content of bromine in the surface and groundwater active exchange zone generally does not exceed 200 μg/dm3 (0.2 mg/dm3). Mineralized waters, including some specific therapeutic waters, thermal waters, and brines, may contain bromides in amounts greater than in ordinary groundwater. Bromides will penetrate into groundwater and surface water due to salty groundwater inflow. In areas of mining operations, the management of...

  8. Age dating of young groundwater

    Full text: During the past 40 years, a variety of methods have been developed that can provide information on the age of young groundwater (0-50 year timescale). Groundwater age refers to the time elapsed since recharge, but is model dependent, being based on an interpretation of measured concentrations of environmental tracers in groundwater samples. As a reference point, an 'apparent age', which assumes unmixed samples (piston flow) is often reported, although a number of mathematical models have been developed that can be used to interpret mean age (residence time) of water that discharges from a groundwater reservoir. Other applications incorporate environmental tracer data in the calibration of numerical models of groundwater flow. Environmental tracers that have proven most useful in providing groundwater age information have an atmospheric source and can be grouped according to (1) those based on measurement of the concentrations of both parent and daughter isotopes, such as in applications of 3H/3He in groundwater, (2) those based on the measurement of the activity of a single radionuclide in groundwater, such as in applications of 3H and 85Kr in groundwater dating, and (3) those based on measurement of the concentration of anthropogenic gases in groundwater, such as in applications of chlorofluorocarbons (CFCs) and sulfur hexafluoride (SF6). In the first case, the initial concentration of the radionuclide is reconstructed from the measured concentrations of the parent and daughter isotopes and age is then determined from the decay equation. The second case requires a priori definition of the initial concentration of the radionuclide recharged to the aquifer, and then age is estimated from the measured concentration and the decay equation. In the third case, age information is derived from a prior knowledge of the atmospheric input function of an anthropogenic gas, its solubility in water, and the measured concentration in the water sample. Each method has

  9. Quantitative assessment of the groundwater-sewer network interaction in Bucharest city (Romania)

    Boukhemacha, M. A.; Diaconescu, A.; Bica, I.; Gogu, C. R.; Gaitanaru, D.

    2012-04-01

    Groundwater management in urban area must take account of every possible and relevant phenomena arising from the complex interaction between subsurface water, surface water, and urban infrastructure. In Bucharest, the need of the sewer system rehabilitation initiated a study of the interaction between groundwater and the sewer network. Recent conclusions show that the sewer network acts mainly like a drainage system for the groundwater. However, it could be easily proven that several sewer segments located mainly in the unsaturated zone contaminate the groundwater by leakage. The groundwater infiltration in the sewer conduits can cause the decrease of the groundwater level leading to structures instability problems as well as to the increase flow-rates of the sewer system. The last one affects seriously the wastewater treatment plants efficiency. The sewer network leakage cause groundwater pollution and locally could increase the groundwater level triggering buildings instability or other urban operational problems. The current study focuses on the consequences of sealing a part of the sewer system and so disturbing the existing groundwater behavior which may lead to serious consequences. In this framework, the analysis results of a groundwater flow model used to quantify the interaction between the groundwater and the sewer network are presented. The two-layers groundwater flow model simulating the Colentina and Mostistea overlaid sedimentary aquifers covers about 75 km2. Its conceptual model relies on a 3D geological model made by using 23 accurate geological cross-sections of the studied domain. The model set-up and its calibration are done using pumping tests data, groundwater hydraulic heads, and water levels of the sewer system. Infiltration rates into sewers are modeled by applying a modified form of Darcy's law that uses the notion of infiltration factor. This last encompasses the hydraulic conductivity of the clogging layer, the infiltration area and the

  10. Oxidation technologies for groundwater treatment

    Xerox Corporation has pilot tested three UV/Oxidation processes for the treatment of contaminated groundwater containing chlorinated and non-chlorinated organic solvents. The technologies pilot tested included the ULTROX system developed by ULTROX International, the perox-pure process of Peroxidation Systems, Inc. and the Rayox process by Solarchem Environmental Systems. The three processes use a combination of ultraviolet light and hydrogen peroxide to oxidize organic solvents in water. The ULTROX system includes ozone as part of the treatment. Data gathered during pilot testing demonstrated that these processes are effective in the destruction of organic contaminants in groundwater. These results are discussed in regard to applicability to the groundwater remediation at the Xerox Facilities in Webster and Blauvelt, New York