WorldWideScience

Sample records for 2-d potential energy

  1. Modelling thermal stratification in the North Sea: Application of a 2-D potential energy model

    Nielsen, Morten Holtegaard; St. John, Michael

    2001-01-01

    dynamics we have developed and tested a potential energy model of thermal stratification based on the energy equation (for turbulence). The energy equation relates the temporal and spatial changes of turbulent kinetic energy (TKE), the production of TKE and the dissipation of TKE to the change of potential...... forced with wind, dew point temperature from Ekofisk oilfield in the central North Sea, and tidal current and atmospheric radiation. The model is used to simulate the seasonal cycle of stratification in the central North Sea in the years 1988, 1989 and 1990 and is compared to density profiles in these...... years available from the ICES hydrographic database. We find that the model is able to simulate variations in thermal stratification including the seasonal onset and breakdown of stratification, the thermocline depth, and the effects of discrete wind and cooling events. For the years 1988–1990 we find...

  2. Comparison of reactive and inelastic scattering of H2+D2 using four semiempirical potential energy surfaces

    Collisions between hydrogen and deuterium molecules are examined using quasiclassical dynamical trajectory calculations with the intermolecular field specified by four semiempirical potential energy surfaces. Three of the surfaces are calculated within the valence bond model with semiempirical evaluation of the integrals, and the fourth is the London type. Various degrees of agreement are observed between these four surfaces and ab initio results. The trajectory calculations are performed at high system energies to permit the possibility of reactions. In addition to nonreactive collisions, four reaction paths are found on each surface with the product species 2H+D2, H2+2D, HD+H+D, and 2HD. The results are analyzed to determine the effect of surface properties on reaction probabilities, average final state properties of the molecules and average final state energy distributions. Dynamical results are found to be strongly dependent on surface characteristics

  3. Energy of the quasi-free electron in H2, D2, and O2: Probing intermolecular potentials within the local Wigner-Seitz model

    We present for the first time the quasi-free electron energy V0(ρ) for H2, D2, and O2 from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V0(ρ) accurately in strongly absorbing fluids (e.g., O2) and fluids with extremely low critical temperatures (e.g., H2 and D2). We also show that the isotropic local Wigner-Seitz model for V0(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths

  4. Creation of a scalar potential in 2D dilaton gravity

    Behrndt, K.

    1994-01-01

    We investigate quantum corrections of the 2-d dilaton gravity near the singularity. Our motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As result we find, that the singularity disappears and a dilaton/moduli potential is created.

  5. Energy of the quasi-free electron in H{sub 2}, D{sub 2}, and O{sub 2}: Probing intermolecular potentials within the local Wigner-Seitz model

    Evans, C. M., E-mail: cherice.evans@qc.cuny.edu; Krynski, Kamil [Department of Chemistry and Biochemistry, Queens College – CUNY, Flushing, New York 11367 (United States); Streeter, Zachary; Findley, G. L., E-mail: findley@ulm.edu [School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana 71209 (United States)

    2015-12-14

    We present for the first time the quasi-free electron energy V{sub 0}(ρ) for H{sub 2}, D{sub 2}, and O{sub 2} from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V{sub 0}(ρ) accurately in strongly absorbing fluids (e.g., O{sub 2}) and fluids with extremely low critical temperatures (e.g., H{sub 2} and D{sub 2}). We also show that the isotropic local Wigner-Seitz model for V{sub 0}(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths.

  6. Energy level transitions of gas in a 2D nanopore

    Grinyaev, Yurii V., E-mail: grn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Chertova, Nadezhda V., E-mail: chertova@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Psakhie, Sergei G., E-mail: sp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  7. Energy level transitions of gas in a 2D nanopore

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters

  8. Complete active space second order perturbation theory (CASPT2) study of N(2D) + H2O reaction paths on D1 and D0 potential energy surfaces: Direct and roaming pathways

    Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji

    2014-10-01

    We report reaction paths starting from N(2D) + H2O for doublet spin states, D0 and D1. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H2ON → H-O(H)N → H-HON → NO(2Π) + H2, (2) cis-HNOH → HNO-H → H-HNO → NO + H2, (3) H2NO → H-HNO → HNO-H → trans-HNOH, are confirmed on the D0 surface.

  9. Tailoring the energy distribution and loss of 2D plasmons

    Lin, Xiao; López, Josué J; Kaminer, Ido; Chen, Hongsheng; Soljačić, Marin

    2016-01-01

    The ability to tailor the energy distribution of plasmons at the nanoscale has many applications in nanophotonics, such as designing plasmon lasers, spasers, and quantum emitters. To this end, we analytically study the energy distribution and the proper field quantization of 2D plasmons with specific examples for graphene plasmons. We find that the portion of the plasmon energy contained inside graphene (energy confinement factor) can exceed 50%, despite graphene being infinitely thin. In fact, this very high energy confinement can make it challenging to tailor the energy distribution of graphene plasmons just by modifying the surrounding dielectric environment or the geometry, such as changing the separation distance between two coupled graphene layers. However, by adopting concepts of parity-time symmetry breaking, we show that tuning the loss in one of the two coupled graphene layers can simultaneously tailor the energy confinement factor and propagation characteristics, causing the phenomenon of loss-indu...

  10. Complete active space second order perturbation theory (CASPT2) study of N({sup 2}D) + H{sub 2}O reaction paths on D{sub 1} and D{sub 0} potential energy surfaces: Direct and roaming pathways

    Isegawa, Miho; Liu, Fengyi [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Kyoto 606-8103 (Japan); Maeda, Satoshi [Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Morokuma, Keiji, E-mail: morokuma@fukui.kyoto-u.ac.jp [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Kyoto 606-8103 (Japan); Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2014-10-21

    We report reaction paths starting from N({sup 2}D) + H{sub 2}O for doublet spin states, D{sub 0} and D{sub 1}. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H{sub 2}ON → H–O(H)N → H–HON → NO({sup 2}Π) + H{sub 2}, (2) cis-HNOH → HNO–H → H–HNO → NO + H{sub 2}, (3) H{sub 2}NO → H–HNO → HNO–H → trans-HNOH, are confirmed on the D{sub 0} surface.

  11. Non-chiral 2d CFT with integer energy levels

    Ashrafi, M

    2016-01-01

    The partition function of 2d conformal field theory is a modular invariant function. It is known that the partition function of a holomorphic CFT whose central charge is a multiple of 24 is a polynomial in the Klein function. In this paper, by using the medium temperature expansion we show that every modular invariant partition function can be mapped to a holomorphic partition function whose structure can be determined similarly. We use this map to study partition function of CFTs with half-integer left and right conformal weights. We show that the corresponding left and right central charges are necessarily multiples of 4. Furthermore, the degree of degeneracy of high-energy levels can be uniquely determined in terms of the degeneracy in the low energy states.

  12. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well

  13. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    Belfaqih, Idrus Husin, E-mail: idrushusin21@gmail.com; Sutantyo, Trengginas Eka Putra, E-mail: trengginas.eka@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun, Jakarta Timur, 13220 (Indonesia); Sulaksono, Anto, E-mail: anto.sulaksono@sci.ui.ac.id [Department of Physics, Universitas Indonesia, Depok, Jawa Barat, 164242 (Indonesia)

    2015-09-30

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.

  14. A Panel Method for the Potential Flow Around 2-D Hydrofoils

    BAL, Şakir

    1999-01-01

    A potential-based panel method for the hydrodynamic analysis of 2-D hydrofoils moving under a free surface with constant speed without consideration of the cavitation phenomenon is described. By applying Green's theorem and choosing the value of internal potential as equal to the incoming flow potential, an integral equation for the total potential is obtained under the potential flow theory. The free surface condition is linearized and the Dirichlet boundary condition is used i...

  15. Energy-efficient Joint Power Allocation and Channel Selection for D2D Communications

    Guifang Ma

    2015-08-01

    Full Text Available Device-to-device (D2D communications have gained great attentions due to the potential and numerous benefits for cellular networks. However,it also brings tremendous resource allocation challenges for the sake of the constraint of battery life. Up to now, there are limited works attempt to prolong the battery life by improving the energy efficiency (EE. In this paper, we study how to perform resource allocation to increase EE in a interference limited environment under a noncooperative game model. Each D2D pair can reuse all or part of the channel resources allocated to cellular users. An energy-efficient joint power allocation and channel selection is proposed by employing the nonlinear fractional programming. We obtain the optimal power allocation and channel selection through an iterative algorithm called Dinkelbach method. Finally, the algorithm proposed in this paper is verified by simulation.

  16. 2D Stabilised analytic signal method in DC pole-pole potential data interpretation

    Paras R Pujari; Rambhatla G Sastry

    2003-03-01

    Using analytic signal method, interpretation of pole-pole secondary electric potentials due to 2D conductive/resistive prisms is presented. The estimated parameters are the location, lateral extent or width and depth to top surface of the prism. Forward modelling is attempted by 2D-Finite Difference method. The proposed stabilised analytic signal algorithm (RES2AS) uses Tikhonov's regularization scheme and FFT routines. The algorithm is tested on three theoretical examples and field data from the campus of Roorkee University. The stability of RES2AS is also tested on synthetic error prone secondary pole-pole potential data.

  17. The potential of 2D Kalman filtering for soil moisture data assimilation

    We examine the potential for parameterizing a two-dimensional (2D) land data assimilation system using spatial error auto-correlation statistics gleaned from a triple collocation analysis and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-based surface soil ...

  18. A Better 2-D Mechanical Energy Conservation Experiment

    Paesler, Michael

    2012-01-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm--within a few percent--that mechanical energy is conserved. Students generally have…

  19. Quasi-2D confinement of a BEC in a combined optical and magnetic potential

    We have added an optical potential to a conventional time-averaged orbiting potential (TOP) trap to create a highly anisotropic hybrid trap for ultracold atoms. Axial confinement is provided by the optical potential; the maximum frequency currently obtainable in this direction is 2.2 kHz for rubidium. The radial confinement is independently controlled by the magnetic trap and can be a factor of 700 times smaller than in the axial direction. This large anisotropy is more than sufficient to confine condensates with ∼105 atoms in a quasi-2D (Q2D) regime, and we have verified this by measuring a change in the free expansion of the condensate; our results agree with a variational model

  20. MEMS fabricated energy harvesting device with 2D resonant structure

    Crovetto, Andrea; Wang, Fei; Triches, Marco;

    This paper reports on a MEMS energy harvester able to generate power from two perpendicular ambient vibration directions. CYTOP polymer is used both as the electret material for electrostatic transduction and as a bonding interface for low-temperature wafer bonding. With final chip size of ~1 cm2......, an output power of 32.5 nW is reached with an external load of 17 MΩ, under a harmonic source motion with acceleration RMS amplitude 0.03 g (0.3 m/s2) and frequency 179 Hz....

  1. 2D Pauli Equation with Hulthén Potential in the Presence of Aharonov—Bohm Effect

    The 2D Pauli equation with Hulthén potential for spin-1/2 particle in the presence of Aharonov—Bohm (AB) field is solved analytically, on the assumption that an effective approximation is used for the centrifugal term. Singular and regular solutions of the problem are obtained. It is shown that the AB field lifts the degeneracy of the energy levels. The range of the flux parameter for which singular solutions are allowed is modified compared to the pure AB case. When the screening parameter vanishes, it is shown that the obtained energy spectrum becomes the same as that of the Aharonov—Bohm Coulomb problem. (general)

  2. 2D Pauli Equation with Hulthén Potential in the Presence of Aharonov—Bohm Effect

    Ferkous, N.; Bounames, A.

    2013-06-01

    The 2D Pauli equation with Hulthén potential for spin-1/2 particle in the presence of Aharonov—Bohm (AB) field is solved analytically, on the assumption that an effective approximation is used for the centrifugal term. Singular and regular solutions of the problem are obtained. It is shown that the AB field lifts the degeneracy of the energy levels. The range of the flux parameter for which singular solutions are allowed is modified compared to the pure AB case. When the screening parameter vanishes, it is shown that the obtained energy spectrum becomes the same as that of the Aharonov—Bohm Coulomb problem.

  3. A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs

    Villani, F.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G.

    2015-11-01

    A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs is developed and compared with full-quantum simulation results. It will be shown that the pure analytical solution perfectly matches results at high VDS. However, a coupling with the numerical solution of the 1D Poisson equation in the radial direction is necessary at low VDS, in order to properly account for the charge density in equilibrium with the drain contact. With such an approach we are able to correctly predict the potential profile for both the linear and saturation regimes.

  4. Topology optimization design of crushed 2D-frames for desired energy absorption history

    Pedersen, Claus B. Wittendorf

    2004-01-01

    The present work deals with topology optimization for obtaining a desired energy absorption history of a crushed structure. The optimized energy absorbing structures are used to improve the crashworthiness of transportation vehicles. The ground structure consists of rectangular 2D-beam elements...

  5. Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials

    Ernest G. Kalnins

    2009-01-01

    Full Text Available The structure theory for the quadratic algebra generated by first and second order constants of the motion for 2D second order superintegrable systems with nondegenerate (3-parameter and or 2-parameter potentials is well understood, but the results for the strictly 1-parameter case have been incomplete. Here we work out this structure theory and prove that the quadratic algebra generated by first and second order constants of the motion for systems with 4 second order constants of the motion must close at order three with the functional relationship between the 4 generators of order four. We also show that every 1-parameter superintegrable system is Stäckel equivalent to a system on a constant curvature space.

  6. Theory of energy relaxation of 2D hot carriers in GaAs quantum wells

    Katayama, S.

    1986-04-01

    The energy relaxation rate of two-dimensional (2D) hot carriers due to LO phonon emission is explored theoretically by assuming a simple quantum-well structure for GaAsAl xGa 1- xAs superlattices. The differences of energy loss rate between electrons and holes are shown with emphasis on the roles of free carrier screening and form factors. The picosecond cooling behavior of photoexcited 2D carriers is presented on the basis of the polar carrier-LO phonon coupling process.

  7. 2D Pauli Equation with Hulthén Potential in the Presence of Aharonov-Bohm Effect

    N.Ferkous; A.Bounames

    2013-01-01

    The 2D Pauli equation with Hulthén potential for spin-1/2 particle in the presence of Aharonov-Bohm (AB) field is solved analytically,on the assumption that an effective approximation is used for the centrifugai term.Singular and regular solutions of the problem are obtained.It is shown that the AB field lifts the degeneracy of the energy levels.The range of the flux parameter for which singular solutions are allowed is modified compared to the pure AB case.When the screening parameter vanishes,it is shown that the obtained energy spectrum becomes the same as that of the Aharonov-Bohm Coulomb problem.

  8. Cognitive and Energy Harvesting-Based D2D Communication in Cellular Networks: Stochastic Geometry Modeling and Analysis

    Sakr, Ahmed Hamdi; Hossain, Ekram

    2014-01-01

    While cognitive radio enables spectrum-efficient wireless communication, radio frequency (RF) energy harvesting from ambient interference is an enabler for energy-efficient wireless communication. In this paper, we model and analyze cognitive and energy harvesting-based D2D communication in cellular networks. The cognitive D2D transmitters harvest energy from ambient interference and use one of the channels allocated to cellular users (in uplink or downlink), which is referred to as the D2D c...

  9. Two-loop effective potentials in general N=2, d=3 chiral superfield model

    We study local superspace contributions to the low-energy effective action in general chiral three-dimensional superfield model. The effective Kähler and chiral potentials are computed in an explicit form up to the two-loop order. In accordance with the non-renormalization theorem, the ultraviolet divergences appear only in the full superspace while the effective chiral potential receives only finite quantum contributions in the massless case. As an application, the two-loop effective scalar potential is found for the three-dimensional N=2 supersymmetric Wess-Zumino model.

  10. Geometry induced potential on a 2D-section of a wormhole: catenoid

    Dandoloff, Rossen; Jensen, Bjorn

    2009-01-01

    We show that a two dimensional wormhole geometry is equivalent to a catenoid, a minimal surface. We then obtain the curvature induced geometric potential and show that the ground state with zero energy corresponds to a reflectionless potential. By introducing an appropriate coordinate system we also obtain bound states for different angular momentum channels. Our findings can be realized in suitably bent bilayer graphene sheets with a neck or in a honeycomb lattice with an array of dislocations or in nanoscale waveguides in the shape of a catenoid.

  11. CSR Interaction for a 2D Energy-Chirped Bunch on a General Orbit

    When an electron bunch with initial linear energy chirp traverses a bunch compression chicane, the bunch interacts with itself via coherent synchrotron radiation (CSR) and space charge force. The effective longitudinal CSR force for such kind of 2D bunch on a circular orbit has been analyzed earlier (1). In this paper, we present the analytical results of the effective longitudinal CSR force for a 2D energy-chirped bunch going through a general orbit, which includes the entrance and exit of a circular orbit. In particular, we will show the behavior of the force in the last bend of a chicane when the bunch is under extreme compression. This is the condition when bifurcation of bunch phase space occurs in many CSR measurements. (1) R. Li, Phys. Rev. ST Accel. Beams 11, 024401 (2008)

  12. Direct control of the small-scale energy balance in 2D fluid dynamics

    Frank, Jason; Leimkuhler, Ben; Myerscough, Keith

    2015-01-01

    We explore the direct modification of the pseudo-spectral truncation of 2D, incompressible fluid dynamics to maintain a prescribed kinetic energy spectrum. The method provides a means of simulating fluid states with defined spectral properties, for the purpose of matching simulation statistics to given information, arising from observations, theoretical prediction or high fidelity simulation. In the scheme outlined here, Nos\\'{e}-Hoover thermostats, commonly used in molecular dynamics, are in...

  13. Effect of translational energy on the reactions involving excited N(2D) and Cl2

    Studies are reported on the effect of translational energy on the chemical mechanisms for collisional deactivation of electronically excited recoil 13N(2D) atoms by Cl2. These studies were carried out in gas baths of 99.9, 99.0 and 90.0 mol percent of neon relative to the combined concentrations of the Cl2 quenching gas, and an additional probe reagent. N2 and NO were selected as probe reagents for their ability to remove the 13N-atoms as the 13NN product state-selectively and nonselectively, respectively. The behavior of recoil 13N(2D) atoms with Cl2 was indirectly monitored through the dependence of the 13NN yield on halogen quencher concentration. In turn, the effect of translational energy on this behavior was revealed by comparing the dependence of this yield on Cl2 between different bath gas concentrations. The observed results showed that thermalized 13N(2D) atoms behaved predictably with Cl2 in that 13NCl(X3Σ-) was formed. In the absence of secondary reactions, as was the case when Cl2 + N2 mixtures were used, the halonitrene radical dissociated to the ground-state atoms. However, its quantitative conversion to 13NNO could be seen in the presence of trace concentrations of NO. At higher translational energies, the transient halonitrene concentration was greatly reduced. This change was not attributed to its increased reactivity towards Cl2, but rather to a change in the primary reaction involving 13N(2D) and Cl2 which yielded an intermediate other than the halonitrene. (orig.)

  14. Achieving energy efficiency in LTE with joint D2D communications and green networking techniques

    Yaacoub, Elias E.

    2013-07-01

    In this paper, the joint operation of cooperative device-to-device (D2D) communications and green cellular communications is investigated. An efficient approach for grouping mobile terminals (MTs) into cooperative clusters is described. In each cluster, MTs cooperate via D2D communications to share content of common interest. Furthermore, an energy-efficient technique for putting BSs in sleep mode in an LTE cellular network is presented. Finally, both methods are combined in order to ensure green communications for both the users\\' MTs and the operator\\'s BSs. The studied methods are investigated in the framework of OFDMA-based state-of-the-art LTE cellular networks, while taking into account intercell interference and resource allocation. © 2013 IEEE.

  15. Predicting treatment response in Schizophrenia: the role of stratal and frontal dopamine D2/D3 receptor binding potential

    Wulff, Sanne; Nørbak-Emig, Henrik; Nielsen, Mette Ødegaard;

    2014-01-01

    the ligand [123]IBZM (123labeled iodbenzamid) to examine the binding potential (BP) of dopamine D2/D3 receptors in striatum. Patients were treated with amisulpride for six weeks. In the EPIcohort we included 25 patients. The ligand [123I]epidepride was used for quantification of extrastriatal dopamine...

  16. 2D MEMS electrostatic cantilever waveguide scanner for potential image display application

    Gu Kebin

    2015-01-01

    Full Text Available This paper presents the current status of our micro-fabricated SU-8 2D electrostatic cantilever waveguide scanner. The current design utilizes a monolithically integrated electrostatic push-pull actuator. A 4.0 μm SU-8 rib waveguide design allows a relatively large core cross section (4μm in height and 20 μm in width to couple with existing optical fiber and a broad band single mode operation (λ= 0.7μm to 1.3μm with minimal transmission loss (85% to 87% output transmission efficiency with Gaussian beam profile input. A 2D scanning motion has been successfully demonstrated with two fundamental resonances found at 202 and 536 Hz in vertical and horizontal directions. A 130 μm and 19 μm, corresponding displacement and 0.062 and 0.009 rad field of view were observed at a +150V input. Beam divergence from the waveguide was corrected by a focusing GRIN lens and a 5μm beam diameter is observed at the focal plane. The transmission efficiency is low (~10% and cantilever is slightly under tensile residual stress due to inherent imperfection in the process and tooling in fabrication. However, 2D light scanning pattern was successfully demonstrated using 1-D push-pull actuation.

  17. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-01-01

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of “smart” objects disseminated from the largest “Smart City” to the smallest “Smart Home”. In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in “smart” environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection. PMID:27338385

  18. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications

    Antonino Orsino

    2016-06-01

    Full Text Available Fifth Generation (5G wireless systems are expected to connect an avalanche of “smart” objects disseminated from the largest “Smart City” to the smallest “Smart Home”. In this vision, Long Term Evolution-Advanced (LTE-A is deemed to play a fundamental role in the Internet of Things (IoT arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in “smart” environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection.

  19. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications.

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-01-01

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of "smart" objects disseminated from the largest "Smart City" to the smallest "Smart Home". In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in "smart" environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection. PMID:27338385

  20. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential

    Guillamon, I.; Vieira, S.; Suderow, H.; Cordoba, R.; Sese, J.; de Teresa, J. M.; Ibarra, R.

    In two dimensional (2D) systems, theory has proposed that random disorder destroys long range correlations driving a transition to a glassy state. Here, I will discuss new insights into this issue obtained through the direct visualization of the critical behaviour of a 2D superconducting vortex lattice formed in a thin film with a smooth 1D thickness modulation. Using scanning tunneling microscopy at 0.1K, we have tracked the modification in the 2D vortex arrangements induced by the 1D thickness modulation while increasing the vortex density by three orders of magnitude. Upon increasing the field, we observed a two-step order-disorder transition in the 2D vortex lattice mediated by the appearance of dislocations and disclinations and accompanied by an increase in the local vortex density fluctuations. Through a detailed analysis of correlation functions, we find that the transition is driven by the incommensurate 1D thickness modulation. We calculate the critical points and exponents and find that they are well above theoretical expectation for random disorder. Our results show that long range 1D correlations in random potentials enhance the stability range of the ordered phase in a 2D vortex lattice. Work supported by Spanish MINECO, CIG Marie Curie Grant, Axa Research Fund and FBBVA.

  1. Observed and Simulated Power Spectra of Kinetic and Magnetic Energy retrieved with 2D inversions

    Danilovic, S; van Noort, M; Cameron, R

    2016-01-01

    We try to retrieve the power spectra with certainty to the highest spatial frequencies allowed by current instrumentation. For this, we use 2D inversion code that were able to recover information up to the instrumental diffraction limit. The retrieved power spectra have shallow slopes extending further down to much smaller scales than found before. They seem not to show any power law. The observed slopes at subgranular scales agree with those obtained from recent local dynamo simulations. Small differences are found for vertical component of kinetic energy that suggest that observations suffer from an instrumental effect that is not taken into account.

  2. Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems

    Kaczorek Tadeusz

    2014-09-01

    Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.

  3. Characterization of a 2D soft x-ray tomography camera with discrimination in energy bands

    A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

  4. Characterization of a 2D soft x-ray tomography camera with discrimination in energy bandsa)

    Romano, A.; Pacella, D.; Mazon, D.; Murtas, F.; Malard, P.; Gabellieri, L.; Tilia, B.; Piergotti, V.; Corradi, G.

    2010-10-01

    A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

  5. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications.

    Dang, Zhi-Min; Zheng, Ming-Sheng; Zha, Jun-Wei

    2016-04-01

    With the development of flexible electronic devices and large-scale energy storage technologies, functional polymer-matrix nanocomposites with high permittivity (high-k) are attracting more attention due to their ease of processing, flexibility, and low cost. The percolation effect is often used to explain the high-k characteristic of polymer composites when the conducting functional fillers are dispersed into polymers, which gives the polymer composite excellent flexibility due to the very low loading of fillers. Carbon nanotubes (CNTs) and graphene nanosheets (GNs), as one-dimensional (1D) and two-dimensional (2D) carbon nanomaterials respectively, have great potential for realizing flexible high-k dielectric nanocomposites. They are becoming more attractive for many fields, owing to their unique and excellent advantages. The progress in dielectric fields by using 1D/2D carbon nanomaterials as functional fillers in polymer composites is introduced, and the methods and mechanisms for improving dielectric properties, breakdown strength and energy storage density of their dielectric nanocomposites are examined. Achieving a uniform dispersion state of carbon nanomaterials and preventing the development of conductive networks in their polymer composites are the two main issues that still need to be solved in dielectric fields for power energy storage. Recent findings, current problems, and future perspectives are summarized. PMID:26865507

  6. A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method

    McPherson, Allen L. [Los Alamos National Laboratory; Knoll, Dana A. [Los Alamos National Laboratory; Cieren, Emmanuel B. [Los Alamos National Laboratory; Feltman, Nicolas [Los Alamos National Laboratory; Leibs, Christopher A. [Los Alamos National Laboratory; McCarthy, Colleen [Los Alamos National Laboratory; Murthy, Karthik S. [Los Alamos National Laboratory; Wang, Yijie [Los Alamos National Laboratory

    2012-09-10

    Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

  7. Direct control of the small-scale energy balance in 2D fluid dynamics

    Frank, Jason; Myerscough, Keith

    2014-01-01

    We explore the direct modification of the pseudo-spectral truncation of 2D, incompressible fluid dynamics to maintain a prescribed kinetic energy spectrum. The method provides a means of simulating fluid states with defined spectral properties, for the purpose of matching simulation statistics to given information, arising from observations, theoretical prediction or high fidelity simulation. In the scheme outlined here, Nos\\'e-Hoover thermostats, commonly used in molecular dynamics, are introduced as feedback controls applied to energy shells of the Fourier-discretized Navier-Stokes equations. As we demonstrate in numerical experiments, the dynamical properties (quantified using autocorrelation functions) are only modestly perturbed by our device, while ensemble dispersion is significantly enhanced in comparison with simulations of a corresponding truncation incorporating hyperviscosity.

  8. Unsteady 2D potential-flow forces on a thin variable geometry airfoil undergoing arbitrary motion

    Gaunaa, M.

    2006-01-01

    In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by itscamberline as in classic thin-airfoil theory...... using an indicial function approach, making the practical calculation of the aerodynamic response numerically very efficient by use ofDuhamel superposition. Furthermore, the indicial function expressions for the time-lag terms are formulated in their equivalent state-space form, allowing for use...... of the present theory in problems employing the eigenvalue approach, such as stabilityanalysis. The analytical expressions for the forces simplify to all previously known steady and unsteady thin-airfoil solutions. Apart from the obvious applications within active load control/reduction, the current theory can...

  9. Unsteady 2D potential-flow forces and a thin variable geometry airfoil undergoing arbitrary motion

    Gaunaa, M.

    2006-07-15

    In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by its camberline as in classic thin-airfoil theory, and the deflection of the airfoil is given by superposition of chordwise deflection mode shapes. It is shown from the expressions for the forces, that the influence from the shed vorticity in the wake is described by the same time-lag for all chordwise positions on the airfoil. This time-lag term can be approximated using an indicial function approach, making the practical calculation of the aerodynamic response numerically very efficient by use of Duhamel superposition. Furthermore, the indicial function expressions for the time-lag terms are formulated in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the forces simplify to all previously known steady and unsteady thin-airfoil solutions. Apart from the obvious applications within active load control/reduction, the current theory can be used for various applications which up to now have been possible only using much more computational costly methods. The propulsive performance of a soft heaving propulsor, and the influence of airfoil camberline elasticity on the flutter limit are two computational examples given in the report that highlight this feature. (au)

  10. Potential energy savings

    Schultz, Jørgen Munthe

    1996-01-01

    This chapter describes the chosen methods for estimating the potential energy savings if ordinary window glazing is exchanged with aerogel glazing as well as commercial low-energy glazings.......This chapter describes the chosen methods for estimating the potential energy savings if ordinary window glazing is exchanged with aerogel glazing as well as commercial low-energy glazings....

  11. On free energy of 2-d black hole in bosonic string theory

    Trying to interpret recent matrix model results (hep-th/0101011) we discuss computation of classical free energy of exact dilatonic 2-d black hole from the effective action of string theory. The euclidean space-time action evaluated on the black hole background is divergent due to linear dilaton vacuum contribution, and its finite part depends on a subtraction procedure. The thermodynamic approach based on subtracting the vacuum contribution for fixed values of temperature and dilaton charge at the 'wall' gives (as in the leading-order black hole case) S=M/T for the entropy and zero value for the free energy F. We suggest that in order to establish a correspondence with a non-vanishing matrix model result for F one may need an alternative reparametrization-invariant subtraction procedure using analogy with non-critical string theory (i.e. replacing the spatial coordinate by the dilaton field). The subtraction of the dilaton divergence then produces a finite value for the free energy. We also propose a microscopic estimate for the entropy and energy of the black hole based on the contribution of non-singlet states of the matrix model. (author)

  12. The 2-D and 3-D time marching transonic potential flow method for propfans

    Williams, Marc H.

    1988-01-01

    Recent efforts concentrated on the development of aerodynamic tools for the analysis of rotors at transonic speeds and of configurations involving relative rotation. Three distinct approaches were taken: (1) extension of the lifting surface method of Williams and Hwang (1986) to relative rotation; (2) development of a time marching linear potential method for counter rotation; and (3) development of 2 and 3 dimensional finite volume potential flow schemes for single rotation. Results from each of these approaches are described.

  13. Machine Learning Energies of 2 M Elpasolite (ABC$_2$D$_6$) Crystals

    Faber, Felix; von Lilienfeld, O Anatole; Armiento, Rickard

    2015-01-01

    Elpasolite is the predominant quaternary crystal structure (AlNaK$_2$F$_6$ prototype) reported in the Inorganic Crystal Structure Database. We have developed a machine learning model to calculate density functional theory quality formation energies of all the 2 M pristine ABC$_2$D$_6$ elpasolite crystals which can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching 0.1 eV/atom for a training set consisting of 10 k crystals. Important bonding trends are revealed, fluoride is best suited to fit the coordination of the D site which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of elements A and B is very small on average. Low formation energies result from A and B being late elements from group (II), C being a late (I) element, and D being fluoride. Out of 2 M crystals, the three degenerate pairs CaSrCs$_2$F$_6$/SrCaCs$_2$F$_6$, CaSrRb$_2$F$_6$/SrCaRb$_2$F$_6$ and CaBaCs$_2$F$_6$/BaCaCs$_2$F$_6$ yield ...

  14. Vibrational mode and collision energy effects on reaction of H2CO+ with C2D4

    We report the effects of collision energy (Ecol) and five different H2CO+ vibrational modes on the reaction of H2CO+ with C2D4 over the center-of-mass Ecol range from 0.1 to 2.1 eV. Properties of various complexes and transition states were also examined computationally. Seven product channels are observed. Charge transfer (CT) has the largest cross section over the entire energy range, substantially exceeding the hard sphere cross section at high energies. Competing with CT are six channels involving transfer of one or more hydrogen atoms or protons and one involving formation of propanal, followed by hydrogen elimination. Despite the existence of multiple deep wells on the potential surface, all reactions go by direct mechanisms, except at the lowest collision energies, where short-lived complexes appear to be important. Statistical complex decay appears adequate to account for the product branching at low collision energies, however, even at the lowest energies, the vibrational effects are counter to statistical expectations. The pattern of Ecol and vibrational mode effects provide insight into factors that control reaction and interchannel competition

  15. Power Versus Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks

    Zhang, Yanyan; Han, Weijia; Li, Di; Zhang, Ping; Cui, Shuguang

    2015-12-01

    Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem.

  16. 2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors.

    Kan, Kan; Wang, Lei; Yu, Peng; Jiang, Baojiang; Shi, Keying; Fu, Honggang

    2016-05-21

    Two-dimensional (2D) quasi-ordered nitrogen-enriched porous carbon (QNPC) nanohybrids, with the characteristics of an ultrathin graphite nanosheet framework and thick quasi-ordered nitrogen-doped carbon cladding with a porous texture, have been synthesized via an in situ polymerization assembly method. In the synthesis, the expandable graphite (EG) is enlarged by an intermittent microwave method, and then aniline monomers are intercalated into the interlayers of the expanded EG with the assistance of a vacuum. Subsequently, the intercalated aniline monomers could assemble on the interlayer surface of the expanded EG, accompanied by the in situ polymerization from aniline monomers to polyaniline. Meanwhile, the expanded EG could be exfoliated to graphite nanosheets. By subsequent pyrolysis and activation processes, the QNPC nanohybrids could be prepared. As supercapacitor electrodes, a typical QNPC12-700 sample derived from the precursor containing an EG content of 12%, with a high level of nitrogen doping of 5.22 at%, offers a high specific capacitance of 305.7 F g(-1) (1 A g(-1)), excellent rate-capability and long-term stability. Notably, an extremely high energy density of 95.7 Wh kg(-1) at a power density of 449.7 W kg(-1) in an ionic liquid electrolyte can be achieved. The unique structural features and moderate heteroatom doping of the QNPC nanohybrids combines electrochemical double layer and faradaic capacitance contributions, which make these nanohybrids ideal candidates as electrode materials for high-performance energy storage devices. PMID:27122446

  17. Compressible Subsonic Potential Flow Past a 2D Given Sharp Angular Unbounded Domain

    Hui YANG

    2013-01-01

    In this paper,we focus on the two-dimensional subsonic flow problem around an infinite long ramp.The flow is assumed to be steady,isentropic and irrotational,namely,the movement of the flow is described by a second elliptic equation.By the use of a separation variable method,StrumLiouville theorem and scaling technique,we show that a nontrivial subsonic flow around the infinite long ramp does not exist under some certain assumptions on the potential flow with a low Mach number.

  18. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart. PMID:23366661

  19. Newton-Krylov-Schwarz algorithms for the 2D full potential equation

    Cai, Xiao-Chuan [Univ. of Colorado, Boulder, CO (United States); Gropp, W.D. [Argonne National Lab., IL (United States); Keyes, D.E. [Old Dominion Univ. Norfolk, VA (United States)] [and others

    1996-12-31

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The main algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, can be made robust for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report favorable choices for numerical convergence rate and overall execution time on a distributed-memory parallel computer.

  20. Features of the interaction of hydroxyl and methyl tops in the ethanol molecule: 2D-calculation of the torsion energy levels

    Geometric parameters and vibrational spectra of the trans- and gauche-conformers of the ethanol molecule were calculated using the B3LYP/cc-pVQZ and B3LYP/acc-pVQZ approximations. 2D potential energy surfaces for internal rotation of the hydroxyl and methyl tops were built. Kinetic parameters associated with torsion coordinates were calculated using Wilson's s vectors at the same 2D grid nodes at which the potential energy values were found. Features of the kinematic and force interaction of the two tops were analyzed. Energies of torsion levels and frequencies of torsional vibrations of CH3 and OH groups were calculated. Good agreement between the calculated (199.8 cm -1 ) and experimental (202.6 cm -1 ) values for the fundamental frequency of OH torsional vibrations was achieved. Essential differences in the corresponding values for the fundamental torsional vibrations of CH3 groups were analyzed. (authors)

  1. 2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors

    Kan, Kan; Wang, Lei; Yu, Peng; Jiang, Baojiang; Shi, Keying; Fu, Honggang

    2016-05-01

    Two-dimensional (2D) quasi-ordered nitrogen-enriched porous carbon (QNPC) nanohybrids, with the characteristics of an ultrathin graphite nanosheet framework and thick quasi-ordered nitrogen-doped carbon cladding with a porous texture, have been synthesized via an in situ polymerization assembly method. In the synthesis, the expandable graphite (EG) is enlarged by an intermittent microwave method, and then aniline monomers are intercalated into the interlayers of the expanded EG with the assistance of a vacuum. Subsequently, the intercalated aniline monomers could assemble on the interlayer surface of the expanded EG, accompanied by the in situ polymerization from aniline monomers to polyaniline. Meanwhile, the expanded EG could be exfoliated to graphite nanosheets. By subsequent pyrolysis and activation processes, the QNPC nanohybrids could be prepared. As supercapacitor electrodes, a typical QNPC12-700 sample derived from the precursor containing an EG content of 12%, with a high level of nitrogen doping of 5.22 at%, offers a high specific capacitance of 305.7 F g-1 (1 A g-1), excellent rate-capability and long-term stability. Notably, an extremely high energy density of 95.7 Wh kg-1 at a power density of 449.7 W kg-1 in an ionic liquid electrolyte can be achieved. The unique structural features and moderate heteroatom doping of the QNPC nanohybrids combines electrochemical double layer and faradaic capacitance contributions, which make these nanohybrids ideal candidates as electrode materials for high-performance energy storage devices.Two-dimensional (2D) quasi-ordered nitrogen-enriched porous carbon (QNPC) nanohybrids, with the characteristics of an ultrathin graphite nanosheet framework and thick quasi-ordered nitrogen-doped carbon cladding with a porous texture, have been synthesized via an in situ polymerization assembly method. In the synthesis, the expandable graphite (EG) is enlarged by an intermittent microwave method, and then aniline monomers are

  2. Automatic 3D-to-2D registration for CT and dual-energy digital radiography for calcification detection

    Chen, Xiang; Gilkeson, Robert C.; Fei, Baowei

    2007-01-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DEDR). CT is an established tool for the detection of cardiac calcification. DEDR could be a cost-effective alternative screening tool. In order to utilize CT as the “gold standard” to evaluate the capability of DEDR images for the detection and localization of calcium, we developed an automatic, intensity-based 3D-to-2D registration method...

  3. On the potential of 2-D-Video Disdrometer technique to measure micro physical parameters of solid precipitation

    F. Bernauer

    2015-03-01

    Full Text Available Detailed characterization and classification of precipitation is an important task in atmospheric research. Line scanning 2-D-video disdrometer technique is well established for rain observations. The two orthogonal views taken of each hydrometeor passing the sensitive area of the instrument qualify this technique especially for detailed characterization of non symmetric solid hydrometeors. However, in case of solid precipitation problems related to the matching algorithm have to be considered and the user must be aware of the limited spacial resolution when size and shape descriptors are analyzed. This work has the aim of clarifying the potential of 2-D-video disdrometer technique in deriving size, velocity and shape parameters from single recorded pictures. The need of implementing a matching algorithm suitable for mixed and solid phase precipitation is highlighted as an essential step in data evaluation. For this purpose simple reproducible experiments with solid steel spheres and irregularly shaped styrofoam particles are conducted. Self-consistency of shape parameter measurements is tested in 40 cases of real snow fall. As result it was found, that reliable size and shape characterization with a relative standard deviation of less than 5% is only possible for particles larger than 1 mm. For particles between 0.5 and 1.0 mm the relative standard deviation can grow up to 22% for the volume, 17% for size parameters and 14% for shape descriptors. Testing the adapted matching algorithm with a reproducible experiment with styrofoam particles a mismatch probability of less than 2.5% was found. For shape parameter measurements in case of real solid phase precipitation the 2DVD shows self-consistent behavior.

  4. Structural modelling and testing of failed high energy pipe runs: 2D and 3D pipe whip

    Reid, S.R., E-mail: steve.reid@abdn.ac.uk [School of Engineering, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Wang, B.; Aleyaasin, M. [School of Engineering, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2011-05-15

    The sudden rupture of a high energy piping system is a safety-related issue and has been the subject of extensive study and discussed in several industrial reports (e.g. ). The dynamic plastic response of the deforming pipe segment under the blow-down force of the escaping liquid is termed pipe whip. Because of the potential damage that such an event could cause, various geometric and kinematic features of this phenomenon have been modelled from the point of view of dynamic structural plasticity. After a comprehensive summary of the behaviour of in-plane deformation of pipe runs that deform in 2D in a plane, the more complicated case of 3D out-of-plane deformation is discussed. Both experimental studies and modelling using analytical and FE methods have been carried out and they show that, for a good estimate of the 'hazard zone' when unconstrained pipe whip motion could occur, a large displacement analysis is essential. The classical, rigid plastic, small deflection analysis (e.g. see ), is valid for estimating the initial failure mechanisms, however it is insufficient for describing the details and consequences of large deflection behaviour. - Highlights: > Dynamic plastic response of piping system under extreme loading (fluid escape). > Two and three dimensional analysis of the pipe whipping phenomena. > Comparison between theory and the experiments. > Determination of the Hazard Zone (HZ) and safety-related issues.

  5. Simple Fabrication Process for 2D ZnO Nanowalls and Their Potential Application as a Methane Sensor

    Zhan-Shuo Hu

    2013-03-01

    Full Text Available Two-dimensional (2D ZnO nanowalls were prepared on a glass substrate by a low-temperature thermal evaporation method, in which the fabrication process did not use a metal catalyst or the pre-deposition of a ZnO seed layer on the substrate. The nanowalls were characterized for their surface morphology, and the structural and optical properties were investigated using scanning electron microscopy (SEM, X-ray diffraction (XRD, transmission electron microscopy (TEM, and photoluminescence (PL. The fabricated ZnO nanowalls have many advantages, such as low growth temperature and good crystal quality, while being fast, low cost, and easy to fabricate. Methane sensor measurements of the ZnO nanowalls show a high sensitivity to methane gas, and rapid response and recovery times. These unique characteristics are attributed to the high surface-to-volume ratio of the ZnO nanowalls. Thus, the ZnO nanowall methane sensor is a potential gas sensor candidate owing to its good performance.

  6. Potential energy for quarks

    It is argued on theoretical and phenomenological grounds that confinement of quarks is intrinsically a many-body interaction. The Born-Oppenheimer approximation to the bag model is shown to give rise to a static potential energy that consists of a sum of two-body Coulomb terms and a many-body confining term. Following the success of this potential in heavy Q anti Q systems it is being applied to Q2 anti Q2. Preliminary calculations suggest that dimeson bound states with exotic flavor, such as bb anti s anti s, exist. 13 refs., 5 figs

  7. Charge transfer coefficients for the O+/2D/ + N2 and O+/2D/ + O2 excited ion reactions at thermal energy. [from ionospheric observations

    Johnsen, R.; Biondi, M. A.

    1980-01-01

    An investigation of the reactions of metastable O(+) ions and O2 using drift tube-mass spectrometer techniques is presented. It was shown that ordinary charge transfer is the dominant reaction branch in both cases; it occurs with large rate coefficients, k(N2) = (8 + or - 2) x 10 to the -10th cu cm/s and k(O2) = (7 + or - 2) x 10 to the -10th cu cm/s, at an effective ion temperature of about 550 K. The reaction He(+) + O2 is used as a source of metastable O(+) ions, and evidence is presented that the O(+) ions so produced are in the 2D state rather than the 2P state. The results are compared with previous measurements, and inferences drawn from ionospheric observations.

  8. An Experimental Study of the Potential Biological Effects Associated with 2-D Shear Wave Elastography on the Neonatal Brain.

    Li, Changtian; Zhang, Changsheng; Li, Junlai; Cao, Xiaolin; Song, Danfei

    2016-07-01

    2-D Shear wave elastography (SWE) imaging is widely used in clinical practice, and some researchers have applied this technique in the evaluation of neonatal brains. However, the immediate and long-term impacts of dynamic radiation force exposure on the neonatal central nervous system remain unknown. In this study, we exposed neonatal mice to 2-D SWE scanning for 10 min, 20 min and 30 min under diagnostic mode (mechanical index [MI]: 1.3; thermal index [TI]: 0.5), respectively. For the control group, the neonatal mice were sham irradiated for 30 min with the machine powered off. Their brains were collected and analyzed using histologic staining and western blot analysis at 24 h and 3 mo after the 2-D SWE scanning. The Morris water maze (MWM) test was used to assess learning and memory function of the mice at 3 mo of age. The results indicated that using 2-D SWE in evaluating brains of neonatal mice does not cause detectable histologic changes, nor does it have long-term effects on their learning and memory abilities. However, the PI3 K/AKT/mTOR pathway was disturbed when the 2-D SWE scanning lasted for more than 30 min, and the expression of p-PKCa was suppressed by 10 min or more in 2-D SWE scanning. Although these injuries may be self-repaired as the mice grow, more attention should be paid to the scanning duration when applying 2-D-SWE elastography in the assessment of neonatal brains. PMID:27112914

  9. Operator product expansion of the energy momentum tensor in 2D conformal field theories on manifolds with boundary

    Starting from the well-known expression for the trace anomaly we derive the T.T operator product expansion of the energy-momentum tensor in 2D conformal theories defined in the upper halfplane without making use of the additional condition of no energy-momentum flux across the boundary. The OPE turns out to be the same as in the absence of the boundary. For this result it is crucial that the trace anomaly is proportional to the Gauss-Bonnet density. Some relations to the σ-model approach for open strings are discussed. (orig.)

  10. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Akhtar, Parveen; Garab, Győző; Lambrev, Petar H., E-mail: lambrev@brc.hu [Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged (Hungary)

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  11. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state

  12. Enhancement of low-energy electron emission in 2D radioactive films

    Pronschinske, A.; Pedevilla, P.; Murphy, C. J.; Lewis, E. A.; Lucci, F. R.; Brown, G.; Pappas, G.; Michaelides, A.; Sykes, E. C.

    2015-01-01

    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist...

  13. Multiscale Equatorial Electrojet Turbulence: Energy Conservation, Coupling, and Cascades in a Baseline 2-D Fluid Model

    Hassan, Ehab; Morrison, P J; Horton, W

    2016-01-01

    Progress in understanding the coupling between plasma instabilities in the equatorial electrojet based on a unified fluid model is reported. A deeper understanding of the linear and nonlinear evolution and the coupling of the gradient-drift and Farley-Buneman instabilities is achieved by studying the e?ect of di?erent combinations of the density-gradient scale-lengths (Ln) and cross-?eld (E?B) drifts on the plasma turbulence. Mechanisms and channels of energy transfer are illucidated for these multiscale instabilities. Energy for the uni?ed model is examined, including the injected, conservative redistribution (between ?elds and scales), and ultimate dissipation. Various physical mechanisms involved in the energetics are categorized as sources, sinks, nonlinear transfer, and coupling to show that the system satisfies the fundamental law of energy Oonservation. The physics of the nonlinear transfer terms is studied to identify their roles in producing energy cascades { the transference of energy from the domin...

  14. Predicting treatment response in schizophrenia: The role of striatal and frontal dopamine D2/D3 receptor binding potential

    Nørbak, Henrik; Wulff, Sanne; Nielsen, Mette Ødegaard;

    included 25 patients. The ligand [123I]epidepride was used for quantification of extrastriatal dopamine D2/D3 receptors. Patients were randomised to twelve weeks of treatment with either risperidone or zuclopenthixol. Results: In the IBZMcohort the mean PANSS total score was 79 at baseline and 65 at follow...

  15. Development of Rotordynamics Program Based on the 2D Finite Element Method for Flywheel Energy Storage System

    Gu, Dong Sik; Kim, Jae Gu; Kim, Hyo Jung; Choi, Byeong Keun [Gyeongsang National University, Jinju (Korea, Republic of); Bae, Yong Cae; Lee, Wook Ryun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-11-15

    Flywheel energy storage system (FESS) is defined as a high speed rotating flywheel system that can save surplus electric power. The FESS is proposed as an efficient energy storage system because it can accumulate a large amount of energy when it is operated at a high rotating speed and no mechanical problems are encountered. The FESS consists of a shaft, flywheel, motor/generator, bearings, and case. It is difficult to simulate rotor dynamics using common structure simulation programs because these programs are based on the 3D model and complex input rotating conditions. Therefore, in this paper, a program for the FESS based on the 2D FEM was developed. The 2D FEM can model easier than 3D, and it can present the multi-layer rotor with different material each other. Stiffness changing of the shaft caused by shrink fitting of the hub can be inputted to get clear solving results. The results obtained using the program were compared with those obtained using the common programs to determine any errors.

  16. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  17. On the impact of D2D traffic offloading on energy efficiency in green LTE-A HetNets

    Yaacoub, Elias E.

    2014-08-11

    In this paper, the interplay between cooperative device-to-device (D2D) communications and green cellular communications in the long term evolution (LTE) and LTE-advanced (LTE-A) cellular systems is investigated. An efficient approach for grouping mobile terminals (MTs) into cooperative clusters is described. In each cluster, MTs cooperate via D2D communications to share content of common interest. In addition, an energy-efficient approach for putting base stations in sleep mode in an LTE-A heterogeneous network is presented. Finally, both methods are combined in order to ensure green communications for both the users\\' MTs and the operator\\'s base stations. The presented techniques are investigated in the framework of orthogonal frequency division multiple access-based state-of-the-art LTE cellular networks, while taking resource allocation and intercell interference into account. Results show that the proposed approach leads to energy savings for both the operator and the MTs, while leading to enhanced quality of service for mobile users. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Multiscale Equatorial Electrojet Turbulence: Energy Conservation, Coupling, and Cascades in a Baseline 2-D Fluid Model

    Hassan, Ehab; Hatch, D. R.; Morrison, P. J.; Horton, W.

    2016-01-01

    Progress in understanding the coupling between plasma instabilities in the equatorial electrojet based on a unified fluid model is reported. A deeper understanding of the linear and nonlinear evolution and the coupling of the gradient-drift and Farley-Buneman instabilities is achieved by studying the e?ect of di?erent combinations of the density-gradient scale-lengths (Ln) and cross-?eld (E?B) drifts on the plasma turbulence. Mechanisms and channels of energy transfer are illucidated for thes...

  19. Coexistence, Interfacial Energy and the Fate of Microemulsions of 2D Dipolar Bosons

    Boninsegni, Massimo

    The superfluid-crystal quantum phase transition of a system of purely repulsive dipolar bosons in two dimensions has been the subject of a lot of theoretical study, mainly because of some intriguing predictions by Spivak and Kivelson (2004) regarding an exotic, intermediate ''microemulsion'' that should appear at low temperature between the crystal and the superfluid. We investigated this scenario by means of Quantum Monte Carlo simulations at zero temperature, determined freezing and melting densities, and estimated the energy per unit length of a macroscopic interface separating the coexisting crystal and superfluid phases. The results rule out quantitatively the microemulsion scenario for any physical realization of this system, given the exceedingly large predicted size of the bubbles. Reference: S. Moroni and M. Boninsegni, Phys. Rev. Lett. 113, 240407 (2014)

  20. Automatic 3D-to-2D registration for CT and dual-energy digital radiography for calcification detection

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DEDR). CT is an established tool for the detection of cardiac calcification. DEDR could be a cost-effective alternative screening tool. In order to utilize CT as the ''gold standard'' to evaluate the capability of DEDR images for the detection and localization of calcium, we developed an automatic, intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DEDR images. To generate digitally reconstructed radiography (DRR) from the CT volumes, we developed several projection algorithms using the fast shear-warp method. In particular, we created a Gaussian-weighted projection for this application. We used normalized mutual information (NMI) as the similarity measurement. Simulated projection images from CT values were fused with the corresponding DEDR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with a translation difference of less than 0.8 mm and a rotation difference of less than 0.2 deg. . For physical phantom images, the registration accuracy is 0.43±0.24 mm. Color overlay and 3D visualization of clinical images show that the two images registered well. The NMI values between the DRR and DEDR images improved from 0.21±0.03 before registration to 0.25±0.03 after registration. Registration errors measured from anatomic markers decreased from 27.6±13.6 mm before registration to 2.5±0.5 mm after registration. Our results show that the automatic 3D-to-2D registration is accurate and robust. This technique can provide a useful tool for correlating DEDR with CT images for screening coronary artery calcification

  1. Potential energy savings

    Schultz, Jørgen Munthe

    1996-01-01

    The background for the simulations of annual energy consumption and indoor temperature level is described.......The background for the simulations of annual energy consumption and indoor temperature level is described....

  2. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-02-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin “Si-random grating-Si” sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future.

  3. Energy and fluence measurements for fast neutrons from the 2D(d,n)3He reaction

    A neutron source with energies from 4 MeV to 6.5 MeV was produced by the 2D(d,n)3He reaction in a thin-film TiD target. The neutron energies were confirmed by using the n-γ pulse shape discriminator (PSD) technique, measuring resonance energies for neutron absorption yields for the 12C, and comparing these energies with the resonance levels on 12C(n,tot) reaction. The thickness of the neutron target was found to be 2.26 μm by comparing the measured resonance widths for the 12C(n,tot) reaction with the resonance state widths for the 12C(n,tot) reaction. The neutron fluence, which was estimated by using the (n,p) reaction in a 374-μm polyethylene terephthalate (PET) radiator with a Si surface barrier detector, was found to be 2.8 x 107 neutrons/sec/sr.

  4. Role of Pharmacogenetics in Improving the Safety of Psychiatric Care by Predicting the Potential Risks of Mania in CYP2D6 Poor Metabolizers Diagnosed With Bipolar Disorder.

    Sánchez-Iglesias, Santiago; García-Solaesa, Virginia; García-Berrocal, Belén; Sanchez-Martín, Almudena; Lorenzo-Romo, Carolina; Martín-Pinto, Tomás; Gaedigk, Andrea; González-Buitrago, José Manuel; Isidoro-García, María

    2016-02-01

    One of the main concerns in psychiatric care is safety related to drug management. Pharmacogenetics provides an important tool to assess causes that may have contributed the adverse events during psychiatric therapy. This study illustrates the potential of pharmacogenetics to identify those patients for which pharmacogenetic-guided therapy could be appropriate. It aimed to investigate CYP2D6 genotype in our psychiatric population to assess the value of introducing pharmacogenetics as a primary improvement for predicting side effects.A broad series of 224 psychiatric patients comprising psychotic disorders, depressive disturbances, bipolar disorders, and anxiety disorders was included. The patients were genotyped with the AmpliChip CYP450 Test to analyzing 33 allelic variants of the CYP2D6 gene.All bipolar patients with poor metabolizer status showed maniac switching when CYP2D6 substrates such as selective serotonin reuptake inhibitors were prescribed. No specific patterns were identified for adverse events for other disorders.We propose to utilize pharmacogenetic testing as an intervention to aid in the identification of patients who are at risk of developing affective switching in bipolar disorder treated with selective serotonin reuptake inhibitors, CYP2D6 substrates, and inhibitors. PMID:26871771

  5. Role of Pharmacogenetics in Improving the Safety of Psychiatric Care by Predicting the Potential Risks of Mania in CYP2D6 Poor Metabolizers Diagnosed With Bipolar Disorder

    Sánchez-Iglesias, Santiago; García-Solaesa, Virginia; García-Berrocal, Belén; Sanchez-Martín, Almudena; Lorenzo-Romo, Carolina; Martín-Pinto, Tomás; Gaedigk, Andrea; González-Buitrago, José Manuel; Isidoro-García, María

    2016-01-01

    Abstract One of the main concerns in psychiatric care is safety related to drug management. Pharmacogenetics provides an important tool to assess causes that may have contributed the adverse events during psychiatric therapy. This study illustrates the potential of pharmacogenetics to identify those patients for which pharmacogenetic-guided therapy could be appropriate. It aimed to investigate CYP2D6 genotype in our psychiatric population to assess the value of introducing pharmacogenetics as...

  6. Configuration space method for calculating binding energies of exciton complexes in quasi-1D/2D semiconductors

    Bondarev, Igor

    A configuration space method, pioneered by Landau and Herring in studies of molecular binding and magnetism, is developed to obtain universal asymptotic relations for lowest energy exciton complexes (trion, biexciton) in confined semiconductor nanostructures such as nanowires and nanotubes, as well as coupled quantum wells. Trions are shown to be more stable (have greater binding energy) than biexcitons in strongly confined quasi-1D structures with small reduced electron-hole masses. Biexcitons are more stable in less confined quasi-1D structures with large reduced electron-hole masses. The theory predicts a crossover behavior, whereby trions become less stable than biexcitons as the transverse size of the quasi-1D nanostructure increases, which might be observed on semiconducting carbon nanotubes of increasing diameters. This method is also efficient in calculating binding energies for trion-type electron-hole complexes formed by indirect excitons in double coupled quantum wells, quasi-2D nanostructures that show new interesting electroabsorption/refraction phenomena. Supported by DOE-DE-SC0007117.

  7. Surfaces of nanomaterials for sustainable energy applications: thin-film 2D-ACAR and PALS studies

    Barbiellini, B.; Chai, L.; Al-Sawai, W.; Eijt, S. W. H.; Mijnarends, P. E.; Schut, H.; Gao, Y.; Houtepen, A. J.; Ravelli, L.; Egger, W.; van Huis, M. A.; Bansil, A.

    2013-03-01

    Positron (e+) annihilation spectroscopy is one of only a few techniques to probe the surfaces of nanoparticles. We investigated thin films of PbSe colloidal semiconductor nanocrystals (NCs) in the range 2-10 nm as prospective highly efficient absorbers for solar cells. We compare and contrast our findings with previous studies on CdSe NCs. Evidence obtained from our e+ lifetime spectroscopy study using the PLEPS spectrometer shows that 90-95% of the implanted positrons are effectively trapped and confined at the surfaces of these NCs. The remaining 5-10% of the e+ annihilate in the relatively large oleic acid ligands, in fair agreement with the estimated positron stopping power of the PbSe nanoparticle ``core'' relative to the ligand ``shell.'' 2D-ACAR measurements on the same set of films using the low-energy e+ beam POSH showed that the e+ wavefunction at the surfaces of the PbSe NCs is more localized than for the case of CdSe NCs. Comparison with calculated e+ - e- momentum densities indicates a Pb deficiency at the surfaces of the PbSe NCs, which correlates with e+ lifetime and the NCs morphology. Work supported in part by the US Department of Energy.

  8. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage

    Peng, You-Yu

    2016-08-01

    On-chip energy storage is a rapidly evolving research topic, opening doors for integration of batteries and supercapacitors at microscales on rigid and flexible platforms. Recently, a new class of two-dimensional (2D) transition metal carbides and nitrides (so-called MXenes) has shown great promise in electrochemical energy storage applications. Here, we report the fabrication of all-MXene (Ti3C2Tx) solid-state interdigital microsupercapacitors by employing a solution spray-coating, followed by a photoresist-free direct laser cutting method. Our prototype devices consisted of two layers of Ti3C2Tx with two different flake sizes. The bottom layer was stacked large-size MXene flakes (typical lateral dimensions of 3-6 μm) serving mainly as current collectors. The top layer was made of small-size MXene flakes (~1 μm) with a large number of defects and edges as the electroactive layer responsible for energy storage. Compared to Ti3C2Tx micro-supercapacitors with platinum current collectors, the all-MXene devices exhibited much lower contact resistance, higher capacitances and better rate-capabilities. The areal and volumetric capacitances of ~27 mF cm-2 and ~337 F cm-3, respectively, at a scan rate of 20 mV s-1 were achieved. The devices also demonstrated their excellent cyclic stability, with 100% capacitance retention after 10,000 cycles at a scan rate of 50 mV s-1. This study opens up a plethora of possible designs for high-performance on-chip devices employing different chemistries, flake sizes and morphologies of MXenes and their heterostructures.

  9. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    Zhou, Shiyuan, E-mail: redaple@bit.edu.cn; Sun, Haoyu, E-mail: redaple@bit.edu.cn; Xu, Chunguang, E-mail: redaple@bit.edu.cn; Cao, Xiandong, E-mail: redaple@bit.edu.cn; Cui, Liming, E-mail: redaple@bit.edu.cn; Xiao, Dingguo, E-mail: redaple@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China NO.5 Zhongguancun South Street, Haidian District, Beijing 100081 (China)

    2015-03-31

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  10. Potential energy of dinuclear system

    The effective calculation method of the dinuclear system potential energy is proposed. The analytical expressions are obtained to calculate the nuclear part of the nucleus-nucleus potential in the double folding form. The relationship of this potential with proximity potential is found. The influence of deformation and orientation of the nuclei on the interaction potential is investigated. Due to the balance in binding energies the excited states of some nuclei can be imagined as dinuclear or trinuclear systems. (author). 27 refs.; 8 figs

  11. The potential impact of turbulent velocity fluctuations on drizzle formation in Cumulus clouds in an idealized 2D setup

    Andrejczuk, M; Blyth, A

    2015-01-01

    This article discusses a potential impact of turbulent velocity fluctuations of the air on a drizzle formation in Cumulus clouds. Two different representations of turbulent velocity fluctuations for a microphysics formulated in a Lagrangian framework are discussed - random walk model and the interpolation, and its effect on microphysical properties of the cloud investigated. Turbulent velocity fluctuations significantly enhances velocity differences between colliding droplets, especially those having small sizes. As a result drizzle forms faster in simulations including a representation of turbulence. Both representations of turbulent velocity fluctuations, random walk and interpolation, have similar effect on droplet spectrum evolution, but interpolation of the velocity does account for a possible anisotropy in the air velocity. All discussed simulations show relatively large standard deviation ($\\sim$1${\\mu}m$) of the cloud droplet distribution from the onset of cloud formation is observed. Because coalesen...

  12. The potential of biogas energy

    Biogas technology has been known about for a long time, but in recent years the interest in it has significantly increased, especially due to the higher costs and the rapid depletion of fossil fuels as well as their environmental considerations. The main objective of the present study is to investigate the potential of biogas energy in the 15 European Union (EU) countries and in Turkey, which is seeking admission to the EU and is trying to meet EU environmental standards. Biogas energy potential of the 15 EU countries is estimated to be about 800 PJ. Besides this, Turkey's annual animal waste potential is obtained to be about 11.81 million tons with a biogas energy equivalent of 53.6 PJ. It is expected that this study will be helpful in developing highly applicable and productive planning for energy policies towards the optimum utilization of biogas energy. (author)

  13. Wind energy potential in Bulgaria

    In this study, wind characteristic and wind energy potential in Bulgaria were analyzed using the wind speed data. The wind energy potential at different sites in Bulgaria has been investigated by compiling data from different sources and analyzing it using a software tool. The wind speed distribution curves were obtained by using the Weibull and Rayleigh probability density functions. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve. A technical and economic assessment has been made of electricity generation from three wind turbines having capacity of (60, 200, and 500 kW). The yearly energy output capacity factor and the electrical energy cost of kWh produced by the three different turbines were calculated

  14. LHC Physics Potential versus Energy

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  15. Off-axis electron holography with a dual-lens imaging system and its usefulness in 2-D potential mapping of semiconductor devices

    A variable magnification electron holography, applicable for two-dimensional (2-D) potential mapping of semiconductor devices, employing a dual-lens imaging system is described. Imaging operation consists of a virtual image formed by the objective lens (OL) and a real image formed in a fixed imaging plane by the objective minilens. Wide variations in field of view (100-900 nm) and fringe spacing (0.7-6 nm) were obtained using a fixed biprism voltage by varying the total magnification of the dual OL system. The dual-lens system allows fringe width and spacing relative to the object to be varied roughly independently from the fringe contrast, resulting in enhanced resolution and sensitivity. The achievable fringe width and spacing cover the targets needed for devices in the semiconductor technology road map from the 350 to 45 nm node. Two-D potential maps for CMOS devices with 220 and 70 nm gate lengths were obtained

  16. Off-axis electron holography with a dual-lens imaging system and its usefulness in 2-D potential mapping of semiconductor devices.

    Wang, Y Y; Kawasaki, M; Bruley, J; Gribelyuk, M; Domenicucci, A; Gaudiello, J

    2004-11-01

    A variable magnification electron holography, applicable for two-dimensional (2-D) potential mapping of semiconductor devices, employing a dual-lens imaging system is described. Imaging operation consists of a virtual image formed by the objective lens (OL) and a real image formed in a fixed imaging plane by the objective minilens. Wide variations in field of view (100-900 nm) and fringe spacing (0.7-6 nm) were obtained using a fixed biprism voltage by varying the total magnification of the dual OL system. The dual-lens system allows fringe width and spacing relative to the object to be varied roughly independently from the fringe contrast, resulting in enhanced resolution and sensitivity. The achievable fringe width and spacing cover the targets needed for devices in the semiconductor technology road map from the 350 to 45 nm node. Two-D potential maps for CMOS devices with 220 and 70 nm gate lengths were obtained. PMID:15450653

  17. Biowaste energy potential in Kenya

    Energy affects all aspects of national development. Hence the current global energy crisis demands greater attention to new initiatives on alternative energy sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the energy crisis through innovative use of the available but underutilised biowaste such as organic residues from maize, barley, cotton, tea and sugarcane. Biogas technology is assumed to have the capacity to economically and sustainably convert these vast amounts of biowaste into renewable energy, thereby replacing the unsustainable fossil energy sources, and reducing dependency on fossil fuels. However, the total energy potential of biogas production from crop residues available in Kenya has never been evaluated and quantified. To this end, we selected five different types of residues (maize, barley, cotton, tea and sugarcane) from Kenya and evaluated their energy potential through biomethane potential analysis at 30 C and a test time of 30 days. The specific methane yields for maize, barley, cotton, tea and sugarcane residues obtained under batch conditions were respectively 363, 271, 365, 67 and 177 m3 per tonne volatile solids. In terms of energy potential, maize, cotton and barley residues were found to be better substrates for methane production than tea and sugarcane residues and could be considered as potential substrates or supplements for methane production without compromising food security in the country. The evaluated residues have a combined national annual maximum potential of about 1313 million cubic meters of methane which represent about 3916 Gigawatt hour (GWh) of electricity and 5887 GWh of thermal energy. The combined electrical potential is equivalent to 73% of the country's annual power production of 5307 GWh. Utilization of the residues that are readily available on a 'free on site' basis for energy production could substitute the fossil fuels that

  18. Biowaste energy potential in Kenya

    Nzila, Charles; Dewulf, Jo; van Langenhove, Herman [Laboratory for Environmental and Organic Chemistry, Gent University, Copure Links 653 - B9000 Gent (Belgium); Spanjers, Henri [Lettinga Associates Foundation, Wageningen, P.O Box 500 - 6700 AM Wageningen (Netherlands); Kiriamiti, Henry [Department of Chemical and Process Engineering, Moi university, P.O. Box 3900, 30100 Eldoret (Kenya)

    2010-12-15

    Energy affects all aspects of national development. Hence the current global energy crisis demands greater attention to new initiatives on alternative energy sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the energy crisis through innovative use of the available but underutilised biowaste such as organic residues from maize, barley, cotton, tea and sugarcane. Biogas technology is assumed to have the capacity to economically and sustainably convert these vast amounts of biowaste into renewable energy, thereby replacing the unsustainable fossil energy sources, and reducing dependency on fossil fuels. However, the total energy potential of biogas production from crop residues available in Kenya has never been evaluated and quantified. To this end, we selected five different types of residues (maize, barley, cotton, tea and sugarcane) from Kenya and evaluated their energy potential through biomethane potential analysis at 30 C and a test time of 30 days. The specific methane yields for maize, barley, cotton, tea and sugarcane residues obtained under batch conditions were respectively 363, 271, 365, 67 and 177 m{sup 3} per tonne volatile solids. In terms of energy potential, maize, cotton and barley residues were found to be better substrates for methane production than tea and sugarcane residues and could be considered as potential substrates or supplements for methane production without compromising food security in the country. The evaluated residues have a combined national annual maximum potential of about 1313 million cubic meters of methane which represent about 3916 Gigawatt hour (GWh) of electricity and 5887 GWh of thermal energy. The combined electrical potential is equivalent to 73% of the country's annual power production of 5307 GWh. Utilization of the residues that are readily available on a 'free on site' basis for energy production could substitute

  19. Wind energy potential, Whitehorse, Yukon

    A discussion is presented of the nature of wind energy compared to other energy sources, and the potential for wind energy development in the Yukon. The energy density of wind is compared to that for hydraulic power water, and diesel fuel, illustrating that wind has an exceptionally low energy density in comparison with these sources. Recent development of wind power industry in Denmark is described. Merits of wind energy conversion systems (WECS) are: ability to meet some of the increasing demand for energy; unaffected by fuel price increases; environmental superiority to hydroelectric projects; and increased reliability and economics. Negative aspects relate to the large size of WECS installations, need for storage media, and aesthetic concerns. Details are presented of boreal wind research including the Haeckel Hill wind recording station, data analysis and computer simulation, and financial analyses. While the immediate cost analysis is not favourable for wind power, it should become increasingly favourable with time. 3 refs., 1 tab

  20. World potential of renewable energies

    Dessus, B.; Devin, B.; Pharabod, F.

    1991-07-01

    A comprehensive analysis, region by region, of the actually accessible renewable energies at a given horizon, is presented. The same methodology as the one employed to derive ``proven fossil energy reserves`` from ``energy resources`` is adopted, in which resources are defined by quantitative information on physical potential, while reserves take into account technical and economical accessibility. As renewable resources are fluctuating with time and are diluted in space and not readily transportable or storeable, it is necessary to consider the presence of populations or activities near enough to be able to profit by these diluted and volatile energies.

  1. Structural modelling and testing of failed high energy pipe runs: 2D and 3D pipe whip

    Reid, SR; Wang, B.; Aleyaasin, M

    2011-01-01

    Copyright @ 2011 Elsevier The sudden rupture of a high energy piping system is a safety-related issue and has been the subject of extensive study and discussed in several industrial reports (e.g. [2], [3] and [4]). The dynamic plastic response of the deforming pipe segment under the blow-down force of the escaping liquid is termed pipe whip. Because of the potential damage that such an event could cause, various geometric and kinematic features of this phenomenon have been modelled from th...

  2. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Fujihashi, Yuta; Ishizaki, Akihito

    2015-01-01

    Recently, nuclear vibrational contribution signatures in 2D electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the e...

  3. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications

  4. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Fujihashi, Yuta; Ishizaki, Akihito, E-mail: ishizaki@ims.ac.jp [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Fleming, Graham R. [Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  5. Renewable energy potential in Colombia

    Correa Guzman, Jose Luis

    2008-12-01

    Renewable energy flows are very large in comparison with humankind's use of energy. In principle, all our energy needs, both now and into the future, can be met by energy from renewable sources. After many years trying to develop the alternative energy potential of Colombia, a major effort is principally being made since 2000 to explore and assess the renewable resources of the entire country. Until 2000, the availability of conventional energy sources in Colombia prevented renewable energy exploration from reaching a higher level. However, the extreme energy crisis of 1992 - 1993 alerted the authorities and the community to the necessity for exploring alternative energy sources. This energy study is a general approach to the current and future renewable energy scenario of Colombia. It was prepared in response to the increased interest around the world and in particular in Colombia to develop its non-fossil energy prospective. It, therefore, represents a working document giving an initial impression of the possible scale of the main renewables sources as a response to the concern about energy security and fossil fuel dependence problems. The assumptions made and calculations reported may therefore be subject to revision as more information becomes available. The aim of this dissertation is not only to improve the public understanding and discussion of renewable energy matters in Colombia but also to stimulate the development and application of renewable energy, wherever they have prospects of economic viability and environmental acceptability. To achieve such goal this paper reviews several renewable technologies, their availability, contribution and feasibility in Colombia.

  6. Energy intensities: Prospects and potential

    In the previous chapter, the author described how rising activity levels and structural change are pushing toward higher energy use in many sectors and regions, especially in the developing countries. The extent to which more activity leads to greater energy use will depend on the energy intensity of end-use activities. In this chapter, the author presents an overview of the potential for intensity reductions in each sector over the next 10-20 years. It is not the author's intent to describe in detail the various technologies that could be employed to improve energy efficiency, which has been done by others (see, for example, Lovins ampersand Lovins, 1991; Goldembert et al., 1987). Rather, he discusses the key factors that will shape future energy intensities in different parts of the world, and gives a sense for the changes that could be attained if greater attention were given to accelerate efficiency improvement. The prospects for energy intensities, and the potential for reduction, vary among sectors and parts of the world. In the majority of cases, intensities are tending to decline as new equipment and facilities come into use and improvements are made on existing stocks. The effect of stock turnover will be especially strong in the developing countries, where stocks are growing at a rapid pace, and the Former East Bloc, where much of the existing industrial plant will eventually be retired and replaced with more modern facilities. While reductions in energy intensity are likely in most areas, there is a large divergence between the technical and economic potential for reducing energy intensities and the direction in which present trends are moving. In the next chapter, the author presents scenarios that illustrate where trends are pointing, and what could be achieved if improving energy efficiency were a focus of public policies. 53 refs., 4 figs., 2 tabs

  7. Guard zone based D2D underlaid cellular networks with two-tier dependence

    Chen, Zheng; Kountouris, Marios

    2015-01-01

    International audience Device-to-device (D2D) communication is under active investigation and may be a key feature in 5G networks for its great potential in improving network spectral and energy efficiency. Underlaying proximity-based D2D communication links in current cellular networks allows D2D users to opportunistically access the cellular spectrum, thus causing interference not only in the D2D tier but also between D2D and macrocell tiers. In this paper, we consider a D2D underlaid ce...

  8. Graphene based 2D-materials for supercapacitors

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  9. Vacuum expectation value of the stress-energy tensor of a 2D-gravity field and loop amplitudes for strings of noncritical dimensions

    It is shown that, in the theory of free noncritical strings, there are no modular-invariant partition functions on surfaces of higher genus. This is due to the fact that the vacuum expectation value of the stress-energy tensor is singular in the fundamental region on the complex plane in which Riemann surfaces are mapped. The above singularity is associated with a nonzero vacuum expectation value of the 2D-gravity field. 15 refs

  10. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    Shimizu, A., E-mail: akihiro@nifs.ac.jp; Ido, T.; Kato, S.; Hamada, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kurachi, M.; Makino, R. [Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nishiura, M. [Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561 (Japan); Nishizawa, A. [Pesco Corporation Limited, Toki, Gifu 509-5123 (Japan)

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  11. The potential of renewable energy

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  12. Wind Energy Potential in Bangladesh

    A.Z.A. Saifullah

    2016-07-01

    Full Text Available Bangladesh is encountering difficulties in supplying energy to maintain its economic growth. Government of Bangladesh is looking for renewable energy sources to meet up the total power demand in this country. The present study aims to assess wind energy potential in Bangladesh as a sustainable solution to overcome the energy crisis. Wind speed at six coastal zones Patenga, Cox’s Bazar, Teknaf, Char Fassion, Kuakata and Kutubdia at Bay of Bengal of Bangladesh have been analyzed. A near shore wind farm has been considered at these locations having a coastal line of 574 km. The turbines are spaced 7D apart in the prevailing wind direction, and 3D apart in the perpendicular direction, where D is rotor diameter. This near shore wind farm with an array of 5104 horizontal axis wind turbines with hub height of 100 m and rotor diameter of 75 m with a wind speed of 7 m/sec is capable to generate 1855.25 MW of electrical power. This can mitigate 55.93 per cent of energy shortage in 2016. By developing renewable energy sources it is possible to compensate 11.25 per cent of total power demand by 2020.

  13. Automatic Intensity-based 3D-to-2D Registration of CT Volume and Dual-energy Digital Radiography for the Detection of Cardiac Calcification

    Chen, Xiang; Gilkeson, Robert; Fei, Baowei

    2013-01-01

    We are investigating three-dimensional (3D) to two-dimensional (2D) registration methods for computed tomography (CT) and dual-energy digital radiography (DR) for the detection of coronary artery calcification. CT is an established tool for the diagnosis of coronary artery diseases (CADs). Dual-energy digital radiography could be a cost-effective alternative for screening coronary artery calcification. In order to utilize CT as the “gold standard” to evaluate the ability of DR images for the detection and localization of calcium, we developed an automatic intensity-based 3D-to-2D registration method for 3D CT volumes and 2D DR images. To generate digital rendering radiographs (DRR) from the CT volumes, we developed three projection methods, i.e. Gaussian-weighted projection, threshold-based projection, and average-based projection. We tested normalized cross correlation (NCC) and normalized mutual information (NMI) as similarity measurement. We used the Downhill Simplex method as the search strategy. Simulated projection images from CT were fused with the corresponding DR images to evaluate the localization of cardiac calcification. The registration method was evaluated by digital phantoms, physical phantoms, and clinical data sets. The results from the digital phantoms show that the success rate is 100% with mean errors of less 0.8 mm and 0.2 degree for both NCC and NMI. The registration accuracy of the physical phantoms is 0.34 ± 0.27 mm. Color overlay and 3D visualization of the clinical data show that the two images are registered well. This is consistent with the improvement of the NMI values from 0.20 ± 0.03 to 0.25 ± 0.03 after registration. The automatic 3D-to-2D registration method is accurate and robust and may provide a useful tool to evaluate the dual-energy DR images for the detection of coronary artery calcification. PMID:24386527

  14. Constraints on dark energy and quintessence with a comoving standard ruler applied to 2dF quasars

    Mamon, G A; Mamon, Gary A.; Roukema, Boud F.

    2002-01-01

    Structures on very large scales (> 100 Mpc) have negligible peculiar motions, and are thus roughly fixed in comoving space. We looked for significant peaks at very large separation in the two-point correlation function -- corrected for redshift selection effects -- of a well convered subsample of 2378 quasars of the recently released 10k sample of the 2dF quasar survey. Dividing our sample in three redshift intervals, we find a peak at 244/h Mpc, which is perfectly comoving for a restricted set of cosmological parameters, namely Omega_m = 0.25+/-0.15 and Omega_Lambda=0.65+/-0.35 (both at 95% confidence). Assuming a flat Universe, we constrain the quintessence parameter w_Q < -0.35 (95% confidence). We discuss the compatibility of our analysis with possible peaks in the power spectrum.

  15. A novel technique for single-shot energy-resolved 2D X-ray imaging of plasmas relevant for the Inertial Confinement Fusion

    Labate, L.; Koester, P.; Levato, T.; Gizzi, L. A.

    2012-01-01

    A novel X-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any X-ray photon energy range, over a large domain, on a single-shot basis. The device (named Energy-encoded Pinhole Camera - EPiC) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available X-ray spectral domain is only limited by the Quantum Efficiency of scientific-grade X-ray CC...

  16. Design and evaluation of a 2D array PIN photodiode bump bonded to readout IC for the low energy x-ray detector.

    Yuk, Sunwoo; Park, Shin-Woong; Yi, Yun

    2006-01-01

    A 2D array radiation sensor, consisting of an array of PIN photodiodes bump bonded to readout integrated circuit (IC), has been developed for operation with low energy X-rays. The PIN photodiode array and readout IC for this system have been fabricated. The main performance measurements are the following: a few pA-scale leakage current, 350 pF junction capacitance, 30 microm-depth depletion layer and a 250 microm intrinsic layer at zero bias. This PIN photodiode array and readout IC were fabricated using a PIN photodiode process and standard 0.35 microm CMOS technology, respectively. The readout circuit is operated from a 3.3 V single power supply. Finally, a 2D array radiation sensor has been developed using bump bonding between the PIN photodiode and the readout electronics. PMID:17946079

  17. Accretion Disks Phase Transitions 2-D or not 2-D?

    Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.

    2000-01-01

    We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.

  18. Optoelectronics with 2D semiconductors

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  19. A novel technique for single-shot energy-resolved 2D X-ray imaging of plasmas relevant for the Inertial Confinement Fusion

    Labate, L; Levato, T; Gizzi, L A

    2012-01-01

    A novel X-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any X-ray photon energy range, over a large domain, on a single-shot basis. The device (named Energy-encoded Pinhole Camera - EPiC) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available X-ray spectral domain is only limited by the Quantum Efficiency of scientific-grade X-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any X-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent ICF related experiments will be reported in order to detail the new diagnostic.

  20. A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinement fusion.

    Labate, L; Köster, P; Levato, T; Gizzi, L A

    2012-10-01

    A novel x-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any x-ray photon energy range, over a large domain, on a single-shot basis. The device (named energy-encoded pinhole camera) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available x-ray spectral domain is only limited by the quantum efficiency of scientific-grade x-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any x-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent inertial confinement fusion related experiments will be reported in order to detail the new diagnostic. PMID:23126763

  1. A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations

    Palha, Artur

    2016-01-01

    In this work we present a mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on unstructured grids. The essential ingredients to achieve this are: (i) a velocity-vorticity formulation in rotational form, (ii) a sequence of function spaces capable of exactly satisfying the divergence free nature of the velocity field, and (iii) a conserving time integrator. Proofs for the exact discrete conservation properties are presented together with numerical test cases on highly irregular grids.

  2. Photovoltaic energy potential of Quebec

    Results are presented from a study concerning the potential of photovoltaic (PV) energy in Quebec to the year 2010. The different PV applications which are or will be economically viable in Quebec for the study period are identified and evaluated in comparison with the conventional energy sources used for these applications. Two penetration scenarios are proposed. One considers little change at the level of policies established for commercialization of PV sources, and the other considers certain measures which accelerate the implementation of PV technology in certain niches. While the off-grid market is already motivated to adopt PV technology for economic reasons, it is forecast that all encouragement from lowering costs would accelerate PV sales, offering a larger purchasing power to all interested parties. Above all, lowered PV costs would open up the network market. Photovoltaics would have access to a much larger market, which will accelerate changes in the very nature of the industry and bring with it new reductions in the costs of producing PV systems. 5 refs., 1 fig., 7 tabs

  3. The Fluctuation-Dissipation Theorem of Colloidal Particle's energy on 2D Periodic Substrates: A Monte Carlo Study of thermal noise-like fluctuation and diffusion like Brownian motion

    Najafi, Amin

    2014-05-01

    Using the Monte Carlo simulations, we have calculated mean-square fluctuations in statistical mechanics, such as those for colloids energy configuration are set on square 2D periodic substrates interacting via a long range screened Coulomb potential on any specific and fixed substrate. Random fluctuations with small deviations from the state of thermodynamic equilibrium arise from the granular structure of them and appear as thermal diffusion with Gaussian distribution structure as well. The variations are showing linear form of the Fluctuation-Dissipation Theorem on the energy of particles constitutive a canonical ensemble with continuous diffusion process of colloidal particle systems. The noise-like variation of the energy per particle and the order parameter versus the Brownian displacement of sum of large number of random steps of particles at low temperatures phase are presenting a markovian process on colloidal particles configuration, too.

  4. The fluctuation-dissipation theorem of colloidal particle's energy on 2D periodic substrates: A Monte Carlo study of thermal noise-like fluctuation and diffusion like Brownian motion

    Using the Monte Carlo simulations, we have calculated mean-square fluctuations in statistical mechanics, such as those for colloids energy configuration are set on square 2D periodic substrates interacting via a long range screened Coulomb potential on any specific and fixed substrate. Random fluctuations with small deviations from the state of thermodynamic equilibrium arise from the granular structure of them and appear as thermal diffusion with Gaussian distribution structure as well. The variations are showing linear form of the Fluctuation-Dissipation Theorem on the energy of particles constitutive a canonical ensemble with continuous diffusion process of colloidal particle systems. The noise-like variation of the energy per particle and the order parameter versus the Brownian displacement of sum of large number of random steps of particles at low temperatures phase are presenting a markovian process on colloidal particles configuration, too.

  5. Energy Foundations - Potential for Ireland

    Hemmingway, Phil; Long, Michael

    2011-01-01

    With one of the highest energy dependencies in the European Union, Ireland must adapt quickly to renewable energy technologies or risk paying the penalty in the form of high energy prices in years to come. Escalating energy costs have led to a renewed interest in alternative energy technologies and ground source energy is one such resource which is being increasingly considered. This paper presents some of the practical considerations of energy foundations, evidenced from the i...

  6. Potential of renewable and alternative energy sources

    Konovalov, Vyacheslav Vasilievich; Pozharnitskaya, Olga Vyacheslavovna; Rostovshchikova, А.; Matveenko, Irina Alekseevna

    2015-01-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative a...

  7. 2D Temperature Analysis of Energy and Exergy Characteristics of Laminar Steady Flow across a Square Cylinder under Strong Blockage

    M. Ozgun Korukcu

    2015-05-01

    Full Text Available Energy and exergy characteristics of a square cylinder (SC in confined flow are investigated computationally by numerically handling the steady-state continuity, Navier-Stokes and energy equations in the Reynolds number range of Re = 10–50, where the blockage ratio (β = B/H is kept constant at the high level of β = 0.8. Computations indicated for the upstream region that, the mean non-dimensional streamwise (u/Uo and spanwise (v/Uo velocities attain the values of u/Uo = 0.840®0.879 and v/Uo = 0.236®0.386 (Re = 10®50 on the front-surface of the SC, implying that Reynolds number and blockage have stronger impact on the spanwise momentum activity. It is determined that flows with high Reynolds number interact with the front-surface of the SC developing thinner thermal boundary layers and greater temperature gradients, which promotes the thermal entropy generation values as well. The strict guidance of the throat, not only resulted in the fully developed flow character, but also imposed additional cooling; such that the analysis pointed out the drop of duct wall (y = 0.025 m non-dimensional temperature values (ζ from ζ = 0.387®0.926 (Re = 10®50 at xth = 0 mm to ζ = 0.002®0.266 at xth = 40 mm. In the downstream region, spanwise thermal disturbances are evaluated to be most inspectable in the vortex driven region, where the temperature values show decrease trends in the spanwise direction. In the corresponding domain, exergy destruction is determined to grow with Reynolds number and decrease in the streamwise direction (xds = 0®10 mm. Besides, asymmetric entropy distributions as well were recorded due to the comprehensive mixing caused by the vortex system.

  8. Renewable energy costs, potentials, barriers: Conceptual issues

    Verbruggen, Aviel, E-mail: aviel.verbruggen@ua.ac.b [University of Antwerp (Belgium); Fischedick, Manfred [Wuppertal Institute for Climate, Environment, Energy (Germany); Moomaw, William [Tufts University, Center for International Environment and Resource Policy (United States); Weir, Tony [University of the South Pacific, Fiji Islands (Fiji); Nadai, Alain [Centre International de Recherche sur nvironnement et le Developpement CIRED (France); Nilsson, Lars J. [University of Lund (Sweden); Nyboer, John [Simon Fraser University, School of Resource and Environmental Management (Canada); Sathaye, Jayant [Lawrence Berkeley Laboratory (United States)

    2010-02-15

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  9. Renewable energy costs, potentials, barriers: Conceptual issues

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  10. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10-9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×1013 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  11. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Kurebayashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Sakurai, H., E-mail: sakurail@sci.kj.yamagata-u.ac.jp [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Takahashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Doshita, N. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kikuchi, S. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Tokanai, F. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Horiuchi, K. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Tajima, Y. [Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Oe, T. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sato, T. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Gunji, S. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Inui, E. [Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kondo, K. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Iwata, N. [Dept. of Earth and Environmental Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sasaki, N. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Matsuzaki, H. [Micro Analysis Laboratory, Tandem accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kunieda, S. [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun 319-1195, Ibaraki (Japan)

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10{sup –9} PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10{sup 13} was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  12. 2D-Oide effect

    Blanco, O R; Bambade, P

    2015-01-01

    The Oide effect considers the synchrotron radiation in the final focusing quadrupole and it sets a lower limit on the vertical beam size at the Interaction Point, particularly relevant for high energy linear colliders. The theory of the Oide effect was derived considering only the radiation in the focusing plane of the magnet. This article addresses the theoretical calculation of the radiation effect on the beam size consider- ing both focusing and defocusing planes of the quadrupole, refered to as 2D-Oide. The CLIC 3 TeV final quadrupole (QD0) and beam parameters are used to compare the theoretical results from the Oide effect and the 2D-Oide effect with particle tracking in PLACET. The 2D-oide demonstrates to be important as it increases by 17% the contribution to the beam size. Further insight into the aberrations induced by the synchrotron radiation opens the possibility to partially correct the 2D-Oide effect with octupole magn

  13. Production of high energy and low flux protons using 2D(3He,p)4He for space detector calibrations

    Wang, Y. Q.; Burward-Hoy, J. M.; Tesmer, J. R.

    2014-08-01

    In this report, we want to demonstrate that besides the conventional use for elemental analysis and depth profiling by ion beam analysis (IBA), particles generated through ion-solid interactions in IBA may find other novel and important applications. Specifically, we use Rutherford backscattered and nuclear reaction produced high energy proton particles to calibrate an energetic particle subsystem (called ZEP) of the Space and Atmospheric Burst Reporting System (SABRS) at Los Alamos National Laboratory (LANL). To simulate low radiation flux in the space, we have devised an experiment that uses an ultrathin (∼51.8 nm) self-support gold foil to scatter a proton beam from a 3 MV Tandem accelerator into the ZEP subsystem. Direct backscattering from the thin gold foil produces proton particles with tunable energies of 0.2-6.0 MeV and desired counting rates of <10 kHz. To extend the proton particle energy beyond the Tandem's limit of 6 MeV, a high Q-value nuclear reaction, 2D + 3He → p + 4He + 18.352 MeV, was used. This reaction allows us to obtain as high as 25.6 MeV proton particles on our 3 MV tandem accelerator, more than 4 times as high as the accelerator's maximum proton beam energy, and has greatly extended our proton energy range for this calibration activity. Preliminary ZEP subsystem calibration results are presented.

  14. Biowaste energy potential in Kenya

    Nzila, C.; DeWulf, J.; Spanjers, H.; Kiriamiti, H.; H. Van Langenhove

    2010-01-01

    Energy affects all aspects of national development. Hence the current global energy crisis demands greater attention to new initiatives on alternative energy sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the energy crisis through innovative use of the available but underutilised biowaste such as organic residues from maize, barley, cotton, tea and sugarcane. Biogas technology is assumed to have the capa...

  15. Geothermal Energy: Tapping the Potential

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  16. Terminating Bands in {sup 98,99,100}Ru and Neutron 2d{sub 5/2} - 1g{sub 7/2} Energy Spacing

    J. Timar; J. Gizon; A. Gizon; B.M. Nyako; D. Sohler; L. Zolnai; A.J. Boston; D.T. Joss; E.S. Paul; A.T. Semple; N.J. O' Brien; C.M. Parry; I. Ragnarsson

    1999-12-31

    New high-spin bands have been established in {sup 98,99,100}Ru. Some are interpreted as terminating configurations using the Nilsson-Strutinsky cranking formalism. They are observed up to the predicted terminating states which are built from g{sub 9/2} protons and N = 3 proton holes combined with d{sub 5/2},g{sub 7/2} and h{sub 11/2} neutrons relative to a {sup 90}Zr core. The observed high-spin states assigned as terminating show systematic behavior and provide new information on the energy spacing between the 2d{sub 5/2} and 1g{sub 7/2} neutron subshells.

  17. Potential of renewable and alternative energy sources

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  18. Bedform characterization through 2D spectral analysis

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian

    energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...... characteristics using twodimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most...

  19. 2D solar modeling

    Ventura, P; Li, L; Sofia, S; Basu, S; Demarque, P

    2009-01-01

    Understanding the reasons of the cyclic variation of the total solar irradiance is one of the most challenging targets of modern astrophysics. These studies prove to be essential also for a more climatologic issue, associated to the global warming. Any attempt to determine the solar components of this phenomenon must include the effects of the magnetic field, whose strength and shape in the solar interior are far from being completely known. Modelling the presence and the effects of a magnetic field requires a 2D approach, since the assumption of radial symmetry is too limiting for this topic. We present the structure of a 2D evolution code that was purposely designed for this scope; rotation, magnetic field and turbulence can be taken into account. Some preliminary results are presented and commented.

  20. Realistic and efficient 2D crack simulation

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  1. Vertical 2D Heterostructures

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  2. Potential energy savings and thermal comfort

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed.......The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed....

  3. Energy potential of agricultural crops in Kosovo

    Primary energy mix in Kosovo with 98 % consisting of lignite and only 2 % of water is far from portfolio of primary energy sources which could contribute to a sustainable and environmental friendly energy supply of the country. In order to improve the situation, government is supporting activities in favor of upgrading of electricity production capacities based on Renewable Energy Sources. Corresponding action plans and feed in tariffs are already in place. However, prior to any investment, one needs specific results on available potential. Current study provides results of the analysis of Kosovo potential for energy production by using of agricultural crops. Study is based on national statistics on available agricultural crops in Kosovo and provides results on biomass potential of crops, corresponding energy potential and an assessment of financial cost of energy produced.

  4. Potential Water and Energy Savings from Showerheads

    Biermayer, Peter J.

    2005-09-28

    This paper estimates the benefits and costs of six water reduction scenarios. Benefits and costs of showerhead scenarios are ranked in this paper by an estimated water reduction percentage. To prioritize potential water and energy saving scenarios regarding showerheads, six scenarios were analyzed for their potential water and energy savings and the associated dollar savings to the consumer.

  5. Potential Water and Energy Savings from Showerheads

    Biermayer, Peter J.

    2005-01-01

    This paper estimates the benefits and costs of six water reduction scenarios. Benefits and costs of showerhead scenarios are ranked in this paper by an estimated water reduction percentage. To prioritize potential water and energy saving scenarios regarding showerheads, six scenarios were analyzed for their potential water and energy savings and the associated dollar savings to the consumer.

  6. Potential energy surfaces for chemical reactions

    Research into potential energy surfaces for chemical reactions at Lawrence Berkeley Laboratory during 1976 is described. Topics covered include: the fuzzy interface between surface chemistry catalysis and organometallic chemistry; potential energy surfaces for elementary fluorine hydrogen reactions; structure, energetics, and reactivity of carbenes; and the theory of self-consistent electron pairs

  7. Energy efficiency potentials and energy management practices in Swedish firms

    Backlund, Sandra; Broberg, Sarah; Ottosson, Mikael; Thollander, Patrik

    2012-01-01

    In order to improve energy efficiency and reach the EU:s 20-20-20 primary energy saving target, focus has mainly been on diffusion of technology. Previous studies have illustrated large untapped energy saving potentials from implementing energy management practices in firms. Energy management practices have large effects on energy utilization and also a short pay-back time. According to these studies, energy management practices also effect investment decisions and the outcome of investments ...

  8. Energy conservation potential in Taiwanese textile industry

    Since Taiwan lacks sufficient self-produced energy, increasing energy efficiency and energy savings are essential aspects of Taiwan's energy policy. This work summarizes the energy savings implemented by 303 firms in Taiwan's textile industry from the on-line Energy Declaration System in 2008. It was found that the total implemented energy savings amounted to 46,074 ton of oil equivalent (TOE). The energy saving was equivalent to 94,614 MWh of electricity, 23,686 kl of fuel oil and 4887 ton of fuel coal. It represented a potential reduction of 143,669 ton in carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 3848 ha plantation forest. This study summarizes energy-saving measures for energy users and identifies the areas for making energy saving to provide an energy efficiency baseline.

  9. GASAHOL: a potential energy source

    Cannon, R.J.

    1978-04-01

    The production of GASOHOL and/or a synthetic fuel using any agricultural product as a portion of a mixture with gasoline is presently held in a fanaticism/mania context by both the proponents and opponents. There is a tremendous interest in GASOHOL throughout the country as shown by the enormous amount of material that has been written on the subject both pro and con. In addition, a variety of legislation at the state and Federal levels concerning an ethanol-gasoline mix either has been passed or is pending. This extensive amount of activity has been going on for the past 3 or 4 years and yet nothing really positive has happened. One reason is the lack of capital to get started. Congress is working on this problem and, coupled with some of the state legislatures, this hurdle should soon be overcome. Another reason and/or reasons are often vociferously pointed out by the opponents - those being the poor economics of such an advanture and a negative input-output energy ratio in producing ethanol. On the economics both sides will agree that a public subsidy, probably in the form of tax credits, is necessary in order for GASOHOL to be competitive with gasoline. The amount of this subsidy varies under different assumptions and by region. Whether the production of ethanol from grain is energy-efficient or not remains a question of debate, and it is in this area that the pros and cons are in most disagreement. There are regional exceptions to the energy balance - Hawaii being one of them. Current plans in the State of Hawaii consist of utilizing molasses, a byproduct of sugar production, to product ethanol. Since molasses is a byproduct, one can supposedly start the distilling process with a zero energy input. It is generally agreed that the mixing of ethanol and gasoline is technically possible. Thus, it seems likely, that there is or will be some Federal and state money available for plant construction, and that one or more demonstration projects will be undertaken.

  10. Geothermal Energy Potential in Western United States

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  11. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in

  12. Assessment of wind energy potential in China

    Zhu Rong; Zhang De; Wang Yuedong; Xing Xuhuang; Li Zechun

    2009-01-01

    China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several ac-tivities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment (SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.

  13. Renewable energy costs, potentials, barriers. Conceptual issues

    Verbruggen, Aviel [University of Antwerp (Belgium); Fischedick, Manfred [Wuppertal Institute for Climate, Environment, Energy (Germany); Moomaw, William [Tufts University, Center for International Environment and Resource Policy (United States); Weir, Tony [University of the South Pacific, Fiji Islands (Fiji); Nadai, Alain [Centre International de Recherche sur Environnement et le Developpement CIRED (France); Nilsson, Lars J. [University of Lund (Sweden); Nyboer, John [Simon Fraser University, School of Resource and Environmental Management (Canada); Sathaye, Jayant [Lawrence Berkeley Laboratory (United States)

    2010-02-15

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies. (author)

  14. A critical appraisal of asymptotic 3D-to-2D data transformation filters and the potential of complex frequency 2.5-D modeling in seismic full waveform inversion

    Auer, L.; Greenhalgh, S. A.; Maurer, H. R.; Marelli, S.; Nuber, A.

    2012-04-01

    Seismic full waveform inversion is often based on forward modeling in the computationally attractive 2-D domain. Any solution of the 2-D cartesian wave equation inherently carries the implicit assumption of a line source extended in the out-of-plane medium invariant direction. This implies that the source energy in homogeneous media spreads over the surface of an approximately expanding cylinder, such that the wavefield amplitudes (at least in the far field) scale inversely with the square-root of distance. However, realistic point sources like explosives or airguns, fired in a 3-D medium, generate amplitudes that decay inversely with the first power of distance, since the wavefield expands quasi-spherically in all three dimensions. Usually, practitioners correct for this amplitude difference and the associated phase shift of π/4 by transforming the recorded 3-D field data to the approximate 2-D situation by using simplistic, asymptotic filter algorithms. Such filters operate on a square root of time-sample convolutional basis and implicitly assume straight ray paths and a constant velocity medium. The unsubstantiated usage of these asymptotic filters is in contradiction to their well known limitations. In this study, we present an extensive quantitative appraisal of 3D-to-2D data transformation procedures. Our analysis relies on a simple numerical modeling study, based on propagating 3-D and 2-D wavefields through 2-D media and comparing the true 2-D and the filtered 3-D synthetic data. It is shown that the filtering errors are moderate in purely acoustic situations but become substantial in complex media when arrivals overlap each other or ray paths deviate strongly from straight lines. Normalized root-mean-square deviations up to 5% and maximum relative time domain errors of up to 40% were found in high contrast media, when full elastic treatment was considered. In order to examine if this error translates into a deficient model reconstruction in full waveform

  15. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    A. TOKGÖZLÜ; O. KAYNAR; M. ALTUNÇ; M.ZONTUL; Z. ASLAN

    2013-01-01

    This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy). Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW) can pump enough water for small-scale irrigation. This study tried to ...

  16. Small animals bone density and morphometry analysis with a dual energy X-rays absorptiometry bone densitometer using a 2D digital radiographic detector

    LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. In previous papers, technical principles and patients' Bone Mineral Density (BMD) measurement performances were presented. Bone densitometers are also used on small animals for drug development. In this presentation, we show how LEXXOS can be adapted for small animals' examinations and evaluate its performances. At first, in order to take advantage of the whole area of the 20 x 20 cm2 digital radiographic detector, it has been made profit of X-Rays magnification by adapting the geometrical configuration. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the averaged total body BMD has been measured. This evaluation shows that the right order of BMD magnitude is obtained and, as expected, BMD increases on two sets until a period around puberty and the ovariectomized set presents a significant decrease after. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing useful complementary information on bone morphometry and architecture. This study shows that LEXXOS cone beam bone densitometer provides simultaneously useful quantitative and qualitative information for analysis of bone evolution on small animals. In the future, same system architecture and processing methodology can be used with higher resolution detectors in order to refine information on bone architecture. (authors)

  17. Activated sludge model No. 2d, ASM2d

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  18. Energy sector and wind energy potential in Turkey

    Turkey has very limited indigenous energy resources and has to import around 65% of primary energy to meet her needs. It is a large importer of primary energy despite having ample renewable energy sources. Turkey's vibrant economy has led to increased energy demand in recent years. This situation is expected to continue in the near future because its economy is dependent mainly on imported oil, natural gas and electricity. This paper presents the prevailing and the expected energy situation and energy demand. Wind energy potential in Turkey is also discussed. (author)

  19. 1-Aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxy)phenyl]ureas as potential inhibitors of VEGFR-2: synthesis and molecular modelling studies

    Soares, Pedro; Froufe, Hugo J. C.; Abreu, Rui M. V.; Ferreira, Isabel C. F. R.; Borges, Fernanda; Queiroz, Maria João R. P.

    2011-01-01

    Angiogenesis is a requirement for tumor growth and metastasis and occurs through several signalling pathways. One key pathway that initiates proliferation and migration of endothelial cells is signalling through the vascular endothelial growth factor receptor-2 (VEGFR-2).1 Therefore, small molecules that block this signalling pathway through inhibition of the VEGFR tyrosine kinase activity could potentially inhibit angiogenesis and tumour growth. Recently works describing thienopyrimidines2 a...

  20. Synthesis and characterization RMN 1D and 2D of the oxygenated derivatives of the 1-phenyl-3-methyl-2-pyrazoline-5-ona and their ligand potential capacity

    In this work the result of the synthesis of the 1-phenyl- 3-methyl-2-pyrazoline-5-hydroxy-4-butoxicarbonilene (Pir-C4) is presented and the products are characterized, using the microanalysis, the infrared spectroscopy, the spectroscopy NMR of H1 and C13 and the NMR in two dimensions (COSY and HMBC) in order to determine their structures. In addition, the ligand potential capacity of these products are studied to produce coordination compounds with the uranyl (UO22+). (author)

  1. Isolation and characterization of a potential process related impurity of phenazopyridine HCl by preparative HPLC followed by MS-MS and 2D-NMR spectroscopy.

    Rao, R Nageswara; Maurya, Pawan K; Raju, A Narasa

    2009-07-12

    During the process development of phenazopyridine HCl bulk drug, a potential impurity was detected in the routine impurity profiles by HPLC. Using MS-MS and multidimensional NMR techniques, the trace level impurity was unambiguously identified to be 3-phenyl-5-phenylazo-pyridine-2,6-diamine after its isolation from phenazopyridine HCl by semi-preparative HPLC. The formation of the impurity was discussed. To our knowledge, it is a novel impurity not reported elsewhere. PMID:19376664

  2. Wind energy in China: Estimating the potential

    Yuan, Jiahai

    2016-07-01

    Persistent and significant curtailment has cast concern over the prospects of wind power in China. A comprehensive assessment of the production of energy from wind has identified grid-integrated wind generation potential at 11.9–14% of China's projected energy demand by 2030.

  3. Economic potential of renewable energy sources

    The production cost, specific investment cost, total energy conversion efficiency, and power produced per m2 area are estimated for various power plant types, the assets and shortcomings of renewables are described, the problem of whether renewable sources of energy would pay is discussed, and the potential of such sources in the Czech Republic is explained. (P.A.)

  4. Timing of potential and metabolic brain energy

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho-physiologic......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho...... functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking......, consciousness and self-consciousness are so fast that their execution depends primarily on fast neurotransmission (in the millisecond range) and action-potentials. In other words: brain functioning requires primarily maximal potential energy. Metabolic brain energy is necessary to restore and maintain the...

  5. Carcinogenic potential of various energy sources

    Evaluation of the health impacts of different sources of energy should include a comparison of the potential carcinogenic effects of the radioactive and chemical substances produced by various sources. In general, these potential health effects are too small to be measured directly and are therefore estimated by extrapolation, on the basis of a linear dose-response model, from measurable effects at high dose levels. Estimates of the carcinogenic potential of various energy sources available in North America are given in this paper. For most if not all of the energy sources for which data are currently available, it would appear that the known biological benefits in terms of life expectancy greatly outweigh all the potential harm due to carcinogenic (and genetic) effects on human beings, when expressed in the same terms, i.e. life expectancy. (author)

  6. Storing unsteady energy, like photovoltaically generated electric energy, as potential energy

    Kutz, Nadja

    2012-01-01

    A proposal to store unsteady energy in potential energy via lifting masses with a rough quantitative overview. Some applications and methods to harvest the potential energy are also given. A focus is put on photovoltaically generated energy.

  7. Internal Photoemission Spectroscopy of 2-D Materials

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  8. Energy development potential: An analysis of Brazil

    This paper develops an indicator for the energy development potential (EDP) of 27 Brazilian states. This indicator uses data on a state's infrastructure and its supply of and demand for energy. The indicator measures the data for three periods: the first part of the 1990s, which is a period of low economic growth; the first part of the 2000s, which is a period of high economic growth but with a historical crisis in the Brazilian energy sector; and 2009–2011, which is a period of economic growth after the energy crisis. Using a factor analysis, we are able to identify three factors for EDP. They are the demand for energy, the supply of renewable energy, and the supply of nonrenewable energy. We use these factors to classify the Brazilian states according to their EDP and to perform an exploratory spatial data analysis (ESDA) by using the Moran indicators and the local indicators of spatial association (LISA). - Highlights: • This paper deals with the spatial dimension of the Brazilian energy sector. • We construct an index of the energy development potential for Brazilian states. • Energy issues are defined over time and space, thus have spatial dimensions. • The spatial results show that there are two well-defined spatial patterns

  9. Seismic time-lapse monitoring of potential gas hydrate dissociation around boreholes : could it be feasible? A conceptual 2D study linking geomechanical and seismic FD models

    Pecher, I.; Yang, J.; Anderson, R.; Tohidi, B.; MacBeth, C. [Heriot-Watt Univ., Edinburgh (United Kingdom). Inst. of Petroleum Engineering; Freij-Ayoub, R.; Clennell, B. [CSIRO Petroleum, Bentley, WA (Australia)

    2008-07-01

    Dissociation of gas hydrate to water and potentially overpressured gas around boreholes may pose a hazard for deep-water hydrocarbon production. Strategies to mitigate this risk include monitoring for early detection of dissociation. Seismic methods are especially promising, primarily because of a high sensitivity of P-wave velocity to gas in the pore space of unconsolidated sediments. This paper presented a study that applied commonly used rock physics modeling to predict the seismic response to gas hydrate dissociation with a focus on P-impedance and performed sensitivity tests. The geomechanical model was translated into seismic models. In order to determine which parameters needed to be particularly well calibrated in experimental and modeling studies, the sensitivity of seismic properties to a variation of input parameters was estimated. The seismic response was predicted from dissociating gas hydrates using two-dimensional finite-difference wave-propagation modeling to demonstrate that despite the small predicted lateral extent of hydrate dissociation, its pronounced effect on seismic properties should allow detection with a seismic source on a drilling platform and receivers on the seafloor. The paper described the methods, models, and results of the study. It was concluded that the key factors for predicting the seismic response of sediments to hydrate dissociation were the mode of gas hydrate distribution, gas distribution in the sediments, gas saturation, and pore pressure. 33 refs., 3 tabs., 8 figs.

  10. A spectroscopic potential energy surface for FCN

    A potential energy surface for the FCN linear molecule is obtained by nonlinear least-squares fit to the pure (l=0) vibrational terms observed spectroscopically. The potential surface is expressed as a Morse-cosine expansion in valence coordinates, and the vibrational energy levels needed to carry out the fit are calculated variationally using a system of optimal generalized internal coordinates expressly determined for such a purpose. The quality of the potential energy surface fitted is checked by computing the vibrational terms Gv and the rotational constants Bv of the FCN molecule and its isotopologs 19F13C14N and 19F12C15N using a normal hyperspherical coordinate system which facilitates the assignments of normal modes quantum numbers to the vibrational energy levels and the subsequent comparison with the observed values. The spectroscopic FCN potential energy surface obtained is shown to reproduce the vibrational terms of the three molecular species well, and above all their rotational constants, thus endorsing the use of the potential to identify and characterize unobserved infrared bands of these species.

  11. Horns Rev II, 2-D Model Tests

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...

  12. Biomass energy potential in Brazil. Country study

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author's knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author)

  13. Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials

    Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman

    2005-01-01

    We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle

  14. Woody biomass energy potential in 2050

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm3/year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m3). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  15. Potential future waste-to-energy systems

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  16. Energy Transfer in Scattering by Rotating Potentials

    Volker Enss; Vadim Kostrykin; Robert Schrader

    2002-02-01

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave operators, and existence of a conserved quantity under scattering. In a simple model we determine the energy transferred to a particle by collision with a rotating blade.

  17. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  18. The Casimir energy in a separable potential

    The Casimir energy is the first-order-in-h correction to the energy of a time-independent field configuration in a quantum field theory. We study the Casimir energy in a toy model, where the classical field is replaced by a separable potential. In this model the exact answer is trivial to compute, making it a good place to examine subtleties of the problem. We construct two traditional representations of the Casimir energy, one from the Green's function and the other from the phase shifts, and apply them to this case. We show that the two representations are correct and equivalent in this model. We study the convergence of the Born approximation to the Casimir energy and relate our findings to computational issues that arise in more realistic models. (c) 2000 Academic Press, Inc

  19. Energy audit: potential of energy - conservation in Jordanian ceramic industry

    This paper represents the findings of the preliminary energy-audits performed by the Rational Use of Energy Division at the National Energy Research Center (NERC), as well as the findings of a detailed energy-audit carried out in the largest Ceramic plant in Jordan (Jordan Ceramic industries).These studies were preceded by a survey of the ceramic factories in Jordan. The survey was carried out in 1997. The performed preliminary energy-audits showed that an average saving-potential in most of theses plants is about 25 % of the total energy-bills in these plants, which constitutes a considerable portion of the total production-cost. This fact was verified through the detailed energy-audit performed by NERC team for the largest Ceramic Plant in Jordan in June 2003, which showed an energy-saving potential of about 30 %. This saving can be achieved by some no-cost or low-cost measures, in addition to some measures that need reasonable investments with an average pay-back period of about two years. This detailed energy-audit covered electrical systems, refrigeration systems, compressed-air systems, and kilns. The results of the detailed energy-audit can be disseminated to other Ceramic plant, because of the similarity in the production process between these plants and the plant where the detailed energy-audit was carried out. (author)

  20. Quantum transition state dynamics of the cyclooctatetraene unimolecular reaction on ab initio potential energy surfaces

    Tokizaki, Chihiro; Yoshida, Takahiko; Takayanagi, Toshiyuki

    2016-05-01

    The cyclooctatetraene (COT) anion has a stable D4h structure that is similar to the transition state configurations of the neutral C-C bond-alternation (D4h ↔ D8h ↔ D4h) and ring-inversion (D2d ↔ D4h ↔ D2d) unimolecular reactions. The previously measured photodetachment spectrum of COT- revealed the reaction dynamics in the vicinity of the two transition states on the neutral potential energy surface. In this work, the photodetachment spectrum is calculated quantum mechanically on ab initio-level potential energy surfaces within a three degree-of-freedom reduced-dimensionality model. Very good agreement has been obtained between theory and experiment, providing reliable interpretations for the experimental spectrum. A detailed picture of the reactive molecular dynamics of the COT unimolecular reaction in the transition state region is also discussed.

  1. Development of 2D particle-in-cell code to simulate high current, low energy beam in a beam transport system

    S C L Srivastava; S V L S Rao; P Singh

    2007-10-01

    A code for 2D space-charge dominated beam dynamics study in beam transport lines is developed. The code is used for particle-in-cell (PIC) simulation of -uniform beam in a channel containing solenoids and drift space. It can also simulate a transport line where quadrupoles are used for focusing the beam. Numerical techniques as well as the results of beam dynamics studies are presented in the paper.

  2. Review of Turkey's renewable energy potential

    The use of renewable energy has a long history. Biomass, for instance, has been used for heating and cooking, while wind has been used in the irrigation of fields and to drive windmills for centuries. Although Turkey has many energy resources, all of these with the exception of coal and hydropower, cannot meet the total energy demand. Turkey has been importing resources to meet this deficit. These resources have become increasingly expensive and also have undesirably high emissions ratings. Turkey has an extensive shoreline and mountains and is rich in renewable energy potential. The share of renewables on total electricity generation is 29.63% while that of natural gas is 45% for the year 2006. The projection prepared for the period between 2006 and 2020 aims an annual growth of 8% for the total electricity generation. According to this projection, it is expected that renewables will have a share about 23.68% with a decrease of 5.95% while natural gas will have a share about 33.38% for 2020. This paper presents the present state of world renewable energy sources and then looks in detail at the potential resources available in Turkey. Energy politics are also considered. (author)

  3. Microscopic optical potential at medium energies

    The problems concerning a microscopic optical model for the elastic nuclear collisions at medium energies are discussed. We describe the method for constructing the optical potential which makes use of the particular properties of quantum scattering in the eikonal limit. The resulting potential is expressed in terms of the nuclear wave functions and the nucleon-nucleon scattering amplitudes. This potential has a dynamic character since by including the effects of multiple scattering it allows for the possibility of intermediate excitations of the projectile and target nuclei. The use of the potential in the exact wave equation accounts for the most important mechanisms present in the collisions between composite particles. The microscopic optical model was successfully applied in the analysis of elastic scattering of protons and α-particles on atomic nuclei in the energy range of 300-1000 MeV/nucleon. The dynamic optical potential in this case represents a considerable improvement over the eikonal Glauber model and the static optical potential of Watson. The possibilities to extend the microscopic description of the proton-nucleus interaction by considering the spin dependence of the elementary amplitude and the Majorana exchange effects were investigated. (author)

  4. Centrifugal potential energy : an astounding renewable energy concept

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  5. Lectures on 2D gravity and 2D string theory

    This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions

  6. The potentials of biomass as renewable energy

    Biomass is a term used in the context of energy to define a range of products derived from photosynthesis. Annually large amounts of solar energy is stored in the leaves, stems and branches of plants. Of the various renewable sources of energy, biomass is thus unique in that it represents stored solar energy. In addition it is the only source of carbon, and it may be converted into convenient solid, liquid and gaseous fuels. Biomass, principally in the form of wood, is humankind's oldest form of energy, and has been used to fuel both domestic and industrial activities. Traditional use has been, through direct combustion, a process still used extensively in many parts of the world. Biomass is a renewable and indigenous resource that requires little or no foreign exchange. But it is a dispersed, labor-intensive and land requiring source of energy and may avoid or reduce problems of waste disposal. We'll try to assess the potential contribution of biomass to the future world energy supply. 4 refs., 6 tabs

  7. Influence of Isotope Effects on Product Polarizations of N(2D)+D2,N(2D)+H2 and N(2D)+HD Reactive Systems

    NIE Shan-shan; CHU Tian-shu

    2012-01-01

    To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants,quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy surfacc(PES) of 2A" state.Product polarizations such as product distributions ofP(θr),P(φr) and P(θr,φr),as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions.Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.

  8. Self-organized 2D Ni particles deposited on titanium oxynitride-coated Si sculpted by a low energy ion beam

    Self-ordered Ni nanoparticles grown on TiNxOy-coated crystalline silicon previously sculpted by ion beam bombardment are reported. The samples are obtained following a sequential in situ routine deposition procedure. First, crystalline Si is Xe+ bombarded, generating regular patterns. Second, a thin TiNxOy film is grown on the patterned Si substrate. Immediately, nano-sized nickel particles are deposited by ion beam sputtering and temperature-annealed forming a 2D lattice. The self-organized Ni islands are induced by preferential Ni site nucleation on the coated sculpted Si grooves. (paper)

  9. The H-2(d,p)H-3 Reaction At Astrophysical Energies Studied Via The Trojan Horse Method And Pole Approximation Validity Test

    Sparta, R.; Pizzone, R. G.; Spitaleri, C.; Aliotta, M.; Burjan, Václav; Cherubini, S.; Crucilla, V.; Gulino, M.; Hons, Zdeněk; Kiss, G.; Kroha, Václav; La Cognata, M.; Lamia, L.; McCleskey, M.; Mrázek, Jaromír; Puglia, S.M.R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Trache, L.; Tumino, A.

    MELVILLE, NY: AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA, 2010 - (Spitaleri, C.; Rolfs, C.; Pizzone, R.), s. 242-245 ISBN 978-0-7354-0756-5. ISSN 0094-243X. [5th European Summer School on Experimental Nuclear Astrophysics. Sicily (IT), 20.09.2009-27.09.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : Nuclear Astrophysics * Trojan Horse * H-2(d,p)H-3 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  10. Computed potential energy surfaces for chemical reactions

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  11. The Wind Energy Potential of Iceland

    Nawri, Nikolai; Petersen, Guðrún Nína; Björnsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Hasager, Charlotte Bay; Clausen, Niels-Erik

    2014-01-01

    Downscaling simulations performed with theWeather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, ...

  12. Energy Savings Potential of Radiative Cooling Technologies

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  13. Natural gas decompression energy recovery: Energy savings potential in Italy

    This paper surveyed the natural gas distribution systems employed in the Italian civil, industrial and thermoelectric sectors to identify those installations which can make use of gas decompression energy recovery systems (consisting of turbo-expanders or alternative expanders) to economically generate electric power. Estimates were then made of the total amount of potential energy savings. The study considered as eligible for energy savings interventions only those plants with a greater than 5,000 standard cubic meter per hour plant capacity. It was evaluated that, with suitable decompression equipment installed at 50 key installations (33 civil, 15 industrial), about 200 GWh of power could be produced annually, representing potential savings of about 22,000 petroleum equivalent tonnes of energy. A comparative analysis was done on three investment alternatives involving inputs of varying amounts of Government financial assistance

  14. 2D-hahmoanimaation toteuttamistekniikat

    Smolander, Aku

    2009-01-01

    Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...

  15. The Wind Energy Potential of Iceland

    Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik

    2014-05-01

    While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road

  16. Wave energy potential in Galicia (NW Spain)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo;

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location of...... ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two...

  17. Potential energy surfaces of Polonium isotopes

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  18. Potential Fluctuation Equality for Free Energy Evaluation

    Ngo, Van

    2011-01-01

    Jarzynski's equality [1] allows us to investigate free energy landscapes (FELs) by constructing distributions of work performed on a system from an initial ensemble of states to final states. This work is experimentally measured by extension-versus-force (EVF) curves. We proposed a new approach that enables us to reconstruct such FELs without necessity of measuring EVF curves. We proved that any free energy changes could be computed by measuring the fluctuations of a harmonic external potential in final states. The main assumption of our proof is that one should probably treat a potential's minimum {\\lambda} (thought to be control parameter) and time in separate and independent manners. We recovered Jarzynski's equality from the introduction of a double Heaviside function. We then applied the approach in molecular dynamics (MD) simulations to compute the free energy barrier of breaking DNA base pairs (bps). The free energy barrier for breaking a CG bp in our simulations is identified as 1.7 +/- 0.2 kcal/mol t...

  19. Optical modulators with 2D layered materials

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  20. The wind energy potential in Argentina

    The wind energy are increasing its contribution to large scale electricity generation in many countries.The high technical maturity reached by modern wind turbines returns it viable and competitive in many regions, specially in those where a suitable legal framework stimulates the generation from renewable sources of energy.As this regard, the objective of this report is to demonstrate that, far from being limited to provide energy to remote, dispersed or geographically isolated sites not served by conventional networks, the wind energy has fully potential to supply a pretty relevant part of the electrical consumption of the great urban centers located in those zones of the country favored with this resource.For it, two preliminary estimations has done: the total 'windy' surface area in geographic proximity of the high voltage lines and electrical substations of the Argentine System of Interconnection (SADI) able 'to be seeded' with wind turbines, and the total electrical energy feasible of being generated from them.The paper supposes the exclusion of important non apt areas by virtue of strictly geographic, economic or environmental considerations.Even so, the result of the final calculation is extraordinarily high and promissory: if only 4% of the total surface of the contiguous land areas (in a maximum radius of 62 km) to the high voltage transmission system (in which the annual mean wind speed surpasses the 5.55 m/s) would be filled with power wind turbines, the annual average energy produced by them would be equivalent to 89% of the estimated national electrical consumption for year 2013.The usable wind potential in favorable technical conditions for commercial generation rounds this way around 40,000 MW, that would report an annual average energy of 100,000 GWh, occupying an area near 5000 km2.The total wind energy potential is (of course) considerably greater. Anyway, given the random nature of the wind and the consequent characteristics of not firm power

  1. Quantum defect theory for Coulomb and other potentials in the framework of configuration interaction and implementation to the calculation of 2 D and 2 F o perturbed spectra of Al

    In continuation of our earlier work on the ab initio calculation of perturbed spectra and on a corresponding quantum defect theory (QDT), we discuss certain essential characteristics having to do with the unification of the continuous and the discrete spectra via the formal and practical construction of smooth quantities without invoking the pair of analytic forms of regular and irregular functions. The theory and its computational methodology are in the framework of configuration interaction (CI), and its structure shows how wavefunctions and properties of excited states of atoms and molecules can be computed provided one uses reliable zero-order basis functions, regardless of whether the relevant potential is, asymptotically, Coulombic or some other type. The mathematical connection with smooth reaction matrices in the discrete spectrum is demonstrated via the Mittag-Leffler theorem for the construction of analytic functions. We compare results for the quantum defects and fine structure from the present theory, as implemented by Komninos et al ( 1995 J. Phys. B: At. Mol. Opt. Phys. 28 2049 , 1996 J. Phys. B: At. Mol. Opt. Phys. 29 L193 ), of the Al spectra of 2 D symmetry (strongly perturbed) and of 2 F o symmetry (weakly perturbed), with the recently reported measurements on high-lying states ( Dyubko et al 2003 J. Phys. B: At. Mol. Opt. Phys. 36 3797 and 4827 ), as well as with those of Eriksson and Isberg (1963 Ark. Fys. 23 527) for the low-lying states. The comparison reveals for the first time very good agreement between theory and experiment for both series. In addition, predictions for the other states of the series are made. Previous computations of the quantum defects of the 2 D spectrum, in general, do not agree among themselves while they deviate from the experimental values

  2. Prospects of Potential Renewable and Clean Energy in Oman

    Feras Hason; Reyah Abdulla; Hussein A. Kazem; Ali H. Alwaeli

    2011-01-01

    In this paper, we provides an overview of potential renewable energy in Oman, and the potential use of such resources for electricity production. The study covers solar energy, wind energy, biogas, ocean thermal energy converters, wave energy and geothermal energy. It is found that solar energy density in Oman is among the highest in the world. In addition, there is significant wind energy potential in coastal areas in the southern part of Oman and in the mountains north of Salalah. But, the...

  3. Lattice potential energies and theoretical applications

    Equations have been developed for the accurate estimation (usually within 5 %) of the lattice potential energy, UPOT, from a salt's inverse cube root molecular 'formula unit' volume for any MpXq salt. This reduces the need for computational labour and parameterisation associated with the calculation of UPOT. The application of the Kapustinskii equation for the UPOT estimation has been vastly extended by the provision of a self-consistent dataset of thermochemical radii for over 400 ions. Datasets have also been assigned to ion volumes for similar ions and also the development of 'absolute' ion volumes representing the actual sizes of ions in the crystalline state has been successfully achieved. Ion volume summations are employed in the newly developed lattice potential energy equations to estimate UPOT for hypothetical salts or else for salts with no crystal structure data. A method for the estimation of entropies of liquids is described and three dimensional thermochemical cycles are constructed for the prediction of thermodynamic data for systems that vary from standard conditions. These thermochemical developments are then employed to interpret and predict the gross thermochemistry of group 16 / 17 cations. Previously unknown standard enthalpy of formation data, halide ion affinities and bond energies are predicted. The work described in this thesis has resulted in seven publications and the development of a thermochemistry web site. (author)

  4. The wind energy potential of western Greece

    Katsoulis, B.D.; Metaxas, D.A. (Univ. of Ioannina (Greece))

    1992-12-01

    In this study wind data were used to determine the monthly and annual variations of the wind at 13 meterological stations in western Greece. An analysis of the available wind data for the Ionian Sea islands and the western coasts of Greece is carried out to ascertain its potential for wind energy development. The effect of the limited number of daily observations available on the accuracy of the mean wind speed and annual wind energy estimates is ascertained. The wind speed and direction distributions are represented with Weibull functions. Besides, a mass-consistent numerical mesoscale model was used to give an overview of the wind prospecting and siting problem, and an example of its use for Corfu (Kerkira), an island in the Ionian Sea, is given. The comparison of the accuracy of the stimulation results versus measured wind at an available site is quite encouraging even though it cannot be conclusive since only one station is available.

  5. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    A. TOKGÖZLÜ

    2013-01-01

    Full Text Available This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy. Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW can pump enough water for small-scale irrigation. This study tried to initiate data gathering process for wavelet analyses, different scale effects and their role on wind speed and direction variations. The wind data gathering system is mounted at latitudes: 37° 50" N; longitude 30° 33" E and height: 1200 m above mean sea level at a hill near Süleyman Demirel University campus. 10 minutes average values of two levels wind speed and direction (10m and 30m above ground level have been recorded by a data logger between July 2001 and February 2002. Wind speed values changed between the range of 0 m/s and 54 m/s. Annual mean speed value is 4.5 m/s at 10 m ground level. Prevalent wind

  6. Theoretical studies of potential energy surfaces

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  7. 2-D linear motion system. Innovative technology summary report

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However

  8. Assessment of wind energy potential in Poland

    Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej

    2014-05-01

    The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.

  9. Proton-Proton On Shell Optical Potential at High Energies and the Hollowness Effect

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2016-04-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis reconstructs 3D dynamics from the effective transverse 2D impact parameter representation and suggests that besides the onset of gray nucleons at the LHC there appears an inelasticity depletion (hollowness) which precludes convolution models at the attometer scale.

  10. Computational Identification of Promising Thermoelectric Materials Among Known Quasi-2D Binary Compounds

    Gorai, Prashun; Toberer, Eric S.; Stevanovic, Vladan

    2016-07-28

    Quasi low-dimensional structures are abundant among known thermoelectric materials, primarily because of their low lattice thermal conductivities. In this work, we have computationally assessed the potential of 427 known binary quasi-2D structures in 272 different chemistries for thermoelectric performance. To assess the thermoelectric performance, we employ an improved version of our previously developed descriptor for thermoelectric performance [Yan et al., Energy Environ. Sci., 2015, 8, 983]. The improvement is in the explicit treatment of van der Waals interactions in quasi-2D materials, which leads to significantly better predictions of their crystal structures and lattice thermal conductivities. The improved methodology correctly identifies known binary quasi-2D thermoelectric materials such as Sb2Te3, Bi2Te3, SnSe, SnS, InSe, and In2Se3. As a result, we propose candidate quasi-2D binary materials, a number of which have not been previously considered for thermoelectric applications.

  11. Induced Seismicity Potential of Energy Technologies

    Hitzman, Murray

    2013-03-01

    Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.

  12. SES2D user's manual

    SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run

  13. Certification and the potential energy landscape

    Typically, there is no guarantee that a numerical approximation obtained using standard nonlinear equation solvers is indeed an actual solution, meaning that it lies in the quadratic convergence basin. Instead, it may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the corresponding stationary point when further optimization is attempted. In some cases, these non-solutions could be misleading. Proving that a numerical approximation will quadratically converge to a stationary point is termed certification. In this report, we provide details of how Smale's α-theory can be used to certify numerically obtained stationary points of a potential energy landscape, providing a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed

  14. The Wind Energy Potential of Iceland

    Nawri, Nikolai; Petersen, Guðrún Nína; Björnsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Hasager, Charlotte Bay; Clausen, Niels-Erik

    2014-01-01

    Downscaling simulations performed with theWeather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with...... the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0e5.5. In any season......, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 and 250%, excluding glaciers, or between 300 and 1500 W m_2 at 50 m above ground level in winter. At intermediate...

  15. Geothermal Energy: Delivering on the Global Potential

    Paul L. Younger

    2015-10-01

    Full Text Available Geothermal energy has been harnessed for recreational uses for millennia, but only for electricity generation for a little over a century. Although geothermal is unique amongst renewables for its baseload and renewable heat provision capabilities, uptake continues to lag far behind that of solar and wind. This is mainly attributable to (i uncertainties over resource availability in poorly-explored reservoirs and (ii the concentration of full-lifetime costs into early-stage capital expenditure (capex. Recent advances in reservoir characterization techniques are beginning to narrow the bounds of exploration uncertainty, both by improving estimates of reservoir geometry and properties, and by providing pre-drilling estimates of temperature at depth. Advances in drilling technologies and management have potential to significantly lower initial capex, while operating expenditure is being further reduced by more effective reservoir management—supported by robust models—and increasingly efficient energy conversion systems (flash, binary and combined-heat-and-power. Advances in characterization and modelling are also improving management of shallow low-enthalpy resources that can only be exploited using heat-pump technology. Taken together with increased public appreciation of the benefits of geothermal, the technology is finally ready to take its place as a mainstream renewable technology, exploited far beyond its traditional confines in the world’s volcanic regions.

  16. The Wind Energy Potential of Kurdistan, Iran.

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  17. POTENTIAL FOR WASTEWATER MANAGEMENT USING ENERGY CROPS

    Alistair R. McCRACKEN

    2015-04-01

    Full Text Available In most countries within Europe there are numerous small rural Waste Water Treatment Works (WWTWs often serving a small number of people equivalents (PEs. It is usually impractical and expensive to upgrade such WWTWs and yet they are often delivering potentially highly polluting effluent into streams and rivers. Short Rotation Coppice (SRC willow, grown as an energy source, may be an ideal crop for the bioremediation of a variety of effluents and wastewater streams. As part of an EU funded (INTERREG IVA project called ANSWER (Agricultural Need for Sustainable Willow Effluent Recycling four Proof of Concept irrigation schemes were established ranging in size from 5 to 15 ha. One of the larger of these at Bridgend, Co. Donegal, Republic of Ireland was planted in spring 2013 and has been irrigated with municipal effluent since June 2014. Over 19,000 m3 of effluent has been applied to the willow thus preventing 617 kg N and 28.5 kg P from being discharged to a neighbouring stream. Using SRC willow for the bioremediation of effluent from small rural WWWTs offers a sustainable, cost-effective and practical solution to wastewater management in many countries. There may be also potential to use willow for the bioremediation of landfill leachates, within the footprint of the landfill site.

  18. Combination of 2D/3D Ligand-Based Similarity Search in Rapid Virtual Screening from Multimillion Compound Repositories. Selection and Biological Evaluation of Potential PDE4 and PDE5 Inhibitors

    Krisztina Dobi

    2014-05-01

    Full Text Available Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost effective approach. If structures of active compounds are available rapid 2D similarity search can be performed on multimillion compound databases but the generated library requires further focusing by various 2D/3D chemoinformatics tools. We report here a combination of the 2D approach with a ligand-based 3D method (Screen3D which applies flexible matching to align reference and target compounds in a dynamic manner and thus to assess their structural and conformational similarity. In the first case study we compared the 2D and 3D similarity scores on an existing dataset derived from the biological evaluation of a PDE5 focused library. Based on the obtained similarity metrices a fusion score was proposed. The fusion score was applied to refine the 2D similarity search in a second case study where we aimed at selecting and evaluating a PDE4B focused library. The application of this fused 2D/3D similarity measure led to an increase of the hit rate from 8.5% (1st round, 47% inhibition at 10 µM to 28.5% (2nd round at 50% inhibition at 10 µM and the best two hits had 53 nM inhibitory activities.

  19. Energy potential of region and its quantitative assessment

    Tatyana Aleksandrovna Kovalenko

    2013-09-01

    Full Text Available The purpose of the article is the development of the concept of the energy potential of the region (EPR, the analysis of the existing structure of relationships for the EPR elements in Ukraine and improvement of a quantitative assessment of energy potential of the region (country. The methods of an assessment of the existing condition of energy potential of the territory are the subject matter of the research. As a result of the analysis of concept’s definitions of energy potential of the region, it has further development and included the consumer potential of energy resources and capacity of management. The structure of relationships between elements of energy potential is developed for the Ukraine region. The new economic indicator — the realized energy potential is offered for an EPR assessment. By means of this indicator, the assessment of energy potential for the different countries of the world and a number of Ukraine areas of is performed.

  20. Scattering of low-energy (5-12 eV) C2D4.sup..+./sup. ions from room-temperature carbon surfaces

    Pysanenko, Andriy; Žabka, Ján; Herman, Zdeněk

    2008-01-01

    Roč. 73, 6-7 (2008), s. 755-770. ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40400503 Keywords : Ion-surface scattering * Low-energy collisions * Ethylene cation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  1. What Should Be the Energy Policy of the United States? National Debate Topic for High Schools, 1978-1979. Senate, 95th Congress, 2d Session.

    Library of Congress, Washington, DC. Congressional Research Service.

    This collection of excerpts and bibliographies address the three debate propositions selected as subjects of the 1978-1979 debate question for high schools selected by the National University Extension Service, "What should be the energy policy of the United States?" The collection is divided into three parts each addressing one of the debate…

  2. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2.

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M; Tongay, Sefaattin

    2016-01-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617

  3. Unusual dimensionality effects and surface charge density in 2D Mg(OH)2

    Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin

    2016-02-01

    We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

  4. Interparticle attraction in 2D complex plasmas

    Kompaneets, Roman; Ivlev, Alexei V

    2015-01-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecular-like. In this Letter, we propose how to achieve a molecular-like interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  5. Interparticle Attraction in 2D Complex Plasmas

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  6. Projections of global mean sea level rise calculated with a 2D energy-balance climate model and dynamic ice sheet models

    De Wolde, J. R.; Huybrechts, P.; J. Oerlemans; van de Wal, R.S.W.

    2011-01-01

    Projections of changes in surface air temperature and global mean sea level over the next century are presented for all IS92 radiative forcing scenarios. A zonal mean energy-balance climate model is used to estimate temperature changes and thermal expansion, precipitation-dependent sensitivity values are used to estimate the sea-level contribution of glaciers and small ice caps and dynamic ice-sheet models coupled to surface mass balance models are employed with regard to the Greenland and An...

  7. 2-D or not 2-D, that is the question: A Northern California test

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is

  8. Solar-energy potential in Turkey

    Sozen, Adnan; Ozalp, Mehmet [Gazi Univ., Mechanical Education Dept., Ankara (Turkey); Arcaklioglu, Erol [Kirikkale Univ., Mechanical Engineering Dept., Kirikkale (Turkey); Kanit, E. Galip [Turkish State Meteorological Office, Ankara (Turkey)

    2005-04-01

    In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000-2003) from 18 cities (Bilecik, Kirsehir, Akhisar, Bingol, Batman, Bodrum, Uzunkopru, Sile, Bartin, Yalova, Horasan, Polatli, Malazgirt, Koycegiz, Manavgat, Dortyol, Karatas and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R{sup 2} value 0.9987 for Polatli. The best approach was found for Kirsehir (MAPE=1.2257, R{sup 2}=0.9998). The MAPE and R{sup 2} for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely (Author)

  9. Solar-energy potential in Turkey

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet; Kanit, E. Galip

    2005-04-01

    In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000 {yields} 2003) from 18 cities (Bilecik, Kirsehir, Akhisar, Bingoel, Batman, Bodrum, Uzunkoeprue, Sile, Bartin, Yalova, Horasan, Polatli, Malazgirt, Koeycegiz, Manavgat, Doertyol, Karatas and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R{sup 2} value 0.9987 for Polatli. The best approach was found for Kirsehir (MAPE=1.2257, R{sup 2}=0.9998). The MAPE and R{sup 2} for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely.

  10. Potential of renewable energy systems in China

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad;

    2011-01-01

    this process, assessment of domestic renewable energy sources is the first step. Then appropriate methodologies are needed to perform energy system analyses involving the integration of more sustainable strategies. Denmark may serve as an example of how sustainable strategies can be implemented. The...... energy system. The conclusion is that China’s domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system...... inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously. In...

  11. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  12. High energy asymmetric supercapacitor with 1D@2D structured NiCo2O4@Co3O4 and jackfruit derived high surface area porous carbon

    Sennu, Palanichamy; Aravindan, Vanchiappan; Lee, Yun-Sung

    2016-02-01

    We report the fabrication of high energy asymmetric supercapacitor (ASC) using pseudocapacitive 3D microstructured composite NiCo2O4@Co3O4 and double layer forming activated carbon (AC). The pseudo capacitive electrode is synthesized via a facile two step hydrothermal process and AC is obtained from the bio-waste, Jackfruit (JF) peel by chemical activation. Extensive powder characterization and optimization has been conducted for both electrodes, especially in electrochemical aspect. The ASC is fabricated using JF derived AC as anode and NiCo2O4@Co3O4 cathode in aqueous media. Prior to the ASC assembly, the mass loading between the electrodes are adjusted based on the single electrode performance of both components vs. Ag/AgCl. The ASC is capable of delivering a maximum energy density of 42.5 Wh kg-1 at power density of 80 W kg-1. In addition, the ASC rendered excellent cycleability, for example, the cell retains ∼97% of initial capacitance after 7000 cycles. The outstanding performance of the ASC is originated from the well-developed building blocks of porous electrodes. An impedance study is also conducted to corroborate the excellent performance of NiCo2O4@Co3O4vs. JF derived AC based ASC.

  13. Alaska's renewable energy potential.

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  14. Potential energy savings and thermal comfort

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    Results of simulations carried out on four different buildings with common windows, commercial low-energy windows and xerogel windows are presented. The results are the annual energy consumption for space heating and the indoor air temperature level....

  15. 2D-animaatiotuotannon optimointi

    Saturo, Reetta

    2015-01-01

    Tämän opinnäytetyön tavoitteena on tutkia 2D-animaatiotuotannon optimoinnin mahdollisuuksia tiukan tuotantoaikataulun vaatimuksissa. Tutkielmassa tarkastellaan kahta asiakasprojektia, jotka on toteutettu pienellä tuotantotiimillä. Työkaluna animaatioissa on käytetty pääosin Adoben After Effects -ohjelmistoa. Tutkielman alussa esitellään animaatiotuotannot, joiden tuloksena syntyi kaksi lyhyttä mainoselokuvaa. Sen jälkeen käydään läpi animaatioelokuvan tuotantoprosessia vaiheittain ja tark...

  16. Head First 2D Geometry

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  17. Friction behaviour of TiAlN films around cubic/hexagonal transition: A 2D grazing incidence X-ray diffraction and electron energy loss spectroscopy study

    The properties at different scales of Ti1−xAlxN films deposited by reactive magnetron sputtering from TiAl sintered (S) targets produced by powder metallurgy are compared with those of a set of films previously deposited in the same conditions from mosaic targets (M) made of pure Ti and Al metals. For compositions close to the hcp/fcc transition (around x = 0.6), the friction behaviour, growth directions and organization of crystallized domains are found to be sensitive to the type of target used. The resistance to crack creation is higher for Ti0.54Al0.46N (S) and Ti0.38Al0.62N (S) than for Ti0.50Al0.50N (M) and Ti0.32Al0.68N (M). From the measurement of mechanical properties, toughness, and wear volumes and from the observation of wear tracks, it is found that films prepared from sintered targets exhibit a better wear resistance. Grazing incidence X-ray diffraction and electron energy loss spectroscopy in Transmission Electronic Microscopy are used to investigate the long- and short-range orders within the films. The morphology of Ti0.54Al0.46N (S) film can be considered as an array of crystalline domains having reciprocal-space vectors 111 and 200 directed along the meridian but with random in-plane orientation. Ti0.38Al0.62N (S) Al-rich film presents a random orientation of the crystalline domains whereas Ti0.32Al0.68N (M) deposited from composite targets exhibits a well-oriented fibrillar structure. The N K-edge Electron Energy Loss Near Edge Spectra are discussed with previous results of Extended X-ray Absorption Fine Structure Spectroscopy, which has evidenced different values of Al–N and Ti–N bond lengths, either octahedral (cubic-like) or tetrahedral (hexagonal-like) within Ti0.50Al0.50N (M) and Ti0.32Al0.68N (M) films. For similar compositions, films deposited from sintered alloys contain more nitrogen atoms in octahedral cubic-like environment than coatings made from mosaic targets, which could explain their better resistance to cracking, higher

  18. Friction behaviour of TiAlN films around cubic/hexagonal transition: A 2D grazing incidence X-ray diffraction and electron energy loss spectroscopy study

    Pinot, Y. [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France); Pac, M.-J., E-mail: marie-jose.pac@uha.fr [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France); Henry, P. [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France); Rousselot, C. [Université de Franche-Comté, FEMTO-ST (UMR CNRS 6174), F-25211 Montbéliard (France); Odarchenko, Ya.I.; Ivanov, D.A. [Université de Haute Alsace, Institut de Science des Matériaux de Mulhouse (UMR 7361 CNRS), F-68093 Mulhouse (France); Ulhaq-Bouillet, C.; Ersen, O. [Université de Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg (UMR CNRS 7504), F-67087 Strasbourg (France); Tuilier, M.-H. [Université de Haute Alsace, Laboratoire Physique et Mécanique Textiles (EA 4365), F-68093 Mulhouse (France)

    2015-02-27

    The properties at different scales of Ti{sub 1−x}Al{sub x}N films deposited by reactive magnetron sputtering from TiAl sintered (S) targets produced by powder metallurgy are compared with those of a set of films previously deposited in the same conditions from mosaic targets (M) made of pure Ti and Al metals. For compositions close to the hcp/fcc transition (around x = 0.6), the friction behaviour, growth directions and organization of crystallized domains are found to be sensitive to the type of target used. The resistance to crack creation is higher for Ti{sub 0.54}Al{sub 0.46}N (S) and Ti{sub 0.38}Al{sub 0.62}N (S) than for Ti{sub 0.50}Al{sub 0.50}N (M) and Ti{sub 0.32}Al{sub 0.68}N (M). From the measurement of mechanical properties, toughness, and wear volumes and from the observation of wear tracks, it is found that films prepared from sintered targets exhibit a better wear resistance. Grazing incidence X-ray diffraction and electron energy loss spectroscopy in Transmission Electronic Microscopy are used to investigate the long- and short-range orders within the films. The morphology of Ti{sub 0.54}Al{sub 0.46}N (S) film can be considered as an array of crystalline domains having reciprocal-space vectors 111 and 200 directed along the meridian but with random in-plane orientation. Ti{sub 0.38}Al{sub 0.62}N (S) Al-rich film presents a random orientation of the crystalline domains whereas Ti{sub 0.32}Al{sub 0.68}N (M) deposited from composite targets exhibits a well-oriented fibrillar structure. The N K-edge Electron Energy Loss Near Edge Spectra are discussed with previous results of Extended X-ray Absorption Fine Structure Spectroscopy, which has evidenced different values of Al–N and Ti–N bond lengths, either octahedral (cubic-like) or tetrahedral (hexagonal-like) within Ti{sub 0.50}Al{sub 0.50}N (M) and Ti{sub 0.32}Al{sub 0.68}N (M) films. For similar compositions, films deposited from sintered alloys contain more nitrogen atoms in octahedral cubic

  19. Renewable energy - its potential and limitations

    Several renewable energy options are discussed, namely solar energy, passive solar systems, photovoltaics, wind energy and biomass. Although technical feasibility has been shown for various systems, there has been slow growth in their implementation. Some aspects of this slow growth are in the domains of economic viability, long term reliability, the training of operators and installers, public perception and education and govenmental attitudes. It is estimated that the increased use of renewable energy depends on several factors which include government policies, funding, energy conservation, pricing policies, reliable commercial products, public education and adequate training. 11 refs

  20. User behaviour impact on energy savings potential

    Rose, Jørgen

    2014-01-01

    When buildings are to undergo energy upgrading in Denmark, the national compliance checker, Be10, is often used to calculate expected energy savings for different energy-saving measures. The Be10 calculation is, however, very dependent on a variety of standard assumptions concerning the building...... and the residents' behaviour and if these defaults do not reflect actual circumstances, it can result in non-realisation of expected energy savings. Furthermore, a risk also exists that residents' behaviour change after the energy upgrading, e.g. to obtain improved comfort than what was possible...... before the upgrading and this could lead to further discrepancies between the calculated and the actual energy savings. This paper presents an analysis on how residents’ behaviour and the use of standard assumptions may influence expected energy savings. The analysis is performed on two typical single...

  1. Energy Efficiency Improvement Potential in Historical Brick Building

    Žogla, Gatis; Blumberga, Andra; Zvaigznītis, Kristaps; Dzikēvičs, Miķelis; Blumberga, Dagnija; Burinskiene, Marija

    2013-01-01

    Energy efficiency in historical heritage buildings is viewed as a taboo because these buildings usually are law-protected and no energy efficiency measures that would change the appearance of building are allowed. In this paper we look at a potential of increasing energy efficiency level in historical buildings. Measurements to determine energy efficiency of a historical brick building have been done, which also give the possibility to determine the potential of energy efficiency measures in ...

  2. 1,25(OH)2D3 Induces Placental Vascular Smooth Muscle Cell Relaxation by Phosphorylation of Myosin Phosphatase Target Subunit 1Ser507: Potential Beneficial Effects of Vitamin D on Placental Vasculature in Humans.

    Jia, Xiuyue; Gu, Yang; Groome, Lynn J; Al-Kofahi, Mahmoud; Alexander, J Steven; Li, Weimin; Wang, Yuping

    2016-05-01

    Placental vascular dysfunction has been linked to insufficiency/deficiency of maternal vitamin D levels during pregnancy. In contrast, sufficient maternal vitamin D levels have shown beneficial effects on pregnancy outcomes. To study the role of vitamin D in pregnancy, we tested our hypothesis that vitamin D exerts beneficial effects on placental vasculature. We examined expression of CYP2R1, CYP27B1, vitamin D receptor (VDR), and CYP24A1 in placental vascular smooth muscle cells (VSMCs) in response to 1,25(OH)2D3 We found that VDR expression was inducible, CYP27B1 expression was dose-dependently down-regulated, and CYP24A1 expression was dose-dependently up-regulated in cells treated with 1,25(OH)2D3 These data suggest a feedback autoregulatory system of vitamin D existing in placental VSMCs. Using a VSMC/collagen-gel contraction assay, we evaluated the effect of 1,25(OH)2D3 on placental VSMC contractility. We found that, similar to losartan, 1,25(OH)2D3 could diminish angiotensin II-induced cell contractility. The mechanism of 1,25(OH)2D3-mediated VSMC relaxation was further explored by examination of Rho-associated protein kinase 1 (ROCK1)/phosphorylation of myosin phosphatase target subunit 1 (MYPT1) pathway molecules. Our results showed that p-MYPT1(Thr853) and p-MYPT1(Thr696) were undetectable. However, p-MYPT1(Ser507), but not p-MYPT1(Ser668), was significantly up-regulated in cells treated with losartan plus angiotensin II. Similar effects were also seen in cells treated with 1,25(OH)2D3 plus angiotensin II or 1,25(OH)2D3 plus losartan plus angiotensin II. Because MYPT1 serine phosphorylation could activate myosin light chain phosphatase (MLCP), and MLCP activation is an important regulatory machinery of smooth muscle cell relaxation, up-regulation of MYPT1(Ser507) phosphorylation could be a mechanism of vitamin D and/or losartan mediated placental VSMC relaxation. PMID:27075619

  3. Periodically sheared 2D Yukawa systems

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates

  4. Defining The Energy Saving Potential of Architectural Design

    Naboni, Emanuele; Malcangi, Antonio; Zhang, Yi;

    2015-01-01

    Designers, in response to codes or voluntary " green building " programs, are increasingly concerned with building energy demand reduction, but they are not fully aware of the energy saving potential of architectural design. According to literature, building form, construction and material choices...... different occupant behaviour. The research shows the best solution for each of the climates and compares them with Olgyay´s findings. Finally, for each climate the energy saving potential is defined and then compared to Lechner's conclusions. Defining The Energy Saving Potential of Architectural Design (PDF...... Download Available). Available from: https://www.researchgate.net/publication/279885641_Defining_The_Energy_Saving_Potential_of_Architectural_Design [accessed Jan 21, 2016]....

  5. Renewable Energy in Reunion: Potentials and Outlook

    Renewable, environmentally friendly and evenly distributed across the globe, renewable energy (RES for Renewable Energy Resources) is an excellent means of taking up the global energy challenge, i.e. enabling developing countries in the south to make progress without harming the environment. Since it is particularly well suited to an island territory's character and local needs, RE is also an excellent tool that could enable France's overseas Departments and Territories to reduce their energy dependence, preserve their environment and ensure their sustainable development. In Reunion, RES benefit from marked political support and from a very favourable financial and institutional environment, which has allowed the Reunion region to become a national pioneer in the realm of thermal energy and photovoltaics. Nonetheless, RES are not a panacea as they are subject to a number of flaws. It is currently expensive and uncompetitive, intermittent and insufficiently powerful, and not always available to keep up with demand. This explains why RES cannot aspire to be a complete substitute for fossil fuels. The two energy systems complement one another to meet the region's total energy needs. This article also highlights the negative consequences of the support measures for RES (inflated costs and negative prices on the electricity markets) and underscores the need for a complementary energy policy in pricing electricity, as well as effecting energy savings, which must remain our priority. (authors)

  6. Free-energy coarse-grained potential for C60

    We propose a new deformable free energy method for generating a free-energy coarse-graining potential for C60. Potentials generated from this approach exhibit a strong temperature dependence and produce excellent agreement with benchmark fully atomistic molecular dynamics simulations. Parameter sets for analytical fits to this potential are provided at four different temperatures

  7. On 2D water chemistry

    The micro-structural behaviour of density fluctuations in liquid water shows that the hydrogen-bonds lifetime is 1-20 ps whereas the broken-bonds lifetime is about 0.1 ps. Therefore spontaneously broken bonds will probably reform to give the original hydrogen bond configuration, but their coherent breakage in molecular cluster will lead to rotation of water molecules around the remaining hydrogen bonds. Our model for topological structure of dense part of liquid water in its density fluctuations as helical tetrahedral clusters is useful for explanation of liquid-water structural anomalies including the high quantity of hydrogen bonds with tetrahedral orientation in non-ordered liquid matrix. The topology of such the clusters is essentially differed from topology of crystalline ice. From this and only this point of view, water can be considered as a two-structural liquid because the formation and decay of such the clusters has dynamic character and is natural consequence of condensed-matter density fluctuations. At a hydrogen-steam (or oxygen-steam) mixture is injected in aqueous solution, it is possible to obtain the stable gaseous nano-bubbles. Such the nano-fluid can convert the liquid water in the non-stoichiometric state, H2O1±z, and (without impurity addition) change its Reduction-Oxidation (Redox) potential. In this connection, we offer to use Fermi level of electron energy in the aqueous solution for correct expressing Redox potential of non-stoichiometric water. If Fermi level will be about in the middle of the band gap, the average number of electrons per quantum state of a reducing agent will be zero and the same factor for the oxidizing one will be unity that is the chemical activity of these agents will be zero. At the same time, the liquid-water non-stoichiometric composition, H2O1±z, is varied in the very narrow range of z ≤ 10-6. Therefore it is important monitoring the Redox potential (Fermi level) online by precise sensor having the exact

  8. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    PARSA,Z.

    2000-04-07

    In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.

  9. Energy conservation potential of surface modification technologies

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  10. The Potential Energy of an Autoencoder.

    Kamyshanska, Hanna; Memisevic, Roland

    2015-06-01

    Autoencoders are popular feature learning models, that are conceptually simple, easy to train and allow for efficient inference. Recent work has shown how certain autoencoders can be associated with an energy landscape, akin to negative log-probability in a probabilistic model, which measures how well the autoencoder can represent regions in the input space. The energy landscape has been commonly inferred heuristically, by using a training criterion that relates the autoencoder to a probabilistic model such as a Restricted Boltzmann Machine (RBM). In this paper we show how most common autoencoders are naturally associated with an energy function, independent of the training procedure, and that the energy landscape can be inferred analytically by integrating the reconstruction function of the autoencoder. For autoencoders with sigmoid hidden units, the energy function is identical to the free energy of an RBM, which helps shed light onto the relationship between these two types of model. We also show that the autoencoder energy function allows us to explain common regularization procedures, such as contractive training, from the perspective of dynamical systems. As a practical application of the energy function, a generative classifier based on class-specific autoencoders is presented. PMID:26357347

  11. Potential for Geothermal Energy in Myanmar

    Geothermal energy is energy obtained by tapping the heat of the earth itself from kilometers deep into the earth's crust in some places of world. It is power extracted from heat stored in the earth. It is a renewable energy source because the heat is continuously produced inside the earth. Geothermal energy originates from the heat retained within the Earth's core since the orginal formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. Most high temperature geothermal heat is harvested in regions close to tectonic plate boundaries where volcanic activity rises up to the surface of the Earth. It is one of the best renewable sources of energy and is capable of maintaining its temperature. The heating cost is very low. It uses less electricity and 75 per cent more efficient than the oil furnace and 48 per cent more efficient than the gas furnace. The energy is not only used for heating a place but also for cooling down the site. It generates uniform energy and creates no sound pollution. Maintenance cost is very cheap. The life of the underground piping is more than 50 year.

  12. 2D SIMPLIFIED SERVO VALVE

    2003-01-01

    A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.

  13. Personalized 2D color maps

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  14. Cascades and Spectra of a Turbulent Spinodal Decomposition in 2D Symmetric Binary Liquid Mixture

    Fan, Xiang; Chacón, L; Li, Hui

    2016-01-01

    We study the fundamental physics of cascades and spectra in 2D Cahn-Hilliard-Navier-Stokes (CHNS) turbulence, and compare and contrast this system with 2D MagnetoHydroDynamic (MHD) turbulence. The important similarities include basic equations, ideal quadratic invariants, cascades and the role of linear elastic waves. Surface tension induces elasticity, and the balance between surface tension energy and turbulent kinetic energy determines a length scale (Hinze scale) of the system. The Hinze scale may be thought of as the scale of emergent critical balance between fluid straining and elastic restoring forces. The scales between the Hinze scale and dissipation scale constitute the elastic range of the 2D CHNS system. By direct numerical simulation, we find that in the elastic range, the mean square concentration spectrum $H^\\psi_k$ of the 2D CHNS system exhibits the same power law ($-7/3$) as the mean square magnetic potential spectrum $H^A_k$ in the inverse cascade regime of 2D MHD. This power law is consiste...

  15. The infrared spectrum of the Ne-C2D2 complex

    Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernández, Berta; Farrelly, David

    2015-11-01

    Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm-1) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes.

  16. Van der Waals stacked 2D layered materials for optoelectronics

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  17. Energy functions for rubber from microscopic potentials

    Johal, A. S.; Dunstan, D. J.

    2007-04-01

    The finite deformation theory of rubber and related materials is based on energy functions that describe the macroscopic response of these materials under deformation. Energy functions and elastic constants are here derived from a simple microscopic (ball-and-spring) model. Exact uniaxial force-extension relationships are given for Hooke's Law and for the thermodynamic entropy-based microscopic model using the Gaussian and the inverse Langevin statistical approximations. Methods are given for finding the energy functions as expansions of tensor invariants of deformation, with exact solutions for functions that can be expressed as expansions in even powers of the extension. Comparison with experiment shows good agreement with the neo-Hookean energy function and we show how this derives directly from the simple Gaussian statistical model with a small modification.

  18. Energy potential in the food industry; Store energipotensialer i naeringsmiddelindustrien

    Rosenberg, E; Risberg, T M; Mydske, H J; Helgerud, H E

    2007-07-01

    The food industry is one of the most power consuming industries (excluding the heavy industry) and has large potential for reducing the energy consumption. This report explains the most energy efficient measures and if the injunctions are followed

  19. Role and potential of renewable energy and energy efficiency for global energy supply

    Krewitt, Wolfram; Nienhaus, Kristina [German Aerospace Center e.V. (DLR), Stuttgart (Germany); Klessmann, Corinna; Capone, Carolin; Stricker, Eva [Ecofys Germany GmbH, Berlin (Germany); Graus, Wina; Hoogwijk, Monique [Ecofys Netherlands BV, Utrecht (Netherlands); Supersberger, Nikolaus; Winterfeld, Uta von; Samadi, Sascha [Wuppertal Institute for Climate, Environment and Energy GmbH, Wuppertal (Germany)

    2009-12-15

    The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's ''Energy Technology Perspectives'' baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed. (orig.)

  20. Potential of the Solar Energy on Mars

    Rugescu, Dragos Ronald; Rugescu, Radu Dan

    2010-01-01

    The problem of creating a sound source of energy on Mars is of main importance and related to the capacity of transportation from Earth to Mars, very limited in the early stages of Mars colonization, and to the capacity of producing the rough materials in situ. Consequently the most important parameter that will govern the choice for one or another means of producing energy will be the specific weight of the powerplant. Besides the nuclear sources, that most probably will face major oppositio...

  1. Energy Saving Potential in Existing Compressors

    Cipollone, Roberto; Vittorini, Diego

    2014-01-01

    The Compressed Air Sector (CAS) is responsible for a relevant part of energy consumption, accounting for a mean 10% of the world-wide electricity needs. This ensures about the importance of the CAS issue when sustainability, in terms of energy saving and CO2 emissions reduction, is in question. Since the compressors alone account for a mean 15% of the industry overall electricity consumption, it appears vital to pay attention towards machine performances. The paper deals with compressor techn...

  2. Transition from 2D HD to 2D MHD turbulence

    Seshasayanan, Kannabiran

    2015-01-01

    We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magneto-hydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions, cascades the energy to the large scales. The second process couples small scale magnetic fields to large scale flows transferring the energy back to the small scales via a non-local mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched.

  3. Potential options to greenize energy systems

    In this paper, we introduce a new thermodynamic concept of greenizing energy systems and propose a new greenization factor which is defined as the amount of environmental impact reduction by the system greenized divided by the reference environmental impact for the original (reference) case. A greenization factor of 1 indicates that the system is fully greenized case in which its environmental impact is zero or minimal. The greenization options of energy systems are studied extensively for an actual coal-fired power plant in Ontario. Multiple case studies are presented under various greenization criteria. The greenization factors and sustainability indexes for each option are determined and presented comparatively. The results can be extended to other energy systems, processes and applications (e.g., fossil fuel based power plants and transportation vehicles) for assessment purposes. -- Highlights: ► Proposal of a novel approach to greenize energy systems. ► Development of a new greenization factor. ► Greenization assessment of various energy systems. ► Multiple case studies to show how to greenize energy systems.

  4. A Snapshot of Geothermal Energy Potential and Utilization in Turkey

    Erdogdu, Erkan

    2009-01-01

    Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Tur...

  5. Spectroscopic investigation of the 3d 2D → nf 2F transitions in lithium

    Shahzada, S.; Shah, M.; Haq, S. U.; Nawaz, M.; Ahmed, M.; Nadeem, Ali

    2016-05-01

    We report term energies and effective quantum numbers of the odd parity 3d 2D → nf 2F series of lithium using multi-step and multi-photon laser excitation schemes. The experiments were performed using three dye lasers simultaneously pumped by the second harmonic (532 nm) of a Q-switched Nd:YAG laser in conjunction with an atomic beam apparatus and thermionic diode ion detector. The first ionization potential of lithium has been determined as 43,487.13 ± 0.02 cm- 1 from the much extended 3d 2D → nf 2F (17 ≤ n ≤ 70) series. In addition, the oscillator strengths of the 3d 2D → nf 2F (15 ≤ n ≤ 48) transitions have been determined, showing a decreasing trend with the increase in principal quantum number n.

  6. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  7. Energy savings potential from energy-conserving irrigation systems

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  8. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  9. Kalman Filter for Generalized 2-D Roesser Models

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  10. Learn Unity for 2D game development

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  11. Renewable energy resources in Pakistan: status, potential and information systems

    This paper provides some details regarding the characteristic properties, potential and assessment of renewable energy compared with other forms of energy sources. It gives status of renewable energy sources in Pakistan. It also lights about the agencies providing technical information regarding renewable energy in Pakistan as well as suggestions and recommendations for the development of these resources, and over view the present status of renewable energy sources. (author)

  12. World status of geothermal energy use: past and potential

    The past and potential development of geothermal energy is reviewed, and the use of geothermal energy for power generation and direct heat utilisation is examined. The energy savings that geothermal energy provides in terms of fuel oil and carbon savings are discussed. Worldwide development of geothermal electric power (1940-2000) and direct heat utilisation (1960 to 2000), regional geothermal use in 2000, the national geothermal contributions of geothermal energy, and the installed geothermal electric generating capacities in 2000 are tabulated

  13. Diabatic potential energy surfaces of H+ + CO

    F George D X; Sanjay Kumar

    2007-09-01

    Ab initio adiabatic and diabatic surfaces of the ground and the first excited electronic states have been computed for the H+ + CO system for the collinear ( = 0°) and the perpendicular ( = 90°) geometries employing the multi-reference configuration interaction method and Dunning's -VTZ basis set. Other properties such as mixing angle before coupling potential and before coupling matrix elements have also been obtained in order to provide an understanding of the coupling dynamics of inelastic and charge transfer process.

  14. High energy nucleon incident optical potential by relativistic impulse approximation

    The optical potentials by relativistic impulse approximation (RIA) are utilized for the high energy nucleon incidence. The nucleon-nucleon scattering amplitudes are derived from the phase shift and parametrized as a function of the incident nucleon energy. The optical potential by RIA reproduces the experimental data. (author)

  15. Comments on Thermalization in 2D CFT

    de Boer, Jan

    2016-01-01

    We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...

  16. QSAR Models for P-450 (2D6) Substrate Activity

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;

    2009-01-01

    activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....

  17. The radial shapes of intermediate energy microscopic optical potentials

    The radial shapes of intermediate energy proton microscopic optical potentials of 40Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  18. An assessement of global energy resource economic potentials

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  19. POTENTIAL OF SOLAR ENERGY IN TROPICS

    P. MALI

    2013-07-01

    Full Text Available Solar radiation data along with bright sunshine hours over four major cities Delhi, Chennai, Pune and Kolkata for the period 1997 to 2008 are extensively analyzed to estimate the seasonal distribution of global and diffuse radiation. The contribution of diffuse radiation is high during the end of pre-monsoon and monsoon months. Annual bright sunshine duration ranges from 2229 hours to 2784 hours. Therefore the solar energy can be utilized and at the same time proper precautions should be taken to combat heat stress and UV exposure particular for outdoor workers.

  20. Energy Storage:Maximising Irelands Wind Energy Potential

    Kelly, Damien

    2010-01-01

    Ireland plan's to generate up to 40% of its electricity from wind generation by 2020. This thesis outlines the problems that may be faced by the electricity system and illustrates the benefits that large scale energy storage can bring to the electricity system when trying to integrate large amounts of wind energy. Energy storage is currently a topical subject in Ireland as wind penetration increases and problems such as curtailment loom. This thesis outlines the storage capacities required to...

  1. Energy auditing and energy conservation potential for glass works

    Li, Yingjian; Qiu, Qi [College of Chemistry and Chemical Engineering, Shenzhen University, 518060 Shenzhen (China); Li, Jiezhi [Ecole Superieure de Commerce de Lille, 59000 Lille (France); Xu, Yafei [Hunan Energy Conservation Center, 410007 Changsha (China)

    2010-08-15

    A state-owned glass production enterprise introduces the strategic investor to carry on the assets reorganization, including the purchase of two float glass production lines with subsequent technology transformations and the construction of a new float glass production line with domestic leading technology. The fuel consumption structure has changed from coal-burning to natural gas or fuel oil. The following auditing procedures were followed according to Chinese national standards. These procedures include constituting an ordinance on energy management, strengthening the energy measurement and data statistical system, and improving production lines as well as energy-saving measures. Production scale expanded approximately twice during the period of audit. Comprehensive energy consumption was 2.58 ton coal equivalent (tce) at aqual in heat value (AHV refers to energy consumed to generate each kW h of electric power, each m{sup 3} of oxygen, nitrogen, hydrogen, or each kg of steam. The term of AHV provides a unification measurement criterion for fossil fuels consumed before the energy transformation.) account per 10,000 Yuan output value, and 2.17 tce at heat value equivalent (HVE) account. Comprehensive energy consumption per unit of product was 15.35 kg coal equivalent (kce) per weight box. The percentage of energy cost among total cost reduced from 51.19% in 2007 to 46.48% in 2008. Consequently, the comprehensive energy conversion level holds a leading position among peers in China. (author)

  2. Potential for Solar Energy in Food Manufacturing, Distribution and Retail

    Tassou, S.; Shilliday, J; Watkins, Richard; DeLille, G

    2007-01-01

    The overall aim of the study was to assess the potential for increasing the use of solar energy in the food sector. For comparative purposes the study also included an assessment of the benefits that could arise from the use of other renewable energy sources, and the potential for more effective use of energy in food retail and distribution. Specific objectives were to: i) establish the current state of the art in relevant available solar technology; ii) identify the barriers for the adoption...

  3. Saturation wind power potential and its implications for wind energy

    Jacobson, Mark Z.; Cristina L. Archer

    2012-01-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal...

  4. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    Hiester, T.R.

    1980-06-01

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  5. Future bio-energy potential under various natural constraints

    Potentials for bio-energy have been estimated earlier on the basis of estimates of potentially available land, excluding certain types of land use or land cover (land required for food production and forests). In this paper, we explore how such estimates may be influenced by other factors such as land degradation, water scarcity and biodiversity concerns. Our analysis indicates that of the original bio-energy potential estimate of 150, 80 EJ occurs in areas classified as from mild to severe land degradation, water stress, or with high biodiversity value. Yield estimates were also found to have a significant impact on potential estimates. A further 12.5% increase in global yields would lead to an increase in bio-energy potential of about 50%. Changes in bio-energy potential are shown to have a direct impact on bio-energy use in the energy model TIMER, although the relevant factor is the bio-energy potential at different cost levels and not the overall potential.

  6. Potentialities and limits of electricity generation from regenerative energy sources

    Regenerative energies comprise hydro-, solar-, wind-and geothermal power as well as biomass. Comparisons are made with respect to numbers such running hours per annum, cumulated primary energy consumption (fuel plus construction), efficiency, costs etc. Finally the technological as well as economic potentials of the energies are outlined. Nuclear power plants data are added in some instances for sake of comparison. (Quittner)

  7. Geothermal energy potential in the San Luis Valley, Colorado

    Coe, B.A.

    1980-01-01

    The background of the area itself is investigated considering the geography, population, economy, attitudes of residents, and energy demands of the area. The requirements for geothermal energy development are considered, including socio-economic, institutional, and environmental conditions as well as some technical aspects. The current, proposed, and potential geothermal energy developments are described. The summary, conclusions, and methodology are included. (MHR)

  8. Comparing energy levels in isotropic and anisotropic potentials

    Pikovski, Alexander

    2015-01-01

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states.

  9. Energy Efficiency Improvement Potentials for the Cement Industry in Ethiopia

    Tesema, G.; Worrell, E.

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under constru

  10. Energy saving potential of energy services - experimentation on the life cycle of energy conversion equipment

    Energy efficiency services are growing in Europe but their role is still limited. In order to evaluate the potential, we focused first of all on policy, economical and environmental mechanisms that support their development. European natural gas and electricity markets, that are now almost wholly de-regulated, are analysed and compared to their historical structure. By introducing uncertainty on energy prices, this new deal translates better the real energy costs. Energy performance contracts (EPC) limit the impact of these uncertainties on the customer energy bills by guaranteeing a financial result. As a result of the modelling of these contracts, namely operation and maintenance ones, we prove that they transfer technical and financial risks from building owners to energy service companies (ESCO) making energy saving measures easier and less expensive at the same time. These contracts are relatively widespread for heating or compressed-air processes but remain marginal for air-conditioning systems. So new methods were needed to guarantee on the long terms the efficiency of air-conditioning systems demand (1) to master the process and its performances and (2) to be able to determine precisely the energy saving potential and its realisation costs. A detailed energy audit is thus necessary for which we propose a guidance. Conclusions of audits carried out prove that energy saving potential is mainly located in equipment management and control. These optimizations are not always carried out because of a lack of contractual incentive and due to the weaknesses of audit methods. Through the involvement of an independent expert, the mandatory and regular inspection of air-conditioning systems may allow to verify and guide such practices. A three-step analysis procedure has been developed in order to maximize the inspection potential and to get higher benefits from service contracts. (author)

  11. 2D vs. 3D mammography observer study

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  12. Numerical Evaluation of 2D Ground States

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  13. Ab initio modeling of 2D layered organohalide lead perovskites

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-01

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.

  14. Estimating the energy saving potential of telecom operators in China

    A set of models are employed to estimate the potential of total energy saved of productions and segmented energy saving for telecom operators in China. During the estimation, the total energy saving is divided into that by technology and management, which are derived from technical reform and progress, and management control measures and even marketing respectively, and the estimating methodologies for energy saving potential of each segment are elaborated. Empirical results from China Mobile indicate that, first, the technical advance in communications technology accounts for the largest proportion (70%–80%) of the total energy saved of productions in telecom sector of China. Second, technical reform brings about 20%–30% of the total energy saving. Third, the proportions of energy saving brought by marketing and control measures appear relatively smaller, just less than 3%. Therefore, China's telecom operators should seize the opportunity of the revolution of communications network techniques in recent years to create an advanced network with lower energy consumption

  15. Potential Energy Surfaces of Nitrogen Dioxide for the Ground State

    SHAO Ju-Xiang; ZHU Zheng-He; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    The potential energy function of nitrogen dioxide with the C2v symmetry in the ground state is represented using the simplified Sorbie-Murrell many-body expansion function in terms of the symmetry of NO2. Using the potential energy function, some potential energy surfaces of NO2(C2v, X2A1), such as the bond stretching contour plot for a fixed equilibrium geometry angle θ and contour for O moving around N-O (R1), in which R1 is fixed at the equilibrium bond length, are depicted. The potential energy surfaces are analysed. Moreover, the equilibrium parameters for NO2 with the C2v, Cs and D8h symmetries, such as equilibrium geometry structures and energies, are calculated by the ab initio (CBS-Q) method.

  16. Periodic discrete energy for long-range potentials

    Hardin, D. P.; Saff, E. B.; Simanek, B.

    2014-12-01

    We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.

  17. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  18. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  19. Ukraine’s renewable energy potential as promising investment area

    Sivitska, Svitlana

    2013-01-01

    In this research types of enewable energy have been considered, the necessity of investing has been substantiated and the main factors for alternative energy development in Ukraine have been identified.The most promising regions for investment in alternative energy on the basis of a comparison of its development potential in each regions of Ukraine have been identified and also the territorial aspect of each renewable energy sources type development has been analyzed.

  20. Scattering with absorptive interaction: Energy-dependent potentials

    Cassing, W.; Stingl, M.; Weiguny, A.

    1983-05-01

    The energy dependence and analytic structure of the effective interaction for elastic scattering of composite particles are investigated using Feshbach's projection technique. A generalized Levinson theorem is established for complex, nonlocal, and energy-dependent interactions. The analytical results are illustrated by means of Argand diagrams for a solvable model and the effect of energy averaging is discussed. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive, energy-dependent potentials, Levinson theorem.

  1. Decentralised energy systems: state of the art and potentials

    The increasing liberalisation of the energy market as well as the ecological and business environment of public heat and power supply are leading to a re-evaluation of established and innovative energy conversion systems. A more efficient usage of fossil and regenerative primary energy resources is to be achieved by decentralised systems providing combined heat and electrical power. This paper discusses the potentials and challenges of today's and future energy conversion systems. (author)

  2. Modelling piezoelectric energy harvesting potential in an educational building

    Highlights: • Energy harvesting potential of commercialized piezoelectric tiles is analyzed. • The parameters which will affect the energy harvesting efficiency are determined. • The potential could cover 0.5% of the total energy usage of the library building. • A simplified evaluation indicator is proposed to test the considered paving area. - Abstract: In this paper, potential application of a commercial piezoelectric energy harvester in a central hub building at Macquarie University in Sydney, Australia is examined and discussed. Optimization of the piezoelectric tile deployment is presented according to the frequency of pedestrian mobility and a model is developed where 3.1% of the total floor area with the highest pedestrian mobility is paved with piezoelectric tiles. The modelling results indicate that the total annual energy harvesting potential for the proposed optimized tile pavement model is estimated at 1.1 MW h/year. This potential energy generation may be further increased to 9.9 MW h/year with a possible improvement in piezoelectric energy conversion efficiency integrated into the system. This energy harvesting potential would be sufficient to meet close to 0.5% of the annual energy needs of the building. The study confirms that locating high traffic areas is critical for optimization of the energy harvesting efficiency, as well as the orientation of the tile pavement significantly affects the total amount of the harvested energy. A Density Flow evaluation is recommended in this study to qualitatively evaluate the piezoelectric power harvesting potential of the considered area based on the number of pedestrian crossings per unit time

  3. The Potential of Renewable Energy Systems in China

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    as well as reduce environmental pollution. To ensure energy security and mitigate climate changes the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable possibility......This paper discusses the prospective of renewable energy in the process of sustainable development in China. Along with the high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand....... This paper analyses the current status and programming of renewable energy utilization in China and compares the potential of renewable energy sources and energy demand between China and Denmark. It proposes and discusses a forward-looking issue that is the perspective of a 100% renewable energy system...

  4. DNTM/R2D, 2-D Transport in X-Y Geometry

    1 - Description of program or function: DNTM/R2D solves the neutron transport equation in two-dimensional X-Y geometry by the discrete nodal transport method. Source and eigenvalue problems can be solved. As compared to the two-dimensional nodal transport code DNTM/2D, the following new improved features are included: - Anisotropic scattering is considered. The order of anisotropic scattering is from P0 to P3. - The cross section input format is the same as for ANISN. Multi- group cross section libraries such as DLC-37 and DLC-BUGLE-80 can be used. 2 - Method of solution: DNTM/R2D uses the discrete nodal transport method. Anisotropic scattering is treated using Legendre expansion. Order of interior flux approximation is 2. Plane leakage approximation of surface flux is used. 3 - Restrictions on the complexity of the problem: Maximum number of: anisotropic scattering order = 3; material composition = 20; energy groups = 2; angular quadrature = 8; zones = 30. When coarse-mesh re-balancing is used, the maximum number of coarse meshes is 12 in each direction. If the computer permits some arrays can be enlarged to reduce the above restrictions

  5. Recent developments in 2D layered inorganic nanomaterials for sensing

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  6. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Johansson, M. (Dansk Energi Analyse A/S, Frederiksberg (Denmark)); Langkilde, G.; Olesen, Bjarne W. (Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark)); Moerck, O. (Cenergia Energy Consultants, Herlev (Denmark)); Sundman, O. (DONG Energy, Copenhagen (Denmark)); Engelund Thomsen, K. (Aalborg Univ., SBi, Hoersholm (Denmark))

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  7. Biomass energy: the scale of the potential resource.

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change. PMID:18215439

  8. An accurate three-dimensional potential energy surface for the He-Na2 complex

    2008-01-01

    An accurate three-dimensional potential energy surface(PES) for the He-Na2 van der Waals comple was calculated at the coupled cluster singles-and-doubles with noniterative inclusion of connecte triple(CCSD(T)) level of theory.A mixed basis set,aug-cc-pVQZ for the He atom and cc-pCVQZ for th sodium atom,and an additional(3s3p2d1f) set of midbond functions were used.The computed inte action energies in 819 configurations were fitted to a 96-parameter analytic potential model by leas squares fitting.The PES has two shallow wells corresponding to the T-shaped structure and the linea configuration,which are located at 12.5a0 and 14 a0 with depths of 1.769 and 1.684 cm-1,respectivel The whole potential energy surface exhibits weak anisotropy.Based on the fitted PES,state-to-stat differential cross sections were calculated.

  9. Potential energies for the two lowest {sup 1}A` electronic states of H{sub 3}{sup +}

    Ichihara, Akira; Yokoyama, Keiichi; Iwamoto, Osamu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Potential energies for the two lowest {sup 1}A` states of H{sub 3}{sup +} at 701 different spatial geometries are tabulated. These energies have been calculated by the ab initio full configuration interaction method with a (8s6p2d1f) Gaussian type basis set. Features of avoided crossing of two surfaces as well as the potential well in the ground state can be produced by interpolating calculated energies. These ab initio energies are expressed as a function of three internuclear distances in the range from 0.6 to 10.0 bohr, and they are applicable to the molecular dynamics study for the H{sup +} + H{sub 2} system. (author)

  10. Regional Differences in China's Energy Efficiency and Conservation Potentials

    Shi Dan

    2007-01-01

    This paper investigates the maximum energy efficiency level and the energy saving potentials in each region in China that can be practically attained at current economic and technological development levels. Most of the nation's energy efficient provinces are found along the coast of southeast China, while most of its least energy efficient provinces are in the hinterland that is rich in coal resources, and which depends heavily on coal consumption. China's low efficiency in energy resource allocation stems from its secondary industry, which is handicapped by the lowest energy efficiency and the most striking regional differentials. 4comparison of the factors affecting the energy efficiency shows that the provinces being compared in this study differ tremendously in energy consumption structure, technological level of the secondary industry, and abundance of energy resources, and that the other factors are only adequate, rather than necessary, conditions. It is imperative to rectify the behaviors of provinces in balancing local energy allocation, to channel energy resources to energy efficient provinces, and to improve the national energy efficiency as a whole. When taking energy-saving steps, provinces must take into full consideration both the national and local factors that affect energy efficiency. Furthermore, it is unrealistic for China to set a unified energy saving goal for different provinces.

  11. Potential energy curves for neutral and multiply charged carbon monoxide

    Pradeep Kumar; N Sathyamurthy

    2010-01-01

    Potential energy curves of various electronic states of CO+ (0 ≤ ≤ 6) are generated at MRCI/CASSCF level using cc-pvQZ basis set and the results are compared with available experimental and theoretical data.

  12. Ab initio Potential Energy Surface for H-H2

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  13. Potential for sustainable energy with biogas from sewage purification

    Insight is given into the possibility to produce biogas from sewage purification plants in the Netherlands. Attention is paid to the estimated potential of sustainable energy from biogas, the economic effectiveness of several scenarios, the critical success factors and bottlenecks

  14. Potential energy surfaces of ozone in the ground state

    Shao Ju-Xiang; Zhu Zheng-He; Huang Duo-Hui; Wang Jun; Cheng Xin-Lu; Yang Xiang-Dong

    2007-01-01

    Equilibrium parameters of ozone, such as equilibrium geometry structure parameters, force constants and dissociation energy are presented by CBS-Q ab initio calculations. The calculated equilibrium geometry structure parameters and energy are in agreement with the corresponding experimental values. The potential energy function of ozone with a C2v symmetry in the ground state is described by the simplified Sorbie-Murrell many-body expansion potential function according to the ozone molecule symmetry. The contour of bond stretching vibration potential of an O3 in the ground state, with a bond angle (θ) fixed, and the contour of O3 potential for O rotating around O1-O (R1), with O1-O bond length taken as the one at equilibrium, are plotted. Moreover, the potentials are analysed.

  15. The potential of energy crops in Poland and Germany

    Simon, Sonja

    2011-01-01

    Biomass is broadly applicable in each energy sector and for a high variety of applications, but it is strongly restricted by its availability. Especially energy crop potentials are in heavy competition with food and fibre as well as nature conservation and construction activity, while the potential for additional cultivated land is constrained by technical and sustainability considerations. This paper presents a model HEKTOR which provides insight in the availability of agricultural land for ...

  16. Metrology for graphene and 2D materials

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  17. Potential contribution of biomass to the sustainable energy development

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  18. Surface modelling for 2D imagery

    Lieng, Henrik

    2014-01-01

    Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...

  19. Perspectives for spintronics in 2D materials

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  20. Perspectives for spintronics in 2D materials

    Wei Han

    2016-03-01

    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  1. Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report

    SARACHIK, MYRIAM P

    2015-02-20

    STUDIES OF STRONGLY-INTERACTING 2D ELECTRON SYSTEMS – There is a great deal of current interest in the properties of systems in which the interaction between electrons (their potential energy) is large compared to their kinetic energy. We have investigated an apparent, unexpected metal-insulator transition inferred from the behavior of the temperature-dependence of the resistivity; moreover, detailed analysis of the behavior of the magnetoresistance suggests that the electrons’ effective mass diverges, supporting this scenario. Whether this is a true phase transition or crossover behavior has been strenuously debated over the past 20 years. Our measurements have now shown that the thermoelectric power of these 2D materials diverges at a finite density, providing clear evidence that this is, in fact, a phase transition to a new low-density phase which may be a precursor or a direct transition to the long sought-after electronic crystal predicted by Eugene Wigner in 1934.

  2. 2D Barcode for DNA Encoding

    Elena Purcaru

    2011-09-01

    Full Text Available The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  3. 2D Barcode for DNA Encoding

    Purcaru, Elena

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  4. UNITS IN $F_2D_{2p}$

    Kaur, Kuldeep; Khan, Manju

    2012-01-01

    Let $p$ be an odd prime, $D_{2p}$ be the dihedral group of order 2p, and $F_{2}$ be the finite field with two elements. If * denotes the canonical involution of the group algebra $F_2D_{2p}$, then bicyclic units are unitary units. In this note, we investigate the structure of the group $\\mathcal{B}(F_2D_{2p})$, generated by the bicyclic units of the group algebra $F_2D_{2p}$. Further, we obtain the structure of the unit group $\\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\\mathcal{U}_*(F_...

  5. An assessement of global energy resource economic potentials

    Mercure, J F

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary mate...

  6. Achieving the energy potential of biomass in developing countries

    Biomass (or the biologically renewable organic matter produced by the photosynthesis of plants) constitutes a world-wide energy potential of about 1.7 x 1011 dry tonnes/yr and can be converted to useful energy by two methods: (1) biogas production and (2) alcohol production by means of fermentation. Each is discussed separately. 4 refs, 7 tabs

  7. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    Georg Neugebauer; Florian Kretschmer; René Kollmann; Michael Narodoslawsky; Thomas Ertl; Gernot Stoeglehner

    2015-01-01

    Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy ca...

  8. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  9. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.; Fernández, Berta

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and doub...

  10. Analytical potential energy function for the Br + H2 system

    Analytical functions with a many-body expansion for the ground and first-excited-state potential energy surfaces for the Br+H2 system are newly presented in this work. These functions describe the abstraction and exchange reactions qualitatively well, although it has been found that the function for the ground-state potential surface is still quantitatively unsatisfactory. (author)

  11. Potential geothermal energy applications for Idaho Elks Rehabilitation Hospital

    Austin, J.C.

    1981-11-01

    Several potential applications of geothermal energy for the Idaho Elks Rehabilitation Hospital are outlined. A brief background on the resource and distribution system, is provided; which hospital heating systems should be considered for potential geothermal retrofit is discussed; and technical and economic feasibility are addressed.

  12. Renewable energy development strategy and market potential in China

    Renewable energy development in China is at a critical crossroads. With large increases in energy demand a certainty over the long term, development of large-scale renewable energy supply is strategically important for local, regional and global environmental sustainability. Chinese government has paid great attention to renewable energy development and formulated a series policy to promote renewable energy utilization. This paper will provide an overview of China's efforts to adopt and implement a more market-oriented renewable energy development strategy. Furthermore, along with its economic growth and sustainable development, China's development program for promising renewable energy technologies, and specific priority areas create opportunities for investment and cooperation. This paper will also explain the present situation of ongoing market penetration projects and analyse the market potential of renewable energy technologies in the future. (author)

  13. The Potential Role for Fusion Power in Future Energy Markets

    Full text: In order to explore the potential role for fusion in a future energy market, and clarify the conditions under which fusion may be important in different world regions, a global energy scenario model, based on the model generator TIMES supplied by the International Energy Agency, has been developed. The model covers the whole of this century and includes fusion technologies. Results are reported here. (author)

  14. Designing an Index for Assessing Wind Energy Potential

    Ritter, Matthias; Shen, Zhiwei; López Cabrera, Brenda; Odening, Martin; Deckert, Lars

    2014-01-01

    To meet the increasing global demand for renewable energy such as wind energy, more and more new wind parks are installed worldwide. Finding a suitable location, however, requires a detailed and often costly analysis of the local wind conditions. Plain average wind speed maps cannot provide a precise forecast of wind power because of the non-linear relationship between wind speed and production. In this paper, we suggest a new approach of assessing the local wind energy potential: Meteorologi...

  15. Probing Balance Energy Using Momentum- and Isospin-Dependent Potential

    CHEN Ji-Yan; ZUO Wei; MA Lei; ZHANG Fang; LI Bao-An

    2007-01-01

    @@ Using the momentum- and isospin-dependent Boltmann-Uehling-Uhlenbeck (BUU) model, we investigate the transverse flow and balance energy in two isotopic colliding systems 48Ca+58Fe and 48Cr+58Ni by adopting different symmetry potentials. By comparing the results between the two colliding systems, we find that the difference between the balance energies of two isotopic systems can be considered as a sensitive probe to the density dependence of symmetry energy.

  16. Approaches to participative planning : Potential applications in municipal energy planning

    Ljung, Stina

    2010-01-01

    This thesis explores potential participatory approaches suitable for a municipal energy planning context. It also analyses the possibility of using those approaches in energy planning processes in ten Swedish municipalities. Swedish municipal energy plans display differences in terms of quality, comprehensiveness and implementation. According to participation literature, planning processes can be improved by stakeholder participation. This study was carried out in four steps: creation of a th...

  17. Wind energy potential of Marmara region in Turkey

    Oktay Arikan, Evren Isen, Cagri Kocaman, Bedri Kekezoglu

    2015-01-01

    Full Text Available Turkey is one of the developing countries in the world. According to economical, industrial and population growth, electrical energy demand has valuably increased in the last decade. The continually increase of electrical energy demand and global sensitivity to environmental pollution raise the importance of renewable energy sources. Wind energy has become more popular than other renewable energy sources owing to its advantages such as supplying great power, being sustainable and clean energy resource. In this study, wind energy potential analysis of Marmara region which is one of the Turkey's geographical regions is presented. Due to its high energy demand, crowded population, large industrial areas and attractive wind energy potential, this paper focused on the Marmara region. Installed wind energy conversion system (WECS power is 923.65 MW and available WECS power is 46,996.28 MW in Marmara region. It is obviously seen that only 1.96 % of the existent capacity is utilized. A valuable increase in installed capacity could provide an attractive opportunity to decrease the import energy resources, transmission losses and greenhouse gas (GHG emission of Turkey.

  18. Energy and environmental potential of solid waste in Brazil

    The economic progress and sustainable developments are linked to the optimization and energy conservation. Conventional methods of production and energy utilization usually embed harmful environmental impacts, and hence the challenge to scientists to seek for mechanisms of energy production and use which are less harmful or better still free of unfavorable environmental impacts. Studies point out that municipal solid waste has great energy potential and its reuse, specifically the production of biogas from landfills and the recycling of solid waste presents a favorable mechanism to optimize energy use and preserve it. The present investigation includes the energy savings and the avoided emissions of CO2 to the atmosphere as a result of recycling and production of biogas from landfills in one metropolitan with more than one million inhabitants and in Brazil. The results show that the rate of CH4 production from the Brazilian waste landfills can avail for Brazil about 41.7 MW and the reuse of recyclables can avail to the energy system an additional quantity of 286 GJ/month enough for the consumption of 318,000 families. - Highlights: → This paper highlights four fundamental and potential points of solid waste. → Energy, environmental and social aspects of solid waste as a source of energy in Brazil. → The use of organic matter deposited in the landfills as mechanism to generate energy from biogas. → Recycling economizes energy, raw material, creates jobs, income and social inclusion. → Selective collection and recycling increases the Family Grants and the social inclusion in Brazil.

  19. Separable representation of energy-dependent optical potentials

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  20. Dark energy exponential potential models as curvature quintessence

    It has been recently shown that, under some general conditions, it is always possible to find a fourth-order gravity theory capable of reproducing the same dynamics as a given dark energy model. Here, we discuss this approach for a dark energy model with a scalar field evolving under the action of an exponential potential. In the absence of matter, such a potential can be recovered from a fourth-order theory via a conformal transformation. Including the matter term, the function f(R) entering the generalized gravity Lagrangian can be reconstructed according to the dark energy model

  1. Framework for State-Level Renewable Energy Market Potential Studies

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  2. Separable Representation of Energy-Dependent Optical Potentials

    Hlophe, Linda

    2015-01-01

    Background. One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy-dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity e...

  3. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than$100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  4. Annotated Bibliography of EDGE2D Use

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  5. 2D NMR studies of biomolecules

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  6. Applications of 2D helical vortex dynamics

    Okulov, Valery; Sørensen, Jens Nørkær

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...

  7. Annotated Bibliography of EDGE2D Use

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  8. Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials

    For the two-dimensional Schroedinger equation [-Δ + v(x)]ψ=Eψ, x element of R2, E=Efixed>0 at a fixed positive energy with a fast decaying at infinity potential v(x) dispersion relations on the scattering data are given. Under ''small norm'' assumption using these dispersion relations we give (without a complete proof of sufficiency) a characterization of scattering data for the potentials from the Schwartz class S=C(∞)∞(R2). For the potentials with zero scattering amplitude at a fixed energy Efixed (transparent potentials) we give a complete proof of this characterization. As a consequence we construct a family (parametrized by a function of one variable) of two-dimensional spherically-symmetric real potentials from the Schwartz class S transparent at a given energy. For the two-dimensional case (without assumption that the potential is small) we show that there are no nonzero real exponentially decreasing, at infinity, potentials transparent at a fixed energy. For any dimension greater or equal to 1 we prove that thereare no nonzero real potentials with zero forward scattering amplitude at anenergy interval. We show that KdV-type equations in dimensions 2+1 related with this scattering problem (the Novikov-Veselov equations) do not preserve, in general, these dispersion relations starting from the second one. As a corollary these equations do not preserve, in general, the decay rate faster than vertical stroke xvertical stroke -3 for initial data from the Schwartz class. (orig.)

  9. Solar energy in California industry - Applications, characteristics and potential

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  10. Scenarios of energy demand and efficiency potential for Bulgaria

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  11. Potential for energy conservation in the glass industry

    Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

    1986-06-01

    While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

  12. Exploring the potential of wind energy for a coastal state

    Adequate recognition of the wind energy potential of coastal states may have far-reaching effects on the development of the energy systems of these countries. This study evaluates wind energy resources in Taiwan with the aid of a geographic information system (GIS), which allows local potentials and restrictions such as climate conditions, land uses, and ecological environments to be considered. The findings unveiled in this study suggest a significant role for offshore wind energy resources, which may constitute between 94% and 98% of overall wind resources in Taiwan. Total power yield from wind energy could reach between 150 and 165 TWh, which would have, respectively, accounted for between 62% and 68% of Taiwan's total power generation of 243 TWh in 2007. Based on the Taiwan's current emission factor of electricity, wind energy has the potential to reduce CO2 emissions by between 94 and 102 million ton per year in Taiwan, which is, respectively, equivalent to 28% and 31% of the national net equivalent CO2 emissions released in 2002. However, the challenge of managing the variability of wind power has to be addressed before the considerable contribution of wind energy to domestic energy supply and CO2 reduction can be realized.

  13. Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach

    Qunwei Wang; Peng Zhou; Zengyao Zhao; Neng Shen

    2014-01-01

    Increasing energy efficiency and exploiting energy saving potential are two important practices that can help to ensure future energy security in China. This paper proposes a new total factor energy efficiency indicator, based on the directional meta-frontier data envelopment analysis (DEA) approach, to account for the heterogeneity of production technology among provinces in China. This indicator considers both energy savings and economic development, and can also decompose the energy savin...

  14. Recent estimates of energy efficiency potential in the USA

    Sreedharan, P. [Energy and Environmental Economics E3, 101 Montgomery Street, 16th Floor, San Francisco, CA 94104 (United States)

    2013-08-15

    Understanding the potential for reducing energy demand through increased end-use energy efficiency can inform energy and climate policy decisions. However, if potential estimates are vastly different, they engender controversial debates, clouding the usefulness of energy efficiency in shaping a clean energy future. A substantive question thus arises: is there a general consensus on the potential estimates? To answer this question, this paper reviews recent studies of US national and regional energy efficiency potential in buildings and industry. Although these studies are based on differing assumptions, methods, and data, they suggest technically possible reductions of circa 25-40 % in electricity demand and circa 30 % in natural gas demand in 2020 and economic reductions of circa 10-25 % in electricity demand and circa 20 % in natural gas demand in 2020. These estimates imply that electricity growth from 2009 to 2020 ranges from turning US electricity demand growth negative, to reducing it to a growth rate of circa 0.3 %/year (compared to circa 1 % baseline growth)

  15. Experimental studies of spin-imbalanced Fermi gases in 2D geometries

    Thomas, John

    We study the thermodynamics of a quasi-two-dimensional Fermi gas, which is not quite two-dimensional (2D), but far from three dimensional (3D). This system offers opportunities to test predictions that cross interdisciplinary boundaries, such as enhanced superfluid transition temperatures in spin-imbalanced quasi-2D superconductors, and provides important benchmarks for calculations of the phase diagrams. In the experiments, an ultra-cold Fermi gas is confined in an infrared CO2 laser standing-wave, which produces periodic pancake-shaped potential wells, separated by 5.3 μm. To study the thermodynamics, we load an ultra-cold mixture of N1 = 800 spin 1/2 -up and N2 measured properties are in disagreement with 2D-BCS theory, but can be fit by a 2D-polaron gas model, where each atom is surrounded by a cloud of particle-hole pairs of the opposite spin. However, this model fails to predict a transition to a spin-balanced central region as N2/N1is increased. Supported by the physics divisions of ARO, AFOSR, and NSF and by the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, DOE.

  16. Clusters and groups of galaxies in the 2dF galaxy redshift survey

    Tago, E; Einasto, M; Saar, E

    2005-01-01

    We create a new catalogue of groups and clusters for the 2dF GRS final release sample. We show that the variable linking length friends-of-friends (FoF) algorithms used so far yield groups with sizes that grow systematically with distance from the observer, but FoF algorithms with a constant linking length are free from this fault. We apply the FoF algorithm with a constant linking length for the 2dF GRS, compare for each group its potential and kinetic energies and remove galaxies with excess random velocities. Our sample contains 7657 groups in the Northern part, and 10058 groups in the Southern part of the 2dF survey with membership Ng >= 2. We analyze selection effects of the catalogue and compare our catalogue of groups with other recently published catalogues based on the 2dF GRS. We also estimate the total luminosities of our groups, correcting for group members fainter than the observational limit of the survey. The cluster catalogues are available at our web-site (http://www.aai.ee/~maret/2dfgr.html)

  17. The potential for energy production from crop residues in Zimbabwe

    Jingura, R.M.; Matengaifa, R. [School of Engineering Sciences and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe)

    2008-12-15

    There is increasing interest in Zimbabwe in the use of renewable energy sources as a means of meeting the country's energy requirements. Biomass provides 47% of the gross energy consumption in Zimbabwe. Energy can be derived from various forms of biomass using various available conversion technologies. Crop residues constitute a large part of the biomass available from the country's agriculture-based economy. The potential for energy production of crop residues is examined using data such as estimates of the quantities of the residues and their energy content. The major crops considered are maize, sugarcane, cotton, soyabeans, groundnuts, wheat, sorghum, fruits and forestry plantations. Quantities of residues are estimated from crop yields by using conversion coefficients for the various crops. Long-term crop yields data from 1970 to 1999 were used. Total annual residue yields for crops, fruits and forestry plantations are 7.805 Mt, 378 kt and 3.05 Mt, respectively. The crops, fruits and forestry residues have energy potential of 81.5, 4.9 and 44.3 PJ per year, respectively. This represents about 44% of the gross energy consumption in Zimbabwe. The need to balance use of crop residues for both energy purposes and other purposes such as animal feeding and soil fertility improvement is also highlighted. (author)

  18. Utility of potential energy span as an approximate free energy proxy

    Wang, Kai; Liu, Lanru; Tian, Pu

    2016-01-01

    Free energy calculation is critical in predictive tasks such as protein folding, docking and design. However, rigorous calculation of free energy change is prohibitively expensive in these practical applications. The minimum potential energy is therefore widely utilized to approximate free energy. In this study, based on analysis of extensive molecular dynamics (MD) simulation trajectories of a few native globular proteins, we found that change of minimum and corresponding maximum potential e...

  19. Wind energy potential analysis in Al-Fattaih-Darnah

    Tjahjana, Dominicus Danardono Dwi Prija; Salem, Abdelkarim Ali; Himawanto, Dwi Aries

    2016-03-01

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth's surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  20. Reevaluation of Turkey's hydropower potential and electric energy demand

    This paper deals with Turkey's hydropower potential and its long-term electric energy demand predictions. In the paper, at first, Turkey's energy sources are briefly reviewed. Then, hydropower potential is analyzed and it has been concluded that Turkey's annual economically feasible hydropower potential is about 188 TWh, nearly 47% greater than the previous estimation figures of 128 TWh. A review on previous prediction models for Turkey's long-term electric energy demand is presented. In order to predict the future demand, new increment ratio scenarios, which depend on both observed data and future predictions of population, energy consumption per capita and total energy consumption, are developed. The results of 11 prediction models are compared and analyzed. It is concluded that Turkey's annual electric energy demand predictions in 2010, 2015 and 2020 vary between 222 and 242 (average 233) TWh; 302 and 356 (average 334) TWh; and 440 and 514 (average 476) TWh, respectively. A discussion on the role of hydropower in meeting long-term demand is also included in the paper and it has been predicted that hydropower can meet 25-35% of Turkey's electric energy demand in 2020

  1. Saturation wind power potential and its implications for wind energy.

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  2. Communication: Fitting potential energy surfaces with fundamental invariant neural network.

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations. PMID:27544080

  3. Current and potential utilisation of biomass energy in Fiji

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  4. Inertial solvation in femtosecond 2D spectra

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  5. Ion Transport in 2-D Graphene Nanochannels

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  6. Quantum process tomography by 2D fluorescence spectroscopy

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  7. Quantum process tomography by 2D fluorescence spectroscopy

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed

  8. An adaptive interpolation scheme for molecular potential energy surfaces.

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-28

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task-especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version. PMID:27586901

  9. An adaptive interpolation scheme for molecular potential energy surfaces

    Kowalewski, Markus; Heryudono, Alfa

    2016-01-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task -- especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior is evaluated for a model function in 2, 3 and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  10. Sustainable energy. Economic growth for the Netherlands with green potential

    Research of the economic potential and options for enhancing renewable energy in the Netherlands. The following research questions were addressed: What is the current and future economic value of renewable energy in the Netherlands?; What are the areas in which the Netherlands has a unique point of departure with respect to knowledge and activities?; How can the economic potential be optimally deployed? Can the opportunities be increased by making it a key area?; What are other ways are there to enhance the economic development?.

  11. Synthesis of 2D materials in arc plasmas

    In this article we review recent efforts focused on synthesis of two-dimensional (2D) materials in an arc-plasma based process with particular focus on graphene. We present state-of-the-art experimental data on various attempts to employ the arc plasma technique for the graphene synthesis and consider growth mechanisms including precipitation, surface-catalyzed processes and a substrate-independent approach. The potential of arc synthesis for the growth of other types of 2D materials and future prospects are discussed. (review article)

  12. Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials

    Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (7eq-to-Cax isomerization of an alanine dipeptide, the 4C1-to-1C4 transition of an α-D-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path are enough to provide quantitative estimation of energy barriers.

  13. Potential benefits of selling by auction the CIP 6 energy

    This paper analyses the potential benefits of selling by auction the CIP 6 energy. This would both reduce the supply shortage and the prices on the eligible market, increase competition on the contract-for-difference market, indicate a clear price to which regulated energy charges could be indexed, thus extending the auction benefits to the franchise market to avoid the reintroduction of cross-subsidies

  14. Energy from Waste: Generation Potential and Mitigation Opportunity

    Bosello, Francesco; Campagnolo, Lorenza; Eboli, Fabio; Parrado, Ramiro

    2014-01-01

    The present research proposes a macroeconomic assessment of the role of waste incineration with energy recovery (WtE) and controlled landfill biogas to electricity generation and their potential contribution to a CO2 emission reduction policy, within a recursive-dynamic computable general equilibrium model. From the modelling viewpoint, introducing these energy sectors in such a framework required both the extension of the GTAP7 database and the improvement of the ICES production nested funct...

  15. Exact energy spectrum for models with equally spaced point potentials

    Caudrelier, V.; Crampe, N.

    2006-01-01

    We describe a non-perturbative method for computing the energy band structures of one-dimensional models with general point potentials sitting at equally spaced sites. This is done thanks to a Bethe ansatz approach and the method is applicable even when periodicity is broken, that is when Bloch's theorem is not valid any more. We derive the general equation governing the energy spectrum and illustrate its use in various situations. In particular, we get exact results for boundary effects. We ...

  16. 2D supergravity in p+1 dimensions

    Gustafsson, H.; Lindstrom, U.

    1998-01-01

    We describe new $N$-extended 2D supergravities on a $(p+1)$-dimensional (bosonic) space. The fundamental objects are moving frame densities that equip each $(p+1)$-dimensional point with a 2D ``tangent space''. The theory is presented in a $[p+1, 2]$ superspace. For the special case of $p=1$ we recover the 2D supergravities in an unusual form. The formalism has been developed with applications to the string-parton picture of $D$-branes at strong coupling in mind.

  17. 2D Barcode for DNA Encoding

    Elena Purcaru; Cristian Toma

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...

  18. Energy potential mapping: visualising energy characteristics for the exergetic optimisation of the built environment

    Michiel Fremouw; Siebe Broersma; Andy van den Dobbelsteen

    2013-01-01

    It is difficult to fully satisfy the energy demand of today’s society with renewables. Nevertheless, most of the energy we use is lost as non-functional waste energy, whereas a large part of the built environment’s energy demand is only for low-quality energy, so the initial demand for primary, high-quality energy can be reduced by more effective usage, such as by low-exergy means. Gaining insight into the parameters of energy demands and local renewable and residual energy potentials enables...

  19. 2D materials for photon conversion and nanophotonics

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  20. Potentials and market prospects of wind energy in Vojvodina

    Katić Vladimir A.

    2012-01-01

    Full Text Available The paper presents an overview of the wind energy potentials, technologies and market prospects in the Autonomous Province of Vojvodina, the region of Serbia with the most suitable location for exploitation of wind energy. The main characteristics of the region have been presented regarding wind energy and electric, road, railway and waterway infrastructure. The wind farm interconnection with the public grid is explained. The most suitable locations for the wind farms are presented, with present situation and future prospects of wind market in Vojvodina.

  1. Strategy for regenerative energy sources. Status and development potential

    Without doubt, in the future, we shall have to cover a growing proportion of our energy requirements by utilizing regenerative energy sources such as the sun, wind, water and biomass. The indisputable advantages of inexhaustibility and environment friendliness are, however, compared with the disadvantages of non-uniform demand as well as partially small potential and high costs. In spite of these facts, there are, in the minds of the public, high expectations and great demands on the electricity supply industry in relation to the further development of regenerative power generation. In the future, RWE Energie AG will strongly intensify its efforts towards improving the economics of regenerative power generation. (orig.)

  2. Wave Energy Conversion and Ocean Thermal Energy Conversion Potential in Developing Member Countries

    Asian Development Bank

    2014-01-01

    Wave energy conversion (WEC) and Ocean thermal energy conversion (OTEC) are two potentially significant sources of renewable energy that are available to help the Asian Development Bank’s (ADB) developing member countries (DMCs) reduce their dependence on fossil-fuel based energy generation and bolster energy security. This report summarizes WEC and OTEC information that is available in the public domain for the DMCsand assesses the viability of using these resources to produce electricity. I...

  3. Matrix models of 2d gravity

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  4. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant. PMID:27131532

  5. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces

    Heaps, Charles W.; Mazziotti, David A.

    2016-04-01

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  6. Energy use and savings potential for laboratory fume hoods

    Fume hoods--small but essential safety devices used in laboratory environments--are highly energy-intensive, each one consuming more energy than three homes in an average U.S. climate. Increasing airflow rates in an effort to enhance safety not only elevates energy use but can in fact compromise safety by causing dangerous turbulence that can foil containment. New design strategies have been demonstrated to reduce energy use by 75%, while maintaining or enhancing safety. The energy savings potential for these hoods across the United States is $1.5 billion annually. If incorporated in new laboratory construction, high-performance fume hoods can also yield substantial first-cost savings by allowing downsizing of heating, ventilating, and air-conditioning infrastructure. However, there are material hurdles to widespread adoption of new fume hood technologies. The problems reside in regulations and standards that stipulate absolute airflow rates, rather than direct metrics of containment and safety

  7. Biohydrogen production as a potential energy fuel in South Africa

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  8. 2D Saturable Absorbers for Fibre Lasers

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  9. Beltrami States in 2D Electron Magnetohydrodynamics

    Shivamoggi, B. K.

    2015-01-01

    In this paper, the Hamiltonian formulations along with the Poisson brackets for two-dimensional (2D) electron magnetohydrodynamics (EMHD) flows are developed. These formulations are used to deduce the Beltrami states for 2D EMHD flows. In the massless electron limit, the EMHD Beltrami states reduce to the force-free states, though there is no force-free Beltrami state in the general EMHD case.

  10. Potentials and policy implications of energy and material efficiency improvement

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  11. Capacitive technology for energy extraction from chemical potential differences

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.  

  12. Deduction arithmetic of continuous measurement the radon daughters potential energy

    According to continuous measurement the radon daughters potential energy, the deduction arithmetic is presented. And the theoretical formula, coefficient, calculation error, method of sampling and measurement, condition of calibration are given. The calculation error of this method is less than 4%. This method is suitable for environmental measurement for it's high sensitivity when sampling with low flow rate. (authors)

  13. Teaching Field Concept and Potential Energy at A-Level.

    Poon, C. H.

    1986-01-01

    Argues for a greater emphasis on the reality of fields in electronics and gravitation instruction. Advocates that the potential energy in a system be regarded as stored in the field rather than in the material bodies of the system. Provides a rationale and examples for this position. (ML)

  14. Structure and potential energy function for Pu22+ ion

    The theoretical study on Pu22+ using density functional method shows that the molecular ion is metastable. Ground electronic state is 13Σg for Pu22+, the analytic potential energy function is in well agreement with the Z-W function, and the force constants and spectroscopic data have been worked out for the first time

  15. Scattering at zero energy for attractive homogeneous potentials

    Derezinski, Jan; Skibsted, Erik

    2009-01-01

    We compute up to a compact term the zero-energy scattering matrix for a class of potentials asymptotically behaving as −γ|x|−μ with 0 < μ < 2 and γ > 0. It turns out to be the propagator for the wave equation on the sphere at time ....

  16. On intermediate energy heavy ion optical model potential

    We derive in this paper an approximate analytical expression for the heavy ion optical potential by solving the inversion problem based on the McIntyre parametrization of the S-matrix. The quasi-classical limit of high energy approximation is modified in our approach so as to account for the Coulomb distortion of the trajectory. (author). 5 refs, 2 figs

  17. Matrix models and 2-D gravity

    In these lectures, I shall focus on the matrix formulation of 2-d gravity. In the first one, I shall discuss the main results of the continuum formulation of 2-d gravity, starting from the first renormalization group calculations which led to the concept of the conformal anomaly, going through the Polyakov bosonic string and the Liouville action, up to the recent results on the scaling properties of conformal field theories coupled to 2-d gravity. In the second lecture, I shall discuss the discrete formulation of 2-d gravity in term of random lattices, and the mapping onto random matrix models. The occurrence of critical points in the planar limit and the scaling limit at those critical points will be described, as well as the identification of these scaling limits with continuum 2-d gravity coupled to some matter field theory. In the third lecture, the double scaling limit in the one matrix model, and its connection with continuum non perturbative 2-d gravity, will be presented. The connection with the KdV hierarchy and the general form of the string equation will be discuted. In the fourth lecture, I shall discuss the non-perturbative effects present in the non perturbative solutions, in the case of pure gravity. The Schwinger-Dyson equations for pure gravity in the double scaling limit are described and their compatibility with the solutions of the string equation for pure gravity is shown to be somewhat problematic

  18. 2d index and surface operators

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role

  19. Global Potential of Energy Efficiency Standards and Labeling Programs

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration

  20. Energy wood potential of forests in the European Union

    The potential sources of forest fuels in 25 European Union (EU) member countries are presented. Felling residues and stumps from current felling as well as the round-wood balance between the net annual increment and current felling were identified as potential energy wood resources. It was estimated that felling residues total 173 mill. m3 annually. Annually harvestable felling residues were estimated to be 63 mill. m3. In addition, about 9 mill. m3 stump wood from current felling (out of 78 mill. m3 total potential) could be used for energy production. When 25 % of the round-wood balance, including above ground biomass, is directed to energy use, 64 mill. m3 of above ground biomass and about 4 mill. m3 of stump wood could be used for energy annually. Thus the available forest fuel totals about 140 mill. m3 per year, i.e. about 56 mill. owen dry tons of wood, which corresponds to about 280 TWh of energy or 24 Mtoe. This would be about 24% of the current use of renewable in EU25. (authors)

  1. Heterobarrier for converting hot-phonon energy to electric potential

    Shin, Seungha; Melnick, Corey; Kaviany, Massoud

    2013-02-01

    We show that hot phonons emitted in energy conversion or resistive processes can be converted to electric potential in heterobarrier structures. Using phonon and electron interaction kinetics and self-consistent ensemble Monte Carlo, we find the favorable conditions for unassisted absorption of hot phonons and design graded heterobarriers for their direct conversion into electric energy. Tandem barriers with nearly optical-phonon height allow for substantial potential gain without current loss. We find that 19% of hot phonons can be harvested with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, thus enhancing the overall energy conversion efficiency and reducing waste heat.

  2. Microscopic positive-energy potential based on Gogny interaction

    Blanchon, G; Arellano, H F; Mau, N Vinh

    2014-01-01

    We present nucleon elastic scattering calculation based on Green's function formalism in the Random-Phase Approximation. For the first time, the Gogny effective interaction is used consistently throughout the whole calculation to account for the complex, non-local and energy-dependent optical potential. Effects of intermediate single-particle resonances are included and found to play a crucial role in the account for measured reaction cross section. Double counting of the particle-hole second-order contribution is carefully addressed. The resulting integro-differential Schr\\"odinger equation for the scattering process is solved without localization procedures. The method is applied to neutron and proton elastic scattering from $^{40}$Ca. A successful account for differential and integral cross sections, including analyzing powers, is obtained for incident energies up to 30 MeV. Discrepancies at higher energies are related to much too high volume integral of the real potential for large partial waves. Moreover...

  3. Contrastive studies of potential energy functions of some diatomic molecules

    Abdallah, Hassan H.; Abdullah, Hewa Y.

    2016-03-01

    It was proposed that iron hydride, FeH, would be formed only on grains at the clouds through the reaction of the adsorbed H atoms or H2 molecules with the adsorbed Fe atoms on the grains. The importance of FeH in Astrophysics presents an additional motivation to study its energetic, spectroscopic constants and Potential Energy Curves. The structural optimization for ground state of FeH was calculated by different theoretical methods, namely, Hartree-Fock (HF), the density functional theory (DFT), B3LYP, MP2 method and QCISD(T) methods and compared with available data from the literature. The single ionized forms, cation and anion, were also obtained at the same level of calculations. Charges, dipole moment, geometrical parameters, molecular orbital energies and spectroscopic parameters were calculated and reported. In addition, the molecular ionization potential, electron affinity and dissociation energy were investigated.

  4. Energy Planning in Selected European Regions - Methods for Evaluating the Potential of Renewable Energy Sources

    Sliz-Szkliniarz, Beata

    2012-01-01

    Given their potentially positive impact on climate protection and the preservation of fossil resources, alternative energy sources have become increasingly important for the energy supply over the past years. However, the questions arises what economic and ecological impacts and potential conflicts over land use resources are associated with the promotion of renewable energy production. Using the examples of three selected European Regions in Poland, France and German, the dissertation discus...

  5. 2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计

    康亚芳; 王静; 张清泉; 行小帅

    2014-01-01

    This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究,在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上,以均匀平面阵列为例,对3种不同参数的DOA估计进行了计算机仿真,分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。

  6. Review of Potential Characterization Techniques in Approaching Energy and Sustainability

    David J. LePoire

    2014-03-01

    Full Text Available Societal prosperity is linked to sustainable energy and a healthy environment. However, tough global challenges include increased demand for fossil fuels, while approaching peak oil production and uncertainty in the environmental impacts of energy generation. Recently, energy use was identified as a major component of economic productivity, along with capital and labor. Other environmental resources and impacts may be nearing environmental thresholds, as indicated by nine planetary environmental boundaries, many of which are linked to energy production and use. Foresight techniques could be applied to guide future actions which include emphasis on (1 energy efficiency to bridge the transition to a renewable energy economy; (2 continued research, development, and assessment of new technologies; (3 improved understanding of environment impacts including natural capital use and degradation; (4 exploration of GDP alternative measures that include both economic production and environmental impacts; and (5 international cooperation and awareness of longer-term opportunities and their associated potential scenarios. Examples from the U.S. and the international community illustrate challenges and potential.

  7. Hyperspherical approach to the three-bosons problem in 2D with a magnetic field

    Rittenhouse, Seth T; Johnson, B L

    2016-01-01

    We examine a system of three-bosons confined to two dimensions in the presence of a perpendicular magnetic field within the framework of the adiabatic hyperspherical method. For the case of zero-range, regularized pseudo-potential interactions, we find that the system is nearly separable in hyperspherical coordinates and that, away from a set of narrow avoided crossings, the full energy eigenspectrum as a function of the 2D s-wave scattering length is well described by ignoring coupling between adiabatic hyperradial potentials. In the case of weak attractive or repulsive interactions, we find the lowest three-body energy states exhibit even/odd parity oscillations as a function of total internal 2D angular momentum and that for weak repulsive interactions, the universal lowest energy interacting state has an internal angular momentum of $M=3$. With the inclusion of repulsive higher angular momentum we surmise that the origin of a set of ``magic number'' states (states with anomalously low energy) might emerge...

  8. U.S. Building-Sector Energy Efficiency Potential

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  9. Potential of hydrogen production from wind energy in Pakistan

    The transport sector consumes about 34% of the total commercial energy consumption in Pakistan. About 97% of fuel used in this sector is oil and the remaining 3% is CNG and electricity. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is serious strain on the country's economy. The production, transportation and consumption of fossil fuels also degrade the environment. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply in the transport sector. Sindh, the second largest province of Pakistan, has about 250 km long coastline. The estimated average annual wind speed at 50 m height at almost all sites is about 6-7 m/s, indicating that Sindh has the potential to effectively utilize wind energy source for power generation and hydrogen production. A system consisting of wind turbines coupled with electrolyzers is a promising design to produce hydrogen. This paper presents an assessment of the potential of hydrogen production from wind energy in the coastal area of Sindh, Pakistan. The estimated technical potential of wind power is 386 TWh per year. If the wind electricity is used to power electrolyzers, 347.4 TWh hydrogen can be produced annually, which is about 1.2 times the total energy consumption in the transport sector of Pakistan in 2005. The substitution of oil with renewable hydrogen is essential to increase energy independence, improve domestic economies, and reduce greenhouse gas and other harmful emissions

  10. Estonian energy sector and its potentials for developing clean energy production

    The starting year for the transition period in the Estonian energy sector can be considered 1994 when Estonia signed Charter Treaty and recognised the European energy co-operation principles. The process in the energy sector reached its peak in 1998 when the Energy Act was enforced and the Estonian Parliament approved the Long-Term National Development Plan for the Fuel and Energy Sector. Reaching the goals in the development plan to the year 2005 must foster Estonia to be fully prepared for joining the European Union. In the article an overview of the development trends in the Estonian energy sector is given and the principal energy policy measures required for reaching the goals are described. Thereby special attention is focused on analysing the legislative process in the Estonian energy sector and the potentials for improving efficiency in energy generation, energy conservation and mitigation of environmental impact from the energy sector. (author)

  11. Oscillating adiabatic temperature change of 2D diamagnetic materials

    Studies on magnetocaloric effect generally concern ferromagnetic materials, due to their high magnetocaloric potential near phase transitions. Recently, this effect on diamagnetic materials was explored and oscillations on the entropy change observed as a consequence of the crossing of the Landau levels through the Fermi energy. The present paper explores the adiabatic temperature change in graphenes and thin films of non-relativistic diamagnetic materials and then compares the results with those from 3D diamagnets. Applying 10 T of magnetic field, the temperature change of a gold thin film reaches 1 K, while for bulk gold the temperature change is smaller than 6 mK. For graphenes, the temperature change reaches 4 K with a field of ∼1 T. - Highlights: • We studied magnetocaloric properties of 2D diamagnetic materials. • Temperature change of low-dimensional materials exhibits an oscillating behavior. • The effect of scattering from impurity in graphene strongly reduces the temperature change. • We propose an application involving field sensors

  12. Ocean wave properties of Terengganu for renewable energy potential

    Muzathik, A.M.; Wan Nik, W.B.; Ahmad, M.F.; Ibrahim, M.Z.; Sharuddin, A.H.; Samo, K.B. [Universiti of Malalysia, Kuala Terengganu (Malaysia)

    2011-07-01

    The development of renewable energy sources together with the expansion of those currently exploited is crucial in reducing the emissions of greenhouse gases as prescribed by the Kyoto protocol. Among renewable energy sources, ocean waves contain the highest energy density. This allows for substantial energy generation in relatively small areas from a virtually inexhaustible energy source. Wave energy has a number of significant advantages with respect to other renewable energy sources -- predictability, abundance, high load factor and low environmental impact, among others. In spite of these advantages, wave energy exploitation is still in its infancy due to technological challenges still ahead. Although wave energy potential has been reported for a few countries around the world, reliable and year-long wave data is still needed for Malaysia. This study therefore addresses this need. The wave resource characterization is a crucial point towards the exploitation of wave energy. Wave power along the Terengganu coast was analyzed at a time scale of months to examine the seasonal dependencies. These investigations show that the Terengganu coast could provide a source of low wave power. The wave climate in the Terengganu coast is among the harshest in Malaysia. The maximum wave height varies between 1--13 m and 3.13 m. The month of December has the highest probability of occurrence of significant wave heights greater than 2 m (2.15%), the possibility of this occurrence begins in November and lasts through January. Similarly, the month of December has the highest probability of occurrence of maximum wave heights greater than 2 m (44.09%) followed by January (40.86%) and November (32.78%). An identical evolution is seen for the wave heights in the classes 1--2 m, the highest frequency of occurrence is in December and represents 68.01% of the total of the month. The wave mean period varies between 2.76 and 5.28 sec and monthly averaged wave peak period varies between 3

  13. Approximation of the potential in scalar field dark energy models

    Battye, Richard A

    2016-01-01

    We study the nature of potentials in scalar field based models for dark energy - both with canonical and non-canonical kinetic terms. We calculate numerically, and using an analytic approximation around $a\\approx 1$, potentials for models with constant equation-of-state parameter, $w_{\\phi}$. We find that for a wide range of models with canonical and non-canonical kinetic terms there is a simple approximation for the potential that holds when the scale factor is in the range $0.6\\lesssim a\\lesssim 1.4$. We discuss how this form of the potential can also be used to represent models with non-constant $w_{\\phi}$ and, hence, how it could be used in reconstruction from cosmological data.

  14. The ethylenedione anion: Elucidation of the intricate potential energy hypersurface

    Ab initio molecular orbital theory has been used to study the controversial potential energy surface of the ethylenedione anion C2O-2. Seven different basis sets, the largest being triple zeta plus two polarization functions and one set of higher angular momentum functions (TZ2Pf) in quality, were utilized in conjunction with five correlated methods, the highest-level being coupled-cluster theory including single, double, and perturbative triple excitations [CCSD(T)]. Equilibrium geometries and harmonic vibrational frequencies of the predicted 2Au trans-bent ground state are presented. The Renner--Teller potential energy surface resulting from the splitting of the doubly degenerate linear 2Πu transition state into the nondegenerate bent 2Au and linear 2Bu surfaces is also characterized by means of energy predictions for these three states. Several recent peak assignments in the experimental spectrum, as well as the isotopic shifts associated with them, are supported by theory. A correct description of the potential energy hypersurface is obtained only by application of large basis sets in conjunction with methods including high-level treatment of electron correlation effects. The TZP+/CCSD(T) methodology predicts the OCC bond angle to be 146.5 degree

  15. Potential for renewable energy jobs in the Middle East

    Based on employment factors derived from a recent review of publications investigating opportunities for work associated with the diffusion of renewable energy technology, we here present an analysis of the potential for renewable energy jobs in the Middle East. We use energy system optimisation results from the regionally disaggregated TIAM-ECN model as input to our study. This integrated assessment model is utilised to inspect the energy technology requirements for meeting a stringent global climate policy that achieves a stabilisation of greenhouse gas concentrations in the atmosphere with a maximum additional radiative forcing of 2.9 W/m2. This climate control target implies a massive deployment of renewable energy in the Middle East, with wind and solar power accounting for approximately 60% of total electricity supply in 2050: 900 TWh of an overall level of 1525 TWh would be generated from 210 GW of installed renewable energy capacity by the middle of the century. For this pervasive renewables diffusion scenario for the Middle East we estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs, based on assumptions regarding which components of the respective wind and solar energy technologies can be manufactured in the region itself. All jobs generated through installation and O and M activities are assumed to be domestic. - Highlights: • An analysis of the potential for renewable energy jobs in the Middle East is presented. • With the TIAM-ECN model we inspect the technology requirements for meeting a radiative forcing of 2.9 W/m2. • Wind and solar power account for approximately 60% of total electricity supply in 2050. • We estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs. • Manufacturing jobs are assumed to be partly local, while installation and O and M jobs are all domestic

  16. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  17. Assessing the potential of renewable energy sources in Turkey

    Evrendilek, F. [Mustafa Kemal Univ., Antakya-Hatay (Turkey). Faculty of Agriculture; Ertekin, C. [Akdeniz Univ., Antalya (Turkey). Faculty of Agriculture

    2003-12-01

    To meet Turkey's growing energy demand, the installed electric power capacity of 27.8 GW in 2001 has to be doubled by 2010 and increased fourfold by 2020. The difference between Turkey's total primary energy supply (TPES) from its own sources and total final consumption (TFC) is projected to grow from 1 quad (1.06-2.06) in 1999 to 5.71 quads (2.79-8.5) in 2020 (1 QUAD=293.071 TWh). Turkey's limited amount of fossil fuels has a present average ratio of proved reserves of 97.38 quads to production rate of 3.2 quads yr{sup -1} of about 30 years. Turkey's reliance on fossil fuel-based energy systems to meet the growing demand is most likely to exacerbate the issues of energy insecurity, national environmental degradation, and global climate change in increasing proportions. Economically-feasible renewable energy potential in Turkey is estimated at a total of ca. 1.69 quads yr{sup -1} (495.4 TWh yr{sup -1}) with the potential for 0.67 quads yr{sup -1} (196.7 TWh yr{sup -1}) of biomass energy, 0.42 quads yr{sup -1} (124 TWh yr{sup -1}) of hydropower. 0.35 quads yr{sup -1} (102.3 TWh yr{sup -1}) of solar energy, 0.17 quads yr{sup -1} (50 TWh yr{sup -1}) of wind energy, and 0.08 quads yr{sup -1} (22.4 TWh yr{sup -1}) of geothermal energy. Pursuit and implementation of sustainability-based energy policy could provide about 90 and 35% of Turkey's total energy supply and consumption projected in 2010, respectively. Utilization of renewable energy technologies for electricity generation would necessitate about 23.2 Mha (29.8%) of Turkey's land resources. (author)

  18. Regional energy system optimization - Potential for a regional heat market

    Energy supply companies and industrial plants are likely to face new situations due to, for example, the introduction of new energy legislation, increased fuel prices and increased environmental awareness. These new prerequisites provide companies with new challenges but also new possibilities from which to benefit. Increased energy efficiency within companies and increased cooperation between different operators are two alternatives to meet the new conditions. A region characterized by a high density of energy-intensive processes is used in this study to find the economic potential of connecting three industrial plants and four energy companies, within three local district heating systems, to a regional heat market, in which different operators provide heat to a joint district heating grid. Also, different investment alternatives are studied. The results show that the economical potential for a heat market amounts to between 5 and 26 million EUR/year with payback times ranging from two to eleven years. However, the investment costs and the net benefit for the total system need to be allotted to the different operators, as they benefit economically to different extents from the introduction of a heat market. It is also shown that the emissions of CO2 from the joint system would decrease compared to separate operation of the systems. However, the valuation of CO2 emissions from electricity production is important as the difference of emitted CO2 between the accounting methods exceeds 650 kton/year for some scenarios. (author)

  19. Performance-based potential for residential energy efficiency

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  20. Contracting of energy services in Switzerland. Development, effects, market potentials

    The authors of this detailed report first define the contracting of energy services, this new reality of the market place, and analyse its current status in Switzerland. Contracting is mainly to be understood as the delegation of certain energy-related services by a company. The total investment for the operated energy systems considered by the study is about 120 millions USD, with an installed power of 160 MW. This market is highly unhomogeneous and is the answer to various goals. Globally, it brings a more efficient use of energy, including a more frequent involvement of renewable energy sources, along with a lower risk and significant advantages for all contractors. That is the reason for the energy policy authority to recommend contracting. The report goes on with the analysis of the factors leading the chief executives to consider contracting of energy services, or on the contrary to exclude it. The authors estimate the realistic potential market for contracting in Switzerland to 650 millions USD for the period 1999-2004. They conclude by giving recommendations which should result in an acceleration of the contracting's development on the market place

  1. Potential of forestry biomass for energy in economies in transition

    A rapid increase in the world's population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author)

  2. Evaluation of global onshore wind energy potential and generation costs.

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power. PMID:22715929

  3. Exact energy spectrum for models with equally spaced point potentials

    Caudrelier, V.; Crampé, N.

    2006-03-01

    We describe a non-perturbative method for computing the energy band structures of one-dimensional models with general point potentials sitting at equally spaced sites. This is done thanks to a Bethe ansatz approach and the method is applicable even when periodicity is broken, that is when Bloch's theorem is not valid any more. We derive the general equation governing the energy spectrum and illustrate its use in various situations. In particular, we get exact results for boundary effects. We also study non-perturbatively the effects of impurities in such systems. Finally, we discuss the possibility of including interactions between the particles of these systems.

  4. Theoretical study on the potential energy surface and vibrational energy levels of HXeI

    Zheng Guo Huang; En Cui Yang; Dai Qian Xie

    2008-01-01

    The potential energy surface for the electronic ground state of the HXeI molecule is constructed by using the internally contracted multi-reference configuration interaction with the Davidson correction (icMRCI + Q) method and large basis sets.The stabilities and dissociation barriers are identified from the potential energy surfaces.The three-body dissociation channel is found to be the dominate dissociation channel for HXeI.Based on the obtained potentials,vibrational energy levels of HXeI are calculated using the Lanczos algorithm.Our theoretical results are in excellent agreement with the available observed values.

  5. Automatic Contour Extraction from 2D Image

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  6. 2D microwave imaging reflectometer electronics.

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  7. 2D microwave imaging reflectometer electronics

    Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  8. Energy Perspectives In Switzerland: The Potential Of Nuclear Power

    In 2004, discussions were started in Switzerland concerning future of energy supply, including domestic electricity generation. On behalf of the Federal Office of Energy, PSI undertook a study to evaluate the potential of future nuclear technologies, covering electricity demand, with a time horizon up to 2050. It has been shown that nuclear power plants (NPPs) of the Third Generation, similar to the ones currently under construction in several other countries, built on the existing nuclear sites in Switzerland, have the potential to replace, at competitive costs, the existing nuclear plants, and even to cover (postulated) increases in electricity demand. Because of their late maturity (expected at the earliest around 2030), NPPs of the Fourth Generation, which are currently under development, cannot play a major role in Switzerland, since, with the exception of the Leibstadt NPP, all decisions regarding replacement of the current Swiss NPPs have to be taken before 2030. (author)

  9. Energy Saving Potential by Utilizing Natural Ventilation under Warm Conditions

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    –airflow simulations of 27 common cases of dwellings (considered as one thermal zone) based on the combination of specific features of the building design, occupancy and climate conditions. The energy saving potential is assessed then by the use of a new assessment method suitable for large-scale scenarios using the...... actual number of air-conditioned dwellings distributed among the 27 cases. Thereby, the energy saving is presented as the difference in the cooling demand of the dwelling during one year without and with natural ventilation, respectively. Results indicate that for hot-dry conditions, buildings with high...... heat capacity combined with natural ventilation achieve the lowest indoor temperature, whereas under hot-humid conditions, night ventilation combined with low heat capacity buildings present the best results. Thereafter, an average aggregated saving potential of 4.2 TW h for 2008 is estimated...

  10. The potential impact of hydrogen energy use on the atmosphere

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  11. Strong vertex corrections from weak disorder in 2D d-wave superconductors

    We show that weak static random potentials have pronounced effects on the quasiparticle states of a 2D d-wave superconductor close to a node. We prove that the vertex correction coming from the simplest crossed diagram is important even for a nonmagnetic potential. The leading frequency and momentum dependent logarithmic singularities in the self-energy are calculated exactly to second order in perturbation theory. The self-energy corrections lead to a modified low energy density of states which depends strongly on the type of random potential and which can be measured in experiments. There is an exceptional case for a potential with extremely local scatterers and opposite nodes separated by (π, π) where an exact cancelation takes place eliminating the leading frequency dependent singularity in the simplest crossed diagram. A comparison of the perturbative results with a self-consistent CPA (coherent potential approximation) for the nonmagnetic disorder reveals qualitative differences in the self-energy at the smallest energies which are due to the neglectance of vertex corrections in CPA. (orig.)

  12. Potential energy surface and fusion probability in DNS model

    The Potential Energy Surface (PES) for particle exchange in Di-nuclear system is studied in detail. It is found that the nuclear deformation effect can change the shape of PES significantly. The dynamical deformation as a function of the reaction time in the reaction process is investigated in a simple model and authors found that its variation with time is dramatic. The fusion probabilities PCN of some reaction channels based on the mechanism of cold fusion are also calculated

  13. Electronic structure, molecular bonding and potential energy surfaces

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  14. Fossil energy savings potential of sugar cane bio-energy systems

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts......One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and...... gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...

  15. Potential energy savings from cool roofs in Spain and Andalusia

    Cool roofs are an inexpensive method to save energy and to improve the comfort level in buildings in mild and hot climates. A high scale implementation of cool roofs in Andalusia, in the south of Spain, could potentially save 295,000 kWh per year, considering only residential buildings with flat roofs using electrical heating. At the current energy prices, consumers can save 59 million euros annually in electricity costs and the emission of 136,000 metric tons of CO2 can be directly avoided every year from the production of that electricity. If radiative forcings are considered, Andalucía can potentially offset between 9.44 and 12 Mt of CO2. All the provinces in the rest of Spain are also studied in this paper. The biggest savings are achieved in Gran Canaria (48%), Tenerife (48%), Cádiz (36%), Murcia (33%), Huelva (30%), Málaga (29%), Almería (29%) and Sevilla (28%), where savings are greater than 2 euros per square meter of flat roof for old buildings with dark roofs. For the biggest cities the range of savings obtained are: between 7.4% and 11% in Madrid, between 12% and 18% in Barcelona and between 14% and 20% in Valencia. -- Highlights: ► We estimate potential savings in energy, CO2, and money for cool roofs in Spain (residential sector with flat roofs). ► Average savings are of around one euro per square meter in the biggest cities. ► Potential savings are of more than 2 €/m2 in the hottest cities. ► In Andalusia the potential savings are 300 MWh, 60 millions euro and 136,000 tons of CO2 per year. ► With forcings, the CO2 equivalence of cool roofs in Andalusia is between 9 and 12 Mt.

  16. Electromagnetic potentials basis for energy density and power flux

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress–energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  17. The electric energy potential of landfill biogas in Brazil

    The increases in a country's energy capacity are related to its gross domestic product (GDP). In Brazil, increases in income and the consumption of goods and services have led to an increase in the generation of solid waste (SW), which is sent to landfills as a method of treatment and final disposal. The purpose of this study was to facilitate an increase in energy generation from renewable resources, specifically from landfills via thermal biogas plants, and the research was divided into two phases. The first phase involved the assessment of the potential population size contributing to the landfill, which could result in the installation of a financially viable enterprise to generate electricity in Brazil. Next, an estimate of the costs associated with the generation and collection of solid waste in Brazil was predicted by GDP prognoses, the latter being in accordance with the National Energy Balance (Balanço Energético Nacional – BEN) plan created by the Mines and Energy Ministry of Brazil (Ministério de Minas e Energia do Brasil – MME). The net present value (NPV) and internal rate of return (IRR) of each enterprise scenario was used in the first stage to assess the plan's financial viability. In the second stage, estimation curves such as logistics, decreasing rate of growth, and logarithmic curves were used to establish relationships between the generation scenarios and the projected collection of SW and projected GDP. Thus, a range of possible landfill biogas/methane generation values and installed energy capacities were created, considering the extreme maximum and minimum values. These values were related to the energy sources from residual fuels reported by BEN. The results demonstrated that such values still represented a small percentage (0.00020% in 2010 and 0.44496–0.81042% in 2030) of the projected energy generation from residual fuels. Thus, an urgent need was identified to formulate policies that would encourage landfills as a

  18. Data Network Equipment Energy Use and Savings Potential in Buildings

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  19. Brazilian waste potential: energy, environmental, social and economic benefits

    The potential energy that could be produced from solid wastes in Brazil tops 50 TWh. Equivalent to some 17% of the nation's total power consumption at costs that are competitive with more traditional options, this would also reduce greenhouse gases emissions. Moreover, managing wastes for energy generation purposes could well open up thousands of jobs for unskilled workers. Related to power generation and conservation, energy use requires discussions on the feasibility of each energy supply option, and comparison between alternatives available on the market. Power conservation is compared to projects implemented by the Federal Government, while power generation is rated against thermo-power plants fired by natural gas running on a combined cycle system. Although the operating costs of selective garbage collection for energy generation are higher than current levels, the net operating revenues of this scheme reach some US$ 4 billion/year. This underpins the feasibility of garbage management being underwritten by energy uses and avoided environmental costs. The suggested optimization of the technical, economic, social and environmental sustainability of the expansion of Brazil's power sector consists of compatibilizing the use of fossil and renewable fuels, which is particularly relevant for hybrid thermo-power plants with null account on greenhouse gases emissions

  20. Three-dimensional wave packet dynamics of H2 + D2 reaction

    Research highlights: → Three-dimensional wave packet dynamics of H2(v1 = high) + D2(v2 = low) reaction. → Competitive processes were studied on the BMKP and ASP potential energy surfaces. → Orientation of the cold diatom did not greatly affect the reaction processes. → Orientation of the hot diatom had a significant effect on the reaction processes. → Reaction probabilities for H2 + D2 reaction were compared with H2 + H2 reaction. - Abstract: Initial state selected time-dependent wave packet calculations were carried out for the H2(v1 = high) + D2(v2 = low) reaction within a three degrees of freedom model. The probabilities for different competitive processes were studied on two realistic global potential energy surfaces (PESs) - BMKP and ASP. The orientation of the cold diatom did not greatly affect the reaction processes, while the orientation of the hot diatom had a significant effect. The BMKP surface generally gave lower energy thresholds than the ASP surface, except for the collision induced dissociation (CID) within the TII geometry where the hot diatom comes in head-on perpendicular to the cold diatom. Isotopic substitution effects were studied on the recent BMKP PES. The H2 + D2 reaction was more effective for CID and showed more structured probability curves for single exchange reaction (SE) and three-body complex formation (3BC) than the H2 + H2 reaction.

  1. Optimized designs for 2D and 3D thermoelastic structures

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2011-01-01

    energy density (or uniform von Mises stress) is presented and applied, and it is shown by examples that the obtained designs are close to fulfilling also strength maximization. Explicit formulas for equivalent thermoelastic loads in 2D and 3D finite element analysis are derived and applied, including the...... proved for thermoelastic structures by compliance sensitivity analysis that return localized determination of sensitivities.The compliance is not identical to the total elastic energy (twice strain energy). An explicit formula for the difference is derived and numerically illustrated with examples. In...

  2. F2D: A two dimensional compressible gas flow code

    The F2D computer code is a general-purpose, two-dimensional, fully compressible thermal-fluids code that models most phenomena found in experimental environments with coupled fluid flow and heat transfer. The code solves momentum, continuity, gas energy, and structure energy equations, simultaneously utilizing a predictor-corrector solution algorithm. The F2D code applied to a particle-bed reactor operating at 5 MW/L with a flow-control cold frit, revealed a skew in the temperature contours caused by two-dimensional flow effects. A thermal-fluid stability analysis of particle-bed and NERVA type reactors reveals similar behavior for the stability threshold

  3. Drisla, Macedonian energy potential capacity, v. 15(57)

    This study analyzes the possibility of placing an energy plant, to use municipal waste as fuel supply, on location at Drisla-sanitary stock. The energy potential has been defined by analysing the municipal waste capacity stocked at Drisla location. In addition, the quantity of the municipal waste, accumulated around Macedonia (on state level), has been calculated and defined. Furthermore, in compliance with The Low on solid waste stocking, the possibility for utilizing the already pressurized solid waste, transporting it to Drisla and finally using it as a fuel was analyzed. At the same time, an analysis of the influence to additional expenses for this purpose (transportation expenses, gasoline, employees) against the coast of additionally produced energy was conducted. (Author)

  4. Drisla, Macedonian energy potential capacity, v. 15(58)

    This study analyzes the possibility of placing an energy plant, to use municipal waste as fuel supply, on location at Drisla-sanitary stock. The energy potential has been defined by analysing the municipal waste capacity stocked at Drisla location. In addition, the quantity of the municipal waste, accumulated around Macedonia (on state level), has been calculated and defined. Furthermore, in compliance with The Low on solid waste stocking, the possibility for utilizing the already pressurized solid waste, transporting it to Drisla and finally using it as a fuel was analyzed. At the same time, an analysis of the influence to additional expenses for this purpose (transportation expenses, gasoline, employees) against the coast of additionally produced energy was conducted. (Author)

  5. The Potential of Renewable Energy Sources in Latvia

    Sakipova, S.; Jakovics, A.; Gendelis, S.

    2016-02-01

    The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.

  6. Market potential for optical fiber sensors in the energy sector

    Bosselmann, T.

    2007-07-01

    For a long time electric power was taken as a natural unlimited resource. With globalisation the demand for energy has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable energy sources are gaining importance resulting in recent boom of wind energy plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers potentials for fibre optic sensor application.

  7. Study of the potential of energy storage - Investigation report - Synthesis

    The objective of this study is to assess, for France and its overseas territories, the potential of energy storage by 2030, and to identify the technological sectors which are the most economically relevant. A global surplus has been calculated, as well as the benefit from additional storage capacities. This benefit has been compared with cost predictions by 2030 for different storage technologies. Economically viable powers and types of energy storages are assessed with respect to different scenarios, and impacts in terms of associated jobs are assessed. The document reports and discusses the surplus assessment for the community, describes the various services provided by energy storage, presents the modelling scenarios and hypotheses, discusses the main results of valorisation for the community, presents the various energy storage technologies (gravity, thermodynamic, electrochemical, electrostatic, inertial, latent thermal, thermo-chemical, and power to gas), presents business models and deployment potential for different applications (mass storage of electricity in France, electricity storage in a non-connected area, decentralised electricity storage as a response to grid congestion, valorisation of an electricity storage, thermal storage on a heat network, cold storage, management of diffuse demand of hot water), and discusses implications regarding employment

  8. Potential energy surface of triplet N2O2

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances

  9. Potential energy surface of triplet N2O2.

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G

    2016-01-14

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances. PMID:26772574

  10. Self consistent single particle potential and nuclear matter binding energy

    We have obtained a self-consistent single-particle potential as a function of momentum for Fermi momenta kF= 1.4 fm. Self-consistent single particle potential is calculated from Brueckner g-matrix using Urbana v-14 interaction. Sixth order polynomial approximation is used as an input for the calculation of g-matrix. After achieving the self-consistent single particle potential we calculate the binding energy of infinite symmetric nuclear matter at different Fermi momenta, using soft-core Urbana v-14 interaction and hard-core Hamada Johnston interaction. Urbana v-14 interaction predicts overbinding of infinite nuclear matter, while HJ interaction predicts an underbound nuclear matter underbound. (author)

  11. On Augmented Kohn-Sham Potential for Energy as a Simple Sum of Orbital Energies

    Levy, Mel

    2016-01-01

    It has recently been observed [Phys. Rev. Lett. 113, 113002 (2014)] that the ground-state energy may be obtained directly as a simple sum of augmented Kohn-Sham orbital energies, where it was ascertained that the corresponding one-body shifted Kohn-Sham effective potential has appealing features. With this in mind, eigenvalue and virial constraints are deduced for approximating this potential.

  12. Rural energy assessment and potential alternative energy resources & technologies in rural areas of Abbottabad, Pakistan

    Irfan, Mohsin

    2012-01-01

    This report provides an in-depth review and critical analysis of the various rural energy resources and their socio-economic, health and indoor environmental impacts on rural people and their livelihoods in Abbottabad, Pakistan. It also explores the potential alternative energy resources and affordable technologies for rural people and as well as their potential socio-economic, health and indoor environmental impacts on rural people and their livelihoods. The review of the consumption aspect ...

  13. Potential for energy technologies in residential and commercial buildings

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  14. 2-D constrained Navier-Stokes equation and intermediate asymptotics

    Caglioti, E.; Pulvirenti, M.; F. Rousset

    2008-01-01

    We introduce a modified version of the two-dimensional Navier-Stokes equation, preserving energy and momentum of inertia, which is motivated by the occurrence of different dissipation time scales and related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics. The analysis we present here is purely formal. A rigorous study of this equation will be done in a forthcoming paper.

  15. RUSTEC: Greening Europe's energy supply by developing Russia's renewable energy potential

    The North-West of Russia is characterized by a large renewable energy resource base in geographic proximity to the EU. At the same time, EU Member States are bound by mandatory renewable energy targets which could prove to be costly to achieve in the current budgetary context and which often face strong local opposition. Directive 2009/28/EC on Renewable Energy makes it possible for Member States to achieve their targets by importing electricity produced from renewable energy sources from non-EU countries. So far, most attention has been on the Mediterranean Solar Plan or Desertec. An EU–Russia Renewable Energy Plan or RUSTEC – being based on onshore wind/biomass/hydro energy and on-land interconnection, rather than solar power and subsea lines – could present a cost-efficient and short-term complement to Desertec. This article examines the political, geopolitical, economic, social and legal challenges and opportunities of exporting “green” energy from Russia to the EU. It argues that EU–Russian cooperation in the renewable energy field would present a win-win situation: Member States could achieve their targets on the basis of Russia's renewable energy potential, while Russia could begin to develop a national renewable energy industry without risking potential price increases for domestic consumers—a concern of great political sensitivity in Russia. - Highlights: ► Russia has a huge renewable energy potential in geographic proximity to the EU. ► This potential could help the EU decarbonize its electricity supply at least cost.► EU–Russia green energy export is a win-win situation but lacks political attention.► RUSTEC could be a short-term and cost-efficient complement to Desertec. ► RUSTEC would diversify EU energy imports/Russian exports and stimulate innovation.

  16. Path integral quantization of 2 D- gravity

    2 D- gravity is investigated using the Hamilton-Jacobi formalism. The equations of motion and the action integral are obtained as total differential equations in many variables. The integrability conditions, lead us to obtain the path integral quantization without any need to introduce any extra un-physical variables. (author)

  17. Port Adriano, 2D-Model tests

    Burcharth, Hans F.; Meinert, Palle; Andersen, Thomas Lykke

    This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To identify cross section design which restrict the overtopping to acceptable levels and to record the...

  18. Baby universes in 2d quantum gravity

    Ambjorn, J.; S. Jain; G. Thorleifsson

    1993-01-01

    We investigate the fractal structure of $2d$ quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent $\\g_{string}$.

  19. Correlated Electron Phenomena in 2D Materials

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  20. Thermochemical characterization of banana leaves as a potential energy source

    Highlights: • The chemical composition of semi-dried banana leaves are similar to the other biomass. • The semi-dried leaves present high release of energy under inert and oxidant atmosphere. • The energy released on pyrolysis and combustion can be used to dry the wet banana leaves. • The thermochemical conversion processes can reduce the waste volume significantly. • The banana leaves have potential to use as biomass through combustion and pyrolysis process. - Abstract: Wet and semi-dried banana leaves were characterized through elemental and proximate analyses, lignocellulosic fraction and thermogravimetric analysis (TG/DTG), differential scanning calorimetry (DSC) and high heating value analysis to assess their use as biomass in generating energy through combustion; they were also assessed to determine the potential of obtaining value-added products through pyrolysis. The wet banana leaves had high moisture content of 74.7%. The semi-dried samples exhibited 8.3% moisture, 78.8% volatile solids, 43.5% carbon and a higher heating value of 19.8 MJ/kg. The nitrogen and sulfur contents in the banana leaves were very low. The semi-dried and wet leaves had hemicellulose and lignin contents close to other biomass fuels, and the semi-dried leaves had the lowest cellulose content, of 26.7%. The wet and semi-dried samples showed the same thermal events in oxidizing and inert atmospheres, but with distinctly different mass loss and energy release intensities. The chemical characteristics and the thermal behavior demonstrated by the semi-dried samples indicate their potential for use as biomass, with results similar to other agro-industrial wastes currently used

  1. Onshore wind energy potential over Iberia: present and future projections

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  2. Solar energy potential of Serbia and application of sun energy in agriculture

    On the basis of meteorological data, as well as on the performed additional measurements, in the paper is estimated the solar energy potential of Serbia. This paper represents a part of author’s activities in the course of work on the scientific research project: Atlas of the energy potential of Sun and wind in Serbia. Serbia has economic and ecological problems which are caused by the import of energy (oil, gas) which becomes more and more expensive and also pollutes air, water and soil. Serbia is well irradiated by Sun and because of that Serbia is bound to meet their energy needs in future by using solar energy more. In this paper is also analyzed the application of Sun energy in various fields of agriculture. (author)

  3. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  4. The infrared spectrum of the He–C{sub 2}D{sub 2} complex

    Moazzen-Ahmadi, N. [Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4 (Canada); McKellar, A. R. W. [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Fernández, Berta [Department of Physical Chemistry, and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Farrelly, David [Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300 (United States)

    2015-02-28

    Spectra of the helium-acetylene complex are elusive because this weakly bound system lies close to the free rotor limit. Previously, limited assignments of He–C{sub 2}D{sub 2} transitions in the R(0) region of the ν{sub 3} fundamental band (≈2440 cm{sup −1}) were published. Here, new He–C{sub 2}D{sub 2} infrared spectra of this band are obtained using a tunable optical parametric oscillator laser source to probe a pulsed supersonic slit jet expansion from a cooled nozzle, and the analysis is extended to the weaker and more difficult P(1) and R(1) regions. A term value approach is used to obtain a consistent set of “experimental” energy levels. These are compared directly with calculations using two recently reported ab initio intermolecular potential energy surfaces, which exhibit small but significant differences. Rovibrational energies for the He–C{sub 2}H{sub 2} complex are also calculated using both surfaces. A Coriolis model, useful for predicting spectral intensities, is used to interpret the energy level patterns, and a comparison with the isoelectronic complex He–CO is made.

  5. Potentials for energy efficiency improvements and implementation of renewable energy sources in hotel industry in Macedonia

    Cingoski, Vlatko

    2015-01-01

    In this presentation, potentials for energy efficiency improvements and implementation of renewable energy sources in hotel industry in Macedonia are discussed. This presentation was part of the research project entitled "Opportunities and Methods for Energy Substitution, Savings and Efficiency Improvements in the Hotel Industry" funded by the University "Goce Delcev", Stip, Macedonia. It was prsented at the joint workshop between University "Goce Delcev", Stip, Macedonia and the Bashkent Un...

  6. Exploring the potential uptake of distributed energy generation

    Full text: Global warming has been identified as an energy problem (Klare 2007). With a predicted increase in fossil fuel use for many years to come (IEA 2004) there is a need to find a future energy path that will meet our basic requirements for energy but also help to mitigate climate change (CSIRO 2006). Currently there are a range of technological solutions available, with each representing a different value proposition. Distributed Energy (DE) is one such technological solution, which involves the widespread use of small local power generators, located close to the end user. Such generators can be powered by a range of low emission and/or renewable sources. Until now, cheap electricity, existing infrastructure and reluctance for change both at a political and individual level has meant there has been little prospect for DE to be considered in Australia, except in some remote communities. However, with the majority of Australians now rating climate change as an issue of strategic importance to Australia (Ashworth, Pisarski and Littleboy 2006), it can be inferred that Australia's tolerance for generating greenhouse gas emissions has reduced, and that potential support for DE is increasing. It is therefore important to understand what factors might influence the potential adoption of DE. As part of a research project called the Intelligent Grid, CSIRO's Energy Transformed Flagship is aiming to identify the conditions under which Distributed Energy might be effectively implemented in Australia. One component of this project involves social research, which aims to understand the drivers and barriers to the uptake of DE technology by the community. This paper presents findings from two large-scale surveys (one of householders and one of businesses), designed to assess beliefs and knowledge about environmental issues, and about traditional and renewable energy sources. The surveys also assess current energy use, and identify preferences regarding DE technology. The

  7. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  8. ORION, Post-processor for Finite Elements Program NIKE2D and DYNA2D

    Description of program or function: ORION is an interactive post- processor for the analysis programs NIKE2D (NESC 9923), DYNA2D (NESC 9910), TOPAZ, TOPAZ2D (NESC9801), GEM2D (NESC9679), and TACO2D. ORION reads the binary plot data files generated by the two- dimensional finite element programs used at LLNL. Contours and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has the capability to plot color fringes, contour lines, vector plots, principal stress lines, deformed meshes and material outlines, time histories, reaction forces along constraint boundaries, interface pressures along slide lines, and user-supplied labels

  9. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide. PMID:25362314

  10. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  11. Potential impacts of nanotechnology on energy transmission applications and needs.

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  12. Theoretical studies of potential energy surfaces and computational methods

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  13. Potential environmental effects of energy conservation measures in northwest industries

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  14. Theoretical Studies on the Potential Energy Surface and Vibrational Energy Levels of HXeBr

    HUANG Zheng-Guo; YANG En-Cui; XIE Dai-Qian

    2009-01-01

    The potential energy surface for the electronic ground state of the HXeBr molecule is constructed from more than 4200 ab initio points calculated using the internally contracted multi-reference configuration interaction method with the Davidson correction (icMRCI + Q). The stabilities and dissociation barriers are identified from the potential energy surface. The three-body dissociation channel is found to be the dominant dissociation channel for HXeBr. Low-lying vibrational energy levels of HXeBr calculated using the Lanczos algorithm are found to be in good agreement with the available experimental band origins.

  15. The Potential for Energy Efficiency and Renewable Energy in North Carolina

    Hadley, SW

    2003-08-06

    As many states have restructured their electric power industry, they have established a ''systems benefit charge'' to help fund those activities that will no longer be funded by utilities in the new structure. Examples include weatherization of low-income housing, efficiency programs, and renewable energy development. Varying amounts have been collected and allocated depending on state needs and abilities. One question that arises is what are the potential results of funding the different types of programs. What is the potential for energy efficiency or for renewable power, and what would be accomplished given the amount of funding that the system benefit charge may provide? The purpose of this project is to provide an initial estimate of the potential for energy efficiency and renewable energy in North Carolina. This potential could be funded by a public benefits fund resulting from a green power program being considered in the state. It concentrates on electric energy savings and production. Savings in buildings can include improvements to space conditioning as well as improvements to lighting or other appliances. Distributed power potential, through use of combined heat and power and renewables such as photovoltaic, wind, and biomass were examined. The goal is to provide information to decision makers who are developing a green power program in North Carolina. It will not be a complete and detailed study of all efficiency potentials but is more of a scoping exercise to determine the relative impacts and begin the process for a more definitive study at a later date. Statewide energy savings potential cannot be directly measured but must be calculated. First, the word ''potential'' means that the savings have not occurred yet. Second, the savings are often only indirectly measured by estimating what energy use there would have been without the changes in technology or behavior. Calculations through sampling and statistical

  16. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  17. Calorific evaluation and energy potential of grape pomace

    Burg, Patrik; Ludín, David; Rutkowski, Kazimierz; Krakowiak-Bal, Anna; Trávníček, Petr; Zemánek, Pavel; Turan, Jan; Višacki, Vladimir

    2016-04-01

    This article deals with energetic evaluation and potential of pomace - a waste product originating during production of grape wine. Calorimetric analysis of 19 grapevine varieties was performed in 2013 and 2014. The aim was to specify their combustible limit and the gross calorific value. The evaluations were performed on pristine pomace, pomace without seeds, and only on seeds themselves. The results obtained imply that pomace is an interesting energetic resource with a gross calorific value of 16.07-18.97 MJ kg-1. Lower calorific values were detected in pomace after seed separation ie 14.60-17.75 MJ kg-1; on the contrary, seeds alone had the highest calorific values of 19.78-21.13 MJ kg-1. It can be assumed from the results of energetic evaluation of pomace in Czech Republic conditions that, by purposeful and efficient usage of pomace, 6.4 GWh of electric energy and 28 GWh of thermal energy can be generated.

  18. Potential for energy savings in old and new auto engines

    Reitz, John R.

    1985-11-01

    This paper disucsses the potential for energy savings in the transportation sector through the use of both improved and entirely new automotive engines. Although spark-ignition and diesel internal combustion engines will remain the dominant choices for passenger-car use throughout the rest of this century, improved versions of these engines (lean-burn, low-friction spark-ignition and adiabatic, low-friction diesel engines) could, in the long term, provide a 20-30 percent improvement in fuel economy over what is currently available. The use of new materials, and modifications to both vehicle structure and vehicle transmissions may yield further improvements. Over a longer time frame, the introduction of the high-temperature gas-turbine engine and the use of new synfuels may provide further opportunities for energy conservation.

  19. Ab initio potential energy surface and rovibrational states of HBO

    Ha, Tae-Kyu; Makarewicz, Jan

    1999-01-01

    The potential energy surface describing the large-amplitude motion of H around the BO core in the HBO molecule has been determined from ab initio calculations. This surface has been sampled by a set of 170 grid points from a two-dimensional space defined by the stretching and the bending coordinates of the H nucleus. At each grid point, the BO bond length has been optimized using the second-order Møller-Plesset perturbation theory with the basis set aug-cc-pVTZ. The surface has a local minimum for the linear as well as the bent configuration of HBO. A low energy barrier to the linear configuration BOH causes a large-amplitude motion and a strong rovibrational interaction in the molecule. Its rovibrational dynamics is different from the dynamics in bent or quasilinear triatomic molecules.

  20. Experimental survey of the potential energy surfaces associated with fission

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  1. Domestic refrigeration appliances in Poland: Potential for improving energy efficiency

    Meyers, S.; Schipper, L. [Lawrence Berkeley Lab., CA (United States); Lebot, B. [Agence de l`Environnement and de la Maitrise de l`Energie, 6 - Sophia Antipolis (France)

    1993-08-01

    This report is based on information collected from the main Polish manufacturer of refrigeration appliances. We describe their production facilities, and show that the energy consumption of their models for domestic sale is substantially higher than the average for similar models made in W. Europe. Lack of data and uncertainty about future production costs in Poland limits our evaluation of the cost-effective potential to increase energy efficiency, but it appears likely that considerable improvement would be economic from a societal perspective. Many design options are likely to have a simple payback of less than five years. We found that the production facilities are in need of substantial modernization in order to produce higher quality and more efficient appliances. We discuss policy options that could help to build a market for more efficient appliances in Poland and thereby encourage investment to produce such equipment.

  2. Global Expression for Representing Diatomic Potential-Energy Curves

    Ferrante, John; Schlosser, Herbert; Smith, John R.

    1991-01-01

    A three-parameter expression that gives an accurate fit to diatomic potential curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-energy relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the potential curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.

  3. Assessing geothermal energy potential in upstate New York. Final report

    Hodge, D.S. [SUNY, Buffalo, NY (United States)

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  4. Potential Energy Surfaces and Quantum Yields for Photochromic Diarylethene Reactions

    Makoto Hatakeyama

    2013-05-01

    Full Text Available Photochromic diarylethenes (DAEs are among the most promising molecular switching systems for future molecular electronics. Numerous derivatives have been synthesized recently, and experimental quantum yields (QYs have been reported for two categories of them. Although the QY is one of the most important properties in various applications, it is also the most difficult property to predict before a molecule is actually synthesized. We have previously reported preliminary theoretical studies on what determines the QYs in both categories of DAE derivatives. Here, reflecting theoretical analyses of potential energy surfaces and recent experimental results, a rational explanation of the general guiding principle for QY design is presented for future molecular design.

  5. Steps in the exact time-dependent potential energy surface

    Abedi, Ali; Suzuki, Yasumitsu; Gross, E K U

    2013-01-01

    We study the exact Time-Dependent Potential Energy Surface (TDPES) in the presence of strong non-adiabatic coupling between the electronic and nuclear motion. The concept of the TDPES emerges from the exact factorization of the full electron-nuclear wave-function [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. \\textbf{105}, 123002 (2010)]. Employing a 1D model-system, we show that the TDPES exhibits a dynamical step that bridges between piecewise adiabatic shapes. We analytically investigate the position of the steps and the nature of the switching between the adiabatic pieces of the TDPES.

  6. A New Model for Calculating the Binding Energy of Lithium Nucleus under the Generalized Yukawa Potential and Hellmann Potential

    Ghazvini, M; Salehi, N; Rajabi, A. A.

    2014-01-01

    In this paper, the Schr\\"odinger equation for 6-body system is studied. We solved this equation for lithium nucleus by using supersymmetry method with the specific potentials. These potentials are Yukawa potential, the generalized Yukawa potential and Hellmann potential. The results of our model for all calculations show that the ground state binding energy of Lithium nucleus with these potentials are very close to the ones obtained in experiments.

  7. Fossil energy savings potential of sugar cane bio-energy systems

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  8. Partial compactness for the 2-D Landau-Lifshitz flow

    Paul Harpes

    2004-07-01

    Full Text Available Uniform local $C^infty$-bounds for Ginzburg-Landau type approximations for the Landau-Lifshitz flow on planar domains are proven. They hold outside an energy-concentration set of locally finite parabolic Hausdorff-dimension 2, which has finite times-slices. The approximations subconverge to a global weak solution of the Landau-Lifshitz flow, which is smooth away from the energy concentration set. The same results hold for sequences of global smooth solutions of the 2-d Landau-Lifshitz flow.

  9. On black hole thermodynamics of 2-D type 0A

    We present a detailed analysis of the thermodynamics of two dimensional black hole solutions to type 0A with q units of electric and magnetic flux. We compute the free energy and derived quantities such as entropy and mass for an arbitrary non-extremal black hole. The free energy is non-vanishing, in contrast to the case of dilatonic 2-d black holes without electric and magnetic fluxes. The entropy of the extremal black holes is obtained, and we find it to be proportional to q2, the square of the RR flux. We compare these thermodynamics quantities with those from candidate matrix model duals. (author)

  10. Optical Stark effect in 2D semiconductors

    Sie, Edbert J.; McIver, James W.; Lee, Yi-Hsien; Fu, Liang; Kong, Jing; Gedik, Nuh

    2016-05-01

    Semiconductors that are atomically thin can exhibit novel optical properties beyond those encountered in the bulk compounds. Monolayer transition-metal dichalcogenides (TMDs) are leading examples of such semiconductors that possess remarkable optical properties. They obey unique selection rules where light with different circular polarization can be used for selective photoexcitation at two different valleys in the momentum space. These valleys constitute bandgaps that are normally locked in the same energy. Selectively varying their energies is of great interest for applications because it unlocks the potential to control valley degree of freedom, and offers a new promising way to carry information in next-generation valleytronics. In this proceeding paper, we show that the energy gaps at the two valleys can be shifted relative to each other by means of the optical Stark effect in a controllable valley-selective manner. We discuss the physics of the optical Stark effect, and we describe the mechanism that leads to its valleyselectivity in monolayer TMD tungsten disulfide (WS2).

  11. Branes in the 2D black hole

    Ribault, Sylvain E-mail: ribault@mth.kcl.ac.uk; Schomerus, Volker

    2004-02-01

    We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models. (author)

  12. Branes in the 2D black hole

    Ribault, S; Ribault, Sylvain; Schomerus, Volker

    2004-01-01

    We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models.

  13. Branes in the 2D black hole

    We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models. (author)

  14. 2-D geometrical analysis of deformation

    Engineering structures such as dams, bridges, high rise buildings, etc. are subject to deformation. Deformation survey is therefore necessary to determine the magnitude and direction of such movements for the purpose of safety assessment. In this study, a strategy for two-step analyses for deformation survey rising the two dimensional (2-D) geodetic method has been developed, consisting of independent least squares estimation (LSE) of each epoch followed by deformation detection. Important aspects on LSE include global and local testing. In deformation detection, the following aspects were implemented; datum definition by the user. determination of stable datum points, geometrical analysis of deformation and graphic presentation. The developed strategy has been implemented in three computer programs, COMPUT, DEFORM and STRANS. Tests carried out with simulated and known data show that the developed strategy and programs are applicable for 2-D geometrical detection of deformation. (Author)

  15. Distributed SIR-Aware Opportunistic Access Control for D2D Underlaid Cellular Networks

    Chen, Zheng; Kountouris, Marios

    2014-01-01

    In this paper, we propose a distributed interference and channel-aware opportunistic access control technique for D2D underlaid cellular networks, in which each potential D2D link is active whenever its estimated signal-to-interference ratio (SIR) is above a predetermined threshold so as to maximize the D2D area spectral efficiency. The objective of our SIR-aware opportunistic access scheme is to provide sufficient coverage probability and to increase the aggregate rate of D2D links by harnes...

  16. Size dependence of vacancy migration energy in ionic nano particles: A potential energy landscape perspective

    Niiyama, Tomoaki; Okushima, Teruaki; Ikeda, Kensuke S.; Shimizu, Yasushi

    2016-06-01

    Size dependence of vacancy migration energy in ionic nano particles is investigated by analysis of potential energy surfaces in potassium chloride clusters. Numerical methods are used to find almost all local minima and transition states for vacancy migration in clusters of different sizes, and reveal characteristic features of energy surface structure. It is shown that migration energy is significantly lower near a cluster surface than near a cluster core, and the mean first-passage time for migration of a vacancy decreases with cluster size. These results are consistent with observations of high diffusion rates in small clusters.

  17. 2D materials: Graphene and others

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  18. 2D-Tasks for Cognitive Rehabilitation

    Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.

    2011-01-01

    Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...

  19. Calculation of wakefields in 2D rectangular structures

    We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross-section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in the computer code ECHO(2D). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Numerical examples obtained with the new numerical code are presented.

  20. MasterChem: cooking 2D-polymers.

    Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F

    2016-03-01

    2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817