WorldWideScience

Sample records for 2-deoxy-2-f-18fluoro-d-glucose-positron emission tomography

  1. A case of dedifferentiated liposarcoma showing a biphasic pattern on 2-deoxy-2-F18- fluoro-D-glucose positron emission tomography/ computed tomography

    Manabu Hoshi

    2013-04-01

    Full Text Available Integrated 2-deoxy-2-F18-fluoro-D-glucose positron emission tomography combined with computed tomography (FDG-PET/CT has been used in the field of soft tissue sarcoma. We report an 81-year-old man with dedifferentiated liposarcoma in the left thigh, which was composed of well-differentiated liposarcoma and pleomorphic malignant fibrous histiocytoma. As well as other radiological modalities, FDG-PET was able to demonstrate a biphasic signal pattern composed of well-differentiated liposarcoma and dedifferentiated area, being consistent with the histological grade of malignancy.

  2. Emission tomography: Physical aspects

    Two different approaches have been followed: i/ tomography by single gamma-photon counting (SPC), using either conventional scintillation cameras or specially designed detector arrays. These systems use radionuclides which are readily available commercially (99 mTc, 131 I, 201 Tl); ii/ positron-emission tomography (ACD) which relies on the simultaneous and colinear emission of two 511 keV gamma photons, permitting a higher detection efficiency and effective 'electronic collimation'. These factors give good spatial resolution and quantitative precision. The principal positron-emitting isotopes 11 C, 13 N, 150 O can also serve as tracers in a very wide range of biological processes. (orig./VJ)

  3. Positron emission tomography

    The aim of this project is to provide a simple summary of new trends in positron emission tomography and its basic physical principles. It provides thereby compendious introduction of the trends of the present development in diagnostics using PET systems. A review of available literature was performed. (author)

  4. Positron emission tomography.

    Hoffman, E J; Phelps, M E

    1979-01-01

    Conventional nuclear imaging techniques utilizing lead collimation rely on radioactive tracers with little role in human physiology. The principles of imaging based on coincidence detection of the annihilation radiation produced in positron decay indicate that this mode of detection is uniquely suited for use in emission computed tomography. The only gamma-ray-emitting isotopes of carbon, nitrogen, and oxygen are positron emitters, which yield energies too high for conventional imaging techniques. Thus development of positron emitters in nuclear medicine imaging would make possible the use of a new class of physiologically active, positron-emitting radiopharmaceuticals. The application of these principles is described in the use of a physiologically active compound labeled with a positron emitter and positron-emission computed tomography to measure the local cerebral metabolic rate in humans. PMID:440173

  5. Positron-emission tomography

    Positron-emission tomography (PET) combines early biochemical assessment of pathology achieved by nuclear medicine with the precise localization achieved by computerized image reconstruction. In this technique a chemical compound with the desired biological activity is labeled with a radioactive isotope that decays by emitting a positron, or positive electron. With suitable interpretation PET images can provide a noninvasive, regional assessment of many biochemical processes that are essential to the functioning of the organ that is being visualized

  6. Tomography by positrons emission

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are (11C), of the oxygen (15O), of the nitrogen (13N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11C, 15O, and 13N, other isotopes that can be obtained of a generator as the 68Ga and 82Rb

  7. Positron emission tomography

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  8. Positron Emission Tomography (PET)

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  9. Positron emission tomography

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon (11C), oxygen (15O), and nitrogen (13N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  10. Positon Emission Tomography sampling

    This work deals with the study of data acquisition in Positon Emission Tomography (PET). Its aim is to optimize the quantity of data measured compared with the maximum spatial resolution it is possible to reach on a reconstructed image. One of the contribution in this field is to determine the efficiency of rectangular detectors compared with the square ones. In the second part of this thesis is studied the performances of a PET scanner for the small animal imagery. The originality of this scanner is the use of liquid xenon as scintillating medium and the ability to measure the interaction depth. A Monte Carlo simulation chain of this scanner has been carried out, compared and validated with the experimental results. (O.M.)

  11. Emission computed tomography

    Although there are many common aspects to x-ray transmission and radionuclide emission (ECT) computerized tomography, there are added difficulties and a number of particular factors which form the basis of ECT. The relationship between the physical factors, system design, methodologic approach and assumptions of ECT is discussed. The instrumentation design and application strategies in ECT at this time are diverse and in a rapid stage of development. The approaches are divided into two major categories of Single Photon Counting (SPC) employing scanner and camera concepts with radionuclides of 99/sup m/Tc, 201Tl, 123I etc., and Annihilation Coincidence Detection (ACD) of positron-emitting radionuclides. Six systems in the former and ten systems in the latter category, with examples of typical studies, illustrate the different approaches

  12. NMF on positron emission tomography

    Bödvarsson, Bjarni; Hansen, Lars Kai; Svarer, Claus;

    2007-01-01

    In positron emission tomography, kinetic modelling of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling in the arm or as shown in (Liptrot, M, et al., 2004) by non-invasive K-means clustering....... We propose another method to estimate time-activity curves (TAC) extracted directly from dynamic positron emission tomography (PET) scans by non-negative matrix factorization (NMF). Since the scaling of the basis curves is lost in the NMF the estimated TAC is scaled by a vector alpha which is...

  13. Single Photon Emission Computed Tomography (SPECT)

    ... Tools & Resources Stroke More Single Photon Emission Computed Tomography (SPECT) Updated:Sep 11,2015 What is a ... Heart Attack Myocardial Perfusion Imaging (MPI) Positron Emission Tomography (PET) Radionuclide Ventriculography, Radionuclide Angiography, MUGA Scan Heart ...

  14. Emission tomography system

    In the present invention a positron emission tomographic system is provided in which the random photon coincidence background is determined for the lines of sight along which the positron annihiliations are located. The circuitry is arranged so that this background may be subtracted almost simultaneously from the total photon coincidence measurement, or may be stored in a temporary memory for latter subtraction. In this system, an appropriate coincidence resolution time is selected and coincidences of photons detected at 180 degree opposed detectors within the time resolution are recorded as the overall coincidence count. This total count includes a source(true events) count plus a background(random coincidences) count. The background count is determined by measuring photons detected at these same sets of photon detectors and employing the same coincidence resolution period, where the signals from one set of detectors are passed through a delay longer in time than this resolution period

  15. Positron emission tomography. Basic principles

    The basic principles of positron emission tomography (PET) technique are reviewed. lt allows to obtain functional images from gamma rays produced by annihilation of a positron, a positive beta particle. This paper analyzes positron emitters production in a cyclotron, its general mechanisms, and the various detection systems. The most important clinical applications are also mentioned, related to oncological uses of fluor-l8-deoxyglucose

  16. Positron emission tomography/computed tomography.

    Townsend, David W

    2008-05-01

    Accurate anatomical localization of functional abnormalities obtained with the use of positron emission tomography (PET) is known to be problematic. Although tracers such as (18)F-fluorodeoxyglucose ((18)F-FDG) visualize certain normal anatomical structures, the spatial resolution is generally inadequate for accurate anatomic localization of pathology. Combining PET with a high-resolution anatomical imaging modality such as computed tomography (CT) can resolve the localization issue as long as the images from the two modalities are accurately coregistered. However, software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. Acquiring both CT and PET images in the same scanner obviates the need for software registration and routinely provides accurately aligned images of anatomy and function in a single scan. A CT scanner positioned in line with a PET scanner and with a common patient couch and operating console has provided a practical solution to anatomical and functional image registration. Axial translation of the couch between the 2 modalities enables both CT and PET data to be acquired during a single imaging session. In addition, the CT images can be used to generate essentially noiseless attenuation correction factors for the PET emission data. By minimizing patient movement between the CT and PET scans and accounting for the axial separation of the two modalities, accurately registered anatomical and functional images can be obtained. Since the introduction of the first PET/CT prototype more than 6 years ago, numerous patients with cancer have been scanned on commercial PET/CT devices worldwide. The commercial designs feature multidetector spiral CT and high-performance PET components. Experience has demonstrated an increased level of accuracy and confidence in the

  17. Instrumentation in positron emission tomography

    Positron emission tomography (PET) is a three-dimensional medical imaging technique that noninvasively measures the concentration of radiopharmaceuticals in the body that are labeled with positron emitters. With the proper compounds, PET can be used to measure metabolism, blood flow, or other physiological values in vivo. The technique is based on the physics of positron annihilation and detection and the mathematical formulations developed for x-ray computed tomography. Modern PET systems can provide three-dimensional images of the brain, the heart, and other internal organs with resolutions on the order of 4 to 6 mm. With the selectivity provided by a choice of injected compounds, PET has the power to provide unique diagnostic information that is not available with any other imaging modality. This is the first five reports on the nature and uses of PET that have been prepared for the American Medical Association's Council on Scientific Affairs by an authoritative panel

  18. Single photon emission computerized tomography

    In this thesis two single-photon emission tomographic techniques are presented: (a) longitudinal tomography with a rotating slanting-hole collimator, and (b) transversal tomography with a rotating gamma camera. These methods overcome the disadvantages of conventional scintigraphy. Both detection systems and the image construction methods are explained and comparisons with conventional scintigraphy are drawn. One chapter is dedicated to the determination of system parameters like spatial resolution, contrast, detector uniformity, and size of the object, by phantom studies. In separate chapters the results are presented of detection of tumors and metastases in the liver and the liver hilus; skeletal diseases; various pathological aberrations of the brain; and myocardial perfusion. The possible use of these two ect's for other organs and body areas is discussed in the last chapter. (Auth.)

  19. Fundamentals of positron emission tomography

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The methods is based on: (1) Radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. (orig.)

  20. [Fundamentals of positron emission tomography].

    Ostertag, H

    1989-07-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The method is based on: (1) radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. PMID:2667029

  1. Single-photon emission tomography.

    Goffin, Karolien; van Laere, Koen

    2016-01-01

    Single-photon emission computed tomography (SPECT) is a functional nuclear imaging technique that allows visualization and quantification of different in vivo physiologic and pathologic features of brain neurobiology. It has been used for many years in diagnosis of several neurologic and psychiatric disorders. In this chapter, we discuss the current state-of-the-art of SPECT imaging of brain perfusion and dopamine transporter (DAT) imaging. Brain perfusion SPECT imaging plays an important role in the localization of the seizure onset zone in patients with refractory epilepsy. In cerebrovascular disease, it can be useful in determining the cerebrovascular reserve. After traumatic brain injury, SPECT has shown perfusion abnormalities despite normal morphology. In the context of organ donation, the diagnosis of brain death can be made with high accuracy. In neurodegeneration, while amyloid or (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) are the nuclear diagnostic tools of preference for early and differential diagnosis of dementia, perfusion SPECT imaging can be useful, albeit with slightly lower accuracy. SPECT imaging of the dopamine transporter system is widely available in Europe and Asia, but since recently also in the USA, and has been accepted as an important diagnostic tool in the early and differential diagnosis of parkinsonism in patients with unclear clinical features. The combination of perfusion SPECT (or FDG-PET) and DAT imaging provides differential diagnosis between idiopathic Parkinson's disease, Parkinson-plus syndromes, dementia with Lewy bodies, and essential tremor. PMID:27432669

  2. Positron emission tomography and migraine

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT2 serotonin receptors can be studied in migraine patients with PET

  3. Positron emission tomography wrist detector

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  4. Positron emission tomography basic sciences

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  5. Positron emission tomography in epilepsy

    Positron emission tomography (PET) was performed with the 18F-fluoro-deoxy-glucose method on 29 patients with epilepsy (generalized epilepsy, 4; partial epilepsy, 24; undetermined type, 1). The subjects were restricted to patients with epilepsy without focal abnormality on X-CT. All the patients with generalized epilepsy showed a normal pattern on PET. Fourteen out of the 24 patients with partial epilepsy and the 1 with epilepsy of undermined type showed focal hypometabolism on PET. The hypometabolic zone was localized in areas including the temporal cortex in 11 patients, frontal in 2 and thalamus in 1. The location of hypometabolic zone and that of interictal paroxysmal activity on EEG were well correlated in most patients. The patients with poorly-controlled seizure showed a higher incidence of PET abnormality (12 out of 13) than those with well-controlled seizures (2 out of 11). The incidence of abnormality on PET and MRI and the location of both abnormality were not necessarily coincident. These results indicated that the PET examination in epilepsy provides valuable information about the location of epileptic focus, and that the findings on PET in patients with partial epilepsy may be one of the good indicators about the intractability of partial epilepsy, and that PET and MRI provide complementary information in the diagnosis of epilepsy. (author)

  6. Emission tomography of the brain

    Emission tomography (ET) is a method for visualization of radionuclide distribution in transaxial sections of a body region, especially the brain. Both single-photon emitting and positron emitting radionuclides may be utilized. Conventional radiopharmaceuticals are used for single-photon ET: it shows three-dimensional distribution of radionuclides in normal and pathological brain structures and, when fast scanning techniques are used, permits the quantitative measurement of flow in small brain regions without interference from overprojection of differently perfused tissues. Coincidence detection of short-lived positron emitting radionuclides has the advantage of good attenuation correction so that quantitative determination of the concentration of the radionuclide in small tissue volumes is possible. With these short-lived, usually cyclotron-produced radionuclides, dynamic and metabolic processes may be followed (e.g. regional oxygen consumption with 15O2, regional blood volume with 11CO, C15O or 68Ga, regional perfusion with 13NH3, C15O2or77Kr) and the consumption and distribution of labelled organic compounds may be quantified (e.g. local metabolic rate of glucose with 18F-deoxyglucose or glucose distribution with 11C-methylglucose). The clinical application of these techniques may render new insight into pathophysiological mechanisms and the therapeutic management of diseases of the central nervous system. (author)

  7. Emission Tomography in Embolic Lung Disease

    Donaldson, Robert M.; Khan, Omar; Bennett, J. Graeme; Ell, Peter J

    1982-01-01

    Ventilation-perfusion lung scans and emission tomography studies were performed in 84 patients with suspected embolic lung disease. Concordant data were obtained in 72 patients (57 positive, 15 negative); results were discordant in ten patients and indeterminate in two.

  8. Scintillators for positron emission tomography

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  9. Positron emission tomography/computerized tomography in lung cancer

    Sahiner, Ilgin; Vural, Gulin Ucmak

    2014-01-01

    Positron emission tomography (PET) using 2-(18F)-flouro-2-deoxy-D-glucose (FDG) has emerged as a useful tool in the clinical work-up of lung cancer. This review article provides an overview of applications of PET in diagnosis, staging, treatment response evaluation, radiotherapy planning, recurrence assessment and prognostication of lung cancer.

  10. Incidental colorectal polyps in positron emission tomography

    Fluorodeoxy glucose positron emission tomography/computed tomography (FDG PET/CT) is increasingly being used for diagnosing various malignancies and surveillance of cancer recurrence, staging and screening in high-risk individuals. Due to its high sensitivity in picking up small dysplastic lesions, incidental lesions are detected frequently. We present two patients who underwent PET CT as part of cancer screening and were incidentally detected with adenomatous colonic polyps. Colonoscopy and biopsy confirmed the diagnosis

  11. Positron emission tomography (PET) for cholangiocarcinoma

    Breitenstein, S; Apestegui, C.; Clavien, P.-A.

    2008-01-01

    The combination of positron emission tomography (PET) with computed tomography (PET-CT) provides simultaneous metabolic and anatomic information on tumors in the same imaging session. Sensitivity of PET/PET-CT is higher for intrahepatic (>90%) than for extrahepatic cholangiocarcinoma (CCA) (about 60%). The detection rate of distant metastasis is 100%. PET, and particularly PET-CT, improves the results and impacts on the oncological management in CCA compared with other imaging modalities. The...

  12. Positron emission tomography imaging of gene expression

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  13. Advanced instrumentation for Positron Emission Tomography

    This paper summarizes the physical processes and medical science goals that underly modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost. 71 refs., 3 figs., 3 tabs

  14. Advanced Instrumentation for Positron Emission Tomography [PET

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  15. 4D image reconstruction for emission tomography

    An overview of the theory of 4D image reconstruction for emission tomography is given along with a review of the current state of the art, covering both positron emission tomography and single photon emission computed tomography (SPECT). By viewing 4D image reconstruction as a matter of either linear or non-linear parameter estimation for a set of spatiotemporal functions chosen to approximately represent the radiotracer distribution, the areas of so-called ‘fully 4D’ image reconstruction and ‘direct kinetic parameter estimation’ are unified within a common framework. Many choices of linear and non-linear parameterization of these functions are considered (including the important case where the parameters have direct biological meaning), along with a review of the algorithms which are able to estimate these often non-linear parameters from emission tomography data. The other crucial components to image reconstruction (the objective function, the system model and the raw data format) are also covered, but in less detail due to the relatively straightforward extension from their corresponding components in conventional 3D image reconstruction. The key unifying concept is that maximum likelihood or maximum a posteriori (MAP) estimation of either linear or non-linear model parameters can be achieved in image space after carrying out a conventional expectation maximization (EM) update of the dynamic image series, using a Kullback-Leibler distance metric (comparing the modeled image values with the EM image values), to optimize the desired parameters. For MAP, an image-space penalty for regularization purposes is required. The benefits of 4D and direct reconstruction reported in the literature are reviewed, and furthermore demonstrated with simple simulation examples. It is clear that the future of reconstructing dynamic or functional emission tomography images, which often exhibit high levels of spatially correlated noise, should ideally exploit these 4D

  16. 21 CFR 892.1200 - Emission computed tomography system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed tomography system. (a) Identification. An emission computed tomography system is a device intended to detect...

  17. Longitudinal emission tomography of thyroid and heart

    In this thesis three devices are discussed for longitudinal emission tomography, one of which has been developed for myocardial imaging and the other two for thyroid imaging. Longitudinal emission tomography is a technique which enables three-dimensional reconstruction of the radioactivity distribution within an organ from two-dimensional distributions on a detector surface. In Ch. 1 a general survey is given of the clinical environment in which the devices will be used. Ch. 2 discusses a well-known technique for myocardial imaging: seven-pinhole tomography. In Ch. 3 this technique is applied to imaging of the thyroid. Three different reconstruction methods have been applied to the data collected with the system (from phantoms as well as from patients) and the results have been evaluated. Ch. 4 discusses simulation studies which were carried out in order to investigate the potentialities of a time-coded aperture (TCA) system designed for thyroid tomography. In Ch. 5 a prototype is tested of the time coded aperture in a clinical environment. The last chapter presents a comparison between the (thyroid) 7P collimator and the TCA device. (Auth.)

  18. Positron emission tomography tracers for imaging angiogenesis

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or αvβ3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging αvβ3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. (orig.)

  19. A wavelet phase filter for emission tomography

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2π). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods

  20. Facial bone scanning by emission tomography

    A single-photon emission tomographic system was used to study the normal anatomy of the facial bones and the usefulness of emission computed tomography in evaluating diseases of the bones of the face. The examination was performed following routine bone scintigraphy and took an additional 20 to 30 min. The anatomy of the facial bones was well defined, with clear separation of deep and superficial structuress. Early experience with tumor, infection, bone grafts, and postirradiation osteonecrosis indicates that useful added diagnostic information can be obtained by this method

  1. Development of novel emission tomography system

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  2. Single photon emission computed tomography-guided Cerenkov luminescence tomography

    Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie

    2012-07-01

    Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.

  3. Diagnostic value for extrahepatic metastases of hepatocellular carcinoma in positron emission tomography/computed tomography scan

    2012-01-01

    AIM: To evaluated the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) scan in diagnosis of hepatocellular carcinoma (HCC) and extrahepatic metastases.

  4. Positron Emission Tomography: Its 65 years

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  5. Positron Emission Tomography Imaging of Pancreatic Cancer

    Saravanan Kokila Krishnamoorthy

    2014-03-01

    Full Text Available Positron emission tomography (PET using 18F-fluorodeoxyglucose (FDG is increasingly used for the staging of solidmalignancies, including lung and esophagus. However, controversy still exists in relation to the application of PET inpancreatic cancer. The authors review seven studies (Abstracts #183, #189, #190, #254, #357, #375, #378 presented at the2014 ASCO Gastrointestinal Cancers Symposium and discuss on the role of PET in this disease. As the limitations of theResponse Evaluation Criteria In Solid Tumors (RECIST continue to become evident, FDG-PET may identify changes in themetabolic activity within pancreatic adenocarcinoma, and can provide both diagnostic and prognostic information.

  6. Positron emission tomography of the lung

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  7. [Basic principles of 18F-fluorodeoxyglucose positron emission tomography].

    Standke, R

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. PMID:12506765

  8. A controlled study of positron-emission-tomography and positron-emission-tomography/computed tomography in differential diagnosis of solitary pulmonary nodules-report of 60 cases

    DING Qi-yong; HUA Yan-qing; ZHANG Guo-zhen; ZHAO Jun; GUAN Yi-hui; GE Xiao-jun; MAO Ding-biao; ZUO Chuan-tao

    2005-01-01

    @@ The differential diagnosis of solitary pulmonary nodules (SPNs) remains a challenge. It is acknowledged that combining positron-emission tomography (PET) and computed tomography (CT) offers the most reliable noninvasive method for the diagnosis of SPNs.

  9. Beyond FDG positron emission tomography imaging

    At present, positron emission tomography/computed tomography (PET/CT) is one of the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although ((18)F) fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a 'specific' radiotracer for imaging malignant disease. Highly 'tumor-specific' PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. C-11 Methionine PET has been used to better define the radiotherapy field both for CNS tumors and head and neck (H and N) tumors to localize the most metabolic area inside a brain mass to guide the biopsy or in early evaluation of radiotherapy effect on H and N cancer. Flurodihydroxyphenylalanine (FDOPA) is an aromatic amino acid labelled with 18F. Besides it has also been introduced into oncological practice, in particular for malignant tumors of neural crest origin

  10. Positron emission tomography of the heart

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease

  11. Positron emission tomography in urological cancer

    In staging cancer of the urinary bladder, the kidneys and the prostate and of testicular cancer there is a need for detecting tumor involvement of the lymph nodes to avoid surgical exploration. Positron emission tomography (PET) using fluorodeoxyglucose (FDG) can detect tumorous lymph nodes (sensitivity: 70%, specificity: 85%) which is helpful for several patients. In carcinoma of the prostate, other radiotracers than FDG (e.g. C-11-choline) might be more sensitive to detect tumorous lymph nodes. Up to now no diagnostical benefit of PET in germ cell tumors could be demonstrated in the published small series. In principle FDG-PET is useful in diagnosis of recurrence. In germ cell cancer FDG-PET seems to identify effectively persistent vital tumor tissue after chemotherapy. A multicenter study was initiated to demonstrate the potential of FDG-PET in a sufficient number of patients with germ cell tumor. (orig.)

  12. Compact conscious animal positron emission tomography scanner

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  13. Bayesian image reconstruction: Application to emission tomography

    Nunez, J.; Llacer, J.

    1989-02-01

    In this paper we propose a Maximum a Posteriori (MAP) method of image reconstruction in the Bayesian framework for the Poisson noise case. We use entropy to define the prior probability and likelihood to define the conditional probability. The method uses sharpness parameters which can be theoretically computed or adjusted, allowing us to obtain MAP reconstructions without the problem of the grey'' reconstructions associated with the pre Bayesian reconstructions. We have developed several ways to solve the reconstruction problem and propose a new iterative algorithm which is stable, maintains positivity and converges to feasible images faster than the Maximum Likelihood Estimate method. We have successfully applied the new method to the case of Emission Tomography, both with simulated and real data. 41 refs., 4 figs., 1 tab.

  14. Positron emission tomography and basal ganglia functions

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  15. Positron emission tomography of the heart

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  16. Motion correction in thoracic positron emission tomography

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  17. 77 FR 8262 - Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    2012-02-14

    ... Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice... entitled ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The draft... Applications for Positron Emission Tomography (PET) drugs.'' The draft guidance summarizes the IND process...

  18. Reconstruction Algorithms for Positron Emission Tomography and Single Photon Emission Computed Tomography and their Numerical Implementation

    Fokas, A S; Marinakis, V

    2004-01-01

    The modern imaging techniques of Positron Emission Tomography and of Single Photon Emission Computed Tomography are not only two of the most important tools for studying the functional characteristics of the brain, but they now also play a vital role in several areas of clinical medicine, including neurology, oncology and cardiology. The basic mathematical problems associated with these techniques are the construction of the inverse of the Radon transform and of the inverse of the so called attenuated Radon transform respectively. We first show that, by employing mathematical techniques developed in the theory of nonlinear integrable equations, it is possible to obtain analytic formulas for these two inverse transforms. We then present algorithms for the numerical implementation of these analytic formulas, based on approximating the given data in terms of cubic splines. Several numerical tests are presented which suggest that our algorithms are capable of producing accurate reconstruction for realistic phanto...

  19. Simultaneous emission and transmission scanning in positron emission tomography

    Examination by PET (positron emission tomography) scanning, following the dosage of 2-deoxy-18F fluoro-D-glucose (FDG), is positively utilized for the diagnosis of cancers, rather than for the purpose of studies. This is because the examination by FDG-PET (PET scanning following the dosage of FDG) ensures higher efficiency in discrimination of cancers, than conventional CT and PET. The method of whole body scanning by PET scanning following the dosage of FDG is effectively utilized not only for discrimination cancers, but also for determining the degree of malignancy of tumors and evaluating the methods of treatment of cancers. In conventional methods for examining the degree of malignancy of tumors and evaluating the methods of cancer treatment, it is necessary to correct for the gamma-ray attenuation, which requires a longer time for examination, increasing the physical and psychological pains of the patients. We have installed the simultaneous emission and transmission scanning capability into the HEADTOME-V of the Shimadzu SET-2000W Series positron emission tomographic scanning instruments, to establish an instrument that permits FDG-PET whole body scanning in actual clinical fields, with minimized physical and psychological pains of patients concerned, yet ensuring an outstandingly high examination efficiency. This report also presents some data obtained by this newly developed instrument and those obtained in practical applications. (author)

  20. Positron emission tomography alone, positron emission tomography-computed tomography and computed tomography in diagnosing recurrent cervical carcinoma: a systematic review and meta-analysis

    Xiao, Yi; Wei, Jia; Zhang, Yicheng; Xiong, Weining

    2014-01-01

    Introduction The aim of the study was to assess systematically the accuracies of positron emission tomography (PET), PET/computed tomography (CT), and CT in diagnosing recurrent cervical cancer. Material and methods We searched for articles published from January 1980 to June 2013 using the following inclusion criteria: articles were reported in English; the use of PET, interpreted with or without the use of CT; use of CT to detect recurrent cervical cancer; and histopathologic analysis and/o...

  1. Resistive plate chambers in positron emission tomography

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  2. Pulmonary studies using positron emission tomography

    The detailed investigation of regional differences in lung function at a local level began when suitable γ-ray emitting isotopes and focused external radiation detectors (especially the Anger γ-camera) became available. A major recent advance has been the development of positron emission tomography (PET), which provides a powerful combination of highly accurate tomographic reconstruction of radioisotope concentration with a potentially unlimited list of biological compounds to be labelled with the positron emitting isotopes of oxygen, carbon and fluorine. Early studies using PET focused on the inhalation of 11CO (or C15O) and 19Ne gases and the intravenous injection of 13N in saline and H215O for the measurement of relatively simple aspects of regional lung function, such as tissue, blood and gas volumes, blood flow, ventilation and ventilation/perfusion (V'A/Q'). More recent work has been directed towards the more challenging areas of regional endothelial permeability, carbohydrate utilization, enzyme and receptor binding assays, and in vivo pharmacokinetics. The short physical half-lives of the isotopes (17 s to 2 h) and the noninvasive nature of PET allows serial measurements to be made on patients (within the constraints of permitted radiation doses) to assess the effect of physiological and therapeutic interventions. (au) 80 refs

  3. Utility of positron emission tomography in schwannomatosis.

    Lieber, Bryan; Han, ByoungJun; Allen, Jeffrey; Fatterpekar, Girish; Agarwal, Nitin; Kazemi, Noojan; Zagzag, David

    2016-08-01

    Schwannomatosis is characterized by multiple non-intradermal schwannomas with patients often presenting with a painful mass in their extremities. In this syndrome malignant transformation of schwannomas is rare in spite of their large size at presentation. Non-invasive measures of assessing the biological behavior of plexiform neurofibromas in neurofibromatosis type 1 such as positron emission tomography (PET), CT scanning and MRI are well characterized but little information has been published on the use of PET imaging in schwannomatosis. We report a unique clinical presentation portraying the use of PET imaging in schwannomatosis. A 27-year-old woman presented with multiple, rapidly growing, large and painful schwannomas confirmed to be related to a constitutional mutation in the SMARCB1 complex. Whole body PET/MRI revealed numerous PET-avid tumors suggestive of malignant peripheral nerve sheath tumors. Surgery was performed on multiple tumors and none of them had histologic evidence of malignant transformation. Overall, PET imaging may not be a reliable predictor of malignant transformation in schwannomatosis, tempering enthusiasm for surgical interventions for tumors not producing significant clinical signs or symptoms. PMID:26960263

  4. Physiologic signal detection in positron emission tomography

    Positron emission tomography enables the noninvasive quantification in vivo of three-dimensional radionuclide distributions throughout the human body. Estimation of neurotransmitter and receptor function is performed through the application of tracer kinetic models and non-linear multiple regression parameter estimation methods. These quantitative estimates are often limited by the interaction between imaging characteristics of the PET scanner and the three-dimensional radionuclide distribution within the organ of interest. In order to assess the potential of PET to detect subtle changes in the function of the central nervous system, a three-dimensional PET simulation procedure based upon a digital brain phantom and tomograph detector response functions has been performed. Radiopharmaceutical kinetics for individual structures of the brain phantom (cortex, white matter, basal ganglia, etc.) have been assigned based upon in vitro autoradiography of human postmortem tissue and animal biodistribution studies. The recovery of the PET signals which originate from anatomic structures of interest has been evaluated for studies of the benzodiazepine, muscarinic, opiate, and GABA systems of the human brain. Typical results and the limitations of signal detection in PET neurotransmitter and receptor studies are discussed

  5. Amorphous silicon detectors in positron emission tomography

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε2τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  6. Positron emission tomography: radioisotope and radiopharmaceutical production

    A Centre for Positron Emission Tomography (PET) has been operational within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre (A and RMC) in Melbourne for seven years. PET is a non-invasive imaging technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic facility consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities, radiopharmacy and a whole body PET scanner. A strong radiolabelling development program, including the production of 15O-oxygen, 15O-carbon monoxide, 15O-carbon dioxide, 15O-water, 13N-ammonia, 18F-FDG, 18F-FMISO, 11C-SCH23390 and 11C-flumazenil has been pursued to support an ambitious clinical and research program in neurology, oncology, cardiology and psychiatry. Copyright (1999) Australasian Physical and Engineering Sciences in Medicine and the College of Biomedical Engineers

  7. Amorphous silicon detectors in positron emission tomography

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  8. Using GPU for Seismic Emission Tomography processing

    Dricker, I. G.; Cooke, A. J.; Friberg, P. A.; Hellman, S. B.

    2010-12-01

    Seismic Emission Tomography (SET) is an emerging technique which is rapidly gaining popularity in both earthquake seismology and the oil and gas industry. Stacking seismic records from multiple channels of a surface seismic array with moveout correction dramatically increases the signal-to-noise ratio and allows monitoring of fine-scale microseismicity. Using SET to detect active seismic locations within the study volume requires time-shifting and stacking the trace for each seismic recording channel and node in the 3D Earth grid. Algorithmically, this implies five nested loops over space coordinates, channel lists and time. Even the most powerful PC CPUs proved impractical for this task; only rough models could be built in a reasonable period of time. Fortunately the SET computational kernel is easy to parallelize, because computations for each grid node and recording channel are independent, so we could achieve significant (of order x100) speedups on Nvidia GPUs with OpenCL. In this case study we show how progressive optimization, from Matlab to C, and on to OpenCL, improved performance. We discuss various problems encountered, give practical guidance on refactoring, and include benchmarks on several GPUs.

  9. Patient radiation protection in positron emission tomography

    Patient radiation protection in Positron Emission Tomography (PET) is closely related to the correct execution of studies: proper scanner performance, and optimization of both image quality and patient dose. We describe the quality control tests considered as essential: scanner stability, spatial resolution, sensitivity and tomographic uniformity. Knowledge of the dose received by the critical organ and the effective dose for each radiopharmaceutical allows the establishment of strategies for dose optimization. Although a great variety of PET tracers exist, we review the dose produced by F-FDG, the most widely used tracer, and those used in our PET Center O-Water, N-Ammonia, C-Methionine, C-Choline, F-Choline, F-Dopa, and F-FHBG. Reduction of administered activity to the patient is the direct way to reduce the dose. Thus, PET acquisition in the 3D mode, with higher sensitivity, is a determining factor. In order to reduce the dose to different organs, efforts should be directed to the critical organs, mainly the urinary bladder wall. Finally, correct patient preparation improves, PET image quality, due to an optimum tracer uptake, which optimizes the dose to different organs. (Author) 25 refs

  10. Myocardial energy metabolism by positron emission tomography

    Positron emission tomography (PET) permits quantitative measurement of myocardial blood flow and metabolism in vivo in the cardiovascular areas. F-18 fluorodeoxyglucose (FDG) and C-11 palmitate have been used for energy metabolism in the cardiac PET. In fasting condition, beta-oxydation of fatty acids is the major energy source in the normal myocardium, whereas glucose metabolism is enhanced in the ischemic myocardium. No metabolic substrate is used in the necrotic myocardium. Thus, quantitative measurement of substrate utilization enables differentiation of ischemic from normal or infarcted myocardium and precise assessment of tissue abnormalities in vivo. FDG is administrated in fasting condition in our institute in order to delineate ischemic myocardium as a hot spot with suppression of the FDG uptake in the normal myocardium. However, when compared to the postprandial condition, FDG uptake may be enhanced even in the infarcted tissue, and thus, may possibly overestimate the tissue viability. A certain quantification of FDG uptake may be warranted for an accurate evaluation of FDG uptake. We have been measured FDG uptake index as a fraction of injected dose (% dose/100g tissue). This index correlated well with myocardial metabolic rate of glucose by Phelps method in the fasting condition. Dynamic PET study after C-11 palmitate injection has been used for estimate of fatty acid utilization. The first component of the washout from the myocardium is considered as rate of beta-oxydation. However, the washout of this tracer seems to be strikingly different between the fasting and postprandial conditions. (J.P.N.)

  11. Single Photon Emission Tomography Imaging in Parkinsonian Disorders: A Review

    Acton, Paul D.; P. David Mozley

    2000-01-01

    Parkinsonian symptoms are associated with a number of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Pathological evidence has shown clearly that these disorders are associated with a loss of neurons, particularly in the nigrostriatal dopaminergic pathway. Positron emission tomography (PET) and single photon emission tomography (SPECT) now are able to visualise and quantify changes in cerebral blood flow, glucose metabolis...

  12. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in evaluation of residual intramuscular myxoma

    Intramuscular myxoma (IM) is a rare benign neoplasm. In a patient diagnosed with IM of left thigh, we report the utility of a postoperative fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography scan in assessing the efficacy of surgical excision

  13. Positron emission tomography/computerized tomography imaging of multiple focus of neurolymphomatosis

    Neurolymphomatosis is defined as infiltration of the peripheral nervous system by malignant lymphocytes in the presence of lymphoma. In this case, we described multiple neurol involvement and findings of 18F-fluorodeoxyglucose positron emission tomography/computerized tomography in a 35-year-old female diagnosed with B-cell lymphoma

  14. Recurrent ovarian endodermal sinus tumor: demonstration by computed tomography, magnetic resonance imaging, and positron emission tomography

    We report a case of recurrent endodermal sinus tumor of the ovary that was identified and/or clearly depicted by computed tomography, magnetic resonance imaging, and positron emission tomography. The potential roles of various imaging modalities in the detection of recurrent endodermal sinus tumor are discussed. (orig.)

  15. Diffuse nesidioblastosis diagnosed on a Ga-68 DOTATATE positron emission tomography/computerized tomography.

    Arun, Sasikumar; Rai Mittal, Bhagwant; Shukla, Jaya; Bhattacharya, Anish; Kumar, Praveen

    2013-07-01

    The authors describe a 50 days old pre-term infant with persistent hyperinsulinemic hypoglycemia of infancy in whom Ga-68 DOTATATE positron emission tomography/computerized tomography scan showed diffusely increased tracer uptake in the entire pancreas with no abnormal tracer uptake anywhere else in the body, suggestive of a diffuse variant of nesidioblastosis. PMID:24250024

  16. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle Westergren;

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...

  17. Shielding design for positron emission tomography facility

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  18. Positron emission tomography and cerebral metabolism

    The association of new methods of labelling with short lived radioisotopes and of visualisation 'in vivo' of these labelled molecules by emission tomography, provide the possibility of studying brain metabolism at different levels. Two examples will illustrate the possibilities of this methodology. Cerebral metabolism of methionine-11C in phenylketonutic patients: The cerebral uptake of methionine was measured in 24 PKU children aged 1 to 40 months on a low protein diet. Ten of them were examined twice at intervals of several months. Stopping the diet for one week leads to an increase in blood phenylalanine and to a significant important decrease in brain uptake of labelled methionine. Futhermore, for children under treatment having a low phenylalanine blood concentration, brain uptake of methionine decreases with age between 1 and 40 months. These results suggest that the treatment of this disease should be started as soon as possible after birth. Cerebral metabolism of psychoactive drugs: The study of the brain distribution and kinetics of psychoactive drugs may help in understanding their mode of action. Chlorpromazine- 11C was administered i.v. to schyzophrenic patients not previously treated with neuroleptics. In all patients the brain uptake of the drug was high and rapid, and was localized mainly in the grey matter, probably in proportion to the blood flow. Non-specific binding of this drug to brain proteins prevented visualization of specific binding to dopaminergic or αnor-adrenergic receptors. Specific receptor binding of benzodiazepines was however visualized in the brain of baboons after injection of 11C-flunitrazepam (specific activity = 600 Ci/μmole) and subsequent displacement of this radioactive ligand by a pharmacological dose of Lorazepam

  19. Value of positron emission tomography and computer tomography (PET/CT) for urologic malignancies

    Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning. (authors)

  20. [Value of positron emission tomography and computer tomography (PET/CT) for urologic malignancies].

    Boujelbene, N; Prior, J O; Boubaker, A; Azria, D; Schaffer, M; Gez, E; Jichlinski, P; Meuwly, J-Y; Mirimanoff, R O; Ozsahin, M; Zouhair, A

    2011-07-01

    Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning. PMID:21507695

  1. Human cerebral circulation. Positron emission tomography studies

    We reviewed the literature on human cerebral circulation and oxygen metabolism, as measured by positron emission tomography (PET), with respect to normal values and of regulation of cerebral circulation. A multicenter study in Japan showed that between-center variations in cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) values were not considerably larger than the corresponding within-center variations. Overall mean±SD values in cerebral cortical regions of normal human subjects were as follows: CBF=44.4±6.5 ml/100 ml/min; CBV=3.8±0.7 ml/100 ml; OEF=0.44±0.06; CMRO2=3.3±0.5 ml/100 ml/min (11 PET centers, 70 subjects). Intrinsic regulation of cerebral circulation involves several factors. Autoregulation maintains CBF in response to changes in cerebral perfusion pressure; chemical factors such as PaCO2 affect cerebral vascular tone and alter CBF; changes in neural activity cause changes in cerebral energy metabolism and CBF; neurogenic control of CBF occurs by sympathetic innervation. Regional differences in vascular response to changes in PaCO2 have been reported, indicating regional differences in cerebral vascular tone. Relations between CBF and CBV during changes in PaCO2 and during changes in neural activity were in good agreement with Poiseuille's law. The mechanisms of vascular response to neural activation and deactivation were independent on those of responses to PaCO2 changes. CBV in a brain region is the sum of three components: arterial, capillary and venous blood volumes. It has been reported that the arterial blood volume fraction is approximately 30% in humans and that changes in human CBV during changes in PaCO2 are caused by changes in arterial blood volume without changes in venous blood volume. These findings should be considered in future studies of the pathophysiology of cerebrovascular diseases. (author) 136 refs

  2. Positron emission tomography and migraine. Tomographie par emission de positons et migraine

    Chabriat, H. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1992-04-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT{sub 2} serotonin receptors can be studied in migraine patients with PET.

  3. Monte Carlo Simulation Of Emission Tomography And Other Medical Imaging Techniques

    Harrison, Robert L.

    2010-01-01

    An introduction to Monte Carlo simulation of emission tomography. This paper reviews the history and principles of Monte Carlo simulation, then applies these principles to emission tomography using the public domain simulation package SimSET (a Simulation System for Emission Tomography) as an example. Finally, the paper discusses how the methods are modified for X-ray computed tomography and radiotherapy simulations.

  4. Introducing Positron Emission Tomography (PET) in Clinical Practice

    Janevik-Ivanovska, Emilija; Avmedovski, Fatmir; Yamamoto, Mayumi; Bhonsle, Uday

    2009-01-01

    Positron emission tomography (PET) is a major diagnostic imaging technique predominantly used in determining the presence and severity of cancers, neurological conditions, and cardiovascular diseases. It is currently the most effective way to check for cancer recurrences and it offers significant advantages over other forms of imaging such as computed tomography (CT) or magnetic resonance imaging (MRI) scans in detecting disease in many patients. In the USA, an estimated 1 129 900 clinical PE...

  5. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle W;

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...... study investigates the positive (PPV) and negative predictive value (NPV) of PET-CT in stage I disease and the clinical impact of the scan results in all disease stages....

  6. Combined single photon emission computerized tomography and conventional computerized tomography: Clinical value for the shoulder surgeons?

    Hirschmann, Michael T.; Rahel Schmid; Ranju Dhawan; Jiri Skarvan; Helmut Rasch; Friederich, Niklaus F.; Roger Emery

    2011-01-01

    With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that...

  7. Combined single photon emission computerized tomography and conventional computerized tomography: Clinical value for the shoulder surgeons?

    Michael T Hirschmann

    2011-01-01

    Full Text Available With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics.

  8. Gliomatosis cerebri mimicking encephalitis evaluated using fluorine-18 fluorodeoxyglucose: Positron emission tomography/computed tomography

    Gliomatosis cerebri (GC) is a rare condition in which an infiltrative glial neoplasm spreads through the brain with preservation of the underlying structure. F-18 fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has an important role in demonstrating the appropriate metabolism and differentiating pathologies mimicking GC on CT and magnetic resonance imaging. We describe imaging findings of FDG PET/CT in GC in a 9-year-old male child mimicking encephalitis

  9. Fluorodeoxyglucose positron emission tomography-computed tomography findings in a case of xanthogranulomatous pyelonephritis

    Joshi, Prathamesh; Lele, Vikram; Shah, Hardik

    2013-01-01

    Xanthogranulomatous pyelonephritis (XGNP) is an uncommon condition characterized by chronic suppurative renal inflammation that leads to progressive parenchymal destruction. This condition can clinically present as recurrent urinary tract infections, flank pain, hematuria, and occasionally sepsis, and weight loss. This condition is usually associated with obstructing renal calculus. We present 18-fluorodeoxyglucose positron emission tomography-computed tomography (18-FDG PET/CT) findings in a...

  10. Perspectives for positron emission tomography with RPCs

    Full text: The basis of PET (Positron Emission Tomography) consists on the administration of a radioactive isotope attached to a tracer that permits to reveal its molecular pathways in a human body. A 3-D Complete-Body-Scan is desired in order to minimize the radiation dose to the patient and to increase the sensitivity of the axial field of view (FOV). A major candidate for gamma pair detection in 3-D Complete- Body-Scan are the RPCs (Resistive Plate Counters). They consist in a longitudinal microstrip grid 1.5 mm thick, spaced at 1 mm. The grid is placed between a large electric resistive glass anode and an aluminum cathode. The gap, around 300 m, is filled with a special gas and is polarized at around 6 kV. Every microstrip is equipped with high-speed preamplifier at both ends, allowing time of flight measurements. The RPC are solely tracking devices enjoying a large density of detection units. By construction they are able to provide an extremely large transverse resolution, the collecting leads being some 2.5 mm spaced. The longitudinal resolution is less sensitive, depending on the speed of the time of flight electronics. At this moment we estimate a 20 mm resolution. The RPCs present two main features: large longitudinal dimension and large transversal resolution which made them ideal for complete-body-scan devices. These peculiar features are the keys of a RPCs tomographic device. The evaluation of RPCs for 3-D Complete-Body-Scan followed two steps, the simulation of data acquisition and the image reconstruction. We choose the detecting base unit like a RPC, 2 meters long and 0.5 meters wide. According to previous assumptions this plate has a transverse resolution of 256 detection units and a longitudinal resolution of 100. (The transversal step is around 2 mm and the longitudinal step about 20 mm). Several base units are assembled to form different detecting structures. Two plates form an open detection structure like a sandwich. Four and six plates are

  11. Physiopathology of ischemic strokes: the input of positron emission tomography

    The tomography by positrons emissions has brought essential physiological and pathological knowledge relative to cerebral vascular accidents in the acute phase, because it is possible to measure the cerebral blood flow, the oxygen extraction rate and the local oxygen consumption. (N.C.)

  12. Advance of molecular imaging with positron emission tomography

    Molecular imaging with positron emission tomography (PET) is an important field of molecular imaging. This article summarizes the fundamental of PET molecular imaging technique and its application in protein function, gene expression and gene therapy, receptor imaging, and blood-flow infusion and metabolism imaging. (authors)

  13. Amyloid-β positron emission tomography imaging probes

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt;

    2013-01-01

    number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate on their...

  14. Recent developments in positron emission tomography (PET) instrumentation

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs

  15. MR imaging and positron emission tomography of cortical heterotopia

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using 18F-2-deoxyglucose

  16. 3D fast reconstruction in positron emission tomography

    The issue of long reconstruction times in positron emission tomography (PET) has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstructions in a few minutes per frame : on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementation of computationally less intensive algorithms

  17. Single photon emission computed tomography (SPECT): Fundamentals, technique, clinical applications

    The fundamentals of SPECT (Single Photon Emission Computed Tomography) are presented, and the requirements on rotating SPECT systems are listed. SPECT with a rotating gamma camera has found general acceptance as an imaging method in nuclear medicine. Compared with conventional, two-dimensional imaging techniques, SPECT offers higher contrast and three-dimensional transversal, sagittal, coronal or oblique sectional images. (orig./MG)

  18. Use of positron emission tomography in colorectal cancer

    The value of PET (Positron Emission Tomography) in colorectal cancer is presented. PET is a novel technique that uses F-18-FDG (fluorodeoxiglucose) to assess glucose metabolism by whole body imaging. It has been demonstrated that malignant cells have both increase of glucose uptake and utilization. In colorectal cancer, PET is indicated for staging, assess recurrence, liver metastasis and treatment follow-up. PET is more sensitive and specific than CT (Computed Tomography) and is cost effective. In 30% of cases PET may change patient management, avoiding unnecessary procedures (au)

  19. Single photon emission computed tomography (SPECT)

    The functional state of organs can be imaged by their accumulation of single photon emitter like 99mTc (γ-ray energy 140 keV), 201Tl (73 keV) and 201I (159 keV) with computed tomography. The emitted γ-ray is collimated to reach the NaI (Tl) detector for specifying its direction, which is called as the scintillation camera or gamma camera. The camera rotating around the patient gives the SPECT images. The NaI (Tl) detector is suitable for converting 60-300 keV γ-ray to fluorescence through the photoelectric effect. Photomultiplier receiving the fluorescence outputs X/Y signals for the emitting position and Z signal (energy) separately, giving imaging data. 3D images can be re-constructed by either method of the filtered back projection or maximum likelihood-expectation maximization. For quantitative reconstruction, correction of γ-ray absorption in water, of scattering and of collimator opening is necessary. Recently, semiconductor-detectors like CdZnTe and CdTe are being utilized in place of NaI for better resolution, which will reduce the size of the camera. Further, a camera with coincidence circuit for positron has appeared and will be applicable for both SPECT and PET. Compton camera having 2-step detectors without collimator is now under development. (N.I.)

  20. Diagnostic utility of fluorodeoxyglucose positron emission tomography/computed tomography in pyrexia of unknown origin

    The present study was undertaken to evaluate the diagnostic utility of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in patients presenting as pyrexia of unknown origin (PUO). Forty-seven patients (31 males and 16 females; mean age of 42.7 ± 19.96 years) presenting as PUO to the Department of Medicine at the All India Institute of Medical Sciences, New Delhi over a period of 2 years underwent F-18 FDG PET/CT. PET ⁄ CT was considered supportive when its results correlated with the final definitive diagnosis. Final diagnosis was made on the basis of combined evaluation of history, clinical findings, investigations, and response to treatment. Thirty-five PET/CT studies (74.5%) were positive. However, only 18 (38.3%) were supportive of the final diagnosis. In three patients (6.4%), PET/CT was considered diagnostic as none of the other investigations including contrast-enhanced computed tomography of chest and abdomen, and directed tissue sampling could lead to the final diagnosis. All these three patients were diagnosed as aortoarteritis. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography is an important emerging modality in the workup of PUO. It supported the final diagnosis in 38% of our patients and was diagnostic in 6.4% of patients. Thus, PET/CT should only be considered as second-line investigation for the diagnostic evaluation of PUO; especially in suspected noninfectious inflammatory disorders

  1. 18F-2-Deoxy-2-Fluoro-D-Glucose Positron Emission Tomography: Computed Tomography for Preoperative Staging in Gastric Cancer Patients

    Youn, Seok Hwa; Seo, Kyung Won; Lee, Sang Ho; Shin, Yeon Myung; Yoon, Ki Young

    2012-01-01

    Purpose The use of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography-computed tomography as a routine preoperative modality is increasing for gastric cancer despite controversy with its usefulness in preoperative staging. In this study we aimed to determine the usefulness of preoperative positron emission tomography-computed tomography scans for staging of gastric cancer. Materials and Methods We retrospectively analyzed 396 patients' positron emission tomography-computed tomography...

  2. Positron emission tomography of FDG in schizophrenia

    The use of the Donner dynamic positron emission tomograph to study fluorodeoxyglucose labelled 18F uptake in the brain of six patients with schizophrenia is reported. The glucose metabolic rate and the local cerebral metabolic rate were calculated. The dynamic brain uptake data and the blood input function were used to calculate rate constants by an iterative least squares fitting program for all regions of interest chosen in the brain. Although the number of patients was small, differences in k3 were statistically significant in several brain regions compared with normal controls

  3. Perspectives for positron emission tomography with RPCs

    In this study, we address the feasibility and main properties of a positron emission tomograph (PET) based on RPCs. The concept, making use of the converter-plate principle, takes advantage of the intrinsic layered structure of RPCs and its simple and economic construction. The extremely good time and position resolutions of RPCs also allow the TOF-PET imaging technique to be considered. Monte-Carlo simulations, supported by experimental data, are presented and the main advantages and drawbacks for applications of potential interest are discussed

  4. Flip-flop phenomenon in systemic sclerosis on fluorodeoxyglucose positron emission tomography/computed tomography

    Systemic sclerosis (SSc) is a rare autoimmune disease, which may affect multiple organ systems. Fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) can demonstrate the degree and anatomical extent of involvement in the entire body and coexisting malignancies in connective tissue diseases. We present a case of SSc with an increased 18F-FDG uptake in the cutaneous and subcutaneous tissues even higher than the neighboring skeletal muscles (“flip-flop phenomenon,” that is, an increased 18F-FDG uptake in the skin but a decreased 18F-FDG uptake in the skeletal muscles)

  5. Fluorodeoxyglucose positron emission tomography-computed tomography findings in a case of xanthogranulomatous pyelonephritis

    Xanthogranulomatous pyelonephritis (XGNP) is an uncommon condition characterized by chronic suppurative renal inflammation that leads to progressive parenchymal destruction. This condition can clinically present as recurrent urinary tract infections, flank pain, hematuria, and occasionally sepsis, and weight loss. This condition is usually associated with obstructing renal calculus. We present 18-fluorodeoxyglucose positron emission tomography-computed tomography (18-FDG PET/CT) findings in an elderly male suffering from pyrexia and weight loss and suspected urinary tract infection. PET/CT findings in this case lead to diagnosis of XGNP. This diagnosis should be kept in mind while evaluating similar symptoms and PET/CT scan findings. (author)

  6. Positron emission tomography/computed tomography for optimized colon cancer staging and follow up

    Engelmann, Bodil Elisabeth; Loft, Annika; Kjær, Andreas;

    2014-01-01

    OBJECTIVES: Optimal management of colon cancer (CC) requires detailed assessment of extent of disease. This study prospectively investigates the diagnostic accuracy of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (PET/CT) for staging and detection of recurrence....../CT diagnosed all relapses detected during the first 2 years. High preoperative TIMP-1 levels were associated with significant hazards toward risk of recurrence and shorter overall survival. CONCLUSIONS: This study indicates PET/CT as a valuable tool for staging and follow up in CC. TIMP-1 provided prognostic...

  7. A number of clinical applications of single photon emission tomography

    Since a number of years, emission computed tomography has enabled the reconstruction of three dimensional images of structures and processes in the body from projection images, obtained from patients with the aid of X-rays or gamma radiation. A number of these reconstructed images are presented which illustrate the clinical applications of this technique. The principles, procedure and instrumentation are also outlined. (C.F.)

  8. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2010-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based r...

  9. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA)

    SakalihasanN, Natzi; Van Damme, Hendrik; Gomez, P.; RIGO, PIERRE; Lapiere, C. M.; Nusgens, Betty; Limet, Raymond

    2002-01-01

    Background: aneurysmal disease is associated with all inflammatory Cell infiltrate and enzymatic degradation of the vessel wall. Aim of the study: to detect increased metabolic activity in abdominal aortic aneurysms (AAA) by means of positron emission tomography (PET-imaging). Study design: twenty-six patients with AAA underwent PET-imaging Results: in tell patients, PET-imaging revealed increased, fluoro-deoxy-glucose (18-FDG) uptake at the level of the aneurysm. Patients with positive PET-i...

  10. The introduction of positron emission tomography in Australia

    Positron Emission Tomography (PET) is a relatively new medical imaging modality based on images of the distribution of positron emitting radioisotopes in the human body. A PET scan can non-invasively provide quantitative information on the in vivo function performance of an organ, part thereof, or a bodily process. Two PET centres currently being established in Melbourne and in Sydney are introduced. 18 refs., 1 tab., 5 figs

  11. Clinical results of quantitative single photon emission tomography

    In addition to the traditional skills of pattern recognition in the interpretation of images, it is necessary to add quantitative techniques, particularly in difficult problems, to determine normal and abnormal variation. Single photon emission tomography, SPET, overcomes the problems of tissue background and superficial tissue overlying a suspect lesion. Nevertheless, the goal of absolute quantitation is important in the solution to several clinical problems. The use and success of quantitative SPET in the liver, heart, adrenal and pituitary glands are reviewed. (author)

  12. A Case of Corticobasal Degeneration Studied with Positron Emission Tomography

    Nagasawa, H; T. Imamura; Nomura, H; Itoh, M; Ido, T.

    1993-01-01

    We measured cerebral blood flow, oxygen metabolism, glucose utilization, and dopamine metabolism in the brain of a patient with corticobasal degeneration using positron emission tomography (PET). The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Brain imagings of glucose and dopamine metabolism can demonstrate greater abnormalities in the cerebral cortex and in the striatum contralateral to the more affected side than those o...

  13. Monitoring rotating gamma camera performance for emission tomography

    The procedure for assessing and correcting the uniformity of the gamma camera image in emission tomography is briefly outlined. The gantry condition is another parameter affecting the tomographic image. Centre of rotation calibration data are presented to illustrate the gantry checking procedure and to show how faults can be diagnosed from the data. A calibration procedure for checking the alignment of the X, Y image axis with the axis of rotation is also briefly described. (U.K.)

  14. Nonhuman Primate Positron Emission Tomography Neuroimaging in Drug Abuse Research

    Howell, Leonard Lee; Murnane, Kevin Sean

    2011-01-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also charac...

  15. ENVISION, developing Positron Emission Tomography for particle therapy

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Positron Emission Tomography (PET) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  16. Single-Photon Emission Computed Tomography in Neurotherapeutics

    Devous, Michael D.

    2005-01-01

    Summary: The measurement of regional cerebral blood flow (rCBF) by single-photon emission computed tomography (SPECT) is a powerful clinical and research tool. There are several clinical applications now documented, a substantial number under active investigation, and a larger number yet to be studied. Standards regarding patient imaging environment and image presentation are becoming established. This article reviews key aspects of SPECT functional brain imaging in clinical practice, with a ...

  17. Emission tomography: quantitative aspects in metabolic and physiopathologic studies

    This thesis presents instrumental and data processing studies developped in emission tomography in man, using gamma and positron emitting tracers. High contrast visualisation of volume distribution of tracers in the organs, kinetic studies and measurements of radioactive concentration or of other clinical parameters necessitate a detailed analysis of all physical factors limiting the accuracy of the measure; therefore, development of adapted imaging devices and data processing techniques, together with models describing correctly the phenomena under study are to be carried out. Thus, in single photon (gamma) emission tomography an image reconstruction strategy is elaborated, based on an analytical model for the ill-posed problem including the attenuation effect. In positron emission tomography, the time-of-flight information combined with the reconstruction technique is used in the design of a first prototype imaging device which performance is presented and evaluated in a clinical environment. Moreover, a priori or a posteriori techniques correcting for Compton diffusion events, limited statistics and limited resolutions, are proposed and discussed for the improvement of regional measurement accuracy, in metabolic and physiopathologic studies

  18. A Prototype for Passive Gamma Emission Tomography

    Combined efforts of multiple stakeholders of the IAEA Support Programme task JNT 1510: ''Prototype of passive gamma emission tomograph (PGET)'', resulted in the design, manufacturing and extensive testing of an advanced verification tool for partial defect testing on light water reactor spent fuel. The PGET has now reached a proven capability of detecting a single missing or substituted pin inside a BWR and VVER-440 fuel assemblies. The task started in 2004 and it is planned to be finished this year. The PGET head consists of two banks of 104 CdTe detectors each with integrated data acquisition electronics. The CdTe detectors are embedded in tungsten collimators which can be rotated around the fuel element using an integrated stepping motor mounted on a rotating table. All components are packed inside a toroid watertight enclosure. Control, data acquisition and image reconstruction analysis is fully computerized and automated. The design of the system is transportable and suitable for safeguards verifications in spent fuel ponds anywhere. Four test campaigns have been conducted. In 2009, the first test in Ringhals NPP failed collecting data but demonstrated suitability of the PGET for field deployments. Subsequent tests on fuel with increasing complexity were all successful (Ispra, Italy (2012), Olkiluoto, Finland (2013) and Loviisa, Finland (2014)). The paper will present the PGET design, results obtained from the test campaigns and mention also drawbacks that were experienced in the project. The paper also describes further tests which would allow evaluating the capabilities and limitations of the method and the algorithm used. Currently, the main technical shortcoming is long acquisition time, due to serial control and readout of detectors. With redesigned electronics it can be expected that the system would be able to verify a VVER-440 assembly in five minutes, which meets the IAEA user requirements. (author)

  19. Positron emission tomography with gamma camera in coincidence mode

    Positron emission tomography using F-18 FDG has been estbalished in clinical diagnostics with first indications especially in oncology. To install a conventional PET tomography (dedicated PET) is financially costly and restricted to PET examinations only. Increasing demand for PET diagnostics on one hand and restricted financial resources in the health system on the other hand led industry to develop SPECT cameras to be operated in coincidence mode (camera PET) in order to offer nuclear medicine physicians cost-effective devices for PET diagnostic. At the same time camera PET is inferior to conventional PET regarding sensitivity and detection-efficiency for 511 keV photons. Does camera-PET offer a reliable alternative to conventional PET? The first larger comparative studies are now available, so a first apraisal about the technical clinical performance of camera-PET can be done. (orig.)

  20. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  1. Positron Emission Tomography (PET) and breast cancer in clinical practice

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005

  2. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of primary pulmonary angiosarcomas

    Angiosarcoma is a malignant vascular tumor that originates from the mesenchymal cells which have undergone angioblastic differentiation. Pulmonary angiosarcomas are invariably (>90%) metastatic tumors form primaries of the skin, bone, liver, breast, or heart. Primary pulmonary angiosarcomas are exceedingly rare, with just about 20 cases being reported in the literature. We report an additional case with a brief review of the literature of a primary pulmonary angiosarcoma in a 26-year-old lady who presented with intractable hemoptysis. In addition, we highlight the potential of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography as an important diagnostic tool in the evaluation of this tumor and thus contribute to the existing sparse literature on this fascinating yet devastating disease

  3. Position emission tomography with or without computed tomography in the primary staging of Hodgkin's lymphoma

    Hutchings, Martin; Loft, Annika; Hansen, Mads;

    2006-01-01

    BACKGROUND AND OBJECTIVES: In order to receive the most appropriate therapy, patients with Hodgkin's lymphoma (HL) must be accurately stratified into different prognostic staging groups. Computed tomography (CT) plays a pivotal role in the conventional staging. The aim of the present study was to...... investigate the value of positron emission tomography using 2-[18F]fluoro-2-deoxy-D-glucose (FDG-PET) and combined FDG-PET/CT for the staging of HL patients, and the impact on the choice of treatment. DESIGN AND METHODS: Ninety-nine consecutive, prospectively included patients had FDG-PET and CT in their...... staging work-up. Sixty-one of the 99 patients had combined FDG-PET/CT. A standard of reference for each nodal region and organ was determined using all available information including scan results, histology and a minimum of one year's clinical follow-up data. The lack of a satisfactory diagnostic gold...

  4. Positron emission tomography/computed tomography in the diagnosis of inflammatory processes

    The hybrid imaging modality known as PET/CT is being continuously introduced as a method of choice in the diagnostics of numerous inflammatory processes. The dual - computer tomography/positron emission tomography -investigation has advantages over other imaging modalities, mainly because of its ability to provide both morphological and functional information - combined in a whole body scan. Most of the inflammatory processes require on-time, accurate diagnostics and an imaging method that can provide therapy monitoring. The purpose of the following literature review is to compare the clinical application of PET/CT to other imaging modalities investigating inflammatory processes and to show its important role in the diagnostic algorithm and follow up of many inflammatory processes such as fever of unknown origin, osteomyelitis, inflammation of vascular prostheses etc. (authors) Key words: 18F-FDG PET/CT. DIAGNOSTIC IMAGING. INFLAMMATORY DISEASES

  5. Unusual case of infantile fibrosarcoma evaluated on F-18 fluorodeoxyglucose positron emission tomography-computed tomography.

    Bedmutha, Akshay; Singh, Natasha; Shivdasani, Divya; Gupta, Nitin

    2016-01-01

    Infantile fibrosarcoma (IFS) is a rare soft-tissue sarcoma originating from extremities and occasionally from axial soft tissue. The prognosis is good with favorable long-term survival. It is rarely metastasizing tumor, the chances being lesser with IFS originating from extremities. Use of neoadjuvant chemotherapy (NACT) as a treatment regime further reduces the chances of local relapse and distant metastasis. The organs commonly affected in metastatic IFS are lungs and lymph nodes. We report an unusual case of an IFS originating from extremity, which received NACT, yet presented with an early metastatic disease involving soft tissues and sparing lungs and lymph nodes, as demonstrated on fluorodeoxyglucose positron emission tomography-computed tomography. PMID:27385891

  6. Positron Emission Tomography Imaging of Regional Pulmonary Perfusion and Ventilation

    Musch, Guido; Venegas, Jose G.

    2005-01-01

    Positron emission tomography (PET) imaging is a noninvasive, quantitative method to assess pulmonary perfusion and ventilation in vivo. The core of this article focuses on the use of [13N]nitrogen (13N2) and PET to assess regional gas exchange. Regional perfusion and shunt can be measured with the 13N2–saline bolus infusion technique. A bolus of 13N2, dissolved in saline solution, is injected intravenously at the start of a brief apnea, while the tracer kinetics in the lung is measured by a s...

  7. The investigation of cerebrovascular disorders with positron emission tomography

    Positron emission tomography (PET) provides a non-invasive, regional, in vivo method to measure physiological parameters including cerebral blood flow, glucose and oxygen metabolism, blood volume, and pH. Measurement of these parameters not only enables a more complete understanding of the pathophysiology of acute cerebral ischemia and infarction, but provides objective criteria with which to better manage patients. This chapter will first discuss PET methodology and tracer techniques used in the investigation of patients with cerebrovascular disease and then describe the progress that has already resulted from applying these methods. 73 refs.; 7 figs

  8. Positron emission tomography: diagnostic imaging on a molecular level

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed

  9. Kinetic modeling in pre-clinical positron emission tomography

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  10. Development of radioisotopically labeled compounds for clinical positron emission tomography

    It is its quantitative imaging capacity with high spatial resolution that makes positron emission tomography a unique tool for the development of quantitative tracer kinetic studies for the measurement of physiological processes in man. Research success in this area will depend on the ingenuity of biomedical scientists in prioritizing the development of tracers. Choices must be made based on the importance of different physiological measurements, the capacity to synthesize an appropriate radioisotopically labeled compound for this measurement and the ability to determine an adequate kinetic model for its interpretation. Examples are given of these steps in the development of PET tracers at the NIMH. 17 refs.; 1 table

  11. Measurement of flame temperature distribution by IR emission computed tomography

    Noncontact and nondestructive measurements for determining flame temperature distribution are under investigation. This paper proposes a new method we have called infrared emission computed tomography to measure the temperature distribution in arbitrary transaxial layers of the flame by calculating the infrared radiation intensity emitted from a flame as the projection data. The authors developed an experimental system using an infrared sensor as the detector and applied our method to a laminar flame. They obtained good images of the temperature distribution in a flame. In addition, temperature profiles obtained by this method were in good agreement with the results of the thermocouple probe measurement

  12. Imaging of brain activity by positron emission tomography

    Brain function is associated with regional energy metabolism and blood flow increase. Such brain activity is visualized by using external scintigraphy. Positron emission tomography (PET) is the currently available most superior technique, allowing three-dimensional imaging of subtle blood flow. In this article, imaging methods and application of PET are discussed in terms of the following items: (1) measurement of cerebral glucose consumption, (2) PET in persons with visual impairment, (3) association between brain function and regional cerebral blood flow, (4) measurement of cerebral blood flow, (5) method for decreasing noise in PET imaging, (6) anatomic standardization of PET images, and (7) speech load and regional cerebral activity images. (N.K.)

  13. Positron emission tomography. Present status and Romanian perspectives

    Basic principles of the positron emission tomography (PET) are summarised. The main PET methods using short-lived radioisotopes (i.e.11 C, 13 N, 15 O, 18 F) are briefly reviewed. Three types of particle accelerators for radioisotopes production and medical uses (including radiotherapy), corresponding to the proton energy (Ep p p < 200 MeV) are presented. PET imaging equipment and procedures are discussed. Main radiopharmaceuticals based on beta decay for PET studies and their role in medicine is also described. Finally, perspectives for a PET program in Romania (Cyclotron + Radiochemistry + Tomograph ) are discussed. (author)

  14. F-18 fluoro-d-glucose positron emission tomography/computed tomography in a patient with corticobasal degeneration

    Corticobasal degeneration is a rare neurodegenerative disorder that often eludes clinical diagnosis. The present case shows the F-18 fluoro-d-glucose positron emission tomography/computed tomography (PET/CT) of a 62-year-old man with a progressive movement disorder with asymmetric features. PET/CT examination showed a markedly right-brain hemispheric hypometabolism also involving basal ganglia

  15. Marked uptake of fluorodeoxyglucose in a vocal cord after medialization: Acute and subacute positron emission tomography/computed tomography findings

    A 60-year-old male who underwent left upper lobectomy because of recently diagnosed lung cancer was admitted to the nuclear medicine department. A whole body fluorodeoxyglucose positron emission tomography/computed tomography (CT) that was performed for staging purposes, revealed an intense hypermetabolism in left vocal cord region corresponding with hyperdense mass-like material on CT scan

  16. Report of two cases of fluorodeoxyglucose positron emission tomography/computed tomography appearance of hibernoma: A rare benign tumor

    False-positive findings are commonly seen in positron emission tomography computed tomography imaging. One of the most common false positive finding is uptake of fluorodeoxyglucose in brown adipose tissue. Herein, we report two cases with incidentally detected hibernomas-a brown fat containing tumor with metabolic activity

  17. Positron emission tomography/computed tomography predictors of overall survival in stage IIIC/IV ovarian cancer

    Risum, Signe; Loft, Annika; Engelholm, Svend Aage;

    2012-01-01

    To evaluate the role of 2-deoxy-2-(F)fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT) for selecting patients with extensive ovarian cancer (OC) for neoadjuvant chemotherapy by evaluating predictors of overall survival in patients with stage IIIC/IV OC....

  18. In Vivo Treatment Sensitivity Testing With Positron Emission Tomography/Computed Tomography After One Cycle of Chemotherapy for Hodgkin Lymphoma

    Hutchings, Martin; Kostakoglu, Lale; Zaucha, Jan Maciej;

    2014-01-01

    PURPOSE: Negative [(18)F]fluorodeoxyglucose (FDG) -positron emission tomography (PET)/computed tomography (CT) after two cycles of chemotherapy indicates a favorable prognosis in Hodgkin lymphoma (HL). We hypothesized that the negative predictive value would be even higher in patients responding...

  19. Poor Uptake of Fluorodeoxyglucose in Positron Emission Tomography-Computed Tomography Scan for Intraocular Choroidal Melanoma in Asian Indian Eyes

    Sharma, Rahul S.; Parag K Shah; Narendran, Venkatapathy

    2016-01-01

    Fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) scan is fast becoming a very useful tool in diagnosing and staging of several malignancies that affect the human body. We report three cases of ocular choroidal malignant melanoma, wherein FDG PET-CT scan did not show as good uptake as seen in other cancers.

  20. F-18 fluoro-d-glucose positron emission tomography/computed tomography in a patient with corticobasal degeneration

    Marti, Alejandro

    2015-01-01

    Corticobasal degeneration is a rare neurodegenerative disorder that often eludes clinical diagnosis. The present case shows the F-18 fluoro-d-glucose positron emission tomography/computed tomography (PET/CT) of a 62-year-old man with a progressive movement disorder with asymmetric features. PET/CT examination showed a markedly right-brain hemispheric hypometabolism also involving basal ganglia.

  1. Unusual sites of metastatic recurrence of osteosarcoma detected on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography

    Osteosarcoma (OS) is the most common nonhematolymphoid primary bone malignancy characterized by osteoid or new bone formation. Lungs and bones are the most common sites of metastases. We report a case where unusual sites of the soft tissue recurrence from OS were detected on restaging fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography scan done post 6 years of disease free interval

  2. Recent innovations in the detection systems of Positron Emission Tomography

    Since the recognition of the clinical value of Positron Emission Tomography (PET) for the diagnosis and staging of several cancers, the PET systems have evolved to systems associating PET and Computed Tomography (CT). The main constraint for clinical imaging is to reduce the acquisition duration. As a consequence, PET detectors are faster and emit more light than the BGO crystal used previously. These detectors allow an improvement of the count rate performance of the PET systems, reducing the scattered and the random events while increasing the true events at high activity concentration. Among the new crystals, some allow measuring the time of flight of the annihilation photons. This measurement further improves the performance of the systems. The spatial resolution of clinical PET systems is still equal to 5 mm at best. High spatial resolution PET systems dedicated to small animal imaging have been developed. These systems use similar crystal materials as the clinical systems. However, in order to permit spatial resolution close to 1 mm, the crystal elements have much smaller transverse dimensions than that of clinical systems. The detectors are compact using position sensitive photomultipliers or photodiodes. In order to preserve the uniformity of the spatial resolution over the transverse field of view of the tomography, solutions allowing the measurement of the depth of interaction of the photons in the crystal have been designed. New compact detectors based on semi conductors are currently investigated. (author)

  3. Benign breast lesions detected by positron emission tomography-computed tomography

    Benveniste, Ana P., E-mail: apbenveniste@mdanderson.org [Department of Diagnostic Radiology,The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Yang, Wei, E-mail: wyang@mdanderson.org [Department of Diagnostic Radiology,The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Benveniste, Marcelo F., E-mail: mfbenveniste@mdanderson.org [Department of Diagnostic Radiology,The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mawlawi, Osama R., E-mail: omawlawi@mdanderson.org [Department of imaging physics, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Marom, Edith M., E-mail: emarom@mdanderson.org [Department of Diagnostic Radiology,The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    {sup 18}F-fluorodeoxyglucose positron emission computed tomography (FDG PET-CT) is widely used in the initial staging and response evaluation of patients with malignancy. This review describes a spectrum of benign breast findings incidentally detected by FDG PET-CT at staging that may be misinterpreted as malignancy. We describe the pattern of distribution and intensity of FDG uptake in a spectrum of benign breast diseases with their corresponding typical morphological imaging characteristics to help the nuclear medicine physician and/or general radiologist identify benign lesions, avoiding unnecessary breast imaging work-up and biopsies.

  4. Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles.

    Chen, Feng; Goel, Shreya; Hernandez, Reinier; Graves, Stephen A; Shi, Sixiang; Nickles, Robert J; Cai, Weibo

    2016-05-01

    Optical imaging has been the primary imaging modality for nearly all of the renal clearable nanoparticles since 2007. Due to the tissue depth penetration limitation, providing accurate organ kinetics non-invasively has long been a huge challenge. Although a more quantitative imaging technique has been developed by labeling nanoparticles with single-photon emission computed tomography (SPECT) isotopes, the low temporal resolution of SPECT still limits its potential for visualizing the rapid dynamic process of renal clearable nanoparticles in vivo. The dynamic positron emission tomography (PET) imaging of renal clearable gold (Au) nanoparticles by labeling them with copper-64 ((64) Cu) to form (64) Cu-NOTA-Au-GSH is reported. Systematic nanoparticle synthesis and characterizations are performed to demonstrate the efficient renal clearance of as-prepared nanoparticles. A rapid renal clearance of (64) Cu-NOTA-Au-GSH is observed (>75%ID at 24 h post-injection) with its elimination half-life calculated to be less than 6 min, over 130 times shorter than previously reported similar nanoparticles. Dynamic PET imaging not only addresses the current challenges in accurately and non-invasively acquiring the organ kinetics, but also potentially provides a highly useful tool for studying renal clearance mechanism of other ultra-small nanoparticles, as well as the diagnosis of kidney diseases in the near future. PMID:27062146

  5. Single Photon Emission Tomography Imaging in Parkinsonian Disorders: A Review

    Paul D. Acton

    2000-01-01

    Full Text Available Parkinsonian symptoms are associated with a number of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Pathological evidence has shown clearly that these disorders are associated with a loss of neurons, particularly in the nigrostriatal dopaminergic pathway. Positron emission tomography (PET and single photon emission tomography (SPECT now are able to visualise and quantify changes in cerebral blood flow, glucose metabolism, and dopaminergic function produced by parkinsonian disorders. Both PET and SPECT have become important tools in the differential diagnosis of these diseases, and may have sufficient sensitivity to detect neuronal changes before the onset of clinical symptoms. Imaging is now being utilised to elucidate the genetic contribution to Parkinson’s disease, and in longitudinal studies to assess the efficacy and mode of action of neuroprotective drug and surgical treatments. This review summarises recent applications of SPECT imaging in the study of parkinsonian disorders, with particular reference to the increasing role it is playing in the understanding, diagnosis and management of these diseases.

  6. Cyclotron, positrons and PET [positron emission tomography]. An overview

    PET (positron emission tomography) is a powerful new scientific tool which is capable of revealing biochemical transformations while they are occurring in the brain and other organs in the living human body. The application of PET to problems in biology and medicine is dominated by the short half-life of the isotopes used to prepare the radiotracers. The most commonly used positron emitting isotopes are carbon-11, fluorine-18, nitrogen-13, and oxygen-15 which have half-lives of 20.4, 110, 10 and 2 minutes, respectively. Their incorporation into radiotracers having diverse chemical structures and biochemical specificities has allowed the study of blood flow, sugar metabolism, oxygen metabolism, neurotransmission, enzyme activity and binding sites for therapeutic drugs and substances of abuse. PET research is most commonly carried out at a Cyclotron-PET Center (cyclotron, positron emission tomography, chemistry laboratory) where the short-lived isotopes can be produced and used efficiently. The number of Cyclotron-PET Centers has grown from 4 in 1976 to several dozen in 1988 and the number is expected to double in the next five years attesting to the vitality of the field and the current and anticipated contributions to research in biology and medicine

  7. Single photon emission tomography imaging in parkinsonian disorders: a review.

    Acton, P D; Mozley, P D

    2000-01-01

    Parkinsonian symptoms are associated with a number of neurodegenerative disorders, such as Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Pathological evidence has shown clearly that these disorders are associated with a loss of neurons, particularly in the nigrostriatal dopaminergic pathway. Positron emission tomography (PET) and single photon emission tomography (SPECT) now are able to visualise and quantify changes in cerebral blood flow, glucose metabolism, and dopaminergic function produced by parkinsonian disorders. Both PET and SPECT have become important tools in the differential diagnosis of these diseases, and may have sufficient sensitivity to detect neuronal changes before the onset of clinical symptoms. Imaging is now being utilised to elucidate the genetic contribution to Parkinson's disease, and in longitudinal studies to assess the efficacy and mode of action of neuroprotective drug and surgical treatments. This review summarises recent applications of SPECT imaging in the study of parkinsonian disorders, with particular reference to the increasing role it is playing in the understanding, diagnosis and management of these diseases. PMID:11455039

  8. Positron emission tomography: physics, instrumentation, and image analysis.

    Porenta, G

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources, PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and user-friendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. PMID:7941595

  9. Positron emission tomography: Physics, instrumentation, and image analysis

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  10. Instrumentation for time of-flight position emission tomography

    Ullah, Muhammad Nasir; Pratiwi, Eva; Yeom, Jung Yeol [Korea University, Seoul (Korea, Republic of); Cheon, Ji Min; Choi, Ho Jung [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2016-06-15

    Positron emission tomography (PET) is a molecular imaging modality that provides information at the molecular level. This system is composed of radiation detectors to detect incoming coincident annihilation gamma photons emitted from the radiopharmaceutical injected into a patient's body and uses these data to reconstruct images. A major trend in PET instrumentation is the development of time-of-flight positron emission tomography (ToF-PET). In ToF-PET, the time information (the instant the radiation is detected) is incorporated for image reconstruction. Therefore, precise and accurate timing recording is crucial in ToF-PET. ToF-PET leads to better localization of the annihilation event and thus results in overall improvement in the signal-to-noise ratio (SNR) of the reconstructed image. Several factors affect the timing performance of ToF-PET. In this article, the background, early research and recent advances in ToF-PET instrumentation are presented. Emphasis is placed on the various types of scintillators, photodetectors and electronic circuitry for use in ToF-PET, and their impact on timing resolution is discussed.

  11. Simulation study of respiratory-induced errors in cardiac positron emission tomography/computed tomography

    Heart disease is a leading killer in Canada and positron emission tomography (PET) provides clinicians with in vivo metabolic information for diagnosing heart disease. Transmission data are usually acquired with 68Ge, although the advent of PET/CT scanners has made computed tomography (CT) an alternative option. The fast data acquisition of CT compared to PET may cause potential misregistration problems, leading to inaccurate attenuation correction (AC). Using Monte Carlo simulations and an anthropomorphic dynamic computer phantom, this study determines the magnitude and location of respiratory-induced errors in radioactivity uptake measured in cardiac PET/CT. A homogeneous tracer distribution in the heart was considered. The AC was based on (1) a time-averaged attenuation map (2) CT maps from a single phase of the respiratory cycle, and (3) CT maps phase matched to the emission data. Circumferential profiles of the heart uptake were compared and differences of up to 24% were found between the single-phase CT-AC method and the true phantom values. Simulation results were supported by a PET/CT canine study which showed differences of up to 10% in the heart uptake in the lung-heart boundary region when comparing 68Ge- to CT-based AC with the CT map acquired at end inhalation

  12. Basic principles of 18F-fluoro-deoxyglucose positron emission tomography

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. (author)

  13. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    2012-12-04

    ... announced in the Federal Register on February 14, 2012 (77 FR 8262), and Docket No. FDA-2012-D- 0081 was... Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended...

  14. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  15. Biological imaging in radiation therapy: role of positron emission tomography

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required. (topical review)

  16. Positron Emission Tomography with Three-Dimensional Reconstruction

    The development of two different low-cost scanners for positron emission tomography (PET) based on 3D acquisition are presented. The first scanner consists of two rotating scintillation cameras, and produces quantitative images, which have shown to be clinically useful. The second one is a system with two opposed sets of detectors, based on the limited angle tomography principle, dedicated for mammographic studies. The development of low-cost PET scanners can increase the clinical impact of PET, which is an expensive modality, only available at a few centres world-wide and mainly used as a research tool. A 3D reconstruction method was developed that utilizes all the available data. The size of the data-sets is considerably reduced, using the single-slice rebinning approximation. The 3D reconstruction is divided into 1D axial deconvolution and 2D transaxial reconstruction, which makes it relatively fast. This method was developed for the rotating scanner, but was also implemented for multi-ring scanners with and without inter plane septa. An iterative 3D reconstruction method was developed for the limited angle scanner, based on the new concept of 'mobile pixels', which reduces the finite pixel errors and leads to an improved signal to noise ratio. 100 refs

  17. Fluorodeoxyglucose positron emission tomography in pancreatic cancer: an unsolved problem

    Kato, Takashi [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Fukatsu, Hiroshi [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ito, Kengo; Tadokoro, Masanori [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ota, Toyohiro [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ikeda, Mitsuru [Dept. of Medical Information and Medical Records, Nagoya Univ. School of Medicine (Japan); Isomura, Takayuki [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ito, Shigeki [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Nishino, Masanari [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ishigaki, Takeo [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan)

    1995-01-01

    The aim of this study was to examine the significance and problems of 2-[fluorine-18]-2-deoxy-d-glucose (FDG) positron emission tomography (PET) in diagnosing pancreatic cancer and mass-forming pancreatitis (MFP). PET, X-ray computed tomography (CT) and magnetic resonance (MR) imaging were performed in 15 patients with pancreatic cancer and nine patients with MFP. The areas of the PET scan were determined according to the markers drawn on the patients at CT or MR imaging. Regions of interests (ROIs) were placed by reference to the CT or MR images corresponding to the PET images. Tissue metabolism was evaluated by the differential absorption ratio (DAR) at 50 min after intravenous injection of FDG [DAR = tissue tracer concentration/(injected dose/body weight)]. The DAR value differed significantly in pancreatic cancer (mean{+-}SD, 4.64{+-}1.94) and MFP (mean{+-}SD, 2.84{+-}2.22) (P<0.05). In one false-negative case (mucinous adenocarcinoma), the tumour contained a small number of malignant cells. In one false-positive case, lymphocytes accumulated densely in the mass in the pancreatic head. Further studies are necessary to investigate the histopathological characteristics (especially the cellularity) and other factors affecting the FDG DAR on PET images. (orig.)

  18. Clinical cardiac positron emission tomography: State of the art

    Cardiac positron emission tomography (PET) has evolved rapidly from a relatively esoteric research tool into clinical applications providing unique, quantitative information on myocardial perfusion, metabolism, and cell membrane function and having a potentially significant impact on cardiovascular medicine. Although there are many different positron radionuclides for imaging diverse myocardial behavior, three radionuclides have reached accepted clinical utility. Cardiac PET using nitrogen-13-ammonia, rubidium-82, and fluoro-18-deoxyglucose has proved accurate and definitive in multiple university and private-practice sites for diagnosing and assessing severity and location of coronary artery disease in symptomatic or asymptomatic patients, for identifying injured but viable myocardium potentially salvageable by revascularization, and for ruling out clinically significant coronary artery stenosis with a high specificity in patients who might otherwise undergo coronary arteriography to document the absence of significant disease. 89 references

  19. Studies of the brain cannabinoid system using positron emission tomography

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  20. Physical and technical basis of positron emission tomography (PET)

    Positron emission tomography utilizes the annihilation of positrons, generating pairs of gamma quanta which are emitted in opposing directions. 'Electronic collimation' is performed by coincident detection of both quanta. Thus, there is no need for mechanical collimators and no limiting connection between sensitivity and spatial resolution. Transversal tomograms are reconstructed from the projection data by means of highly sophisticated data processing. The half life of the most positron emitters used in medical applications is short and of the order of some minutes. Therefore, many positron emitters have to be produced on-side by means of a cyclotron. PET is superior to SPECT with respect to physical and technical aspects, but the high costs of PET limit its wide-spread use up to now. (orig.)

  1. Timing performance comparison of digital methods in positron emission tomography

    Accurate timing information is essential in positron emission tomography (PET). Recent improvements in high speed electronics made digital methods more attractive to find alternative solutions to create a time mark for an event. Two new digital methods (mean PMT pulse model, MPPM, and median filtered zero crossing method, MFZCM) were introduced in this work and compared to traditional methods such as digital leading edge (LE) and digital constant fraction discrimination (CFD). In addition, the performances of all four digital methods were compared to analog based LE and CFD. The time resolution values for MPPM and MFZCM were measured below 300 ps at 1.6 GS/s and above that was similar to the analog based coincidence timing results. In addition, the two digital methods were insensitive to the changes in threshold setting that might give some improvement in system dead time.

  2. Magnet development for the BRF positron emission tomography accelerator

    A collaboration involving the Biomedical Research Foundation, Science Applications International Corporation, Fermi National Accelerator Laboratory, and the University of Washington is developing an accelerator for producing isotopes for Positron Emission Tomography (PET) scans. The Medium Energy Beam Transport (MEBT) section of this accelerator takes a small beam from a first RFQ acceleration device and matches it into a small 3D-acceptance at a second RFQ section. The beam transport system was designed to prevent beam losses due to emittance growth. The system includes two bending dipoles and seven quadrupoles of three different types. This report contains a brief description of the MEBT magnets and their electric, magnetic and thermal properties. The magnet measurements show that each of the magnets meets the system requirements

  3. Knowledge-based automated radiopharmaceutical manufacturing for Positron Emission Tomography

    This article describes the application of basic knowledge engineering principles to the design of automated synthesis equipment for radiopharmaceuticals used in Positron Emission Tomography (PET). Before discussing knowledge programming, an overview of the development of automated radiopharmaceutical synthesis systems for PET will be presented. Since knowledge systems will rely on information obtained from machine transducers, a discussion of the uses of sensory feedback in today's automated systems follows. Next, the operation of these automated systems is contrasted to radiotracer production carried out by chemists, and the rationale for and basic concepts of knowledge-based programming are explained. Finally, a prototype knowledge-based system supporting automated radiopharmaceutical manufacturing of 18FDG at Brookhaven National Laboratory (BNL) is described using 1stClass, a commercially available PC-based expert system shell

  4. Non-oncological positron emission tomography (PET): brain imaging

    Positron emission tomography (PET) allows evaluation of the central nervous system function. Imaging of regional cerebral blood flow and metabolism, and of several neurotransmission systems may be obtained using PET. PET quantification is accurate and has good test-retest reliability. For research purposes, PET has been used to study brain physiology, to explore neurological and psychiatric diseases pathophysiology and for the new drugs research and development. F.D.G. is the only PET radioligand with clinical application. Following criteria of evidence-based medicine, the clinical indications of F.D.G.-PET are: evaluation of treated gliomas, pre surgical study of partial refractory epilepsy and diagnosis of Alzheimer's disease when it is impossible to differentiate clinically from fronto-temporal dementia

  5. Radiopharmaceuticals for positron emission tomography investigations of Alzheimer's disease

    Alzheimer's disease (AD) is a common degenerative neurological disease that is an increasing medical, economical, and social problem. There is evidence that a long ''asymptomatic'' phase of the disease exists where functional changes in the brain are present, but structural imaging for instance with magnetic resonance imaging remains normal. Positron emission tomography (PET) is one of the tools by which it is possible to explore changes in cerebral blood flow and metabolism and the functioning of different neurotransmitter systems. More recently, investigation of protein aggregations such as amyloid deposits or neurofibrillary tangles containing tau-protein has become possible. The purpose of this paper is to review the current knowledge on various 18F- and 11C-labelled PET tracers that could be used to study the pathophysiology of AD, to be used in the early or differential diagnosis or to be used in development of treatment and in monitoring of treatment effects. (orig.)

  6. SPECT single photon emission computed tomography: A primer

    This book aims to assist nuclear medicine technologists in expanding their knowledge of nuclear medicine to include SPECT. The text of this primer is written with the assumption that the reader is proficient in most elements of nuclear medicine technology; therefore, the information is limited to data that will answer the basic questions of single-photon emission computed tomography .... The authors' goal is to bring the basics of this material together in a manner that would answer the technologist's fundamental questions. The authors have designed this primer in a generic manner to be used as an extension of the manufacturer's operating manual .... A glossary is included which contains some of the terminology relevant to the specialty, and reading lists are provided at the end of each chapter to direct the reader to more comprehensive text on specific subjects

  7. Investigation of language lateralization mechanism by Positron Emission Tomography

    As language lateralization in the brain left hemisphere is one of the most well known but less understood characteristics of the human brain, this research thesis reports the use of brain functional imaging to address some specific aspects of this lateralization. In a first part, the author reports the study of mechanisms of recovery from aphasia after a left hemisphere lesion within a population of aphasic right-handers. Based on a contrast between patients with a persistent aphasia despite usual language therapies, and patients with a significant recovery after a melodic and rhythmic therapy (TMR), a PET-based (positron emission tomography) activation study has been developed, based on the opposition between usual language stimuli and stimuli accentuated by TMR. In the second part, the author explored more systematically on sane patients the influence of some physical characteristics of auditory stimulation on the induced functional asymmetry

  8. Positron Emission Tomography: state of the art and future developments

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  9. FDG positron emission computed tomography in a study of aphasia

    Positron emission computed tomography (PECT) using 18F-2-fluoro-2-deoxy-D-glucose (FDG) was used to investigate the correlations between clinical status, anatomy (as described by CT), and metabolism in five patients with stable aphasia resulting from ischemic cerebral infarction. Local cerebral metabolic activity was diminished in an area larger than the area of infarction demonstrated by CT. In one patient, FDG PECT revealed a metabolic lesion that probably caused the aphasic syndrome and was not apparent by CT. The data suggest that reliance on CT in delineating the extent of the brain lesion in aphasia or other neuropsychological defects can be misleading; FDG PECT may provide important additional information. Two patients with similar metabolic lesions had very different clinical syndromes, showing that even when currently available methods are combined, major gaps remain in clinicoanatomical correlations in aphasia

  10. Methodological review on functional neuroimaging using positron emission tomography

    Park, Hae Jeong [Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Advance of neuroimaging technique has greatly influenced recent brain research field. Among various neuroimaging modalities, positron emission tomography has played a key role in molecular neuroimaging though functional MRI has taken over its role in the cognitive neuroscience. As the analysis technique for PET data is more sophisticated, the complexity of the method is more increasing. Despite the wide usage of the neuroimaging techniques, the assumption and limitation of procedures have not often been dealt with for the clinician and researchers, which might be critical for reliability and interpretation of the results. In the current paper, steps of voxel-based statistical analysis of PET including preprocessing, intensity normalization, spatial normalization, and partial volume correction will be revisited in terms of the principles and limitations. Additionally, new image analysis techniques such as surface-based PET analysis, correlational analysis and multimodal imaging by combining PET and DTI, PET and TMS or EEG will also be discussed.

  11. Studies of the brain cannabinoid system using positron emission tomography

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available

  12. Determination of the attenuation map in emission tomography

    Zaidi, H

    2002-01-01

    Reliable attenuation correction methods for quantitative emission computed tomography (ECT) require accurate delineation of the body contour and often necessitate knowledge of internal anatomical structure. Two broad classes of methods have been used to calculate the attenuation map referred to as "transmissionless" and transmission-based attenuation correction techniques. While calculated attenuation correction belonging to the first class of methods is appropriate for brain studies, more adequate methods must be performed in clinical applications where the attenuation coefficient distribution is not known a priori, and for areas of inhomogeneous attenuation such as the chest. Measured attenuation correction overcomes this problem and utilizes different approaches to determine this map including transmission scanning, segmented magnetic resonance images or appropriately scaled X-ray CT scans acquired either independently on separate or simultaneously on multimodality imaging systems. Combination of data acqu...

  13. Differential diagnosis of depression: relevance of positron emission tomography

    The proper differential diagnosis of depression is important. A large body of research supports the division of depressive illness into bipolar and unipolar subtypes with respect to demographics, genetics, treatment response, and neurochemical mechanisms. Optimal treatment is different for unipolar and bipolar depressions. Treating a patient with bipolar depression as one would a unipolar patient may precipitate a serious manic episode or possibly even permanent rapid cycling disorder. The clinical distinction between these disorders, while sometimes difficult, can often be achieved through an increased diagnostic suspicion concerning a personal or family history of mania. Positron emission tomography and the FDG method, which allow in vivo study of the glucose metabolic rates for discrete cerebral structures, provide new evidence that bipolar and unipolar depression are two different disorders

  14. Signs of cerebral atrophy on single-photon emission tomography.

    Wong, C O; Meyerrose, G E; Sostre, S

    1994-05-01

    Cerebral atrophy often coexists with other brain disorders and by itself may alter the pattern of cerebral perfusion. If unrecognized, it may confound diagnoses based on brain single-photon emission tomography (SPET). In this retrospective study, we describe and evaluate criteria for the diagnosis of cerebral atrophy on technetium-99m hexamethylpropylene amine oxime brain SPET studies. The SPET scans of 11 patients with cerebral atrophy and ten controls were evaluated for the presence of a prominent interhemispheric fissure, presence of prominent cerebral sulci, separation of thalamic nuclei, and pronounced separation of caudate nuclei. The SPET studies were interpreted by two independent observers blind to the findings of magnetic resonance imaging, which provided the final diagnosis of cerebral atrophy. The combination of the four scintigraphic signs was accurate in the diagnosis of cerebral atrophy in 95% of the cases and had a sensitivity of 91% and a specificity of 100%. PMID:8062851

  15. Axial positrons emission tomography: from mouse to human brain imaging

    Positrons emission tomography is a nuclear imaging technics using nuclear decays. It is used both in clinical and preclinical studies. The later requires the use of small animals such as the mouse. The objective is to obtain the best signal with the best spatial resolution. Yet, a weight ratio between humans and mice indicates the need of a sub-millimeter resolution. A conventional scanner is based on detection modules surrounding the object to image and arranged perpendicularly. This implies a strong relationship between efficiency and spatial resolution. This work focuses on the axial geometry in which detection modules are arranged parallel to the object. This limits the relationship between the figures of merit, leading to both high spatial resolution and efficiency. The simulations of prototypes showed great perspectives in term of sub-millimeter resolution with efficiencies of 15 or 40% according to the scanner's axial extension. These results indicate great perspectives for both clinical and preclinical imaging. (author)

  16. Positron Emission Tomography in the Differential Diagnosis of Parkinsonism

    Juha O Rinne

    2009-10-01

    Full Text Available Positron emission tomography (PET studies on presynaptic dopaminergic function can reveal hypofunction in early Parkinson’s disease (PD which may help in the early diagnosis especially in patients with mild symptoms. This hypofunction can be detected with fluorodopa (reflecting mainly aromatic amino acid decarboxylase activity of nigrostriatal terminals or dopamine transporter ligands. These studies can also help to distinguish PD from essential tremor. However, investigations of presynaptic dopaminergic function are not useful in the differential diagnosis of parkinsonian syndromes. PET ligands, such as fluorodeoxyglucose (reflecting glucose metabolism and dopamine receptor ligands, reflecting striatal neuronal function are better in this respect. Cardiac sympathetic function studies represent a new and interesting approach to improve differential diagnosis of parkinsonian syndromes but more studies are needed in larger patient populations with longer follow-up to evaluate the usefulness of these investigations. Multitracer approach combining ligands reflecting different aspects of dopaminergic neurotransmission and other physiological function will increase differential diagnostic accuracy.

  17. Methodological review on functional neuroimaging using positron emission tomography

    Advance of neuroimaging technique has greatly influenced recent brain research field. Among various neuroimaging modalities, positron emission tomography has played a key role in molecular neuroimaging though functional MRI has taken over its role in the cognitive neuroscience. As the analysis technique for PET data is more sophisticated, the complexity of the method is more increasing. Despite the wide usage of the neuroimaging techniques, the assumption and limitation of procedures have not often been dealt with for the clinician and researchers, which might be critical for reliability and interpretation of the results. In the current paper, steps of voxel-based statistical analysis of PET including preprocessing, intensity normalization, spatial normalization, and partial volume correction will be revisited in terms of the principles and limitations. Additionally, new image analysis techniques such as surface-based PET analysis, correlational analysis and multimodal imaging by combining PET and DTI, PET and TMS or EEG will also be discussed

  18. Clinical impact of 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of neurological diseases

    In this review it will be discussed in which neurological disorders positron emission tomography can yield important diagnostic information. Because positron emission tomography is an expensive method indications have to be cleary defined. One important question concerns the differentiation of tumor recurrence and scar due to radiation therapy or an operation. The grading of brain tumors is another application. In HIV patients fluorodeoxyglucose positron emission tomography can separate lymphoma and toxoplasmosis. In the evaluation of dementia positron emission tomography can help to clarify the differential diagnosis. Another important area is the presurgical evaluation of epilepsy patients and patients with cerebrovascular disease in whom a surgical revascularization procedure is planned. In extrapyramidal disorders, positron emission tomography can often help to establish the final diagnosis. (author)

  19. Mycosis fungoides: Positron emission tomography/computed tomography in staging and monitoring the effect of therapy

    A 58-year-old woman, diagnosed as a case of mycosis fungoides (MF), underwent [18F]-fluoro-D-glucose positron emission tomography/computed tomography (FDG PET/CT) examination. The study revealed intense FDG uptake in a large ulceroproliferative right thigh lesion, indurated plaques in the chest wall and left thigh, along with multiple sites of cutaneous involvement, axillary and inguinal lymphadenopathy. The patient underwent chemotherapy with CHOP regimen, radiotherapy for the right thigh lesion, along with topical corticosteroids and emollients for the disseminated cutaneous involvement. Repeat [18F]-FDG PET/CT study performed a year later, showed near complete disease regression specifically of the ulceroproliferative lesion and indurated cutaneous plaques, no change in lymphadenopathy, and a subtle diffuse progression of the remaining cutaneous lesions. A multidisciplinary approach to the diagnosis, staging and treatment of MF has long been suggested for optimizing outcomes from management of patients with this disease. This case highlights the potential role of incorporating PET/CT as a single modality imaging technique in the staging and assessment of response to therapy

  20. Positron emission tomography-computed tomography in the management of lung cancer: An update

    Punit Sharma

    2013-01-01

    Full Text Available This communication presents an update on the current role of positron emission tomography-computed tomography (PET-CT in the various clinical decision-making steps in lung carcinoma. The modality has been reported to be useful in characterizing solitary pulmonary nodules, improving lung cancer staging, especially for the detection of nodal and metastatic site involvement, guiding therapy, monitoring treatment response, and predicting outcome in non-small cell lung carcinoma (NSCLC. Its role has been more extensively evaluated in NSCLC than small cell lung carcinoma (SCLC. Limitations in FDG PET-CT are encountered in cases of tumor histotypes characterized by low glucose uptake (mucinous forms, bronchioalveolar carcinoma, neuroendocrine tumors, in the assessment of brain metastases (high physiologic 18F-FDG uptake in the brain and in cases presenting with associated inflammation. The future potentials of newer PET tracers beyond FDG are enumerated. An evolving area is PET-guided assessment of targeted therapy (e.g., EGFR and EGFR tyrosine kinase overexpression in tumors which have significant potential for drug development.

  1. Computed tomography and F-18-FDG-positron emission tomography for staging lymphomas: a comparison

    Purpose: To determine the value of F-18-FDG-positron emission tomography (FDG-PET) compared with computed tomography (CT) in the staging of malignant lymphomas. Material and method: 50 patients with biopsy-proven lymphoma were studied with FDG-PET and CT. The results in initial, posttherapeutic and staging of recurrence were compared. Results: 37 of 65 FDG-PET were identical with CT. 28 studies showed differences. 14 posttherapeutically and one of the initial studies led to downstaging by FDG-PET whereas upstaging resulted in one case of initial staging. In two cases false positive pulmonary FDG accumulations caused an upstaging. Conclusion: FDG-PET was at least comparable to CT in recording the extension of a newly diagnosed lymphoma or its recurrence. Upstaging according to FDG-PET occurred only once in initial staging. FDG-PET plays its most important role in the evaluation of residual mass in CT after therapy by accumulating FDG in viable tumour rather than in fibrotic tissue. 14 cases of downstaging according to FDG-PET resulted. (orig.)

  2. Fluoro-deoxy-glucose positron emission tomography/computed tomography in lymphoma: a pictorial essay

    F-18 fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT) has emerged as a powerful imaging modality in the field of oncology. F-18 FDG PET/CT is now an established tool in the management of lymphoma. This has been shown to be useful in staging, detection of bone marrow involvement (BMI), early response assessment and end of therapy response assessment in lymphoma. Interpretation of F-18 FDG PET/CT in lymphoma is carried out by various qualitative response assessment criteria. London criteria are used for interpretation of interim PET/CT and International Harmonization Project (IHP) criteria are used to interpret PET/CT done after the end of chemotherapy. Quantitative analysis is also found to be useful in assessment of response early after two cycles of chemotherapy in patients with diffuse large B cell lymphoma (DLBCL). This pictorial essay provides few images describing the FDG avidity of lymphoma, patterns of bone marrow uptake and their relevance in predicting BMI, role of staging PET/CT, quantitative analysis in response assessment, example images of response according to London criteria and IHP criteria. Few pitfalls in imaging of lymphoma with PET/CT are also discussed in the images legend. (author)

  3. Positron emission tomography/computer tomography in guidance of extrahepatic hepatocellular carcinoma metastasis management

    2007-01-01

    Hepatocellular carcinoma (HCC) is one of the most common primary cancers in the world. Surgery is the gold standard for treatment of patients with HCC. Recurrence and metastasis are the major obstacles to further improve the prognosis of HCC. Most recurrences are intrahepatic. However, 30% of the recurrences are extrahepatic. The role of resection in intrahepatic recurrences is widely accepted. The role of resection in extrahepatic HCC recurrence and metastasis is not well established. 18F fluorodeoxyglucose (18F-FDG) positron emission tomography/computer tomography (PET/CT) is useful in detecting distant metastasis from a variety of malignancies and shows superior accuracy to conventional imaging modalities in identification of intrahepatic and extrahepatic metastasis. We present one patient with one new isolated omental lymph node metastasis, who had a history of huge HCC resected six years ago. The metastatic focus was identified with 18 F-FDG PET/CT and resected. The follow-up revealed good prognosis with a long-term survival potential after resection of the omental lymphatic metastasis.

  4. Role of positron emission tomography-computed tomography in non-small cell lung cancer.

    Garg, Pankaj Kumar; Singh, Saurabh Kumar; Prakash, Gaurav; Jakhetiya, Ashish; Pandey, Durgatosh

    2016-03-26

    Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell carcinoma and small cell carcinoma are the main histological subtypes and constitutes around 85% and 15% of all lung cancer respectively. Multimodality treatment plays a key role in the successful management of lung cancer depending upon the histological subtype, stage of disease, and performance status. Imaging modalities play an important role in the diagnosis and accurate staging of the disease, in assessing the response to neoadjuvant therapy, and in the follow-up of the patients. Last decade has witnessed voluminous upsurge in the use of positron emission tomography-computed tomography (PET-CT); role of PET-CT has widened exponentially in the management of lung cancer. The present article reviews the role of 18-fluoro-deoxyglucose PET-CT in the management of non small cell lung cancer with emphasis on staging of the disease and the assessment of response to neoadjuvant therapy based on available literature. PMID:27018223

  5. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer

    Kezban Berberoğlu

    2016-06-01

    Full Text Available Radiotherapy (RT plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases interuser variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.

  6. Diagnostic Value of Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in a Patient with Adrenal Involvement of Hodgkin Lymphoma

    Doğan Köse; Yavuz Köksal

    2016-01-01

    Improved success with the modern management of Hodgkin lymphoma (HL) leaded new method searches to diminish treatment intensities in order to prevent late effects. Sensitivity and specificity of fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) is advanced in the determination of malign cell infiltrations in adrenal glands in patients with HL which is a rare finding. A 7.5 year old female patient that was investigated due to pubic hairs and breast development ...

  7. Patterns of brown fat uptake of 18F-fluorodeoxyglucose in positron emission tomography/computed tomography scan

    Fluorodeoxyglucose (FDG) positron emission tomography (PET) has become the common imaging modality in oncological practice. FDG uptake is seen in brown adipose tissue in a significant number of patients. Recognizing the uptake patterns is important for optimal FDG PET interpretation. The introduction of PET/computed tomography (PET/CT) revolutionized PET imaging, bringing much-needed anatomical information. Careful review and correlation of FDG PET images with anatomical imaging should be performed to characterize accurately any lesion having high FDG uptake

  8. The role of fluorodeoxyglucose positron emission tomography-computerized tomography in resolving therapeutic dilemmas in pediatric Hodgkin lymphoma

    Seth, Rachna; Puri, Kriti; Singh, Prashant; Selvam, Panneer; Kumar, Rakesh

    2012-01-01

    Introduction: Hodgkin lymphoma (HL) is a highly curable lymphoma with cure rates of over 80% and even higher with limited stage disease. Computerized tomography (CT) scan is currently the recommended modality in staging and assessment of response to therapy in patients with HL. However, CT has its limitations. This study describes our experience with patients of HL where fluorodeoxyglucose positron emission tomography (FDG-PET)-CT scan helped decide further management, after completion of che...

  9. Fluorodeoxyglucose positron emission tomography/computed tomography and magnetic resonance imaging of uterine leiomyosarcomas: 2 cases report

    ZHANG Hui-juan; ZHAN Feng-hua; LI Ya-jun; SUN Hao-ran; BAI Ren-ju; GAO Shuo

    2011-01-01

    Uterine leiomyosarcoma is an uncommon malignant neoplasm of smooth muscle origination and is associated with a poor prognosis. We report two cases of uterine leiomyosarcoma that presented with pulmonary metastases.2-deoxy-2-(18F)fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) was performed to identify the primary carcinoma and found the focus located in the uterus. The follow-up magnetic resonance imaging (MRI) confirmed the diagnosis was uterine leiomyosarcoma.

  10. Combined single photon emission computerised tomography and conventional computerised tomography (SPECT/CT) in patellofemoral disorders: a clinical review

    Hirschmann, Michael T.; Davda, Kinner; Iranpour, Farhad; Rasch, Helmut; Friederich, Niklaus F.

    2010-01-01

    Patellofemoral disorders are common conditions seen in a knee clinic but can present a great diagnostic challenge to the orthopaedic surgeon. Combined single photon emission computerised tomography with conventional computer tomography (SPECT/CT) provides the clinician with precise anatomical and physiological information of the patellofemoral joint. We present a clinical review that highlights the value of SPECT/CT in patients with patellofemoral disorders, where other modalities such as rad...

  11. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in a child with chronic granulomatous disease.

    Garg, Gunjan; DaSilva, Raphaella; Bhalakia, Avni; Milstein, David M

    2016-01-01

    We report the fluorodeoxyglucose positron emission tomography/computed tomography (FDG - PET/CT) findings in an 11-month-old boy with suspected milk protein allergy, presented to the hospital with 2-month history of fever of unknown origin and failure to thrive. It showed FDG avid lymphadenopathy above and below the diaphragm and splenic focus, which could represent diffuse inflammatory process or lymphoma. Subsequent jejunal biopsy showed non-necrotizing granulomas. PMID:26917900

  12. Incremental value of single photon emission tomography/computed tomography in 3-phase bone scintigraphy of an accessory navicular bone

    Jain, Sachin; Karunanithi, Sellam; Agarwal, Krishan Kant; Kumar, Ganesh; Roy, Shambo Guha; Tripathi, Madhavi

    2014-01-01

    Accessory navicular bone is one of the supernumerary ossicles in the foot. Radiography is non diagnostic in symptomatic cases. Accessory navicular has been reported as a cause of foot pain and is usually associated with flat foot. Increased radio tracer uptake on bone scan is found to be more sensitive. We report a case highlighting the significance of single photon emission tomography/computed tomography in methylene diphosphonate bone scan in the evaluation of symptomatic accessory navicula...

  13. Patterns of brown fat uptake of 18F-fluorodeoxyglucose in positron emission tomography/computed tomography scan

    Chakraborty, Dhritiman; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET) has become the common imaging modality in oncological practice. FDG uptake is seen in brown adipose tissue in a significant number of patients. Recognizing the uptake patterns is important for optimal FDG PET interpretation. The introduction of PET/computed tomography (PET/CT) revolutionized PET imaging, bringing much-needed anatomical information. Careful review and correlation of FDG PET images with anatomical imaging should be per...

  14. F-18 fluoro-d-glucose positron emission tomography/computed tomography in a patient with corticobasal degeneration.

    Marti, Alejandro

    2015-01-01

    Corticobasal degeneration is a rare neurodegenerative disorder that often eludes clinical diagnosis. The present case shows the F-18 fluoro-d-glucose positron emission tomography/computed tomography (PET/CT) of a 62-year-old man with a progressive movement disorder with asymmetric features. PET/CT examination showed a markedly right-brain hemispheric hypometabolism also involving basal ganglia. PMID:25829747

  15. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  16. Highly metabolic thrombus of the portal vein: 18F fluorodeoxyglucose positron emission tomography/computer tomography demonstration and clinical significance in hepatocellular carcinoma

    Sun, Long; Guan, Yong-Song; Pan, Wei-Ming; Chen, Gui-Bing; Luo, Zuo-Ming; Wei, Ji-Hong; Wu, Hua

    2008-01-01

    AIM: To assess the ability of 18F-fluorodeoxyglucose positron emission tomography/computer tomography (18F-FDG PET/CT) to differentiate between benign and malignant portal vein thrombosis in hepatocellular carcinoma (HCC) patients.

  17. Attenuation correction in emission tomography using the emission data—A review

    Li, Yusheng

    2016-01-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  18. Attenuation correction in emission tomography using the emission data-A review.

    Berker, Yannick; Li, Yusheng

    2016-02-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason-Ludwig data consistency conditions of the Radon transform, or generalizations of John's partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  19. A novel phantom design for emission tomography enabling scatter- and attenuation-''free'' single-photon emission tomography imaging

    A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99mTcO4- depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain ''ideal'' experimental images (essentially built up by primary photons) for comparison with

  20. Positron Emission Tomography (PET) in the oncologic clinical practice

    We intended to determine the frequency with that the computer axial tomography (TAC), it was able to visualize the lesions extra neoplasia detected by the PET tomography in patients with fully identified primary malignant neoplasia. (Author)

  1. Positron emission tomography in patients with drug-resistant epilepsy

    Positron emission tomography with 18Fluor-deoxyglucose (18FDG PET) was introduced as method of evaluation of the cerebral metabolism in the early 80s. 18FDG PET/computed tomography (PET/CT) has rapidly become a method of epileptogenic zone localization because of the hypometaboilsm of this zone during the interictal period. This paper represents the first Bulgarian series of patients with drug- resistant epilepsy who were evaluated with 18FDG PET as part of the presurgical work-up. Our study has included 21 patients with drug-resistant epilepsy who were evaluated with 18FDG PET/CT from January 2010 to May 2013. All patients were evaluated with dedicated MRI epilepsy protocol. PET/CT study was fused with 3D MRI study using FSL or GE software. Video EEG monitoring was performed in all 21 patients and seizures were recorded in 18 patients. Hypometabolic zones were found in 15 patients. The hypometabolism was focal in 5 patients, multilobar in 9 patients and hemispheric in 1 patient. The MRI was normal in 8 patients. Hypometabolic zones were found in 3 of these 8 patients with cryptogenic epilepsy. Epilepsy surgery was performed in 6 cases. All operated patients were with hypometabolic zones. Significant seizure reduction after surgery was observed in 5 of 6 operated patients. 18FDG PET/CT is a valuable method for epileptogenic zone localization in patients with drug-resistant epilepsy. The introduction of this method in the bulgarian epilepsy surgery program increases the chances for successful resective surgery. (authors)

  2. 18F-fluorodeoxyglucose positron emission tomography in uterine carcinosarcoma

    Uterine carcinosarcomas clinically confined to the uterus usually harbor occult metastases. We conducted a pilot study to evaluate the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in uterine carcinosarcoma. Patients with histologically confirmed uterine carcinosarcoma were enrolled. Abdominal and pelvic magnetic resonance imaging (MRI)/whole-body computed tomography (CT) scan, and whole-body 18F-FDG PET or PET/CT were undertaken for primary staging, evaluating response, and restaging/post-therapy surveillance. The clinical impact of 18F-FDG PET was determined on a scan basis. A total of 19 patients were recruited and 31 18F-FDG PET scans (including 8 scans performed on a PET/CT scanner) were performed. Positive impacts of scans were found in 36.8% (7/19) for primary staging, 66.7% (2/3) for monitoring response, and 11.1% (1/9) for restaging/post-therapy surveillance. PET excluded falsely inoperable disease defined by MRI in two patients. Aggressive treatment applying to three patients with PET-defined resectable stage IVB disease seemed futile. Two patients died of disease shortly after salvage therapy restaged by PET. With PET monitoring, one stage IVB patient treated by targeted therapy only was alive with good performance. Using PET did not lead to improvement of overall survival of this series compared with the historical control (n = 35) (P 0.779). The preliminary results suggest that 18F-FDG PET is beneficial in excluding falsely inoperable disease for curative therapy and in making a decision on palliation for better quality of life instead of aggressive treatment under the guidance of PET. PET seems to have limited value in post-therapy surveillance or restaging after failure. (orig.)

  3. Stair-step artifact seen in coronal and sagittal reformatted images because of misalignment of computed tomography tube, in a positron emission tomography/computed tomography scanner

    Reconstruction artifacts often affect the image quality. An unusual wavy imaging pattern was seen on computed tomography (CT) part of positron emission tomography/CT, on sagittal and coronal images. This pattern was corrected on realignment of CT tube. This artifact, popularly known as stair step artifact, is rarely cited in the literature and our case generates a practical scenario of how it affects the image quality and how it is corrected

  4. Enhancement of positron emission tomography-computed tomography image quality using the principle of stochastic resonance

    Acquisition of higher counts improves visual perception of positron emission tomography-computed tomography (PET-CT) image. Larger radiopharmaceutical doses (implies more radiation dose) are administered to acquire this count in a short time period. However, diagnostic information does not increase after a certain threshold of counts. This study was conducted to develop a post processing method based on principle of “stochastic resonance” to improve visual perception of the PET-CT image having a required threshold counts. PET-CT images (JPEG file format) with low, medium, and high counts in the image were included in this study. The image was corrupted with the addition of Poisson noise. The amplitude of the Poisson noise was adjusted by dividing each pixel by a constant 1, 2, 4, 8, 16, and 32. The best amplitude of the noise that gave best images quality was selected based on high value of entropy of the output image, high value of structural similarity index and feature similarity index. Visual perception of the image was evaluated by two nuclear medicine physicians. The variation in structural and feature similarity of the image was not appreciable visually, but statistically images deteriorated as the noise amplitude increases although maintaining structural (above 70%) and feature (above 80%) similarity of input images in all cases. We obtained the best image quality at noise amplitude “4” in which 88% structural and 95% feature similarity of the input images was retained. This method of stochastic resonance can be used to improve the visual perception of the PET-CT image. This can indirectly lead to reduction of radiation dose

  5. Pitfalls in Positron Emission Tomography/Computed Tomography Imaging: Causes and Their Classifications

    Tian-ran Li; Jia-he Tian; Hui Wang; Zi-qian Chen; Chun-lei Zhao

    2009-01-01

    Objective To describe the pitfalls in positron emission tomography/computed tomography (PET/CT) imaging and classify them according to the principles of their generation. Methods We summarized retrospectively the 18F-fluorodeoxyglucose (FDP) PET/CT imaging pitfalls through reviewing the PET/CT images of 872 patients. The pitfalls were divided into artifacts and infrequent physiological uptake, and the artifacts were further classified according to their causes. Meanwhile, we calculated the incidences of various pitfalls. Whether the PET/CT pitfalls influenced the diagnostic decision was analyzed. The appearances of pitfalls in PET were also described. Results Pitfalls could be found in PET/CT images of 684 (78.4%) patients. Artifacts were found in 664 (76.15%) patients, and could be classified into self-factor artifacts and equipment- or technology- related artifacts. Among self-factor artifacts, respiratory motion (57.5%), postprandial or hyperglycemia artifacts (2.41%), and metal or high density matter artifacts (1.38%) were frequent. As for equipment- or technology-related factors, injection point outleakage or radiotracer contamination (13.88%) and truncation artifacts (1.83%) were most common ones. Infrequent physiological FDG uptakes, including fatty uptake, endometrial uptake, and bilateral breast feeding period uptake, were found in 20 (2.29%) patients. Among all pitfalls, the artifacts in 92 (13.4%) patients and infrequent physiological uptakes in 6 (0.88%) patients affected the diagnostic results. Artifact images in PET could be described as hot or cold area and the images of infrequent physiological uptake were always shown as hot area. Conclusions The incidence of pitfall in PET/CT imaging was high and the causes of pitfalls are various. Among all causes that artifacts generated, respiratory motion is the most common. Some pitfalls may disturb clinical physicians' decision, so it is important to recognize artifacts and physiological uptake, and

  6. Diagnostic value for extrahepatic metastases of hepatocellular carcinoma in positron emission tomography/computed tomography scan

    Ji Eun Lee; Jae Young Jang; Soung Won Jeong; Sae Hwan Lee; Sang Gyune Kim; Sang-Woo Cha; Young Seok Kim

    2012-01-01

    AIM:To evaluated the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) scan in diagnosis of hepatocellular carcinoma (HCC) and extrahepatic metastases.METHODS:A total of 138 patients with HCC who had both conventional imaging modalities and 18F-FDG PET/CT scan done between November 2006 and March 2011 were enrolled.Diagnostic value of each imaging modality for detection of extrahepatic metastases was evaluated.Clinical factors and tumor characteristics including PET imaging were analyzed as indicative factors for metastases by univariate and multivariate methods.RESULTS:The accuracy of chest CT was significantly superior compared with the accuracy of PET imaging for detecting lung metastases.The detection rate of metastatic pulmonary nodule ≥ 1 cm was 12/13(92.3%),when < 1 cm was 2/10 (20%) in PET imaging.The accuracy of PET imaging was significantly superior compared with the accuracy of bone scan for detecting bone metastases.In multivariate analysis,increased tumor size (≥ 5 cm) (P =0.042) and increased average standardized uptake value (SUV)uptake (P =0.028) were predictive factors for extrahepatic metastases.Isometabolic HCC in PET imaging was inversely correlated in multivariate analysis (P =0.035).According to the receiver operating characteristic curve,the optimal cutoff of average SUV to predict extrahepatic metastases was 3.4.CONCLUSION:18F-FDG PET/CT scan is invaluable for detection of lung metastases larger than 1 cm and bone metastases.Primary HCC having larger than 5 cm and increased average SUV uptake more than 3.4should be considered for extrahepatic metastases.

  7. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    Yeung, Timothy P C [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Robarts Research Institute, The University of Western Ontario, Ontario, Canada, N6A 5B7 (Canada); Department of Medical Biophysics, The University of Western Ontario, Ontario, Canada, N6A 5C1 (Canada); Yartsev, Slav [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Medical Biophysics, The University of Western Ontario, Ontario, Canada, N6A 5C1 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Lee, Ting-Yim [Robarts Research Institute, The University of Western Ontario, Ontario, Canada, N6A 5B7 (Canada); Department of Medical Biophysics, The University of Western Ontario, Ontario, Canada, N6A 5C1 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Department of Medical Imaging, The University of Western Ontario, London Health Sciences Centre, Victoria Hospital, Ontario, Canada, N6A 5W9 (Australia); Lawson Health Research Institute, St. Joseph' s Health Care London, Ontario, Canada, N6A 4V2 (Canada); Wong, Eugene [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Department of Physics and Astronomy, The University of Western Ontario, Ontario, Canada, N6A 3K7 (Canada); He, Wenqing [Department of Statistical and Actuarial Sciences, The University of Western Ontario, Ontario, Canada, N6A 5B7 (Canada); Fisher, Barbara; VanderSpek, Lauren L [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Macdonald, David [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada); Department of Clinical Neurological Sciences, The University of Western Ontario, London Health Sciences Centre, University Hospital, Ontario, Canada, N6A 5A5 (Canada); Bauman, Glenn, E-mail: glenn.bauman@lhsc.on.ca [London Regional Cancer Program, London Health Sciences Centre, Ontario, Canada, N6A 4L6 (Canada); Department of Medical Biophysics, The University of Western Ontario, Ontario, Canada, N6A 5C1 (Canada); Department of Oncology, The University of Western Ontario, London Health Sciences Centre, London Regional Cancer Program, Ontario, Canada, N6A 4L6 (Canada)

    2014-02-15

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity.

  8. Prognostic value of 18-fluorodeoxyglucose positron emission tomography-computed tomography in resectable colorectal cancer

    Jang Eun Lee; Sang Woo Kim; Jin Su Kim; Kyu Yong Choi; Won Kyung Kang; Seong Taek Oh; Ie Ryung Yoo

    2012-01-01

    AIM:To assess the prognostic value of preoperative 18 fluorodeoxyglucose positron emission tomography (FDG-PET)/computed tomography (CT) in patients with resectable colorectal cancer.METHODS:One hundred sixty-three patients with resectable colorectal cancer who underwent FDG-PET/CT before surgery were included.Patient data including pathologic stage at presentation,histology,treatment,disease-free survival and the maximum standardized uptake value (SUVmax) of the primary tumor on FDGPET/CT were retrospectively analyzed.Median follow up duration was 756 (range,419-1355).The primary end point was disease-free survival.RESULTS:Twenty-five of 163 patients (15.3%) had recurrences.The median SUVmax values of the recurrence and no-recurrence groups were 8.9 (range,5-24) and 8.2 (range,0-23,P =0.998).Receiver operating characteristic (ROC) curve analysis showed no significant association between SUVmax and recurrence (area under the curve =0.5,P =0.998,95%CI:0.389-0.611).Because a statistically significant value was not found,SUVmax was dichotomized at its median of 8.6.The disease-free survival curve was analyzed using the median SUVmax (8.6) as the cut off.Univariate and multivariate analysis did not provide evidence that disease-free survival rates for the subgroups defined by the median SUVmax were significantly different (P =0.52,P =0.25).CONCLUSION:Our study suggests that the high FDG uptake of primary mass in resectable colorectal cancer doesn't have a significant relationship with tumor recurrence and disease-free survival.

  9. Relationship of computed tomography perfusion and positron emission tomography to tumour progression in malignant glioma

    Introduction: This study aimed to explore the potential for computed tomography (CT) perfusion and 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) in predicting sites of future progressive tumour on a voxel-by-voxel basis after radiotherapy and chemotherapy. Methods: Ten patients underwent pre-radiotherapy magnetic resonance (MR), FDG-PET and CT perfusion near the end of radiotherapy and repeated post-radiotherapy follow-up MR scans. The relationships between these images and tumour progression were assessed using logistic regression. Cross-validation with receiver operating characteristic (ROC) analysis was used to assess the value of these images in predicting sites of tumour progression. Results: Pre-radiotherapy MR-defined gross tumour; near-end-of-radiotherapy CT-defined enhancing lesion; CT perfusion blood flow (BF), blood volume (BV) and permeability-surface area (PS) product; FDG-PET standard uptake value (SUV); and SUV:BF showed significant associations with tumour progression on follow-up MR imaging (P < 0.0001). The mean sensitivity (±standard deviation), specificity and area under the ROC curve (AUC) of PS were 0.64 ± 0.15, 0.74 ± 0.07 and 0.72 ± 0.12 respectively. This mean AUC was higher than that of the pre-radiotherapy MR-defined gross tumour and near-end-of-radiotherapy CT-defined enhancing lesion (both AUCs = 0.6 ± 0.1, P ≤ 0.03). The multivariate model using BF, BV, PS and SUV had a mean AUC of 0.8 ± 0.1, but this was not significantly higher than the PS only model. Conclusion: PS is the single best predictor of tumour progression when compared to other parameters, but voxel-based prediction based on logistic regression had modest sensitivity and specificity

  10. Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography.

    Fang, B; Liscidini, M; Sipe, J E; Lorenz, V O

    2016-05-01

    Using stimulated emission tomography, we characterize an entangled photon-pair source in the energy and polarization degrees of freedom, with a precision far exceeding what could be obtained by quantum state tomography. Through this multidimensional tomography we find that energy-polarization correlations are a cause of polarization-entanglement degradation, demonstrating that this technique provides useful information for source engineering and can accelerate the development of quantum information processing systems dependent on many degrees of freedom. PMID:27137611

  11. Positron emission tomography scans on kanji and kana

    Sakurai, Yasuhisa [Mitsui Memorial Hospital, Tokyo (Japan)

    2002-12-01

    We reanalyzed our positron emission tomography (PET) study on reading of Japanese kanji (morphogram) words, kana (phonogram) words and kana nonwords, using Statistical Parametric Mapping (SPM). The basal occipital and occipito-temporal areas were activated in common, among which activity was most pronounced in the fusiform/inferior temporal gyri with kanji and in the inferior occipital gyrus with kana. The results were consistent with the clinical observations that damage to the posterior inferior temporal cortex including the fusiform/inferior temporal gyri causes alexia with agraphia for kanji, whereas damage to the posterior occipital area including the inferior occipital gyrus causes pure alexia for kana. Bases on the present results and the lesion studies, a dual-route hypothesis that modifies Iwata's model of reading about the Japanese language was proposed. That is, the middle occipital gyrus, deep perisylvian temporoparietal cortex and posterior temporal gyrus constitute a dorsal route for reading and process phonology for words, whereas the inferior occipital, fusiform and posterior inferior temporal gyri constitute a ventral route for reading and process orthography and lexico-semantics for words. The ventral route may gain dominance in reading, according as a word is repeatedly presented. (author)

  12. Positron emission tomography in degenerative disorders of the dopaminergic system

    21 patients who had Parkinson's disease (PD), PD plus dementia of Alzheimer type (PDAT) or progressive supranuclear palsy (PSP), were studied with positron emission tomography (PET) using (18F)-2-fluoro-2-deoxy-D-glucose (FDG). In one patient with strictly unilateral PD side differences in striatal dopa uptake were studied with 6-(18F)fluoro-L-dopa (F-dopa). In patients with PD PET with FDG did not show any significant change in regional cerebral metabolic rates for glucose (rCMR(Glu)). In PDAT glucose metabolism was generally reduced, the most severe decrease was found in parietal cortex. The metabolic pattern was similar to that typically found in patients with Alzheimer's disease (AD). In the patient with strictly unilateral PD rCMR(Glu) was normal, F-dopa PET, however, revealed a distinct reduction of dopa uptake in the contralateral putamen. In PSP glucose metabolism was significantly decreased in subcortical regions (caudatum, putamen and brainstem) and in frontal cortex. Thus PET demonstrated a clear difference of metabolic pattern between PDAT and PSP. (authors)

  13. Single photon emission computed tomography in periatric frontal epilepsy

    Neuroradiological examinations were made in 9 pediatric patients with frontal epilepsy by using single photon emission computed tomography (SPECT), cat scanning (CT) and magnetic resonance imaging (MRI). Two patients (22%) had abnormal findings on both CT and MRI; and 6 patients (67%) had them on SPECT, two of whom had findings corresponding to focal sites on EEG. Among the 6 patients, 5 were suspected of having decreased regional cerebral blood flow (rCBF), corresponding to 84%-94% of the contralateral blood flow. Two patients were evaluable before and after seizures; one had increased rCBF at the time of frequent seizures and returned to normal after seizures; and the other had no abnormality in the early stage of epilepsy, but had decreased rCBF after seizures. SPECT appears to provide a simple, useful tool in evaluating cerebral hemodynamics in infantile epilepsy, although serial hemodynamic changes with developmental process of central nerves and the time of examination must be considered according to individual patients. (N.K.)

  14. Single-Photon Emission Computed Tomography (SPECT) in childhood epilepsy

    The success of epilepsy surgery is determined strongly by the precise location of the epileptogenic focus. The information from clinical electrophysiological data needs to be strengthened by functional neuroimaging techniques. Single photon emission computed tomography (SPECT) available locally has proved useful as a localising investigation. It evaluates the regional cerebral blood flow and the comparison between ictal and interictal blood flow on SPECT has proved to be a sensitive nuclear marker for the site of seizure onset. Many studies justify the utility of SPECT in localising lesions to possess greater precision than interictal scalp EEG or anatomic neuroimaging. SPECT is of definitive value in temporal lobe epilepsy. Its role in extratemporal lobe epilepsy is less clearly defined. It is useful in various other generalized and partial seizure disorders including epileptic syndromes and helps in differentiating pseudoseizures from true seizures. The need for newer radiopharmaceutical agents with specific neurochemical properties and longer shelf life are under investigation. Subtraction ictal SPECT co-registered to MRI is a promising new modality. (author)

  15. Predicting count loss in modern positron-emission tomography systems

    The purpose of the data-acquisition electronics for any positron-emission tomography (PET) system is to detect and digitally encode annihilation events as they occur. Individual elements of the electronics are placed in parallel or cascade to organize the event information for subsequent processing. Each element is parameterized with a count loss L which is the fraction of events lost due to dead time (encoding delays, etc.) or data overflow in queueing circuits. This is an important parameter because the sensitivity of the tomograph in proportional to (1-L). The authors have categorized processing elements according to five device types. For each type, they find an expression for count loss. Some mathematical models that have appeared in the literature are applicable. These are extended here to include other devices, such as bank encoders and time-to-digital converters (TDC), with coincidence time resolving circuitry. Because some PET systems will have devices that do not fall into these categories, the authors show the derivations of the loss expressions so that one could easily extend their models with parallel derivations for other device types. In addition to PET systems, one should also be able to apply their results to other types of instruments which count random events. Although they concentrate mainly on count loss, they also briefly discuss the evaluation of other metrics of counting efficiency, which are the fraction of miscoded events and the fraction of ''random coincidence'' events

  16. European health telematics networks for positron emission tomography

    Kontaxakis, George [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain)]. E-mail: g.kontaxakis@upm.es; Pozo, Miguel Angel [Centro PET Complutense, Madrid 28040 (Spain); Universidad Complutense de Madrid, Instituto Pluridisciplinar, Madrid 28040 (Spain); Ohl, Roland [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Visvikis, Dimitris [U650 INSERM, Lab. du Traitement de L' Information Medicale, University of Brest Occidentale, CHU Morvan, Brest 29609 (France); Sachpazidis, Ilias [Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany); Ortega, Fernando [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Guerra, Pedro [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Cheze-Le Rest, Catherine [Dept. Medicine Nucleaire, CHU Morvan, Brest 29609 (France); Selby, Peter [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Pan, Leyun [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Diaz, Javier [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Dimitrakopoulou-Strauss, Antonia [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Santos, Andres [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Strauss, Ludwig [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Sakas, Georgios [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany)

    2006-12-20

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  17. Positron emission tomography scans on kanji and kana

    We reanalyzed our positron emission tomography (PET) study on reading of Japanese kanji (morphogram) words, kana (phonogram) words and kana nonwords, using Statistical Parametric Mapping (SPM). The basal occipital and occipito-temporal areas were activated in common, among which activity was most pronounced in the fusiform/inferior temporal gyri with kanji and in the inferior occipital gyrus with kana. The results were consistent with the clinical observations that damage to the posterior inferior temporal cortex including the fusiform/inferior temporal gyri causes alexia with agraphia for kanji, whereas damage to the posterior occipital area including the inferior occipital gyrus causes pure alexia for kana. Bases on the present results and the lesion studies, a dual-route hypothesis that modifies Iwata's model of reading about the Japanese language was proposed. That is, the middle occipital gyrus, deep perisylvian temporoparietal cortex and posterior temporal gyrus constitute a dorsal route for reading and process phonology for words, whereas the inferior occipital, fusiform and posterior inferior temporal gyri constitute a ventral route for reading and process orthography and lexico-semantics for words. The ventral route may gain dominance in reading, according as a word is repeatedly presented. (author)

  18. Characterization of nontransmural myocardial infarction by positron-emission tomography

    The present study was performed to determine whether positron emission tomography (PET) performed after i.v. 11C-palmitate permits detection and characterization of nontransmural myocardial infarction. PET was performed after the i.v. injection of 11C-palmitate in 10 normal subjects, 24 patients with initial nontransmural myocardial infarction (defined electrocardiographically), and 22 patients with transmural infarction. Depressed accumulation of 11C-palmitate was detected with sagittal, coronal and transverse reconstructions, and quantified based on 14 contiguous transaxial reconstructions. Defects with homogeneously intense depression of accumulation of tracer were detected in all 22 patients with transmural infarction (100%). Abnormalities of the distribution of 11C-palmitate in the myocardium were detected in 23 patients with nontransmural infarction (96%). Thallium scintigrams were abnormal in only 11 of 18 patients with nontransmural infarction (61%). Tomographically estimated infarct size was greater among patients with transmural infarction (50.4 +/- 7.8 PET-g-Eq/m2 [+/- SEM SEM]) compared with those with nontransmural infarction (19 +/- 4 PET-g-Eq, p less than 0.01). Residual accumulation of 11C-palmitate within regions of infarction was more intensely depressed among patients with transmural compared to nontransmural infarction (33 +/- 1 vs 39 +/- 1% maximal myocardial radioactivity, p less than 0.01). Thus, PET and metabolic imaging with 11C-palmitate is a sensitive means of detecting, quantifying and characterizing nontransmural and transmural myocardial infarction

  19. Utilisation of spatial and temporal correlations in positron emission tomography

    In this thesis we propose, implement, and evaluate algorithms improving spatial resolution in reconstructed images and reducing data noise in positron emission tomography imaging. These algorithms have been developed for a high resolution tomograph (HRRT) and applied to brain imaging, but can be used for other tomographs or studies. We first developed an iterative reconstruction algorithm including a stationary and isotropic model of resolution in image space, experimentally measured. We evaluated the impact of such a model of resolution in Monte-Carlo simulations, physical phantom experiments and in two clinical studies by comparing our algorithm with a reference reconstruction algorithm. This study suggests that biases due to partial volume effects are reduced, in particular in the clinical studies. Better spatial and temporal correlations are also found at the voxel level. However, other methods should be developed to further reduce data noise. We then proposed a maximum a posteriori de-noising algorithm that can be used for dynamic data to de-noise temporally raw data (sino-grams) or reconstructed images. The a priori modeled the coefficients in a wavelet basis of all the signals without noise (in an image or sinogram). We compared this technique with a reference de-noising method on replicated simulations. This illustrates the potential benefits of our approach of sinogram de-noising. (author)

  20. Characterization of time resolved photodetector systems for Positron Emission Tomography

    Powolny, François

    The main topic of this work is the study of detector systems composed of a scintillator, a photodetector and readout electronics, for Positron Emission Tomography (PET). In particular, the timing properties of such detector systems are studied. The first idea is to take advantage of the good timing properties of the NINO chip, which is a fast preamplifier-discriminator developed for the ALICE Time of flight detector at CERN. This chip uses a time over threshold technique that is to be applied for the first time in medical imaging applications. A unique feature of this technique is that it delivers both timing and energy information with a single digital pulse, the time stamp with the rising edge and the energy from the pulse width. This entails substantial simplification of the entire readout architecture of a tomograph. The scintillator chosen in the detector system is LSO. Crystals of 2x2x10mm3 were used. For the photodetector, APDs were first used, and were then replaced by SiPMs to make use of their highe...

  1. Silicon as an unconventional detector in positron emission tomography

    Clinthorne, Neal; Brzezinski, Karol; Chesi, Enrico; Cochran, Eric; Grkovski, Milan; Grošičar, Borut; Honscheid, Klaus; Huh, Sam; Kagan, Harris; Lacasta, Carlos; Linhart, Vladimir; Mikuž, Marko; Smith, D. Shane; Stankova, Vera; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2013-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ˜5 mm FWHM spatial resolution in human studies and ˜1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET "magnifying glass" configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration.

  2. The natural history of misery perfusion in positron emission tomography

    This report reviews the natural courses of misery perfusion in 5 patients with atherosclerotic cerebrovascular occlusion diseases. Cases 1 showed partial improvement and Case 2 showed deterioration of misery perfusion on positron emission tomography (PET). These 2 patients did not show any clinical changes during the follow-up periods. Case 3 showed remarkable improvement of misery perfusion during the 2-year follow-ups, but his neurological condition worsened. The EC-IC bypass improved both in PET and clinical symptoms. Case 4 had a stroke at the region of misery perfusion in PET. Case 5 had a lacunar infarction 2 years after the EC-IC bypass on the opposite side. PET taken one month before the stroke did not show any signs of hypoperfusion in the area of the lacunar infarction. Misery perfusion seems not to be a static but a dynamic condition that can develop into cerebral infarction by some hemodynamic stresses. Cerebral cortical or lobar infarction may occur in the region of severe misery perfusion. EC-IC bypass may prevent impending infarction of the cerebral cortex by improving the regional cerebral blood flow. However, EC-CI bypass will not prevent the lacunar infarction of the basal ganglia or internal capsule. (author)

  3. European health telematics networks for positron emission tomography

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site

  4. Clinical application of positron emission tomography imaging in urologic tumors

    Positron emission tomography (PET) is an advanced noninvasive molecular imaging modality that is being investigated for use in the differentiation, diagnosis, and guiding therapy ora variety of cancer types. FDG PET has the unique clinical value in the differentiation, diagnosis, and monitoring therapy of prostate, such as bladder, renal, and testicle cancer. However, high false-positive and false-negative findings are observed in the detection of these tumors with FDG PET. 11C-Choline (CH) and 11C-acetate (AC) can overcome the pitfall of FDG, and appear to be more successful than FGD in imaging prostate cancer and bladder cancer. The short half-life of 11C prevents the widespread use of CH and AC and 18F-fluorocholine (FCH) and 18F-fluoroacetate (FAC) seem to be potential tracers. Potential clinical value of the new PET tracers, such as 3'-deoxy-3'-18F-fluorothymidine (FLT), 18F-fluorodihydrotestosterone (FDHT), and 9-(4-18F-3-hydroxymethylbutyl)-guanine(18F-FHBG) in the detection of urologic tumors, can deserve further study. (authors)

  5. Methods and clinical applications of positron emission tomography in endocrinology

    Positron emission tomography (PET) allows to detect in coincidence photons issued from annihilation between positrons and electrons nearby situated. Tomographic detection (plane by plane) and tomographic reconstruction will lead to the quantitation of radioactive distribution per voxel, in the organ of interest. Recent tomographs can acquire simultaneously several transaxial slices, with a high sensitivity and a spatial resolution of 3-5 mm. Commonly used positron emitters have a short half-life: 2, 10, 20 and 110 min for 150, 13N, 11C and 18F, respectively. The use of these isotopes requires on line production of radionuclides and synthesis of selected molecules. In endocrinology, PET allows among others to study noninvasively the receptor density of hormonodependent neoplasms such as breast, uterus, prostate tumors and prolactinomas. These last tumors represent a particular entity because of several combined characteristics: high turnover rate of amino acids, high density of dopaminergic receptors and response to bromocriptine (analogue of dopamine inhibiting the secretion of prolactine) in relation to the level of receptors. Because PET permits to evaluate the density of dopaminergic receptors and the metabolism of amino acids, theoretical response of the prolactinoma to bromocriptin can be predicted, the achieved therapeutic efficacy can be estimated and the long-term follow up of tumor growth can be assessed. This example illustrates the clinical value of PET in endocrinology

  6. Diagnosis of intrahepatic cholangiocarcinoma with positron emission tomography

    Diagnosis of intrahepatic cholangiocarcinoma (IC) by positron emission tomography (PET) has been scarcely reported and this paper reviews authors' experience of PET diagnosis of IC with [18F]deoxy-glucose (FDG). Subjects are 20 cases with IC who received FDG-PET diagnosis for evaluating the disease progression and 16 cases with suspicious recurrent IC. PET was done with Advance NXi machine (GE Medical System) 60 min after intravenous 200-250 MBq of FDG. Compared were images by PET and CT. For the IC, diagnostic sensitivities by CT and PET were found to be 95-100% and for metastatic lymph nodes, the sensitivity, specificity and overall accuracy of PET were 38, 100 and 74%, respectively, whereas those of CT, 75, 73 and 74%. For recurrence, those of PET were 77, 67 and 75%. In conclusion, PET images have a compensatory role for CT images, especially for lymphatic metastasis with higher specificity and for recurrence with higher overall accuracy. (R.T.)

  7. Respiratory synchronization for lung tumors exploration by positon emission tomography

    Positron Emission Tomography (PET) is a medical imaging technique that requires several minutes of acquisition to get an image. PET images are thus severely affected by the respiratory motion of the patient, which introduces a blur in the images. Techniques consisting in gating the PET acquisition as a function of the patient respiration exist and reduce the respiratory blur in the PET images. However, these techniques increase the noise in the reconstructed images. The aim of this work was to propose a method for respiratory motion compensation that would not enhance the noise in the PET images, without increasing the acquisition duration nor estimating the deformation field associated with the respiratory motion. We proposed 2 original spatio-temporal (4D) reconstruction algorithms of gated PET images. These 2 methods take advantage of the temporal correlation between the images corresponding to the different breathing phases. The performances of these techniques were evaluated and compared to classic approaches using phantom data and simulated data. The results showed that the 4D reconstructions increase the signal-to-noise ratio compared to the classic reconstructions while maintaining the reduction of the respiratory blur. For a fixed acquisition duration, the 4D reconstructions can thus yield gated images that are almost free of respiratory blur and of the same quality in terms of noise level as the ones obtained without respiratory gating. The clinical feasibility of the proposed techniques was also demonstrated. (author)

  8. Functional images analysis and visualization in positron emission tomography

    Essentially new information on the metabolism and pathophysiology is available since the recent past using techniques combining the use of positron emitters labelling radiopharmaceuticals, models correctly describing the process studied and system for the in vivo external detection of transverse section of the body. This method is currently called Positron Emission Tomography (PET). At the Service Hospitalier Frederic Joliot of the C.E.A. Departement of Biology, a system was developed for data analysis and colour-coded representation as a tool for functional interpretation. Indeed, the tomographic images, i.e. the radioactive concentration in the transverse section is often but the first step of the study, the actual goal being the regional distribution of a metabolic or physiologic parameter, itself derived from the former distribution by assumption of a model. Such a quantification assumes an accurate analysis of the factors involved in the obtention of the functional image, and the development of the software actually adapted to the clinician's needs. Special attention was given to the representation of graphs and images as a man-machine interface, a tool for model fitting and output of final results in pseudo-color scales adapted to the studied parameter

  9. Brain single photon emission computed tomography in neonates

    This study was designed to rate the clinical value of [123I]iodoamphetamine (IMP) or [99mTc] hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that [123I]IMP or [99mTc]HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit

  10. Anaesthesia for positron emission tomography scanning of animal brains.

    Alstrup, Aage Kristian Olsen; Smith, Donald F

    2013-01-01

    Positron emission tomography (PET) provides a means of studying physiological and pharmacological processes as they occur in the living brain. Mice, rats, dogs, cats, pigs and non-human primates are often used in studies using PET. They are commonly anaesthetized with ketamine, propofol or isoflurane in order to prevent them from moving during the imaging procedure. The use of anaesthesia in PET studies suffers, however, from the drawback of possibly altering central neuromolecular mechanisms. As a result, PET findings obtained in anaesthetized animals may fail to correctly represent normal properties of the awake brain. Here, we review findings of PET studies carried out either in both awake and anaesthetized animals or in animals given at least two different anaesthetics. Such studies provide a means of estimating the extent to which anaesthesia affects the outcome of PET neuroimaging in animals. While no final conclusion can be drawn concerning the 'best' general anaesthetic for PET neuroimaging in laboratory animals, such studies provide findings that can enhance an understanding of neurobiological mechanisms in the living brain. PMID:23349451

  11. European health telematics networks for positron emission tomography

    Kontaxakis, George; Pozo, Miguel Angel; Ohl, Roland; Visvikis, Dimitris; Sachpazidis, Ilias; Ortega, Fernando; Guerra, Pedro; Cheze-Le Rest, Catherine; Selby, Peter; Pan, Leyun; Diaz, Javier; Dimitrakopoulou-Strauss, Antonia; Santos, Andres; Strauss, Ludwig; Sakas, Georgios

    2006-12-01

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  12. Measurement of regional cerebral blood flow by positron emission tomography

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  13. Brain single photon emission computed tomography in neonates

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.; Spehl, M.; Toppet, V.; Ham, H.; Piepsz, A.; Rubinstein, M.; Nol, P.H.; Haumont, D. (Free Universities of Brussels (Belgium))

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.

  14. Single photon emission computed tomography: A clinical experience

    In the past decade, single photon emission computed tomography (SPECT) has evolved from an experimental technique used only in academic settings to a routine clinical examination performed in many community hospitals. Responding to reports of increased diagnostic efficacy, many nuclear medicine physicians have chosen to make SPECT imaging a routine technique for bone, liver, spleen, heart, and brain imaging. However, the enthusiasm for SPECT is not universal. Most nuclear medicine physicians continue to rely primarily on planar imaging, with little or no routine use of SPECT. This milieu has left many physicians asking themselves the following practical questions: Can SPECT be done easily in my hospital? Will not doing SPECT reduce the competitiveness of my nuclear medicine laboratory? The authors' experience at an institution heavily committed to SPECT for over 5 years may be helpful in answering these types of questions. The first rotating gamma camera at the Milwaukee Regional Medical Center was installed in late 1981. At present the authors have eight gamma cameras, of which four routinely perform SPECT examinations. Between 1981 and 1986, over 4,000 SPECT examinations have been performed

  15. Positron emission tomography in degenerative disorders of the dopaminergic system

    21 patients who had Parkinson's disease (PD), PD plus dementia of Alzheimer type (PDAT) or progressive supranuclear palsy (PSP), were studied with positron emission tomography (PET) using (18F)-2-fluoro-2-deoxy-D-glucose (FDG). In one patient with strictly unilateral PD side differences in striatal dopa uptake were studied with 6-(18F)fluoro-L-dopa (F-dopa). In patients with PD PET with FDG did not show any significant change in regional cerebral metabolic rates for glucose (rCMR(Glu)). In PDAT glucose metabolism was generally reduced, the most severe decrease was found in parietal cortex. The matebolic pattern was similar to that typically found in patients with Alzheimer's disease (AD). In the patients with strictly unilateral PD rCMR(Glu) was normal, F-dopa PET, however, revealed a distinct reduction of dopa uptake in the contralateral putamen. In PSP glucose metabolism was significantly decreased in subcortical regions (caudatum, putamen and brainstem) and in frontal cortex. Thus PET demonstrated a clear difference of metabolic pattern between PDAT and PSP

  16. Positron emission tomography: a new paradigm in cancer management

    The National Cancer Institute (NCI) is currently building a positron emission tomography facility that will house a cyclotron and a PET fusion scanner. lt should be operational as of december 2007, being a cancer dedicated national referral center, the NCI should provide both positron-emitting radiopharmaceuticals and medical services to institutions and patients nationwide. PET technology provides metabolic information that has been documented to be useful in patient care. The properties of positron decay allow accurate imaging of the in vivo distribution of positron-emitting radiopharmaceuticals. a wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. The major clinical PET applications are in cancer patients using fluorine-18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. in this article, the instrumentation aspects of PET are described and most of the clinical applications in oncology are described

  17. Proceedings of clinical SPECT [single photon emission computed tomography] symposium

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base

  18. Photon time-of-flight-assisted positron emission tomography

    In positron emission tomography (PET), the annihilation radiation is usually detected as a coincidence occurrence that localizes the position of the annihilation event to a straight line joining the detectors. The measure of the difference between the time of flight (TOF) of the annihilation photons between their inception and their detection permits the localization of the position of the annihilation event along the coincidence line. The incorporation of TOF information into the PET reconstruction process improves the signal-to-noise ratio in the image obtained. The utilization of scintillation detectors utilizing cesium fluoride scintillators, fast photomultiplier tubes, and fast timing circuits allows sub-nanosecond coincidence timing resolution needed for the effective use of TOF in PET. Mathematical considerations and pilot experiments show that with state-of-the-art electronic components and through the application of proper reconstruction algorithms, the combination of TOF and PET positional data improves severalfold the signal-to-noise ratio with respect to conventional PET image reconstruction at the cost of increasing the amount of data to be processed. The construction of a TOF-assisted PET device is within the capability of state-of-the-art technology

  19. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography

    Rochitte, Carlos E; George, Richard T; Chen, Marcus Y;

    2014-01-01

    AIMS: To evaluate the diagnostic power of integrating the results of computed tomography angiography (CTA) and CT myocardial perfusion (CTP) to identify coronary artery disease (CAD) defined as a flow limiting coronary artery stenosis causing a perfusion defect by single photon emission computed...... emission computed tomography (SPECT/MPI). Sixteen centres enroled 381 patients who underwent combined CTA-CTP and SPECT/MPI prior to conventional coronary angiography. All four image modalities were analysed in blinded independent core laboratories. The prevalence of obstructive CAD defined by combined ICA...... tomography (SPECT). METHODS AND RESULTS: We conducted a multicentre study to evaluate the accuracy of integrated CTA-CTP for the identification of patients with flow-limiting CAD defined by ≥50% stenosis by invasive coronary angiography (ICA) with a corresponding perfusion deficit on stress single photon...

  20. Sarcoidosis mimicking lymphoma on positron emission tomography-computed tomography in two patients treated for lymphoma: two case reports

    Ozer Ozden

    2009-06-01

    Full Text Available Abstract Introduction Sarcoidosis is a granulomatous disease that mostly involves the lungs. Its association with malignancies has been well documented. Several mechanisms have been proposed that may underlie this concurrence including triggering tumour antigens and defective cellular immunity. Case presentations We briefly review the literature on malignancy associated sarcoidosis and report two female lymphoma patients of 49 and 56 years of age who, during their course of disease, developed sarcoidosis that was misinterpreted as a lymphoma relapse on positron emission tomography-computed tomography. Conclusion We hypothesise that T cell dysfunction and exposure to tumour associated antigens might be the underlying mechanisms of development of sarcoidosis in patients with lymphoma. Positron emission tomography-positive lesions do not always indicate malignancy and therefore a tissue biopsy is always mandatory to confirm the diagnosis.

  1. Measurement of regional cerebral glucose utilization in man by positron emission tomography

    The various methods available for the study of regional cerebral glucose consumption in man by positron emission tomography are described and their applications, limitations and principal physiopathological results are presented

  2. Diagnosis of recurrent uterine cervical cancer: computed tomography versus positron emission tomography

    To determine the accuracy of CT and positron emission tomography (PET) in the diagnosis of recurrent uterine cervical cancer. Imaging findings of CT and PET in 36 patients (mean age, 53 years) in whom recurrent uterine cervical cancer was suspected were analyzed retrospectively. Between October 1997 and May 1998, they had undergone surgery and/or radiation therapy. Tumor recurrence was confirmed by pathologic examination or follow-up studies. In detecting recurrent uterine cervical cancer, the sensitivity, specificity, and accuracy of CT were 77.8%, 83.3%, and 80.5%, respectively, while for PET, the corresponding figures were 100%, 94.4%, and 97.2%. The Chi-square test revealed no significant difference in specificity (p= .2888), but significant differences in sensitivity (p= .0339) and accuracy (p= .0244). PET proved to be a reliable screening method for detecting recurrent uterine cervical cancer, but to determine the anatomical localization of recurrent tumors, and thus decide an adequate treatment plan, CT was eventually needed

  3. Integrated positron emission tomography/computed tomography fusion imaging: An emerging gold standard in lung cancer

    Joshi S

    2008-01-01

    Full Text Available Positron emission tomography (PET has emerged as an important diagnostic tool in the management of lung cancers. Although PET is sensitive in detection of lung cancer, but FDG (2-deoxy-2- 18 fluro-D-glucose is not tumor specific and may accumulate in a variety of nonmalignant conditions occasionally giving false positive result. Addition of CT to PET improves specificity foremost, but also sensitivity in tumor imaging. Thus, PET/CT fusion images are a more accurate test than either of its individual components and are probably also better than side-by-side viewing of images from both modalities. PET/CT fusion images are useful in differentiating between malignant and benign disease, fibrosis and recurrence, staging and in changing patient management to more appropriate therapy. With analysis and discussion it appears that PET/ CT fusion images have the potential to dramatically improve our ability to manage the patients with lung cancer and is contributing to our understanding of cancer cell biology and in development of new therapies.

  4. Positron emission tomography: Which indications, which benefits?; Tomographie par emission de positons (TEP): quelles indications, quels benefices?

    Chassoux, F. [Ctr Hosp St Anne, Serv Neurochirurg, F-75014 Paris (France); Chassoux, F.; Chiron, C. [CEA, I2BM, Serv Hosp Frederic Joliot, F-91 Orsay (France); Chiron, C. [Hop Necker Enfants Malad, INSERM, U663, F-75015 Paris (France); Chassoux, F.; Chiron, C. [Univ Paris 06, F-75005 Paris (France)

    2008-07-01

    Positron emission tomography (PET) is currently used in the pre-surgical workup for drug-resistant partial epilepsies in addition to MRI. Inter-ictal metabolism is studied in clinical practice using {sup 18}fluoro-desoxy-glucose ({sup 18}FDG). In medial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis, hypo-metabolism ipsilateral to the epileptogenic focus is found in 70-90% of cases. However, hypo-metabolism is larger than the structural lesion observed on MRI and includes the epileptogenic zone and ictal discharge spread areas. Hypo-metabolism is related to surgical outcome and cognitive disturbances in MTLE. Although the usefulness of PET appears less well-established in extra-temporal lobe epilepsy and in children, its sensitivity may be improved by co-registration and superimposition of PET on MRI at any age. Focal hypo-metabolism can be easily detected by visual analysis, allowing detection of minor gyral abnormalities that may correspond to focal cortical dysplasias. Moreover, in cases of negative MRI, focal hypo-metabolism findings may help invasive monitoring planning and deep electrode placement for SEEG, and finally improve surgical outcome. (authors)

  5. Positron Emission Tomography in the Management of Lung Cancer (NSCLC)

    Lung cancer is the leading cause of cancer deaths in men and the second most common cancer in women. Globally it remains the most commonly diagnosed cancer at 1.35 million, representing 12.4% of all new cancers. Almost half (49.9%) of the lung cancer cases occur in the developing countries of the world, which is a big change since 1980, when it was estimated that 69% were in developed countries. Although lung cancer is the most deadly of all the cancers, it is the only major cancer that does not have a widely accepted screening test. Lung cancer often presents as a solitary pulmonary nodule on chest radiographs, which are usually performed on patients as a preoperative screening test, or as a part of routine health screening, often in the absence of symptoms. Incidental detection can occur in up to 12% of cases in asymptomatic cases. It is clear that there is a need for the accurate diagnosis of these lesions. In recent years Positron early and Emission Tomography (PET) holds early and promise as a noninvasive investigative tool for the evaluation of lung cancer. 18F-FDG PET is currently indicated for the characterization of lung lesions, staging of non-small cell lung carcinoma (NSCLC), detection of distant metastases, and diagnosis of recurrent disease. PET/CT studies are also being increasingly employed in radiotherapy treatment also planning. Furthermore PET also plays an important role in monitoring of treatment response. On the face of it a PET-CT study may appear expensive. But in the overall context, PET/CT is cost-effective in the treatment of Lung cancer. The modality is the best discriminator of disease load if used in the correct clinical setting. It can do away with the need for multiple, many times needless investigations. It can reduce the number of futile operations, unwarranted interventions, as well as over and under treatments of lung cancer. (author)

  6. Positron emission tomography in urological cancer; Positronenemissionstomographie bei urologischen Tumoren

    Wit, M. de [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. Onkologie/Haematologie, Medizinische Klinik; Kotzerke, J. [Universitaetsklinikum Ulm (DE). Radiologie III (Nuklearmedizin)

    2000-09-01

    In staging cancer of the urinary bladder, the kidneys and the prostate and of testicular cancer there is a need for detecting tumor involvement of the lymph nodes to avoid surgical exploration. Positron emission tomography (PET) using fluorodeoxyglucose (FDG) can detect tumorous lymph nodes (sensitivity: 70%, specificity: 85%) which is helpful for several patients. In carcinoma of the prostate, other radiotracers than FDG (e.g. C-11-choline) might be more sensitive to detect tumorous lymph nodes. Up to now no diagnostical benefit of PET in germ cell tumors could be demonstrated in the published small series. In principle FDG-PET is useful in diagnosis of recurrence. In germ cell cancer FDG-PET seems to identify effectively persistent vital tumor tissue after chemotherapy. A multicenter study was initiated to demonstrate the potential of FDG-PET in a sufficient number of patients with germ cell tumor. (orig.) [German] Bei Harnblasen-, Nieren-, Prostata- und Hodenkarzinomen besteht aus klinischer Sicht ein Bedarf an verbessertem Lymphknoten-Staging, um die operative Evaluation zu vermeiden. Die Positronenemissionstomographie (PET) mit Fluordeoxyglukose (FDG) kann daher im Einzelfall bei Harnblasen- und Nierenkarzinomen hilfreich sein (bei Sensitivitaet um 70% und Spezifitaet um 85%). Beim Prostatakarzinom koennten sich andere Radiotracer (z.B. C-11-Cholin) bei der Detektion von tumoroesen Lymphknoten ueberlegen erweisen. Bei Keimzelltumoren konnte ein Nutzen der PET im primaeren Staging bei den bisher publizierten kleinen Studien nicht nachgewiesen werden. Fuer die Rezidivdiagnostik ist bei den genannten Tumoren aus grundsaetzlicher Ueberlegung der Einsatz von DFG-PET sinnvoll. Die Erkennung von vitalem malignen Tumorgewebe nach Chemotherapie erscheint bei Keimzelltumoren mit FDG-PET weitgehend sicher zu gelingen. Eine multizentrische Studie wurde begonnen, die hierueber Aufschluss geben wird. (orig.)

  7. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  8. Silicon as an unconventional detector in positron emission tomography

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ∼5mm FWHM spatial resolution in human studies and ∼1mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET “magnifying glass” configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration. -- Highlights: ► We examine the use of position-sensitive silicon detectors in magnifying PET geometries. ► A demonstrator using silicon detectors and BGO scintillation detectors was constructed. ► Both single-slice and volume PET configurations were tested. ► For a 4.5 cm field-of-view, resolutions <1mm were achievable. ► Resolution will improve further with higher resolution silicon detectors.

  9. Study of patients with spinocerebellar degeneration using positron emission tomography

    Kondo, Susumu; Tanaka, Makoto; Sun, X.; Sakai, Yasujiro; Hirai, Shunsaku (Gunma Univ., Maebashi (Japan). School of Medicine)

    1993-10-01

    We studied cerebral blood flow, oxygen metabolism and their relation to clinical symptoms in 45 patients with spinocerebellar degeneration (SCD) and 12 normal control subjects using positron emission tomography (PET). Regions of interest were acquired for the cerebellar hemispheres, cerebellar vermis, brainstem, thalami, and cerebral cortices. PET studies revealed that regional cerebral blood flow (CBF), regional cerebral oxygen metabolic rate (CMRO[sub 2]), CBF/mean CBF of each cerebral cortex (CBF/mCBF) and CMRO[sub 2]/mean CMRO[sub 2] of each cerebral cortex (CMRO[sub 2]/mCMRO[sub 2]) in the cerebellar hemispheres, cerebellar vermis, and brainstem showed a significant decrease in comparison with the normal control subjects, while in the cerebral cortices and thalami, SCD patients showed normal values. CBF/mCBF and CMRO[sub 2]/mCMRO[sub 2] were significantly decreased in patients with olivo-pontocerebellar atrophy (OPCA) and Menzel type of hereditary ataxia (Menzel type) in the cerebellar hemispheres, cerebellar vermis, and brainstem, whereas patients with late cortical cerebellar atrophy (LCCA) and Holmes type of hereditary ataxia (Holmes type) revealed a significant decrease of CBF/mCBF and CMRO[sub 2]/mCMRO[sub 2] in the cerebellar hemispheres and cerebellar vermis, but not in the brainstem. Patients with OPCA showed a significant decrease of CBF in the cerebellar hemispheres, cerebellar vermis, brainstem and that of CMRO[sub 2] in the cerebellar hemispheres and cerebellar vermis. Patients with LCCA showed a significant decrease of CBF in the right cerebellar hemisphere and cerebellar vermis. In patients with LCCA and Holmes type, the severity of upper limb ataxia and dysdiadochocinesis were significantly correlated with CBF/mCBF and CMRO[sub 2]/mCMRO[sub 2] in the cerebellar hemispheres and brainstem. PET may be useful for diagnosing SCD and understanding its pathogenesis. (author).

  10. Radiopharmaceuticals for single-photon emission computed tomography brain imaging.

    Kung, Hank F; Kung, Mei-Ping; Choi, Seok Rye

    2003-01-01

    In the past 10 years, significant progress on the development of new brain-imaging agents for single-photon emission computed tomography has been made. Most of the new radiopharmaceuticals are designed to bind specific neurotransmitter receptor or transporter sites in the central nervous system. Most of the site-specific brain radiopharmaceuticals are labeled with (123)I. Results from imaging of benzodiazepine (gamma-aminobutyric acid) receptors by [(123)I]iomazenil are useful in identifying epileptic seizure foci and changes of this receptor in psychiatric disorders. Imaging of dopamine D2/D3 receptors ([(123)I]iodobenzamide and [(123)I]epidepride) and transporters [(123)I]CIT (2-beta-carboxymethoxy-3-beta(4-iodophenyl)tropane) and [(123)I]FP-beta-CIT (N-propyl-2-beta-carboxymethoxy-3-beta(4-iodophenyl)-nortropane has proven to be a simple but powerful tool for differential diagnosis of Parkinson's and other neurodegenerative diseases. A (99m)Tc-labeled agent, [(99m)Tc]TRODAT (technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo [3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)]oxo-[1R-(exo-exo)]-), for imaging dopamine transporters in the brain has been successfully applied in the diagnosis of Parkinson's disease. Despite the fact that (123)I radiopharmaceuticals have been widely used in Japan and in Europe, clinical application of (123)I-labeled brain radiopharmaceuticals in the United States is limited because of the difficulties in supplying such agents. Development of (99m)Tc agents will likely extend the application of site-specific brain radiopharmaceuticals for routine applications in aiding the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. PMID:12605353