WorldWideScience

Sample records for 2-phenoxypyridyl dinucleating ligands

  1. A versatile dinucleating ligand containing sulfonamide groups

    Sundberg, Jonas; Witt, Hannes; Cameron, Lisa;

    2014-01-01

    Copper, iron, and gallium coordination chemistries of the new pentadentate bis-sulfonamide ligand 2,6-bis(N-2-pyridylmethylsulfonamido)-4-methylphenol (psmpH3) were investigated. PsmpH3 is capable of varying degrees of deprotonation, and notably, complexes containing the fully trideprotonated...

  2. Dinuclear first-row transition metal complexes with a naphthyridine-based dinucleating ligand.

    Davenport, T C; Tilley, T D

    2015-07-21

    A series of dinuclear and tetranuclear first-row transition metal complexes were synthesized with the dinucleating ligand 2,7-bis(di(2-pyridyl)fluoromethyl)-1,8-naphthyridine (DPFN). The coordination pocket and rigidity of the DPFN ligand enforces pseudo-octahedral geometries about the metal centers that contain chloro, hydroxo, and aqua bridging ligands forming a "diamond" shaped configuration with metal-metal distances varying from 2.7826(5) to 3.2410(11) Å. Each metal center in the dinuclear complexes has an additional open coordination site that accommodates terminal ligands in a syn geometry of particular interest in catalyst design. The complexes are characterized by electronic spectroscopy, electrochemistry and potentiometric titration methods. PMID:25420206

  3. Synthesis and Characterization of Porphyrin.Trisbenzimidazole Dinucleating Ligand and Its Heterodinuclear Complex as CcO Active Site Model

    LuWei-bing; WangCun-xin; DengLi-zhi; ZhouXiao-hai; RenJian-guo

    2003-01-01

    A new dinucleating ligand having two metalbinding sites has been designed and synthesized as model ligand for Cytochrome c Oxidase. The corresponding heterodinuclear complex, as an active site model of Cytochrome c Oxidase, consisting of a porphyrinatocobalt compound covalently linked with a copper derivative of tris(2-benzimidazylmethyl)amine bearing three benzimidazole ligands for copper was synthesized and spectroscopically characterized. The spectra data suggest that there are interactions between the cobalt and copper coordination units. The cobalt is coordinated to four central nitrogens of the porphyrin and the copper has pentacoordinate geometry with the four tertiary amine nitrogens and a chloride.

  4. Synthesis and Characterization of Porphyrin- Trisbenzimidazole Dinucleating Ligand and Its Heterodinuclear Complex as CcO Active Site Model

    Lu Wei-bing; Wang Cun-xin; Deng Li-zhi; Zhou Xiao-hai; Ren Jian-guo

    2003-01-01

    A new dinucleating ligand having two metal-binding sites has been designed and synthesized as model lig-and for Cytochrome c Oxidase. The corresponding heterodi-nuclear complex, as an active site model of Cytochrome c Oxi-dase, consisting of a porphyrinatocobalt compound covalently linked with a copper derivative of tris(2-benzimidazylmethyl)amine bearing three benzimidazole ligands for copper was syn-thesized and spectroscopically characterized. The spectra data suggest that there are interactions between the cobalt and copper coordination units. The cobalt is coordinated to four central nitrogens of the porphyrin and the copper has pentaeo-ordinate geometry with the four tertiary amine nitrogens and a chloride.

  5. The Synthesis of a New Macrocyclic Dinucleating Ligand,3,6,9,17,20, 23-Hexaaza-29,30-Dihydroxy-13,27- Dimethyl-Tricyclo [23,3,1,111,15]Triaconta-1(28),11,13, 15(30),25,26-Hexaene

    2000-01-01

    A new dinucleating 24-membered hexaazadiphenol macrocyclic ligand, 3,6,9,17,20, 23-hexaaza-29,30- dihydroxy-13,27-dimethyl-tricyclo [23, 3, 1, 111, 15] triaconta -1(28), 11,13, 15(30),25, 26-hexaene, BDBPH, was synthesized by the NaBH4 reduction of the Schiff-base obtained from the [2+2] condensation between diethylenetriamine and diformyl -p-cresol. The structure was characterized by elemental analysis, 1HNMR and FAB-MS. The synthetic method was also discussed.

  6. Heterobridged dinuclear, tetranuclear, dinuclear-based 1-d, and heptanuclear-based 1-D complexes of copper(II) derived from a dinucleating ligand: syntheses, structures, magnetochemistry, spectroscopy, and catecholase activity.

    Majumder, Samit; Sarkar, Sohini; Sasmal, Sujit; Sañudo, E Carolina; Mohanta, Sasankasekhar

    2011-08-15

    The work in this paper presents syntheses, characterization, crystal structures, variable-temperature/field magnetic properties, catecholase activity, and electrospray ionization mass spectroscopic (ESI-MS positive) study of five copper(II) complexes of composition [Cu(II)(2)L(μ(1,1)-NO(3))(H(2)O)(NO(3))](NO(3)) (1), [{Cu(II)(2)L(μ-OH)(H(2)O)}(μ-ClO(4))](n)(ClO(4))(n) (2), [{Cu(II)(2)L(NCS)(2)}(μ(1,3)-NCS)](n) (3), [{Cu(II)(2)L(μ(1,1)-N(3))(ClO(4))}(2)(μ(1,3)-N(3))(2)] (4), and [{Cu(II)(2)L(μ-OH)}{Cu(II)(2)L(μ(1,1)-N(3))}{Cu(II)(μ(1,1)-N(3))(4)(dmf)}{Cu(II)(2)(μ(1,1)-N(3))(2)(N(3))(4)}](n)·ndmf (5), derived from a new compartmental ligand 2,6-bis[N-(2-pyridylethyl)formidoyl]-4-ethylphenol, which is the 1:2 condensation product of 4-ethyl-2,6-diformylphenol and 2-(2-aminoethyl)pyridine. The title compounds are either of the following nuclearities/topologies: dinuclear (1), dinuclear-based one-dimensional (2 and 3), tetranuclear (4), and heptanuclear-based one-dimensional (5). The bridging moieties in 1-5 are as follows: μ-phenoxo-μ(1,1)-nitrate (1), μ-phenoxo-μ-hydroxo and μ-perchlorate (2), μ-phenoxo and μ(1,3)-thiocyanate (3), μ-phenoxo-μ(1,1)-azide and μ(1,3)-azide (4), μ-phenoxo-μ-hydroxo, μ-phenoxo-μ(1,1)-azide, and μ(1,1)-azide (5). All the five compounds exhibit overall antiferromagnetic interaction. The J values in 1-4 have been determined (-135 cm(-1) for 1, -298 cm(-1) for 2, -105 cm(-1) for 3, -119.5 cm(-1) for 4). The pairwise interactions in 5 have been evaluated qualitatively to result in S(T) = 3/2 spin ground state, which has been verified by magnetization experiment. Utilizing 3,5-di-tert-butyl catechol (3,5-DTBCH(2)) as the substrate, catecholase activity of all the five complexes have been checked. While 1 and 3 are inactive, complexes 2, 4, and 5 show catecholase activity with turn over numbers 39 h(-1) (for 2), 40 h(-1) (for 4), and 48 h(-1) (for 5) in dmf and 167 h(-1) (for 2) and 215 h(-1) (for 4) in acetonitrile

  7. Synthesis and electronic properties of dinucleic octaethylporphyrin (OEP derivatives spaced with p-phenylene group [OEP-(p-Phenn-OEP].

    Naoto Hayashi et al

    2007-01-01

    Full Text Available The dinucleic octaethylporphyrin (OEP derivatives described as OEP-(p-Phenn-OEP (n=1–4 were synthesized, in each of which the porphyrin ring is spaced with p-phenylene group. Their electronic properties were studied, as compared with those of the corresponding dihexylbithiophene (DHBTh derivatives with head-to-head (HH and tail-to-tail (TT orientations. It proves that OEP-(p-Phenn-OEP possesses an in-between feature of OEP-(HH-DHBThn-OEP and OEP-(TT-DHBThn-OEP in electronic properties.

  8. Design, synthesis and physico-chemical investigation of a dinuclear zinc(II) complex with a novel ‘end-off’ compartmental ligand

    Anil D Naik; Vidyanand K Revankar

    2001-08-01

    A novel dinucleating pentadentate Schiff base, resulting from the condensation of 2,6-diformyl--cresol and N-methyl-indolyl-3-thiohydrazide, and its Zn complex have been prepared and characterized on the basis of elemental analysis, IR, UV-Visible, 1H NMR and 13C NMR studies. The ligand is acyclic and consists of a phenolate head unit, with two inbuilt azomethine shoulders and two indole thiohydrazide arms forming SNONS coordinating sites. NMR and IR spectral studies show that the ligand exists in thioketo form. Each Zn ion in the dinuclear core is in tetrahedral environment with endogenous phenolate bridging and exogenous acetate bridging. The zinc complex in DMF exhibits fluorescence.

  9. Ylide Ligands

    Esteban P. Urriolabeitia

    2010-01-01

    The use of ylides of P, N, As, or S as ligands toward transition metals is still a very active research area in organometallic chemistry. This fact is mainly due to the nucleophilic character of the ylides and to their particular bonding properties and coordination modes. They can behave as monodentate or bidentate chelate or bridging species, they can be used as chiral auxiliary reagents, and they are interesting reaction intermediates or useful starting materials in a wide ...

  10. Handling ligands with Coot

    Debreczeni, Judit É.; Emsley, Paul

    2012-01-01

    Coot is a molecular-graphics application primarily aimed to assist in model building and validation of biological macromolecules. Recently, tools have been added to work with small molecules. The newly incorporated tools for the manipulation and validation of ligands include interaction with PRODRG, subgraph isomorphism-based tools, representation of ligand chemistry, ligand fitting and analysis, and are described here.

  11. Metal-ligand cooperation.

    Khusnutdinova, Julia R; Milstein, David

    2015-10-12

    Metal-ligand cooperation (MLC) has become an important concept in catalysis by transition metal complexes both in synthetic and biological systems. MLC implies that both the metal and the ligand are directly involved in bond activation processes, by contrast to "classical" transition metal catalysis where the ligand (e.g. phosphine) acts as a spectator, while all key transformations occur at the metal center. In this Review, we will discuss examples of MLC in which 1) both the metal and the ligand are chemically modified during bond activation and 2) bond activation results in immediate changes in the 1st coordination sphere involving the cooperating ligand, even if the reactive center at the ligand is not directly bound to the metal (e.g. via tautomerization). The role of MLC in enabling effective catalysis as well as in catalyst deactivation reactions will be discussed. PMID:26436516

  12. Ligand modeling and design

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  13. Ligand modeling and design

    Hay, B. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used tin applications for the cost-effective removal of specific radionuclides from nuclear waste streams.

  14. Glutamate receptor ligands

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea; Bräuner-Osborne, Hans; Stensbøl, Tine B; Nielsen, Birgitte; Karla, Rolf; Santi, Flavio; Krogsgaard-Larsen, Povl; Madsen, Ulf

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  15. AMPA receptor ligands

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    polyamines are known to modulate the function of these receptors in vivo. In this study, recent developments in the medicinal chemistry of polyamine-based ligands are given, particularly focusing on the use of solid-phase synthesis (SPS) as a tool for the facile generation of libraries of polyamine toxin...

  16. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    Von Dreele, Robert B.

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  17. Ligand-Receptor Interactions

    Bongrand, Pierre

    2008-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  18. Radiobiology with DNA ligands

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76Br-, 123I-, and 221At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  19. Imidazoline receptors ligands

    Agbaba Danica

    2012-01-01

    Full Text Available Extensive biochemical and pharmacological studies have determined three different subtypes of imidazoline receptors: I1-imidazoline receptors (I1-IR involved in central inhibition of sympathicus that produce hypotensive effect; I2-imidazoline receptors (I2-IR modulate monoamine oxidase B activity (MAO-B; I3-imidazoline receptors (I3-IR regulate insulin secretion from pancreatic β-cells. Therefore, the I1/I2/I3 imidazoline receptors are selected as new, interesting targets for drug design and discovery. Novel selective I1/I2/I3 agonists and antagonists have been recently developed. In the present review, we provide a brief update to the field of imidazoline research, highlighting some of the chemical diversity and progress made in the 2D-QSAR, 3D-QSAR and quantitative pharmacophore development studies of I1-IR and I2-IR imidazoline receptor ligands. Theoretical studies of I3-IR ligands are not yet performed because of insufficient number of synthesized I3-IR ligands.

  20. Molecular path for ligand search

    Tao Lu; Yuan Yuan Qiao; Pan Wen Shen

    2011-01-01

    A ligand is a small molecule bind to several residues of a receptor. We adapt the concept of molecular path for effective ligand search with its contacting residues. Additionally, we allow wild type definitions on atoms and bonds of molecular paths for fuzzy algorithms on structural match. We choose hydrogen bond interactions to characterize the binding mode of a ligand by several proper molecular paths and use them to query the deposited ligands in PDBe that interact with their residues in the same way. Expression of molecular path and format of database entries are described with examples. Our molecular path provides a new approach to explore the ligand-receptor interactions and to provide structural framework reference on new ligand design.

  1. Macrocyclic G-quadruplex ligands

    Nielsen, M C; Ulven, Trond

    2010-01-01

    G-quadruplex stabilizing compounds have recently received increased interest due to their potential application as anticancer therapeutics. A significant number of structurally diverse G-quadruplex ligands have been developed. Some of the most potent and selective ligands currently known are...... macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  2. Released ligand fluoroimmunoassay

    Radioimmunoassay (RIA) is one of the most sensitive and specific methods for analysis of proteins, drugs and other substances commonly found in biological fluids. Because of the limited stability and problems in handling radioisotopes (particularly 125I), there has been a continuous effort in recent years to develop non-isotopic immunoassays. Fluoroimmunoassay is one of the more promising alternatives to RIA, but has relatively low sensitivity due to background fluorescence from other substances in biological fluids. The authors have proposed an alternative type of fluoroimmunoassay, released ligand fluoroimmunoassay (RLFIA), wherein the fluorophore is released from the analyte and analyzed separately, thus reducing the problems of background fluorescence. 1-(4-(3-(2,3-dihydroxy-1-carboxyethyl))-phenyl)-3-(3-(7-diethylamino-4-methylcoumarinyl)) thiourea (IX), a fluorescent coumarin derivative with a periodate cleavable vic-glycol linkage, was synthesized and employed to demonstrate the principle of RLFIA. The principle of the RLFIA was tested by comparison with a commercially available kit Immuno-Fluor IgG Assay. Because of the lower quantum yield of the fluorophore used, the sensitivity of the resulting RLFIA was only one tenth that of the commercial kit. As an outgrowth of this project, a series of analogs of compound IX, having electron donating and withdrawing groups at the phenyl ring, were synthesized in order to study the effect of substituent on fluorescence yield. An interactive computer graphics system, Chemical Structure Drawing 2-Dimensional (CSD2D), developed by the author mainly for the generation of publication quality structure drawings is also described

  3. Validity of Ligand Efficiency Metrics

    Murray, Christopher W; Erlanson, Daniel A.; Hopkins, Andrew L.; Keserü, György M; Leeson, Paul D.; Rees, David C.; Reynolds, Charles H.; Richmond, Nicola J.

    2014-01-01

    A recent viewpoint article (Improving the plausibility of success with inefficient metrics. ACS Med. Chem. Lett.2014, 5, 2–5) argued that the standard definition of ligand efficiency (LE) is mathematically invalid. In this viewpoint, we address this criticism and show categorically that the definition of LE is mathematically valid. LE and other metrics such as lipophilic ligand efficiency (LLE) can be useful during the multiparameter optimization challenge faced by med...

  4. Nutraceuticals as Ligands of PPARγ

    Meera Penumetcha; Nalini Santanam

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that respond to several exogenous and endogenous ligands by modulating genes related to lipid, glucose, and insulin homeostasis. PPARγ, expressed in adipose tissue and liver, regulates lipid storage and glucose metabolism and is the target of type 2 diabetes drugs, thiazolidinediones (TZDs). Due to high levels of toxicity associated with the first generation TZDs, troglitazone (Rezulin), rosiglitazone (...

  5. Ligand Identification Scoring Algorithm (LISA)

    Zheng, Zheng; Merz, Kenneth M.

    2011-01-01

    A central problem in de novo drug design is determining the binding affinity of a ligand with a receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification Scoring Algorithm), uses an empirical scoring function to describe the binding free energy. Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen bonding, desolvation effects and metal chelation to model the dissociation equilibrium constants using a linear model. Atom types have been introduced to differentiate the parameters for VDW, H-bonding interactions and metal chelation between different atom pairs. A training set of 492 protein-ligand complexes was selected for the fitting process. Different test sets have been examined to evaluate its ability to predict experimentally measured binding affinities. By comparing with other well known scoring functions, the results show that LISA has advantages over many existing scoring functions in simulating protein-ligand binding affinity, especially metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to demonstrate that the energy terms in LISA are well designed and do not require extra cross terms. PMID:21561101

  6. Visualization of Metal-to-Ligand and Ligand-to-Ligand Charge Transfer in Metal-Ligand Complexes

    Yong Ding; Jian-xiu Guo; Xiang-si Wang; Sha-sha Liu; Feng-cai Ma

    2009-01-01

    Three methods including the atomic resolved density of state, charge difference density, and the transition density matrix are used to visualize metal to ligand charge transfer (MLCT) in ruthenium(Ⅱ) ammine complex. The atomic resolved density of state shows that there is density of Ru on the HOMOs. All the density is localized on the ammine, which reveals that the excited electrons in the Ru complex are delocalized over the ammine ligand. The charge difference density shows that all the holes are localized on the Ru and the electrons on the ammine. The localization explains the MLCT on excitation. The transition density matrix shows that there is electron-hole coherence between Ru and ammine. These methods are also used to examine the MLCT in Os(bpy)(p0p)Cl ("Osp0p"; bpy=2,2'-bipyridyl; p0p=4,4'-bipyridyl) and the ligand-to-ligand charge transfer (LLCT) in Alq3. The calculated results show that these methods are powerful to examine MLCT and LLCT in the metal-ligand system.

  7. Why mercury prefers soft ligands

    Riccardi, Demian M [ORNL; Guo, Hao-Bo [ORNL; Gu, Baohua [ORNL; Parks, Jerry M [ORNL; Summers, Anne [University of Georgia, Athens, GA; Miller, S [University of California, San Francisco; Liang, Liyuan [ORNL; Smith, Jeremy C [ORNL

    2013-01-01

    Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

  8. Polypharmacology of dopamine receptor ligands.

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  9. Crystallization of protein–ligand complexes

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  10. Ligand chain length conveys thermochromism.

    Ganguly, Mainak; Panigrahi, Sudipa; Chandrakumar, K R S; Sasmal, Anup Kumar; Pal, Anjali; Pal, Tarasankar

    2014-08-14

    Thermochromic properties of a series of non-ionic copper compounds have been reported. Herein, we demonstrate that Cu(II) ion with straight-chain primary amine (A) and alpha-linolenic (fatty acid, AL) co-jointly exhibit thermochromic properties. In the current case, we determined that thermochromism becomes ligand chain length-dependent and at least one of the ligands (A or AL) must be long chain. Thermochromism is attributed to a balanced competition between the fatty acids and amines for the copper(II) centre. The structure-property relationship of the non-ionic copper compounds Cu(AL)2(A)2 has been substantiated by various physical measurements along with detailed theoretical studies based on time-dependent density functional theory. It is presumed from our results that the compound would be a useful material for temperature-sensor applications. PMID:24943491

  11. Presentation of Ligands on Hydroxylapatite

    Chu, Barbara C. F.; Orgel, Leslie E.

    1997-01-01

    Conjugates of biotin with the decamer of glutamic acid (glu(sub 10)) and the trimer of D,L-2-amino-5-phosphonovaleric acid (I) have been synthesized, and it has been shown that they mediate the binding of avidin to hydroxylapatite. In a similar way a conjugate of methotrexate with glu(sub 10) mediates the binding of dihydrofolate reductase to the mineral. The presentation of ligands on the hydroxylapatite component of bone may find applications in clinical medicine.

  12. Privileged chiral ligands and catalysts

    Zhou, Qi-Lin

    2011-01-01

    This ultimate ""must have"" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these ""privileged catalysts"". A novel concept that gives readers a much deeper insight into the topic.

  13. Tumor targeting via integrin ligands

    HorstKessler

    2013-08-01

    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  14. Radioiodinated ligands for dopamine receptors

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [123I]TISCH for D1 dopamine receptors; [123I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [123I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  15. Ligand placement based on prior structures: the guided ligand-replacement method

    Klei, Herbert E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545-0001 (United States); Baldwin, Eric T. [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Natural Discovery LLC, Princeton, NJ 08542-0096 (United States); Pokross, Matt; Posy, Shana [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California at Berkeley, Berkeley, CA 94720-1762 (United States)

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods for modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR

  16. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  17. Phenotypic spandrel: absolute discrimination and ligand antagonism

    François, Paul; Johnson, Kyle A.; Saunders, Laura N.

    2015-01-01

    We consider the general problem of absolute discrimination between categories of ligands irrespective of their concentration. An instance of this problem is immune discrimination between self and not-self. We connect this problem to biochemical adaptation, and establish that ligand antagonism - the ability of sub threshold ligands to negatively impact response - is a necessary consequence of absolute discrimination.Thus antagonism constitutes a "phenotypic spandrel": a phenotype existing as a...

  18. Ruthenium Cumulenylidene Complexes Bearing Heteroscorpionate Ligands

    Strinitz, Frank

    2014-01-01

    In previous work of the BURZLAFF group, the design of suitable N,N,O ligands for a wide variety of applications ranging from catalysis to bioinorganic model compounds has been extensively investigated. Especially the methyl substituted bis(3,5-dimethylpyrazol-1-yl) acetate (bdmpza) ligand has shown manifold chemistry, comparable to the anionic cyclopentadienyl (Cp) and hydridotris(pyrazol-1-yl)borato (Tp) ligand. In the first part of this thesis the new tricarbonylmanganese(I) complexes be...

  19. Clinical Use of PPARγ Ligands in Cancer

    Jennifer L. Hatton

    2008-01-01

    Full Text Available The role of PPARγ in adipocyte differentiation has fueled intense interest in the function of this steroid nuclear receptor for regulation of malignant cell growth and differentiation. Given the antiproliferative and differentiating effects of PPARγ ligands on liposarcoma cells, investigation of PPARγ expression and ligand activation in other solid tumors such as breast, colon, and prostate cancers ensued. The anticancer effects of PPARγ ligands in cell culture and rodent models of a multitude of tumor types suggest broad applicability of these agents to cancer therapy. This review focuses on the clinical use of PPARγ ligands, specifically the thiazolidinediones, for the treatment and prevention of cancer.

  20. Development of immobilized ligands for actinide separations

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined

  1. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    residue responded differently to glycine and strychnine, thus underlining the importance of loop C in ligand discrimination. These results provide an important step toward mapping the domains crucial for ligand discrimination in the ligand-binding domain of glycine receptors and possibly other Cys loop...

  2. Macrocyclic ligands for uranium complexation

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd0 chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs

  3. Synthesis and characterization of mixed ligand chiral nanoclusters

    Güven, Zekiye Pelin; Guven, Zekiye Pelin; Üstbaş, Burçin; Ustbas, Burcin; Harkness, Kellen M.; Coşkun, Hikmet; Coskun, Hikmet; Joshi, Chakra P.; Besong, Tabot M. D.; Stellacci, Francesco; Bakr, Osman M.; Akbulut, Özge; Akbulut, Ozge

    2015-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. The ratio of the ligands was changed to track the formation of these clusters. While the chiral ligand lead to nanoparticles, Presence of the achiral ligand induced the formation of nanoclusters with chiral properties.

  4. Ligand-receptor Interactions by NMR Spectroscopy

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  5. Magnetic nanoparticles linked to a ligand

    Penadés, Soledad; Martín-Lomas, Manuel; Martínez de la Fuente, Jesús; Rademacher, Thomas W.

    2006-01-01

    Materials and methods for making small magnetic particles, e.g. clusters of metal atoms, which can be employed as a substrate for immobilising a plurality of ligands. Also disclosed are uses of these magnetic nanoparticles as therapeutic and diagnostic reagents, and in the study of ligand-mediated interactions.

  6. Electrochemistry of complex combinations with organic ligands

    The electrochemical behaviour of Cd(2), Ni(2), Fe(2), Fe(3), In(3), Pb(2) complexes with organic bi-and polydentate ligands have been studied by methods of classical and alternating current polarography. Cadmium and indium complexing depending on pH value and the nature of the ligands (bipyridyl isomers, phosphoric acid esters) is discussed

  7. Ligand sphere conversions in terminal carbide complexes

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.; Bendix, Jesper

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  8. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.

    Meslamani, Jamel; Li, Jiabo; Sutter, Jon; Stevens, Adrian; Bertrand, Hugues-Olivier; Rognan, Didier

    2012-04-23

    Ligand profiling is an emerging computational method for predicting the most likely targets of a bioactive compound and therefore anticipating adverse reactions, side effects and drug repurposing. A few encouraging successes have already been reported using ligand 2-D similarity searches and protein-ligand docking. The current study describes the use of receptor-ligand-derived pharmacophore searches as a tool to link ligands to putative targets. A database of 68,056 pharmacophores was first derived from 8,166 high-resolution protein-ligand complexes. In order to limit the number of queries, a maximum of 10 pharmacophores was generated for each complex according to their predicted selectivity. Pharmacophore search was compared to ligand-centric (2-D and 3-D similarity searches) and docking methods in profiling a set of 157 diverse ligands against a panel of 2,556 unique targets of known X-ray structure. As expected, ligand-based methods outperformed, in most of the cases, structure-based approaches in ranking the true targets among the top 1% scoring entries. However, we could identify ligands for which only a single method was successful. Receptor-ligand-based pharmacophore search is notably a fast and reliable alternative to docking when few ligand information is available for some targets. Overall, the present study suggests that a workflow using the best profiling method according to the protein-ligand context is the best strategy to follow. We notably present concrete guidelines for selecting the optimal computational method according to simple ligand and binding site properties. PMID:22480372

  9. Autocrine signal transmission with extracellular ligand degradation

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  10. Improving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand.

    Li, Linqing; Xu, Weiwei; Lü, Qiang

    2015-11-01

    Computational protein-ligand docking is of great importance in drug discovery and design. Conformational changes greatly affect the results of protein-ligand docking, especially when water molecules take part in mediating protein ligand interactions or when large conformational changes are observed in the receptor backbone interface. We have developed an improved protocol, SWRosettaLigand, based on the RosettaLigand protocol. This approach incorporates the flexibility of interfacial water molecules and modeling of the interface of the receptor into the original RosettaLigand. In a coarse sampling step, SWRosettaLigand pre-optimizes the initial position of the water molecules, docks the ligand to the receptor with explicit water molecules, and minimizes the predicted structure with water molecules. The receptor backbone interface is treated as a loop and perturbed and refined by kinematic closure, or cyclic coordinate descent algorithm, with the presence of the ligand. In two cross-docking test sets, it was identified that for 8 out of 14, and 16 out of 22, test instances, the top-ranked structures by SWRosettaLigand achieved better accuracy than other protocols. PMID:26515196

  11. Ligand Exchange Processes on Solvated Lithium Cations

    Pasgreta, Ewa Maria

    2007-01-01

    In this work the solvation process of Li+ ion, as well as solvent and ligand exchange reactions on Li+ ion were studied. Li+ ions possess interesting properties and like other alkali metal ions are known to form complexes with macrocyclic ligands called cryptands. In this summary, an overview over the insights gained in the factors that control the reactivity of Li+ complexes with respect to the solvent and cryptand properties is presented. Three main questions were addressed: • How does the ...

  12. Chemistry of Marine Ligands and Siderophores

    Vraspir, Julia M.; Butler, Alison

    2009-01-01

    Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cad...

  13. Fas ligand deficiency in HIV disease

    Sieg, Scott; Smith, Dawn; Yildirim, Zafer; Kaplan, David

    1997-01-01

    Apoptosis is postulated to be involved as an anti-viral immune mechanism by killing infected cells before viral replication has occurred. The Fas–Fas ligand interaction is a powerful regulator of T cell apoptosis and could potentially act as a potent anti-viral immune mechanism against T cell tropic virus such as human immunodeficiency virus (HIV). We investigated the status of Fas ligand in peripheral blood mononuclear cells (PBMCs) obtained from persons infected with HIV. We found that mono...

  14. Construction of dinuclear complexes using multidentate ligands

    This work details the synthesis of novel copper(I), copper(II), nickel(II) and zinc(II) dinuclear complexes. Attempts have been made to control the co-ordination architectures of the metal centres by using bis-bidentate and tridentate chelating N,S- and N-donor ligands to generate dinuclear systems. The ligands were both symmetrically and asymmetrically disubstituted pyridazine-based and pyridine-based ligands consisting of a mixture of N-only and mixed N,S-donors. The study using the pyridazine-based ligands continues previous research in our group using 3,6-bis disubstituted pyridazine-based ligands to form complexes with copper(l) and copper(II). The pyridazine-based ligands have been seen to be bis-bidentate upon co-ordination of copper. The pyridazine-based ligands could be envisaged to generate dinuclear complexes by directly bridging between two metal ions. This study involved the formation of copper(l), nickel(II) and zinc(II) complexes with these ligands. The structural properties of two particular complexes have been explored using X-ray crystallography and spectroscopic techniques. Pyridine-based ligands have also been used previously in our group as tridentate chelating ligands. They have been seen to form dinuclear complexes with copper(I) and copper(II) when reacted with an additional bridging ligand e.g. 4,4'-bipyridine. This provides an alternative method for generating dinuclear complexes. Chapter 1 presents an introduction to the area of supramolecular chemistry from which we can learn the principles of polymer formation and them 'in reverse' to generate discrete dinuclear systems. Chapter 2 details the synthesis of the pyridazine and pyridine-based ligands including a detailed nmr study of the ligands. Since the ligands were synthesised using cyclic thioamides as terminal groups it has been found that thiol-thione tautomerisation occurred during synthesis giving rise to two possible ligand conformations. The nmr study has been used to try and

  15. Visualizing ligand molecules in twilight electron density

    A software script is presented for facilitating the analysis and visual inspection of ligand molecules in the context of the electron-density maps calculated from experimental data associated with protein structures determined by X-ray crystallography. Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight//

  16. Designer TGFβ superfamily ligands with diversified functionality.

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  17. Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand

    DeLuca, Samuel; Khar, Karen; Meiler, Jens

    2015-01-01

    RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand) making it unfeasible for use in virtual High Throughput Screening (vHTS). To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial ‘low-resolution’ docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10–15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the ‘high-resolution’ full atom refinement step. PMID:26207742

  18. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  19. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  20. Organotellurium ligands - designing and complexation reactions

    Ajai K Singh

    2002-08-01

    A variety of tellurium ligands has been designed and studied for their complexation reactions in the last decade. Of these hybrid telluroethers, halotellurium ligands and polytellurides are the most notable ones. RTe- and polytelluride ions have also been used to design clusters. Ligation of ditelluroethers and several hybrid telluroethers is extensively studied in our laboratories. The ditelluroether ligand RTeCH2TeR (where R = 4-MeOC6H4) (1), similar to dppm [1,2-bis(diphenylphosphino) methane], has been synthesized in good yield (∼80 %) by reacting CHCl3 with RTe- (generated in situ by borohydride reduction of R2Te2). Iodine reacts with 1 to give tetra-iodo derivative, which has intermolecular Te$\\cdots$I interactions resulting in a macro structure containing rectangular Te-I$\\cdots$Te bridges. 1 readily forms four membered rings with Pd(II) and Ru(II). On the formation of this chelate ring, the signal in 125Te NMR spectra shifts significantly upfield (50-60 ppm). The bridging mode of 1 has been shown in [Ru(-cymene)Cl2](-1)[Ru(-cymene)Cl2]. The hybrid telluroether ligands explored are of the types (Te, S), (Te, N) and (Te, O). The tellurium donor site has strong trans influence, which is manifested more strongly in square planar complexes of palladium(II). The morpholine N-donor site has been found to have weaker donor characteristics in (Te, N) ligands than pyridine and alkylamine donor sites of analogous ligands. The singlet oxygen readily oxidises the coordinated Te. This oxidation follows first order kinetics. The complexation reaction of RuCl3.H2O with N-[2-(4-methoxyphenyltelluro)ethyl]phthalimide (2) results in a novel (Te, N, O)-heterocycle, Te-chloro,Te-anisyl-1a-aza-4-oxa-3-tellura-1H, 2H, 4aH-9 fluorenone. The (Te, O) ligands can be used as hemilabile ligands, the oxygen atom temporarily protects the vacant coordination site before the arrival of the substrate. The chelate shifts observed in 125Te NMR spectra of metal complexes of Te-ligands have

  1. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-09-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  2. A new class of PN3-pincer ligands for metal–ligand cooperative catalysis

    Li, Huaifeng

    2014-12-01

    Work on a new class of PN3-pincer ligands for metal-ligand cooperative catalysis is reviewed. While the field of the pyridine-based PN3-transition metal pincer complexes is still relatively young, many important applications of these complexes have already emerged. In several cases, the PN3-pincer complexes for metal-ligand cooperative catalysis result in significantly improved or unprecedented activities. The synthesis and coordination chemistry of PN3-pincer ligands are briefly summarized first to cover the synthetic routes for their preparation, followed by a focus review on their applications in catalysis. A specific emphasis is placed on the later section about the role of PN3-pincer ligands\\' dearomatization-rearomatization steps during the catalytic cycles. The mechanistic insights from density functional theory (DFT) calculations are also discussed.

  3. Impact of receptor clustering on ligand binding

    Caré Bertrand R

    2011-03-01

    Full Text Available Abstract Background Cellular response to changes in the concentration of different chemical species in the extracellular medium is induced by ligand binding to dedicated transmembrane receptors. Receptor density, distribution, and clustering may be key spatial features that influence effective and proper physical and biochemical cellular responses to many regulatory signals. Classical equations describing this kind of binding kinetics assume the distributions of interacting species to be homogeneous, neglecting by doing so the impact of clustering. As there is experimental evidence that receptors tend to group in clusters inside membrane domains, we investigated the effects of receptor clustering on cellular receptor ligand binding. Results We implemented a model of receptor binding using a Monte-Carlo algorithm to simulate ligand diffusion and binding. In some simple cases, analytic solutions for binding equilibrium of ligand on clusters of receptors are provided, and supported by simulation results. Our simulations show that the so-called "apparent" affinity of the ligand for the receptor decreases with clustering although the microscopic affinity remains constant. Conclusions Changing membrane receptors clustering could be a simple mechanism that allows cells to change and adapt its affinity/sensitivity toward a given stimulus.

  4. Ligand identification using electron-density map correlations

    An automated ligand-fitting procedure is applied to (Fo − Fc)exp(iϕc) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (Fo − Fc)exp(iϕc) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule

  5. Flexible Ligand Docking Using Differential Evolution

    Thomsen, René

    2003-01-01

    Molecular docking of biomolecules is becoming an increasingly important part in the process of developing new drugs, as well as searching compound databases for promising drug candidates. The docking of ligands to proteins can be formulated as an optimization problem where the task is to find the...... most favorable energetic conformation among the large space of possible protein-ligand complexes. Stochastic search methods, such as evolutionary algorithms (EAs), can be used to sample large search spaces effectively and is one of the preferred methods for flexible ligand docking. The differential...... evolution algorithm (DE) is applied to the docking problem using the AutoDock program. The introduced DockDE algorithm is compared with the Lamarckian GA (LGA) provided with AutoDock, and the DockEA previously found to outperform the LGA. The comparison is performed on a suite of six commonly used docking...

  6. Effects of PPARγ Ligands on Leukemia

    Yoko Tabe

    2012-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs and retinoic acid receptors (RARs, members of the nuclear receptor superfamily, are transcription factors that regulate a variety of important cellular functions. PPARs form heterodimers retinoid X receptor (RXR, an obligate heterodimeric partner for other nuclear receptors. Several novel links between retinoid metabolism and PPAR responses have been identified, and activation of PPAR/RXR expression has been shown to increase response to retinoids. PPARγ has emerged as a key regulator of cell growth and survival, whose activity is modulated by a number of synthetic and natural ligands. While clinical trials in cancer patients with thiazolidinediones (TZD have been disappointing, novel structurally different PPARγ ligands, including triterpenoids, have entered clinical arena as therapeutic agents for epithelial and hematopoietic malignancies. Here we shall review the antitumor advances of PPARγ, alone and in combination with RARα ligands in control of cell proliferation, differentiation, and apoptosis and their potential therapeutic applications in hematological malignancies.

  7. Flexible Ligand Docking Using Evolutionary Algorithms

    Thomsen, Rene

    2003-01-01

    search spaces effectively and is one of the commonly used methods for flexible ligand docking. During the last decade, several EAs using different variation operators have been introduced, such as the ones provided with the AutoDock program. In this paper we evaluate the performance of different EA......The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein–ligand complexes. Stochastic search methods such as evolutionary algorithms (EAs) can be used to sample large...... settings such as choice of variation operators, population size, and usage of local search. The comparison is performed on a suite of six docking problems previously used to evaluate the performance of search algorithms provided with the AutoDock program package. The results from our investigation confirm...

  8. Supramolecular architectures constructed using angular bipyridyl ligands

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO3)2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO3)2 and Zn(NO3)2. Whereas Zn(NO3)2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO3)2, including the first example of a doubly parallel interpenetrated 4.82 net. 4,7-phenanthroline, was reacted with various metal(ll) nitrates as well as cobalt(ll) and copper(ll) halides. The ability of 4,7-phenanthroline to act as both a N-donor ligand and a hydrogen bond acceptor has been discussed. Reactions of CuSCN with pyrimidine yield an unusual three-dimensional structure in which polymeric propagation is not a result of ligand bridging. The reaction of CuSCN with dpt yielded structural supramolecular isomers. (author)

  9. The first scorpionate ligand based on diazaphosphole.

    Mlateček, Martin; Dostál, Libor; Růžičková, Zdeňka; Honzíček, Jan; Holubová, Jana; Erben, Milan

    2015-12-14

    The reaction of PhBCl2 with 1H-1,2,4-λ(3)-diazaphosphole in the presence of NEt3 gives a new scorpionate ligand, phenyl-tris(1,2,4-diazaphospholyl)borate (PhTdap). The coordination behaviour of this ligand toward transition and non-transition metals has been comprehensively studied. In the thallium(I) complex, Tl(PhTdap), κ(2)-N,N bonding supported with intramolecular η(3)-phenyl coordination has been observed in the solid state. Tl(PhTdap) also shows unusual intermolecular π-interactions between five-membered diazaphosphole rings and the thallium atom giving infinite molecular chains in the crystal. In the square planar complex [Pd(C,N-C6H4CH2NMe2)(PhTdap)], κ(2)-bonded scorpionate has been detected in both solution and in the solid state. For other studied compounds with the central metal ion Ti(IV), Mo(II), Mn(I), Fe(II), Ru(II), Co(II), Co(III), Ni(II) and Cd(II), the κ(3)-N,N,N coordination pattern was observed. Electronic properties of PhTdap and its ligand-field strength were elucidated from UV-Vis spectra of transition-metal species. The CH/P replacement on going from tris(pyrazolyl)borate to the ligand PhTdap causes a slight increase in electronic density rendered to the central metal atom. The following order of ligand-field strength has been established: HB(3,5-Me2pz)3 PhB(pz)3 PhB(1,2,4-triazolyl) < PhTdap. The crystal structures of ten metal complexes bearing the new ligand are reported. The possibility of PhTdap coordination through the phosphorus atom is also briefly discussed. PMID:26537349

  10. Cationic ruthenium alkylidene catalysts bearing phosphine ligands

    Endo, Koji; Grubbs, Robert H.

    2016-01-01

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bear-ing bulky phosphine ligands. Simple ligand exchange using silver(I) salts of non-coordinating or weakly coordinating anions pro-vided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported...

  11. Ligand Intermediates in Metal-Catalyzed Reactions

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  12. Self-assembly and photophysical properties of lanthanide dinuclear triple-helical complexes

    Piguet, C.; Bernardinelli, G.; Williams, A.F. (Univ. of Geneva (Switzerland)); Buenzli, J.C.G. (Univ. of Lausanne (Switzerland)); Hopfgartner, G. (Hoffmann-La Roche, Basel (Switzerland))

    1993-09-08

    The dinucleating ligand bis[1-methyl-2-(6[prime]-[1[double prime]-(3,5-dimethoxybenzyl)benzimidazol-2[double prime]-yl]pyrid-2[prime]-yl)benzimidazol-5-yl]methane (L) reacts with lanthanide perchlorates to give dinuclear 2:3 complexes [Ln[sub 2](L)[sub 3

  13. Ligand iron catalysts for selective hydrogenation

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  14. Circulating amounts of osteoprotegerin and RANK ligand

    Abrahamsen, Bo; Hjelmborg, Jacob Vb; Kostenuik, Paul;

    2005-01-01

    UNLABELLED: Osteoprotegerin (OPG) is a circulating receptor that inhibits osteoclastogenesis by binding to RANK ligand (RANKL). OPG knock-out animals develop severe osteoporosis. Treatment with OPG lowers bone resorption and increases BMD. OPG production is influenced by a wide range of hormones ...

  15. Supramolecular architectures constructed using angular bipyridyl ligands

    Barnett, S A

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO sub 3) sub 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO sub 3) sub 2 and Zn(NO sub 3) sub 2. Whereas Zn(NO sub 3) sub 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO sub 3) sub 2 , including the first example of a doubly parallel interpenetrated 4.8 sup...

  16. Constitutive and ligand-induced TCR degradation

    von Essen, Marina; Bonefeld, Charlotte Menné; Siersma, Volkert;

    2004-01-01

    divergent models for TCR down-regulation and degradation have been suggested. The aims of this study were to determine the rate constants for constitutive and ligand-induced TCR degradation and to determine whether the TCR subunits segregate or are processed as an intact unit during TCR down-regulation and...

  17. Identification of ligands for bacterial sensor proteins.

    Fernández, Matilde; Morel, Bertrand; Corral-Lugo, Andrés; Rico-Jiménez, Miriam; Martín-Mora, David; López-Farfán, Diana; Reyes-Darias, José Antonio; Matilla, Miguel A; Ortega, Álvaro; Krell, Tino

    2016-02-01

    Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria. PMID:26511375

  18. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  19. Substrate coated with receptor and labelled ligand for assays

    Improvements in the procedures for assaying ligands are described. The assay consists of a polystyrene tube on which receptors are present for both the ligand to be assayed and a radioactively labelled form of the ligand. The receptors on the bottom portion of the tube are also coated with labelled ligands, thus eliminating the necessity for separate addition of the labelled ligand and sample during an assay. Examples of ligands to which this method is applicable include polypeptides, nucleotides, nucleosides and proteins. Specific examples are given in which the ligand to be assayed is digoxin, the labelled form of the ligand is 3-0-succinyl digoxyigenin tyrosine (125I) and the receptor is digoxin antibody. (U.K.)

  20. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function. PMID:27097887

  1. Ligand binding was acquired during evolution of nuclear receptors

    Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent

    1997-01-01

    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organism...

  2. Leaching behavior of butanedionedioxime as gold ligand

    2000-01-01

    Butanedionedioxime, a small organic compound with low-toxicity and good chemical stability, has been proposed as an effective gold ligand in gold extraction. The result of experiment shows that: 1) highly effective gold lixiviantcan be composed of butanedionedioxime (BDM) with many oxidants, especially potassium permanganate; 2)in the leaching system of BD M- K M nO4 the suitable Ox/Lig(ratio of oxidants to gold ligands) tange is 0.20 ~ 0. 50, optimally 0.25 ~0.45 at the pH range of 7 ~ 11; 3) BDM-KMnO4 extraction of gold from an oxide ore is similar to cyanide(cyanide-O2)extraction, but the leaching rate of gold by BDM-KMnO4 is faster than that by cyanide-O2; 4) gold may readily be recov-ered by carbon adsorption and zinc precipitation

  3. Targeting Selectins and Their Ligands in Cancer.

    Natoni, Alessandro; Macauley, Matthew S; O'Dwyer, Michael E

    2016-01-01

    Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids has been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination, leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases (STs). Differentially, humans express twenty different STs in a tissue-specific manner, each of which catalyzes the attachment of sialic acids via different glycosidic linkages (α2-3, α2-6, or α2-8) to the underlying glycan chain. One important mechanism whereby overexpression of STs contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural isomer sialyl-Lewis A, which are synthesized by the combined action of alpha α1-3-fucosyltransferases, α2-3-sialyltransferases, β1-4-galactosyltranferases, and N-acetyl-β-glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these STs have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular STs, could be beneficial to many cancer patients. Potential strategies include ST inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of ST inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical development. PMID:27148485

  4. Polyfluoroalkylated tripyrazolylmethane ligands: Synthesis and complexes

    Skalická, V.; Rybáčková, M.; Skalický, M.; Kvíčalová, Magdalena; Cvačka, Josef; Březinová, Anna; Čejka, J.; Kvíčala, J.

    2011-01-01

    Roč. 132, č. 7 (2011), s. 434-440. ISSN 0022-1139 R&D Projects: GA MŠk ME 857; GA MŠk ME09114 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40550506 Keywords : tripyrazolylmethane * Tpm * tripyrazolylethanol * fluorinated * perfluoroalkylation * ligand Subject RIV: CC - Organic Chemistry Impact factor: 2.033, year: 2011

  5. Selective oxoanion separation using a tripodal ligand

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  6. Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy.

    van der Westhuizen, Emma T; Breton, Billy; Christopoulos, Arthur; Bouvier, Michel

    2014-03-01

    The concepts of functional selectivity and ligand bias are becoming increasingly appreciated in modern drug discovery programs, necessitating more informed approaches to compound classification and, ultimately, therapeutic candidate selection. Using the β2-adrenergic receptor as a model, we present a proof of concept study that assessed the bias of 19 β-adrenergic ligands, including many clinically used compounds, across four pathways [cAMP production, extracellular signal-regulated kinase 1/2 (ERK1/2) activation, calcium mobilization, and receptor endocytosis] in the same cell background (human embryonic kidney 293S cells). Efficacy-based clustering placed the ligands into five distinct groups with respect to signaling signatures. In some cases, apparent functional selectivity originated from off-target effects on other endogenously expressed adrenergic receptors, highlighting the importance of thoroughly assessing selectivity of the responses before concluding receptor-specific ligand-biased signaling. Eliminating the nonselective compounds did not change the clustering of the 10 remaining compounds. Some ligands exhibited large differences in potency for the different pathways, suggesting that the nature of the receptor-effector complexes influences the relative affinity of the compounds for specific receptor conformations. Calculation of relative effectiveness (within pathway) and bias factors (between pathways) for each of the compounds, using an operational model of agonism, revealed a global signaling signature for all of the compounds relative to isoproterenol. Most compounds were biased toward ERK1/2 activation over the other pathways, consistent with the notion that many proximal effectors converge on this pathway. Overall, we demonstrate a higher level of ligand texture than previously anticipated, opening perspectives for the establishment of pluridimensional correlations between signaling profiles, drug classification, therapeutic efficacy, and

  7. Landscape of protein-small ligand binding modes.

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  8. Scorpionates the coordination chemistry of polypyrazolylborate ligands

    Trofimenko, Swiatoslaw

    1999-01-01

    This book deals with polypyrazolylborates (scorpionates), a class of ligands known since 1966, but becoming rapidly popular with inorganic, organometallic and coordination chemists since 1986, because of their versatility and user-friendliness. They can be readily modified sterically and electronically through appropriate substitution on the pyrazole ring and on boron, and have led to a number of firsts in coordination chemistry (first stable CuCO complex, first monomeric MgR complex, and many other such firsts). Their denticity can range from two to four, their "Bite" can be adjusted, and add

  9. Transmutable nanoparticles with reconfigurable surface ligands

    Kim, Youngeun; Macfarlane, Robert J.; Jones, Matthew R.; Mirkin, Chad A.

    2016-02-01

    Unlike conventional inorganic materials, biological systems are exquisitely adapted to respond to their surroundings. Proteins and other biological molecules can process a complex set of chemical binding events as informational inputs and respond accordingly via a change in structure and function. We applied this principle to the design and synthesis of inorganic materials by preparing nanoparticles with reconfigurable surface ligands, where interparticle bonding can be programmed in response to specific chemical cues in a dynamic manner. As a result, a nascent set of “transmutable nanoparticles” can be driven to crystallize along multiple thermodynamic trajectories, resulting in rational control over the phase and time evolution of nanoparticle-based matter.

  10. Metal mediated template synthesis of ligands

    Costisor, Otilia

    2004-01-01

    This book surveys the relatively new area of the synthesis of organic ligands when metal ions act as a template. In the last fifty years this field has undergone an explosive development, marked by a great amount of literature. The material in the book has been arranged according to the type of chemical reaction involved. In this frame, the basic principles of metal template reactions and the shape of the molecules are considered. Designed to satisfy the demands of students, young researchers doing their PhDs, and those working in the field of coordination chemistry, the book details the role

  11. Tungsten acetonitrile complexes, containing nitrosyl ligand

    Synthesized are tungsten acetonitrile derivatives, containing nitrosyl ligand. In a course of boiling W(CO)4(NO)I-(1) at the excess of acetonitrile there is formed bis-(acetonitrile)-dicarbonilenitrosyltungsteniod-(2): W(CO)4(NO)I+2CH3CN → 2CO+(CH3CN)2W(CO)2(NO)I-(2). Investigation in reactionary ability of compound (2) is carried out. It is shown that at the reaction of acetonitrile complex (2) with two equivalents of triphenylphosphine depending on reaction conditions formed is a number of products

  12. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  13. Mixed ligand oxovanadium(IV) complexes with salicylic acid and N,N-bidentate ligands

    Two mixed-ligand oxovanadium(IV) complexes VO(A)(B) [where H2A=salicylic acid and B=2,2'-bipyridine or 1,10-phenanthroline (hereafter, bipy and phen respectively)] have been synthesized and characterized by magnetic moment and spectral (IR, UV/VIS and EPR) data. The A2- ion acts as a bidentate dinegative ligand while B ligands acts as a neutral bidentate. The magnetic susceptibility values indicate the existence of a small amount of antiferromagnetic interaction. The vanadium atoms in the complexes are hexacoordinated and the coordination sphere is of the type [VO(OO)(NN)], where O atoms are of oxo, carboxylic and phenolic type and N atoms are of pyridine type. The sixth coordination site is occupied by phenolic oxygen of the neighbouring molecule forming a bridge. The vv=o confirms the hexacoordination. All the complexes have dxy1 type axial EPR spectra and they exhibit two ligand field transitions at 740 and 440 nm. (author)

  14. Dynamic Presentation of Immobilized Ligands Regulated through Biomolecular Recognition

    Liu, Bo; Liu, Yang; Riesberg, Jeremiah J.; Shen, Wei

    2010-01-01

    To mimic the dynamic regulation of signaling ligands immobilized on extracellular matrices or on the surfaces of neighboring cells for guidance of cell behavior and fate selection, we have harnessed biomolecular recognition in combination with polymer engineering to create dynamic surfaces on which the accessibility of immobilized ligands to cell surface receptors can be reversibly interconverted under physiological conditions. The cell-adhesive RGD peptide is chosen as a model ligand. RGD is...

  15. The Dynamics of Ligand Barrier Crossing inside the Acetylcholinesterase Gorge

    Bui, Jennifer M.; Henchman, Richard H.; McCammon, J. Andrew

    2003-01-01

    The dynamics of ligand movement through the constricted region of the acetylcholinesterase gorge is important in understanding how the ligand gains access to and is released from the active site of the enzyme. Molecular dynamics simulations of the simple ligand, tetramethylammonium, crossing this bottleneck region are conducted using umbrella potential sampling and activated flux techniques. The low potential of mean force obtained is consistent with the fast reaction rate of acetylcholineste...

  16. Quasielastic neutron scattering study of POSS ligand dynamics

    Jalarvo, Niina H [ORNL; Tyagi, Madhusudan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Crawford, Michael [DuPont Experimental Station

    2015-01-01

    Polyoligosilsesquioxanes are molecules having cage-like structures composed of silicon and oxygen. These molecules can have a wide variety of functional ligands attached to them. Depending on the nature of the ligand, interesting properties and applications are found. In this work we present results from quasielastic neutron scattering measurements of four different POSS molecules that illustrate the presence of strong coupling between the ligand dynamics and the POSS crystal structures.

  17. Rapid flexible docking using a stochastic rotamer library of ligands

    Ding, Feng; Yin, Shuangye; Dokholyan, Nikolay V.

    2010-01-01

    Existing flexible docking approaches model the ligand and receptor flexibility either separately or in a loosely-coupled manner, which captures the conformational changes inefficiently. Here, we propose a flexible docking approach, MedusaDock, which models both ligand and receptor flexibility simultaneously with sets of discrete rotamers. We develop an algorithm to build the ligand rotamer library “on-the-fly” during docking simulations. MedusaDock benchmarks demonstrate a rapid sampling effi...

  18. Ligand Binding Analysis and Screening by Chemical Denaturation Shift

    Sch n, Arne; Brown, Richard K; Hutchins, Burleigh M.; Freire, Ernesto

    2013-01-01

    The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Towards this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Since ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization ef...

  19. Do organic ligands affect calcite dissolution rates?

    Oelkers, Eric H.; Golubev, Sergey V.; Pokrovsky, Oleg S.; Bénézeth, Pascale

    2011-04-01

    Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO 2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA 4-, succinate, D-glucosaminate, L-glutamate, D-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.

  20. The first nitro-substituted heteroscorpionate ligand.

    Pellei, Maura; Benetollo, Franco; Lobbia, Giancarlo Gioia; Alidori, Simone; Santini, Carlo

    2005-02-21

    The new dihydridobis(3-nitro-1,2,4-triazolyl)borate ligand, [H2B(tzNO2)2]-, has been synthesized in dimethylacetamide solution, using 3-nitro-1,2,4-triazole and KBH4 through careful temperature control, and characterized as its potassium salt. The zinc(II) and cadmium(II) complexes, {M[H2B(tzNO2)2]Cl(H2O)2}, have been prepared by metathesis of [H2B(tzNO2)2]K with ZnCl2 and CdCl2, respectively. The complexes likely contain a metal core in which the ligand is coordinated to the metal ions in the K2-N,N' or K4-N,N',O,O' fashion. A single-crystal structural characterization is reported for the potassium dihydrobis(3-nitro-1,2,4-triazolyl)borate. The potassium salt is polymeric and shows several K...N and K...O interactions. PMID:15859260

  1. Single-incubation immunoassay for a multivalent ligand

    In a two-site immunoassay method for a multivalent ligand using a single incubation, the ligand, labelled receptor for the ligand and unlabelled receptor for the ligand covalently bound to a solid-phase support are incubated as a stable suspension to produce a solid and liquid phase. The solid and liquid phases are separated from each other and the labelled receptor in either phase is quantified. The method has particular application as an assay for human thyroid stimulating hormone using purified, radioactively labelled antibodies and unlabelled antibodies covalently bound to hydrolyzed polyacrylamide particles. (author)

  2. The Dynamics of Ligand Barrier Crossing Inside the Acetylcholinesterase Gorge

    Bui, Jennifer M.(University of California, San Diego); Henchman, Richard H.(University of California, San Diego); Mccammon, Andy (University of California, San Diego)

    2003-10-01

    The dynamics of ligand movement through the constricted region of the acetylcholinesterase gorge is important in understanding how the ligand gains access to and is released from the active site of the enzyme. Molecular dynamics simulations of the simple ligand, tetramethylammonium, crossing this bottleneck region are conducted using umbrella potential sampling and activated .ux techniques. The low potential of mean force obtained is consistent with the fast reaction rate of acetylcholinesterase observed experimentally. From the results of the activated dynamics simulations, local conformational .uctuations of the gorge residues and larger scale collective motions of the protein are found to correlate highly with the ligand crossing.

  3. Riboswitch Structure: an Internal Residue Mimicking the Purine Ligand

    Delfosse, V.; Bouchard, P; Bonneau, E; Dagenais, P; Lemay, J; Lafontaine, D; Legault, P

    2009-01-01

    The adenine and guanine riboswitches regulate gene expression in response to their purine ligand. X-ray structures of the aptamer moiety of these riboswitches are characterized by a compact fold in which the ligand forms a Watson-Crick base pair with residue 65. Phylogenetic analyses revealed a strict restriction at position 39 of the aptamer that prevents the G39-C65 and A39-U65 combinations, and mutational studies indicate that aptamers with these sequence combinations are impaired for ligand binding. In order to investigate the rationale for sequence conservation at residue 39, structural characterization of the U65C mutant from Bacillus subtilis pbuE adenine riboswitch aptamer was undertaken. NMR spectroscopy and X-ray crystallography studies demonstrate that the U65C mutant adopts a compact ligand-free structure, in which G39 occupies the ligand-binding site of purine riboswitch aptamers. These studies present a remarkable example of a mutant RNA aptamer that adopts a native-like fold by means of ligand mimicking and explain why this mutant is impaired for ligand binding. Furthermore, this work provides a specific insight into how the natural sequence has evolved through selection of nucleotide identities that contribute to formation of the ligand-bound state, but ensures that the ligand-free state remains in an active conformation.

  4. Ligand Release Pathways Obtained with WExplore: Residence Times and Mechanisms.

    Dickson, Alex; Lotz, Samuel D

    2016-06-23

    The binding of ligands with their molecular receptors is of tremendous importance in biology. Although much emphasis has been placed on characterizing binding sites and bound poses that determine the binding thermodynamics, the pathway by which a ligand binds importantly determines the binding kinetics. The computational study of entire unbiased ligand binding and release pathways is still an emerging field, made possible only recently by advances in computational hardware and sampling methodologies. We have developed one such method (WExplore) that is based on a weighted ensemble of trajectories, which we apply to ligand release for the first time, using a set of three previously characterized interactions between low-affinity ligands and the protein FKBP-12 (FK-506 binding protein). WExplore is found to be more efficient that conventional sampling, even for the nanosecond-scale unbinding events observed here. From a nonequilibrium ensemble of unbinding trajectories, we obtain ligand residence times and release pathways without using biasing forces or a Markovian assumption of transitions between regions. We introduce a set of analysis tools for unbinding transition pathways, including using von Mises-Fisher distributions to model clouds of ligand exit points, which provide a quantitative proxy for ligand surface diffusion. Differences between the transition pathway ensembles of the three ligands are identified and discussed. PMID:27231969

  5. Spectra of fluorinated rare earth. beta. -diketonates with added ligands

    Khomenko, V.S.; Lozinskij, M.O.; Fialkov, Yu.A.; Rasshinina, T.A.; Krasovskaya, L.I. (AN Belorusskoj SSR, Minsk. Inst. Fiziki; AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1984-01-01

    Different-ligand rare earth complexes are synthesized. Fluorated ..beta..-diketones, triethylphosphine oxide and trifluoracetic acid are used as active ligands. Mass-spectra of low and high resolution are taken at the energy of ionizing electrons of 70 eV, as well as luminescence spectra of complexes. Fragmentation ways of complexes decomposition under electron shock are studied. A series of changing the bound strength of additional ligands with europium in mixed complexes is determined. It is shown that the introduction of additional ligands can purposefully change physical and chemical properties of complexes.

  6. Superior serum half life of albumin tagged TNF ligands

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  7. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands. PMID:27408925

  8. Modification of diphenylamine-linked bis(oxazoline) ligands: Tuning of electronic effect and rigidity of ligand skeleton

    2009-01-01

    The electronic effect of diphenylamine-linked bis(oxazoline) ligands was tuned through introduction of electron-withdrawing bromo and nitro substituents onto the 4 and 4′ position. The variation of the NH bond acidity was determined by the different chemical shifts of NH. The catalytic activity and enantioselectivity of the modified ligands were tested in the asymmetric Friedel-Crafts alkylation of indole with β-nitrostyrene. The effect of ligand skeleton rigidity was also investigated through the synthesis of iminodibenzyl-linked bis(oxazoline) ligands and evaluation of their catalytic activity in Friedel-Crafts alkylation.

  9. Characterizing mixed phosphonic acid ligand capping on CdSe/ZnS quantum dots using ligand exchange and NMR spectroscopy.

    Davidowski, Stephen K; Lisowski, Carmen E; Yarger, Jeffery L

    2016-03-01

    The ligand capping of phosphonic acid functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of solution and solid-state (31) P nuclear magnetic resonance (NMR) spectroscopy. Two phosphonic acid ligands were used in the synthesis of the QDs, tetradecylphosphonic acid and ethylphosphonic acid. Both alkyl phosphonic acids showed broad liquid and solid-state (31) P NMR resonances for the bound ligands, indicative of heterogeneous binding to the QD surface. In order to quantify the two ligand populations on the surface, ligand exchange facilitated by phenylphosphonic acid resulted in the displacement of the ethylphosphonic acid and tetradecylphosphonic acid and allowed for quantification of the free ligands using (31) P liquid-state NMR. After washing away the free ligand, two broad resonances were observed in the liquids' (31) P NMR corresponding to the alkyl and aromatic phosphonic acids. The washed samples were analyzed via solid-state (31) P NMR, which confirmed the ligand populations on the surface following the ligand exchange process. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26639792

  10. Rational design of class I MHC ligands

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  11. Ligand-directed trafficking of receptor stimulus.

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications. PMID:25443729

  12. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.

    Janowski, Pawel A; Moriarty, Nigel W; Kelley, Brian P; Case, David A; York, Darrin M; Adams, Paul D; Warren, Gregory L

    2016-09-01

    Modern crystal structure refinement programs rely on geometry restraints to overcome the challenge of a low data-to-parameter ratio. While the classical Engh and Huber restraints work well for standard amino-acid residues, the chemical complexity of small-molecule ligands presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily described in the Crystallographic Information File (CIF) format, thus sacrificing chemical flexibility and energetic accuracy, or they employ protocols that substantially lengthen the refinement time, potentially hindering rapid automated refinement workflows. PHENIX-AFITT refinement uses a full molecular-mechanics force field for user-selected small-molecule ligands during refinement, eliminating the potentially difficult problem of finding or generating high-quality geometry restraints. It is fully integrated with a standard refinement protocol and requires practically no additional steps from the user, making it ideal for high-throughput workflows. PHENIX-AFITT refinements also handle multiple ligands in a single model, alternate conformations and covalently bound ligands. Here, the results of combining AFITT and the PHENIX software suite on a data set of 189 protein-ligand PDB structures are presented. Refinements using PHENIX-AFITT significantly reduce ligand conformational energy and lead to improved geometries without detriment to the fit to the experimental data. For the data presented, PHENIX-AFITT refinements result in more chemically accurate models for small-molecule ligands. PMID:27599738

  13. Polymerization catalysts containing electron-withdrawing amide ligands

    Watkin, John G.; Click, Damon R.

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  14. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    Nikishkin, N.

    2013-01-01

    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as us

  15. Organopalladium complexes with bidentate phosphorus and nitrogen containing ligands

    Koten, G. van; Graaf, W. de; Harder, Sjoerd; Boersma, J.; Kanters, J.A.

    1988-01-01

    Organopalladium complexes containing the potentially P, N-bidentate ligands o-diphenylphosphino-N,N-dimethylbenzylamine (PN) and o-diphenylphosphino-@a-methyl-N,N-dimethylbenzylamine (PN}*{) have been studied. The palladium(0) complexes Pd(P@?N){3} (P@?N = PN or PN}*{) have been prepared: the ligand

  16. Competitive antagonism of AMPA receptors by ligands of different classes

    Hogner, Anders; Greenwood, Jeremy R; Liljefors, Tommy;

    2003-01-01

    -(phosphonomethoxy)-4-isoxazolyl]propionic acid (ATPO) in complex with the ligand-binding core of the receptor. Comparison with the only previous structure of the ligand-binding core in complex with an antagonist, 6,7-dinitro-2,3-quinoxalinedione (DNQX) (Armstrong, N.; Gouaux, E. Neuron 2000, 28, 165-181), reveals...

  17. Immobilisation of ligands by radio-derivatized polymers

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs

  18. Influence of the platform in multicoordinate ligands for actinide partitioning

    Dam, Henk H.; Reinhoudt, David N.; Verboom, Willem

    2007-01-01

    Multicoordinate ligands based on the trityl, C-pivot, and CTV platforms and the ligating groups CMPO, DGA, PICO, and MPMA were synthesized and studied for their extraction properties. The extraction efficiencies of these multicoordinate ligands are largely influenced by the properties of the platfor

  19. Mechanochemical synthesis of mixed-ligand europium β-diketonates with nitrogen-containing neutral ligands

    The solid-phase reaction between europium salts of β-diketones and nitrogen-containing neutral ligands in a planetary mill produces luminescent mixed-ligand compounds Eu(β-dic)3 · D, where β-dic stands for dibenzoylmethane, benzoylacetone, thenoyltrifluoroacetone, or benzoyltrifluoroacetone; and D stands for 1,10-phenanthroline, 2,2-dipyridyl, or diphenylguanidine. The mechanosynthesis and yield of lanthanide β-diketonates are studied as affected by the treatment parameters and the nature of the reagents. Powder X-ray diffraction demonstrates a staged course of the mechanochemical synthesis. Examination of formation-rate curves shows that grinding/stirring is the rate-controlling stage of the process. Thermogravimetric analysis shows that the mechanosynthesis can proceed in the self-propagation mode. The relative luminescence intensity is determined as a function of treatment time. Particles of the mechanically activated mixture have sizes of 10-100 μm

  20. A response calculus for immobilized T cell receptor ligands

    Andersen, P S; Menné, C; Mariuzza, R A;

    2001-01-01

    To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affini...... affinity in solution, are of optimal two-dimensional affinity thereby allowing effective TCR binding under physiological conditions, i.e. at low ligand densities in cellular interfaces....... determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated the...

  1. Labeling of amine ligands with sup(99m)Tc in aqueous solutions by ligand exchange

    Volkert, W.A.; Troutner, D.E.; Holmes, R.A. (Missouri Univ., Columbia (USA). Dept. of Radiology; Missouri Univ., Columbia (USA). Dept. of Chemistry; Harry S. Truman Memorial Veterans Hospital, Columbia, MO (USA). Nuclear Medicine Service)

    1982-10-01

    Cyclam, ethylenediamine (EN) and a linear tetraamine (TA) form structurally similar complexes in high yields when pertechnetate is reduced with Sn(II) in aqueous solutions. Efficient labeling of these amine ligands is also accomplished by transfer of sup(99m)Tc from its complexes with diethylenetriaminepentaacetate (DTPA) and citrate. The labeling yields of cyclam, TA and EN using (sup(99m)Tc)DTPA are greater than 95% after standing for 30 min at room temperature in 0.03 M solutions of the amine ligands at pH above 11, but less than 10% at pH below 9. Yields of greater than 90% are obtained using (sup(99m)Tc)citrate under similar conditions at pH 7 or greater. Ethylenediamine-N,N'-diacetic acid (ENDA) also forms a complex with sup(99m)Tc that exhibits pH dependent stability characteristics that are the same as those of (sup(99m)Tc)EN. The labeling efficiency of ENDA with sup(99m)Tc as a function of pH is nearly identical to that of the other amine ligands.

  2. Regulation mechanisms of the FLT3-ligand after irradiation

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  3. Metrical oxidation states of 2-amidophenoxide and catecholate ligands: structural signatures of metal-ligand π bonding in potentially noninnocent ligands.

    Brown, Seth N

    2012-02-01

    Catecholates and 2-amidophenoxides are prototypical "noninnocent" ligands which can form metal complexes where the ligands are best described as being in the monoanionic (imino)semiquinone or neutral (imino)quinone oxidation state instead of their closed-shell dianionic form. Through a comprehensive analysis of structural data available for compounds with these ligands in unambiguous oxidation states (109 amidophenolates, 259 catecholates), the well-known structural changes in the ligands with oxidation state can be quantified. Using these correlations, an empirical "metrical oxidation state" (MOS) which gives a continuous measure of the apparent oxidation state of the ligand can be determined based on least-squares fitting of its C-C, C-O, and C-N bond lengths to this single parameter (a simple procedure for doing so is provided via a spreadsheet in the Supporting Information). High-valent d(0) metal complexes, particularly those of vanadium(V) and molybdenum(VI), have ligands with unexpectedly positive, and generally nonintegral, MOS values. The structural effects in these complexes are attributed not to electron transfer, but rather to amidophenoxide- or catecholate-to-metal π bonding, an interpretation supported by the systematic variation of the MOS values as a function of the degree of competition with the other π-donating groups in the structures. PMID:22260321

  4. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  5. Metal-ligand cooperation in H2 activation with iron complexes bearing hemilabile bis(diphenylphosphino)amine ligands.

    Frank, Nicolas; Hanau, Katharina; Langer, Robert

    2014-10-20

    The octahedral transition-metal complex [(dppa)Fe(Ph2P-N-PPh2)2] (1) [dppa = bis(diphenylphosphino)amine] with homofunctional bidentate ligands is described. The ligand exhibits hemilability due to its small bite angle and the steric repulsion of the coordinated donor groups. As the {Ph2P-N-PPh2}(-) ligand can act as an internal base, heterolytic cleavage of dihydrogen by complex 1 leads to the formation of the hydride complex [(dppa)(Ph2P-N-PPh2)Fe(H)(κ(1)-Ph2P-NH-PPh2)2] (2), representing an example of cooperative bond activation with a homofunctional hemilabile ligand. This study demonstrates that hemilability of homofunctionalized ligands can be affected by careful adjustment of geometric parameters. PMID:25290535

  6. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands - Solid-state effects. I - Monomers and ligand pi dimers

    Miskowski, Vincent M.; Houlding, Virginia H.

    1989-01-01

    Two types of emission behavior for Pt(II) complexes containing alpha-diimine ligands have been observed in dilute solution. If the complex also has weak field ligands such as chloride, ligand field (d-d) excited states become the lowest energy excited states. If only strong field ligands are present, a diimine 3(pi-pi/asterisk/) state becomes the lowest. In none of the cases studied did metal-to-ligand charge transfer excited state lie lowest.

  7. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  8. Database of ligand-induced domain movements in enzymes

    Hayward Steven

    2009-03-01

    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do

  9. Triazacyclononane Phosphinic Acids (TRAP) as ligands for 68Ga radiopharmaceuticals

    Gallium-68 radiopharmaceuticals are the most interesting alternatives to those based on 18-F. 68-Ga is produced in commercial 68-Ge/68-Ga generator for fraction of the 18-F price. As metal isotope, 68-Ga must be tightly complexed by a suitable ligand. Macrocyclic ligands are the most suitable ones as their Ga3+ complexes are thermodynamically stable and kinetically inert. Till now, 68-Ga radiopharmaceuticals have been based on DOTA and NOTA skeletons but these ligands exhibit non-optimal labelling properties (high excess of the ligand, long heating, narrow pH range etc.). 1,4,9-TRiAzacyclononane Phosphinic acids (TRAP ligands) have been suggested as ligands for the fast and efficient 68-Ga incorporation. Due to low basicity of the phosphinic acid moieties as well as the ring nitrogen atoms, full complexation is possible even in highly acidic solutions (down to pH 1, i.e. pH of the neat generator eluate). Presence of weakly complexing atoms outside the ligand cage (oxygen atoms e.g. in TRAP-Pr or TRAP-OH) facilitates metal isotope incorporation in highly diluted solutions (non-carrier-added conditions) due to increasing effective metal ion concentration close to the macrocyclic cage. As very low excess of the ligands/conjugates is necessary for complexation, very high specific activity can be obtained. Unusual out-of-cage complexes were observed in the Ga-TRAP-OH system where deprotonated P-CH2O- groups participate in the Ga3+ coordination. The efficiency of 68-Ga labelling is also govern by selectivity of the TRAP ligands for Ga3+ over the most common impurities, e.g. Zn2+ and Fe3+ ions. The article is illustrated by the molecular schemes of NOTA, DOTA, TRAP-Pr and TRAP-OH

  10. Serum concentrations of Flt-3 ligand in rheumatic diseases.

    Nakamura, Kayo; Nakatsuka, Noriko; Jinnin, Masatoshi; Makino, Takamitsu; Kajihara, Ikko; Makino, Katsunari; Honda, Noritoshi; Inoue, Kuniko; Fukushima, Satoshi; Ihn, Hironobu

    2015-10-01

    Fms-like tyrosine kinase 3 (Flt-3) is a cytokine receptor expressed on the surface of bone-marrow progenitor of hematopoietic cells. Flt-3 ligands are produced by peripheral blood mononuclear cells, and found in various human body fluids. Flt-3 signal is involved in the regulation of vessel formation as well as B cell differentiation, suggesting that Flt-3 signal contributes to the pathogenesis of vascular abnormalities and immune dysregulation in rheumatic diseases. The aim of the present study is to examine serum Flt-3 ligand levels in patients with various rheumatic diseases, and to evaluate the possibility that serum Flt-3 ligand levels can be a useful disease marker. Sera were obtained from 20 dermatomyositis (DM) patients, 36 systemic sclerosis (SSc) patients, 10 systemic lupus erythematosus (SLE) patients, 10 scleroderma spectrum disorder (SSD) patients, 4 mixed connective tissue disease (MCTD) patients, and 12 normal subjects. Flt-3 ligand levels were determined with ELISA. Serum Flt-3 ligand levels were significantly elevated in patients with DM, SSc, SSD and MCTD compared to those in normal subjects. DM patients with elevated Flt-3 ligand levels were accompanied with significantly increased CRP levels and increased frequency of heliotrope rash than those with normal levels. In addition, SSc patients with elevated Flt-3 ligand levels showed significantly reduced frequency of nailfold bleeding. Serum Flt-3 ligand levels can be a marker of cutaneous manifestation in DM and a marker of microangiopathy in SSc. Clarifying the role of Flt-3 ligand in rheumatic diseases may lead to further understanding of these diseases and new therapeutic approaches. PMID:26559027

  11. Niobium tetrahalide complexes with neutral diphosphine ligands.

    Benjamin, Sophie L; Chang, Yao-Pang; Hector, Andrew L; Jura, Marek; Levason, William; Reid, Gillian; Stenning, Gavin

    2016-05-10

    The reactions of NbCl4 with diphosphine ligands o-C6H4(PMe2)2, Me2PCH2CH2PMe2 or Et2PCH2CH2PEt2 in a 1 : 2 molar ratio in MeCN solution produced eight-coordinate [NbCl4(diphosphine)2]. [NbBr4(diphosphine)2] (diphosphine = o-C6H4(PMe2)2 or Me2PCH2CH2PMe2) were made similarly from NbBr4. X-ray crystal structures show that [NbCl4{o-C6H4(PMe2)2}2] has a dodecahedral geometry, but the complexes with dimethylene-backboned diphosphines are distorted square antiprisms. The Nb-P distances and niobium tetrabromide, conveniently made from NbCl4 and BBr3, is a chain polymer with edge-linked NbBr6 octahedra and alternating long and short Nb-Nb distances, the latter ascribed to Nb-Nb bonds. PMID:27094082

  12. Synthesis and study of new oxazoline-based ligands

    Tilliet, Mélanie

    2008-01-01

    This thesis deals with the study of oxazoline-based ligands in metal-catalyzed asymmetric reactions. The first part describes the synthesis of six new bifunctinal pyridine-bis(oxazoline) ligands and their applications in asymmetric metal-catalysis. These ligands, in addition to a Lewis acid coordination site, are equipped with a Lewis basic part in the 4-position of the oxazoline rings. Dual activation by means of this system was probed in cyanide addition to aldehydes. The second part is con...

  13. Quasielastic neutron scattering study of POSS ligand dynamics

    Poly-oligo-silsesquioxanes (POSS) are relatively large (1-2 nm diameter) molecules, that are composed of Si8O12 cages to which a wide variety of possible ligands can be attached. Depending on the nature of the ligand, interesting properties and applications are found. In this work we present results from quasielastic neutron scattering measurements of four different POSS (M-POSS, IBU-POSS, TMS-POSS and DMS-POSS) molecules that illustrate the presence of strong coupling between the ligand dynamics and the POSS crystal structures. (authors)

  14. Effect of size and conformation of the ligand on asialoglycoprotein receptor-mediated ligand internalization and degradation in rat hepatocytes

    The rates of internalization and degradation of 125-I-labeled desialylated cyanogen bromide fragment I of orosomucoid (AS-CNBr-I) and its reduced and carboxymethylated derivative (AS-RC-CNBr-I) were compared with those of 125I-labeled asialoorosomucoid (ASOR) in rat hepatocytes. At 30 nM the rates of internalization and degradation of 125I-AS-CNBr-I were greater than those of 125I-ASOR. 125I-AS-RC-CNBr-I also had a lower rate of internalization and degradation. In contrast to 125I-ASOR, when degradation was inhibited by 5 μM colchicine there was a significant intracellular accumulation of the smaller ligands. At 40C the hepatocytes were found to bind the fragmented ligands more than 125I-ASOR. Incubation of the cells with bound ligand at 370 indicated that diacytosis of 125I-ASOR was greater than the smaller ligands. Colchincine markedly enhanced diacytosis of 125I-ASOR. On the other hand, there were marked accumulation of the smaller ligands by colchicine. These results suggest that the rates of internalization, degradation and diacytosis of the ligand are affected by the size and conformation of the ligand through different rates of receptor binding and intracellular transport

  15. HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-Based Approaches.

    Huang, Sheng-You; Li, Min; Wang, Jianxin; Pan, Yi

    2016-06-27

    Structure-based molecular docking and ligand-based similarity search are two commonly used computational methods in computer-aided drug design. Structure-based docking tries to utilize the structural information on a drug target like protein, and ligand-based screening takes advantage of the information on known ligands for a target. Given their different advantages, it would be desirable to use both protein- and ligand-based approaches in drug discovery when information for both the protein and known ligands is available. Here, we have presented a general hybrid docking protocol, referred to as HybridDock, to utilize both the protein structures and known ligands by combining the molecular docking program MDock and the ligand-based similarity search method SHAFTS, and evaluated our hybrid docking protocol on the CSAR 2013 and 2014 exercises. The results showed that overall our hybrid docking protocol significantly improved the performance in both binding affinity and binding mode predictions, compared to the sole MDock program. The efficacy of the hybrid docking protocol was further confirmed using the combination of DOCK and SHAFTS, suggesting an alternative docking approach for modern drug design/discovery. PMID:26317502

  16. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.

    Savina, Irina N; Dainiak, Maria; Jungvid, Hans; Mikhalovsky, Sergey V; Galaev, Igor Yu

    2009-01-01

    Macroporous hydrogels (MHs), cryogels, are a new type of biomaterials for tissue engineering that can be produced from any natural or synthetic polymer that forms a gel. Synthetic MHs are rendered bioactive by surface or bulk modifications with extracellular matrix components. In this study, cell response to the architecture of protein ligands, bovine type-I collagen (CG) and human fibrinogen (Fg), immobilised using different methods on poly(2-hydroxyethyl methacrylate) (pHEMA) macroporous hydrogels (MHs) was analysed. Bulk modification was performed by cross-linking cryo-co-polymerisation of HEMA and poly(ethylene glycol)diacrylate (PEGA) in the presence of proteins (CG/pHEMA and Fg/pHEMA MHs). The polymer surface was modified by covalent immobilisation of the proteins to the active epoxy (ep) groups present on pHEMA after hydrogel fabrication (CG-epHEMA and Fg-epHEMA MHs). The concentration of proteins in protein/pHEMA and protein-epHEMA MHs was 80-85 and 130-140 mug/ml hydrogel, respectively. It was demonstrated by immunostaining and confocal laser scanning microscopy that bulk modification resulted in spreading of CG in the polymer matrix and spot-like distribution of Fg. On the contrary, surface modification resulted in spot-like distribution of CG and uniform spreading of Fg, which evenly coated the surface. Proliferation rate of fibroblasts was higher on MHs with even distribution of the ligands, i.e., on Fg-epHEMA and CG/pHEMA. After 30 days of growth, fibroblasts formed several monolayers and deposited extracellular matrix filling the pores of these MHs. The best result in terms of cell proliferation was obtained on Fg-epHEMA. The ligands displayed on surface of these scaffolds were in native conformation, while in bulk-modified CG/pHEMA MHs most of the proteins were buried inside the polymer matrix and were less accessible for interactions with specific antibodies and cells. The method used for MH modification with bioligands strongly affects spatial

  17. Modification of diphenylamine-linked bis(oxazoline)ligands:Tuning of electronic effect and rigidity of ligand skeleton

    LIU Han; LI Wei; DU DaMing

    2009-01-01

    The electronic effect of diphenylamine-linked bis(oxazoline) ligands was tuned through introduction of electron-withdrawing bromo and nitro substituents onto the 4 and 4' position.The variation of the NH bond acidity was determined by the different chemical shifts of NH.The catalytic activity and enantioselectivity of the modified ligands were tested in the asymmetric FriedeI-Crafts alkylation of indole with β-nitrostyrene.The effect of iigand skeleton rigidity was also investigated through the synthesis of iminodibenzyl-linked bis(oxazoline) ligands and evaluation of their catalytic activity in Friedel-Crafts alkylation.

  18. Ligand-based reactivity of a platinum bisdithiolene: double diene addition yields a new C2-chiral chelate ligand.

    Kerr, Mitchell J; Harrison, Daniel J; Lough, Alan J; Fekl, Ulrich

    2009-10-01

    The reaction of Pt(tfd)(2) [tfd = S(2)C(2)(CF(3))(2)] with excess 2,3-dimethyl-1,3-butadiene initially yields the expected 1:1 adduct, in which the diene has added across two sulfur atoms on separate tfd ligands. However, within 1 day at 50 degrees C, this kinetic product quantitatively converts into a thermodynamic product where two dienes have added to one tfd ligand via unprecedented addition across the dithiolene CS bonds. The new reaction is highly selective for the C(2)-symmetric diastereomer. A new chiral bisthioether chelate ligand has formed in the product, which has been characterized crystallographically. PMID:19634863

  19. Steered molecular dynamics simulations of protein-ligand interactions

    XU Yechun; SHEN Jianhua; LUO Xiaomin; SHEN Xu; CHEN Kaixian; JIANG Hualiang

    2004-01-01

    Studies of protein-ligand interactions are helpful to elucidating the mechanisms of ligands, providing clues for rational drug design. The currently developed steered molecular dynamics (SMD) is a complementary approach to experimental techniques in investigating the biochemical processes occurring at microsecond or second time scale, thus SMD may provide dynamical and kinetic processes of ligand-receptor binding and unbinding, which cannot be accessed by the experimental methods. In this article, the methodology of SMD is described, and the applications of SMD simulations for obtaining dynamic insights into protein-ligand interactions are illustrated through two of our own examples. One is associated with the simulations of binding and unbinding processes between huperzine A and acetylcholinesterase, and the other is concerned with the unbinding process of α-APA from HIV-1 reverse transcriptase.

  20. Capacity of Diffusion-based Molecular Communication with Ligand Receptors

    Einolghozati, Arash; Fekri, Faramarz

    2012-01-01

    A diffusion-based molecular communication system has two major components: the diffusion in the medium, and the ligand-reception. Information bits, encoded in the time variations of the concentration of molecules, are conveyed to the receiver front through the molecular diffusion in the medium. The receiver, in turn, measures the concentration of the molecules in its vicinity in order to retrieve the information. This is done via ligand-reception process. In this paper, we develop models to study the constraints imposed by the concentration sensing at the receiver side and derive the maximum rate by which a ligand-receiver can receive information. Therefore, the overall capacity of the diffusion channel with the ligand receptors can be obtained by combining the results presented in this paper with our previous work on the achievable information rate of molecular communication over the diffusion channel.

  1. A new fullerene complexation ligand: N-pyridylfulleropyrrolidine.

    Tat, Fatma T; Zhou, Zhiguo; MacMahon, Shaun; Song, Fayi; Rheingold, Arnold L; Echegoyen, Luis; Schuster, David I; Wilson, Stephen R

    2004-07-01

    The subject of this paper is a new fullerene building block design with the potential for defined geometry and good electronic communication. The synthesis and characterization of a new pyridinofullerene ligand capable of forming axially symmetric complexes with metalloporphyrins is reported. X-ray structural and molecular modeling studies, (1)H NMR, UV-vis spectroscopy, electrochemistry studies, and fluorescence quenching data support the formation of a strong complex between the new ligand and the metal center of ZnTPP. On the basis of computational studies, the highest occupied molecular orbital (HOMO) of this ligand is significantly different from a model compound with insulating carbons between the pyridine and the fullerene. The N-pyridinium fulleropyrrolidine salts of the new ligand and model compound were also prepared and their spectral and electrochemical properties are reported. PMID:15230581

  2. Unique advantages of organometallic supporting ligands for uranium complexes

    Diaconescu, Paula L. [Univ. of California, Los Angeles, CA (United States); Garcia, Evan [Univ. of California, Los Angeles, CA (United States)

    2014-05-31

    The objective of our research project was to study the reactivity of uranium complexes supported by ferrocene-based ligands. In addition, this research provides training of graduate students as the next generation of actinide scientists.

  3. Linkable thiocarbamoylbenzamidines as ligands for bioconjugation of Rhenium and Technetium

    Bioconjugation reactions with Rhenium and Technetium are of high importance for the development of novel radiopharmaceuticals for nuclear medicine. In this thesis the possibilities for bioconjugation using linkable Thiocarmbamoylbenzamidines as ligands for the complexation of Rhenium and Technetium were examined.

  4. Dysprosium complexes with the tetraphenylporphyrin macrocyclic ligand

    In this report, the results obtained on the synthesis, characterization and study of the chemical behavior of dysprosium complex with the acetylacetone chelating agent (Hacac) and the tetraphenylporphyrin macrocyclic ligand (H2TFP) are given. Based on the literature but according to our necessities and interest, the appropriate methodology settled down from the synthesis of prime matters until the obtaining and characterization of the products. The acetyl acetonate complex was obtained of mono hydrated dysprosium [Dy(acac)3. H20] and trihydrated [Dy(acac)3 .3 H20], the mono tetra phenyl porphyrinate [Dy(TFP)(acac). 2 ac] the double sandwich of the dysprosium porphyrinate [Dy(TFP)2] and the triple sandwich of the dysprosium porphyrinate [Dy(TFP)3. 2 TCB] (TCB = trichlorobenzene). Its were characterized by their melting points, solubility, IR, UV, TGA and DTA both first and besides the techniques already mentioned for NMR'H, RPE and Magnetic susceptibility the three last complexes. From the spectroscopic point of view, IR and RPE its suggested the existence of a complex of inverse mixed valence [Dy(TFP)2- (TFP) 1-] for the Dy(TFP)2 as a result of the existence of the free radical (TFP' 1- and that it was not in none of the other porphyrin compounds. In the NMR'H spectra of the compounds were not observed signals in the region from 0 to 10 ppm that which shows that the dysprosium complexes in special those of the porphyrin type are highly paramagnetic and its could be used as displacement reagents, creators of images and contrast agents of great utility in these days in studies of NMR, technique today by today used in medical diagnoses. (Author)

  5. Synthesis and evaluation of potential ligands for nuclear waste processing

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In particular, the aim of the work described here is the development of new ligands with improved separation and extraction efficiency. Separation of actinides (An) and lanthanides (Ln) is a challeng...

  6. Coordination chemistry of poly(thioether)borate ligands

    Riordan, Charles G.

    2010-01-01

    This review traces the development and application of the tris(thioether)borate ligands, tripodal ligands with highly polarizable thioether donors. Areas of emphasis include the basic coordination chemistry of the mid-to-late first row transition metals (Fe, Ni, Co, Cu), and the role of the thioether substituent in directing complex formation, the modeling of zinc thiolate protein active sites, high-spin organo-iron and organo-cobalt chemistry, the preparation of monovalent complexes of Fe, C...

  7. Increased CD40 ligand in patients with acute anterior uveitis

    Øgard, Carsten; Sørensen, Torben Lykke; Krogh, Erik

    2005-01-01

    The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis.......The inflammatory response in acute anterior uveitis (AU) is believed to be primarily mediated by autoreactive T-cells. We wanted to evaluate whether the T-cell activation marker CD40 ligand is involved in the AU immunopathogenesis....

  8. Force History Dependence of Receptor-Ligand Dissociation

    Marshall, Bryan T.; Sarangapani, Krishna K.; Lou, Jizhong; McEver, Rodger P.; Zhu, Cheng

    2004-01-01

    Receptor-ligand bonds that mediate cell adhesion are often subjected to forces that regulate their dissociation via modulating off-rates. Off-rates control how long receptor-ligand bonds last and how much force they withstand. One should therefore be able to determine off-rates from either bond lifetime or unbinding force measurements. However, substantial discrepancies exist between the force dependence of off-rates derived from the two types of measurements even for the same interactions, e...

  9. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  10. Ligand assisted cleavage of uranium oxo-clusters

    Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [Laboratoire de Reconnaissance Ionique et Chimie de Coordination, Service de Chimie Inorganique et Biologique, UMR-E 3 CEA-UJF, CEA/DSM/INAC, CEA-Grenoble, 38054 Grenoble, Cedex 09 (France); Filinchuk, Yaroslav [Swiss Norwegian Beam Lines (SNBL) at the European Synchrotron Radiation Facility (ESRF), rue Jules Horowitz, 38043 Grenoble (France)

    2010-07-01

    Dibenzoylmethanate replaces the bridging triflate ligands in uranium triflate poly-oxo-clusters and cleaves the U{sub 12}O{sub 20} core yielding the new [U{sub 6}O{sub 4}(OH){sub 4}({eta}-dbm){sub 12}] dibenzoylmethanate (dbm{sup -}) cluster which slowly dissociates into a monomeric complex. This reactivity demonstrates the importance of bridging ligands in stabilizing uranium poly-oxo-clusters. (authors)

  11. Designer ligands: The search for metal ion selectivity

    Perry T. Kaye

    2011-01-01

    The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-s...

  12. Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands

    Veenman, Leo; Vainshtein, Alex; Yasin, Nasra; Azrad, Maya; Gavish, Moshe

    2016-01-01

    The 18 kDa translocator protein (TSPO) is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO’s importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles’ membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships. PMID:27271616

  13. Ligand and interfacial dynamics in a homodimeric hemoglobin

    Gupta, Prashant Kumar; Meuwly, Markus

    2016-01-01

    The structural dynamics of dimeric hemoglobin (HbI) from Scapharca inaequivalvis in different ligand-binding states is studied from atomistic simulations on the μs time scale. The intermediates are between the fully ligand-bound (R) and ligand-free (T) states. Tertiary structural changes, such as rotation of the side chain of Phe97, breaking of the Lys96–heme salt bridge, and the Fe–Fe separation, are characterized and the water dynamics along the R-T transition is analyzed. All these properties for the intermediates are bracketed by those determined experimentally for the fully ligand-bound and ligand-free proteins, respectively. The dynamics of the two monomers is asymmetric on the 100 ns timescale. Several spontaneous rotations of the Phe97 side chain are observed which suggest a typical time scale of 50–100 ns for this process. Ligand migration pathways include regions between the B/G and C/G helices and, if observed, take place in the 100 ns time scale. PMID:26958581

  14. Predicting Efficient Antenna Ligands for Tb(III) Emission

    Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth

    2008-10-06

    A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.

  15. Acetate binding induces fluorescence enhancement in tryptophan ligands

    Deka, Arup K.; Sarma, Rupam J., E-mail: rjs@gauhati.ac.in

    2014-03-15

    The anion coordination properties of bis-tryptophan dicarboxamide ligands 1–3 were investigated using fluorescence and {sup 1}H NMR spectroscopy. It was observed that the coordination of acetate anions to these ligands produced emissions at 381 nm with gradual enhancement of fluorescence. In comparison, fluoride produced minor enhancement, the addition of chloride, bromide and nitrate anions caused quenching of ligand fluorescence. {sup 1}H NMR studies revealed that the ligands coordinated to the acetate anions through the indole and amide NH groups. -- Highlights: • We have synthesized and characterized three tryptophan-based diamide ligands 1–3. • We have reported new polymorph of ligand 1 (Crystal structure) in this article. • The role of intramolecular hydrogen bonding (1 vs. 2) in anion binding was investigated. • We were able to identify the role amide/indole NH in anion binding using {sup 1}H NMR. • On the basis of {sup 1}H NMR, we have established role of aromatic CH–anion interactions during anion complexation.

  16. Narrow escape for a stochastically gated Brownian ligand.

    Reingruber, Jürgen; Holcman, David

    2010-02-17

    Molecular activation in cellular microdomains is usually characterized by a forward binding rate, which is the reciprocal of the arrival time of a ligand to a key target. Upon chemical interactions or conformational changes, a Brownian ligand may randomly switch between different states, and when target activation is possible in a specific state only, switching can significantly alter the activation process. The main goal of this paper is to study the mean time for a switching ligand to activate a small substrate, modelled as the time to exit a microdomain through a small absorbing window on the surface. We present the equations for the mean sojourn times the ligand spends in each state, and study the escape process with switching between two states in dimension one and three. When the ligand can exit in only one of the two states, we find that switching always decreases its sojourn time in the state where it can exit. Moreover, the fastest exit is obtained when the ligand diffuses most of the time in the state with the maximal diffusion coefficient, although this may imply that it spends most of the time 'hidden' in the state where it cannot exit. We discuss the physical mechanisms responsible for this apparent paradox. In dimension three we confirm our results with Brownian simulations. Finally, we suggest possible applications in cellular biology. PMID:21389363

  17. Porphyrin-based design of bioinspired multitarget quadruplex ligands.

    Laguerre, Aurélien; Desbois, Nicolas; Stefan, Loic; Richard, Philippe; Gros, Claude P; Monchaud, David

    2014-09-01

    Secondary nucleic acid structures, such as DNA and RNA quadruplexes, are potential targets for cancer therapies. Ligands that interact with these targets could thus find application as anticancer agents. Synthetic G-quartets have recently found numerous applications, including use as bioinspired G-quadruplex ligands. Herein, the design, synthesis and preliminary biophysical evaluation of a new prototype multitarget G-quadruplex ligand, (PNA)PorphySQ, are reported, where peptidic nucleic acid guanine ((PNA)G) was incorporated in the porphyrin-templated synthetic G-quartet (PorphySQ). Using fluorescence resonance energy transfer (FRET)-melting experiments, PorphySQ was shown to possess enhanced quadruplex-interacting properties thanks to the presence of four positively charged (PNA)G residues that improve its electrostatic interactions with the binding site of both DNA and RNA quadruplexes (i.e., their negatively charged and accessible G-quartets), thereby making (PNA)PorphySQ an interesting prototype of a multitarget ligand. Both the chemical stability and water solubility of (PNA)PorphySQ are improved over the non-PNA derivative (PorphySQ), which are desirable properties for drug development, and while improvements remain to be made, this ligand is a promising lead for the further development of multitarget G-quadruplex ligands. PMID:24678052

  18. Serum albumin ligand binding volumes using high pressure denaturation

    Highlights: ► We use pressure shift assay to study the thermodynamics of decanoate and dodecanoate ligand binding to human serum albumin. ► Pressure shift assay provides information on ligand binding volumes. ► The ligands stabilized human serum albumin against both pressure and temperature denaturation. ► ANS is a strong human serum albumin stabilizer and competes with lipids for the same binding sites. - Abstract: The pressure shift assay (PSA, also termed either PressureFluor or differential pressure fluorimetry) was used to study the thermodynamics of decanoate and dodecanoate lipid binding to human serum albumin (HSA) in the temperature range from 25 °C to 80 °C and the pressure range from 0.1 MPa to 400 MPa. The ligands stabilized HSA against both pressure and temperature denaturation. The P–T phase diagram for HSA bound to saturated fatty acids is shown. Pressure induced HSA denaturation reversibility is demonstrated via either intrinsic tryptophan or extrinsic probe 1,8-anilinonaphthalene sulfonate (ANS) fluorescence. The effect of guanidinium in a PSA was studied. PSA provides information on ligand binding volumes. The volume changes from protein–ligand binding are thermodynamically important and could be used in designing compounds with specific volumetric binding properties.

  19. Extracellular interactions and ligand degradation shape the nodal morphogen gradient

    Wang, Yin; Wang, Xi; Wohland, Thorsten; Sampath, Karuna

    2016-01-01

    The correct distribution and activity of secreted signaling proteins called morphogens is required for many developmental processes. Nodal morphogens play critical roles in embryonic axis formation in many organisms. Models proposed to generate the Nodal gradient include diffusivity, ligand processing, and a temporal activation window. But how the Nodal morphogen gradient forms in vivo remains unclear. Here, we have measured in vivo for the first time, the binding affinity of Nodal ligands to their major cell surface receptor, Acvr2b, and to the Nodal inhibitor, Lefty, by fluorescence cross-correlation spectroscopy. We examined the diffusion coefficient of Nodal ligands and Lefty inhibitors in live zebrafish embryos by fluorescence correlation spectroscopy. We also investigated the contribution of ligand degradation to the Nodal gradient. We show that ligand clearance via degradation shapes the Nodal gradient and correlates with its signaling range. By computational simulations of gradient formation, we demonstrate that diffusivity, extra-cellular interactions, and selective ligand destruction collectively shape the Nodal morphogen gradient. DOI: http://dx.doi.org/10.7554/eLife.13879.001 PMID:27101364

  20. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    2010-02-04

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  1. Ligands turning around in the midst of protein conformers: the origin of ligand-protein mating. A NMR view.

    Pertinhez, T A; Spisni, A

    2011-01-01

    Protein-ligand binding is a puzzling process. Many theories have been devised since the pioneering key-and-lock hypothesis based on the idea that both the protein and the ligand have a rigid single conformation. Indeed, molecular motion is the essence of the universe. Consequently, not only proteins are characterized by an extraordinary conformational freedom, but ligands too can fluctuate in a rather vast conformational space. In this scenario, the quest to understand how do they match is fascinating. Recognizing that the inherent dynamics of molecules is the key factor controlling the success of the binding and, subsequently, their chemical/biological function, here we present a view of this process from the NMR stand point. A description of the most relevant NMR parameters that can provide insights, at atomic level, on the mechanisms of protein-ligand binding is provided in the final section. PMID:20939791

  2. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.

    Lipinski, Christopher A

    2016-06-01

    The rule of five (Ro5), based on physicochemical profiles of phase II drugs, is consistent with structural limitations in protein targets and the drug target ligands. Three of four parameters in Ro5 are fundamental to the structure of both target and drug binding sites. The chemical structure of the drug ligand depends on the ligand chemistry and design philosophy. Two extremes of chemical structure and design philosophy exist; ligands constructed in the medicinal chemistry synthesis laboratory without input from natural selection and natural product (NP) metabolites biosynthesized based on evolutionary selection. Exceptions to Ro5 are found mostly among NPs. Chemistry chameleon-like behavior of some NPs due to intra-molecular hydrogen bonding as exemplified by cyclosporine A is a strong contributor to NP Ro5 outliers. The fragment derived, drug Navitoclax is an example of the extensive expertise, resources, time and key decisions required for the rare discovery of a non-NP Ro5 outlier. PMID:27154268

  3. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters.

    Wolber, Gerhard; Langer, Thierry

    2005-01-01

    From the historically grown archive of protein-ligand complexes in the Protein Data Bank small organic ligands are extracted and interpreted in terms of their chemical characteristics and features. Subsequently, pharmacophores representing ligand-receptor interaction are derived from each of these small molecules and its surrounding amino acids. Based on a defined set of only six types of chemical features and volume constraints, three-dimensional pharmacophore models are constructed, which are sufficiently selective to identify the described binding mode and are thus a useful tool for in-silico screening of large compound databases. The algorithms for ligand extraction and interpretation as well as the pharmacophore creation technique from the automatically interpreted data are presented and applied to a rhinovirus capsid complex as application example. PMID:15667141

  4. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL2(H2O)2]n·2nH2O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H2adbc), terephthalic acid (H2tpa), thiophene-2,5-dicarboxylic acid (H2tdc) and 1,4-benzenedithioacetic acid (H2bdtc), four 3D structures [Co2L2(adbc)]n·nH2O (2), [Co2L2(tpa)]n (3), [Co2L2(tdc)]n (4), [Co2L2(bdtc)(H2O)]n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  5. electronic Ligand Builder and Optimisation Workbench (eLBOW): A tool for ligand coordinate and restraint generation

    Moriarty, Nigel; Grosse-Kunstleve, Ralf; Adams, Paul

    2009-07-01

    The electronic Ligand Builder and Optimisation Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It's designed to be a flexible procedure using simple and fast quantum chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow for the attainment of a number of diverse goals including geometry optimisation and generation of restraints.

  6. Integration of screening and identifying ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy

    sprotocols

    2015-01-01

    Authors: Yalin Tang, Qian Shang, Junfeng Xiang, Qianfan Yang, Qiuju Zhou, Lin Li, Hong Zhang, Qian Li, Hongxia Sun, Aijiao Guan, Wei Jiang & Wei Gai ### Abstract This protocol presents the screening of ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy. A detailed description of sample preparation and analysis process is provided. NMR spectroscopies described here are 1H NMR, diffusion-ordered spectroscopy (DOSY), relaxation-edited NMR, ...

  7. A thermal responsive affinity ligand for precipitation of sialylated proteins

    Lindsay Arnold

    2016-01-01

    Full Text Available We report here the development of a thermal responsive affinity ligand specific to sialic acid, sialic acid containing oligosaccharides, glycoproteins, and other sialylated glycoconjugates. The ligand is a fusion protein of 40 repeats of pentapeptide of an elastin like polymer (ELP and the 21 kD sialic acid binding domain of a Vibrio cholera neuraminidase (VCNA. For cost-effective synthesis, the fusion protein was targeted to the periplasmic space of an E. coli lpp deletion mutant, resulting in its secretion to the growth medium. A pre-induction heat-shock step at 42 ˚C for 20 minutes was necessary to achieve high level expression of the ligand. Under optimized induction condition (18 ˚C, 0.1 mM IPTG and 48 hours of post-induction cultivation, the ligand was produced to about 100 mg/L. The ligand exhibited a transition temperature of 52 ˚C, which could be depressed to 37 ˚C with the addition of 0.5 M NaCl. Using fetuin as a model sialylated protein, the ligand was applied in an affinity precipitation process to illustrate its potential application in glycoprotein isolation. The ligand captured 100% fetuin from an aqueous solution when the molar ratio of ligand to fetuin was 10 to 1, which was lower than the expected for full titration of sialic acid on the glycoprotein by the lectin. Elution of fetuin from ligand was achieved with PBS buffer containing 2 mM sialic acid. To evaluate how protein and other contaminants influence the recovery of sialylated proteins, CHO medium was spiked into the fetuin solution. The predominant protein species in CHO medium was found to be albumin. Although its removal of over 94% was evident, purified fetuin contained some albumin due to its over-abundance. Additional experiments with albumin contaminant of varying concentrations showed that below 1 mg/L, albumin had no impact on the affinity precipitation, whereas above 10 mg/L, some albumin was co-purified with fetuin. However, even at 50 mg/ml, fetuin

  8. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    Sewell, Sarah L. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Giorgio, Todd D., E-mail: todd.d.giorgio@vanderbilt.edu [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN (United States)

    2009-05-05

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  9. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  10. Microassay for measurement of binding of radiolabelled ligands to cell surface molecules

    An improved technique for measuring the binding of radiolabelled ligands to cell surface molecules has been developed by modification of a procedure using centrifugation through a water-immiscible oil to separate free and cell-bound ligand. It maximises the percentage of ligand bound since cell-bound and free ligand can be separated easily and reproducibly even when very small reaction volumes are used. This permits low levels of ligand radiolabelling and relatively low numbers of cells to be used

  11. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    Andersen, P S; Geisler, C; Buus, S; Mariuzza, R A; Karjalainen, K

    2001-01-01

    the SEC3 variants correlated with enhanced binding without any optimum in the binding range covered by native TCR ligands. Comparable studies using anti-TCR antibodies of known affinity confirmed these observations. By comparing the biological potency of the two sets of ligands, we found a significant...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  12. Ligand Migration and Binding in Myoglobin Mutant L29W

    Nienhaus, G. Ulrich; Waschipky, Robert; Nienhaus, Karin; Minkow, Oleksandr; Ostermann, Andreas; Parak, Fritz G.

    2001-09-01

    Myoglobin, a small globular heme protein that binds gaseous ligands such as O2, CO, and NO reversibly at the heme iron, has for many years been a paradigm for studying the effects of structure and dynamics on protein reactions. Time-resolved spectroscopic measurements after photodissociation of the ligand reveal a complex ligand binding reaction with multiple kinetic intermediates, resulting from protein relaxation and movements of the ligand within the protein. To observe structural changes induced by ligand dissociation, we have investigated carbonmonoxy myoglobin (MbCO) mutant L29W using time-resolved infrared spectroscopy in combination with x-ray crystallography. The presence of two distinct infrared stretch bands of the bound CO, AI at 1945 cm-1 and AII at 1955 cm-1, implies that L29W MbCO assumes two different conformations at neutral pH. Low-temperature flash photolysis experiments with monitoring of the absorption changes in the individual CO lines reveal markedly different rebinding properties. While recombination in AII is conceptually simple and well described by a two-state transition involving a distribution of enthalpy barriers, recombination in AI is more complicated: Besides a fast kinetic component, a second, slower kinetic component appears; its population grows with increasing temperature. X-ray crystallography of crystals illuminated below 180 K to photodissociate the CO reveals that the slow component arises from ligands that have migrated from their initial docking site to a remote site within the distal heme pocket. This process occurs in an essentially immobilized, frozen protein. Subsequently, ligands rebind by thermal activation over a barrier that is much higher than the barrier for recombination from the initial docking site. Upon photodissociation above 180 K, ligands escape from the distal pocket, aided by protein fluctuations that transiently open exit channels. The x-ray structure shows a large proportion of ligands in a cavity on

  13. NKG2D ligands mediate immunosurveillance of senescent cells.

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  14. Cloud computing for protein-ligand binding site comparison.

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  15. Predicting protein ligand binding motions with the conformation explorer

    Flores Samuel C

    2011-10-01

    Full Text Available Abstract Background Knowledge of the structure of proteins bound to known or potential ligands is crucial for biological understanding and drug design. Often the 3D structure of the protein is available in some conformation, but binding the ligand of interest may involve a large scale conformational change which is difficult to predict with existing methods. Results We describe how to generate ligand binding conformations of proteins that move by hinge bending, the largest class of motions. First, we predict the location of the hinge between domains. Second, we apply an Euler rotation to one of the domains about the hinge point. Third, we compute a short-time dynamical trajectory using Molecular Dynamics to equilibrate the protein and ligand and correct unnatural atomic positions. Fourth, we score the generated structures using a novel fitness function which favors closed or holo structures. By iterating the second through fourth steps we systematically minimize the fitness function, thus predicting the conformational change required for small ligand binding for five well studied proteins. Conclusions We demonstrate that the method in most cases successfully predicts the holo conformation given only an apo structure.

  16. Kinetics of Receptor-Ligand Interactions in Immune Responses

    Mian Long; Shouqin Lü; Ganyun Sun

    2006-01-01

    Receptor-ligand interactions in blood flow are crucial to initiate the biological processes as inflammatory cascade,platelet thrombosis, as well as tumor metastasis. To mediate cell adhesions, the interacting receptors and ligands must be anchored onto two apposing surfaces of two cells or a cell and a substratum, i.e., the two-dimensional (2D) binding, which is different from the binding of a soluble ligand in fluid phase to a receptor, i.e., three-dimensional (3D) binding. While numerous works have been focused on 3D kinetics of receptor-ligand interactions in immune systems, 2D kinetics and its regulations have less been understood, since no theoretical framework and experimental assays have been established until 1993. Not only does the molecular structure dominate 2D binding kinetics, but the shear force in blood flow also regulates cell adhesions mediated by interacting receptors and ligands. Here we provided the overview of current progresses in 2D bindings and regulations. Relevant issues of theoretical frameworks, experimental measurements, kinetic rates and binding affinities, and force regulations,were discussed.

  17. Oxamato-based dicopper(II) metallacyclophanes as prototypes of magnetic devices for molecular spintronics : A joint experimental and computational study

    Castellano Sanz, María

    2013-01-01

    The work presented in this thesis constitutes a successful extension of our group’s research on the chemistry of dinuclear copper(II) metallacyclic complexes with dinucleating aromatic dioxamato ligands containing potential redox- and photoactive, extended -conjugated aromatic spacers. Using simple dicopper(II) metallacyclophanes as dynamic multifunctional magnetic systems to perform specific and selective tasks under the control of an external stimulus that switches “ON” and “OFF” their ele...

  18. Memetic algorithms for ligand expulsion from protein cavities

    Rydzewski, Jakub

    2015-01-01

    Ligand diffusion through a protein interior is a fundamental process governing biological signaling and enzymatic catalysis. A complex topology of channels in proteins leads often to difficulties in modeling ligand escape pathways by classical molecular dynamics simulations. In this paper two novel memetic methods for searching the exit paths and cavity space exploration are proposed: Memory Enhanced Random Acceleration (MERA) Molecular Dynamics and Immune Algorithm (IA). In MERA, a pheromone concept is introduced to optimize an expulsion force. In IA, hybrid learning protocols are exploited to predict ligand exit paths. They are tested on three protein channels with increasing complexity: M2 muscarinic GPCR receptor, enzyme nitrile hydratase and heme-protein cytochrome P450cam. In these cases, the memetic methods outperform Simulated Annealing and Random Acceleration Molecular Dynamics. The proposed algorithms are general and appropriate in all problems where an accelerated transport of an object through a n...

  19. Chiroptical activity in colloidal quantum dots coated with achiral ligands.

    Melnikau, Dzmitry; Savateeva, Diana; Gaponik, Nikolai; Govorov, Alexander O; Rakovich, Yury P

    2016-01-25

    We studied the chiroptical properties of colloidal solution of CdSe and CdSe/ZnS quantum dots (QDs) with a cubic lattice structure which were initially prepared without use of any chiral molecules and coated with achiral ligands. We demonstrate circular dichroism (CD) activity around first and second excitonic transition of these CdSe based nanocrystals. We consider that this chiroptical activity is caused by imbalance in racemic mixtures of QDs between the left and right handed nanoparticles, which appears as a result of the formation of various defects or incorporation of impurities into crystallographic structure during their synthesis. We demonstrate that optical activity of colloidal solution of CdSe QDs with achiral ligands weakly depends on the QDs size and number of ZnS monolayers, but does not depend on the nature of achiral ligands or polarity of the solution. PMID:26832599

  20. Analytical developments for screening of lanthanides/ligands interactions

    This work investigates the potential of hyphenated capillary electrophoresis and inductively coupled mass spectrometry to classify different ligands according to their europium binding affinity in a hydro-organic medium. On the one hand, this method enables to evaluate the affinity of phosphorus-containing ligands in less than two hours and using less than 15 ng of ligand. On the other hand, complexation constants could be determined. The results are in excellent agreement with the values obtained by spectrophotometric titrations.Moreover, a library of copolymers for solid/liquid extraction of europium is investigated. The extraction protocol enables to classify copolymers according to their europium affinity in a hydro-organic medium. This screening requires 60 mg of copolymers. For the most promising recognition properties and selectivity La3+/Eu3+/Lu3+ are evaluated. (author)

  1. Memetic algorithms for ligand expulsion from protein cavities

    Rydzewski, J.; Nowak, W.

    2015-09-01

    Ligand diffusion through a protein interior is a fundamental process governing biological signaling and enzymatic catalysis. A complex topology of channels in proteins leads often to difficulties in modeling ligand escape pathways by classical molecular dynamics simulations. In this paper, two novel memetic methods for searching the exit paths and cavity space exploration are proposed: Memory Enhanced Random Acceleration (MERA) Molecular Dynamics (MD) and Immune Algorithm (IA). In MERA, a pheromone concept is introduced to optimize an expulsion force. In IA, hybrid learning protocols are exploited to predict ligand exit paths. They are tested on three protein channels with increasing complexity: M2 muscarinic G-protein-coupled receptor, enzyme nitrile hydratase, and heme-protein cytochrome P450cam. In these cases, the memetic methods outperform simulated annealing and random acceleration molecular dynamics. The proposed algorithms are general and appropriate in all problems where an accelerated transport of an object through a network of channels is studied.

  2. The thermodynamic principles of ligand binding in chromatography and biology

    Mollerup, Jørgen

    2007-01-01

    In chromatography, macromolecules do not adsorb in the traditional sense of the word but bind to ligands that are covalently bonded to the surface of the porous bead. Therefore, the adsorption must be modelled as a process where protein molecules bind to the immobilised ligands. The paper discusses...... it is also observed in chromatography due to protein-protein interactions. Retention measurements on P-lactoglobulin A demonstrate this. A discussion of salt effects on hydrophobic interactions in precipitation and chromatography of proteins concludes the paper. (c) 2007 Elsevier B.V. All rights...... the general thermodynamic principles of ligand binding. Models of the multi-component adsorption in ion-exchange and hydrophobic chromatography, HIC and RPLC, are developed. The parameters in the models have a well-defined physical significance. The models are compared to the Langmuir model. In the...

  3. Protecting Ligands Enhance Selective Targeting of Multivalent Nanoparticles

    Angioletti-Uberti, Stefano

    2016-01-01

    Nanoparticles functionalized with multiple ligands can be programmed to bind biological targets, e.g. cells, depending on the receptors they express, providing a general platform for the development of different technologies, from selective drug-delivery to biosensing. In order to be highly selective ligands should exclusively bind to specific targeted receptors, since formation of bonds with other, untargeted ones would lead to non-specific binding and potentially harmful behaviour. This poses a particular problem for multivalent nanoparticles, because even very weak bonds can collectively lead to strong binding. A statistical mechanical model is presented here to describe the extent to which bond strength and nanoparticle valency can induce non-selective adsorption. The same model is used to describe a possible solution: functionalization of the nanoparticles with "protective" receptors. The latter compete with cell receptors for the targeting ligands, and can be optimized to strongly reduce the effect of u...

  4. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La3+, Eu3+ and Er3+) was studied with ethyl derivatives of BTBP (C2BTBP) and BTBPhen (C2BTPhen) and pentyl derivative of BTBP (C5BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  5. Docking Screens for Novel Ligands Conferring New Biology.

    Irwin, John J; Shoichet, Brian K

    2016-05-12

    It is now plausible to dock libraries of 10 million molecules against targets over several days or weeks. When the molecules screened are commercially available, they may be rapidly tested to find new leads. Although docking retains important liabilities (it cannot calculate affinities accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in libraries, target quality, and methods that have supported these advances, and the open access resources that make docking accessible. Recent docking screens for new ligands are sketched, as are the binding, crystallographic, and in vivo assays that support them. Like any technique, controls are crucial, and key experimental ones are reviewed. With such controls, docking campaigns can find ligands with new chemotypes, often revealing the new biology that may be docking's greatest impact over the next few years. PMID:26913380

  6. Aryl hydrocarbon receptor ligands in cancer: friend and foe.

    Murray, Iain A; Patterson, Andrew D; Perdew, Gary H

    2014-12-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known for mediating the toxicity and tumour-promoting properties of the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, commonly referred to as ‘dioxin’. AHR influences the major stages of tumorigenesis — initiation, promotion, progression and metastasis — and physiologically relevant AHR ligands are often formed during disease states or during heightened innate and adaptive immune responses. Interestingly, ligand specificity and affinity vary between rodents and humans. Studies of aggressive tumours and tumour cell lines show increased levels of AHR and constitutive localization of this receptor in the nucleus. This suggests that the AHR is chronically activated in tumours, thus facilitating tumour progression. This Review discusses the role of AHR in tumorigenesis and the potential for therapeutic modulation of its activity in tumours. PMID:25568920

  7. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  8. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL2(H2O)2]n·2nH2O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H2adbc), terephthalic acid (H2tpa), thiophene-2,5-dicarboxylic acid (H2tdc) and 1,4-benzenedithioacetic acid (H2bdtc), four 3D structures [Co2L2(adbc)]n·nH2O (2), [Co2L2(tpa)]n (3), [Co2L2(tdc)]n (4), [Co2L2(bdtc)(H2O)]n (5) were obtained, respectively. It can be observed from the architectures of 1-5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated.

  9. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-12-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H2ndc) or 4,4‧-(hydroxymethylene)dibenzoic acid (H2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd2(2,6-ndc)2(bpp)(DMF)]·2DMF (1) and [Cd3(hmdb)3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional 'Lucky Clover' shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process.

  10. New formamidine ligands and their mixed ligand palladium(II) oxalate complexes: Synthesis, characterization, DFT calculations and in vitro cytotoxicity

    Soliman, Ahmed A.; Alajrawy, Othman I.; Attabi, Fawzy A.; Shaaban, Mohamed R.; Linert, W.

    2016-01-01

    A series of new ternary palladium(II) complexes of the type [Pd(L1-4)ox]·xH2O where L = formamidine ligands and ox = oxalate, were synthesized and characterized by elemental analyses, magnetic susceptibility, UV-Vis, infrared (IR) and mass spectroscopy and thermal analysis. The spectroscopic data indicated that the formamidine ligands act as bidentate N2 donors and the oxalate as O2 ligand. The complexes (1-4) are diamagnetic and the optimization of their structures indicated that the geometry is distorted square planer with O-Pd-O and N-Pd-N bond angles ranged 82.70-83.87° and 88.21-95.02°; respectively which is acceptable for the heteroleptic complexes. The dipole moment of the complexes (13.97-18.77 Debye) indicating that the complexes are more polarized than the ligands (1.93-4.96 Debye). The complexes are thermally stable as shown from their relatively higher overall activation energies (441-688 kJ mol-1). The ligands and the complexes are proved to have good cytotoxicity with IC50 (μM) in the range of (0.011-0.168) against MCF-7, (0.012-0.150) against HCT-116, (0.042-0.094) against PC-3 and (0.006-0.222) against HepG-2 cell lines, which open the field for further application as antitumor compounds.

  11. Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

    Jiang, Jing

    2015-03-19

    Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  12. Identification of Physiologically Active Substances as Novel Ligands for MRGPRD

    Makiko Uno; Satoko Nishimura; Keisuke Fukuchi; Yasuyuki Kaneta; Yoko Oda; Hironobu Komori; Shigeki Takeda; Tatsuya Haga; Toshinori Agatsuma; Futoshi Nara

    2012-01-01

    Mas-related G-protein coupled receptor member D (MRGPRD) is a G protein-coupled receptor (GPCR) which belongs to the Mas-related GPCRs expressed in the dorsal root ganglia (DRG). In this study, we investigated two novel ligands in addition to beta-alanine: (1) beta-aminoisobutyric acid, a physiologically active substance, with which possible relation to tumors has been seen together with beta-alanine; (2) diethylstilbestrol, a synthetic estrogen hormone. In addition to the novel ligands, we f...

  13. Designer ligands: The search for metal ion selectivity

    Perry T. Kaye

    2011-03-01

    Full Text Available The paper reviews research conducted at Rhodes University towards the development of metal-selective ligands. The research has focused on the rational design, synthesis and evaluation of novel ligands for use in the formation of copper complexes as biomimetic models of the metalloenzyme, tyrosinase, and for the selective extraction of silver, nickel and platinum group metal ions in the presence of contaminating metal ions. Attention has also been given to the development of efficient, metal-selective molecular imprinted polymers.

  14. Complexation of neptunium(V) by polyaminocarboxylate ligands

    The stability constants of complexes of NpO2+ ion with a series of polyaminocarboxylate, oxydiacetate (ODA) and thiodiacetate (TDA) ligands were determined using spectrophotometric and potentiometric techniques. The measurements were conducted at an ionic strength of 0.50 M (NaClO4). By contrast to lanthanide complexation, the interaction of the ether oxygen of ODA with NpO2+ cation is very small whereas TDA acts only as a monodentate ligand via one of the carboxylate groups. (orig.)

  15. Spectroscopic study of cadmium (II) complexes with heterocyclic dithiocarbamate ligands

    Garcia-Fontan, S. (Departamento de Quimica Pura y Aplicada, Universidad de Vigo (Spain)); Rodriguez-Seoane, P. (Departamento de Quimica Pura y Aplicada, Universidad de Vigo (Spain)); Casas, J.S. (Departamento de Quimica Inorganica, Universidad de Santiago de Compostela (Spain)); Sordo, J. (Departamento de Quimica Inorganica, Universidad de Santiago de Compostela (Spain)); Jones, M.M. (Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN (United States))

    1993-09-15

    Cadmium(II) dithiocarbamates Cd(dtc)[sub 2] (dtc=4-carboxamidopiperidine-1-carbodithioate, morpholine-1-carbodithioate or 4-(2-hydroxyethyl)piperazine-1-carbodithioate) and Cd(dtc)[sub 2].H[sub 2]O (dtc=4-hydroxypiperidine-1-carbodithioate)[r brace] have been prepared and characterized by thermal analysis and IR and NMR ([sup 13]C, [sup 113]Cd) spectrometry. Two of these ligands have previously been shown capable of removing cadmium from its aged in vivo storage sites. The use of solid state [sup 13]C NMR measurements to establish the coordination mode of the dithiocarbomate ligands is also examined and the difficulties which arise are discussed. (orig.)

  16. Two ligands for a GPCR, proton vs lysolipid

    Dong-soon IM

    2005-01-01

    Recently, two different chemicals have been matched as ligands with the same Gprotein-coupled receptor (GPCR). Double-pairing of OGR1 family GPCRs with proton and lysolipid raises several questions. First, whether both are the real ligands for the GPCRs. Second, whether modulation of a GPCR by two chemicals could be possible. Third, one of the chemicals is proton. Proton-sensing not only is a new action mode of GPCR activation, but also it could be generalized in other GPCRs.In this review, I'd like to summarize the issue and discuss questions with pharmacological criteria.

  17. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Beda Brichacek

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  18. Sequestering agent for uranyl chelation: new bi-naphtyl ligands

    The synthesis of phosphonate, sulfocatecholamide (CAMS) and hydroxy-pyridinone (HOPO) bi-naphtyl ligands is presented. Their binding abilities for uranyl cation were determined by UV spectrophotometry in aqueous media versus pH. These titrations showed that the efficiency of these chelating agents depends on the nature of the chelating group. Each ligand shows a more or less pronounced affinity towards uranium. While the bis-phosphonate compound did not show any affinity towards the uranyl ion, the BINHOPO derivative exhibits significant affinity at acidic and neutral pH while the BINCAMS is more efficient at basic pH. (authors)

  19. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  20. Coordination chemistry of poly(thioether)borate ligands.

    Riordan, Charles G

    2010-08-01

    This review traces the development and application of the tris(thioether)borate ligands, tripodal ligands with highly polarizable thioether donors. Areas of emphasis include the basic coordination chemistry of the mid-to-late first row transition metals (Fe, Ni, Co, Cu), and the role of the thioether substituent in directing complex formation, the modeling of zinc thiolate protein active sites, high-spin organo-iron and organo-cobalt chemistry, the preparation of monovalent complexes of Fe, Co and Ni, and dioxygen and sulfur activation by monovalent nickel complexes. PMID:20607091

  1. Ligand-assisted capillary electrophoresis separations of the lanthanides

    Capillary electrophoresis is used with simple organic ligands added to the electrolyte matrix to achieve separation of the individual lanthanide cations. Results for acetate (AC-) and malonate (MA-) yield good resolution for the lighter lanthanides, but not the heavier lanthanides. In contrast, α-hydroxyisobutyrate (HIB-) gives complete resolution for all of the lanthanide cations. These results are related to the complexation chemistry between the lanthanides and the ligands across the lanthanide series. In addition, preliminary results for lanthanide separations using AC- in mixed methanol:water solvent systems are provided. The presence of methanol improves resolution but slows the separation. (author)

  2. Predicting Electrophoretic Mobility of Protein-Ligand Complexes for Ligands from DNA-Encoded Libraries of Small Molecules.

    Bao, Jiayin; Krylova, Svetlana M; Cherney, Leonid T; Hale, Robert L; Belyanskaya, Svetlana L; Chiu, Cynthia H; Shaginian, Alex; Arico-Muendel, Christopher C; Krylov, Sergey N

    2016-05-17

    Selection of target-binding ligands from DNA-encoded libraries of small molecules (DELSMs) is a rapidly developing approach in drug-lead discovery. Methods of kinetic capillary electrophoresis (KCE) may facilitate highly efficient homogeneous selection of ligands from DELSMs. However, KCE methods require accurate prediction of electrophoretic mobilities of protein-ligand complexes. Such prediction, in turn, requires a theory that would be applicable to DNA tags of different structures used in different DELSMs. Here we present such a theory. It utilizes a model of a globular protein connected, through a single point (small molecule), to a linear DNA tag containing a combination of alternating double-stranded and single-stranded DNA (dsDNA and ssDNA) regions of varying lengths. The theory links the unknown electrophoretic mobility of protein-DNA complex with experimentally determined electrophoretic mobilities of the protein and DNA. Mobility prediction was initially tested by using a protein interacting with 18 ligands of various combinations of dsDNA and ssDNA regions, which mimicked different DELSMs. For all studied ligands, deviation of the predicted mobility from the experimentally determined value was within 11%. Finally, the prediction was tested for two proteins and two ligands with a DNA tag identical to those of DELSM manufactured by GlaxoSmithKline. Deviation between the predicted and experimentally determined mobilities did not exceed 5%. These results confirm the accuracy and robustness of our model, which makes KCE methods one step closer to their practical use in selection of drug leads, and diagnostic probes from DELSMs. PMID:27119259

  3. Glucagon-like peptide-1 receptor ligand interactions: structural cross talk between ligands and the extracellular domain.

    Graham M West

    Full Text Available Activation of the glucagon-like peptide-1 receptor (GLP-1R in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM. Like other class B G protein-coupled receptors (GPCRs, the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R. In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.

  4. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long, E-mail: sky37@zjnu.cn

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n} (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.

  5. Organoosmium complexes of imidazole-containing chelate acceptor ligands

    Sarper, O.; Sarkar, B.; Fiedler, Jan; Lissner, F.; Kaim, W.

    2010-01-01

    Roč. 363, č. 12 (2010), s. 3070-3077. ISSN 0020-1693 R&D Projects: GA MŠk OC09043 Institutional research plan: CEZ:AV0Z40400503 Keywords : arene ligand * electrochemistry * electronic structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.899, year: 2010

  6. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    Tang, Jiang

    2011-09-18

    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication. © 2011 Macmillan Publishers Limited. All rights reserved.

  7. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    A. Beaudet

    1998-11-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  8. Synergistic Effects of PPARγ Ligands and Retinoids in Cancer Treatment

    Masahito Shimizu

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the nuclear receptor superfamily. The activation of PPARs by their specific ligands is regarded as one of the promising strategies to inhibit cancer cell growth. However, recent clinical trials targeting several common cancers showed no beneficial effect when PPAR ligands are used as a monotherapy. Retinoid X receptors (RXRs, which play a critical role in normal cell proliferation as a master regulator for nuclear receptors, preferentially form heterodimers with PPARs. A malfunction of RXRα due to phosphorylation by the Ras/MAPK signaling pathway is associated with the development of certain types of human malignancies. The activation of PPARγ/RXR heterodimer by their respective ligands synergistically inhibits cell growth, while inducing apoptosis in human colon cancer cells when the phosphorylation of RXRα was inhibited. We herein review the synergistic antitumor effects produced by the combination of the PPAR, especially PPARγ, ligands plus other agents, especially retinoids, in a variety of human cancers. We also focus on the phosphorylation of RXRα because the inhibition of RXRα phosphorylation and the restoration of its physiological function may activate PPAR/RXR heterodimer and, therefore, be a potentially effective and critical strategy for the inhibition of cancer cell growth.

  9. The imidazoline receptors and ligands in pain modulation.

    Bektas, Nurcan; Nemutlu, Dilara; Arslan, Rana

    2015-01-01

    Pain is an unpleasant experience and effects daily routine negatively. Although there are various drugs, many of them are not entirely successful in relieving pain, since pain modulation is a complex process involving numerous mediators and receptors. Therefore, it is a rational approach to identify the factors involved in the complex process and develop new agents that act on these pain producing mechanisms. In this respect, the involvement of the imidazoline receptors in pain modulation has drawn attention in recent years. In this review, it is aimed to focus on the imidazoline receptors and their ligands which contribute to the pain modulation. It is demonstrated that imidazoline-2 (I2) receptors are steady new drug targets for analgesics. Even if the mechanism of I2 receptor is not well known in the modulation of pain, it is known that it plays a role in tonic and chronic pain but not in acute phasic pain. Moreover, the I2 receptor ligands increase the analgesic effects of opioids in both acute and chronic pain and prevent the development of opioid tolerance. So, they are valuable for the chronic pain treatment and also therapeutic coadjuvants in the management of chronic pain with opiate drugs due to the attenuation of opioid tolerance and addiction. Thus, the use of the ligands which bind to the imidazoline receptors is an effective strategy for relieving pain. This educational forum exhibits the role of imidazoline receptors and ligands in pain process by utilizing experimental studies. PMID:26600633

  10. A Guided Inquiry Activity for Teaching Ligand Field Theory

    Johnson, Brian J.; Graham, Kate J.

    2015-01-01

    This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…

  11. Ligand Induced Spin Crossover in Penta-Coordinated Ferric Dithiocarbamates

    Ganguli, P.; Iyer, R. M.

    1981-09-01

    On addition of lewis bases to Fe(dtc)2X, ligand exchange takes place through a SN2 mechanism, with a parallel spin crossover in the ferric ion. The two species (S = 3/2 and S = 5/2) formed are in dynamic chemical equilibrium, and a slow decomposition is then initiated.

  12. Ligand for neurotransmission SPECT in extra-pyramidal diseases

    It is now possible to study by scintigraphy some parameters of dopaminergic neurotransmission with iodinated ligands. Some clinical studies have shown the interest of this kind of exploration for the early diagnosis, the differential diagnosis and the follow-up of evolution and treatment of the different extra pyramidal pathologies. However, advances are still expected in several fields (tracers, cameras resolutions). (N.C.)

  13. Helquats as a new class of G-quadruplex ligands

    Devadig, Pradeep; Kozák, Jaroslav; Kužmová, Erika; Hubálková, Pavla; Novotná, J.; Komárková, Veronika; Císařová, I.; Šaman, David; Pohl, Radek; Bednárová, Lucie; Urbanová, M.; Hájek, Miroslav; Teplý, Filip

    Praha: Czech Chemical Society, 2015. s. 66. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA ČR GA13-19213S Institutional support: RVO:61388963 Keywords : helquats * G-quadruplex ligands Subject RIV: CC - Organic Chemistry

  14. Dependence of acridine adsorption on ligand hydration enthalpy

    Matzner, R.; Bales, R.C. (Univ. of Arizona, Tucson, AZ (United States). Dept. of Hydrology and Water Resources)

    1994-11-01

    The environmental fate of acridine is of concern because of its toxic and teratogenic properties. It is found in tobacco smoke, air pollution source effluents, recent lake sediments, wood preservative wastewater, wastewater treatment plant biosludge, and contaminated groundwater. The effect of the aqueous solution pH and ligand type (H[sub 2]PO[sup [minus

  15. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  16. Ligand and ensemble effects in adsorption on alloy surfaces

    Liu, Ping; Nørskov, Jens Kehlet

    2001-01-01

    Density functional theory is used to study the adsorption of carbon monoxide, oxygen and nitrogen on various Au/Pd(111) bimetallic alloy surfaces. By varying the Au content in the surface we are able to make a clear separation into geometrical (or ensemble) effects and electronic (or ligand......) effects determining the adsorption properties....

  17. Optimal Overlay of Ligands with Flexible Bonds Using Differential Evolution

    Kristensen, Thomas Greve; Pedersen, Christian Storm

    2009-01-01

    spatial alignment of a set of active ligands taking the flexibility of chemical bonds into account. We present two implementations of our method. One using Differential Evolution (DE) for numerical optimization, and one using the Nelder-Mead method for numerical optimization. We investigate the quality of...

  18. Group 4 Metal Complexes of Chelating Cyclopentadienyl-ketimide Ligands

    Večeřa, M.; Varga, Vojtěch; Císařová, I.; Pinkas, Jiří; Kucharczyk, P.; Sedlařík, V.; Lamač, Martin

    2016-01-01

    Roč. 35, č. 5 (2016), s. 785-798. ISSN 0276-7333 R&D Projects: GA ČR(CZ) GA14-08531S; GA MŠk(CZ) LO1504 Institutional support: RVO:61388955 Keywords : group 4 metal complexes * cyclopentadienyl-ketimide ligands * metallocenes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.126, year: 2014

  19. NMR-based screening of membrane protein ligands

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; Van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-01-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with

  20. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  1. Optimal Overlay of Ligands with Flexible Bonds Using Differential Evolution

    Pedersen, Christian Storm; Kristensen, Thomas Greve

    When designing novel drugs, the need arise to screen databases for structures resembling active ligands, e.g. by generating a query meta-structure which summarizes these. We propose a flexible bond method for making a meta-structure and present Monte Carlo, Nelder-Mead and Differential Evolution...

  2. The imidazoline receptors and ligands in pain modulation

    Nurcan Bektas

    2015-01-01

    Full Text Available Pain is an unpleasant experience and effects daily routine negatively. Although there are various drugs, many of them are not entirely successful in relieving pain, since pain modulation is a complex process involving numerous mediators and receptors. Therefore, it is a rational approach to identify the factors involved in the complex process and develop new agents that act on these pain producing mechanisms. In this respect, the involvement of the imidazoline receptors in pain modulation has drawn attention in recent years. In this review, it is aimed to focus on the imidazoline receptors and their ligands which contribute to the pain modulation. It is demonstrated that imidazoline-2 (I2 receptors are steady new drug targets for analgesics. Even if the mechanism of I2receptor is not well known in the modulation of pain, it is known that it plays a role in tonic and chronic pain but not in acute phasic pain. Moreover, the I2receptor ligands increase the analgesic effects of opioids in both acute and chronic pain and prevent the development of opioid tolerance. So, they are valuable for the chronic pain treatment and also therapeutic coadjuvants in the management of chronic pain with opiate drugs due to the attenuation of opioid tolerance and addiction. Thus, the use of the ligands which bind to the imidazoline receptors is an effective strategy for relieving pain. This educational forum exhibits the role of imidazoline receptors and ligands in pain process by utilizing experimental studies.

  3. Synthesis and evaluation of potential ligands for nuclear waste processing

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In

  4. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  5. GluR2 ligand-binding core complexes

    Kasper, C; Lunn, M-L; Liljefors, T; Gouaux, E; Egebjerg, J; Kastrup, Jette Sandholm Jensen

    2002-01-01

    X-ray structures of the GluR2 ligand-binding core in complex with (S)-Des-Me-AMPA and in the presence and absence of zinc ions have been determined. (S)-Des-Me-AMPA, which is devoid of a substituent in the 5-position of the isoxazolol ring, only has limited interactions with the partly hydrophobic...

  6. Solvent-induced desorption of alkanethiol ligands from Au nanoparticles.

    Huang, Yuanyuan; Liu, Wei; Cheng, Hao; Yao, Tao; Yang, Lina; Bao, Jie; Huang, Ting; Sun, Zhihu; Jiang, Yong; Wei, Shiqiang

    2016-06-21

    Removing surfactants from a colloidal metal nanoparticle surface is necessary for their realistic applications, and how they could be stripped is a subject of active investigation. Here, we report a solvent-induced desorption of dodecanethiol ligands from the gold nanoparticle surface, and traced this desorption process using a combination of in situ X-ray absorption fine structure (XAFS) and Raman spectroscopic techniques. In situ analysis results reveal that the solvent exchange of ethanol with tetrahydrofuran (THF) can effectively remove dodecanethiol ligands while keeping the particle morphology unchanged. Upon increasing the THF/ethanol ratio from 0 : 1 to 5 : 1, the surface coverage of thiol on the Au surface is reduced from 0.47 to 0.07, suggesting the depletion of ligands first from the nanoparticle facet sites, then from the edge sites, while the ligands at the corner sites are intact. This work enriches our knowledge on surfactant removal and may pave the way towards preparing surface-clean nanoparticles for practical applications. PMID:27241025

  7. Ultrafast Electron Trapping in Ligand-Exchanged Quantum Dot Assemblies

    Kikkawa, J. M.; Turk, M. E.; Vora, P. M.; Fafarman, A. T.; Diroll, B. T.; Murray, C. B.; Kagan, C. R.

    2015-03-01

    We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature (10 K) optical properties of CdSe quantum dot (QD) solids with different ligand and annealing preparation. Close-packed CdSe quantum dot solids are prepared with native aliphatic ligands and with thiocyanate with and without thermal annealing. Using sub-picosecond, broadband time-resolved photoluminescence and absorption, we find that ligand exchange increases the rate of carrier surface trapping. We further determine that holes within the QD core, rather than electrons, can bleach the band-edge transition in these samples at low temperature, a finding that comes as a surprise given what is known about the surface treatment in these QDs. We find that our ligand treatments lead to faster electron trapping to the quantum dot surface, a greater proportion of surface photoluminescence, and an increased rate of nonradiative decay due to enhanced interparticle coupling upon exchange and annealing. All aspects of this work supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award No. DE-SC0002158.

  8. Modeling of metal interaction geometries for protein-ligand docking.

    Seebeck, Birte; Reulecke, Ingo; Kämper, Andreas; Rarey, Matthias

    2008-05-15

    The accurate modeling of metal coordination geometries plays an important role for structure-based drug design applied to metalloenzymes. For the development of a new metal interaction model, we perform a statistical analysis of metal interaction geometries that are relevant to protein-ligand complexes. A total of 43,061 metal sites of the Protein Data Bank (PDB), containing amongst others magnesium, calcium, zinc, iron, manganese, copper, cadmium, cobalt, and nickel, were evaluated according to their metal coordination geometry. Based on statistical analysis, we derived a model for the automatic calculation and definition of metal interaction geometries for the purpose of molecular docking analyses. It includes the identification of the metal-coordinating ligands, the calculation of the coordination geometry and the superposition of ideal polyhedra to identify the optimal positions for free coordination sites. The new interaction model was integrated in the docking software FlexX and evaluated on a data set of 103 metalloprotein-ligand complexes, which were extracted from the PDB. In a first step, the quality of the automatic calculation of the metal coordination geometry was analyzed. In 74% of the cases, the correct prediction of the coordination geometry could be determined on the basis of the protein structure alone. Secondly, the new metal interaction model was tested in terms of predicting protein-ligand complexes. In the majority of test cases, the new interaction model resulted in an improved docking accuracy of the top ranking placements. PMID:18041759

  9. NMR-based screening of membrane protein ligands.

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; van Vliet, Bart; van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-03-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with ligands non-specifically, overlap with protein signals, modulate protein dynamics and conformational exchange and compromise sensitivity by adding highly intense background signals. In this article, we discuss the special considerations arising from these problems when conducting NMR-based ligand-binding studies with membrane proteins. While the use of (13)C and (15)N isotopes is becoming increasingly feasible, (19)F and (1)H NMR-based approaches are currently the most widely explored. By using suitable NMR parameter selection schemes independent of or exploiting the presence of detergent, (1)H-based approaches require least effort in sample preparation because of the high sensitivity and natural abundance of (1)H in both, ligand and protein. On the other hand, the (19)F nucleus provides an ideal NMR probe because of its similarly high sensitivity to that of (1)H and the lack of natural (19)F background in biologic systems. Despite its potential, the use of NMR spectroscopy is highly underdeveloped in the area of drug discovery for membrane proteins. PMID:20331645

  10. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  11. Magnesium incorporation in calcite in the presence of organic ligands

    Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2015-04-01

    The formation of authigenic Mg-calcites in marine early diagenetic environments is commonly driven by a bio-induced process, the anaerobic oxidation of methane (AOM), which provides inorganic carbon required for the precipitation of such authigenic carbonates. In such settings the availability of major and/or trace divalent metal cations (Me2+) incorporated in calcite and their aqueous speciation are controlled by the presence of aqueous organic molecules that are produced either as (by-)products of biological activity (i.e. exopolymeric substances) or during degradation of allochthonous organic matter in the sediments. Despite the fact that the presence of aqueous organic ligands strongly affects the growth rates and the mineralogy of precipitating CaCO3 polymorphs, till now no study addresses the role of Me2+-ligand aqueous complexes on the extent of Mg and/or other trace element content of Mg-calcites. In order to shed light on this process, relevant to authigenic calcite formation in organic-rich marine sediments and continental soils, we precipitated calcite in the presence of aqueous Mg and a variety of low molecular weight carboxylic- and aminoacids. Our experimental data indicate that the presence of organic ligands augments significantly the saturation state of calcite in the parent fluid during its precipitation. Moreover, they suggest that the higher the ligand concentration, the higher the obtained distribution coefficient of Mg in calcite. The latter is directly proportional to the ratio of Mg2+/Ca2+ aqueous ions for all ligands used. Hydrogeochemical modelling of the aqueous fluids indicate that the observed correlation can be explained by the stronger complexation of Ca2+ with organic ligands compared to Mg2+, which results in higher availability of Mg2+ vs. Ca2+ aqueous ions. Overall the obtained results suggest that the higher the organic ligand aqueous concentration the higher the Mg content of calcite forming from this fluid. These findings are

  12. Specific uranyl binding by macrocyclic ligands attached to resins

    Macrocyclic polydentates have attracted enormous attention from chemists because of their unique and significant characteristics of the strong and selective binding of a variety of metal ions. The metal binding is governed mostly by the size of the macroring and the nature of heteroatoms involved. The most important role of the macrocyclic structure is, in general, the so-called macrocyclic effect - to increase (making less negative) a large negative entropy change involved in the polydentate chelation. Basic strategy of uranium binding, is to design a ligand of very strong metal binding to take advantage of this macrocyclic effect, where number of chelating heteroatoms and their spatial arrangement is designed to be most appropriate for uranyl (UO22+) binding, since in natural sea water uranium is dissolved mostly in a form of uranyl carbonate. The following macrocylic ligands, hexamine, hexaketone, hexacarboxylic acid, were prepared and tested. The macrocyclic hexacarboxylic ligand was the most promising. The addition of hexacarboxylic acid to a uranyl tricarbonate solution gave a change of visible absorption due to the competitive formation of the uranyl complex. From this competitive binding, a relative formation constant was estimated to be 10-5, giving a log K/sub f/ value of 16.4 at 250C for the uranyl complex. This value is the largest among the hosts ever reported to bind uranyl ion.The selectivity of the macrocyclic hexacarboxylic ligand was also ascertained by testing with other metal cations. Results indicate that uranyl ions can be extracted efficiently from sea water using the hexacarboxylic acid ligands which are attached to a polymer insoluble in water

  13. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space.

    van Linden, Oscar P J; Kooistra, Albert J; Leurs, Rob; de Esch, Iwan J P; de Graaf, Chris

    2014-01-23

    Protein kinases regulate the majority of signal transduction pathways in cells and have become important targets for the development of designer drugs. We present a systematic analysis of kinase-ligand interactions in all regions of the catalytic cleft of all 1252 human kinase-ligand cocrystal structures present in the Protein Data Bank (PDB). The kinase-ligand interaction fingerprints and structure database (KLIFS) contains a consistent alignment of 85 kinase ligand binding site residues that enables the identification of family specific interaction features and classification of ligands according to their binding modes. We illustrate how systematic mining of kinase-ligand interaction space gives new insights into how conserved and selective kinase interaction hot spots can accommodate the large diversity of chemical scaffolds in kinase ligands. These analyses lead to an improved understanding of the structural requirements of kinase binding that will be useful in ligand discovery and design studies. PMID:23941661

  14. Ligand flexibility and framework rearrangement in a new family of porous metal-organic frameworks

    Hawxwell, Samuel M; Espallargas, Guillermo Mínguez; Bradshaw, Darren; Rosseinsky, Matthew J; Prior, Timothy J; Florence, Alastair J; van de Streek, Jacco; Brammer, Lee

    Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs.......Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs....

  15. Synthesis of Yttrium and Aluminum Complexes Supported by a Mono-Substituted Ferrocene Ligand

    Gao, Jun

    2015-01-01

    Ferrocene chelating ligands provide good stability of the resulting metal complexes and redox-switchable control in chemical processes catalyzed by those complexes. In comparison to traditional di-substituted ferrocene tetradentate ligands, mono-substituted tridentate ferrocene ligands may form metal complexes with a more open coordination sphere around the metal center that may allow an increased preference for substrate coordination. In addition, a mono-substituted ferrocene ligand allows t...

  16. Development of high performance structure and ligand based virtual screening techniques

    Shave, Steven R.

    2010-01-01

    Virtual Sreening (VS) is an in silico technique for drug discovery. An overview of VS methods is given and is seen to be approachable from two sides: structure based and ligand based. Structure based virtual screening uses explicit knowledge of the target receptor to suggest candidate receptor-ligand complexes. Ligand based virtual screening can infer required characteristics of binders from known ligands. A consideration for all virtual screening techniques is the amount of co...

  17. Computational approaches to modeling receptor flexibility upon ligand binding: Application to interfacially activated enzymes

    Wade, R.C.; Sobolev, V.; Ortiz, A.R. .;

    1998-01-01

    Receptors generally undergo conformational change upon ligand binding. We describe how fairly simple techniques may be used in docking and design studies to account for some of the changes in the conformations of proteins on ligand binding. Simulations of protein-ligand interactions that give a m...... a more complete description of the dynamics important for ligand binding are then discussed. These methods are illustrated for phospholipase A(2) and lipase, enzymes that both undergo interfacial activation....

  18. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

    Ina Rianasari; de Jong, Michel P.; Jurriaan Huskens; van der Wiel, Wilfred G.

    2013-01-01

    We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functio...

  19. Measurement of solubilities for rhodium complexes and phosphine ligands in supercritical carbon dioxide

    Shimoyama, Yusuke; Sonoda, Masanori; Miyazaki, Kaoru; Higashi, Hidenori; Iwai, Yoshio; ARAI, Yasuhiko

    2008-01-01

    The solubilities of phosphine ligands and rhodium (Rh) complexes in supercritical carbon dioxide were measured with Fourier transform infrared (FT-IR) spectroscopy at 320 and 333 K and several pressures. Triphenylphosphine (TPP) and tris(p-trifluoromethylphenyl)-phosphine (TTFMPP) were selected as ligands for the Rh complex. The solubilities of the fluorinated ligands and complexes were compared with those of the non-fluorinated compounds. The solubilities of ligand increased up to 10 times b...

  20. A New Method for Ligand Docking to Flexible Receptors by Dual Alanine Scanning and Refinement (SCARE)

    Bottegoni, Giovanni; Kufareva, Irina; Totrov, Maxim; Abagyan, Ruben

    2008-01-01

    Protein binding sites undergo ligand specific conformational changes upon ligand binding. However, most docking protocols rely on a fixed conformation of the receptor, or on the prior knowledge of multiple conformations representing the variation of the pocket, or on a known bounding box for the ligand. Here we described a general induced fit docking protocol that requires only one initial pocket conformation and identifies most of the correct ligand positions as the lowest score. We expanded...

  1. Heteroskorpionate Ligands In Coordination Chemistry – Complexes Relevant To Hydrogenation Catalysis, Olefine Epoxidation, And Inhibitor Studies

    Tampier, Stefan

    2012-01-01

    This work focuses on (i) the syntheses and characterisations of various ruthenium(II) complexes bearing the bdmpza ligand, (ii) complexes based on the new bis(3,5-di-tert-butylpyrazol-1-yl)dithioacetato ligand, (iii) complexes based on bispyrazolylacetate esters, and (iv) the syntheses and characteristics of ferrocenyl-substituted ligands derived from bispyrazolylacetic acid and related chelating ligands. Chapter 3.1.2 outlines principle substitution reactions of [Ru(bdmpza)Cl(PPh3)2] (1) [bd...

  2. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function.

    Julia Müller

    Full Text Available Fucosylation of Epidermal Growth Factor-like (EGF repeats by protein O-fucosyltransferase 1 (POFUT1 in vertebrates, OFUT1 in Drosophila is pivotal for NOTCH function. In Drosophila OFUT1 also acts as chaperone for Notch independent from its enzymatic activity. NOTCH ligands are also substrates for POFUT1, but in Drosophila OFUT1 is not essential for ligand function. In vertebrates the significance of POFUT1 for ligand function and subcellular localization is unclear. Here, we analyze the importance of O-fucosylation and POFUT1 for the mouse NOTCH ligand Delta-like 1 (DLL1. We show by mass spectral glycoproteomic analyses that DLL1 is O-fucosylated at the consensus motif C²XXXX(S/TC³ (where C² and C³ are the second and third conserved cysteines within the EGF repeats found in EGF repeats 3, 4, 7 and 8. A putative site with only three amino acids between the second cysteine and the hydroxy amino acid within EGF repeat 2 is not modified. DLL1 proteins with mutated O-fucosylation sites reach the cell surface and accumulate intracellularly. Likewise, in presomitic mesoderm cells of POFUT1 deficient embryos DLL1 is present on the cell surface, and in mouse embryonic fibroblasts lacking POFUT1 the same relative amount of overexpressed wild type DLL1 reaches the cell surface as in wild type embryonic fibroblasts. DLL1 expressed in POFUT1 mutant cells can activate NOTCH, indicating that POFUT1 is not required for DLL1 function as a Notch ligand.

  3. Novel bispidine ligands with a possible application in nuclear medicine

    Due to our current way of life and the environmental influences we are exposed in the industrial nations, cancer diseases turn out to be a more and more serious threat to our civilization. The ongoing research during the last decades leads to a better insight in cancer diseases and enables an earlier recognition of developing carcinoma. The detection of pathological tissue changes at an early stage increases the patients' chances of cure. Magnetic resonance tomography (MRT) and computed tomography (CT) as well as radiopharmaceutically assisted imaging techniques, like positron emission tomography (PET) and scintigraphy are an indispensable clinical tool in the oncological early diagnosis. By the development of multimodality imaging agents that combine the benefits of several imaging techniques, the early recognition of tumors can be more efficient and in consequence a matching therapy can be applied. This thesis deals with the synthesis of novel bispidine based ligands and their transition metal complexes as potential mono- and bimodal imaging agents for a 64Cu-assisted radiopharmaceutical application in positron emission tomography (PET) and optical imaging (OI). The synthesized ligands L and LOH are offering the opportunity to build up a ruthenium(II) polypyridine complex by one of the ligand's donor sets, to act as a fluorescence dye for optical imaging (OI), and to coordinate 64CuII by the ligand's vacant cavity for positron emission tomography (PET). The RuII complex exhibits two different fluorescence activities with two different lifetimes and only one of the two fluorescences is quenched by subsequent complexation of CuII. The calculated CuII stability constant of L and LOH is similar to that of the isomeric ligand N2py2 which has been already evaluated as a 64Cu-radiotracer. Further transition metal complexes of FeII, FeIII and MnII are dealing with interesting structural properties like pentagonal bipyramidal geometries. For the development of stable and

  4. Micro-flow synthesis and structural analysis of sterically crowded diimine ligands with five aryl rings

    Shinichiro Fuse

    2013-11-01

    Full Text Available Sterically crowded diimine ligands with five aryl rings were prepared in one step in good yields using a micro-flow technique. X-ray crystallographic analysis revealed the detailed structure of the bulky ligands. The nickel complexes prepared from the ligands exerted high polymerization activity in the ethylene homopolymerization and copolymerization of ethylene with polar monomers.

  5. DMPD: Endogenous ligands of Toll-like receptors. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 15178705 Endogenous ligands of Toll-like receptors. Tsan MF, Gao B. J Leukoc Biol. ...2004 Sep;76(3):514-9. Epub 2004 Jun 3. (.png) (.svg) (.html) (.csml) Show Endogenous ligands of Toll-like re...ceptors. PubmedID 15178705 Title Endogenous ligands of Toll-like receptors. Authors Tsan MF, Gao B. Publicat

  6. Carborane phosphorus-derivatives as ligands for Pd-catalyzed cross-coupling reactions

    Synthesis of carborane-containing phosphine ligands possessing different steric and electronic properties has been considered. Testing of the given ligands in Pd-catalyzed Suzuki-Miyaura reaction demonstrated that sterically volume phosphine ligands with acceptor carborane substitutes possessed the most catalytic activity

  7. Understanding ligand effects in gold clusters using mass spectrometry.

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  8. Silver, Gold, Palladium Nanoparticles: Ligand Design, Synthesis and Polymer Composites

    Iqbal, Muhammad

    Metal nanoparticles, especially gold nanoparticles (AuNPs), have been extensively studied due to their interesting optical properties and potential applications in emerging technologies like drug delivery, cancer therapy, catalysis, chemical and bio-sensing and microelectronics devices. Alkyl thiol ligands in the form of self assembled monolayers are often used to stabilize and functionalize the gold nanoparticles while other types of ligands have been rarely employed and the properties of AuNPs protected by different types of ligands have not been studied comprehensively and comparatively. This dissertation reports the first comparative studies on the thermal and chemical stability of AuNPs protected by alkyl thiolates, alkyl selenolates, dialkyl dithiophosphinates, and dialkyl dithiophosphates (Chapters 2 and 3). AuNPs protected by dialkyl dithiophosphinates and dialkyl dithiophosphates are unprecedented. All AuNPs were prepared from amine protected precursor AuNPs by ligand exchange to ensure similar size, size distribution, and chemical composition. They were extensively characterized by solution 1H-NMR and UV-VIS spectroscopy, transmission electron microscopy (TEM), thermal analysis, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. For the first time, thermal stability was investigated by differential scanning calorimetry (DSC) that provided more accurate decomposition temperatures and enthalpies, whereas chemical stability was tested as the availability of the gold surface towards etching with cyanide in different solvents. Surprisingly, alkyl selenolate protected AuNPs are thermally less stable than alkyl thiolate protected AuNPs despite their proposed stronger binding to the gold surface and a much more crystalline monolayer, which suggests that different decomposition mechanisms apply to alkyl thiolate and alkyl selenolate protected AuNPs. Dialkyl dithiophosphinates and dialkyl dithiophosphates protected AuNPs are thermally

  9. Advances in Computational Techniques to Study GPCR-Ligand Recognition.

    Ciancetta, Antonella; Sabbadin, Davide; Federico, Stephanie; Spalluto, Giampiero; Moro, Stefano

    2015-12-01

    G-protein-coupled receptors (GPCRs) are among the most intensely investigated drug targets. The recent revolutions in protein engineering and molecular modeling algorithms have overturned the research paradigm in the GPCR field. While the numerous ligand-bound X-ray structures determined have provided invaluable insights into GPCR structure and function, the development of algorithms exploiting graphics processing units (GPUs) has made the simulation of GPCRs in explicit lipid-water environments feasible within reasonable computation times. In this review we present a survey of the recent advances in structure-based drug design approaches with a particular emphasis on the elucidation of the ligand recognition process in class A GPCRs by means of membrane molecular dynamics (MD) simulations. PMID:26538318

  10. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.