Local Duality for 2-Dimensional Local Ring
Belgacem Draouil
2008-11-01
We prove a local duality for some schemes associated to a 2-dimensional complete local ring whose residue field is an -dimensional local field in the sense of Kato–Parshin. Our results generalize the Saito works in the case =0 and are applied to study the Bloch–Ogus complex for such rings in various cases.
Lecture notes on 2-dimensional defect TQFT
Carqueville, Nils
2016-01-01
These notes offer an introduction to the functorial and algebraic description of 2-dimensional topological quantum field theories `with defects', assuming only superficial familiarity with closed TQFTs in terms of commutative Frobenius algebras. The generalisation of this relation is a construction of pivotal 2-categories from defect TQFTs. We review this construction in detail, flanked by a range of examples. Furthermore we explain how open/closed TQFTs are equivalent to Calabi-Yau categories and the Cardy condition, and how to extract such data from pivotal 2-categories.
New hidden symmetries in 2-dimensional models
In an attempt to derive the hidden symmetries for some integrable 2-dimensional models by considering the invariances of the corresponding linearization systems and the Riemann-Hilbert transformations, we arrive at a new ''sub''-algebra of the ordinary Kac-Moody algebra which represents the hidden symmetry for for example the sine-Gordon theory. A similar ''sub''-algebra is found for the Liouville model. These new algebras differ from the ordinary ones in having a different structure according to whether the grading is even or odd. We describe a new systematic way of finding such hidden symmetries from general linearization systems. (orig.)
Speckle Patterns and 2-Dimensional Brownian Motion
We present the results of a Monte Carlo simulation of Brownian Motion on a 2-dimensional lattice with nearest-neighbor interactions described by a linear model. These nearest-neighbor interactions lead to a spatial variance structure on the lattice. The resulting Brownian pattern fluctuates in value from point to point in a manner characteristic of a stationary stochastic process. The value at a lattice point is interpreted as an intensity level. The difference in values in neighboring cells produces a fluctuating intensity pattern on the lattice. Changing the size of the mesh changes the relative size of the speckles. Increasing the mesh size tends to average out the intensity in the direction of the mean of the stationary process. (Author)
Function algebras on a 2-dimensional quantum complex plane
The well-behaved representations of the coordinate algebra of a 2-dimensional quantum complex plane are classified and a C*-algebra is defined which can be viewed as the algebra of continuous functions on the 2-dimensional quantum complex plane vanishing at infinity
Damage spreading in 2-dimensional isotropic and anisotropic Bak-Sneppen models
Bakar, Burhan; Tirnakli, Ugur
2007-01-01
We implement the damage spreading technique on 2-dimensional isotropic and anisotropic Bak-Sneppen models. Our extensive numerical simulations show that there exists a power-law sensitivity to the initial conditions at the statistically stationary state (self-organized critical state). Corresponding growth exponent $\\alpha$ for the Hamming distance and the dynamical exponent $z$ are calculated. These values allow us to observe a clear data collapse of the finite size scaling for both versions...
Integration of 2-Dimensional Materials for Thermoelectric Power Generation
Alsaffar, Fadhel; Al Hussain, Abdulrahman; Amer, Moh. R.; Center of Exclence for Green Nanotechnologies Collaboration; Department of Electrical Engineering (UCLA) Collaboration
Recent developments in nanomaterial research have significantly progressed the performance of thermoelectric devices. Theoretical investigations of the thermoelectic properties of 2-Dimentional monolayers demonstrate a high figure of merit (ZT) .. Here, we investigate the integration of these 2-Dimensional materials for power generation applications using solar heat. We show that using black phosphorus monolayer (phosphorene) as the p-type material, and Molybdenum disulfide (MoS2) monolayers as the n-type material, we get an effective figure of merit (ZT) at least (1.5) with a conversion efficiency of 13% at 280oC. Our results suggest that the integration of various 2-Dimensional materials is a promising approach for commercial thermoelectric power generation applications.
Constructive Renormalization of 2-dimensional Grosse-Wulkenhaar Model
Wang, Zhituo
2012-01-01
In this talk we briefly report the recent work on the construction of the 2-dimensional Grosse-Wulkenhaar model with the method of loop vertex expansion. We treat renormalization with this new tool, adapt Nelson's argument and prove Borel summability of the perturbation series. This is the first non-commutative quantum field theory model to be built in a non-perturbative sense.
Damage spreading in 2-dimensional isotropic and anisotropic Bak-Sneppen models
Bakar, B.; Tirnakli, U.
2008-03-01
We implement the damage spreading technique on 2-dimensional isotropic and anisotropic Bak-Sneppen models. Our extensive numerical simulations show that there exists a power-law sensitivity to the initial conditions at the statistically stationary state (self-organized critical state). Corresponding growth exponent α for the Hamming distance and the dynamical exponent z are calculated. These values allow us to observe a clear data collapse of the finite size scaling for both versions of the Bak-Sneppen model. Moreover, it is shown that the growth exponent of the distance in the isotropic and anisotropic Bak-Sneppen models is strongly affected by the choice of the transient time.
Double affine Hecke algebras and 2-dimensional local fields
Kapranov, M.
1998-01-01
We give an interpretation of the double affine Hecke algebra of Cherednik as the (suitably regularized) algebra of double cosets of a group G by a subgroup J, extending the well known interpretations of finite and affine Hecke algebras. In this interpretation, G consists of K-points of a split reductive group where K is a 2-dimensional local field such as Q_p((t)) or F_q((t_1))((t_2)), and J is a certain analog of the Iwahori subgroup.
2-Dimensional coupled algorithm for simulating dose-rate transient effects of semiconductor devices
Most commercial semiconductor simulators introduce an analytical equation to calculate the energy deposited by particles or gamma ray when simulating radiation effects of semiconductor devices. However, this method is insufficient as the size of devices becomes smaller and smaller. In order to solve the limitation of analytical method, this paper presents a 2-dimensional algorithm for calculating dose-rate transient response of semiconductor devices by coupling Finite Volume method with Monte Carlo method, which is used to trace the history of particles and generate the distribution of deposited energy. An integrated program is established by combining an open source semiconductor simulator named GSS and a Monte Carlo code. And the computational results for two reverse biased diodes with different structures are compared with MEDICI's and Enlow's theoretical photocurrent model. It shows that the coupled algorithm is consistent with traditional analytical method and Enlow's model. (author)
Development of a numerical 2-dimensional beach evolution model
Baykal, Cüneyt
2014-01-01
to compute the nearshore depth-averaged wave-induced current velocities and mean water level changes, a sediment transport model to compute the local total sediment transport rates occurring under the action of wind waves, and a bottom evolution model to compute the bed level changes in time based on......This paper presents the description of a 2-dimensional numerical model constructed for the simulation of beach evolution under the action of wind waves only over the arbitrary land and sea topographies around existing coastal structures and formations. The developed beach evolution numerical model...... is composed of 4 submodels: a nearshore spectral wave transformation model based on an energy balance equation including random wave breaking and diffraction terms to compute the nearshore wave characteristics, a nearshore wave-induced circulation model based on the nonlinear shallow water equations...
Development of 2-dimensional element analysis system with micro PIXE
Sakai, Takuro; Oikawa, Shouichi; Kamiya, Tomihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sato, Takahiro; Sugimoto, Asuka; Ishii, Keizo [Tohoku Univ., Sendai (Japan). Faculty of Engineering
2001-02-01
Using a high proton beams focusing to about 1 {mu}m the 2-dimensional distribution of elements can be analyzed by the characteristic x-ray emitted from the irradiated samples in the atmosphere (PIXE). The analysis method of fluorine in the dentin is developed by the Nuclear Reaction Analysis method (NRA) using the nuclear reaction of {sup 19}F(P, {alpha} {gamma}){sup 16}O since the elements lighter than sodium can not be analyzed by the PIXE. This analysis system is used by the researchers of wide areas such as medical science, dentistry, biology, geology and environmental science. The observed data are saved in the FTP-server. Then the experimental data obtained can be owned jointly by the distant researchers through the Internet-system at the real time. This system is opened to the research groups of the inside and the outside of the Institute. (H. Katsuta)
2-dimensional numerical modeling of active magnetic regeneration
Nielsen, Kaspar Kirstein; Pryds, Nini; Smith, Anders;
2009-01-01
Various aspects of numerical modeling of Active Magnetic Regeneration (AMR) are presented. Using a 2-dimensional numerical model for solving the unsteady heat transfer equations for the AMR system, a range of physical effects on both idealized and non-idealized AMR are investigated. The modeled...... system represents a linear, parallel-plate based AMR. The idealized version of the model is able to predict the theoretical performance of AMR in terms of cooling power and temperature span. This is useful to a certain extent, but a model reproducing experiments to a higher degree is desirable. Therefore...... physical effects such as thermal parasitic losses have been included. Furthermore, experimentally found magnetocaloric properties are used when available, since the commonly used mean field model can be too idealized and is not always able to determine the magnetocaloric effect accurately. In the present...
Finite temperature holographic duals of 2-dimensional BCFTs
Estes, J.
2015-07-01
We consider holographic duals of 2-dimensional conformal field theories in the presence of a boundary, interface, defect and/or junction, referred to collectively as BCFTs. In general, the presence of a boundary reduces the SO(2, 2) conformal symmetry to SO(2, 1) and the dual geometry is realized as a warped product of the form , where is not compact. In particular, it will contain points where the warp factor of the AdS 2 space diverges, leading to asymptotically AdS 3 regions. We show that the AdS 2 space-time may always be replaced with an AdS 2-"black-hole" space-time. We argue the resulting geometry describes the BCFT at finite temperature. To motivate this claim, we compute the entanglement entropy holographically for a segment centered around the defect or ending on the boundary and find agreement with a known universal formula.
Finite temperature holographic duals of 2-dimensional BCFTs
Estes, John
2015-01-01
We consider holographic duals of $2$-dimensional conformal field theories in the presence of a boundary, interface, defect and/or junction, referred to collectively as BCFTs. In general, the presence of a boundary reduces the $SO(2,2)$ conformal symmetry to $SO(2,1)$ and the dual geometry is realized as a warped product of the form $AdS_2 \\times {\\cal M}$, where ${\\cal M}$ is not compact. In particular, it will contain points where the warp factor of the $AdS_2$ space diverges, leading to asymptotically $AdS_3$ regions. We show that the $AdS_2$ space-time may always be replaced with an $AdS_2$-"black-hole" space-time. We argue the resulting geometry describes the BCFT at finite temperature. To motivate this claim, we compute the entanglement entropy holographically for a segment centered around the defect or ending on the boundary and find agreement with a known universal formula.
Pulsed neutron imaging using 2-dimensional position sensitive detectors
2-dimensional position sensitive detectors are used for pulsed neutron imaging and at each pixel of the detector a time of flight spectrum is recorded. Therefore, a transmission spectrum through the object has wavelength dependent structure reflecting the neutron total cross section. For such measurements, the detectors are required to have ability to store neutron events as a function of the flight time as well as to have good spatial resolution. Furthermore, high counting rate is also required at the high intensity neutron sources like J-PARC neutron source in Japan. We have developed several types of detectors with different characteristics; two counting type detectors for high counting rate with coarse spatial resolution and one camera type detector for high spatial resolution. One of counting type detectors is a pixel type. The highest counting rate is about 28 MHz. Better spatial resolution is obtained by a GEM detector. Effective area is 10 × 10 cm2, pixel size is 0.8 mm. The maximum counting rate is 3.65 MHz. To get higher spatial resolution we are now developing the camera type detector system using a neutron image intensifier, which have image integration function as a function of time of flight. We have succeeded to obtain time dependent images in this camera system. By using these detectors we performed transmission measurements for obtaining the crystallographic information and elemental distribution images
Radial mixing in protoplanetary accretion disks VII. 2-dimensional transport of tracers
Wehrstedt, Michael
2008-01-01
The detection of significant concentrations of crystalline silicates in comets indicates an extensive radial mixing in the primordial solar nebula. In studying the radial transport of matter within protoplanetary disks by numerical model calculations it is essential to resolve the vertical disk structure since matter is mixed radially inward and outward by a complex 2-dimensional flow pattern that is superposed on the global inward directed accretion flow. A numerical model calculation for a protoplanetary accretion disks with radial and vertical mixing is performed in the 1+1-dimensional approximation. The global 2D velocity field of the disk is calculated from an analytical solution for the meridional flow pattern, that exhibits an inward drift in the upper layers and an outward drift in the midplane in most parts of the disk. The disk model is based on the $\\beta$-prescription of viscosity and considers vertical self-gravitation of the disk. The mixing processes are studied for the following species: amorp...
Asymptotic symmetries and statistical entropy of 2-dimensional gravity
The asymptotic symmetries of two-dimensional Anti-de Sitter space are generated by a central extension of a Virasoro algebra. Using a canonical realization of this symmetry and Cardy's formula we calculate the statistical entropy of 2D black holes, and show that it agrees, up to a numerical factor, with the thermodynamical result
Radhakrishnan, Rahul; Zhao, Jian H.
2011-09-01
A physics-based closed form analytical model for the reverse leakage current of a high voltage junction barrier Schottky (JBS) diode is developed and shown to agree with experimental results. Maximum electric field "seen" by the Schottky contact is calculated from first principles by a 2-dimensional method as a function of JBS diode design parameters and confirmed by numerical simulations. Considering thermionic emission under image force barrier lowering and quantum mechanical tunneling, electric field at the Schottky contact is then related to reverse current. In combination with previously reported forward current and resistance models, this gives a complete I- V relationship for the JBS diode. A layout of interdigitated stripes of P-N and Schottky contacts at the anode is compared theoretically with a honeycomb layout and the 2-D model is extended to the 3-D honeycomb structure. Although simulation and experimental results from 4H-Silicon Carbide (SiC) diodes are used to validate it, the model itself is applicable to all JBS diodes.
Xiao, Bo; Wang, Ganghua; Gu, Zhuowei; Computational Physics Team
2015-11-01
We made a 2-dimensional magneto-hydrodynamics Lagrangian code. The code handles two kinds of magnetic configuration, a (x-y) plane with z-direction magnetic field Bz and a (r-z) plane with θ-direction magnetic field Bθ. The solving of the MHD equations is split into a pure dynamical step (i.e., ideal MHD) and a diffusion step. In the diffusion step, the Joule heat is calculated with a numerical scheme based on an specific form of the Joule heat production equation, ∂eJ/∂t = ∇ . (η/μ0 º × (∇ × º)) -∂/∂t (1/2μ0 B2) , where the term ∂/∂t (1/2μ0 B2) is the magnetic field energy variation caused solely by diffusion. This scheme insures the equality of the total Joule heat produced and the total electromagnetic energy lost in the system. Material elastoplasticity is considered in the code. An external circuit is coupled to the magneto-hydrodynamics and a detonation module is also added to enhance the code's ability for simulating magnetically-driven compression experiments. As a first application, the code was utilized to simulate a cylindrical magnetic flux compression experiment. The origin of the ``buckling'' phenomenon observed in the experiment is explored.
Gentry, R. W.; Perfect, E.; Sukop, M. C.
2005-12-01
Recent analyses of field data suggest that the spatial variation of hydraulic conductivity, K, within an aquifer may be multifractal. We investigated the implications of this finding for the scaling of effective hydraulic conductivity, , by performing numerical simulations of flow in 2-dimensional geometrical multifractal K fields. A theoretical framework for generating such fields is presented based on the parameters of the truncated binomial distribution, TBD. This leads to an approximate analytical expression showing that increases with increasing length scale as a power law, whose exponent, α, is determined by the TBD parameters. Five geometrical multifractal K fields were generated with different minimum length scales. Each domain was discretized using a block center grid consisting of 59,049 uniformly-spaced nodes. A unit cube aquifer was used for the numerical simulations. The boundary conditions were implemented with constant head (unit gradient) parallel planes, and corresponding zero flux planes on the normal axes. A finite difference simulation model based on MODFLOW 2000 was used, and "zone budget" was employed to calculate the flow balance. The discharge into and out of the unit cube was then used to calculate based on Darcy's law. The numerical simulations produced similar increases in with increasing length scale to those predicted by the analytical model. Nonlinear regression analyses yielded estimates of α from the numerical simulations that were within 10% of the analytical value for these fields. These simulations provide a theoretical explanation for effective hydraulic conductivity scaling in terms of multifractals. The advantage of such an approach is that the α-parameter, which controls the degree of scaling, is physically-based and can potentially be estimated from independent measurements.
An algebraic approach towards the classification of 2 dimensional conformal field theories
This thesis treats an algebraic method for the construction of 2-dimensional conformal field theories. The method consists of the study of the representation theory of the Virasoro algebra and suitable extensions of this. The classification of 2-dimensional conformal field theories is translated into the classification of combinations of representations which satisfy certain consistence conditions (unitarity and modular invariance). For a certain class of 2-dimensional field theories, namely the one with central charge c = 1 from the theory of Kac-Moody algebra's. there exist indications, but as yet mainly hope, that this construction will finally lead to a classification of 2-dimensional conformal field theories. 182 refs.; 2 figs.; 26 tabs
A novel supersymmetry in 2-dimensional Yang-Mills theory on Riemann surfaces
We find a novel supersymmetry in 2-dimensional Maxwell and Yang-Mills theories. Using this supersymmetry, it is shown that the 2-dimensional Euclidean pure gauge theory on a closed Riemann surface Σ can be reduced to a topological field theory which is the 3-dimensional Chern-Simons gauge theory in the special space-time topology Σ x R. Related problems are also discussed. (author)
Debnath, Ujjal
2015-12-01
In this work, we have studied accretion of the dark matter and dark energy onto of (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole. The mass and the rate of change of mass for (n+2)-dimensional Schwarzschild black hole and Morris-Thorne wormhole have been found. We have assumed some candidates of dark energy like holographic dark energy, new agegraphic dark energy, quintessence, tachyon, DBI-essence, etc. The black hole mass and the wormhole mass have been calculated in term of redshift when dark matter and above types of dark energies accrete onto them separately. We have shown that the black hole mass increases and wormhole mass decreases for holographic dark energy, new agegraphic dark energy, quintessence, tachyon accretion and the slope of increasing/decreasing of mass sensitively depends on the dimension. But for DBI-essence accretion, the black hole mass first increases and then decreases and the wormhole mass first decreases and then increases and the slope of increasing/decreasing of mass not sensitively depends on the dimension.
Early studies of the magnetic surfaces of the Auburn Torsatron indicated the presence of an X-point in the magnetic surfaces. Both theoretical calculations and experimental verification were performed in these studies. The plasma density distribution is believed to be determined by these magnetic surfaces. The 2-dimensional relative plasma density and electron temperature profiles over a cross-section of the plasma will verify that the X-point does have an influence on the distribution of the plasma. An electric double probe is used to measure the electron temperature and relative density at pre-defined points inside the plasma. The probe is on a moveable platform which is motor driven and positioned by a computer
Park, Ju Yeop; In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)
2000-02-01
The development of orthogonal 2-dimensional numerical code is made. The present code contains 9 kinds of turbulence models that are widely used. They include a standard k-{epsilon} model and 8 kinds of low Reynolds number ones. They also include 6 kinds of numerical schemes including 5 kinds of low order schemes and 1 kind of high order scheme such as QUICK. To verify the present numerical code, pipe flow, channel flow and expansion pipe flow are solved by this code with various options of turbulence models and numerical schemes and the calculated outputs are compared to experimental data. Furthermore, the discretization error that originates from the use of standard k-{epsilon} turbulence model with wall function is much more diminished by introducing a new grid system than a conventional one in the present code. 23 refs., 58 figs., 6 tabs. (Author)
Antarctic ice sheet GLIMMER model test and its simplified model on 2-dimensional ice flow
Xueyuan Tang; Zhanhai Zhang; Bo Sun; Yuansheng Li; Na Li; Bangbing Wang; Xiangpei Zhang
2008-01-01
The 3-dimensional finite difference thermodynamic coupled model on Antarctic ice sheet, GLIMMER model, is described. An ide-alized ice sheet numerical test was conducted under the EISMINT-I benchmark, and the characteristic curves of ice sheets under steady state were obtained. Based on this, this model was simplified from a 3-dimensional one to 2-dimensional one. Improvement of the dif-ference method and coordinate system was proposed. Evolution of the 2-dimensional ice flow was simulated under coupled temperature field conditions. The results showed that the characteristic curves deriving from the conservation of the mass, momentum and energy agree with the results of ice sheet profile simulated with GLIMMER model and with the theoretical results. The application prospect of the simplified 2-dimensional ice flow model to simulate the relation of age-depth-accumulation in Dome A region was discussed.
Wulff, Tune; Nielsen, Michael Engelbrecht
, internal- and external control were found using a t-test. To investigate numerous proteins in a single study changes in protein abundance were investigated using 2-dimensional gel electrophoresis. Protein of interest were identified using MALDI MS/MS. The results show that both annexin 4 and 5 are...
Investigation of two different anoxia models by 2-dimensional gel electrophoresis
Wulff, Tune; Jessen, Flemming; Hoffmann, Else Kay
anoxia obtained by NaN3 is a widely used model for simulating anoxia (Ossum et al., 2004). The effects of anoxia were studied by protein expression analysis using 2-dimensional gel electrophoresis followed by MS/MS. In this way we were able to separate more than 1500 protein spots with an apparent range...
Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts
Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten
2015-01-01
We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...
Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix
We construct a Darboux transformation for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix. Our transformation is based on the two-dimensional supersymmetry formalism for the Schrödinger equation. The transformed Fokker-Planck equation and its solutions are obtained in explicit form.
Dynamical analysis and simulation of a 2-dimensional disease model with convex incidence
Yu, Pei; Zhang, Wenjing; Wahl, Lindi M.
2016-08-01
In this paper, a previously developed 2-dimensional disease model is studied, which can be used for both epidemiologic modeling and in-host disease modeling. The main attention of this paper is focused on various dynamical behaviors of the system, including Hopf and generalized Hopf bifurcations which yield bistability and tristability, Bogdanov-Takens bifurcation, and homoclinic bifurcation. It is shown that the Bogdanov-Takens bifurcation and homoclinic bifurcation provide a new mechanism for generating disease recurrence, that is, cycles of remission and relapse such as the viral blips observed in HIV infection.
2-dimensional GEM detector with FEE based on the nXYTER ASIC
The GEM detector with 2-dimensional readout printed circuit board and an active area 10 × 10 cm2 for detection of diffraction patterns has been developed and constructed. A multichannel front end electronics based on two 128 channel nXYTER chips has been used. The investigations with this detector were made with high rate X-ray sources (6–15 keV). The measurement results of gas gain, spatial resolution and energy resolution are presented. The application of the GEM detector as a potential detector for material science and other diffraction experiments is presented
Inverse problem from the discrete spectrum in the D = 2 dimensional space
Considering the Schrödinger equation in the D = 2 dimensional space, we propose a method to determine a circular symmetric potential from its discrete spectrum. The approach is based on the relationships between the moments of the ground state density and the lowest excitation energy of each angular momentum. The required condition for a unique answer is the knowledge of all the lowest eigenvalues. In principle, it means an infinite number of moments to be known. As we shall show, reasonable accuracy can be reached in practice with a finite set of moments. Two illustrative examples are presented. (paper)
Ren, Jie
2015-01-01
We discuss semicanonical bases from the point of view of Cohomological Hall algebras via the "dimensional reduction" from 3-dimensional Calabi-Yau categories to 2-dimensional ones. Also, we discuss the notion of motivic Donaldson-Thomas invariants (as defined by M. Kontsevich and Y. Soibelman) in the framework of 2-dimensional Calabi-Yau categories. In particular we propose a conjecture which allows one to define Kac polynomials for a 2-dimensional Calabi-Yau category (this is a theorem of S. Mozgovoy in the case of preprojective algebras).
Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates
Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang
2015-11-01
A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).
Determining the Best Sensing Coverage for 2-Dimensional Acoustic Target Tracking
Mohsen Sharifi
2009-05-01
Full Text Available Distributed acoustic target tracking is an important application area of wireless sensor networks. In this paper we use algebraic geometry to formally model 2-dimensional acoustic target tracking and then prove its best degree of required sensing coverage. We present the necessary conditions for three sensing coverage to accurately compute the spatio-temporal information of a target object. Simulations show that 3-coverage accurately locates a target object only in 53% of cases. Using 4-coverage, we present two different methods that yield correct answers in almost all cases and have time and memory usage complexity of Θ(1. Analytic 4-coverage tracking is our first proposed method that solves a simultaneous equation system using the sensing information of four sensor nodes. Redundant answer fusion is our second proposed method that solves at least two sets of simultaneous equations of target tracking using the sensing information of two different sets of three sensor nodes, and fusing the results using a new customized formal majority voter. We prove that 4-coverage guarantees accurate 2-dimensional acoustic target tracking under ideal conditions.
A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch
Haihua Hu
2014-03-01
Full Text Available Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM. The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.
Exact vacuum solution of a (1+2)-dimensional Poincare gauge theory BTZ solution with torsion
Garcia, A A; Heinicke, C; Macías, A; Garcia, Alberto A.; Hehl, Friedrich W.; Heinicke, Christian; Macias, Alfredo
2003-01-01
In (1+2)-dimensional Poincar\\'e gauge gravity, we start from a Lagrangian depending on torsion and curvature which includes additionally {\\em translational} and {\\em Lorentzian} Chern-Simons terms. Limiting ourselves to to a specific subcase, the Mielke-Baekler (MB) model, we derive the corresponding field equations (of Einstein-Cartan-Chern-Simons type) and find the general vacuum solution. We determine the properties of this solution, in particular its mass and its angular momentum. For vanishing torsion, we recover the BTZ-solution. We also derive the general conformally flat vacuum solution with torsion. In this framework, we discuss {\\em Cartan's} (3-dimensional) {\\em spiral staircase} and find that it is not only a special case of our new vacuum solution, but can alternatively be understood as a solution of the 3-dimensional Einstein-Cartan theory with matter of constant pressure and constant torque. {\\em file 3dexact15.tex}
Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Stevens, C.G.
1994-11-15
The Echelle grating spectrometer (EGS) uses a stepped Echelle grating, prisms and a folded light path to miniaturize an infrared spectrometer. Light enters the system through a slit and is spread out along Y by a prism. This light then strikes the grating and is diffracted out along X. This spreading results in a superposition of spectral orders since the grating has a high spectral range. These orders are then separated by again passing through a prism. The end result of a measurement is a 2 dimensional image which contains the folded spectrum of the region under investigation. The data lies in bands from top to bottom, for example, with wavenumber increments as small as 0.1 lying from left to right such that the right end of band N is the same as the left end of band N+1. This is the image which must be analyzed.
Multiple-canister flow and transport code in 2-dimensional space. MCFT2D: user's manual
A two-dimensional numerical code, MCFT2D (Multiple-Canister Flow and Transport code in 2-Dimensional space), has been developed for groundwater flow and radionuclide transport analyses in a water-saturated high-level radioactive waste (HLW) repository with multiple canisters. A multiple-canister configuration and a non-uniform flow field of the host rock are incorporated in the MCFT2D code. Effects of heterogeneous flow field of the host rock on migration of nuclides can be investigated using MCFT2D. The MCFT2D enables to take into account the various degrees of the dependency of canister configuration for nuclide migration in a water-saturated HLW repository, while the dependency was assumed to be either independent or perfectly dependent in previous studies. This report presents features of the MCFT2D code, numerical simulation using MCFT2D code, and graphical representation of the numerical results. (author)
2-dimensional modelling of the steam refomer of the ADAM/EVA II facility
For the steam reformer of the ADAM/EVA II facility a 2-dimensional computer code is made, which includes local radiation quantities and by-pass circuits. Not only integral sizes (reaction, fission and temperature) and curve states as well as individual tube states are computable by this programme. It is shown that the experimental results are to understand very good with this model. For a steam reformer with NTIW-geometry in the 20 MW range the model was changed. Finally an anchor cooling is proposed to release the thermal-mechanical heavily loaded supporting structure. It is possible to describe quantitatively the cooling effect with the plotted computer code. It shows that the anchor wall temperature falls round about 50 K in a 5% cooling circuit. This could prevent the extension of anchors, as well as prolong the lifetime of the bundle and make possible the competence of license. (orig.)
Mechanisms of seizure propagation in 2-dimensional centre-surround recurrent networks.
David Hall
Full Text Available Understanding how seizures spread throughout the brain is an important problem in the treatment of epilepsy, especially for implantable devices that aim to avert focal seizures before they spread to, and overwhelm, the rest of the brain. This paper presents an analysis of the speed of propagation in a computational model of seizure-like activity in a 2-dimensional recurrent network of integrate-and-fire neurons containing both excitatory and inhibitory populations and having a difference of Gaussians connectivity structure, an approximation to that observed in cerebral cortex. In the same computational model network, alternative mechanisms are explored in order to simulate the range of seizure-like activity propagation speeds (0.1-100 mm/s observed in two animal-slice-based models of epilepsy: (1 low extracellular [Formula: see text], which creates excess excitation and (2 introduction of gamma-aminobutyric acid (GABA antagonists, which reduce inhibition. Moreover, two alternative connection topologies are considered: excitation broader than inhibition, and inhibition broader than excitation. It was found that the empirically observed range of propagation velocities can be obtained for both connection topologies. For the case of the GABA antagonist model simulation, consistent with other studies, it was found that there is an effective threshold in the degree of inhibition below which waves begin to propagate. For the case of the low extracellular [Formula: see text] model simulation, it was found that activity-dependent reductions in inhibition provide a potential explanation for the emergence of slowly propagating waves. This was simulated as a depression of inhibitory synapses, but it may also be achieved by other mechanisms. This work provides a localised network understanding of the propagation of seizures in 2-dimensional centre-surround networks that can be tested empirically.
The (1+2) dimensional (1-D in real space and 2-D in momentum space) relativistic Fokker-Planck code combined with the ray-tracing code has been newly developed for analyzing the lower hybrid current drive (LHCD) on tokamak plasmas. This numerical code calculates the 2-D MHD equilibrium, ray-tracing, and Fokker-Planck analyses self-consistently. The simulations have been carried out by using the code, and the results were compared with experiments on the lower hybrid current drive in JT-60. As a result, the obtained simulation results agreed with the experimental results on the current drive efficiency and the current density profile (or the plasma internal inductance). (author)
1H-NMR spectroscopy has been applied to identify components in the urine of subjects with a deficiency of the enzyme 3-hydroxy-3-methylglutaryl-CoA lyase. One-dimensional spectra of samples from a pair of non-identical twins with this disorder were very similar and are probably diagnostic. The most intense signals were from singlets. Complete assignment of these major components was made possible by the use of 2-dimensional chemical shift correlated spectroscopy since several long-range couplings were detected. 2-dimensional spectroscopic techniques may therefore be of value in the identification of singlets in multicomponent systems. (Auth.)
Bingtuan Gao
2014-04-01
Full Text Available The 2-Dimensional Translational Oscillators with Rotating Actuator (2DTORA is a novel underactuated system which has one actuated rotor and two unactuated translational carts. This paper focuses on dynamical modelling and simulation analysis of the underactuated 2DTORA on a slope. Based on Lagrange equations, the dynamics of the 2DTORA is achieved by selecting a transverse position of a cart, a travelling position of a cart, and the rotor angle as the general coordinates and torque acting on the rotor as the general force. When the slope angle is set to zero, the dynamics of 2DTORA on a slope is reduced to that of 2DTORA on the horizontal plane. Moreover, by eliminating one degree of translational cart motion, the dynamics of 2DTORA is reduced to that of TORA which is a benchmark of underactuated systems. In addition, the equilibrium and controllability of the 2DTORA system on a slop are discussed. Finally, numerical simulations are performed to verify the feasibility of the developed dynamic models.
Contactless 2-dimensional laser sensor for 3-dimensional wire position and tension measurements
Prall, Matthias; Joehren, R; Ortjohann, H W; Reinhardt, M; Weinheimer, Ch
2009-01-01
We have developed a contact-free 2-dimensional laser sensor with which the position of wires can be measured in 3 dimensions with an accuracy of better than 10 micrometer and with which the tension of the wires can be determined with an accuracy of 0.04 N. These measurements can be made from a distance of 15 cm. The sensor consists of commercially available laser pointers, lenses, color filters and photodiodes. In our application we have used this laser sensor together with an automated 3 dimensional coordinate table. For a single position measurement, the laser sensor is moved by the 3-dimensional coordinate table in a plane and determines the coordinates at which the wires intersect with this plane. The position of the plane itself (the third coordinate) is given by the third axis of the measurement table which is perpendicular to this plane. The control and readout of the table and the readout of the laser sensor were realized with LabVIEW. The precision of the position measurement in the plane was determi...
Spin-orbit coupling in AlGaN/GaN 2-dimensional electron gases
Cabanas, Sergio; Thillosen, Nicolas; Kaluza, Nicoleta; Lehnen, Patrick; Guzenko, Vitaliy; Hardtdegen, Hilde; Schaepers, Thomas [Institute of Bio- and Nanosystems, Research Center Juelich (Germany); Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich (Germany)
2007-07-01
AlGaN/GaN is a very promising material system for spin electronic devices, because for GaN-based diluted magnetic semiconductors Curie temperatures above room temperature have been predicted theoretically and confirmed experimentally. We have investigated weak antilocalization in AlGaN/GaN heterostructures. By fitting the experimental curves to a theoretical model we found that the decrease of the peak height in the conductivity with temperature is solely due to the decrease of the phase coherence length. Measurements on gated samples showed that the spin-orbit scattering length is constant for all carrier concentrations. This behavior is due to the fact that the spin-orbit scattering due to crystal inversion asymmetry is the dominant contribution. Although GaN is a large band gap material, the spin-orbit scattering length has a relatively small value of approximately 300 nm, which makes this material interesting for spin electron devices relying on spin precession. If a magnetic field is applied parallel to the plane of the 2-dimensional electron gas the weak antilocalization can be suppressed. We attribute the vanishing of the weak antilocalization peak to the additional contribution of the Zeeman energy competing with the characteristic spin-orbit energy.
Directed 2-dimensional organisation of collagen: Role of cross-linking and denaturing agents
Nishtar nishad Fathima; Aruna Dhathathreyan; Thirumalachari Ramasami
2010-11-01
The effect of additives like curcumin and surfactants on the self-assembly of collagen from a simple 2-dimensional system of Langmuir films of the protein at air/solution interface has been attempted in this study using quartz crystal microbalance (QCM) and dynamic surface tensiometer. Though pure curcumin is not surface active, a synergistic effect of collagen with curcumin seems to lead to enhanced surface activity in the protein. In general, the presence of additives, increases the surface activity of collagen even for the lowest concentration and the largest change in surface activity is seen for collagen with sodium dodecyl sulfate (SDS). The results suggest interplay between the unexposed hydrophobic groups, and the opening out and solvation of the more charged or polar groups at the surface leading to aggregation followed by self-assembly. Modulation of aggregation at interface in collagen due to these additives may be an approach that could be explored for possible applications in bio-materials and for delivery of protein-drug complexes.
Widom, Julia; Perdomo-Ortiz, Alejandro; Aspuru-Guzik, Alan; Marcus, Andrew
2012-02-01
I will describe spectroscopic studies on a covalently-linked zinc tetraphenylporphyrin dimer embedded in a phospholipid bilayer membrane. Using phase-modulation 2-Dimensional Fluorescence Spectroscopy (2D FS, a fluorescence-detected version of 2D electronic spectroscopy) along with linear absorption and fluorescence spectroscopy, it was found that the dimer adopts two predominant conformations in the membrane, and that the relative populations of these two states change as a function of temperature. Simultaneously fitting the linear absorption spectrum and the 2D FS spectra at four different excitation wavelengths revealed a wealth of information about these two states, including their relative populations, relative fluorescence quantum yields, the strength of the exciton coupling present in each state, and the approximate angles between the electronic transition dipole moments of the two porphyrins. Ongoing analysis focuses on elucidating the relaxation and energy transfer dynamics of this system through the population time dependence of the 2D spectra. Finally, I will present preliminary results from experiments in which 2D FS was performed with ultraviolet excitation to study the conformations of DNA constructs labeled with a fluorescent analogue of guanine.
Comparing calculated and measured x-ray images
In recent years 2-dimensional radiation-magneto-hydrodynamic (RMHD) calculations have done quite well in matching some important observed parameters of a z-pinch implosion. As the authors gain experience, they field more complex experiments to compare with calculations. Here they discuss both time dependent and time integrated x-ray imaging on Pegasus. Images, using similar filters, are calculated and compared with the data. They also apply some image enhancement to the data
Skyhøj Olsen, T; Larsen, B; Bech Skriver, E; Enevoldsen, E; Lassen, N A
1981-01-01
The limitations of 2-dimensional isotope techniques in the study of focal cerebral ischemia were investigated using the intra-carotid 133 xenon injection method and a 254 multidetector scintillation camera. To make sure that the detectors "look" directly on infarcted areas, only patients with inf...
SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.
Rasidi, I. I.; Rafai, N. H.; Rahim, E. A.; Kamaruddin, S. A.; Ding, H.; Cheng, K.
2015-12-01
The purpose of this paper is to investigate the effects of 2 dimensional Ultrasonic Vibration Assisted Milling (UVAM) cutting mechanics, considering tool path trajectory and the effect on the chip thickness. The theoretical modelling of cutting mechanics is focused by considering the trajectory of the tool locus into the workpiece during the machining. The studies found the major advantages of VAM are come from the intermittent tool tip interaction phenomena between cutting tool and workpiece. The reduction of thinning chip thickness formations can be identifying advantages from vibration assisted milling in 2 dimensional. The finding will be discussing the comparison between conventional machining the potential of the advantages toward the chip thickness and chip formation in conclusion.
Petersen, Kurt Erling
1986-01-01
probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis...... of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested....
Beguería, Santiago; Vicente Serrano, Sergio M.
2009-01-01
[EN] *Objectives: The program calculates time series of the Standardised Precipitation-Evapotransporation Index (SPEI). *Technical Characteristics: The program is executed from the Windows console. From an input data file containing monthly time series of precipitation and mean temperature, plus the geographic coordinates of the observatory, the program computes the SPEI accumulated at the time interval specified by the user, and generates a new data file with the SPEI time serie...
Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)
MEASUREMENT OF 2-DIMENSIONAL DISPLACEMENT USING 2-D ZERO-REFERENCE MARKS
Wang Yingnan; Zhou Chenggang; Huang Wenhao
2005-01-01
Several 2-D displacement sensing methods are reviewed. As to the cross diffraction grating,there is no absolute zero-reference. In regards to the optical fiber method, the output signal is affected greatly by the quality of the reflecting surface and it is hard to get high resolution. Considering the concentric-circle gratings, the displacement can only be gained with complicated calculating of the experiment data. Compared with the advantages and limitations of the methods above, a novel 2-D zero-reference mark is especially proposed and demonstrated. This kind of mark has an absolute zero-reference when used in pair, and the experimental result is simple to dispose. By superimposing a pair of specially coded 2-D marks, the correct alignment position of the two marks can be detected by the maximum output of the sharp intensity peak. And each slope of the peak is of good linearity which can be used to achieve high resolution in positioning and alignment in two dimensions. Design and fabrication of such 2-D zero-reference marks are introduced in detail. The experiment results are agreed with the theoretical ones.
Gkaitatzis, Stamatios; The ATLAS collaboration; Annovi, Alberto; Kordas, Kostantinos
2016-01-01
In this paper the performance of the 2D pixel clustering algorithm developed for the Input Mezzanine card of the ATLAS Fast TracKer system is presented. Fast TracKer is an approved ATLAS upgrade that has the goal to provide a complete list of tracks to the ATLAS High Level Trigger for each level-1 accepted event, at up to 100 kHz event rate with a very small latency, in the order of 100µs. The Input Mezzanine card is the input stage of the Fast TracKer system. Its role is to receive data from the silicon detector and perform real time clustering, thus to reduce the amount of data propagated to the subsequent processing levels with minimal information loss. We focus on the most challenging component on the Input Mezzanine card, the 2D clustering algorithm executed on the pixel data. We compare two different implementations of the algorithm. The first is one called the ideal one which searches clusters of pixels in the whole silicon module at once and calculates the cluster centroids exploiting the whole avail...
Gkaitatzis, Stamatios; The ATLAS collaboration
2016-01-01
In this paper the performance of the 2D pixel clustering algorithm developed for the Input Mezzanine card of the ATLAS Fast TracKer system is presented. Fast TracKer is an approved ATLAS upgrade that has the goal to provide a complete list of tracks to the ATLAS High Level Trigger for each level-1 accepted event, at up to 100 kHz event rate with a very small latency, in the order of 100 µs. The Input Mezzanine card is the input stage of the Fast TracKer system. Its role is to receive data from the silicon detector and perform real time clustering, thus to reduce the amount of data propagated to the subsequent processing levels with minimal information loss. We focus on the most challenging component on the Input Mezzanine card, the 2D clustering algorithm executed on the pixel data. We compare two different implementations of the algorithm. The first is one called the ideal one which searches clusters of pixels in the whole silicon module at once and calculates the cluster centroids exploiting the whole avai...
Thiele, Maja; Detlefsen, Sönke; Møller, Linda Maria Sevelsted;
2016-01-01
BACKGROUND & AIMS: Alcohol abuse causes half of all deaths from cirrhosis in the West, but few tools are available for noninvasive diagnosis of alcoholic liver disease. We evaluated 2 elastography techniques for diagnosis of alcoholic fibrosis and cirrhosis; liver biopsy with Ishak score and...... biopsy after an overnight fast. RESULTS: Transient elastography and 2-dimensional shear wave elastography identified subjects in each group with significant fibrosis (Ishak score ≥3) and cirrhosis (Ishak score ≥5) with high accuracy (area under the curve ≥0.92). There was no difference in diagnostic...... predictive value for cirrhosis was >66% in the high-risk group vs approximately 50% in the low-risk group. Evidence of alcohol-induced damage to cholangiocytes, but not ongoing alcohol abuse, affected liver stiffness. The collagen-proportionate area correlated with Ishak grades and accurately identified...
Wang, Xu; Chan, Kam
2004-07-26
Free-running gain-switched Fabry-Perot laser diode is an appropriate incoherent broadband optical source for incoherent 2-dimensional optical code division multiple access. However, the mode partition noise (MPN) in the laser seriously degrades performance. We derived a bit error rate (BER) expression in the presence of MPN using the power spectra of the laser. The theory agreed with the experimental results. There was a power penalty and BER floor due to the MPN in the laser. Therefore, this scheme should be operated with a sufficiently large number of modes. At least 9 modes should be used for error-free transmission at 1 Gbit/s for the laser we investigated in this work. PMID:19483858
Image authentication algorithm base on 2-dimensional DCT%一种基于二维DCT域的增强图像认证算法
李涛; 蔡国梁
2011-01-01
数字图像防伪是信息时代的重要内容,但由于很多图像防伪技术需要很大的计算量,使其在防伪效果和算法效率上很难达到平衡.文中提出了一种基于二维DCT域的数字水印认证防伪增强算法,通过DCT-系数块和频域划分,从低频区域和中频区域提取特征,然后将它们嵌入到高频区域中实现认证防伪.实验表明,该方法在实现图像防伪的同时具有较好的半脆弱性和效率.%Digital image anti-counterfeit authenticationis an important part of information age. However, due to huge amount of calculation needed in digital image authentication technology, it is difficult to strike a balance between the effectiveness of anti-counterfeit authentication and algorithm efficiency. This paper proposes a new 2-dimensional DCT-based algorithm of digital watermarking image authentication, in which features are extracted from low and middle frequency domains of DCT-coefficient blocks and embedded into high frequency domain in order to achieve more effective authentication. Experiments show that the new algorithm has good effect on image authentication for semi-fragment and efficiency.
B. M. Dinelli
2009-10-01
Full Text Available We present a multi-year database of atmospheric state parameters retrieved for the upper tropospheric to mesospheric region from satellite measurements with a 2-dimensional tomographic approach. The full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument, on board the European Space Agency ENVISAT satellite, is analyzed with the Geofit Multi-Target Retrieval (GMTR system to obtain the MIPAS2D database with atmospheric fields of pressure, temperature and volume mixing ratio of MIPAS main targets H_{2}O, O_{3}, HNO_{3}, CH_{4}, N_{2}O, and NO_{2}. The database covers both the MIPAS nominal observation mode measured at Full Resolution (FR from July 2002 to March 2004 and the nominal observation mode of the new configuration, measured at Optimized Resolution (OR and introduced in 2005. Further to the main targets, minor species N_{2}O_{5}, ClONO_{2}, COF_{2}, CFC-11, and CFC-12 for the FR mission only have been included in MIPAS2D to enhance its applicability in studies of stratospheric chemistry. The database is continuously updated with the analysis of the ongoing measurements that are planned to last until the end of 2013. The GMTR algorithm is operated on a fixed vertical grid coincident with the tangent altitudes of the FR nominal mode, spanning the altitude range from 6 to 68 km. In the horizontal domain, FR measurements are retrieved on both the observational grid and an equispaced 5 latitudinal-degrees grid which is made possible by the 2-dimensional retrieval algorithm. The analysis of MIPAS OR observations is operated on the same altitude-latitude fixed retrieval grid used for the FR measurements. This choice provides a homogeneous database in altitude and latitude, over the whole globe, covering to date about seven years of measurements. The equispaced latitudinal grid provides a new and convenient layout for the much
Different means of applying numerical techniques are proposed, typically used for pattern recognition purposes and for artificial texture classification and segmentation, to study the evolution of magnetization at the nano- and micro-scale in ferromagnetic samples. This framework is applied both to the Magnetic Force Microscope (MFM) dataset and to synthetic binary patterns of 2-dimensional spins, based on a nucleation and growth model for the hysteresis. In general 2-dimensional gray-scale frames carry information characterized by a spatial correlation between each pixel. Multiple datasets as the one analyzed, either 256-bit-valued magnetic field dependent MFM matrices or 2-bit-valued synthetic field dependent scatter matrices, are arranged as multidimensional arrays and their 2-dimensional entropy is computed.
Barone, C., E-mail: cbarone@unisa.it; Romeo, F.; Pagano, S. [Dipartimento di Fisica “E. R. Caianiello” and CNR-SPIN Salerno, Università di Salerno, I-84084 Fisciano, Salerno (Italy); Di Gennaro, E.; Miletto Granozio, F.; Scotti di Uccio, U. [CNR-SPIN Napoli and Dipartimento di Fisica, Università di Napoli “Federico II,” I-80126 Napoli (Italy); Pallecchi, I.; Marrè, D. [CNR-SPIN Genova and Dipartimento di Fisica, Università di Genova, I-16152 Genova (Italy)
2013-12-02
The voltage-spectral density S{sub V} (f) of the 2-dimensional electron gas formed at the interface of LaAlO{sub 3}/SrTiO{sub 3} has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.
Carrier-number fluctuations in the 2-dimensional electron gas at the LaAlO3/SrTiO3 interface
Barone, C.; Romeo, F.; Pagano, S.; Di Gennaro, E.; Miletto Granozio, F.; Pallecchi, I.; Marrè, D.; Scotti di Uccio, U.
2013-12-01
The voltage-spectral density SV (f) of the 2-dimensional electron gas formed at the interface of LaAlO3/SrTiO3 has been thoroughly investigated. The low-frequency component has a clear 1/f behavior with a quadratic bias current dependence, attributed to resistance fluctuations. However, its temperature dependence is inconsistent with the classical Hooge model, based on carrier-mobility fluctuations. The experimental results are, instead, explained in terms of carrier-number fluctuations, due to an excitation-trapping mechanism of the 2-dimensional electron gas.
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
Marcus, Hani J; Hughes-Hallett, Archie; Cundy, Thomas P.; Di Marco, Aimee; Pratt, Philip; Nandi, Dipankar; Darzi, Ara; Yang, Guang-Zhong
2013-01-01
BACKGROUND: Although the potential benefits of 3-dimensional (3-D) vs 2-dimensional (2-D) and high-definition (HD) vs standard-definition (SD) endoscopic visualization have long been recognized in other surgical fields, such endoscopes are generally considered too large and bulky for use within the brain. The recent development of 3-D and HD neuroendoscopes may therefore herald improved depth perception, better appreciation of anatomic details, and improved overall surgical performance. OBJEC...
Girraj Prasad
1969-10-01
Full Text Available The formfunction of a modified multi-tubular charge with holes symmetrically distributed in a 2-dimensional space has been studied. A general expression for the formfunction and the ratio S/So has been obtainedfrom which formfunction for distributions of holes about 3-fold, 4-fold and 6-fold axes have been derived. The charge has been so modified that the burning is complete at the end of the first phase of combustion.
Distillation Calculations with a Programmable Calculator.
Walker, Charles A.; Halpern, Bret L.
1983-01-01
Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…
Autistic Savant Calendar Calculators.
Patti, Paul J.
This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these calculators. Three…
Layered borocarbonitrides BCN and BC5N with a wide difference in composition have been prepared by the urea route. These 2D materials show a significant difference in the photoluminescence spectra, with BCN and BC5N showing maxima at 340 and 410 nm (3.61 and 3.0 eV), besides exhibiting different electrical resistivities. First-principles calculations show that BCN and BC5N are associated with different band gaps, the gap of the carbon-rich composition being lower. The change in the electronic structure and properties is related to the composition of BC XN i.e. the ordering of the graphene and BN domains. (papers)
Heterogeneous Calculation of ε
A heterogeneous method of calculating the fast fission factor given by Naudet has been applied to the Carlvik - Pershagen definition of ε. An exact calculation of the collision probabilities is included in the programme developed for the Ferranti - Mercury computer
Personal Finance Calculations.
Argo, Mark
1982-01-01
Contains explanations and examples of mathematical calculations for a secondary level course on personal finance. How to calculate total monetary cost of an item, monthly payments, different types of interest, annual percentage rates, and unit pricing is explained. (RM)
Consolidated fuel shielding calculations
Irradiated fuel radiation dose rate and radiation shielding requirements are calculated using a validated ISOSHLD-II model. Comparisons are made to experimental measurements. ISOSHLD-11 calculations are documented
2-Dimensional X-ray and neutron diffraction patterns have been successfully measured for deuterated and hydrogenated polyoxymethylene (POM) samples obtained by γ-ray induced solid-state polymerization reaction. More than 700 reflections were collected from the X-ray diffraction data at -150degC by utilizing a high-energy synchrotron X-ray beam at SPring-8, Japan, from which the crystal structure of POM has been refined thoroughly including the extraction of hydrogen atomic positions at clearly seen in the difference Fourier synthesis map. As the first trial the nonuniform (9/5) helical model was analyzed with the reliability factor (R factor) 6.9%. The structural analysis was made also using the X-ray reflections of about 400 observed at room temperature (R 8.8%), and the thermal parameters of constituent atoms were compared between the low and high temperatures to discuss the librational thermal motion of the chains. The 2-dimensional neutron diffraction data, collected for the deuterated and hydrogenated POM samples using an imaging plate system specifically built-up for neutron scattering experiment, have allowed us to pick up the D and H atomic positions clearly in the Fourier synthesis maps. Another possible model, (29/16) helix, which was proposed by several researches, has been also investigated on the basis of the X-ray diffraction data at -150degC. The direct method succeeded in extracting this (29/16) model straightforwardly. The R factor was 8.6%, essentially the same as that of (9/5) helical model. This means that the comparison of the diffraction intensity between the data collected from the full-rotation X-ray diffraction pattern and the intensity calculated for both the (9/5) and (29/16) models cannot be used for the unique determination of the superiority of the model, (9/5) or (29/16) helix. However, we have found the existence of 001 and 002 reflections which give the longer repeating period 55.7 A. Besides there observed a series of meridional
Calculating Clearances for Manipulators
Copeland, E. L.; Peticolas, J. D.; Ray, L. D.
1983-01-01
Set of algorithms rapidly calculates minimum safe clearances for remote manipulators. Such calculations are used in design of trajectories for manipulators to ensure they do not accidentally strike surrounding objects. Structural parts are considered as cylindrical shells having circular plane areas for ends. Clearance calculation method offers special benefits in industrial robotics, particularly in automated machining.
A point-kernel integral technique code, PKN, and the related data library have been developed to calculate neutron and secondary gamma-ray dose equivalents in water, concrete and iron shields for neutron sources in 3-dimensional geometry. The comparison between calculational results of the present code and those of the 1-dimensional transport code ANISN = JR, and the 2-dimensional transport code DOT4.2 showed a sufficient accuracy, and the availability of the PKN code has been confirmed. (author)
Fast near-field calculation for volume integral equations for layered media
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2005-01-01
An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density. Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the nea...
How Do Calculators Calculate Trigonometric Functions?
Underwood, Jeremy M.; Edwards, Bruce H.
How does your calculator quickly produce values of trigonometric functions? You might be surprised to learn that it does not use series or polynomial approximations, but rather the so-called CORDIC method. This paper will focus on the geometry of the CORDIC method, as originally developed by Volder in 1959. This algorithm is a wonderful…
Smith, P.J.; Smoot, L.D.; Brewster, B.S.
1987-12-01
A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.
Mayrhofer, Susanne; Mayrhofer, Susanne
2014-10-01
Ammonoid mass occurrences of Late Triassic age were investigated in sections from A şağlyaylabel and Yukarlyaylabel, which are located in the Taurus Platform-Units of eastern Turkey. The cephalopod beds are almost monospecific, with > 99.9 % of individuals from the ceratitic genus Kasimlarceltites, which comprises more than hundreds of millions of ammonoid specimens. The ontogenetic composition of the event fauna varies from bed to bed, suggesting that these redeposited shell-rich sediments had different source areas. The geographical extent of the mass occurrence can be traced over large areas up to 10 km2. Each of the Early Carnian (Julian 2) ammonoid mass occurrences signifies a single storm (e.g. storm-wave action) or tectonic event (e.g. earthquake) that caused gravity flows and turbidity currents. Three types of ammonoid accumulation deposits are distinguished by their genesis: 1) matrix-supported floatstones, produced by low density debris flows, 2) mixed floatstones and packstones formed by high density debris flows, and 3) densely ammonoid shell-supported packstones which result from turbidity currents. Two-dimensional calculations on the mass occurrences, based on sectioning, reveal aligned ammonoid shells, implying transport in a diluted sediment. The ammonoid shells are predominantely redeposited, preserved as mixed autochthonous/parautochnonous/ allochthonous communities based on biogenic and sedimentological concentration mechanisms ( = in-situ or post-mortem deposited). This taphonomic evaluation of the Kasimlarceltites beds thus reveals new insights into the environment of deposition of the Carnian section, namely that it had a proximal position along a carbonate platform edge that was influenced by a nearby shallow water regime. The Kasimlarceltites-abundance zone is a marker-zone in the study area, developed during the drowning of a shallow water platform, which can be traceable over long distances.
Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)
Park, Chan-Rok; Moon, Seon Young; Park, Da-Hee; Kim, Shin-Ik; Kim, Seong-Keun; Kang, Chong-Yun; Baek, Seung-Hyub; Choi, Jung-Hae; Kim, Jin-Sang; Choi, Eunsoo; Hwang, Jin-Ha
2016-06-01
Frequency-dependent impedance spectroscopy was applied to the 2-dimensioanl conduction transport in the LaAlO3/SrxCa1-xTiO3/SrTiO3 system. The 2-dimensional conduction modifies the electrical/dielectric responses of the LaAlO3/SrxCa1-xTiO3/SrTiO3 depending on the magnitude of the interfacial 2-dimensional resistance. The high conduction of the 2-dimensional electron gas (2DEG) layer can be described using a metallic resistor in series with two parallel RC circuits. However, the high resistance of the 2-dimensional layer drives the composite system from a finite low resistor in parallel with the surrounding dielectrics composed of LaAlO3 and SrTiO3 materials to a dielectric capacitor. This change in the resistance of the 2-dimensional layers modifies the overall impedance enabled by the presence of the interfacial layer due to SrxCa1-xTiO3, which alters the charge transport of the 2-dimensional layer from metallic to semiconducting conduction. A noticeable change is observed in the capacitance Bode plots, indicating highly amplified dielectric constants compared with the pristine SrTiO3 substrates and SrxCa1-xTiO3 with a greater Ca content.
Electrical installation calculations advanced
Kitcher, Christopher
2013-01-01
All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio
Electronics Environmental Benefits Calculator
U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...
Electrical installation calculations basic
Kitcher, Christopher
2013-01-01
All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo
Waste Package Lifting Calculation
The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation
Mohammed Abdulrahim Hamdi
2012-02-01
Full Text Available The mobile and wireless industry is entering an exciting time. Demand for mobile technology is growing at a tremendous rate. Corporations are deploying mobile applications that provide substantial business benefits, and consumers are readily adopting mobile data applications. We present scientific application for mobile phone in steps of software engineering project starting from data gathering, data analysis, designing, coding, packaging, testing and deploying, Mobile Scientific Calculator (MSC enable user to compute any mathematical operation by using this application in mobile phone without needing to use the calculator. Scientific calculator offers three keys the four mathematic operations, the four systems of digits and offering many of functions such as angles functions, power, factorial and other functions. Scientific calculator is suitable for many mobile phones which don t have scientific calculator in its applications, it provide simple design for dealing with its functions for all users. It operated on more than one mobile phone model.
In this paper, an auto-Baecklund transformation is presented for the generalized Burgers equation: ut+uxy + αuuy+αux∂-1xuy=0 (α is constant) by using an ansatz and symbolic computation. Particularly, this equation is transformed into a (1+2)-dimensional generalized heat equation ωt + ωxy=0 by the Cole-Hopf transformation. This shows that this equation is C-integrable. Abundant types of new soliton-like solutions are obtained by virtue of the obtained transformation. These solutions contain n-soliton-like solutions, shock wave solutions and singular soliton-like solutions, which may be of important significance in explaining some physical phenomena. The approach can also be extended to other types of nonlinear partial differential equations in mathematical physics
Collection of CASIM calculations
Monte Carlo calculations of hadronic cascades at Fermilab have usually been done using the code CASIM written by A. Van Ginneken. These calculations are often performed to determine the quantity of shielding required for radiation protection purposes. A number of examples of such calculations have been presented previously. Several years of practical experience have led the author to develop the collection of additional cases included in the present report. These results along with those given earlier will serve as a useful reference. No attempt was made here to consider all possibilities; rather, the purpose was to develop a useful set of examples. Exceptionally intricate cases should, of course, receive individualized attention as appropriate
We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfaces with thousands of electrons
Radioactive cloud dose calculations
Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available
Geogebra: Calculation of Centroid
Qamil Kllogjeri; Pellumb Kllogjeri
2012-01-01
Our paper is result of the research done in a special direction for solving problems of physics by using GeoGebra programme: calculation of centroid. Lots of simulations of physical phenomena from the class of Mechanics can be performed and computational problems can be solved with GeoGebra. GeoGebra offers many commands and one of them is the command “centroid” to calculate the coordinates of the centroid of a polygon but, we have created a new tool to calculate the coordinates of the centr...
nuclear reactor design calculations
In this work , the sensitivity of different reactor calculation methods, and the effect of different assumptions and/or approximation are evaluated . A new concept named error map is developed to determine the relative importance of different factors affecting the accuracy of calculations. To achieve this goal a generalized, multigroup, multi dimension code UAR-DEPLETION is developed to calculate the spatial distribution of neutron flux, effective multiplication factor and the spatial composition of a reactor core for a period of time and for specified reactor operating conditions. The code also investigates the fuel management strategies and policies for the entire fuel cycle to meet the constraints of material and operating limitations
Fast Near-Field Calculation for Volume Integral Equations for Layered Media
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density....... Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since...
A Simple Calculator Algorithm.
Cook, Lyle; McWilliam, James
1983-01-01
The problem of finding cube roots when limited to a calculator with only square root capability is discussed. An algorithm is demonstrated and explained which should always produce a good approximation within a few iterations. (MP)
Frederiksen, Morten
2014-01-01
Williamson’s characterisation of calculativeness as inimical to trust contradicts most sociological trust research. However, a similar argument is found within trust phenomenology. This paper re-investigates Williamson’s argument from the perspective of Løgstrup’s phenomenological theory of trust....... Contrary to Williamson, however, Løgstrup’s contention is that trust, not calculativeness, is the default attitude and only when suspicion is awoken does trust falter. The paper argues that while Williamson’s distinction between calculativeness and trust is supported by phenomenology, the analysis needs to...... take actual subjective experience into consideration. It points out that, first, Løgstrup places trust alongside calculativeness as a different mode of engaging in social interaction, rather conceiving of trust as a state or the outcome of a decision-making process. Secondly, the analysis must take...
Handout on shielding calculation
In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)
IRIS core criticality calculations
Three-dimensional Monte Carlo computer code KENO-VI of CSAS26 sequence of SCALE-4.4 code system was applied for pin-by-pin calculations of the effective multiplication factor for the first cycle IRIS reactor core. The effective multiplication factors obtained by the above mentioned Monte Carlo calculations using 27-group ENDF/B-IV library and 238-group ENDF/B-V library have been compared with the effective multiplication factors achieved by HELIOS/NESTLE, CASMO/SIMULATE, and modified CORD-2 nodal calculations. The results of Monte Carlo calculations are found to be in good agreement with the results obtained by the nodal codes. The discrepancies in effective multiplication factor are typically within 1%. (author)
Unit Cost Compendium Calculations
U.S. Environmental Protection Agency — The Unit Cost Compendium (UCC) Calculations raw data set was designed to provide for greater accuracy and consistency in the use of unit costs across the USEPA...
Shielding calculations for SSC
Monte Carlo calculations of hadron and muon shielding for SSC are reviewed with emphasis on their application to radiation safety and environmental protection. Models and algorithms for simulation of hadronic and electromagnetic showers, and for production and transport of muons in the TeV regime are briefly discussed. Capabilities and limitations of these calculations are described and illustrated with a few examples. 12 refs., 3 figs
Current interruption transients calculation
Peelo, David F
2014-01-01
Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,
Reactor lattice transport calculations
The present lecture is a continuation of the lecture on Introduction to the Neutron Transport Phenomena. It comprises three aspects of lattice calculations. First the idea of a reactor lattice is introduced. Then the main definitions used in reactor lattice analysis are given, and finally two basic methods applied for solution of the transport equations are defined. Several remarks on secondary results from lattice transport calculations are added. (author)
Electrical installation calculations
Watkins, AJ
2006-01-01
Designed to provide a step by step guide to successful application of the electrical installation calculations required in day to day electrical engineering practice, the Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike.Now in its seventh edition, Volume 1 has been fully updated to meet the requirements of the 2330 Level 2 Certificate in Electrotechnical Technology from City & Guilds, and will also prove a vi
Geometric unsharpness calculations
Anderson, D.J. [International Training and Education Group (INTEG), Oakville, Ontario (Canada)
2008-07-15
The majority of radiographers' geometric unsharpness calculations are normally performed with a mathematical formula. However, a majority of codes and standards refer to the use of a nomograph for this calculation. Upon first review, the use of a nomograph appears more complicated but with a few minutes of study and practice it can be just as effective. A review of this article should provide enlightenment. (author)
Uncertainty calculations made easier
Hogenbirk, A.
1994-07-01
The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL).
Uncertainty calculations made easier
The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL)
Topological 2-Dimensional Quantum Mechanics
Dasnières de Veigy, A; Veigy, Alain Dasnieres de; Ouvry, Stephane
1993-01-01
We define a Chern- Simons Lagrangian for a system of planar particles topologically interacting at a distance. The anyon model appears as a particular case where all the particles are identical. We propose exact N-body eigenstates, set up a perturbative algorithm, discuss the case where some particles are fixed on a lattice, and also consider curved manifolds. PACS numbers: 05.30.-d, 11.10.-z
Neutron spectra calculation in material in order to compute irradiation damage
This short presentation will be on neutron spectra calculation methods in order to compute the damage rate formation in irradiated structure. Three computation schemes are used in the French C.E.A.: (1) 3-dimensional calculations using the line of sight attenuation method (MERCURE IV code), the removal cross section being obtained from an adjustment on a 1-dimensional transport calculation with the discrete ordinate code ANISN; (2) 2-dimensional calculations using the discrete ordinates method (DOT 3.5 code), 20 to 30 group library obtained by collapsing the 100 group a library on fluxes computed by ANISN; (3) 3-dimensional calculations using the Monte Carlo method (TRIPOLI system). The cross sections which originally came from UKNDL 73 and ENDF/B3 are now processed from ENDF B IV. (author)
Progress on theoretical calculation
The calculation program NPPD-2 of neutron reaction data in the energy region from 10-11 to 20 MeV has been researched with extending the energy from 5 to 20 MeV. In this program, the cascade γ-de-excitations of the compound nucleus and residual nucleus are described by means of the Troubetzkoy's statistical model and the conservation relations of angular momentum and parity are are considered. This program may be used for the calculations of the natural element, with the number of isotopes less than 10. The program has been finished and the calculations for oxygen are being done in order to test the program. The reaction channels in n + 40Ca, which considered in NPPD-2, are presented
Daylight calculations in practice
Iversen, Anne; Roy, Nicolas; Hvass, Mette;
The aim of the project was to obtain a better understanding of what daylight calculations show and also to gain knowledge of how the different daylight simulation programs perform compared with each other. Experience has shown that results for the same room, obtained from two daylight simulation...... programs can give different results. This can be due to restrictions in the program itself and/or be due to the skills of the persons setting up the models. This is crucial as daylight calculations are used to document that the demands and recommendations to daylight levels outlined by building authorities....... The aim of the project was to obtain a better understanding of what daylight calculations show and also to gain knowledge of how the different daylight simulation programs perform compared with each other. Furthermore the aim was to provide knowledge of how to build up the 3D models that were to be...
Geogebra: Calculation of Centroid
Qamil Kllogjeri
2012-09-01
Full Text Available Our paper is result of the research done in a special direction for solving problems of physics by using GeoGebra programme: calculation of centroid. Lots of simulations of physical phenomena from the class of Mechanics can be performed and computational problems can be solved with GeoGebra. GeoGebra offers many commands and one of them is the command “centroid” to calculate the coordinates of the centroid of a polygon but, we have created a new tool to calculate the coordinates of the centroid of a plane region bounded by curves. Our work is part of the passionate work of many GeoGebra users which will result with a very rich fund of GeoGebra virtual tools, examples and experiences that will be worldwidely available for many teachers and practioners.
A subchannel analysis for nuclear reactor core thermal hydraulics solves the basic conservation equations for mass, momentum and energy for each sub-channel, taking into account the effect of cross flows between neighboring subchannels. The three fluid model formulation is often considered for the analysis of droplet dispersed annular flow regions where the liquid film flow on the fuel rods is determined by a balance among entrainment and deposition rates of liquid droplets in the vapor flow and evaporation rate on a heated wall. The critical heat flux in a BWR is therefore characterized by film dryout. It is well known that in a typical BWR fuel rod assembly there are mechanical spacers placed at, for example, every 50 centimeters in axial direction to keep the rod clearance adequately which in turn result in flow obstacles consequently, and thus local time dependent film flow structure is changed before and after these spacers. The previous studies revealed a general trend that the liquid film thickness normally reduces in a spacer region due to droplet entrainment rate enhanced by an accelerated vapor flow, whereas in a region downstream of the spacers it recovers again because of highly agitated nature of the flow behind the spacers and increased deposition rate. Thus the accurate prediction of time dependent 2-dimensional film thickness on the fuel rods is extremely indispensable for the evaluation of the critical heat flux for BWR fuel assemblies. However, for the moment, we do not have reliable data-base for non-homogeneous liquid film flow on the fuel rods mainly because of a lack in accurate non-intrusive measuring techniques. The purpose of this work is therefore to present the outline of a new development in high speed ultrasonic echo technique which we are now pursuing at our laboratory with a view to applying it to measurement of time-sequential 2-dimensional thickness of the film flow around a simulated nuclear fuel rod. The scanning time required to
Population dose calculation technique
An original method is suggested for calculating the population doses from gas and aerosol radioactive releases. The method is based on the assumption of uniform population and arable land distribution. The validity of this assumption has been proved for a rather large condition range. Though, some modified formulae are given to take into account the non-uniformity of population distribution, connected with large cities, on the one hand, and with woods, shores, regional borders, on the other hand. Employment of the suggested method results in an apriciable calculation accuracy rise for the long-living slowly precipitating radionuclides as compared with the existing methods
Big Bang Nucleosynthesis Calculation
Kurki-Suonio, H
2001-01-01
I review standard big bang nucleosynthesis and some versions of nonstandard BBN. The abundances of the primordial isotopes D, He-3, and Li-7 produced in standard BBN can be calculated as a function of the baryon density with an accuracy of about 10%. For He-4 the accuracy is better than 1%. The calculated abundances agree fairly well with observations, but the baryon density of the universe cannot be determined with high precision. Possibilities for nonstandard BBN include inhomogeneous and antimatter BBN and nonzero neutrino chemical potentials.
Electrical installation calculations
Watkins, AJ
2006-01-01
Designed to provide a step by step guide to successful application of the electrical installation calculations required in day to day electrical engineering practice, the Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both Foundation and Modern Apprentices, and professional electrical installation engineers alike.Now in its sixth edition, Volume 2 has been fully updated to meet the requirements of the 2330 Level 3 Certificate in Electrotechnical Technology from City & Guilds, and will also prove a vital purchase for students of Level 3
Djouadi, Abdelhak
2002-01-01
I discuss the various available tools for the study of the properties of the new particles predicted in the Minimal Supersymmetric extension of the Standard Model. Emphasis will be put on the codes for the determination of the sparticle and Higgs boson spectrum. Codes for the calculation of production cross sections, decay widths and branching ratios, Dark Matter relic density and detection rates, as well as codes for automatic analytical calculations and Monte-Carlo event generators for Supersymmetric processes will be briefly discussed.
Three recent TDHF calculations
Three applications of TDHF are discussed. First, vibrational spectra of a post grazing collision 40Ca nucleus is examined and found to contain many high energy components, qualitatively consistent with recent Orsay experiments. Second, the fusion cross section in energy and angular momentum are calculated for 16O + 24Mg to exhibit the parameters of the low l window for this system. A sensitivity of the fusion cross section to the effective two body potential is discussed. Last, a preliminary analysis of 86Kr + 139La at E/sub lab/ = 505 MeV calculated in the frozen approximation is displayed, compared to experiment and discussed
Noordzij, Marlies; Dekker, Friedo W.; Zoccali, Carmine; Jager, Kitty J.
2011-01-01
The sample size is the number of patients or other experimental units that need to be included in a study to answer the research question. Pre-study calculation of the sample size is important; if a sample size is too small, one will not be able to detect an effect, while a sample that is too large may be a waste of time and money. Methods to calculate the sample size are explained in statistical textbooks, but because there are many different formulas available, it can be difficult for inves...
无
2011-01-01
Compared with ellipse cavity, the spoke cavity has many advantages, especially for the low and medium beam energy. It will be used in the superconductor accelerator popular in the future. Based on the spoke cavity, we design and calculate an accelerator
Water vapor pressure calculation.
Hall, J R; Brouillard, R G
1985-06-01
Accurate calculation of water vapor pressure for systems saturated with water vapor can be performed using the Goff-Gratch equation. A form of the equation that can be adapted for computer programming and for use in electronic databases is provided. PMID:4008425
Languages for structural calculations
The differences between human and computing languages are recalled. It is argued that they are to some extent structured in antagonistic ways. Languages in structural calculation, in the past, present, and future, are considered. The contribution of artificial intelligence is stressed
Calendrical Calculation and Intelligence.
O'Connor, Neil; Cowan, Richard; Samella, Katerina
2000-01-01
Studied the ability to name the days of the week for dates in the past and future (calendrical calculation) of 10 calendrical savants with Wechlser Adult Intelligence Scale scores from 50 to 97. Results suggest that although low intelligence does not prevent the development of this skill, the talent depends on general intelligence. (SLD)
Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)
2014-09-30
Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.
An unambiguous identification of the fine oscillations observed in the low temperature photoluminescence (PL) spectra of AlGaN/GaN based high electron mobility transistor (HEMT) structures is carried out. In literature, such oscillations have been erroneously identified as the sub-levels of 2-dimensional electron gas (2DEG) formed at AlGaN/GaN heterointerface. Here, the origin of these oscillations is probed by performing the angle dependent PL and reflectivity measurements under identical conditions. Contrary to the reports available in literature, we find that the fine oscillations are not related to 2DEG sub-levels. The optical characteristics of these oscillations are mainly governed by an interference phenomenon. In particular, peculiar temperature dependent redshift and excitation intensity dependent blueshift, which have been interpreted as the characteristics of 2DEG sub-levels in HEMT structures by other researchers, are understood by invoking the wavelength and temperature dependence of the refractive index of GaN within the framework of interference phenomenon. The results of other researchers are also consistently explained by considering the fine oscillatory features as the interference oscillations
QSL Squasher: A Fast Quasi-Separatrix Layer Map Calculator
Tassev, Svetlin
2016-01-01
Quasi-Separatrix Layers (QSLs) are a useful proxy for the locations where current sheets can develop in the solar corona, and give valuable information about the connectivity in complicated magnetic field configurations. However, calculating QSL maps even for 2-dimensional slices through 3-dimensional models of coronal magnetic fields is a non-trivial task as it usually involves tracing out millions of magnetic field lines with immense precision. Thus, extending QSL calculations to three dimensions has rarely been done until now. In order to address this challenge, we present QSL Squasher -- a public, open-source code, which is optimized for calculating QSL maps in both two and three dimensions on GPUs. The code achieves large processing speeds for three reasons, each of which results in an order-of-magnitude speed-up. 1) The code is parallelized using OpenCL. 2) The precision requirements for the QSL calculation are drastically reduced by using perturbation theory. 3) A new boundary detection criterion betwe...
PIC: Protein Interactions Calculator
Tina, KG; Bhadra, R.; Srinivasan, N.
2007-01-01
Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bo...
DeCART code verifications by numerical benchmark calculations of HTTR
DeCART code verifications have been performed through the numerical benchmark calculations of HTTR. The reference calculations have been carried out using the Monte Carlo McCARD code in which a double heterogeneity model was used. Verification results show that the DeCART code gives less negative MTC and RTC than the McCARD code does and thus the DeCART code underestimates the multiplication factors at states with high moderator and reflector temperatures. However, the DeCART code predicts more negative FTC than McCARD code does. In the depletion calculation for the HTTR single cell and single block, the error of the DeCART code increases with burnup. While the DeCART code error in a 2-dimensional core depletion calculation decreases with burnup up to around 500 FPD. (author)
Purpose: To quantify the interfraction displacement of esophageal fiducial markers for primary esophageal cancer radiation therapy. Methods and Materials: Orthogonal 2-dimensional (2D) matching records fused to vertebrae were analyzed in clinically staged T1/2N0 esophageal cancer patients undergoing endoscopic clipping as fiducial metal markers. Displacement of the markers between the digitally reconstructed radiographs and on-board kilovoltage images during radiation therapy was analyzed according to direction and esophageal site. Results: Forty-four patients, with 81 markers (10 proximal, 42 middle, and 29 distal), underwent 367 2D matching sessions during radiation therapy. The mean (SD) absolute marker displacement was 0.26 (0.30) cm in the right–left (RL), 0.50 (0.39) cm in the superior–inferior (SI), and 0.24 (0.21) cm in the anterior–posterior (AP) direction. Displacement was significantly larger in the SI than in the RL and AP directions (P<.0001). In the SI direction, mean absolute displacements of the distal, middle, and proximal esophagus were 0.67 (0.45) cm, 0.42 (0.32) cm, and 0.36 (0.30) cm, respectively. Distal esophagus displacement was significantly larger than those of the middle and proximal esophagus (P<.0001). The estimated internal margin to cover 95% of the cases was 0.75 cm in the RL and AP directions. In the SI direction, the margin was 1.25 cm for the proximal and middle esophagus and 1.75 cm for the distal esophagus. Conclusions: The magnitude of interfraction displacement of esophageal clips was larger in the SI direction, particularly in the distal esophagus, but substantial displacement was observed in other directions and at other esophageal sites. It is practical to take estimated movements into account with internal margins, even if vertebrae-based 2D matching is performed
Chan, A. W.; Isaacman, G. A.; Worton, D. R.; Kreisberg, N. M.; Schilling, K. A.; Craven, J. S.; Metcalf, A. R.; Hersey, S. P.; Rubitschun, C. L.; Lin, Y. H.; Offenberg, J. H.; Surratt, J. D.; Seinfeld, J.; Hering, S. V.; Goldstein, A. H.
2011-12-01
Understanding the sources and transformation processes of organic aerosol requires detailed speciation of organic compounds. Molecular markers specific to individual sources help determine the contribution of each source to organic aerosol emissions. In previous work using one-dimensional gas-chromatograph mass spectrometry (GC/MS), less than 10-20% of the organic fraction has been identified, with a large contribution of unresolved complex mixture (UCM). Two-dimensional gas-chromatograph is a novel technique which provides excellent resolution to separate compounds buried in this complex mixture. In addition to a volatility-based chromatographic separation, compounds are further separated on a second column based on their polarities. Here we report measurements of more than 200 resolved compounds observed on filters collected during CalNex 2010 in Bakersfield and Pasadena, and during a large biomass burning event in the Los Angeles area (Station Fire). High volume filter samples are thermally desorbed in a Gerstel Thermal Desorption System (TDS2) and preconcentrated on a cooled inlet (CIS). The compounds are then analyzed by comprehensive 2-dimensional GC using a Zoex modulator, followed by high-resolution mass spectrometry (Tofwerks). Compound identification is carried out by comparison of retention times with known standards, mass spectral library match, and identification of molecular fragments by exact mass. A wide range of compounds are observed: n-alkanes, polyaromatic hydrocarbons, and oxygenated compounds such as acids, esters and ketones. While levoglucosan was observed in organic aerosol produced during the Station Fire, many other compounds revealed by two-dimensional GC (such as resin acids, lignin pyrolysis products) show elevated signals, suggesting that other molecular markers can provide additional information about aerosol formation processes during biomass burning events.
Calculations in furnace technology
Davies, Clive; Hopkins, DW; Owen, WS
2013-01-01
Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi
Zero Temperature Hope Calculations
The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the
Linewidth calculations and simulations
Strandberg, Ingrid
2016-01-01
We are currently developing a new technique to further enhance the sensitivity of collinear laser spectroscopy in order to study the most exotic nuclides available at radioactive ion beam facilities, such as ISOLDE at CERN. The overall goal is to evaluate the feasibility of the new method. This report will focus on the determination of the expected linewidth (hence resolution) of this approach. Different effects which could lead to a broadening of the linewidth, e.g. the ions' energy spread and their trajectories inside the trap, are studied with theoretical calculations as well as simulations.
Lopez, Cesar
2015-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. This book is designed for use as a scientific/business calculator so that you can get numerical solutions to problems involving a wide array of mathematics using MATLAB. Just look up the function y
In this paper, excerpts of the 'Core Design', 'Computational Chains' and 'Qualification of Computational Chains' lectures are presented. Nuclear reactor design basic concepts as power distribution and reactivity are defined and analyzed both from the theoretical and the computational point of view. Emphasis is put on the physical meaning and sensitivity of both 'observables' to design parameters. Computational aspects, mainly as regards the effects of the heterogeneity in space and energy in reactor calculations, are afforded too. Structure and qualification of computational code packages are discussed and a practical application to the FRAMATOME SCIENCE advanced computational chain is supplied. (author)
Several Monte Carlo techniques are compared in the transport of neutrons of different source energies through two different deep-penetration problems each with two parts. The first problem involves transmission through a 200-cm concrete slab. The second problem is a 900 bent pipe jacketed by concrete. In one case the pipe is void, and in the other it is filled with liquid sodium. Calculations are made with two different Los Alamos Monte Carlo codes: the continuous-energy code MCNP and the multigroup code MCMG
Configuration space Faddeev calculations
The detailed study of few-body systems provides one of the most effective means for studying nuclear physics at subnucleon distance scales. For few-body systems the model equations can be solved numerically with errors less than the experimental uncertainties. We have used such systems to investigate the size of relativistic effects, the role of meson-exchange currents, and the importance of quark degrees of freedom in the nucleus. Complete calculations for momentum-dependent potentials have been performed, and the properties of the three-body bound state for these potentials have been studied. Few-body calculations of the electromagnetic form factors of the deuteron and pion have been carried out using a front-form formulation of relativistic quantum mechanics. The decomposition of the operators transforming convariantly under the Poincare group into kinematical and dynamical parts has been studies. New ways for constructing interactions between particles, as well as interactions which lead to the production of particles, have been constructed in the context of a relativistic quantum mechanics. To compute scattering amplitudes in a nonperturbative way, classes of operators have been generated out of which the phase operator may be constructed. Finally, we have worked out procedures for computing Clebsch-Gordan and Racah coefficients on a computer, as well as giving procedures for dealing with the multiplicity problem
Weldon Spring dose calculations
In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case
Multilayer optical calculations
Byrnes, Steven J
2016-01-01
When light hits a multilayer planar stack, it is reflected, refracted, and absorbed in a way that can be derived from the Fresnel equations. The analysis is treated in many textbooks, and implemented in many software programs, but certain aspects of it are difficult to find explicitly and consistently worked out in the literature. Here, we derive the formulas underlying the transfer-matrix method of calculating the optical properties of these stacks, including oblique-angle incidence, absorption-vs-position profiles, and ellipsometry parameters. We discuss and explain some strange consequences of the formulas in the situation where the incident and/or final (semi-infinite) medium are absorptive, such as calculating $T>1$ in the absence of gain. We also discuss some implementation details like complex-plane branch cuts. Finally, we derive modified formulas for including one or more "incoherent" layers, i.e. very thick layers in which interference can be neglected. This document was written in conjunction with ...
Negative ion extraction is described by a model which includes electron diffusion across transverse magnetic fields in the sheath. This model allows a 2-Dimensional approximation of the problem to be made. It is used to introduce electron space charge effects in a 2-D particle trajectory code, designed for negative ion optics calculations. Another physical effect, the stripping of negative ions on gas, has also been included in our model; it is found to play an important role in negative ion optics. The comparison with three sets of experimental data from very different negative ion accelerators, show that our model is capable of accurate predictions
Negative ion extraction is described by a model which includes electron diffusion across transverse magnetic fields in the sheath. This model allows a 2-Dimensional approximation of the problem. It is used to introduce electron space charge effects in a 2-D particle trajectory code, designed for negative ion optics calculations. Another physical effect, the stripping of negative ions on neutral gas atoms, has also been included in our model; it is found to play an important role in negative ion optics. The comparison with three sets of experimental data from very different negative ion accelerators, show that our model is able of accurate predictions
Molecular Dynamics Calculations
1996-01-01
The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two
I took only few topics to investigate, some on which I had some personal interest, and others that I felt rather crucial for the design. In this document I report my calculations on these various subjects. Therefore this document represents my tangible contribution to TRISTAN design. I give in the following the list of the topics which are discussed in this document. 1. Increase of the vertical betatron emmitance by skew quadrupoles in the electron storage ring. 2. Bremsstrahlung. 3. Dipole correcting system for electron ring. 4. Wigglers at low energies 5. Steady state compensation of beam loading in the single beam mode in the electron storage ring. 6. Coupled bunch longitudinal instability for electron ring. 7. Ion production and trapping in the electron storage ring for TRISTAN. 8. Estimate of the longitudinal impedance for the TRISTAN electron storage ring. (author)
Exoplanet Equilibrium Chemistry Calculations
Blumenthal, Sarah; Harrington, J.; Bowman, M.; Blecic, J.
2013-10-01
Recently, Agundez et al. (2012, A&A 548, A73) used a chemical kinetics code to study a model HD 209458b (equilibrium temperature of 1450 K, assuming full redistribution and 0 albedo). They found that thermochemistry dominates most of the dayside, but that significant compositional gradients may exist across the dayside. We calculate equilibrium-chemistry molecular abundances for several model exoplanets, using NASA's open-source Chemical Equilibrium Abundances code (McBride and Gordon 1996). We vary the degree of radiation redistribution to the dark side, ranging from total redistribution to instantaneous reradiation. Atomically, both the solar abundance multiple and the carbon fraction vary. Planet substellar temperatures range from just above 1200 K, where photochemistry should no longer be important, to those of hot planets (3000 K). We present synthetic abundance images for the key spectroscopic molecules CO, CH4, and H2O for several hot-Jupiter model planets. This work was supported by the NASA Planetary Atmospheres grant NNX12AI69G.
Relative Hazard Calculation Methodology
The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation)
Parallel nearest neighbor calculations
Trease, Harold
We are just starting to parallelize the nearest neighbor portion of our free-Lagrange code. Our implementation of the nearest neighbor reconnection algorithm has not been parallelizable (i.e., we just flip one connection at a time). In this paper we consider what sort of nearest neighbor algorithms lend themselves to being parallelized. For example, the construction of the Voronoi mesh can be parallelized, but the construction of the Delaunay mesh (dual to the Voronoi mesh) cannot because of degenerate connections. We will show our most recent attempt to tessellate space with triangles or tetrahedrons with a new nearest neighbor construction algorithm called DAM (Dial-A-Mesh). This method has the characteristics of a parallel algorithm and produces a better tessellation of space than the Delaunay mesh. Parallel processing is becoming an everyday reality for us at Los Alamos. Our current production machines are Cray YMPs with 8 processors that can run independently or combined to work on one job. We are also exploring massive parallelism through the use of two 64K processor Connection Machines (CM2), where all the processors run in lock step mode. The effective application of 3-D computer models requires the use of parallel processing to achieve reasonable "turn around" times for our calculations.
Configuration space Faddeev calculations
The detailed study of few-body systems provides one of the most precise tools for studying the dynamics of nuclei. Our research program consists of a careful theoretical study of the nuclear few-body systems. During the past year we have completed several aspects of this program. We have continued our program of using the trinucleon system to investigate the validity of various realistic nucleon-nucleon potentials. Also, the effects of meson-exchange currents in nuclear systems have been studied. Initial calculations using the configuration-space Faddeev equations for nucleon-deuteron scattering have been completed. With modifications to treat relativistic systems, few-body methods can be applied to phenomena that are sensitive to the structure of the individual hadrons. We have completed a review of Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics for Advances in Nuclear Physics. Although it is called a review, it is a large document that contains a significant amount of new research
One of the most important aspects in relation to the quality assurance in any analytical activity is the estimation of measurement uncertainty. There is general agreement that 'the expression of the result of a measurement is not complete without specifying its associated uncertainty'. An analytical process is the mechanism for obtaining methodological information (measurand) of a material system (population). This implies the need for the definition of the problem, the choice of methods for sampling and measurement and proper execution of these activities for obtaining information. The result of a measurement is only an approximation or estimate of the value of the measurand, which is complete only when accompanied by an estimate of the uncertainty of the analytical process. According to the 'Vocabulary of Basic and General Terms in Metrology' measurement uncertainty' is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand (or magnitude). This parameter could be a standard deviation or a confidence interval. The uncertainty evaluation requires detailed look at all possible sources, but not disproportionately. We can make a good estimate of the uncertainty concentrating efforts on the largest contributions. The key steps of the process of determining the uncertainty in the measurements are: - the specification of the measurand; - identification of the sources of uncertainty - the quantification of individual components of uncertainty, - calculate the combined standard uncertainty; - report of uncertainty.
Relativistic few body calculations
A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ5γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs
Ahrens, Thomas J.
2001-01-01
We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.
The rating reliability calculator
Solomon David J
2004-04-01
Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.
Surface retention capacity calculation
David, Vaclav; Dostal, Tomas
2010-05-01
Flood wave transformation in the floodplain is the phenomenon which is researched within interdisciplinary project NIVA - Water Retention in Floodplains and Possibilities of Retention Capacity Increase. The project focuses on broad range of floodplain ecosystem services and mitigation of flooding is one of them. Despite main influence on flood wave transformation is due to flow retardation, retention in surface depressions within floodplain has been analyzed to get better overview of whole transformation process. Detail digital relief model (DRM) has been used for given purposes to be able to analyze terrain depressions volumes. The model was developed with use of stereophotogrammetric evaluation of airborne images with high resolution of 10 cm. It was essential for purposes of presented analysis not to apply pit removal routines which are often used for generation of DRM for hydrological modelling purposes. First, the methodology of analysis was prepared and tested on artificial surface. This surface was created using random raster generation, filtration and resampling with final resolution of 1000 x 1000 units and height of maximum 10 units above datum. The methodology itself is based on analysis of areas inundated by water at different elevation levels. Volume is than calculated for each depression using extraction of terrain elevations under corresponding water level. The method was then applied on the area of Lužnice River floodplain section to assess retention capacity of real floodplain. The floodplain had to be cut into sections perpendicular to main river orientation for analyses as the method was tested for square shaped area without any significant inclination. Results obtained by mentioned analysis are presented in this paper. Acknowledgement Presented research was accomplished within national project NIVA - Water Retention in Floodplains and Possibilities of Retention Capacity Increase, nr. QH82078. The project is funded by Ministry of Agriculture of
Calculation of multiphoton ionization processes
Chang, T. N.; Poe, R. T.
1976-01-01
We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.
HEU benchmark calculations and LEU preliminary calculations for IRR-1
We performed neutronics calculations for the Soreq Research Reactor, IRR-1. The calculations were done for the purpose of upgrading and benchmarking our codes and methods. The codes used were mainly WIMS-D/4 for cell calculations and the three dimensional diffusion code CITATION for full core calculations. The experimental flux was obtained by gold wire activation methods and compared with our calculated flux profile. The IRR-1 is loaded with highly enriched uranium fuel assemblies, of the plate type. In the framework of preparation for conversion to low enrichment fuel, additional calculations were done assuming the presence of LEU fresh fuel. In these preliminary calculations we investigated the effect on the criticality and flux distributions of the increase of U-238 loading, and the corresponding uranium density.(author)
A comparison of carbon calculators
International attention to carbon dioxide emissions is turning to an individual's contribution, or 'carbon footprint.' Calculators that estimate an individual's CO2 emissions have become more prevalent on the internet. Even with similar inputs, however, these calculators can generate varying results, often by as much as several metric tons per annum per individual activity. This paper examines the similarities and differences among ten US-based calculators. Overall, the calculators lack consistency, especially for estimates of CO2 emissions from household electricity consumption. In addition, most calculators lack information about their methods and estimates, which impedes comparison and validation. Although carbon calculators can promote public awareness of carbon emissions from individual behavior, this paper reveals the need for improved consistency and transparency in the calculators
Invert Effective Thermal Conductivity Calculation
The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m · K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations
Global nuclear-structure calculations
The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε2 and ε4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential
Measurement and calculation of evaporation
Plesničar, Leja
2015-01-01
The thesis presents three selected methods of measurement and calculation of the evapotranspiration on research plot at Hajdrihova 28 in Ljubljana. First method is measurement by evaporation pan type A and the other two methods are empirical equations for potential evapotranspiration calculation: FAO Penman-Monteith equation and Thornthwait equation. The results obtained for all three methods are compared with each other. Calculated results according to the FAO Penman-Monteith equation wer...
Calculation of Spectra of Solids:
Lindgård, Per-Anker
1975-01-01
The Gilat-Raubenheimer method simplified to tetrahedron division is used to calculate the real and imaginary part of the dynamical response function for electrons. A frequency expansion for the real part is discussed. The Lindhard function is calculated as a test for numerical accuracy....... The conduction electron susceptibility is calculated for Gd, Tb and Dy using the RAPW energy bands by Keeton and Louks....
CAVEAT calculations of shock interactions
CAVEAT is a computer code for calculating the time-varying fluid dynamics of several adjacent materials in two or three space dimensions. Using an extended Godunov technique and adaptive meshing, the code allows for large slippage at material interfaces. To exhibit the capability for calculating strong distortions we have performed a variety of calculations describing the interaction of shocks with rigid wedges, cylinders, and spheres and deformable cylindrical, spherical, and conical shells in two space dimensions. Comparison of the results with experimental data and analytical solutions demonstrates the considerable accuracy that can be expected from calculations with this code
Wang, Fei; Wu, Qi; Huang, Qunxing; Zhang, Haidan; Yan, Jianhua; Cen, Kefa
2015-07-01
An innovative tomographic method using tunable diode laser absorption spectroscopy (TDLAS) and algebraic reconstruction technique (ART) is presented in this paper for detecting two-dimensional distribution of H2O concentration and temperature in a premixed flame. The collimated laser beam emitted from a low cost diode laser module was delicately split into 24 sub-beams passing through the flame from different angles and the acquired laser absorption signals were used to retrieve flame temperature and H2O concentration simultaneously. The efficiency of the proposed reconstruction system and the effect of measurement noise were numerically evaluated. The temperature and H2O concentration in flat methane/air premixed flames under three different equivalence ratios were experimentally measured and reconstruction results were compared with model calculations. Numerical assessments indicate that the TDLAS tomographic system is capable for temperature and H2O concentration profiles detecting even the noise strength reaches 3% of absorption signal. Experimental results under different combustion conditions are well demonstrated along the vertical direction and the distribution profiles are in good agreement with model calculation. The proposed method exhibits great potential for 2-D or 3-D combustion diagnostics including non-uniform flames.
Allan, Michael; Regeta, Khrystyna; Gorfinkiel, Jimena D.; Mašín, Zdeněk; Grimme, Stefan; Bannwarth, Christoph
2016-05-01
The article briefly reviews three subjects recently investigated in Fribourg: (i) electron collisions with surfaces of ionic liquids, (ii) two-dimensional (2D) electron energy loss spectra and (iii) resonances in absolute cross sections for electronic excitation of unsaturated compounds. Electron energy loss spectra of four ionic liquids revealed a number of excited states, including triplet states. A solution of a dye in an ionic liquid showed an energy-loss band of the solute, but not in all ionic liquids. 2D spectra reveal state-to-state information (given resonance to given final state) and are shown to be an interesting means to gain insight into dynamics of nuclear motion in resonances. Absolute cross sections for pyrimidine are reported as a function of scattering angle and as a function of electron energy. They reveal resonant structure which was reproduced very nicely by R-matrix calculations. The calculation provided an assignment of the resonances which reveals common patterns in compounds containing double bonds.
Calculations of effective atomic number
Kaliman, Z. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia); Orlic, N. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia)], E-mail: norlic@ffri.hr; Jelovica, I. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia)
2007-09-21
We present and discuss effective atomic number (Z{sub eff}) obtained by different methods of calculations. There is no unique relation between the computed values. This observation led us to the conclusion that any Z{sub eff} is valid only for given process. We illustrate calculations for different subshells of atom Z=72 and for M3 subshell of several other atoms.
Calculation of two Belyi pairs
Dremov, V. A.
2008-01-01
We calculate two Belyi pairs using the properties of Mulase-Penkava differential. Details are provided including accurate construction of coordinates, variables and equations. The calculation is a part of the work which results in a catalogue arXiv:0710.2658
CELSS scenario analysis: Breakeven calculations
Mason, R. M.
1980-01-01
A model of the relative mass requirements of food production components in a controlled ecological life support system (CELSS) based on regenerative concepts is described. Included are a discussion of model scope, structure, and example calculations. Computer programs for cultivar and breakeven calculations are also included.
Shielding calculational system for plutonium
A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)
Closure and Sealing Design Calculation
T. Lahnalampi; J. Case
2005-08-26
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post
Closure and Sealing Design Calculation
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not
Performance of high-accuracy schemes in inviscid fluxes calculation
In this paper performance of first, second and third order accurate methods for calculation of inviscid fluxes in fluid flow governing equations are investigated. Accuracy, convergence rate, and shock capturing of these methods are discussed and advantages of each one are compared with the others. For this purpose an upwind method based on Roe's scheme is applied to solve 2-dimensional Euler equations. To increase the accuracy of the method two different schemes are applied. The first one is a second and third order upwind-based algorithm with the MUSCL extrapolation Van Leer (1979), based on primitive variables. The second one is upwind-based algorithm with the Chakravarthy extrapolation to the fluxes of mass, momentum and energy. In the above mentioned methods Van Albada et. al. flux limiter (1982) and minmod slope-limiter is applied, respectively. To confirm the validation of the presented schemes two test cases have been carried out including supersonic flow over a bump and a compression ramp. The results are compared with the results of other references. It has been shown that the thickness of shock layer in the third order accuracy is less than its value in second order. Applying limiter eliminates the oscillations near the shock but the thickness of shock layer will be more in MUSCL method. While in Chakravarthy method limiters eliminate oscillations and thickness of the shock layer remains constant. (author)
Practical astronomy with your calculator
Duffett-Smith, Peter
1989-01-01
Practical Astronomy with your Calculator, first published in 1979, has enjoyed immense success. The author's clear and easy to follow routines enable you to solve a variety of practical and recreational problems in astronomy using a scientific calculator. Mathematical complexity is kept firmly in the background, leaving just the elements necessary for swiftly making calculations. The major topics are: time, coordinate systems, the Sun, the planetary system, binary stars, the Moon, and eclipses. In the third edition there are entirely new sections on generalised coordinate transformations, nutr
Calculation of thermal diffuse scattering
Wakabayashi, N.; Nicklow, R. M.; Katano, S.; Ishii, Y.; Child, H. R.; Smith, H. G.; Fernandez-Baca, J. A.
We have developed a computer program to calculate the thermal diffuse scattering (TDS) intensity distribution for single-crystal specimens in a diffractometer with no energy analysis. We assumed that the phonon frequencies are approximated by those of elastic waves and that the elastic constants, density and lattice parameters of the system under study are known. The results of the calculations were compared to experimental data obtain for single crystals of Si, diamond and NiAl at the wide-angle neutron diffractometer (WAND) at the HFIR at Oak Ridge National Laboratory. Excellent agreement was found between the calculations and the experimental observations.
Calculation of thermal diffuse scattering
The authors developed a computer program to calculate the thermal diffuse scattering (TDS) intensity distribution for single crystal specimens in a diffractometer with no energy analysis. They assumed that the phonon frequencies are approximated by those of elastic waves and that the elastic constants, density and lattice parameters of the system under study are known. The results of the calculations were compared to experimental data obtained for single crystals of Si, diamond and NiAl at the Wide Angle neutron Diffractometer at the HFIR at Oak Ridge National Laboratory. Excellent agreement was found between the calculations and the experimental observations
Machingauta, Cleopas; Hossenlopp, Jeanne M
2013-12-01
X-ray diffraction and UV-vis spectroscopy were used for the investigation of ion exchange reaction kinetics of nitrates with acetate (Ac), chloro acetate (ClAc), dichloro acetate (dClAc) and trichloro acetate (tClAc) anions, using zinc nickel hydroxy nitrate (ZnNiHN) as the exchange precursor. The exchange reactions conducted at 24, 30, 40 and 50°C revealed that rate constants were inversely related to the calculated anion electronic spatial extent (ESE), while a direct relationship between rate constants and the average oxygen charges was observed. Temporal solid phase structural transformations were shown to be affected by the nature of the guest anions. The amount of nitrates released into solution has been shown to decrease as the guest anions became more chlorinated. Use of isoconversional approach revealed that activation energies changed significantly with α during dClAc intercalation than for the other anions. The topotactic intercalation of the guest anions, except dClAc, followed the Avrami-Erofe'ev kinetic model for the entire reaction progress. PMID:24054447
Shiota, Takahiro; Jones, Michael; Tsujino, Hiroyuki; Qin, Jian Xin; Zetts, Arthur D.; Greenberg, Neil L.; Cardon, Lisa A.; Panza, Julio A.; Thomas, James D.
2002-01-01
BACKGROUND: For evaluating patients with aortic regurgitation (AR), regurgitant volumes, left ventricular (LV) stroke volumes (SV), and absolute LV volumes are valuable indices. AIM: The aim of this study was to validate the combination of real-time 3-dimensional echocardiography (3DE) and semiautomated digital color Doppler cardiac flow measurement (ACM) for quantifying absolute LV volumes, LVSV, and AR volumes using an animal model of chronic AR and to investigate its clinical applicability. METHODS: In 8 sheep, a total of 26 hemodynamic states were obtained pharmacologically 20 weeks after the aortic valve noncoronary (n = 4) or right coronary (n = 4) leaflet was incised to produce AR. Reference standard LVSV and AR volume were determined using the electromagnetic flow method (EM). Simultaneous epicardial real-time 3DE studies were performed to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV), and LVSV by subtracting LVESV from LVEDV. Simultaneous ACM was performed to obtain LVSV and transmitral flows; AR volume was calculated by subtracting transmitral flow volume from LVSV. In a total of 19 patients with AR, real-time 3DE and ACM were used to obtain LVSVs and these were compared with each other. RESULTS: A strong relationship was found between LVSV derived from EM and those from the real-time 3DE (r = 0.93, P clinically applicable.
Relativistic calculations of atomic structure
Fricke, Burkhard
1984-01-01
A review of relativistic atomic structure calculations is given with a emphasis on the Multiconfigurational-Dirac-Fock method. Its problems and deficiencies are discussed together with the contributions which go beyond the Dirac-Fock procedure.
Calculations of turbulent separated flows
Zhu, J.; Shih, T. H.
1993-01-01
A numerical study of incompressible turbulent separated flows is carried out by using two-equation turbulence models of the K-epsilon type. On the basis of realizability analysis, a new formulation of the eddy-viscosity is proposed which ensures the positiveness of turbulent normal stresses - a realizability condition that most existing two-equation turbulence models are unable to satisfy. The present model is applied to calculate two backward-facing step flows. Calculations with the standard K-epsilon model and a recently developed RNG-based K-epsilon model are also made for comparison. The calculations are performed with a finite-volume method. A second-order accurate differencing scheme and sufficiently fine grids are used to ensure the numerical accuracy of solutions. The calculated results are compared with the experimental data for both mean and turbulent quantities. The comparison shows that the present model performs quite well for separated flows.
Calculation method of Tesla coil
Коломієць, Роман Олександрович
2015-01-01
Tesla coil, despite the simplicity of its design may be called one of the least studied electronic devices. The article is an attempt to bring in various experimental results of general theoretical framework, which is the basis of exact calculation method of Tesla coils. Such calculation should be the starting point to create devices based on it. In order to develop such methods were considered the general principles of designing Tesla coil, reviewed the most famous mathematical models of its...
Hydraulic calculation of pressure pipes
Mikhalev, M. A.
2012-01-01
In the present time there is only one classic method for hydraulic calculation of pressure pipes. In it fluid flow velocity and pipeline diameter are considered as given values.The paper proposes a procedure for physical modeling and hydraulic calculation of pressure pipes, based on the theory of similarity. Methods for obtaining similarity criteria from combinations of similarity numbers were discussed. Similarity numbers and criteria and criteria equations were defined.
Multifragmentation calculated with relativistic forces
A saturating hamiltonian is presented in a relativistically covariant formalism. The interaction is described by scalar and vector mesons, with coupling strengths adjusted to the nuclear matter. No explicit density dependence is assumed. The hamiltonian is applied in a QMD calculation to determine the fragment distribution in O + Br collision at different energies (50 - 200 MeV/u) to test the applicability of the model at low energies. The results are compared with experiment and with previous non-relativistic calculations. (orig.)
The calculation of pressure vessels
The calculation guidelines of the Arbeitsgemeinschaft Druckbehaelter (task group for pressure vessels) have been revised with the following objective: conversion to international standards (SI), adaption to the latest state of guidelines for production and testing, revision of the contents of individual regulations. Another target of the cooperating interest groups of producers, operators, and supervisory bodies was a harmonization of the approaches for calculation with other German guidelines, in particular the Technische Regeln fuer Dampfkessel (technical regulations for steam boilers). (orig./RW)
Haga, Katsuhiro; Terada, Atsuhiko; Ishikura, Shuichi; Teshigawara, Makoto; Kinoshita, Hidetaka; Kobayashi, Kaoru; Kaminaga, Masaki; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Susuki, Akira
1999-11-01
A solid target cooled by heavy water is presently under development under the Neutron Science Research Project of the Japan Atomic Energy Research Institute (JAERI). Target plates of several millimeters thickness made of heavy metal are used as the spallation target material and they are put face to face in a row with one to two millimeters gaps in between though which heavy water flows, as the coolant. Based on the design criteria regarding the target plate cooling, the volume percentage of the coolant, and the thermal stress produced in the target plates, we conducted thermal and hydraulic analysis with a one dimensional target plate model. We choosed tungsten as the target material, and decided on various target plate thicknesses. We then calculated the temperature and the thermal stress in the target plates using a two dimensional model, and confirmed the validity of the target plate thicknesses. Based on these analytical results, we proposed a target structure in which forty target plates are divided into six groups and each group is cooled using a single pass of coolant. In order to investigate the relationship between the distribution of the coolant flow, the pressure drop, and the coolant velocity, we conducted a hydraulic analysis using the general purpose hydraulic analysis code. As a result, we realized that an uniform coolant flow distribution can be achieved under a wide range of flow velocity conditions in the target plate cooling channels from 1 m/s to 10 m/s. The pressure drop along the coolant path was 0.09 MPa and 0.17 MPa when the coolant flow velocity was 5 m/s and 7 m/s respectively, which is required to cool the 1.5 MW and 2.5 MW solid targets. (author)
Methods of core neutronic calculation
Core neutronic calculations lead to the determination of geometry, composition, controls systems and to the core exploitation limits in agreement with the expected performances, with safety rules, technological choices and fuel management methods. Neutronic calculations object are described with physics justifications of hypothesis and approximations. A description and a definition of reactivity and power distribution are also given. A panorama of calculation methods used in the conception of fast breeder and pressure water reactors, are described with numerical aspects and general interest considerations related to the field of these methods and to the industrial options chosen. A complete industrial uses panorama of methods derived from the classical or generalized perturbation theory is followed by the qualification and the definition of the validity field of numerical codes.(A.B.). 88 refs., 6 figs
Insertion device calculations with mathematica
Carr, R. [Stanford Synchrotron Radiation Lab., CA (United States); Lidia, S. [Univ. of California, Davis, CA (United States)
1995-02-01
The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectory solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.
PHEBUS-FPTO Benchmark calculations
This report summarizes a set of pre-test predictions made for the first Phebus-FP test, FPT-O. There were many different calculations, performed by various organizations and they represent the first attempt to calculate the whole experimental sequence, from bundle to containment. Quantitative agreement between the various calculations was not good but the particular models in the code responsible for disagreements were mostly identified. A consensus view was formed as to how the test would proceed. It was found that a successful execution of the test will require a different operating procedure than had been assumed here. Critical areas which require close attention are the need to devize a strategy for the power and flow in the bundle that takes account of uncertainties in the modelling and the shroud conductivity and the necessity to develop a reliable method to achieve the desired thermalhydraulic conditions in the containment
Parameters calculation of shielding experiment
The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author)
Canister Transfer Facility Criticality Calculations
J.E. Monroe-Rammsy
2000-10-13
The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.
Ab Initio Calculations of Oxosulfatovanadates
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...... with anO-V-O angle of 72.5 degrees . The calculated spectrum shows bands in reasonable agreement with anexperimental spectrum which has been attributed to (VO2SO4)-. The geometry and the electron density fortwo binuclear vanadium complexes proposed as intermediates in the vanadium catalyzed SO2...
Data Acquisition and Flux Calculations
Rebmann, C.; Kolle, O; Heinesch, B;
2012-01-01
In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation.......In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....
Design basis accident calculation problems
Sudden failures of the primary circuit is the design basis accident of pressurized water reactors, being liable to affect the other two barriers separating the fission products from the environment. The calculation of the thermohydraulic behavior of the core and primary circuit is at present based, for the CEA, on the RELAP 4 code. However a second-generation code, POSEIDON, is being developed by the CEA, EDF and FRAMATOME to obtain a better description of the physical phenomena and a better estimate of safety margins. Other difficult problems arise in connection with the calculation of structural stresses and the behavior of the vessel during decompression
Friction and wear calculation methods
Kragelsky, I V; Kombalov, V S
1981-01-01
Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a
Molecular calculations with B functions
Steinborn, E O; Ema, I; López, R; Ramírez, G
1998-01-01
A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals, and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules.
Glombitza, Clemens; Lever, Mark; Jørgensen, Bo Barker
of a different eluent concentration. The separation of ions on the individual column is monitored by a conductivity detector for each column. Quantification of VFAs is then achieved by a mass spectrometer coupled to the second-dimension-column using individual single ion monitoring (SIM) channels, to achieve...... answered. We now use a novel combination of 2-dimensional ion chromatography (ICS 3000, Thermo Scientific) with mass spectrometry (MSQ PLUS, Thermo Scientific) (2D IC-MS) that enables the qualification and quantification of several VFAs directly within marine pore water samples without sample pre......-treatment. Hereby the 1st chromatographic dimension is used to separate the organic compounds from inorganic background ions (mainly chloride). A window in the retention time of the bulk organic acids is cut-out of the 1st dimension and trapped onto a 2nd column. This column is used to separate the VFAs by use...
Bjarnadóttir, S G; Hollung, K; Høy, M; Bendixen, Emøke; Codrea, Marius Cosmin; Veiseth-Kent, E
2012-01-01
The aim of this study was to find potential biomarkers for meat tenderness in bovine Longissimus thoracis muscle and to compare results from isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis (2-DE) analysis. The experiment included 4 tender and 4...... tough samples, based on shear force measurements at 7 d postmortem, from young Norwegian red (NRF) bulls, taken at 1 h postmortem. A number of the proteins which have previously been related to tenderness were found to change in abundance between tender and tough samples, both in iTRAQ (P < 0.1) and 2......-DE analysis (P < 0.05). Furthermore, 3 proteins that have not previously been related to tenderness were found to change significantly in abundance between tender and tough meat samples in the present study. These include proteins related to control of flux through the tricarboxylate cycle [2...
ITER Port Interspace Pressure Calculations
Carbajo, Juan J [ORNL; Van Hove, Walter A [ORNL
2016-01-01
The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.
On calculation of photoneutron yields
A simple analytical expression has been obtained for the photon track lengths in the region of nuclei giant resonance by summing the cross-sections of the bremsstrahlung from thin layers. The photoneutron yields from thick Cu and Pb targets calculated for verifying this expression are in a good agreement with the experimental results obtained by other authors
Dead reckoning calculating without instruments
Doerfler, Ronald W
1993-01-01
No author has gone as far as Doerfler in covering methods of mental calculation beyond simple arithmetic. Even if you have no interest in competing with computers you'll learn a great deal about number theory and the art of efficient computer programming. -Martin Gardner
Sparsifying preconditioner for soliton calculations
Lu, Jianfeng; Ying, Lexing
2016-06-01
We develop a robust and efficient method for soliton calculations for nonlinear Schrödinger equations. The method is based on the recently developed sparsifying preconditioner combined with Newton's iterative method. The performance of the method is demonstrated by numerical examples of gap solitons in the context of nonlinear optics.
Relativistic multiple scattering Xα calculations
A one component relativistic theory has recently been developed and tested on isolated atoms and on molecules through the molecular scattered-wave formalism of Johnson, while its application to energy-band calculations (through a relativistic augmented-plane-wave program) has also been considered
CALCULATION OF MAGNETIC OIL CLARIFIER
Puzik, S. O.; National Aviation University; Shevchuk, V. S.; National Aviation University; Baranivskiy, Y. O.; National Aviation University; Mykhailenko, O. O.; National Aviation University
2013-01-01
Technology of oil cleaning from iron-containing impurities that shows the feasibility of magnetic cleaners applying was investigated. Comparative analysis of the types of magnetic clarifier was carried out. Procedure of calculating the dimension type of oil clarifier, which makes it possible to obtain high purity grade oil, was offered.
Sparsifying preconditioner for soliton calculations
Lu, Jianfeng
2015-01-01
We develop a robust and efficient method for soliton calculations for nonlinear Schr\\"odinger equations. The method is based on the recently developed sparsifying preconditioner combined with Newton's iterative method. The performance of the method is demonstrated by numerical examples of gap solitons in the context of nonlinear optics.
Giavitto, Jean-Louis; Reichenmann, François
2012-01-01
Alan Turing a non seulement défini l'objet d'étude de l'informatique, le calcul, mais aussi révolutionné notre rapport aux machines. Il a fondé l'informatique comme un domaine scientifique autonome et a ouvert le chemin vers un nouveau continent à explorer et à habiter.
Professional Growth & Support Spending Calculator
Education Resource Strategies, 2013
2013-01-01
This "Professional Growth & Support Spending Calculator" helps school systems quantify all current spending aimed at improving teaching effectiveness. Part I provides worksheets to analyze total investment. Part II provides a system for evaluating investments based on purpose, target group, and delivery. In this Spending Calculator…
Prenatal radiation exposure. Dose calculation
The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.
AGING FACILITY CRITICALITY SAFETY CALCULATIONS
The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging
Calculation of potassium critical temperature
The paper describes the algorithm of the functional prediction which is based on the selforganization of nonlinear algebraic models. The calculation procedure includes the module for the recognition of the dependence type hitch allows to restrict the number of choice of the prediction functions at the each step of the model building. The characteristic property of this algorithm is bootstrap method application as the external criteria of the selforganization. The calculation module is built using APL*PLUS and the user-friendly interface is implemented using Clipper 5.01 under Windows control. When using the algorithm and the programs, the critical point of potassium has been predicted on the base of the solubility curves of liquid and steam. 9 refs.; 1 fig.; 1 tab
Algorithm project weight calculation aircraft
Г. В. Абрамова
2013-07-01
Full Text Available The paper describes the process of a complex technical object design on the example of the aircraft, using information technology such as CAD/CAM/CAE-systems, presents the basic models of aircraft which are developed in the process of designing and reflect the different aspects of its structure and function. The idea of control parametric model at complex technical object design is entered, which is a set of initial data for the development of design stations and enables the optimal complex technical object control at all stages of design using modern computer technology. The paper discloses a process of weight design, which is associated with all stages of development aircraft and its production. Usage of a scheduling algorithm that allows to organize weight calculations are carried out at various stages of planning and weighing options to optimize the use of available database of formulas and methods of calculation
CONTRIBUTION FOR MINING ATMOSPHERE CALCULATION
Franica Trojanović
1989-12-01
Full Text Available Humid air is an unavoidable feature of mining atmosphere, which plays a significant role in defining the climate conditions as well as permitted circumstances for normal mining work. Saturated humid air prevents heat conduction from the human body by means of evaporation. Consequently, it is of primary interest in the mining practice to establish the relative air humidity either by means of direct or indirect methods. Percentage of water in the surrounding air may be determined in various procedures including tables, diagrams or particular calculations, where each technique has its specific advantages and disadvantages. Classical calculation is done according to Sprung's formula, in which case partial steam pressure should also be taken from the steam table. The new method without the use of diagram or tables, established on the functional relation of pressure and temperature on saturated line, is presented here for the first time (the paper is published in Croatian.
Consolidated fuel decay heat calculations
Wittekind, W.D.
1994-06-24
The radiological decay heat generated from all irradiated fuel presently in K East (KE) and K West (KW) Basins was calculated in support of consolidated fuel storage. There are four sources of heat inflow into the fuel storage basins: (1) radiological decay heat from irradiated fuel; (2) mechanical heat from operating machinery (e.g., pumps); (3) heat flow from surroundings (mainly the ground through the concrete walls into the basin water if it is maintained below ambient); and (4) exothermic chemical reactions of uranium oxidation (although at basin temperatures this reaction rate is slow). This report details the radiological decay heat from irradiated fuel source in the K basins. Decay heat calculations using ORIGEN2 (Wittekind 1994 and Schmittroth 1993) for irradiated fuel presently (April 1994) in KE and KW Basins gave results for January 31 of each year.
Influence of metallic dental implants and metal artefacts on dose calculation accuracy
Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic trademark EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques. (orig.)
Calculation of Hilbert Borcherds Products
Mayer, Sebastian
2010-01-01
In Brunier and Bundschuh, “On Borcherds Products Associated with Lattices of Prime Discriminant.” Ramanujan Journal 7 (2003), 49–61, the authors use Borcherds lifts to obtain Hilbert modular forms. Another approach is to calculate Hilbert modular forms using the Jacquet--Langlands correspondence, which was implemented by Lassina Dembele in "Magma". In Mayer, "Rings of Hilbert Modular Forms for the Fields $\\Q(\\sqrt{13})$ and $\\Q(\\sqrt{17})$,'' To appear, 2009, we use Brunier and...
Numerical calculation of Casimir forces
Kilen, Isak Ragnvald
2012-01-01
In this thesis a set of regularized boundary integral equation are introduced that can be used to calculate the Casimir force induced by a two dimensional scalar field. The boundary integral method is compared to the functional integral method and mode summation where possible. Comparisons are done for the case of two parallel plates, two concentric circles and two adjacent circles. The results indicate that the boundary integral method correctly predicts the geometry dependence of the C...
Calculations of the Wigner angle
Two new methods to determine Wigner's angle in special relativity are presented. The first one consists in calculating the angle between the compositions u-bar x ν-bar and ν-bar x u-bar of the two non-collinear velocities u-bar and ν-bar. In another method we introduce a generalization in the complex plane of Einstein's addition law of parallel velocities. (author)
Archimedes' calculations of square roots
Davies, E B
2011-01-01
We reconsider Archimedes' evaluations of several square roots in 'Measurement of a Circle'. We show that several methods proposed over the last century or so for his evaluations fail one or more criteria of plausibility. We also provide internal evidence that he probably used an interpolation technique. The conclusions are relevant to the precise calculations by which he obtained upper and lower bounds on pi.
Parallel plasma fluid turbulence calculations
The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated
Decay heat calculations for reactors
Estimation of release of energy (decay heat) over an extended period of time after termination of neutron induced fission is necessary for determining the heat removal requirements when the reactor is shutdown, and for fuel storage and transport facilities as well as for accident studies. The method of decay heat estimation relies on the measurements over practical time intervals as well as on calculation for predictions over very long time intervals. Neutron cross-sections, fission yields and decay data together with operational history are the basic inputs to such. A code used to calculate decay heat would require to generate isotopic inventory that would be present at the shutdown based on operational history of the reactor and follow up the decay over an extended period of time. Aspects of decay heat estimation based on standards like ANS 5.1 and by fuel cycle analysis codes shall be discussed. A Fuel Cycle Analysis Code, ADWITA (Activation, Decay, Waste Incineration and Transmutation Analysis) which can generate inventory based on irradiation history and calculate radioactivity and decay heat for extended period of cooling, has been written. The method and data involved in Fuel Cycle Analysis Code ADWITA and some results obtained shall also be presented. (author)
Calculation of groundwater travel time
Pre-waste-emplacement groundwater travel time is one indicator of the isolation capability of the geologic system surrounding a repository. Two distinct modeling approaches exist for prediction of groundwater flow paths and travel times from the repository location to the designated accessible environment boundary. These two approaches are: (1) the deterministic approach which calculates a single value prediction of groundwater travel time based on average values for input parameters and (2) the stochastic approach which yields a distribution of possible groundwater travel times as a function of the nature and magnitude of uncertainties in the model inputs. The purposes of this report are to (1) document the theoretical (i.e., mathematical) basis used to calculate groundwater pathlines and travel times in a basalt system, (2) outline limitations and ranges of applicability of the deterministic modeling approach, and (3) explain the motivation for the use of the stochastic modeling approach currently being used to predict groundwater pathlines and travel times for the Hanford Site. Example calculations of groundwater travel times are presented to highlight and compare the differences between the deterministic and stochastic modeling approaches. 28 refs
[IOL calculation for high ametropia].
Haigis, W
2008-11-01
Long and short eyes are connected with high ametropia and constitute special problems for biometry and IOL calculations. Ultrasound measurements on these eyes, which often have altered geometries, are frequently more difficult than in normal eyes. This holds especially for long eyes, which significantly benefit from optical biometry. Measurement errors, IOL manufacturing tolerances and uncertainties regarding the effective lens position affect short eyes much more than normal eyes. The selection of a suitable IOL formula is of special importance for the refractive outcome. For short eyes, Holladay-2, HofferQ and Haigis are recommended, for long eyes Holladay-1, Holladay-2 and Haigis. In each case, optimized IOL constants must be used. If minus lenses for extremely long eyes are calculated with the same constants as plus lenses, a hyperopic refractive error is created, which can be avoided by a separate set of constants for minus lenses. For extremely short eyes the commonly used approximation of thinner lenses fails necessitating a thick lens calculation or raytracing. PMID:18998145
ORTHIS,ORTHAT. 2-Dimensional Heat Conduction
Durfee, R.C.; Nestor, C.W.Jr. [Oak Ridge National Lab., TN (United States)
1982-05-18
ORTHIS and ORTHAT are designed to solve steady-state and transient heat conduction problems, respectively, in two-dimensional geometries. Either Cartesian (x-y) or cylindrical (r-z, r-theta) coordinate systems may be used. Thermal properties, heat generation rates, and boundary conditions may be functions of position, time, or temperature.
ORTHIS,ORTHAT. 2-Dimensional Heat Conduction
Durfee, R.C.; Nestor, C.W.Jr. [Oak Ridge National Lab., TN (United States)
1980-02-01
ORTHIS and ORTHAT are designed to solve steady-state and transient heat conduction problems, respectively, in two-dimensional geometries. Either Cartesian (x-y) or cylindrical (r-z, r-theta) coordinate systems may be used. Thermal properties, heat generation rates, and boundary conditions may be functions of position, time, or temperature.
Flows on 2-dimensional manifolds an overview
Nikolaev, Igor
1999-01-01
Time-evolution in low-dimensional topological spaces is a subject of puzzling vitality. This book is a state-of-the-art account, covering classical and new results. The volume comprises Poincaré-Bendixson, local and Morse-Smale theories, as well as a carefully written chapter on the invariants of surface flows. Of particular interest are chapters on the Anosov-Weil problem, C*-algebras and non-compact surfaces. The book invites graduate students and non-specialists to a fascinating realm of research. It is a valuable source of reference to the specialists.
Coding and detection for 2-dimensional channels
Demirkan, İsmail
2006-01-01
Coding and detection techniques for one-dimensional (1-D) intersymbol interference (ISI) channels, particularly magnetic and optical recording channels, have been studied extensively for almost three decades. On the modulation coding side, the state-splitting algorithm has been developed to design efficient systematic modulation codes. On the detection side, Viterbi detector and decision- feedback equalization (DFE) have been well-understood. Two -dimensional (2-D) holographic data storage, h...
AGING FACILITY CRITICALITY SAFETY CALCULATIONS
C.E. Sanders
2004-09-10
The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the
Calculation of gas turbine characteristic
Mamaev, B. I.; Murashko, V. L.
2016-04-01
The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.
Calculation of Thermal Scattering Kernels
A long-standing programme at General Atomic has been the development of physical models to describe the scattering of slow neutrons from the various moderators and the numerical methods necessary for the computation of thermal neutron cross-sections and scattering kernels. This paper contains a review of the recent developments and improvements in the scattering descriptions and subsequent kernels for the moderators Be, C, H2O, D2O, CH2, H2 and D2. In particular for the moderators Be and C accurate phonon spectra, obtained by the root sampling technique, are presented along with comparisons to demonstrate how well the scattering models can predict the results of cross-section and spectral measurements. While the treatment of H2O is essentially that of Nelkin, curves of calculated and experimental neutron spectra are shown, which demonstrate that the inclusion of anisotropic effects for the molecular vibrations improve the agreement between theory and experiment. Following Butler's description of neutron scattering by D2O, a scattering kernel has been obtained which predicts quite accurately integral quantities such as neutron spectra and angular as well as total scattering cross-sections. An interesting result of the curves shown is that the inter- and intramolecular interference effects tend to cancel so that an incoherent approximation is quite adequate to calculate neutron spectra in D2O for the case of infinite media or weakly space-dependent problems. By utilizing the treatment by Lin and Koenig of the vibrational modes of infinite CH2 chains, a scattering kernel has been obtained which results in very good agreement between the predicted and experimental total cross-section and neutron spectra. Curves are presented to demonstrate this agreement between theory and experiment. Neutron spectra have been calculated for liquid hydrogen at boiling using a very accurate scattering description. These spectra are shown in the paper to be very sensitive both to
Calculational Tool for Skin Contamination Dose Assessment
Hill, R L
2002-01-01
Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.
Calculation of sound propagation in fibrous materials
Tarnow, Viggo
Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....
Atomic physics: computer calculations and theoretical analysis
Drukarev, E. G.
2004-01-01
It is demonstrated, how the theoretical analysis preceding the numerical calculations helps to calculate the energy of the ground state of helium atom, and enables to avoid qualitative errors in the calculations of the characteristics of the double photoionization.
The Dental Trauma Internet Calculator
Gerds, Thomas Alexander; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg;
2012-01-01
Background/Aim Prediction tools are increasingly used to inform patients about the future dental health outcome. Advanced statistical methods are required to arrive at unbiased predictions based on follow-up studies. Material and Methods The Internet risk calculator at the Dental Trauma Guide...... provides prognoses for teeth with traumatic injuries based on the Copenhagen trauma database: http://www.dentaltraumaguide.org The database includes 2191 traumatized permanent teeth from 1282 patients that were treated at the dental trauma unit at the University Hospital in Copenhagen (Denmark...
Three-dimensional cavity calculations
The existence of a code that solves for the resonant electromagnetic modes of oscillation in arbitrarily-shaped three-dimensional cavities opens new possibilities in rf-structure analysis and research. The URMEL-3D code, the product of a multi-year collaboration between DESY, KFA-Juelich, and Los Alamos, has been used in some exploratory studies to determine the feasibility of using a 3-D code to calculate the properties of several practical rf structures. The results are reported here for three cases: the jungle gym, two coupled cavities, and a waveguide-cavity coupling problem
Optimization calculations at TR-2
Full text: The main objective of the optimization calculations at TR-2 is to increase the radioisotope production (Tc-99m, I-131). Irradiation time and location were optimized separately. A second objective of this study is to obtain similar activities in the irradiated samples irrespective of the irradiation positions. This study also includes the maximization of the discharge burnup levels of the HEU elements in a mixed HEU-LEU core, so both safe and economical usage of the reactor is attained. Five group structure is used for the burnup dependent cross-section libraries that are generated by EPRI-CELL code. The RABANL integral transport option of MC2-2 code was used to accurately account for the resonance self-shielding of U-238. Transport corrected effective cross sections were used for the control rod regions. The data for Mo, Tc and Te isotopes were not available in this library, so new data were generated using GGC-4 and ANISN codes. In order to have a better understanding of the neutronic interactions, especially in the epithermal energy range, 9 group structure for the cross-section libraries of all the isotopes in the core have been generated with the fore mentioned codes. 2D diffusion-depletion code GEREBUS is used for the reactivity and burnup calculations. The 9 group calculations gave higher activity values then 5 group results, but the relative variations between different core positions remained the same, as could be expected. Many new core designs and various irradiation positions have been investigated for the above mentioned purposes. The reactor core was designed as compact as possible, in order to have higher fluxes for the irradiation samples. New graphite and Be reflectors have been added to the periphery of the core to enhance the reactivity and the discharge burnup levels. The water boxes which are used for the irradiation purposes have been moved from periphery to the inside of the reactor core. These modifications have yielded higher
Calculation of transonic aileron buzz
Steger, J. L.; Bailey, H. E.
1979-01-01
An implicit finite-difference computer code that uses a two-layer algebraic eddy viscosity model and exact geometric specification of the airfoil has been used to simulate transonic aileron buzz. The calculated results, which were performed on both the Illiac IV parallel computer processor and the Control Data 7600 computer, are in essential agreement with the original expository wind-tunnel data taken in the Ames 16-Foot Wind Tunnel just after World War II. These results and a description of the pertinent numerical techniques are included.
Rate calculation with colored noise
Bartsch, Thomas; Benito, R M; Borondo, F
2016-01-01
The usual identification of reactive trajectories for the calculation of reaction rates requires very time-consuming simulations, particularly if the environment presents memory effects. In this paper, we develop a new method that permits the identification of reactive trajectories in a system under the action of a stochastic colored driving. This method is based on the perturbative computation of the invariant structures that act as separatrices for reactivity. Furthermore, using this perturbative scheme, we have obtained a formally exact expression for the reaction rate in multidimensional systems coupled to colored noisy environments.
Digital calculations of engine cycles
Starkman, E S; Taylor, C Fayette
1964-01-01
Digital Calculations of Engine Cycles is a collection of seven papers which were presented before technical meetings of the Society of Automotive Engineers during 1962 and 1963. The papers cover the spectrum of the subject of engine cycle events, ranging from an examination of composition and properties of the working fluid to simulation of the pressure-time events in the combustion chamber. The volume has been organized to present the material in a logical sequence. The first two chapters are concerned with the equilibrium states of the working fluid. These include the concentrations of var
Electronics reliability calculation and design
Dummer, Geoffrey W A; Hiller, N
1966-01-01
Electronics Reliability-Calculation and Design provides an introduction to the fundamental concepts of reliability. The increasing complexity of electronic equipment has made problems in designing and manufacturing a reliable product more and more difficult. Specific techniques have been developed that enable designers to integrate reliability into their products, and reliability has become a science in its own right. The book begins with a discussion of basic mathematical and statistical concepts, including arithmetic mean, frequency distribution, median and mode, scatter or dispersion of mea
Perturbation calculations with Wilson loop
We present perturbative calculations with the Wilson loop (WL). The dimensional regularization method is used with a special attention concerning to the problem of divergences in the WL expansion in second and fourth orders, in three and four dimensions. We show that the residue in the pole, in 4d, of the fourth order graphs contribution sum is important for the charge renormalization. We compute up to second order the exact expression of the WL, in three-dimensional gauge theories with topological mass as well as its assimptotic behaviour for small and large distances. the author
The "intelligence" of calendrical calculators.
Young, R L; Nettelbeck, T
1994-09-01
Strategies of 4 men (WAIS-R range 65 to 76) when making calendar calculations were investigated. Each subject completed a battery of standardized psychological tests. Results suggested that subjects were aware of rules and regularities associated with the calendar, including knowledge of the 14 different calendar templates, one of which describes any calendar year. Their strategies were rigidly applied and could not be modified easily, even when doing so would have facilitated performance. The involvement of practice, memory, anchor dates, eidetic imagery, and mathematical algorithms were discussed. We concluded that these savants relied heavily on memory, with little manipulation of cognitive input, as opposed to transforming stimuli. PMID:7803035
Calculation of sound propagation in fibrous materials
Tarnow, Viggo
1996-01-01
Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....
Light Pipe Energy Savings Calculator
Owens, Erin; Behringer, Ernest R.
2009-04-01
Dependence on fossil fuels is unsustainable and therefore a shift to renewable energy sources such as sunlight is required. Light pipes provide a way to utilize sunlight for interior lighting, and can reduce the need for fossil fuel-generated electrical energy. Because consumers considering light pipe installation may be more strongly motivated by cost considerations than by sustainability arguments, an easy means to examine the corresponding costs and benefits is needed to facilitate informed decision-making. The purpose of this American Physical Society Physics and Society Fellowship project is to create a Web-based calculator to allow users to quantify the possible cost savings for their specific light pipe application. Initial calculations show that the illumination provided by light pipes can replace electric light use during the day, and in many cases can supply greater illumination levels than those typically given by electric lighting. While the installation cost of a light pipe is significantly greater than the avoided cost of electricity over the lifetime of the light pipe at current prices, savings may be realized if electricity prices increase.
Distribution of the minimum path on percolation clusters: A renormalization group calculation
This thesis uses the renormalization group for the research of the chemical distance or the minimal path on percolation clusters on a 2 dimensional square lattice. Our aims are to calculate analytically (iterative calculation) the fractal dimension of the minimal path. dmin., and the distributions of the minimum paths, lmin for different lattice sizes and for different starting densities (including the threshold value pc). For the distributions. We seek for an analytic form which describes them. The probability to get a minimum path for each linear size L is calculated by iterating the distribution of lmin for the basic cell of size 2*2 to the next scale sizes, using the H cell renormalization group. For the threshold value of p and for values near to pc. We confirm a scaling in the form: P(l,L) =f1/l(l/(Ldmin). L - the linear size, l - the minimum path. The distribution can be also represented in the Fourier space, so we will try to solve the renormalization group equations in this space. A numerical fitting is produced and compared to existing numerical results. In order to improve the agreement between the renormalization group and the numerical simulations, we also present attempts to generalize the renormalization group by adding more parameters, e.g. correlations between bonds in different directions or finite densities for occupation of bonds and sites. (author) 17 refs
Development of neutral transport lattice code DENT-2D and benchmark calculation
We developed new transport lattice code called DENT-2D (Deterministic Neutral Particle Transport Code in 2-D imensional Space)primarily to generate few- group constants for the reactor physics analysis diffusion codes. This code is designed to be coupled with KAERI reactor analysis nodal code, MASTER [1] ,to complete the design system package. CASMO-3 and HELIOS have been used in generating the few- group constant for MASTER. Currently DENT-2D includes only neutron particle transport calculation in 2-dimensional Cartesian geometry. The characteristics method is adopted for the spatial discretization, which is advantageous for the treatment of the complicated geometry structure and the highly anisotropic scattering. The subgroup method is used for the resonance treatment. B1 approximation has been used to obtain the criticality spectrum considering the leakage effect in the real core situation. The exponential matrix method has been used for the depletion calculation. The results of benchmark calculations show that the prediction capability of DENT-2D is comparable to the other lattice codes such as HELIOS and CASMO-3
SR 97 - Radionuclide transport calculations
Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden); Lindstroem, Fredrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)
1999-12-01
An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10{sup -8} Sv/yr for Aberg, 3x10{sup -8} Sv/yr for Beberg and 1x10{sup -8} Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10{sup -5} per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10{sup -5} per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10{sup -5} Sv/yr for Aberg, 8x10{sup -7} Sv/yr for Beberg and 3x10{sup -8} Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable
Fung, Jimmy [Los Alamos National Laboratory; Schofield, Sam [LLNL; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-06-25
We did not run with a 'cylindrically painted region'. However, we did compute two general variants of the original problem. Refinement studies where a single zone at each level of refinement contains the entire internal energy at t=0 or A 'finite' energy source which has the same physical dimensions as that for the 91 x 46 mesh, but consisting of increasing numbers of zones with refinement. Nominal mesh resolution: 91 x 46. Other mesh resolutions: 181 x 92 and 361 x 184. Note, not identical to the original specification. To maintain symmetry for the 'fixed' energy source, the mesh resolution was adjusted slightly. FLAG Lagrange or full (Eulerian) ALE was used with various options for each simulation. Observation - for either Lagrange or ALE, point or 'fixed' source, calculations converge on density and pressure with mesh resolution, but not energy, (not vorticity either).
Langage C++ et calcul scientifique
Saramito, Pierre
2005-01-01
La simulation numérique est devenue essentielle dans de nombreux domaines tels que la mécanique des fluides et des solides, la météo, l'évolution du climat, la biologie ou les semi-conducteurs. Elle permet de comprendre, de prévoir, d'accéder là où les instruments de mesures s'arrêtent. Ce livre présente des méthodes performantes du calcul scientifique : matrices creuses, résolution efficace des grands systèmes linéaires, ainsi que de nombreuses applications à la résolution par éléments fini...
On Calculation of Amplitudes in Quantum Electrodynamics
Karplyuk, Kostyantyn; Zhmudsky, Oleksandr
2012-01-01
A new method of calculation of amplitudes of different processes in quantum electrodynamics is proposed. The method does not use the Feynman technique of trace of product of matrices calculation. The method strongly simplifies calculation of cross sections for different processes. The effectiveness of the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering and electron-positron annihilation.
Calculating system reliability with SRFYDO
Morzinski, Jerome [Los Alamos National Laboratory; Anderson - Cook, Christine M [Los Alamos National Laboratory; Klamann, Richard M [Los Alamos National Laboratory
2010-01-01
SRFYDO is a process for estimating reliability of complex systems. Using information from all applicable sources, including full-system (flight) data, component test data, and expert (engineering) judgment, SRFYDO produces reliability estimates and predictions. It is appropriate for series systems with possibly several versions of the system which share some common components. It models reliability as a function of age and up to 2 other lifecycle (usage) covariates. Initial output from its Exploratory Data Analysis mode consists of plots and numerical summaries so that the user can check data entry and model assumptions, and help determine a final form for the system model. The System Reliability mode runs a complete reliability calculation using Bayesian methodology. This mode produces results that estimate reliability at the component, sub-system, and system level. The results include estimates of uncertainty, and can predict reliability at some not-too-distant time in the future. This paper presents an overview of the underlying statistical model for the analysis, discusses model assumptions, and demonstrates usage of SRFYDO.
RTU Comparison Calculator Enhancement Plan
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
2014-03-31
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
Benchmark calculations for EGS5
In the past few years, EGS4 has undergone an extensive upgrade to EGS5, in particularly in the areas of low-energy electron physics, low-energy photon physics, PEGS cross section generation, and the coding from Mortran to Fortran programming. Benchmark calculations have been made to assure the accuracy, reliability and high quality of the EGS5 code system. This study reports three benchmark examples that show the successful upgrade from EGS4 to EGS5 based on the excellent agreements among EGS4, EGS5 and measurements. The first benchmark example is the 1969 Crannell Experiment to measure the three-dimensional distribution of energy deposition for 1-GeV electrons shower in water and aluminum tanks. The second example is the 1995 Compton-scattered spectra measurements for 20-40 keV, linearly polarized photon by Namito et. al., in KEK, which was a main part of the low-energy photon expansion work for both EGS4 and EGS5. The third example is the 1986 heterogeneity benchmark experiment by Shortt et. al., who used a monoenergetic 20-MeV electron beam to hit the front face of a water tank containing both air and aluminum cylinders and measured spatial depth dose distribution using a small solid-state detector. (author)
RTU Comparison Calculator Enhancement Plan
Miller, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-07-01
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
Selfconsistent calculations for hyperdeformed nuclei
Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)
1996-12-31
Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.
王泓; 曹铁生; 杨斌; 傅宁华; 李娟; 孙晖
2011-01-01
Objective To evaluate whether global 2-dimensional strain imaging can offer additional benefit over conventional echocardiography to detect subclinical myocardial damage in patients with chronic kidney disease(CKD). Methods Conventional echocardiography and global 2-dimension strain imaging were performed in 39 patients with CKD [23 men and 16 women,mean age (45.6± 14.6) years] and 29 control subjects. Twenty patients had CKD stage 2 or 3(group 1 ) and nineteen patients had CKD stage 4 or 5(group 2). Left ventricular structure and function were evaluated by conventional echocardiography. Global longitudinal and circumferential strain and strain rate were analyzed. Results There were no differences in ejection fraction and fraction shortening between CKD patients and controls. Compared with controls, CKD groups had significantly decreased value of global longitudinal strain and strain rate. Global longitudinal strain decreased from - (23.8 ± 3.1 ) % in controls to - ( 18. 5 ± 2.4) % in group 1 and to - (15.2 ± 3.2) % in group 2 ( P ＜0. 001 ). Compared with controls, there was no difference in global circumferential strain and strain rate between group 1 and controls, but global circumferential strain and strain rate of group 2 was reduced [ - (17.1± 3. 0) % vs -(21.2±2.8)%, P＜0.05;-(1.0±0.2)% vs -(1.3±0.3)%, P＜0.05]. In correlation analyses, global longitudinal strain was positively related to eGFR( r =0. 376, P ＜0. 001 ) and inversely related to left ventricular mass index( r = - 0. 473, P ＜0.01). Conclusions Global 2-dimensional strain imaging may represent a useful tool for the assessment of subclinical myocardial dysfunction in patients with CKD.%目的 探讨整体二维超声应变成像评价慢性肾病(CKD)心肌损害的价值.方法 39例CKD患者,其中20例为2～3期CKD患者(组1),19例为4～5期CKD患者(组2),设29例正常对照.使用常规超声心动图评价左室结构和功能,使用二维超声应变成像评价心肌整
Hu, S; Qiu, N; Liu, Y; Zhao, H; Gao, D; Song, R; Ma, M
2016-05-01
A proteomic study of egg white proteins from 2 major poultry species, namely quail (Coturnix coturnix) and duck (Anas platyrhynchos), was performed with comparison to those of chicken (Gallus gallus) through 2-dimensional polyacrylamide gel electrophoresis (2-DE) analysis. By using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), 29 protein spots representing 10 different kinds of proteins as well as 17 protein spots designating 9 proteins were successfully identified in quail and duck egg white, respectively. This report suggested a closer relationship between quail and chicken egg white proteome patterns, whereas the duck egg white protein distribution on the 2-DE map was more distinct. In duck egg white, some well-known major proteins, such as ovomucoid, clusterin, extracellular fatty acid-binding protein precursor (ex-FABP), and prostaglandin D2 synthase (PG D2 synthase), were not detected, while two major protein spots identified as "deleted in malignant brain tumors 1" protein (DMBT1) and vitellogenin-2 were found specific to duck in the corresponding range on the 2-DE gel map. These interspecies diversities may be associated with the egg white protein functions in cell defense or regulating/supporting the embryonic development to adapt to the inhabiting environment or reproduction demand during long-term evolution. The findings of this work will give insight into the advantages involved in the application on egg white proteins from various egg sources, which may present novel beneficial properties in the food industry or related to human health. PMID:26957635
Calculation Methods for Wallenius’ Noncentral Hypergeometric Distribution
Fog, Agner
2008-01-01
conditional distribution of independent binomial variates given their sum. No reliable calculation method for Wallenius' noncentral hypergeometric distribution has hitherto been described in the literature. Several new methods for calculating probabilities from Wallenius' noncentral hypergeometric...
76 FR 71431 - Civil Penalty Calculation Methodology
2011-11-17
... TRANSPORTATION Federal Motor Carrier Safety Administration Civil Penalty Calculation Methodology AGENCY: Federal... its civil penalty methodology. Part of this evaluation includes a forthcoming explanation of the Uniform Fine Assessment (UFA) algorithm, which FMCSA currently uses for calculation of civil...
Dynamics Calculation of Travel Wave Tube
无
2011-01-01
During the dynamics calculating of the travel tube, we must obtain the field map in the tube. The field map can be affected by not only the beam loading, but also the attenuation coefficient. The calculation of the attenuation coefficient
A New Approach for Calculating Vacuum Susceptibility
宗红石; 平加伦; 顾建中
2004-01-01
Based on the Dyson-Schwinger approach, we propose a new method for calculating vacuum susceptibilities. As an example, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is presented.
Carbon cycle modeling calculations for the IPCC
We carried out essentially all the carbon cycle modeling calculations that were required by the IPCC Working Group 1. Specifically, IPCC required two types of calculations, namely, ''inverse calculations'' (input was CO2 concentrations and the output was CO2 emissions), and the ''forward calculations'' (input was CO2 emissions and output was CO2 concentrations). In particular, we have derived carbon dioxide concentrations and/or emissions for several scenarios using our coupled climate-carbon cycle modelling system
Lattice Dynamics Calculation in MGB2
In Present report, We have introduced a new theoretical results for MgB2 by using home design programme Lattice Dynamics. we have calculated partial and total density of states (PDOS, TDOS), infrared and Raman spectrums and specific heat capacity. Dispersion curves in different symmetry points are calculated and found that there is agreement with other calculations. Also we have tried to investigate the Boron Isotope effect on the calculated properties
CORRECTED CALCULATION OF HORIZONTAL GATING SYSTEMS
I. A. Zayatz
2015-05-01
Full Text Available In the course of fulfillment of work the specified calculations of horizontal gating systems for various parts produced in dispensable molds were carried out. The results of work showed that the weight removal value in gating systems fluctuates in big intervals and the specified calculation of horizontal gating systems enables to calculate precisely their weight that allows to calculate quantity of metal in metal charge.
Final disposal room structural response calculations
Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations
Thermohydraulic calculation of WWER-type NPP
Technique of thermohydraulic calculation of the WWER-type NPP in unsteady processes is described. Effective algorithm for solving hydrodynamics equations without regard for acoustic effects permitting to use enough large time integration step is given. Calculation of two-dimensional temperature fields in fuel element is considered. Method for calculating a pressurizer, steam generators and pumps is described as well
Quantum Transport Calculations Using Periodic Boundary Conditions
Wang, Lin-Wang
2004-01-01
An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal ground state calculations, thus is makes accurate quantum transport calculations for large systems possible.
47 CFR 1.1623 - Probability calculation.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall...
10 CFR 766.102 - Calculation methodology.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Calculation methodology. 766.102 Section 766.102 Energy... ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a) Calculation of Domestic Utilities' Annual Assessment Ratio to the Fund. Domestic utilities shall be...
7 CFR 760.1106 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.1106 Section 760.1106 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... Payment calculation. (a) Preliminary, unadjusted LCP payments are calculated for a producer by...
7 CFR 1416.104 - Payment calculation.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.104 Section 1416.104 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... PROGRAMS Livestock Compensation Program § 1416.104 Payment calculation. (a) LCP payments are calculated...
7 CFR 1416.504 - Payment calculation.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.504 Section 1416.504 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... PROGRAMS Tropical Fruit Disaster Program § 1416.504 Payment calculation. (a) Payments are calculated...
Three-dimensional rf structure calculations
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs
40 CFR 89.207 - Credit calculation.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Credit calculation. 89.207 Section 89... Trading Provisions § 89.207 Credit calculation. (a) Requirements for calculating NO X credits from Tier 1 engines rated at or above 37 kW. (1) For each participating engine family, emission credits (positive...
Li, Changping
2015-07-22
In this letter, we propose a fast numerical solution for the steady state radiative transfer equation based on the approach in [1] in order to calculate the optical path loss of light propagation suffering from attenuation due to the absorption and scattering in various water types. We apply an optimal non-uniform method to discretize the angular space and an upwind type finite difference method to discretize the spatial space. A Gauss-Seidel iterative method is then applied to solve the fully discretized system of linear equations. Finally, we extend the resulting radiance in 2-dimensional to 3-dimensional by the azimuthal symmetric assumption to compute the received optical power under the given receiver aperture and field of view. The accuracy and efficiency of the proposed scheme are validated by uniform RTE solver and Monte Carlo simulations.
Two-dimensional sensitivity calculation code: SENSETWO
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
Bartel Sebastian
2011-08-01
Full Text Available Abstract Background Despite the successful eradication of smallpox by the WHO-led vaccination programme, pox virus infections remain a considerable health threat. The possible use of smallpox as a bioterrorism agent as well as the continuous occurrence of zoonotic pox virus infections document the relevance to deepen the understanding for virus host interactions. Since the permissiveness of pox infections is independent of hosts surface receptors, but correlates with the ability of the virus to infiltrate the antiviral host response, it directly depends on the hosts proteome set. In this report the proteome of HEK293 cells infected with Vaccinia Virus strain IHD-W was analyzed by 2-dimensional gel electrophoresis and MALDI-PSD-TOF MS in a bottom-up approach. Results The cellular and viral proteomes of VACV IHD-W infected HEK293 cells, UV-inactivated VACV IHD-W-treated as well as non-infected cells were compared. Derivatization of peptides with 4-sulfophenyl isothiocyanate (SPITC carried out on ZipTipμ-C18 columns enabled protein identification via the peptides' primary sequence, providing improved s/n ratios as well as signal intensities of the PSD spectra. The expression of more than 24 human proteins was modulated by the viral infection. Effects of UV-inactivated and infectious viruses on the hosts' proteome concerning energy metabolism and proteins associated with gene expression and protein-biosynthesis were quite similar. These effects might therefore be attributed to virus entry and virion proteins. However, the modulation of proteins involved in apoptosis was clearly correlated to infectious viruses. Conclusions The proteome analysis of infected cells provides insight into apoptosis modulation, regulation of cellular gene expression and the regulation of energy metabolism. The confidence of protein identifications was clearly improved by the peptides' derivatization with SPITC on a solid phase support. Some of the identified proteins
Microscopic Calculations of 240Pu Fission
Younes, W; Gogny, D
2007-09-11
Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.
Argosy 4 - A programme for lattice calculations
This report contains a detailed description of the methods of calculation used in the Argosy 4 computer programme, and of the input requirements and printed results produced by the programme. An outline of the physics of the Argosy method is given. Section 2 describes the lattice calculation, including the burn up calculation, section 3 describes the control rod calculation and section 4 the reflector calculation. In these sections the detailed equations solved by the programme are given. In section 5 input requirements are given, and in section 6 the printed output obtained from an Argosy calculation is described. In section 7 are noted the principal differences between Argosy 4 and earlier versions of the Argosy programme
Methodology of shielding calculation for nuclear reactors
A methodology of calculation that coupling a serie of computer codes in a net that make the possibility to calculate the radiation, neutron and gamma transport, is described, for deep penetration problems, typical of nuclear reactor shielding. This net of calculation begining with the generation of constant multigroups, for neutrons and gamma, by the AMPX system, coupled to ENDF/B-IV data library, the transport calculation of these radiations by ANISN, DOT 3.5 and Morse computer codes, up to the calculation of absorbed doses and/or equivalents buy SPACETRAN code. As examples of the calculation method, results from benchmark n0 6 of Shielding Benchmark Problems - ORNL - RSIC - 25, namely Neutron and Secondary Gamma Ray fluence transmitted through a Slab of Borated Polyethylene, are presented. (Author)
GPU-based calculations in digital holography
Madrigal, R.; Acebal, P.; Blaya, S.; Carretero, L.; Fimia, A.; Serrano, F.
2013-05-01
In this work we are going to apply GPU (Graphical Processing Units) with CUDA environment for scientific calculations, concretely high cost computations on the field of digital holography. For this, we have studied three typical problems in digital holography such as Fourier transforms, Fresnel reconstruction of the hologram and the calculation of vectorial diffraction integral. In all cases the runtime at different image size and the corresponding accuracy were compared to the obtained by traditional calculation systems. The programs have been carried out on a computer with a graphic card of last generation, Nvidia GTX 680, which is optimized for integer calculations. As a result a large reduction of runtime has been obtained which allows a significant improvement. Concretely, 15 fold shorter times for Fresnel approximation calculations and 600 times for the vectorial diffraction integral. These initial results, open the possibility for applying such kind of calculations in real time digital holography.
Some Calculations for Cold Fusion Superheavy Elements
X. H. Zhong; Li, L.; Ning, P. Z.
2004-01-01
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Reactor calculation benchmark PCA blind test results
Further improvement in calculational procedures or a combination of calculations and measurements is necessary to attain 10 to 15% (1 sigma) accuracy for neutron exposure parameters (flux greater than 0.1 MeV, flux greater than 1.0 MeV, and dpa). The calculational modeling of power reactors should be benchmarked in an actual LWR plant to provide final uncertainty estimates for end-of-life predictions and limitations for plant operations. 26 references, 14 figures, 6 tables
Comparison of methods for calculating water erosion
Svobodová, Pavlína
2011-01-01
Bachelor thesis presents a comparison of methods for calculating water erosion. The aim is to summarize available evidence concerning the problems of water erosion. There are presented some methods how to calculate average annual erosion of soils, and selected models for calculating the erosion immediately. There are also listed possible erosion control measures through which we can at least slow the effects of erosion, rather than stop completely.
Handbook for the calculation of reactor protections
This note constitutes the first edition of a Handbook for the calculation of reactor protections. This handbook makes it possible to calculate simply the different neutron and gamma fluxes and consequently, to fix the minimum quantities of materials necessary under general safety conditions both for the personnel and for the installations. It contains a certain amount of nuclear data, calculation methods, and constants corresponding to the present state of our knowledge. (authors)
First principles phonon calculations in materials science
Togo, Atsushi; Tanaka, Isao
2015-01-01
Phonon plays essential roles in dynamical behaviors and thermal properties, which are central topics in fundamental issues of materials science. The importance of first principles phonon calculations cannot be overly emphasized. Phonopy is an open source code for such calculations launched by the present authors, which has been world-widely used. Here we demonstrate phonon properties with fundamental equations and show examples how the phonon calculations are applied in materials science.
Dynamic calculations of pressurized water reactor internals
A mathematical model is briefly described for the calculation of oscillations in the WWER-440 reactor internals. The model was developed for improved safety of the type of reactors. It allows calculating vibrations resistance of reactor components, mainly during accidents, such as loss of coolant accidents. Some results are given of the calculation of forces acting in the rupture of the reactor inlet and outlet pipes. (Z.M.)
How to Calculate Sample Size and Why
Kim, Jeehyoung; Seo, Bong Soo
2013-01-01
Why Calculating the sample size is essential to reduce the cost of a study and to prove the hypothesis effectively. How Referring to pilot studies and previous research studies, we can choose a proper hypothesis and simplify the studies by using a website or Microsoft Excel sheet that contains formulas for calculating sample size in the beginning stage of the study. More There are numerous formulas for calculating the sample size for complicated statistics and studies, but most studies can us...
Benchmark calculations on simple reactor systems
The development of some calculation methods is described. Tests of these and other methods on benchmark problems are reported. The following items are treated: 1) Criticality of spheres and slabs for monoenergetic neutrons with Carlviks method. 2) High precision S sub (n) calculations on critical slabs. 3) Comparison of angular quadrature methods in S sub (n) calculations. 4) Tests of a standard ANISN program. 5) Presence of complex time eigenvalues in a fundamental problem. (Author)
Large scale calculations for hadron spectroscopy
The talk reviews some recent Monte Carlo calculations for Quantum Chromodynamics, performed on Euclidean lattices of rather large extent. Purpose of the calculations is to provide accurate determinations of quantities, such as interquark potentials or mass eigenvalues, which are relevant for hadronic spectroscopy. Results obtained in quenched QCD on 163 x 32 lattices are illustrated, and a discussion of computational resources and techniques required for the calculations is presented. 18 refs.,3 figs., 2 tabs
Calculation of plasma characteristics of the sun
Muhammad Abbas Bari; Zhong Jia-Yong; Chen Miu; Zhao Jing; Zhang Jie
2006-01-01
The ionization level and free electron density of most abundant elements (C, N, O, Mg, Al, Si, S, and Fe) in the sun are calculated from the centre of the sun to the surface of the photosphere. The model and computations are made under the assumption of local thermodynamic equilibrium (LTE). The Saha equation has been used to calculate the ionization level of elements and the electron density. Temperature values for calculations along the solar radius are taken from referebces.
Evaluating Energy Sector Investments: Calculating Volatility
Edson de Oliveira Pamplona
2013-01-01
Full Text Available A major task in assessing risks of investment projects is defining the approach to calculating the project’s volatility. Looking at assorted estimation techniques, this paper calculates their volatilities. The techniques originate from authors in the area and involve project-specific variables of uncertainty. These techniques are applied to a case of electricity distribution through real options. Results are then compared. The difference between the calculated volatilities was low, leaving, in the case of the project evaluated here, the decision unchanged. The paper’s contribution consists of providing a detailed presentation of calculating volatility by the methods cited and by comparing the results obtained by its application.
Pile Load Capacity – Calculation Methods
Wrana Bogumił
2015-12-01
Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.
Surface Tension Calculation of Undercooled Alloys
无
2001-01-01
Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.
Do young calendrical calculators improve with age?
O'Connor, N; Hermelin, B
1992-07-01
The calendrical calculation performance of two 10-year-old children of the same intelligence level (IQ 90) but different calendrical ability, was compared with the performance of eight adult idiot-savant calculators. The calculating speeds of the two 10-year olds fell within the range of the reaction times of the adult savants. No improvement was detectable in a series of successive trials over time, either in speed or accuracy. It is concluded that the young calculators have already inferred rules about calendrical structure and that their performance cannot be accounted for by practice alone, but these savants use cognitive strategies to aid their performance. PMID:1634593
王玉生; 张慧; 杨国宏
2004-01-01
In light of the φ-mapping method, the contribution of disclination lines to the free energy density of 2-dimensional liquid crystals is studied in the single-elastic constant approximation. It is pointed out that, compared with the previous theory, the free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of the disclination lines themselves which is centralized at the disclination lines and topoligically quantized in a unit of 1/2kπ. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e., the disclination strength. From the method of Lagrangian multipliers, the equilibrium equation and the molecular field of 2-dimensional liquid crystals are also obtained. It is shown that the physical meaning of the Lagrangian multiplier is just the distorted energy density.
Calculated optical absorption of different perovskite phases
Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2015-01-01
We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...... are found in the classes of oxynitride and organometal halide perovskites with strong direct transitions....
ASME Code Calculations for the CC Cryostat
Luther, R.D.; /Fermilab
1987-11-04
This engineering note contains the ASHE Code calculations for the CC Cryostat prepared by the manufacturer, Richmond-Lox Equipment Company. Most of these were taken from calculations initially prepared by Fermilab personne1and pub1ished in Eng. Note 68.
Atomic Structure Calculations for Neutral Oxygen
Alonizan, Norah; Qindeel, Rabia; Ben Nessib, Nabil
2016-01-01
Energy levels and oscillator strengths for neutral oxygen have been calculated using the Cowan (CW), SUPERSTRUCTURE (SS), and AUTOSTRUCTURE (AS) atomic structure codes. The results obtained with these atomic codes have been compared with MCHF calculations and experimental values from the National Institute of Standards and Technology (NIST) database.
Stability Test for Transient-Temperature Calculations
Campbell, W.
1984-01-01
Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.
40 CFR 1065.650 - Emission calculations.
2010-07-01
... following sequence of preliminary calculations on recorded concentrations: (i) Correct all THC and CH4.... (iii) Calculate all THC and NMHC concentrations, including dilution air background concentrations, as... NMHC to background corrected mass of THC. If the background corrected mass of NMHC is greater than...
7 CFR 760.406 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.406 Section 760.406 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... calculation. (a) Under this subpart, separate payment rates for eligible livestock owners and...
Nielsen, Claus Werner; Nielsen, Ole-Kenneth
2009-01-01
Many countries are in the process of mapping their national CO2 emissions, but only few have managed to produce an overall report at municipal level yet. Denmark, however, has succeeded in such a project. Using a new national IT-based calculation model, municipalities can calculate the extent of...
7 CFR 760.909 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.909 Section 760.909 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... Payment calculation. (a) Under this subpart separate payment rates are established for eligible...
Calculated Atomic Volumes of the Actinide Metals
Skriver, H.; Andersen, O. K.; Johansson, B.
1979-01-01
The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....
7 CFR 1416.704 - Payment calculation.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.704 Section 1416.704 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... PROGRAMS 2005 Hurricane Tree Assistance Program § 1416.704 Payment calculation. (a) An approved...
7 CFR 760.307 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.307 Section 760.307 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... calculation. (a) An eligible livestock producer will be eligible to receive payments for grazing losses...
7 CFR 760.1203 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.1203 Section 760.1203 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... calculation. (a) Producers must be paid for feed losses of higher costs only for one of the three years,...
30 CFR 5.30 - Fee calculation.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fee calculation. 5.30 Section 5.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FEES FOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS § 5.30 Fee calculation....
47 CFR 65.306 - Calculation accuracy.
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Calculation accuracy. 65.306 Section 65.306 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.306 Calculation...
Calculating the Greeks by Cubature formulas
Teichmann, Josef
2004-01-01
We provide cubature formulas for the calculation of derivatives of expected values in the spririt of Terry Lyons and Nicolas Victoir. In financial mathematics derivatives of option prices with respect to initial values, so called Greeks, are of particular importance as hedging parameters. Cubature formulas allow to calculate these quantities very quickly. Simple examples are added to the theoretical exposition.
Data base to compare calculations and observations
Meteorological and climatological data bases were compared with known tritium release points and diffusion calculations to determine if calculated concentrations could replace measure concentrations at the monitoring stations. Daily tritium concentrations were monitored at 8 stations and 16 possible receptors. Automated data retrieval strategies are listed
Investment Return Calculations and Senior School Mathematics
Fitzherbert, Richard M.; Pitt, David G. W.
2010-01-01
The methods for calculating returns on investments are taught to undergraduate level business students. In this paper, the authors demonstrate how such calculations are within the scope of senior school students of mathematics. In providing this demonstration the authors hope to give teachers and students alike an illustration of the power and the…
Hyperspherical calculations for four-nucleon systems
We develop hyperspherical calculations on the bound states of four-nucleon systems and particularly the fundamental level and the first 0+ excited states. With neglect of the Coulomb effect, we analyze the convergence of the optimal subset expansion for the binding energies calculated for central or realistic potentials. 35 refs
Statistics review 4: Sample size calculations
Whitley, Elise; Ball, Jonathan
2002-01-01
The present review introduces the notion of statistical power and the hazard of under-powered studies. The problem of how to calculate an ideal sample size is also discussed within the context of factors that affect power, and specific methods for the calculation of sample size are presented for two common scenarios, along with extensions to the simplest case.
Calculation of resonance integral for fuel cluster
The procedure for calculating the shielding correction, formulated in the previous paper [6], was broadened and applied for a cluster of cylindrical rods. The sam analytical method as in the previous paper was applied. A combination of Gauss method with the method of Almgren and Porn used for solving the same type of integral was used to calculate the geometry functions. CLUSTER code was written for ZUSE-Z-23 computer to calculate the shielding corrections for pairs of fuel rods in the cluster. Computing time for one pair of fuel rods depends on the number of closely placed rod, and for two closely placed rods it is about 3 hours. Calculations were done for clusters containing 7 and 19 UO2 rods. results show that calculated values of resonance integrals are somewhat higher than the values obtained by Helstrand empirical formula. Taking into account the results for two rods from the previous paper it can be noted that the calculated and empirical values for clusters with 2 and 7 rods are in agreement since the deviations do not exceed the limits of experimental error (±2%). In case of larger cluster with 19 rods deviations are higher than the experimental error. Most probably the calculated values exceed the experimental ones result from the fact that in this paper the shielding correction is calculated only in the region up to 1 keV
Direct calculation of wind turbine tip loss
Wood, D.H.; Okulov, Valery; Bhattacharjee, D.
2016-01-01
. We develop three methods for the direct calculation of the tip loss. The first is the computationally expensive calculation of the velocities induced by the helicoidal wake which requires the evaluation of infinite sums of products of Bessel functions. The second uses the asymptotic evaluation of...
Calculation of Temperature Rise in Calorimetry.
Canagaratna, Sebastian G.; Witt, Jerry
1988-01-01
Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)
40 CFR 91.1307 - Credit calculation.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Credit calculation. 91.1307 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1307 Credit calculation. For each participating engine family, emission credits (positive or...
Lewis Carroll's Formula for Calendar Calculating.
Spitz, Herman H.
1993-01-01
This paper presents Lewis Carroll's formula for mentally calculating the day of the week of a given date. The paper concludes that such formulas are too complex for individuals of low intelligence to learn by themselves, and thus "idiots savants" who perform such calendar calculations must be using other systems. (JDD)
The code system which is a compilation of well known codes NJOY, AMPX, ANISN and DOT-3 adapted for NDP Fortran on IBM PC/AT is described. The 171-group library DLC-41/VITAMIN-C with Bondarenko Factors based on the ENDF/B-4 is introduced to the system as a main data library. Modification and development of this library are realized by NJOY code on the base of ENDF/B-6 files. A 171-group problem-oriented data library is usually used in 1 dimensional calculations by the code ANISN. This library is being generated by the AMPX modules (BONAMI and others). Data libraries with smaller number of groups are being used in 2 dimensional calculations by DOT-3. These libraries have been gotten from 171-group problem-oriented libraries which are averaged by corresponding spectra from 1 dimensional calculations. Using of the described system is being demonstrated with two examples. (authors). 6 refs., 2 tabs., 5 figs
Quantum Monte Carlo calculations of light nuclei
Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on 3H, 4He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed
Calculation of neutron kerma in tissues
Neutron kerma of normal and tumor tissues has been calculated using the tissues elemental concentration. A program developed in Math cad contains the kerma factors of C, H, O, N, Na, Mg, P, S, Cl, K, etc. that are in normal and tumor human tissues. Having the elemental composition of any human tissue the neutron kerma can be calculated. The program was tested using the elemental composition of tumor tissues such as sarcoma, melanoma, carcinoma and adenoid cystic, also neutron kerma for adipose and muscle tissue for normal adult was calculated. The results are in agreement with those published in literature. The neutron kerma for water was also calculated because in some dosimetric calculations water is used to describe normal and tumor tissues. From this comparison was found that at larger energies kerma factors are approximately the same, but energies less than 100 eV the differences are large. (Author)
Calculation of neutron kerma in tissues
Vega C, H.R.; Manzanares A, E. [Unidades Academicas de Estudios Nucleares, Ing. Electrica y Matematicas, Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)]. E-mail: rvega@cantera.reduaz.mx
2004-07-01
Neutron kerma of normal and tumor tissues has been calculated using the tissues elemental concentration. A program developed in Math cad contains the kerma factors of C, H, O, N, Na, Mg, P, S, Cl, K, etc. that are in normal and tumor human tissues. Having the elemental composition of any human tissue the neutron kerma can be calculated. The program was tested using the elemental composition of tumor tissues such as sarcoma, melanoma, carcinoma and adenoid cystic, also neutron kerma for adipose and muscle tissue for normal adult was calculated. The results are in agreement with those published in literature. The neutron kerma for water was also calculated because in some dosimetric calculations water is used to describe normal and tumor tissues. From this comparison was found that at larger energies kerma factors are approximately the same, but energies less than 100 eV the differences are large. (Author)
Semantic Similarity Calculation of Chinese Word
Liqiang Pan
2014-08-01
Full Text Available This paper puts forward a two layers computing method to calculate semantic similarity of Chinese word. Firstly, using Latent Dirichlet Allocation (LDA subject model to generate subject spatial domain. Then mapping word into topic space and forming topic distribution which is used to calculate semantic similarity of word(the first layer computing. Finally, using semantic dictionary "HowNet" to deeply excavate semantic similarity of word (the second layer computing. This method not only overcomes the problem that it’s not specific enough merely using LDA to calculate semantic similarity of word, but also solves the problems such as new words (haven’t been added in dictionary and without considering specific context when calculating semantic similarity based on semantic dictionary "HowNet". By experimental comparison, this thesis proves feasibility,availability and advantages of the calculation method.
Tools for calculations in color space
Sjodahl, Malin
2013-01-01
Both the higher energy and the initial state colored partons contribute to making exact calculations in QCD color space more important at the LHC than at its predecessors. This is applicable whether the method of assessing QCD is fixed order calculation, resummation, or parton showers. In this talk we discuss tools for tackling the problem of performing exact color summed calculations. We start with theoretical tools in the form of the (standard) trace bases and the orthogonal multiplet bases (for which a general method of construction was recently presented). Following this, we focus on two new packages for performing color structure calculations: one easy to use Mathematica package, ColorMath, and one C++ package, ColorFull, which is suitable for more demanding calculations, and for interfacing with event generators.
Modeling tire deformation for power loss calculations
Whicker, D.; Rohde, S.M.
1981-01-01
A combined thermo-mechanical model for calculating tire power loss has been developed at GMR. This paper presents the techniques for developing the realistic finite element models needed in both the thermal and deformation portions of the combined model. It also describes the techniques used in calculating deformed tire shapes. First, procedures are outlined for automatically generating a finite element discretization of a tire. Then, this discretization, together with information about the properties of tire materials, is used to develop a finite element model of the tire. This model is used in MSC NASTRAN to calculate compliances, i.e., the response of the tire to inflation and to unit loads applied at points on the tire surface. These compliances are then used in an algorithm which calculates the deformed shape of a tire loaded against the pavement surface. Sample results are presented to show the agreement between calculated and measured tire deformation.
Dose calculation system for remotely supporting radiotherapy
The dose calculation system IMAGINE is being developed keeping in mind remotely supporting external radiation therapy using photon beams. The system is expected to provide an accurate picture of the dose distribution in a patient body, using a Monte Carlo calculation that employs precise models of the patient body and irradiation head. The dose calculation will be performed utilising super-parallel computing at the dose calculation centre, which is equipped with the ITBL computer, and the calculated results will be transferred through a network. The system is intended to support the quality assurance of current, widely carried out radiotherapy and, further, to promote the prevalence of advanced radiotherapy. Prototypes of the modules constituting the system have already been constructed and used to obtain basic data that are necessary in order to decide on the concrete design of the system. The final system will be completed in 2007. (authors)
Processed evaluated nuclear data for reactor calculations
The neutron multiplication factor and the neutron flux distribution are calculated repeatedly in nuclear reactor core design calculations. Most of the other parameters of interest are derived from them. A long chain of calculations needs to be performed, which requires a set of input group constants, and the accuracy of the calculations depends on them. Basic data, such as the measured cross sections and other nuclear parameters, are too voluminous to be used for such calculations directly in routine applications, Techniques have been developed to reduce the amount of information in several steps. In the lecture notes the data reduction techniques are briefly described, with emphasis on the classifications of the data resulting from individual steps. (author)
Accuracy of calculation of neutron detection efficiency
The problems of the accuracy for the scintillator spectrometer calculation of neutron recording efficiency value are discussed. The calculation is performed by the method of direct simulation of neutron interaction with the scintillator substance. The preliminary calculations show that a contribution to efficiency of neutron recording in the range of energies of 10 through 50 MeV due to interaction of neutrons with carbon is mostly determined by reactions 12(in n' 2α)4He and 12(n, n' p)11B. The effciency calculation results are given for the cylindrical crystal of stilbene. Measurements of the neutron recording efficiency in the range of energies from 10 MeV indicate a good agreement between the calculation and the experiment
Non-perturbative background field calculations
New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc
The subgroup method for resonance treatment is formulated for applications to nonuniform temperature conditions which are frequently encountered in the direct whole core transport calculation at power generating conditions. The problem of using a constant subgroup level across the problem domain in the subgroup resonance fixed source problem is identified first which is to obtain the heterogeneous flux distribution for a given subgroup level. A scheme to adjust the subgroup level according to the local temperature is then proposed as a fix to the problem. Another scheme is to use the effective fuel temperature defined for each fuel pin. The problem of neglecting the nonuniform temperature in the resonance fixed source problem formulation is demonstrated with a simple 2-dimensional pin cell problem which involves a nonuniform temperature profile and the improvement obtained by these fixes are shown. Then the solution accuracy of the DeCART whole core transport code in which the proposed subgroup resonance treatment method is implemented is verified through an extensive comparison with the results of a continuous Monte Carlo code for a wide range of problems spanning from a two-dimensional pin cell to a three-dimensional core at both uniform and nonuniform temperature conditions. It is demonstrated that those 2 correction schemes work very well yielding the reactivity error less than 200 pcm and the relative pin power errors smaller than 1% for the examined mini-core cases that involve a highly nonuniform temperature distribution
Benchmark calculations of sodium fast critical experiments
The high expectations from fast critical experiments impose the additional requirements on reliability of final reconstructed values, obtained in experiments at critical facility. Benchmark calculations of critical experiments are characterized by impossibility of complete experiment reconstruction, the large amounts of input data (dependent and independent) with very different reliability. It should also take into account different sensitivity of the measured and appropriate calculated characteristics to the identical changes of geometry parameters, temperature, and isotopic composition of individual materials. The calculations of critical facility experiments are produced for the benchmark models, generated by the specific reconstructing codes with its features when adjusting model parameters, and using the nuclear data library. The generated benchmark model, providing the agreed calculated and experimental values for one or more neutronic characteristics can lead to considerable differences for other key characteristics. The sensitivity of key neutronic characteristics to the extra steel allocation in the core, and ENDF/B nuclear data sources is performed using a few calculated models of BFS-62-3A and BFS1-97 critical assemblies. The comparative analysis of the calculated effective multiplication factor, spectral indices, sodium void reactivity, and radial fission-rate distributions leads to quite different models, providing the best agreement the calculated and experimental neutronic characteristics. This fact should be considered during the refinement of computational models and code-verification purpose. (author)
Simulation of fires based on flow calculation
The fire simulation based on flow calculation is described in the publication, and the calculated result is compared with the results obtained from fire tests. The tests have been made in Germany in a nuclear power plant removed from service. The simulation describes the flow field of the entire building, the main features of the construction effecting on it and the edge conditions. The fire is described as a given source, the value of which varies as a function of time. Heat transfer into the constructions is described using a separate heat transfer program. The result obtained from calculation describes the flow and temperature fields formed in a fire generally correctly. Due to the used sparse calculation network the results contain locally large deviations. The discrete-transfer radiation calculation method used for calculation of burning and heat transfer, and testing of it are described in the appendix. The method describes the heat radiation propagating diagonally to the calculation network better than the six-flux method used before
Development of Fast running DNBR Calculation Code
Kwon, Hyuk; Seo, K. W.; Kim, S. J.; Hwang, D. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-10-15
SMART core adopted a core protection(SCOPS) and a supervising system(SCOMS) to satisfy the SAFDL for AOO and normal operation. Generally, the criteria is limited to the DNBR limit so that the DNBR calculation module is required in the protection and the supervising system of core. There are CPU time limit and calculation robustness as some requirements of the DNBR calculation module in SCOPS and SCOMS caused by hardware limitations. The non-iterative few channel methods are needed to satisfy the requirements. Non-iterative numerical method is similar to the CETOP algorithm originated from ref. 1. The method is known as the non-iterative prediction and correction method. An optimum number of channels for core lumping model is selected as 4- channel which is same channel number of CETOP model. A compensation model of lumped channel is needed to ensure that the 4-channel thermal hydraulic field is nearly equivalent to that field of 1/8-core model that is calculated by MATRA-S. The code called FAST that is fast running DNBR calculation is developed to satisfy the requirements of CPU time and calculation robustness. Present paper is described of characteristics and calculation results of developed FAST code
Neutron shielding calculation for VVER NPP
There are two methods for neutron transport (shielding) calculation used in Energoproject, Prague, the method of discrete ordinates (code TORT-DORT) and the Monte Carlo method (codes MCNP and module within the code SCALE). The task concerning neutron dose rates calculation near casks with VVER spent fuel are presented as an example. Measured neutron dose rates of real loaded C-30 casks for VVER spent fuel assemblies are compared with calculated values in the frame of the international benchmark calculation task. A part of the task realized by the Atomic Energy Research (AER) organization concerning neutron shielding is calculated. The cask C-30 is used in Slovak Jaslovske Bohunice NPP for transport of spent fuel assemblies to the storage facility. The benchmark task has been calculated by the two-dimensional code DORT originated from Oak Ridge National Laboratory. The code solves transport problems using the method of discrete ordinates (SN - method). Calculated neutron dose rates in azimuth and vertical directions show good agreement with the experiment within the range of the measurement errors. In comparison with the other codes the results of DORT are approximately 20% lower. There have been analysed differences between one- and two- dimensional approach and influence of the flux-to-dose rate conversion factors set
Upper Subcritical Calculations Based on Correlated Data
Sobes, Vladimir [ORNL; Rearden, Bradley T [ORNL; Mueller, Don [ORNL; Marshall, William BJ J [ORNL; Scaglione, John M [ORNL; Dunn, Michael E [ORNL
2015-01-01
The American National Standards Institute and American Nuclear Society standard for Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations defines the upper subcritical limit (USL) as “a limit on the calculated k-effective value established to ensure that conditions calculated to be subcritical will actually be subcritical.” Often, USL calculations are based on statistical techniques that infer information about a nuclear system of interest from a set of known/well-characterized similar systems. The work in this paper is part of an active area of research to investigate the way traditional trending analysis is used in the nuclear industry, and in particular, the research is assessing the impact of the underlying assumption that the experimental data being analyzed for USL calculations are statistically independent. In contrast, the multiple experiments typically used for USL calculations can be correlated because they are often performed at the same facilities using the same materials and measurement techniques. This paper addresses this issue by providing a set of statistical inference methods to calculate the bias and bias uncertainty based on the underlying assumption that the experimental data are correlated. Methods to quantify these correlations are the subject of a companion paper and will not be discussed here. The newly proposed USL methodology is based on the assumption that the integral experiments selected for use in the establishment of the USL are sufficiently applicable and that experimental correlations are known. Under the assumption of uncorrelated data, the new methods collapse directly to familiar USL equations currently used. We will demonstrate our proposed methods on real data and compare them to calculations of currently used methods such as USLSTATS and NUREG/CR-6698. Lastly, we will also demonstrate the effect experiment correlations can have on USL calculations.
Energy of plate tectonics calculation and projection
N. H. Swedan
2013-02-01
Full Text Available Mathematics and observations suggest that the energy of the geological activities resulting from plate tectonics is equal to the latent heat of melting, calculated at mantle's pressure, of the new ocean crust created at midocean ridges following sea floor spreading. This energy varies with the temperature of ocean floor, which is correlated with surface temperature. The objective of this manuscript is to calculate the force that drives plate tectonics, estimate the energy released, verify the calculations based on experiments and observations, and project the increase of geological activities with surface temperature rise caused by climate change.
Stopping-power calculations for semiconductors
The method developed by Brandt and Reinheimer which explicitly includes the effect of the semiconductor gap has been used to calculate the proton and α-particle stopping powers of the valence-electron gas of C (diamond), ZnTe, and U. These values, as well as those existing for Si and Ge, have been combined with the stopping contribution of the electronic core obtained from the statistical atomic model of Bonderup. Stopping powers have also been calculated using the statistical model alone. The calculated curves, which are valid for all incident projectile energies, reproduce the overall features of the semiempirical slowing-down curves, but not always the absolute values
The WFIRST Galaxy Survey Exposure Time Calculator
Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien
2013-01-01
This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.
Calculation of external dose from distributed source
This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail
Neutronic parameters calculations of a CANDU reactor
Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author)
Assessment of seismic margin calculation methods
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.
Fluidization calculation on nuclear fuel kernel coating
The fluidization of nuclear fuel kernel coating was calculated. The bottom of the reactor was in the from of cone on top of the cone there was a cylinder, the diameter of the cylinder for fluidization was 2 cm and at the upper part of the cylinder was 3 cm. Fluidization took place in the cone and the first cylinder. The maximum and the minimum velocity of the gas of varied kernel diameter, the porosity and bed height of varied stream gas velocity were calculated. The calculation was done by basic program
Subcritical calculation of the nuclear material warehouse
In this work the subcritical calculation of the nuclear material warehouse of the Reactor TRIGA Mark III labyrinth in the Mexico Nuclear Center is presented. During the adaptation of the nuclear warehouse (vault I), the fuel was temporarily changed to the warehouse (vault II) and it was also carried out the subcritical calculation for this temporary arrangement. The code used for the calculation of the effective multiplication factor, it was the Monte Carlo N-Particle Extended code known as MCNPX, developed by the National Laboratory of Los Alamos, for the particles transport. (Author)
The WFIRST Galaxy Survey Exposure Time Calculator
Hirata, Christopher M; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien
2012-01-01
This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and S/N determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.
Hamming generalized corrector for reactivity calculation
Suescun-Diaz, Daniel; Ibarguen-Gonzalez, Maria C.; Figueroa-Jimenez, Jorge H. [Pontificia Universidad Javeriana Cali, Cali (Colombia). Dept. de Ciencias Naturales y Matematicas
2014-06-15
This work presents the Hamming method generalized corrector for numerically resolving the differential equation of delayed neutron precursor concentration from the point kinetics equations for reactivity calculation, without using the nuclear power history or the Laplace transform. A study was carried out of several correctors with their respective modifiers with different time step calculations, to offer stability and greater precision. Better results are obtained for some correctors than with other existing methods. Reactivity can be calculated with precision of the order h{sup 5}, where h is the time step. (orig.)
Ti-84 Plus graphing calculator for dummies
McCalla
2013-01-01
Get up-to-speed on the functionality of your TI-84 Plus calculator Completely revised to cover the latest updates to the TI-84 Plus calculators, this bestselling guide will help you become the most savvy TI-84 Plus user in the classroom! Exploring the standard device, the updated device with USB plug and upgraded memory (the TI-84 Plus Silver Edition), and the upcoming color screen device, this book provides you with clear, understandable coverage of the TI-84's updated operating system. Details the new apps that are available for download to the calculator via the USB cabl
Using Inverted Indices for Accelerating LINGO Calculations
Kristensen, Thomas Greve; Nielsen, Jesper; Pedersen, Christian Nørgaard Storm
2011-01-01
The ever growing size of chemical data bases calls for the development of novel methods for representing and comparing molecules. One such method called LINGO is based on fragmenting the SMILES string representation of molecules. Comparison of molecules can then be performed by calculating the...... queries. The previous best method for rapidly calculating the LINGOsim similarity matrix required specialised hardware to yield a significant speedup over existing methods. By representing LINGO multisets in the verbose representation and using inverted indices it is possible to calculate LINGOsim...
Equivalent-spherical-shield neutron dose calculations
Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab
Hamming generalized corrector for reactivity calculation
This work presents the Hamming method generalized corrector for numerically resolving the differential equation of delayed neutron precursor concentration from the point kinetics equations for reactivity calculation, without using the nuclear power history or the Laplace transform. A study was carried out of several correctors with their respective modifiers with different time step calculations, to offer stability and greater precision. Better results are obtained for some correctors than with other existing methods. Reactivity can be calculated with precision of the order h5, where h is the time step. (orig.)
Assessment of seismic margin calculation methods
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs
Pairing schemes for HFB calculations of nuclei
Duguet, T; Bonche, P
2005-01-01
Several pairing schemes currently used to describe superfluid nuclei through Hartree-Fock-Bogolyubov (HFB) calculations are briefly reviewed. We put a particular emphasis on the regularization recipes used in connection with zero-range forces and on the density dependence which usually complement their definition. Regarding the chosen regularization process, the goal is not only to identify the impact it may or may not have on pairing properties of nuclei through spherical 1D HFB calculations but also to assess its tractability for systematic axial 2D and 3D mean-field and beyond-mean-field calculations.
RA-0 reactor. New neutronic calculations
An updating of the neutronic calculations performed at the RA-0 reactor, located at the Natural, Physical and Exact Sciences Faculty of Cordoba National University, are herein described. The techniques used for the calculation of a reactor like the RA-0 allows prediction in detail of the flux behaviour in the core's interior and in the reflector, which will be helpful for experiments design. In particular, the use of WIMSD4 code to make calculations on the reactor implies a novelty in the possible applications of this code to solve the problems that arise in practice. (Author)
Semidirect algorithms in electron propagator calculations
Zakrzewski, V.G.; Ortiz, J.V. [Univ. of New Mexico, Albuquerque, NM (United States)
1994-12-31
Electron propagator calculations have been executed with a semi-direct algorithm that generates only a subset of transformed electron repulsion integrals and that takes advantage of Abelian point group symmetry. Diagonal self-energy expressions that are advantageous for large molecules are employed. Illustrative calculations with basis sets in excess of 200 functions include evaluations of the ionization energies of C{sup 2{minus}}{sub 7} and Zn(C{sub 5}H{sub 5}){sub 2}. In the former application, a bound dianion is obtained for a D{sub 3h} structure. In the latter, many final states of the same symmetry are calculated without difficulty.
Calculation of profitability in computer tomography (CT)
The comments do not refer to a specific type of whole body computer tomography which made it necessary to base the calculations on mean values with regard to both initial costs and operating costs. The calculation of the receipts was based on the resulting costs, mean long-term utilization of the unit and on a reasonable period of amortization. The model calculation indicates that the break-even point is reached with 1,920 annual examinations and a five-year amortization period. (orig.) 891 MG/orig. 892 MB
Importance iteration in MORSE Monte Carlo calculations
An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example, which shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation. (orig.)
Resonance integral calculations for high temperature reactors
Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)
Temperature calculation in fire safety engineering
Wickström, Ulf
2016-01-01
This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained. Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculat...
Calculation models for a nuclear reactor
Determination of different parameters of nuclear reactors requires neutron transport calculations. Due to complicity of geometry and material composition of the reactor core, neutron calculations were performed for simplified models of the real arrangement. In frame of the present work two models were used for calculations. First, an elementary cell model was used to prepare cross section data set for a homogenized-core reactor model. The homogenized-core reactor model was then used to perform neutron transport calculation. The nuclear reactor is a tank-shaped thermal reactor. The semi-cylindrical core arrangement consists of aluminum made fuel bundles immersed in water which acts as a moderator as well as a coolant. Each fuel bundle consists of aluminum cladded fuel rods arranged in square lattices. (author)
Multigrid Methods in Electronic Structure Calculations
Briggs, E L; Bernholc, J
1996-01-01
We describe a set of techniques for performing large scale ab initio calculations using multigrid accelerations and a real-space grid as a basis. The multigrid methods provide effective convergence acceleration and preconditioning on all length scales, thereby permitting efficient calculations for ill-conditioned systems with long length scales or high energy cut-offs. We discuss specific implementations of multigrid and real-space algorithms for electronic structure calculations, including an efficient multigrid-accelerated solver for Kohn-Sham equations, compact yet accurate discretization schemes for the Kohn-Sham and Poisson equations, optimized pseudo\\-potentials for real-space calculations, efficacious computation of ionic forces, and a complex-wavefunction implementation for arbitrary sampling of the Brillioun zone. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures, and we present an implementation for the Cray-T3D with essen...
Representation and calculation of economic uncertainties
Schjær-Jacobsen, Hans
2002-01-01
Management and decision making when certain information is available may be a matter of rationally choosing the optimal alternative by calculation of the utility function. When only uncertain information is available (which is most often the case) decision-making calls for more complex methods of...... representation and calculation and the basis for choosing the optimal alternative may become obscured by uncertainties of the utility function. In practice, several sources of uncertainties of the required information impede optimal decision making in the classical sense. In order to be able to better handle the...... uncertain economic numbers are discussed. When solving economic models for decision-making purposes calculation of uncertain functions will have to be carried out in addition to the basic arithmetical operations. This is a challenging numerical problem since improper methods of calculation may introduce...
Nuclear structure calculations for astrophysical applications
Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account
Benchmark calculations of power distribution within assemblies
The main objective of this Benchmark is to compare different techniques for fine flux prediction based upon coarse mesh diffusion or transport calculations. We proposed 5 ''core'' configurations including different assembly types (17 x 17 pins, ''uranium'', ''absorber'' or ''MOX'' assemblies), with different boundary conditions. The specification required results in terms of reactivity, pin by pin fluxes and production rate distributions. The proposal for these Benchmark calculations was made by J.C. LEFEBVRE, J. MONDOT, J.P. WEST and the specification (with nuclear data, assembly types, core configurations for 2D geometry and results presentation) was distributed to correspondents of the OECD Nuclear Energy Agency. 11 countries and 19 companies answered the exercise proposed by this Benchmark. Heterogeneous calculations and homogeneous calculations were made. Various methods were used to produce the results: diffusion (finite differences, nodal...), transport (Pij, Sn, Monte Carlo). This report presents an analysis and intercomparisons of all the results received
A novel algorithmic method for piezoresistance calculation
A novel algorithmic method, based on the different stress distribution on the surface of thin film in an SOI microstructure, is put forward to calculate the value of the silicon piezoresistance on the sensitive film. In the proposed method, we take the Ritz method as an initial theoretical model to calculate the rate of piezoresistance ΔR/R through an integral (the closed area Ω where the surface piezoresistance of the film lies as the integral area and the product of stress σ and piezoresistive coefficient π as the integral object) and compare the theoretical values with the experimental results. Compared with the traditional method, this novel calculation method is more accurate when applied to calculating the value of the silicon piezoresistance on the sensitive film of an SOI pieoresistive pressure sensor. (semiconductor devices)
Methods of bone marrow dose calculation
Several methods of bone marrow dose calculation for photon irradiation were analised. After a critical analysis, the author proposes the adoption, by the Instituto de Radioprotecao e Dosimetria/CNEN, of Rosenstein's method for dose calculations in Radiodiagnostic examinations and Kramer's method in case of occupational irradiation. It was verified by Eckerman and Simpson that for monoenergetic gamma emitters uniformly distributed within the bone mineral of the skeleton the dose in the bone surface can be several times higher than dose in skeleton. In this way, is also proposed the Calculation of tissue-air ratios for bone surfaces in some irradiation geometries and photon energies to be included in the Rosenstein's method for organ dose calculation in Radiodiagnostic examinations. (Author)
Historical river flow rates for dose calculations
Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS's, EID'S, SAR'S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants
Reactor physics calculations in the Nordic countries
The seventh biennial meeting on reactor physics calculations in the Nordic countries was arranged by VTT Energy on May 8-9, 1995. 26 papers on different subjects in the field of reactor physics were presented by 45 participants representing research establishments, technical universities, utilities, consultants and suppliers. Resent development and verification of the program systems of ABB Atom, Risoe, Scandpower, Studsvik and VTT Energy were the main topic of the meeting. Benchmarking of the two assembly codes CASMO-4 and HELIOS is proceeding. Cross section data calculated with CASMO-HEX have been validated for the Loviisa reactors. On core analysis ABB atom gives a description on its latest core simulator version POLCA7 with the calculation Core Master 2 and the BWR core supervision system Core Watch. Transient calculations with HEXTRAN, HEXTRAN- PLIM, TRAB, RAMONA, SIMULATE-3K and a code based on PRESTO II/POLCA7 were also presented
Program package for 2D burnup calculation
The program package for 2 dimension burnup calculation was developed for TRIGA Mark III reactor. The package consists of 3 modules: PRESIX, SIXTUS-2, and BURN; 1 library, and 2 input files. PRESIX module prepared cross sections for diffusion calculation. SIXTUS-2 module, a two dimensional diffusion code in hexagonal geometry, calculates keff, neutron fluxes and power distributions. BURN module performs the burnup of fuel elements and stored the result in the ELEM.DAT file. PRESIX.LIB is two group cross section library for major reactor core components prepared using WIMS-D4 code. PRES.INP, the first input file, reads information on reactor power and core loading pattern. ELEM.DAT, the second input file, is prepared for specific TRIGA reactor and dependent on operation history. To verify the reactor model and computational methods, the calculated excess reactivities were compared to the measurement. The results are in good agreement. (author)
Slide Rule For Calculating Curing Schedules
Heater, Don
1995-01-01
Special-purpose slide rule devised for calculating schedules for storing and curing adhesives, sealants, and other materials characterized by known curing times and shelf lives. Prevents mistakes commonly made in determining storage and curing schedules.
Calculation of eigenfunction fluxes in nuclear systems
A new Monte Carlo method is being developed to calculate eigenfunction fluxes in critical or near-critical nuclear systems. The correct estimation of fluxes is essential for radiation protection and shielding near these systems, in addition to isotope production, isotope depletion, nuclear criticality and other applications. The proposed method applies to Monte Carlo criticality eigenvalue calculations in which the fission sites in one generation are used as fission sources in subsequent generations. The usual Monte Carlo power iteration method for such problems often calculates fluxes (eigenfunctions) that are inaccurate and very different in symmetric parts of a problem geometry. The proposed method calculates flux distributions by estimating an approximate fission matrix. The way the fission matrix is estimated and used differs from other recent works. Preliminary results are promising. (authors)
Precipitates/Salts Model Sensitivity Calculation
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO2) on the chemical evolution of water in the drift
Fair and Reasonable Rate Calculation Data
Department of Transportation — This dataset provides guidelines for calculating the fair and reasonable rates for U.S. flag vessels carrying preference cargoes subject to regulations contained at...
Numerical calculations in quantum field theories
Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references
Numerical Calculation of Model Rocket Trajectories.
Keeports, David
1990-01-01
Discussed is the use of model rocketry to teach the principles of Newtonian mechanics. Included are forces involved; calculations for vertical launches; two-dimensional trajectories; and variations in mass, drag, and launch angle. (CW)
Thermal calculations for water cooled research reactors
The formulae and the more important numerical data necessary for thermic calculations on the core of a research reactor, cooled with low pressure water, are presented. Most of the problems met by the designer and the operator are dealt with (calculations margins, cooling after shut-down). Particular cases are considered (gas release, rough walls, asymmetric cooling slabs etc.), which are not generally envisaged in works on general thermics
Molecular transport calculations with Wannier functions
Thygesen, K. S.; Jacobsen, K. W.
2005-01-01
We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane-wave electronic structure method to calculate the eigenstates which are subsequently transformed into a set of localized Wannier functions (WFs). The WFs provide a highly efficient basis set which at ...
Software Metrics: Calculation and Optimization of Thresholds
Abhishek Kumar Maheswari
2011-01-01
In this article, we present a algorithmic method for the calculation of thresholds (the starting point for a new state) for a software metric set. To this aim, machine learning and data mining techniques are utilized. We define a data-driven methodology that can be used for efficiency optimization of existing metric sets, for the simplification of complex classification models, and for the calculation of thresholds for a metric set in an environment where no metric set yet exists. The methodo...
Energy of plate tectonics calculation and projection
N. H. Swedan
2013-01-01
Mathematics and observations suggest that the energy of the geological activities resulting from plate tectonics is equal to the latent heat of melting, calculated at mantle's pressure, of the new ocean crust created at midocean ridges following sea floor spreading. This energy varies with the temperature of ocean floor, which is correlated with surface temperature. The objective of this manuscript is to calculate the force that drives plate tectonics, estimate the energy released, verify the...
Validation of fluorescence transition probability calculations
M. G. PiaINFN, Sezione di Genova; P. Saracco(INFN, Sezione di Genova); Manju Sudhaka(INFN, Sezione di Genova)
2015-01-01
A systematic and quantitative validation of the K and L shell X-ray transition probability calculations according to different theoretical methods has been performed against experimental data. This study is relevant to the optimization of data libraries used by software systems, namely Monte Carlo codes, dealing with X-ray fluorescence. The results support the adoption of transition probabilities calculated according to the Hartree-Fock approach, which manifest better agreement with experimen...
PROSPECTS OF MANAGEMENT ACCOUNTING AND COST CALCULATION
Marian ŢAICU
2014-11-01
Full Text Available Progress in improving production technology requires appropriate measures to achieve an efficient management of costs. This raises the need for continuous improvement of management accounting and cost calculation. Accounting information in general, and management accounting information in particular, have gained importance in the current economic conditions, which are characterized by risk and uncertainty. The future development of management accounting and cost calculation is essential to meet the information needs of management.
A calculational model for the NRU reactor
A new computer model to calculate neutronic properties of the NRU research reactor is being implemented at the Chalk River Nuclear Laboratories (CRNL). The model is founded on numerous theoretical studies, on analysis of NRU support experiments done in a zero power reactor, and on comparison with measurements in the NRU reactor. This paper examines the elements of the new calculational model, concentrating on the unique features of NRU and their influences on neutron behaviour
A calculational model for the NRU reactor
A new computer model to calculate neutronic properties of the NRU research reactor is being implemented at the Chalk River Nuclear Laboratories (CRNL). The model is founded on numerous theoretical studies, on analysis of NRU support experiments done in a zero power reactor, and on comparison with measurement in the NRU reactor. This paper examines the elements of the new calculational model, concentrating on the unique features of NRU and their influences on neutron behaviour
Calculation of the resonant ionization of helium
Autoionizing resonances in the compound system of an electron and a helium ion are observed in kinematically-complete ionization experiments for electrons on helium atoms. The differential cross section is calculated for comparison with these experiments in an equivalent-local form of the distorted-wave impulse approximation. Resonant scattering amplitudes are calculated by a six-state momentum-space coupled-channels method. 10 refs., 1 tab., 2 figs
Making calculated energy certificate for choosen building
Hafner, Rok
2015-01-01
The graduation thesis addresses four given energy efficiency certificates for the preschool in Škofja Loka, calculated according to the valid legislation and work methodology. The building in question was built in the seventies of last century and had it's efficiency improved in 2014. The state of the building before improvements has both measured and calculated efficiency certificates made using the KI Energija 2014 program, while the two energy efficiency certificates for the...
A Java Interface for Roche Lobe Calculations
Leahy, D. A.; Leahy, J. C.
2015-09-01
A JAVA interface for calculating various properties of the Roche lobe has been created. The geometry of the Roche lobe is important for studying interacting binary stars, particularly those with compact objects which have a companion which fills the Roche lobe. There is no known analytic solution to the Roche lobe problem. Here the geometry of the Roche lobe is calculated numerically to high accuracy and made available to the user for arbitrary input mass ratio, q.
Full CI benchmark calculations on CH3
Bauschlicher, Charles W., Jr.; Taylor, Peter R.
1987-01-01
Full CI calculations have been performed on the CH3 radical. The full CI results are compared to those obtained using CASSCF/multireference CI and coupled-pair functional methods, both at the equilibrium CH distance and at geometries with the three CH bonds extended. In general, the performance of the approximate methods is similar to that observed in calculations on other molecules in which one or two bonds were stretched.
Source term calculations of the ALMR
This report contains the results of a thermochemical study on the aspects of fission product release in sodium cooled reactors. An overview of the relevant thermochemical data (excess Gibbs energies of mixing) of sodium systems is presented. Phase equilibrium calculations of the thermochemical behavior of one fuel pin and of the reactor vessel were performed. In these calculations, 30 elements and approximately 100 compounds are involved. (orig.)
Source term calculations of the ALMR
Schram, R.P.C.; Cordfunke, E.H.P.; Huntelaar, M.E.
1995-07-01
This report contains the results of a thermochemical study on the aspects of fission product release in sodium cooled reactors. An overview of the relevant thermochemical data (excess Gibbs energies of mixing) of sodium systems is presented. Phase equilibrium calculations of the thermochemical behavior of one fuel pin and of the reactor vessel were performed. In these calculations, 30 elements and approximately 100 compounds are involved. (orig.).
Providing driving rain data for hygrothermal calculations
Kragh, Mikkel Kristian
1996-01-01
Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations.......Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations....
VVER-related burnup credit calculations
The calculations related to a VVER burnup credit calculational benchmark proposed to the Eastern and Central European research community in collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmark Working Group (working under WPNCS - Working Party on Nuclear Criticality Safety) are described. The results of a three-year effort by analysts from the Czech Republic, Finland, Germany, Hungary, Russia, Slovakia and the United Kingdom are summarized and commented on. (author)
Noble gas sputtering calculations using TRIM
In conjunction with our experimental work on saddle field ion sputtering, we have attempted to apply the Monte Carlo program TRIM (Transport of Ions in Matter) to calculate the sputter yields for a variety of noble gas sputtering applications. Comparison with experiments are shown. Information extracted from these analyses have proved useful in optimizing the experimental sputtering parameters. Calculated sputter yields obtained utilizing TRIM are presented for noble gas sputtering of a variety of materials common to nuclear target production
Efficient Finite Element Calculation of Nγ
Clausen, Johan; Damkilde, Lars; Krabbenhøft, K.
2007-01-01
This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing.......This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing....
INTERNAL CALCULATION IN TERM BUSINESS DECISION MAKING
Jugoslav Aničić, Miloje Jelić, Jasmina M. Đurović, Srećko Radoičić, Živojin B. Prokopović
2014-01-01
Business-financial decision making represent prime activity of top management. Growing complexity in the business ,market and rapid technological change require fast and appropriate answer of top management. Confident and efficient system of internal calculation gives confident base, for making financial decision and strategic as well. Companies of industrial sector in Serbia can significantly improve their business performance by improving internal calculation systems. The preservation and s...
Calculation Methodology for Flexible Arithmetic Processing
García Chamizo, Juan Manuel; Mora Pascual, Jerónimo Manuel; Mora Mora, Higinio; Signes Pont, María Teresa
2003-01-01
A new operation model of flexible calculation that allows us to adjust the operation delay depending on the available time is presented. The operation method design uses look-up tables and progressive construction of the result. The increase in the operators’ granularity opens up new possibilities in calculation methods and microprocessor design. This methodology, together with the advances in technology, enables the functions of an arithmetic unit to be implemented on the basis of techniques...
A revised calculational model for fission
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
Variational calculations on the hydrogen molecular ion
Taylor, J. M.; Yan, Zong-Chao; Dalgarno, A.; Babb, J. F.
1998-01-01
We present high-precision non-relativistic variational calculations of bound vibrational-rotational state energies for the $H_2^+$ and $D_2^+$ molecular ions in each of the lowest electronic states of $\\Sigma_g$, $\\Sigma_u$, and $\\Pi_u$ symmetry. The calculations are carried out including coupling between $\\Sigma$ and $\\Pi$ states but without using the Born-Oppenheimer or any adiabatic approximation. Convergence studies are presented which indicate that the resulting energies for low-lying le...
R-matrix calculation for photoionization
无
2000-01-01
We have employed the R-matrix method to calculate differe ntial cross sections for photoionization of helium leaving helium ion in an exci ted state for incident photon energy between the N=2 and N=3 thresholds (69～73 eV) of He+ ion. Differential cross sections for photoionization in the N=2 level at emission angle 0° are provide. Our results are in good agreem ent with available experimental data and theoretical calculations.
Calculation of mixed core safety parameters
The purpose of this presentation is the reactor physics explanation of the most important nuclear safety parameters in mixed TRIGA cores as well as their calculation methods and appropriate computer codes. Nuclear core parameters, such as power density peaking factors and temperature reactivity coefficients are considered. The computer codes adapted, tested and widely available for TRIGA nuclear calculations are presented. Thermal-hydraulics aspects of safety analysis are not treated
Users enlist consultants to calculate costs, savings
1982-05-24
Consultants who calculate payback provide expertise and a second opinion to back up energy managers' proposals. They can lower the costs of an energy-management investment by making complex comparisons of systems and recommending the best system for a specific application. Examples of payback calculations include simple payback for a school system, a university, and a Disneyland hotel, as well as internal rate of return for a corporate office building and a chain of clothing stores. (DCK)
Sample size calculation in medical studies
Pourhoseingholi, Mohamad Amin; Vahedi, Mohsen; Rahimzadeh, Mitra
2013-01-01
Optimum sample size is an essential component of any research. The main purpose of the sample size calculation is to determine the number of samples needed to detect significant changes in clinical parameters, treatment effects or associations after data gathering. It is not uncommon for studies to be underpowered and thereby fail to detect the existing treatment effects due to inadequate sample size. In this paper, we explain briefly the basic principles of sample size calculations in medica...
Three dimensional diffusion calculations of nuclear reactors
This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)
Improved Calculation of Thermal Fission Energy
Ma, X. B.; Zhong, W. L.; Wang, L. Z.; Y. X. Chen; Cao, J
2012-01-01
Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel isotopes, with improvements on three aspects. ...
DOWNSCALE APPLICATION OF BOILER THERMAL CALCULATION APPROACH
Zelený, Zbynĕk; Hrdlička, Jan
2016-01-01
Commonly used thermal calculation methods are intended primarily for large scale boilers. Hot water small scale boilers, which are commonly used for home heating have many specifics, that distinguish them from large scale boilers especially steam boilers. This paper is focused on application of thermal calculation procedure that is designed for large scale boilers, on a small scale boiler for biomass combustion of load capacity 25 kW. Special issue solved here is influence of formation of dep...
PROSPECTS OF MANAGEMENT ACCOUNTING AND COST CALCULATION
Marian ŢAICU
2014-01-01
Progress in improving production technology requires appropriate measures to achieve an efficient management of costs. This raises the need for continuous improvement of management accounting and cost calculation. Accounting information in general, and management accounting information in particular, have gained importance in the current economic conditions, which are characterized by risk and uncertainty. The future development of management accounting and cost calculation is essential to me...
Thermodynamic calculation of a district energy cycle
This paper presents a calculation model for a nuclear district energy circuit. Such a circuit means the combination of a steam reforming plant with heat supply from a high-temperature nuclear reactor and a methanation plant with heat production for district heating or electricity production. The model comprises thermodynamic calculations for the endothermic methane reforming reaction as well as the exothermic CO-hydrogenation in adiabatic reactors and allows the optimization of the district energy circuit under consideration. (orig.)
Towards Density Functional Calculations from Nuclear Forces
Schwenk, A; Polonyi, J.
2004-01-01
We propose a method for microscopic calculations of nuclear ground-state properties in the framework of density functional theory. We discuss how the density functional is equivalent to the effective action for the density, thereby establishing a constructive framework for density functional calculations from nuclear forces. The presented approach starts from non-interacting nucleons in a background potential (a simple approximation for the mean field). The nuclear forces are then gradually t...
A revised calculational model for fission
Atchison, F.
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
Characteristic parameters of drift chambers calculation
We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs
Green's function calculations of light nuclei
Sun, ZhongHao; Wu, Qiang; Xu, FuRong
2016-09-01
The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.
Core-wide calculations by HELIOS code
The transport method of HELIOS is called the CCCP method, because it is based on current coupling and collision probabilities. The system to be calculated consists of space elements that are coupled with each other and with the boundaries by interface currents. The angular dependence of the interface or coupling currents can be discretized in various ways. This is done by partitioning the directional half-sphere into a number of θ polar levels, and each θ level into a number of φ azimuthal intervals. In two dimensional calculations the discretization of the azimuthal level is dominant. In the last issue of the HELIOS code (version 1.10) the maximum value of azimuthal discretization is increased from 4 to 12. This gives the possibility to calculate large (core-wide or near core-wide) systems with appropriate accuracy, which extends the applicability of the HELIOS program. This paper presents the experience gained from HELIOS calculations of large systems having several WWER-440 assemblies. The examined parameter is the core-wide power distribution, which was inadequately calculated by former versions of HELIOS. The application of high azimuthal discretization gives substantial improvement in accuracy, compared to reference solutions calculated by MCNP Monte-Carlo code. Although HELIOS is designed to calculate assembly-wide systems, it is now applicable to core-wide systems. Using its possibilities, the area of application is extended to calculate reference solutions for core-wide programs or to examine spectral changes of few-group cross sections due to burnup in real situations. Some potential areas of application are presented in the paper, together with the limitations of those applications. (Author)
Subsurface Shielding Source Term Specification Calculation
The purpose of this calculation is to establish appropriate and defensible waste-package radiation source terms for use in repository subsurface shielding design. This calculation supports the shielding design for the waste emplacement and retrieval system, and subsurface facility system. The objective is to identify the limiting waste package and specify its associated source terms including source strengths and energy spectra. Consistent with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001, p. 15), the scope of work includes the following: (1) Review source terms generated by the Waste Package Department (WPD) for various waste forms and waste package types, and compile them for shielding-specific applications. (2) Determine acceptable waste package specific source terms for use in subsurface shielding design, using a reasonable and defensible methodology that is not unduly conservative. This calculation is associated with the engineering and design activity for the waste emplacement and retrieval system, and subsurface facility system. The technical work plan for this calculation is provided in CRWMS M and O 2001. Development and performance of this calculation conforms to the procedure, AP-3.12Q, Calculations
Application of backtracking algorithm to depletion calculations
Based on the theory of linear chain method for analytical depletion calculations, the burn-up matrix is decoupled by the divide and conquer strategy and the linear chain with Markov characteristic is formed. The density, activity and decay heat of every nuclide in the chain can be calculated by analytical solutions. Every possible reaction path of the nuclide must be considered during the linear chain establishment process. To confirm the calculation precision and efficiency, the algorithm which can cover all the reaction paths of the nuclide and search the paths automatically according to to problem description and precision restrictions should be sought. Through analysis and comparison of several kinds of searching algorithms, the backtracking algorithm was selected to search and calculate the linear chains using Depth First Search (DFS) method. The depletion program can solve the depletion problem adaptively and with high fidelity. The solution space and time complexity of the program were analyzed. The new developed depletion program was coupled with Monte Carlo program MCMG-II to calculate the benchmark burn-up problem of the first core of China Experimental Fast Reactor (CEFR). The initial verification and validation of the program was performed by the calculation. (author)
Multigroup neutron dose calculations for proton therapy
We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations
Software program for teletherapy dosimetry calculations
Using this program, one can calculate the routine treatment time, TDF, CRE and output calibration. For treatment time calculations, the central axis depth dose values (BJR Suppl. No.25, 1996) for square fields, the output values for square fields, the wedge factor for corresponding angles and field sizes and tray factor for slotted and plain tray have to be fed into the database file. When the desired menu is selected, SSD or SAD, and required data for the treatment time calculations such as planned dose, planned fractions, number of fields, field size, depth of the tumor, with or without wedges, types of tray used in case of shielding and treatment date are entered and this program calculates and gives the result with parameters PDD/TAR, BSF, output of the machine. Also, the factors involved in the manipulation for the verification and self-satisfaction are displayed. The calculated treatment time will be accurate since it uses the current day decay correction. Print option is also available. All the data used for the calculations will be stored in a file so that one can read out at any instant, using the patients file menu
''FULL-CORE'' VVER-440 calculation benchmark
Because of the difficulties with experimental validation of power distribution predicted by macro-code on the pin by pin level we decided to prepare a calculation benchmark named ''FULL-CORE'' VVER-440. This benchmark is a two-dimensional (2D) calculation benchmark based on the VVER-440 reactor core cold state geometry with taking into account the geometry of explicit radial reflector. The main task of this benchmark is to test the pin by pin power distribution in fuel assemblies predicted by macro-codes that are used for neutron-physics calculations especially for VVER-440 reactors. The proposal of this benchmark was presented at the 21st Symposium of AER in 2011. The reference solution has been calculated by MCNP code using Monte Carlo method and the results have been published in the AER community. The results of reference calculation were presented at the 22nd Symposium of AER in 2012. In this paper we will compare the available macro-codes results of this calculation benchmark.
Multigroup neutron dose calculations for proton therapy
Kelsey Iv, Charles T [Los Alamos National Laboratory; Prinja, Anil K [Los Alamos National Laboratory
2009-01-01
We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.
Validation of dose calculation programmes for recycling
This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on
Three dimensions transport calculations for PWR core
The objective of this work is to define improved 3-D core calculation methods based on the transport theory. These methods can be particularly useful and lead to more precise computations in areas of the core where anisotropy and steep flux gradients occur, especially near interface and boundary conditions and in regions of high heterogeneity (bundle with absorbent rods). In order to apply the transport theory a new method for calculating reflector constants has been developed, since traditional methods were only suited for 2-group diffusion core calculations and could not be extrapolated to transport calculations. In this thesis work, the new method for obtaining reflector constants is derived regardless of the number of energy groups and of the operator used. The core calculations results using the reflector constants thereof obtained have been validated on the EDF's power reactor Saint Laurent B1 with MOX loading. The advantages of a 3-D core transport calculation scheme have been highlighted as opposed to diffusion methods; there are a considerable number of significant effects and potential advantages to be gained in rod worth calculations for instance. These preliminary results obtained with on particular cycle will have to be confirmed by more systematic analysis. Accidents like MSLB (main steam line break) and LOCA (loss of coolant accident) should also be investigated and constitute challenging situations where anisotropy is high and/or flux gradients are steep. This method is now being validated for others EDF's PWRs' reactors, as well as for experimental reactors and other types of commercial reactors. (author)
Paramedics’ Ability to Perform Drug Calculations
Eastwood, Kathyrn J
2009-11-01
Full Text Available Background: The ability to perform drug calculations accurately is imperative to patient safety. Research into paramedics’ drug calculation abilities was first published in 2000 and for nurses’ abilities the research dates back to the late 1930s. Yet, there have been no studies investigating an undergraduate paramedic student’s ability to perform drug or basic mathematical calculations. The objective of this study was to review the literature and determine the ability of undergraduate and qualified paramedics to perform drug calculations.Methods: A search of the prehospital-related electronic databases was undertaken using the Ovid and EMBASE systems available through the Monash University Library. Databases searched included the Cochrane Central Register of Controlled Trials (CENTRAL, MEDLINE, CINAHL, JSTOR, EMBASE and Google Scholar, from their beginning until the end of August 2009. We reviewed references from articles retrieved.Results: The electronic database search located 1,154 articles for review. Six additional articles were identified from reference lists of retrieved articles. Of these, 59 were considered relevant. After reviewing the 59 articles only three met the inclusion criteria. All articles noted some level of mathematical deficiencies amongst their subjects.Conclusions: This study identified only three articles. Results from these limited studies indicate a significant lack of mathematical proficiency amongst the paramedics sampled. A need exists to identify if undergraduate paramedic students are capable of performing the required drug calculations in a non-clinical setting.[WestJEM. 2009;10:240-243.
On the relativistic calculation of spontaneous emission
In a recent work, Barut and Salamin (1988) have derived a method for calculating the relativistic decay rates in atoms, in a formulation of quantum electrodynamics based upon the electron's self-energy. The decay rate appears as the imaginary part of a formula giving a complex energy shift, the real part of the formula being the Lamb shift. The presence of the the decay rate in the imaginary part of a formula, giving an energy in its real part, may appear a bit strange. A confirmation of the Barut and Alamin calculation, by means of a quite different point of view, would be useful. Therefore in this work the Einstein A coefficients are calculated, in all cases of degeneracies of the Dirac transition currents, by means of the energy balance method. This point of view is based on the balance between the energy released during the transitions of electrons from a higher state to a lower one, and the flux of the Poynting vector of the classical electromagnetic field, created by the electrons, through a sphere a large radius. The particularity of the present work lies in the direct calculation of the relativistic Dirac transition currents and the fact that the dipole and Pauli approximations are avoided. The quantum part of the relativistic calculation is based on the determination of the transition charge currents in the Darwin solutions of the Dirac equation. 13 refs
Good Practices in Free-energy Calculations
Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christopher
2013-01-01
As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in drug design. Yet, in a number of instances, the reliability of these calculations can be improved significantly if a number of precepts, or good practices are followed. For the most part, the theory upon which these good practices rely has been known for many years, but often overlooked, or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. The current best practices for carrying out free-energy calculations will be reviewed demonstrating that, at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. In energy perturbation and nonequilibrium work methods, monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision. In thermodynamic integration and probability distribution (histogramming) methods, properly designed adaptive techniques yield nearly uniform sampling of the relevant degrees of freedom and, by doing so, could markedly improve efficiency and accuracy of free energy calculations without incurring any additional computational expense.
Considering alternative calculations of weight suppression.
Schaumberg, Katherine; Anderson, Lisa M; Reilly, Erin E; Gorrell, Sasha; Anderson, Drew A; Earleywine, Mitch
2016-01-01
Weight suppression (WS)--the difference between an individual's highest adult weight and current weight-relates to eating pathology and weight gain; however, there are several methodological issues associated with its calculation. The current study presents four alternative methods of calculating WS and tests whether these methods differentially relate to maladaptive outcomes. Alternative methods of calculation included: (1) change in BMI units; (2) BMI category change; (3) percent change in weight; and (4) two different uses of regression residuals. A sample of undergraduate students (N=631) completed self-report measures of eating pathology, current and past weight, and teasing. Measures included the Eating Disorder Examination-Questionnaire and the Perceptions of Teasing Scale. Results indicated that components of WS, current weight and highest weight, were strongly related in the present sample. The traditional method of calculating WS was related to eating pathology, binge eating and teasing for both males and females. However, WS indices orthogonal to the highest weight did not correlate with eating pathology and teasing in both males and females; for females, WS indices orthogonal to current weight were also unrelated to eating pathology. Findings suggest that the link between WS and eating pathology is mitigated after accounting for an individual's highest weight. Future research should continue to assess the reliability and clinical utility of this construct and consider using alternative WS calculations. PMID:26643591
Effective action calculation in lattice QCD
A method (called the effective action method) devised to make analytic calculations in Quantum Chromodynamics in the region of strong coupling is presented. First, the author deals with developing the calculation of a strong coupling expansion of the generating functional for gauge systems on a lattice with arbitrary sources. An accompanying manual describes the implementation of this calculation on a computer. The next step consists of substituting the expressions for the one-link free energies for a specific gauge group in the result of the previous calculation. This process of substitution, together with the replacement of the sources by a bilinear combination of fermion fields, is described for the group SU(3). More details on the implementation of the substitution scheme on a computer can be found in the accompanying manual. From the effective action thus obtained in terms of meson fields and baryon fields the Green functions of the theory can be derived. As an illustrative application the effective potential determining the vacuum expectation value of the meson field is calculated. (Auth.)
Spectroscopic calculation code ASPECT and its application
The Code ASPECT is available for calculations of electronic levels of atoms and ions by the intermediate coupling scheme. This scheme is characterized by the simultaneous diagonalization of Hamiltonians for electronic repulsion, spin orbit interaction and crystal field effect. ASPECT performs the sorting of microstates involved in the electronic configuration in problem, calculation of matrix elements of these Hamiltonians, and diagonalization of the summed matrix. As input data, the calculation needs only parameter values of Slater integrals. ASPECT is also applied to calculate transition probabilities between the electronic levels obtained by this code. ASPECT is particularly focused on complex configurations containing f-electrons as met in Lanthanides and Actinides, which are not easily treated by an algebraic method. For convenience of users, Slater integral values for configurations fn of Lanthanides and Actinides are installed in the code so that users may select merely the atomic number. This document is composed of three parts. The first part (Chapter 1-3) describes quantum mechanical principles to calculate matrix elements of each unperturbed Hamiltonian and transition probabilities. The second part (Chapter 4) explains the structure of the code, and the last part (Chapter 5) serves as the manual for applications of this code, in which some samples are included. The third part (Chapter 6) is added as supplement for users who will improve this code. (author)
PWR and WWER thorium cycle calculation
The first step of the investigation of the thorium fuel cycle with HELIOS 1.8 is validation of the results obtained from the code for this particular type of fuel. To complete this first task we performed calculation of the benchmark announced by IAEA in 1995. The benchmark was based on a simplified PWR model of the assembly with reduced fuel composition. This calculation was focused on a comparison of the methods and basic nuclear data. After successful validation of the code we focused our work on calculating the PWR and WWER thorium fuel cycles. The thorium cycle begins after the first use of UO2 fuel in the reactor as separation of plutonium from the burnt fuel. Separated plutonium is mixed with thorium and used as a new nuclear fuel in the reactor. For our calculation we prepared two variants of the assembly - the first variant is a homogeneous distribution and the second one is a non-homogenised distribution of thorium fuel in the assembly. The model of non-homogenised distribution of Pu-Th fuel was designed by replacing selected rods of the classical UO2 assembly by Pu-Th rods. These selected rods are distributed symmetrically in the assembly. Other rods in the assembly remain the same as in the classical UO2 assembly. The calculated and compared values are criticality and fuel composition as a function of burnup (Authors)
Application of backtracking algorithm to depletion calculations
Based on the theory of linear chain method for analytical depletion calculations, the burnup matrix is decoupled by the divide and conquer strategy and the linear chain with Markov characteristic is formed. The density, activity and decay heat of every nuclide in the chain then can be calculated by analytical solutions. Every possible reaction path of the nuclide must be considered during the linear chain establishment process. To confirm the calculation precision and efficiency, the algorithm which can cover all the reaction paths and search the paths automatically according to the problem description and precision restrictions should be found. Through analysis and comparison of several kinds of searching algorithms, the backtracking algorithm was selected to establish and calculate the linear chains in searching process using depth first search (DFS) method, forming an algorithm which can solve the depletion problem adaptively and with high fidelity. The complexity of the solution space and time was analyzed by taking into account depletion process and the characteristics of the backtracking algorithm. The newly developed depletion program was coupled with Monte Carlo program MCMG-Ⅱ to calculate the benchmark burnup problem of the first core of China Experimental Fast Reactor (CEFR) and the preliminary verification and validation of the program were performed. (authors)
Reactor perturbation calculations by Monte Carlo methods
Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)
Revaluation to activation activity of reactor evaluated at the notification of dismantling submitted in 1997 was carried out in JRR-2 where decommissioning was advanced now. In the revaluation, estimation accuracy on neutron streaming at various horizontal experimental tubes was improved by applying 3 dimensional model to neutron transport calculation that had been carried out by 2 dimensional model, and calculating with TORT. As the result, excessive overestimations on horizontal experimental tubes and biological shield that had greatly contributed to total activation activity in evaluation at the notification of dismantling was revised, sum of their activation activities in the revaluation decreased to 1/18 (case after 1 year from the permanent shutdown of reactor) of evaluation at the notification of dismantling, and the structural materials that had large activation activity were changed. By the above, it was shown that introducing 3 dimensional model was effective in evaluation on activation activity of the research reactor that had a lot of various experimental tubes. Total activation activity of reactor by the revaluation depended on control rods, thermal shield plates and horizontal experimental tubes, and the value after 1 year from the permanent shutdown of reactor was 1.9x1014 Bq. (author)
LCEs for Naval Reactor Benchmark Calculations
The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (keff) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Kenny, Elise P
2015-01-01
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution ...
Calculation of electric fields in imperfect dielectrics
Filippov, A.A.
1985-07-01
No existing numerical method of calculating electric fields in kinetical form allows simultaneous consideration of bias current and conductivity current. This article suggests a modification of the method of integral equations allowing computation of the field in imperfect media. The use of the method is said to be more effective than the method of equivalent discharges. The method suggested allows computation of the field while simultaneously considering conductivity current and permeability current. It also allows determination of the frequency characteristics of high voltage apparatus. Furthermore, it can be used to calculate various transient processes if the applied voltage is expanded into a Fourier series and calculations are performed individually for each member of the series.
Calculating Young's modulus for a carbon nanotube
Alzubi, Feras; Cosby, Ronald
2008-10-01
Young's modulus for an armchair single-wall carbon nanotube was calculated using an atomistic approach and density functional theory (DFT). Atomic forces and total energies for strained carbon nanotube segments were computed using Atomistix's Virtual NanoLab (VNL) and ToolKit (ATK) software. For a maximum strain of one percent, elastic moduli were calculated using both force-strain and energy-strain data. The average values found for Young's modulus were in the range 1.2 to 3.9 TPa depending on the cross-sectional area taken for the carbon nanotube, consideration of Poisson's ratio, and the calculation method used. Three possible choices of cross-sectional area for the carbon nanotube are discussed and parameter and convergence tests for the DFT computations are described.
Thermalization Calculations in a Cylindrical Shell
An approximate, semi-analytical procedure for determining the distribution and energy spectrum of the thermal and epithermal neutron flux in a weakly neutron capturing, cylindrical shell medium is considered. The shell medium is taken to represent the moderator surrounding a fuel rod in a thermal reactor. The basis for calculating the flux in most of the moderator is the energy-dependent diffusion equation. Transient corrections to the diffusion approximation are added near the medium boundaries. The effects of adjoining media are taken into account through the boundary conditions imposed on the diffusion and transient fluxes. At the inner boundary these effects are calculated by collision probability methods. Activation fluxes are derived from the calculated neutron flux distributions and compared with measurements made in the D2O moderator surrounding a uranium metal rod in the ZEEP reactor. (author)
Automated one-loop calculations with GOSAM
We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)
Multiloop Calculations In Perturbative Quantum Field Theory
Blokland, I R
2004-01-01
This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for proble...
Are limit cycle calculations a stochastic process?
Stochasticity is typically associated with processes that produce uncertain results which, in many cases, are due to process nonlinearities and/or extreme sensitivity to initial conditions. By its name, a stochastic process should have a probabilistic or random nature; however, it is well known that many if not all, of the processes that behave stochasticly are indeed deterministic. This is the case with computer calculations to predict the stability of boiling water reactors (BWRs). This paper attempts to introduce the reader to some of the ''stochastic'' uncertainties involved in this topic, and in particular the errors introduced by the approximations used to integrate numerically the solutions in the time domain. The knowledge of this type of errors is relevant not only in BWR stability calculations but also in time domain calculations involving nonlinear or stochastic processes
Computation cluster for Monte Carlo calculations
Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)
Resolving resonances in R-matrix calculations
We present a technique to obtain detailed resonance structures from R-matrix calculations of atomic cross sections for both collisional and radiative processes. The resolving resonances (RR) method relies on the QB method of Quigley-Berrington (Quigley L, Berrington K A and Pelan J 1998 Comput. Phys. Commun. 114 225) to find the position and width of resonances directly from the reactance matrix. Then one determines the symmetry parameters of these features and generates an energy mesh whereby fully resolved cross sections are calculated with minimum computational cost. The RR method is illustrated with the calculation of the photoionization cross sections and the unified recombination rate coefficients of Fe XXIV, O VI, and Fe XVII. The RR method reduces numerical errors arising from unresolved R-matrix cross sections in the computation of synthetic bound-free opacities, thermally averaged collision strengths and recombination rate coefficients. (author)
Dose calculations for intakes of ore dust
This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these 'ores' contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another 'parent' radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures
Calculations for TRIGA ACPR with MCNPX
The purpose of the paper is to present an MCNP model for the TRIGA pulsed reactor (ACPR) operated by INR-Pitesti. MCNPX is a Fortran90 Monte Carlo radiation transport computer code that can be used in a broad range of applications for neutrons (and for a series of other particles, too) on a continuous (or discrete) energy domain. The reactor model created has been tested in different calculations, by comparing the bank control rods efficiency against experimental measurements, the prompt neutrons generation time and the effective fractions of delayed neutrons with the Safety Analysis Report parameters. Also, neutron flux in pulsed mode inside the experimental cavity have been calculated using the model and compared with results of flux measurements. Generally, the MCNPX model is used in static criticality calculations, to determine the reactor kinetics parameters and in the design of experiments. (authors)
Parallel scalability of Hartree–Fock calculations
Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree–Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods
Calculation system analysis for radiation shielding
This work consists of the computational system implementation for nuclear reactor shielding analysis. The system has as objectives to facilitate the installation of the calculation framework, problem set-up, and results analysis. Several computational programmes commonly used for cross-section preparation and radiation transport were chosen for the system. This work represents the capacity necessary for nuclear reactor and particle accelerator shielding design, to aid in nuclear experiments and in the utilization of nuclear techniques that require the radiation field calculation. The system was implemented in PC-DOS environment and consists of the necessary and sufficient programs and data for generation of the cross sections, groups constants, self-shielding factors, activation sources, for the calculation of neutron and gamma-ray fluence, dose rates, and other types of response functions. (author). 11 refs., 8 figs
Calculating the Charge of a Jet
Waalewijn, Wouter J
2012-01-01
Jet charge has played an important role in experimentally testing the Parton Model and the Standard Model, and has many potential LHC applications. The energy-weighted charge of a jet is not an infrared-safe quantity, so hadronization must be taken into account. Here we develop the formalism to calculate it, cleanly separating the nonperturbative from the perturbative physics, which we compute at one-loop order. We first study the average and width of the jet charge distribution, for which the nonperturbative input is related to (dihadron) fragmentation functions. In an alternative and novel approach, we consider the full nonperturbative jet charge distribution and calculate its evolution and jet algorithm corrections, which has a natural Monte Carlo-style implementation. Our numerical results are compared to Pythia and show reasonable agreement. This calculation can directly be extended to similar track-based observables, such as the total track momentum generated by an energetic parton.
FURNACE calculations for JET neutron diagnostics
Neutron transport calculations have been performed for the JET-torus, using the two-dimensional toroidal geometry transport code system FURNACE, to predict the response of the time integrated neutron yield monitors on the variation of the plasma conditions. Calculations have been performed for the full aperture D-shaped and circular plasmas, for DD-operation and for DT-operation. For the neutron source distribution a simple model was used based on plasma-plasma interaction. For the torus rotation symmetry around the main torus axis was assumed. Curves have been produced that give the radial plasma shift as function of the ratio of the foil activations measured. It is shown that these curves are sufficiently accurate for application in the DT-phase. For application in the DD-phase, however, the flux of neutrons backscattered from the massive torus needs to be calculated more accurately. (Auth.)
Automated one-loop calculations with GOSAM
Cullen, Gavin [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinrich, Gudrun; Reiter, Thomas [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, Gionata [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, Giovanni [New York City Univ., NY (United States). New York City College of Technology; New York City Univ., NY (United States). The Graduate School and University Center; Tramontano, Francesco [European Organization for Nuclear Research (CERN), Geneva (Switzerland)
2011-11-15
We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)
Cosmology calculations almost without general relativity
Jordan, T F
2003-01-01
The Friedmann equation can be derived for a Newtonian universe. Changing mass density to energy density gives exactly the Friedmann equation of general relativity. Accounting for work done by pressure then yields the two Einstein equations that govern the expansion of the universe. Descriptions and explanations of radiation pressure and vacuum pressure are added to complete a basic kit of cosmology tools. It provides a basis for teaching cosmology to undergraduates in a way that quickly equips them to do basic calculations. This is demonstrated with calculations involving: characteristics of the expansion for densities dominated by radiation, matter, or vacuum; the closeness of the density to the critical density; how much vacuum energy compared to matter energy is needed to make the expansion accelerate; and how little is needed to make it stop. Travel time and luninosity distance are calculated in terms of the redshift and the densities of matter and vacuum energy, using a scaled Friedmann equation with the...
Radiation transport calculations for Hiroshima and Nagasaki
The methods and data used to calculate the Hiroshima and Nagasaki prompt and delayed radiation fluences for the DS02 study represent a considerable improvement over the methods and data used for the DS86 study. During the intervening sixteen years, enhancements were made in the radiation transport codes and the nuclear data that are used to describe the migration of the neutrons and gamma rays from the bomb location through the intervening air and into, out of and off the surface of the ground. Increased computational capability permits better descriptions of the weapon source spectra and their extension to higher neutron and photon energies. The weapon leakage spectra were generated in the same neutron and gamma-ray energy structures that were used in the transport calculations. No interpolation or fitting of the leakage spectra was necessary, assuring consistent and accurate representations of the data were used in the transport calculations. (J.P.N.)
KENO-IV code benchmark calculation, (6)
A series of benchmark tests has been undertaken in JAERI in order to examine the capability of JAERI's criticality safety evaluation system consisting of the Monte Carlo calculation code KENO-IV and the newly developed multigroup constants library MGCL. The present report describes the results of a benchmark test using criticality experiments about Plutonium fuel in various shape. In all, 33 cases of experiments have been calculated for Pu(NO3)4 aqueous solution, Pu metal or PuO2-polystyrene compact in various shape (sphere, cylinder, rectangular parallelepiped). The effective multiplication factors calculated for the 33 cases distribute widely between 0.955 and 1.045 due to wide range of system variables. (author)
Benchmark calculation of CANDU end shielding system
Roh, Gyuhong; Choi, Hangbok [KAERI, Taejon (Korea, Republic of)
1998-05-01
A shielding analysis was performed for the end shield of CANDU 6 reactor. The one-dimensional discrete ordinate code ANISN with a 38-group neutron-gamma library, extracted from DLC-37D library, was used to estimate the dose rate for the natural uranium CANDU reactor. For comparison, MCNP-4B calculation was performed for the same system using continuous, discrete and multi-group libraries. The comparison has shown that the total dose rate of the ANISN calculation agrees well with that of the MCNP calculation. However, the individual dose rate (neutron and gamma) has shown opposite trends between ANISN and MCNP estimates, which may require a consistent library generation for both codes.
Use of quadratic components for buckling calculations
Dohrmann, C.R.; Segalman, D.J. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.
1996-12-31
A buckling calculation procedure based on the method of quadratic components is presented. Recently developed for simulating the motion of rotating flexible structures, the method of quadratic components is shown to be applicable to buckling problems with either conservative or nonconservative loads. For conservative loads, stability follows from the positive definiteness of the system`s stiffness matrix. For nonconservative loads, stability is determined by solving a nonsymmetric eigenvalue problem, which depends on both the stiffness and mass distribution of the system. Buckling calculations presented for a cantilevered beam are shown to compare favorably with classical results. Although the example problem is fairly simple and well-understood, the procedure can be used in conjunction with a general-purpose finite element code for buckling calculations of more complex systems.
Note about socio-economic calculations
Landex, Alex; Andersen, Jonas Lohmann Elkjær; Salling, Kim Bang
2006-01-01
This note gives a short introduction of how to make socio-economic evaluations in connection with the teaching at the Centre for Traffic and Transport (CTT). It is not a manual for making socio-economic calculations in transport infrastructure projects – in this context we refer to the guidelines...... for socio-economic calculations within the transportation area (Ministry of Traffic, 2003). The note also explains the theory of socio-economic calculations – reference is here made to ”Road Infrastructure Planning – a Decision-oriented approach” (Leleur, 2000). Socio-economic evaluations of...... infrastructure projects are common and can be made at different levels of detail depending on the type of project and the decision making phase. A common feature of the different levels of detail of the socio-economic analysis is that the planned project(s) is compared with a basic; the basic alternative or a...
Challenges in Large Scale Quantum Mechanical Calculations
Ratcliff, Laura E; Huhs, Georg; Deutsch, Thierry; Masella, Michel; Genovese, Luigi
2016-01-01
During the past decades, quantum mechanical methods have undergone an amazing transition from pioneering investigations of experts into a wide range of practical applications, made by a vast community of researchers. First principles calculations of systems containing up to a few hundred atoms have become a standard in many branches of science. The sizes of the systems which can be simulated have increased even further during recent years, and quantum-mechanical calculations of systems up to many thousands of atoms are nowadays possible. This opens up new appealing possibilities, in particular for interdisciplinary work, bridging together communities of different needs and sensibilities. In this review we will present the current status of this topic, and will also give an outlook on the vast multitude of applications, challenges and opportunities stimulated by electronic structure calculations, making this field an important working tool and bringing together researchers of many different domains.
Method for consequence calculations for severe accidents
This report was commissioned by the Swedish State Power Board. The report contains a calculation of radiation doses in the surroundings caused by a theoretical core meltdown accident at Forsmark reactor No 3. The assumption used for the calculations were a 0.06% release of iodine and cesium corresponding to a 0.1% release through the FILTRA plant at Barsebaeck. The calculations were made by means of the PLUCON4 code. Meteorological data for two years from the Forsmark meteorological tower were analysed to find representative weather situations. As typical weather pasquill D was chosen with wind speed 5 m/s, and as extreme weather, Pasquill F with wind speed 2 m/s. 23 tabs., 36 ills., 21 refs. (author)
LCEs for Naval Reactor Benchmark Calculations
W.J. Anderson
1999-07-19
The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (k{sub eff}) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository.
The new pooled cohort equations risk calculator
Preiss, David; Kristensen, Søren L
2015-01-01
total cardiovascular risk score. During development of joint guidelines released in 2013 by the American College of Cardiology (ACC) and American Heart Association (AHA), the decision was taken to develop a new risk score. This resulted in the ACC/AHA Pooled Cohort Equations Risk Calculator. This risk...... calculator, based on major National Heart, Lung, and Blood Institute-funded cohort studies, is designed to predict 10-year risk of 'hard' atherosclerotic cardiovascular disease (ASCVD) events, namely, nonfatal myocardial infarction, fatal coronary heart disease, nonfatal, or fatal stroke. Considerable...... disease and any measure of social deprivation. An early criticism of the Pooled Cohort Equations Risk Calculator has been its alleged overestimation of ASCVD risk which, if confirmed in the general population, is likely to result in statin therapy being prescribed to many individuals at lower risk than...
Multiloop calculations in perturbative quantum field theory
Blokland, Ian Richard
This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for problems in a field of particle physics with a very rich history. The third calculation provides an improved prediction for the decay of a top quark. In order to obtain this result, a large class of multiloop integrals has been solved for the first time. Top quark decay is just one member of a family of interesting physical processes to which these new results apply. Since specialized calculational techniques are essential ingredients in all three calculations, they are motivated and explained carefully in this thesis. These techniques, once automated with symbolic computational software, have recently opened avenues of solution to a wide variety of important problems in particle physics.
Willow growing - Methods of calculation and profitability
The calculation method presented here makes it possible to conduct profitability comparisons between annual and perennial crops and in addition take the planning situation into account. The method applied is a modified total step calculation. The difference between a traditional total step calculation and the modified version is the way in which payments and disbursements are taken into account over a period of several years. This is achieved by combining the present value method and the annuity method. The choice of interest rate has great bearing on the result in perennial calculations. The various components influencing the interest rate are analysed and factors relating to the establishment of the interest rate in different situations are described. The risk factor can be an important variable component of the interest rate calculation. Risk is also addressed from an approach in accordance with portfolio theory. The application of the methods sheds light on the profitability of Salix cultivation from the viewpoint of business economics, and also how different factors influence the profitability of Salix cultivation. Aspects studied are harvesting intervals, the importance of yield level, the competitiveness of Salix versus grain cultivation, the influence of income taxes on profitability etc. Methods for evaluation of activities concerning cultivation of a perennial crop are described and also involve the application of nitrogen fertilization to Salix cultivation. Studies have been performed using these methods to look into nitrogen fertilizer profitability in Salix cultivation during the first rotation period. Nitrogen fertilizer profitability has been investigated involving both production functions and cost calculations, taking the year fertilization into consideration. 72 refs., 2 figs., 52 tabs
Calculation of electron-helium scattering
Fursa, D.V.; Bray, I.
1994-11-01
We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n {<=}3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 3{sup 3} D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs.
Necessity of Exact Calculation for Transition Probability
LIU Fu-Sui; CHEN Wan-Fang
2003-01-01
This paper shows that exact calculation for transition probability can make some systems deviate fromFermi golden rule seriously. This paper also shows that the corresponding exact calculation of hopping rate inducedby phonons for deuteron in Pd-D system with the many-body electron screening, proposed by Ichimaru, can explainthe experimental fact observed in Pd-D system, and predicts that perfection and low-dimension of Pd lattice are veryimportant for the phonon-induced hopping rate enhancement in Pd-D system.
Calculation of radiative transition probabilities and lifetimes
Zemke, W. T.; Verma, K. K.; Stwalley, W. C.
1982-01-01
Procedures for calculating bound-bound and bound-continuum (free) radiative transition probabilities and radiative lifetimes are summarized. Calculations include rotational dependence and R-dependent electronic transition moments (no Franck-Condon or R-centroid approximation). Detailed comparisons of theoretical results with experimental measurements are made for bound-bound transitions in the A-X systems of LiH and Na2. New bound-free results are presented for LiH. New bound-free results and comparisons with very recent fluorescence experiments are presented for Na2.
Intrication et Imperfections dans le Calcul Quantique
Pomeransky, Andrei
2004-01-01
L'information quantique est un nouveau domaine de la physique, qui consiste à employer les systèmes quantiques dans le calcul et la transmission de l'information. Cette thèse est consacrée à l'étude de certains aspects théoriques de l'information quantique. Les ordinateurs quantiques utilisent les lois de la mécanique quantique pour exécuter des calculs d'une manière bien plus efficace que les ordinateurs existants. Les ordinateurs quantiques envisageables dans la pratique seraient influencés...
Doing mathematics convention, subject, calculation, analogy
Krieger, Martin H
2003-01-01
This book discusses some ways of doing mathematical work and the subject matter that is being worked upon and created. It argues that the conventions we adopt, the subject areas we delimit, what we can prove and calculate about the physical world, and the analogies that work for mathematicians - all depend on mathematics, what will work out and what won't. And the mathematics, as it is done, is shaped and supported, or not, by convention, subject matter, calculation, and analogy. The cases studied include the central limit theorem of statistics, the sound of the shape of a drum, the connection
Residual regularities in liquid drop mass calculations
A systematic study of correlations in the chart of nuclear masses calculated using the finite range droplet model of Moeller et al. is presented. It is shown that the differences between the calculated and measured masses have a well defined oscillatory component as function of the proton and neutron numbers, which can be removed with an appropriate fit, concentrating the error distribution on a single peak around zero. The presence of this regular residual correlations suggests that the Strutinsky method of including microscopic fluctuations in nuclear masses could be improved
Numerical calculation of second order perturbations
We numerically solve the Klein-Gordon equation at second order in cosmological perturbation theory in closed form for a single scalar field, describing the method employed in detail. We use the slow-roll version of the second order source term and argue that our method is extendable to the full equation. We consider two standard single field models and find that the results agree with previous calculations using analytic methods, where comparison is possible. Our procedure allows the evolution of second order perturbations in general and the calculation of the non-linearity parameter fNL to be examined in cases where there is no analytical solution available
Heat Exchanger Support Bracket Design Calculations
This engineering note documents the design of the heat exchanger support brackets. The heat exchanger is roughly 40 feet long, 22 inches in diameter and weighs 6750 pounds. It will be mounted on two identical support brackets that are anchored to a concrete wall. The design calculations were done for one bracket supporting the full weight of the heat exchanger, rounded up to 6800 pounds. The design follows the American Institute of Steel Construction (AISC) Manual of steel construction, Eighth edition. All calculated stresses and loads on welds were below allowables.
New tool for standardized collector performance calculations
Perers, Bengt; Kovacs, Peter; Olsson, Marcus;
2011-01-01
A new tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance for a number of representative cities in Europe...... on the basis of parameters from collector tests performed according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that intend to use it for conversion of collector model parameters derived from performance tests, into a more...
MCNP calculations in decommissioning of VVER-440
The paper briefly describes the issue of neutron fluence and radionuclide inventory determination in components of decommissioned nuclear power plants with emphasis on VVER-440 reactor type. According to induced activity calculation, it will be possible to optimize the time frame and choose the appropriate dismantling procedure during the disposal of reactor internal and external components in the decommissioning of a nuclear power plant. Prerequisite for this calculation is the collection of reactor operation data. In this paper, abilities of MCNP5 and MCNPX codes in this field are presented. (authors)
Molecular transport calculations with Wannier Functions
Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2005-01-01
We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane......-wave electronic structure method to calculate the eigenstates which are subsequently transformed into a set of localized Wannier functions (WFs). The WFs provide a highly efficient basis set which at the same time is well suited for analysis due to the chemical information contained in the WFs. The method is...
Calculation of electron-helium scattering
We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n ≤3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 33 D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs
BEGAFIP. Programming service, development and benchmark calculations
This report summarizes improvements to BEGAFIP (the Swedish equivalent to the Oak Ridge computer code ORIGEN). The improvements are: addition of a subroutine making it possible to calculate neutron sources, exchange of fission yields and branching ratios in the data library to those published by Meek and Rider in 1978. In addition, BENCHMARK-calculations have been made with BEGAFIP as well as with ORIGEN regarding the build-up of actinides for a fuel burnup of 33 MWd/kg U. The results were compared to those arrived upon from the more sophisticated code CASMO. (author)
Transmission pipeline calculations and simulations manual
Menon, E Shashi
2014-01-01
Transmission Pipeline Calculations and Simulations Manual is a valuable time- and money-saving tool to quickly pinpoint the essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. The manual's three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics in this book include pressure and temperature profile of natural gas pipelines, how to size pipelines for specified f
Numerical calculation of impurity charge state distributions
Crume, E. C.; Arnurius, D. E.
1977-09-01
The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.
Relaxation Method For Calculating Quantum Entanglement
Tucci, R R
2001-01-01
In a previous paper, we showed how entanglement of formation can be defined as a minimum of the quantum conditional mutual information (a.k.a. quantum conditional information transmission). In classical information theory, the Arimoto-Blahut method is one of the preferred methods for calculating extrema of mutual information. We present a new method akin to the Arimoto-Blahut method for calculating entanglement of formation. We also present several examples computed with a computer program called Causa Comun that implements the ideas of this paper.
A method for tokamak neutronics calculations
This paper presents a new method for neutron transport calculation in tokamak fusion reactors. The computational procedure is based on the solution of the even-parity transport equation in a toroidal geometry. The angular neutron distribution is treated by even-parity spherical harmonic expansion, while the spatial dependence is approximated by using R-function finite elements that are defined for regions of arbitrary geometric shape. In order to test the method, calculation of a simplified tokamak model is carried out. The results are compared with the results from the literature and for the same order of accuracy a reduction of the number of spatial unknowns is shown. (author)
Recursive Delay Calculation Unit for Parametric Beamformer
Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev
2006-01-01
hardware implementation. One delaycalculation unit (DCU) needs 4 parameters, and all operations can be implemented using fixed-point arithmetics. An N -channel system needs N + 1 DCUs per line - one for the distance from the transmit origin to the image point and N for the distances from the image point to...... each of the receivers. Each DCU recursively calculates the square of the distance between a transducer element and a point on the beamformed line. Then it finds the approximate square root. The distance to point i is used as an initial guess for point i + 1. Using fixed-point calculations with 36-bit...
COVE 2A Benchmarking calculations using NORIA
Six steady-state and six transient benchmarking calculations have been performed, using the finite element code NORIA, to simulate one-dimensional infiltration into Yucca Mountain. These calculations were made to support the code verification (COVE 2A) activity for the Yucca Mountain Site Characterization Project. COVE 2A evaluates the usefulness of numerical codes for analyzing the hydrology of the potential Yucca Mountain site. Numerical solutions for all cases were found to be stable. As expected, the difficulties and computer-time requirements associated with obtaining solutions increased with infiltration rate. 10 refs., 128 figs., 5 tabs
Calculation of tolerances in accelerating structures
A method is suggested for calculating tolerances for similar elements of an accelerating-focusing channel of a charged particle linac the particle dynamics in which is described by linear or non-linear equations. Tolerances for each drift tube of the accelerating structure with modified variable-phase focusing are determined with respect to tolerances for the output parameters of an accelerated beam at preset lengths of drift tubes. The tolerances obtained in supposition of equal effects, equal tolerances and those accounting for the cost of fabrication and assembling of the elements of the structure are compared. The algorithm suggested can also be used for calculating tolerances in structures with hard focusing
Radiological Dose Calculations for Fusion Facilities
Michael L. Abbott; Lee C. Cadwallader; David A. Petti
2003-04-01
This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.
Calculated Electron Fluxes at Airplane Altitudes
Schaefer, R K; Stanev, T
1993-01-01
A precision measurement of atmospheric electron fluxes has been performed on a Japanese commercial airliner (Enomoto, {\\it et al.}, 1991). We have performed a monte carlo calculation of the cosmic ray secondary electron fluxes expected in this experiment. The monte carlo uses the hadronic portion of our neutrino flux cascade program combined with the electromagnetic cascade portion of the CERN library program GEANT. Our results give good agreement with the data, provided we boost the overall normalization of the primary cosmic ray flux by 12\\% over the normalization used in the neutrino flux calculation.
Tank Z-361 dose rate calculations
Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses
Validation of BGCore System for Burnup Calculations
BGCore is a software package for comprehensive computer simulation of nuclear reactor systems and their fuel cycles. BGCore interfaces the Monte Carlo particles transport code MCNP4C with a SARAF module - an independently developed code for calculating fuel composition during irradiation and spent fuel emissions following discharge. In BGCore system, depletion coupling methodology is based on the multi-group approach that significantly reduces computation time and allows tracking of large number of nuclides during calculations. The objective of this study is validation of the BGCore system against well established and verified, state of the art computer codes for thermal and fast spectrum lattices
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
Ammonia synthesis from first principles calculations
Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis; Logadottir, Ashildur; Carlsson, A.; Dahl, Søren; Christensen, Claus H.; Nørskov, Jens Kehlet
2005-01-01
. When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the [ink between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods in......The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...
Program Calculates Power Demands Of Electronic Designs
Cox, Brian
1995-01-01
CURRENT computer program calculates power requirements of electronic designs. For given design, CURRENT reads in applicable parts-list file and file containing current required for each part. Program also calculates power required for circuit at supply potentials of 5.5, 5.0, and 4.5 volts. Written by use of AWK utility for Sun4-series computers running SunOS 4.x and IBM PC-series and compatible computers running MS-DOS. Sun version of program (NPO-19590). PC version of program (NPO-19111).
Precise calculations of the deuteron quadrupole moment
Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-06-01
Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.
Improving on calculation of martensitic phenomenological theory
无
2003-01-01
Exemplified by the martensitic transformation from DO3 to 18R in Cu-14.2Al-4.3Ni alloy and according to the principle that invariant-habit-plane can be obtained by self-accommodation between variants with twin relationships, and on the basis of displacement vector, volume fractions of two variants with twin relationships in martensitic transformation, habit-plane indexes, and orientation relationships between martensite and austenite after phase transformation can be calculated. Because no additional rotation matrixes are needed to be considered and mirror symmetric operations are used, the calculation process is simple and the results are accurate.
Microscopic optical model calculations and uncertainty estimates
Full text: The optical model is a basic ingredient of almost all reaction calculations. Therefore, a great effort has been devoted to its microscopic determination. Among the various attempts the nuclear matter approach with its various facets works surprisingly well even at low energies about 20 MeV. In the present contribution a comparison of elastic differential and integral cross sections and polarization data with theoretical results is given for structure materials. Possible procedures for assigning uncertainties to calculated observables are discussed. (author)
无
2002-01-01
The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.
A method to calculate Fresnel lenses
In solar engineering, in contrast to image optics, Fresnel lenses are intended for securing the required concentrations of solar radiation and its distribution over a receiver's surface. It is also important to secure a high use coefficient of the concentrated flux. In particular, this defines the features of calculation of Fresnel lenses: it is necessary to take into account inaccuracies in fabrication of Fresnel lenses and solar radiation redistribution by means of selecting the respective parameters of Fresnel lens belts. In the present work, we examine the procedure for the calculating geometrical parameters of Fresnel lenses on a flat base by considering the mentioned requirements. A corresponding software for calculating the geometrical parameters and concentrating characteristics of the Fresnel lenses is developed, and examples of calculation are given. For a constant refractive index of Fresnel lens material, it is shown that the Fresnel lens can secure a concentration of about 1000, but in this case the optical efficiency of the Fresnel lens will not be higher than 70%. The procedure that has been developed may be the basic one for determining the parameters and concentrating characteristics of Fresnel lenses by considering refractive index variance. (author)
Conductance calculations with a wavelet basis set
Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel
2003-01-01
. The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...
Complex Kohn calculations on an overset grid
Greenman, Loren; Lucchese, Robert; McCurdy, C. William
2016-05-01
An implentation of the overset grid method for complex Kohn scattering calculations is presented, along with static exchange calculations of electron-molecule scattering for small molecules including methane. The overset grid method uses multiple numerical grids, for instance Finite Element Method - Discrete Variable Representation (FEM-DVR) grids, expanded radially around multiple centers (corresponding to the individual atoms in each molecule as well as the center-of-mass of the molecule). The use of this flexible grid allows the complex angular dependence of the wavefunctions near the atomic centers to be well-described, but also allows scattering wavefunctions that oscillate rapidly at large distances to be accurately represented. Additionally, due to the use of multiple grids (and also grid shells), the method is easily parallelizable. The method has been implemented in ePolyscat, a multipurpose suite of programs for general molecular scattering calculations. It is interfaced with a number of quantum chemistry programs (including MolPro, Gaussian, GAMESS, and Columbus), from which it can read molecular orbitals and wavefunctions obtained using standard computational chemistry methods. The preliminary static exchange calculations serve as a test of the applicability.
Theory and calculation of the atomic photoeffect
Sabbatucci, Lorenzo; Salvat, Francesc
2016-04-01
The so-called elementary theory of the atomic photoeffect is presented in a form that is suited for practical numerical calculation of subshell cross sections and angular distributions of emitted photoelectrons. Atomic states are described within the independent-electron approximation, with bound and free one-electron orbitals that are solutions of the Dirac equation with the Dirac-Hartree-Fock-Slater self-consistent potential of the ground-state configuration. Detailed derivations are given of subshell cross sections for both excitation to discrete bound levels and ionization. In the case of ionization, the cross section differential in the direction of the photoelectron is obtained for partially polarized photons, with the polarization specified by means of the Stokes parameters. The theoretical formulas have been implemented in a computer program named PHOTACS that calculates tables of excitation and ionization cross sections for any element and subshell. Numerical calculations are practicable for excitations to final states with the principal quantum number up to about 20 and for ionization by photons with energy up to about 2 MeV. Elaborate extrapolation schemes for determining the subshell cross section for excitation to bound levels with larger principal quantum numbers and for ionization by photons with higher energies are described. The effect of the finite width of atomic energy levels is accounted for by convolving the calculated subshell cross-section with a Lorentzian profile.
Harmonic balance calculations by using matrices
Fergusson, N. J.; Leung, A. Y. T.
1995-05-01
The computation of the total and tangential stiffness matrices associated with the harmonic balance method for non-linear ordinary differential equations requires some complicated calculations involving double sums. Some matrix results are presented here that ease the associated book-keeping and allow the matrices to be programmed easily.
Normal mode calculations of trigonal selenium
Hansen, Flemming Yssing; McMurry, H. L.
1980-01-01
The phonon dispersion relations for trigonal selenium have been calculated on the basis of a short range potential field model. Electrostatic long range forces have not been included. The force field is defined in terms of symmetrized coordinates which reflect partly the symmetry of the space group...
Hawking temperature and higher order tunnelling calculations
Chatterjee, Bhramar
2009-01-01
Hawking radiation has recently been explained in terms of tunnelling across the black hole horizon in a Hamilton-Jacobi framework. Higher order calculations using both usual and non-singular coordinates are found to change the tunnelling amplitude, but this change is not a simple alteration of the Hawking temperature.
On the calculation of Mossbauer isomer shift
Filatov, Michael
2007-01-01
A quantum chemical computational scheme for the calculation of isomer shift in Mossbauer spectroscopy is suggested. Within the described scheme, the isomer shift is treated as a derivative of the total electronic energy with respect to the radius of a finite nucleus. The explicit use of a finite nuc
Paper-and-pencil cosmological calculator
Pilipenko, Sergey V
2013-01-01
The paper-and-pencil calculator is a cosmological nomogram which allows to find relations between redshift, distance, age of the Universe, physical and angular sizes, luminosity and apparent magnitude for the standard cosmological model with parameters from the Planck mission.
Block Tridiagonal Matrices in Electronic Structure Calculations
Petersen, Dan Erik
This thesis focuses on some of the numerical aspects of the treatment of the electronic structure problem, in particular that of determining the ground state electronic density for the non–equilibrium Green’s function formulation of two–probe systems and the calculation of transmission in the Lan...
Calculating uncertainties of safeguards indices: error propagation
Statistical methods play an important role in making references about a MUF, shipper-receiver difference, operator-inspector difference, and other safeguards indices. This session considers the sources and types of measurement errors and treats a specific example to illustrate how the variance of MUF is calculated for the model plant
A New Iterative Method to Calculate [pi
Dion, Peter; Ho, Anthony
2012-01-01
For at least 2000 years people have been trying to calculate the value of [pi], the ratio of the circumference to the diameter of a circle. People know that [pi] is an irrational number; its decimal representation goes on forever. Early methods were geometric, involving the use of inscribed and circumscribed polygons of a circle. However, real…