WorldWideScience

Sample records for 2-d lmfbr disassembly

  1. Sensitivity study of LMFBR core disassemblies

    The primary concern with respect to a prompt critical excursion in an LMFBR is whether the primary containment will be damaged, leading to an early release of radioactivity. The study examines the sensitivity of the damage potential of a core disassembly to ramp rate through prompt critical; initial power level; fuel heat capacity; fuel vapor pressure

  2. Disassembly

    McLellen, Todd

    2012-01-01

    My interest in the real has always been present and I try to mix my work with that. In my series disassembly, I have used old items that are no longer used by the masses and often found on the street curbs heading for disposal. All of the items in the photographs were in working order. The interesting part was the fact that they were all so well built, and most likely put together by hand. I envisioned all the enjoyment these pieces had given many people for many years, all to be replaced by ...

  3. Attenuation of airborne debris from LMFBR accidents

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approx. 1000 g/m3), high turbulence, and high temperature (approx. 20000C); and aerosol transport through various leak paths. These studies have shown that little, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building

  4. Attenuation of airborne debris from LMFBR accidents

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approximately 1,000 g/m3), high turbulence, and high temperature (approximately 20000C); and aerosol transport through various leak paths. These studies have shown that tittle, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building. (author)

  5. LMFBR fuel component costs

    A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs

  6. LMFBR plant parameters

    This document contains up-to-date data on existing or firmly decided prototype or demonstration LMFBR reactors (Table I), on planned commercial size LMFBR according to the present status of design (Table II) and on experimental fast reactors such as BOR-60, DFR, EBR-II, FERMI, FFTF, JOYO, KNK-II, PEC, RAPSODIE-FORTISSIMO (Table III). Only corrected and revised parameters submitted by the countries participating in the IWGFR are included in this document

  7. LMFBR: safety aspects

    This presentation of LMFBR safety is limited at Super Phenix reactor. After a brief description of the reactor, some details on safety systems, in normal or accidental conditions, are given. The main functions studied are: chain reaction trip, residual power evacuation, reactor containment. In heavy accident the behaviour of Super Phenix is studied which its particular characteristics and the possibilities of operators reactions. The probability of appearance and the maximum consequences of heavy accidents are given

  8. LMFBR plant parameters 1991

    The document has been prepared on the basis of information provided by the members of the IAEA International Working Group on Fast Reactors (IWGFR). It contains updated parameters of 27 experimental, prototype and commercial size liquid metal fast breeder reactors (LMFBRs). Most of the reactors are currently in operation, under construction or in an advanced planning stage. Parameters of the Clinch River Breeder Reactor (USA), PEC (Italy), RAPSODIE (France), DFR (UK) and EFFBR (USA) are included in the report because of their important role in the development of LMFBR technology from first LMFBRs to the prototype size fast reactors. Two more reactors appeared in the list: European Fast Reactor (EFR) and PRISM (USA). Parameters of these reactors included in this publication are based on the data from the papers presented at the 23rd Annual Meeting of the IWGFR. All in all more than four hundred corrections and additions have been made to update the document. The report is intended for specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors

  9. Annex. Decommissioning of a large central-station LMFBR power plant: a comparison with the PWR

    The decommissioning of a liquid metal fast breeder reactor (LMFBR) is qualitatively compared with that of a more conventional pressurized water reactor (PWR). The PWR and LMFBR are examined for differences which might impact the total station decommissioning costs, and the primary systems of both reactor types are compared to determine if design differences in their radioactive portions would substantially alter the overall balance of costs evaluated in earlier comparative studies of decommissioning alternatives. Consideration of the ease of disassembly, relative quantities of structural material to be treated, and the special aspects related to the sodium coolant indicated that, for otherwise equivalent circumstances, dismantling operations are of corresponding difficulty, decommissioning costs are comparable, and, if the primary sodium is reused in another reactor and proper credit taken, the sodium coolant does not add to the cost of decommissioning

  10. US LMFBR coolant system components

    Development and use of LMFBR coolant system components in the United States has progressed through more than two decades, with both the government and private sectors participating significantly in the support and conduct of the work. The purpose of this paper is to present the major functional requirements that these components are expected to meet, their current status and future direction of development, and recent test results. The components to be discussed are: (1) primary and intermediate system large sodium piping; (2) primary and intermediate system large sodium valves; (3) primary and intermediate main sodium pumps; (4) intermediate heat exchanger (IHX); and (5) sodium-heated steam generators. The major near-term activities associated with the above components are focused primarily on the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), and the anticipated commercial LMFBR's

  11. AGC-2 Disassembly Report

    William Windes

    2014-05-01

    The Next Generation Nuclear Plant (NGNP) Graphite Research and Development (R&D) Program is currently measuring irradiated material properties for predicting the behavior and operating performance of new nuclear graphite grades available for use within the cores of new very high temperature reactor designs. The Advanced Graphite Creep (AGC) experiment, consisting of six irradiation capsules, will generate irradiated graphite performance data for NGNP reactor operating conditions. The AGC experiment is designed to determine the changes to specific material properties such as thermal diffusivity, thermal expansion, elastic modulus, mechanical strength, irradiation induced dimensional change rate, and irradiation creep for a wide variety of nuclear grade graphite types over a range of high temperature, and moderate doses. A series of six capsules containing graphite test specimens will be used to expose graphite test samples to a dose range from 1 to 7 dpa at three different temperatures (600, 900, and 1200°C) as described in the Graphite Technology Development Plan. Since irradiation induced creep within graphite components is considered critical to determining the operational life of the graphite core, some of the samples will also be exposed to an applied load to determine the creep rate for each graphite type under both temperature and neutron flux. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR). AGC-1 and AGC-2 will be irradiated in the south flux trap and AGC-3–AGC-6 will be irradiated in the east flux trap. The change in flux traps is due to NGNP irradiation priorities requiring the AGC experiment to be moved to accommodate Fuel irradiation experiments. After irradiation, all six AGC capsules will be cooled in the ATR Canal, sized for shipment, and shipped to the Materials and Fuels Complex (MFC) where the capsule will be disassembled in the Hot Fuel Examination Facility (HFEF). During disassembly, the metallic

  12. TRIO a general computer code for reactor 3-D flows analysis. Application to a LMFBR hot plenum

    TRIO is a code developed at CEA to investigate general incompressible 2D and 3D viscous flows. Two calculations are presented: the lid driven cubic cavity at Re=400; steady state (velocity and temperature field) of a LMFBR hot plenum, carried out in order to prepare the calculation of a cold shock consecutive to a reactor scram. 8 refs., 26 figs.

  13. Gamma heating in LMFBR media

    State-of-the-art approaches for the calculation of gamma heating in LMFBR core, blanket and reflector regions have been evaluated, with particular emphasis on coupled neutron-gamma methods/cross section sets. The major source of calculational error was found to be the apparent failure to impose a mass-energy balance on total gamma energy yield from neutron capture and other interactions in the preparation of representative neutron-gamma cross section sets. The applicability of many simplifying assumptions was demonstrated, including: volume-weighted homogenization, insensitivity to the shape of the gamma-source-spectrum, gamma energy deposition equal to gamma energy source more than 10 cm inside large zones of uniform composition, and the negligible effect of bremsstrahlung. A simple one-group method was developed to permit rapid, accurate estimation of the large (factor of 2) changes in the gamma energy deposition-to-source ratio possible near region interfaces. The approach, which also ensures conservation of mass-energy, was used in conjunction with coupled neutron-gamma computations to verify that previous experimental measurements of gamma heating in an LMFBR blanket mockup at M. I. T. were in accord with theoretical expectations within the experimental precision of +-10%

  14. Gamma heating in LMFBR media

    Kalra, M.S.; Drisoll, M.J.

    1976-02-01

    State-of-the-art approaches for the calculation of gamma heating in LMFBR core, blanket and reflector regions have been evaluated, with particular emphasis on coupled neutron-gamma methods/cross section sets. The major source of calculational error was found to be the apparent failure to impose a mass-energy balance on total gamma energy yield from neutron capture and other interactions in the preparation of representative neutron-gamma cross section sets. The applicability of many simplifying assumptions was demonstrated, including: volume-weighted homogenization, insensitivity to the shape of the gamma-source-spectrum, gamma energy deposition equal to gamma energy source more than 10 cm inside large zones of uniform composition, and the negligible effect of bremsstrahlung. A simple one-group method was developed to permit rapid, accurate estimation of the large (factor of 2) changes in the gamma energy deposition-to-source ratio possible near region interfaces. The approach, which also ensures conservation of mass-energy, was used in conjunction with coupled neutron-gamma computations to verify that previous experimental measurements of gamma heating in an LMFBR blanket mockup at M. I. T. were in accord with theoretical expectations within the experimental precision of +-10%.

  15. Use of reliability in the LMFBR industry

    This mission of a Reliability Program for an LMFBR should be to enhance the design and operational characteristics relative to safety and to plant availability. Successful accomplishment of this mission requires proper integration of several reliability engineering tasks--analysis, testing, parts controls and program controls. Such integration requires, in turn, that the program be structured, planned and managed. This paper describes the technical integration necessary and the management activities required to achieve mission success for LMFBR's

  16. RESEARCH ON PROCESS AND PLAN OF DISASSEMBLY

    2001-01-01

    With the viewpoint of integrating all phases of product life cycle,product disassembly problem is discussed. An kind of logical net methodology for product disassembly modeling is presented. An channel of converting product assembly model into disassembly model,such as logical net, is proposed,and the minimization cost problem and its linear programming model are given.

  17. CORTRAN code user manual. [LMFBR

    Cheatham, R.L.; Crawford, S.L.; Khan, E.U.

    1981-02-01

    CORTRAN has been developed as a relatively fast running design code for core-wide steady-state and transient analysis of Liquid Metal Fast Breeder Reactor (LMFBR) cores. The preliminary version of this computer program uses subchannel analysis techniques to compute the velocity and temperature fields on a multiassembly basis for three types of transient forcing functions: total power, total flow, and inlet coolant temperature. Interassembly heat transfer, intra-assembly heat transfer, and intra-assembly flow redistribution due to buoyancy are taken into account. Heat generation within the fuel rods and assembly duct walls is also included. Individual pin radial peaking factors (peak to average for each assembly) can be either read in or calculated from specified normalized neutronic power densities (six per assembly).

  18. LMFBR thermal-striping evaluation

    Thermal striping is defined as the fluctuating temperature field that is imposed on a structure when fluid streams at different temperatures mix in the vicinity of the structure surface. Because of the uncertainty in structural damage in LMFBR structures subject to thermal striping, EPRI has funded an effort for the Rockwell International Energy Systems Group to evaluate this problem. This interim report presents the following information: (1) a Thermal Striping Program Plan which identifies areas of analytic and experimental needs and presents a program of specific tasks to define damage experienced by ordinary materials of construction and to evaluate conservatism in the existing approach; (2) a description of the Thermal Striping Test Facility and its operation; and (3) results from the preliminary phase of testing to characterize the fluid environment to be applied in subsequent thermal striping damage experiments

  19. Material effects in LMFBR sodium systems

    The operating conditions of commercial LMFBR's can result in material performance problems. Corrosion, radiation damage, temperature requirements, plastic deformation, and the superposition of these effects have been defined as important limiting factors for the design of components. A detailed knowledge of the various parameters which can influence the behavior of materials under LMFBR conditions is therefore necessary. The objective of the paper is to identify the influence of the sodium environment on the most important properties of materials which are used for the construction of heat transfer components. The paper considers the fuel cladding, the IHX, and the steam generator to be the major heat exchange units to be evaluated

  20. Structural analysis for LMFBR applications

    Firstly, we discuss the use of elastic analysis for structural design of LMFBR components. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed prototype Test Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is the same as that of Rapsodie. Nevertheless, the design had to he checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, we make use of ASME Code Section III and the Code Case N-47, for high temperature design. The problem faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's breakdown and plastic cycling criteria for ratchet free operation to biaxial stress fields. In other fields, namely, inelastic analysis, piping analysis in the creep regime etc. we are only at a start

  1. Physical modeling of thermohydraulic phenomena in LMFBR

    A simulation method of thermohydraulic problems in LMFBR is illustrated by a dimensional analysis of the different equations. For steady state and transient regimes on the reactor, it is shown how some experiments on small scale models with usual fluid permit a tentative solution to these problems

  2. AI reference LMFBR steam-generator development

    The Design Data Sheets summarize the key parameters being used in the design and analysis of the AI Prototype LMFBR Steam Generator. These Data Sheets supplement SDD-097-330-002, Steam Generator System, 1450 psi Steam Conditions. This document will serve as the baseline design data control until a GE/RRD approved steam generator specification with ordering data is received

  3. Disassemblability modeling technology of configurable product based on disassembly constraint relation weighted design structure matrix(DSM)

    Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng

    2014-05-01

    The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.

  4. STUDY ON HUMAN-COMPUTER SYSTEM FOR STABLE VIRTUAL DISASSEMBLY

    Guan Qiang; Zhang Shensheng; Liu Jihong; Cao Pengbing; Zhong Yifang

    2003-01-01

    The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disassembly is built, and the corresponding human-computer system for stable virtual disassembly is developed. In this system, an immersive and interactive virtual disassembly environment has been created to provide planners with a more visual working scene. For cooperative disassembly, an intelligent module of stability analysis of disassembly operations is embedded into the human-computer system to assist planners to implement disassembly tasks better. The supporting matrix for stability analysis of disassembly operations is defined and the method of stability analysis is detailed. Based on the approach, the stability of any disassembly operation can be analyzed to instruct the manual virtual disassembly. At last, a disassembly case in the virtual environment is given to prove the validity of above ideas.

  5. Elastoplastic fracture mechanics approach for LMFBR

    The structural materials used for LMFBR are austenitic steels from Type AISI 304, 316, or steels which are similar. Investigations show that a leak-before-break concept can be established for LMFBR piping systems and components, due to the ductile behaviour of these steels and operating conditions. A major element of this concept is the knowledge of fatigue crack growth patterns. The experiments which were carried out show that initial flaws will only grow slowly during the lifetime. The investigations should be extended into the plastic range. A test facility is under construction, where components such as nozzles, elbows and bellows can be tested under operational conditions with specified flaws in stress concentration areas. (author)

  6. US advanced LMFBR fuels development program

    Following the oil crisis in 1974, a national Advanced LMFBR Fuels Development Program was initiated in the U. S. This program was developed on the basis of the experience obtained during the exploratory years. As a result, most aspects of advanced fuels development have been expanded in the U. S. in a unified national program. The experience obtained during the exploratory phase has been summarized previously. The purpose of this paper is to describe the new program and to summarize recent major findings

  7. Strategies in development of advanced fuels for LMFBR

    Overseas strategies in development of advanced fuels for LMFBR are reviewed. Recent irradiation experiment and out-of-pile test data of the fuels are given in detail. The present status of development of oxide fueled LMFBR is also treated. (auth.)

  8. Disassembly automation automated systems with cognitive abilities

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  9. Binary Code Disassembly for Reverse Engineering

    Marius Popa

    2013-01-01

    Full Text Available The disassembly of binary file is used to restore the software application code in a readable and understandable format for humans. Further, the assembly code file can be used in reverse engineering processes to establish the logical flows of the computer program or its vulnerabilities in real-world running environment. The paper highlights the features of the binary executable files under the x86 architecture and portable format, presents issues of disassembly process of a machine code file and intermediate code, disassembly algorithms which can be applied to a correct and complete reconstruction of the source file written in assembly language, and techniques and tools used in binary code disassembly.

  10. Remote disassembly of an abnormal multiplication system

    The method of abnormal multiplying systems remote disassembling is described. This method was worked through in actual operations as response to the nuclear accident at the RFNC-VNIIEF criticality test facility FKBN-2M on 17 June 1997. The abnormal assembly was a sphere of 235U (90%), surrounded by a copper reflector. The detailed information on the multiplying system disassembly operations could be of use to the experts at other institutions when they develop emergency response plans. (author)

  11. Pressure-sensitive fasteners for active disassembly

    PEETERS Jef; Van den Bossche, Wannes; Devoldere, Tom; Vanegas, Paul; Dewulf, Wim; Duflou, Joost

    2015-01-01

    This paper presents a number of novel active fasteners developed to significantly lower disassembly costs during reconditioning, remanufacturing, and recycling of products. In the initial stage of the fastener development process, the applicability of distinct trigger signals for active disassembly (AD) is evaluated. Based on this evaluation, the high robustness of using a pressure increase or decrease as a nondestructive trigger for AD is demonstrated. Since previously ...

  12. Damage-Free Relief-Valve Disassembly

    Haselmaier, H.

    1986-01-01

    Tool safely disassembles relief valves without damage to sensitive parts. Relief-valve disassembly tool used to extract valve nozzle from its housing. Holding device on tool grops nozzle. When user strikes hammer against impact disk, holding device pulls nozzle from press fit. Previously, nozzle dislodged by striking spindle above it, but practice often damaged retaining screw. New tool removes nozzle directly. With minor modifications, tool adapted to valves from different manufacturers.

  13. Sequence of operations: TFTR assembly and disassembly

    A conceptual sequence of operations necessary to complete initial assembly of the Tokamak Fusion Test Reactor (TFTR) are described along with subsequent disassembly operations and special techniques planned for use during radioactive disassembly. Special attention is given in this report to techniques, personnel exposure, and equipment needed to effect the opening and closing of a vacuum vessel port and the installation of the vacuum vessel seal weld cutting machine under radioactive conditions

  14. Disassembling iron availability to phytoplankton

    Yeala eShaked

    2012-04-01

    Full Text Available The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO2 drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability - the acquisition of Fe-substrate by phytoplankton - and added levels of complexity involving interactions among organisms, iron and ecosystem processes. We first examine how phytoplankton acquire free and organically-bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotes and eukaryotes. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as spectrum rather than an absolute all or nothing. We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe compounds and environments, and for gauging the contribution of various Fe substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species.

  15. Multicell slug flow heat transfer analysis of finite LMFBR bundles

    Yeung, M.K.; Wolf, L.

    1978-12-01

    An analytical two-dimensional, multi-region, multi-cell technique has been developed for the thermal analysis of LMFBR rod bundles. Local temperature fields of various unit cells were obtained for 7, 19, and 37-rod bundles of different geometries and power distributions. The validity of the technique has been verified by its excellent agreement with the THTB calculational result. By comparing the calculated fully-developed circumferential clad temperature distribution with those of the experimental measurements, an axial correction factor has been derived to account for the entrance effect for practical considerations. Moreover, the knowledge of the local temperature field of the rod bundle leads to the determination of the effective mixing lengths L/sub ij/ for adjacent subchannels of various geometries. It was shown that the implementation of the accurately determined L/sub ij/ into COBRA-IIIC calculations has fairly significant effects on intersubchannel mixing. In addition, a scheme has been proposed to couple the 2-D distributed and lumped parameter calculation by COBRA-IIIC such that the entrance effect can be implanted into the distributed parameter analysis. The technique has demonstrated its applicability for a 7-rod bundle and the results of calculation were compared to those of three-dimensional analyses and experimental measurements.

  16. First insights into disassembled "evapotranspiration"

    Chormański, Jarosław; Kleniewska, Małgorzata; Berezowski, Tomasz; Szporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatyłowicz, Jan; Batelaan, Okke

    2015-04-01

    In this work we present an initial data analysis obtained from a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them fromthe total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its component transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project

  17. CEC activities in the field of LMFBR safety

    The aim of the ECC is to reach a common LMFBR Safety strategy in Europe. To this end the Commission promotes collaboration between the different fast reactor projects in the Community through working groups and collaborative arrangements and contributes with a research activity executed in its Joint Research Centre Ispra. A short description is given of the activity in the working groups and of the Ispra programme on LMFBR Safety. This programme covers: LMFBR thermohydraulics, fuel coolant interactions, dynamic structure loading and response, safety related material properties and whole core accident code development

  18. Dissolution of LMFBR fuel-sodium aerosols

    Aerosols of either LMFBR fuel or PuO2 are essentially insoluble in water or biological fluids. If either of these aerosols is exposed to sodium metal vapor, the resulting aerosol is much more soluble in aqueous solutions. Preferential dissolution of uranium from mixed sodium-fuel aerosols makes the plutonium more readily soluble than for sodium-PuO2 aerosol. Ultrafiltration of the dissolution test solvent revealed the plutonium to be associated with particles between 2 nm and 10 nm in diameter, in both cases

  19. Measurement of irradiation creep in bending. [LMFBR

    McSherry, A.J.; Marshall, J.; Patel, M.R.

    1980-01-31

    The major deformation modes in LMFBR fuel channels are bowing caused by neutron flux and temperature gradients and dilation due to stresses imposed by the flowing sodium. In both cases, the stress state of interest is bending. The bulk of irradiation creep data has been generated by simply loaded specimens such as tensile or biaxial pressurized tubes but it is questionable whether this data can be used to predict creep in bending. An irradiation creep experiment using beams loaded in primary bending has been designed to investigate this premise.

  20. D-amino acids trigger biofilm disassembly.

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  1. Illustrating the disassembly of 3D models

    Guo, Jianwei

    2013-10-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces between each pair of neighboring parts. The contact faces are then used to compute the possible moving directions of each part. We then present a simple algorithm for clustering the sets of the individual parts into meaningful sub-assemblies, which can be used for a hierarchical decomposition. We take the stability of sub-assemblies into account during the decomposition process by considering the upright orientation of the input models. Our framework also provides a user-friendly interface to enable the superimposition of the constraints for the decomposition. Finally, we visualize the disassembly process by generating an animated sequence. The experiments demonstrate that our framework works well for a variety of complex models. © 2013 Elsevier Ltd.

  2. Nuclear fuel bundle disassembly and assembly tool

    A nuclear power reactor fuel bundle is described which has a plurality of tubular fuel rods disposed in parallel array between two transverse tie plates. It is secured against disassembly by one or more locking forks which engage slots in tie rods which position the transverse plates. Springs mounted on the fuel and tie rods are compressed when the bundle is assembled thereby maintaining a continual pressure against the locking forks. Force applied in opposition to the springs permits withdrawal of the locking forks so that one tie plate may be removed, giving access to the fuel rods. An assembly and disassembly tool facilitates removal of the locking forks when the bundle is to be disassembled and the placing of the forks during assembly of the bundle. (U.S.)

  3. Particle number correlations in nuclear disassembly

    An investigation of data and model calculations pertaining to the disassembly of an excited nucleus reveals that the probability of occurrence of various partitions is, in the cases considered, well approximated by expressions of the multinomial form. This finding implies that static (number) correlations (apart from those implied by the constraint of fixed total mass or charge) are rather weak and leads to the conclusion that dynamical correlations need to be measured in order to investigate details of the disassembly mechanism. The sensitivity of correlations to conserved quantitites may however be useful for the investigation of certain aspects of the reaction mechanism, in particular for the distinction between central and peripheral collisions. (orig.)

  4. D-Amino Acids Trigger Biofilm Disassembly

    Kolodkin-Gal, Illana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacteria form communities known as biofilms, which disassemble over time. Here we found that prior to biofilm disassembly Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofi...

  5. Ferritic steels for French LMFBR steam generators

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 5300C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  6. Preliminary study: isotopic safeguards techniques (IST). LMFBR fuel cycles

    This memorandum presents the preliminary results of the effort to investigate the applicability of isotope correlation techniques (ICT), formulated for the LWR system, to the LMFBR fuel cycle. The detailed isotopic compositional changes with burnup developed for the CRBR was utilized as the reference case. This differs from the usual LMFBR design studies in that the core uranium is natural uranium rather than depleted. Nevertheless, the general isotopic behavior should not differ significantly and does allow an initial insight into the expected behavior of isotopic correlations for the LMFBR power systems such as: the U.K. PFR and reprocessing plant; the French Phenix and Superphenix; and the US reference conceptual design studies (CDS) of homogeneous and heterogeneous LMFBR systems as they are developed

  7. Disassembly sequences generation and evaluation : Intregration in virtual reality environment

    Wang, Chenggang

    2014-01-01

    Integration of disassembly operations during product design is an important issue today. It is estimated that at the earliest stages of product design, the cost of disassembly operations almost represents 30 % of its total cost. Nowadays, disassembly operation simulation of industrial products finds a strong interest in interactive simulations through immersive and real-time schemes. In this context, in the first place, this thesis presents a method for generating the feasible disassembly seq...

  8. Microprocessor-based integrated LMFBR core surveillance

    This report results from a joint study of KfK and INTERATOM. The aim of this study is to explore the advantages of microprocessors and microelectronics for a more sophisticated core surveillance, which is based on the integration of separate surveillance techniques. Due to new developments in microelectronics and related software an approach to LMFBR core surveillance can be conceived that combines a number of measurements into a more intelligent decision-making data processing system. The following techniques are considered to contribute essentially to an integrated core surveillance system: - subassembly state and thermal hydraulics performance monitoring, - temperature noise analysis, - acoustic core surveillance, - failure characterization and failure prediction based on DND- and cover gas signals, and - flux tilting techniques. Starting from a description of these techniques it is shown that by combination and correlation of these individual techniques a higher degree of cost-effectiveness, reliability and accuracy can be achieved. (orig./GL)

  9. Hockey-stick steam generator for LMFBR

    This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test results to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications

  10. A Novel Disassemble Algorithm Designed for Malicious File

    Di Sun

    2013-02-01

    Full Text Available In order to avoid being static analyzed, hacker rely on various obfuscation techniques to hide its malicious characters. These techniques are very effective against common disassembles, preventing binary file from being disassembled correctly. The study presents novel disassemble algorithm which based on analyzed Control Flow Graph (CFG and Data Flow Graph (DFG information improve the ability of the disassembly. The proposed algorithm was verified on varied binary files. The experiment shows that the method not only improves the accuracy of disassemble but also greatly deal with malicious files.

  11. Assembly/disassembly strategies for service applications

    Puente Méndez, Santiago Timoteo; Torres Medina, Fernando; Díaz Baca, Carolina Soledad

    2008-01-01

    This paper presents a development of assembly/disassembly systems to be applied in service applications. It uses algorithms developed for industrial applications to perform the service tasks. A robotic system to perform service applications in a cooperative environment with a human is used. The system uses product model to perform the task planning, with the designed task the required grasping points to manipulate the objects are computed according the restrictions. Two experimental results o...

  12. 2D solar modeling

    Ventura, P; Li, L; Sofia, S; Basu, S; Demarque, P

    2009-01-01

    Understanding the reasons of the cyclic variation of the total solar irradiance is one of the most challenging targets of modern astrophysics. These studies prove to be essential also for a more climatologic issue, associated to the global warming. Any attempt to determine the solar components of this phenomenon must include the effects of the magnetic field, whose strength and shape in the solar interior are far from being completely known. Modelling the presence and the effects of a magnetic field requires a 2D approach, since the assumption of radial symmetry is too limiting for this topic. We present the structure of a 2D evolution code that was purposely designed for this scope; rotation, magnetic field and turbulence can be taken into account. Some preliminary results are presented and commented.

  13. Vertical 2D Heterostructures

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  14. Comments on US LMFBR steam generator base technology

    The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects

  15. Liquid Metal Fast Breeder Reactor Program (LMFBR): facility profiles

    A description is presented of the experimental test facilities involved in the conduct of the LMFBR research and development program. Existing facilities and those under construction or authorized as of October 1975 are described. Each profile presents brief descriptions of the overall facility and its test area and data relating to its experimental and testing capability. Introductory material for each section includes site and facility maps and an alphabetical list of the profiles contained in the section. A glossary of acronyms and letter designations in common usage to describe organizations, reactor and test facilities, components, etc. involved in the LMFBR program is included. Alphabetical, organizational, and programmatic indexes are provided as a convenient method of identifying the facilities with their locations and with their principal uses in the LMFBR program

  16. Safety consequences of local initiating events in an LMFBR

    Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.; Wang, P.Y.

    1975-12-01

    The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered.

  17. Status of gamma-ray heating characterization in LMFBR

    Efforts to define gamma-ray heating in Liquid Metal Fast Breeder Reactor (LMFBR) environments have been surveyed. Emphasis is placed on both current practice for the Experimental Breeder Reactor-II (EBR-II) and future needs of the Fast Flux Test Facility (FFTF). Experimental and theoretical work are included in this preliminary survey for both high and low power environments. Current ''state-of-the-art'' accuracies and limitations are assessed. On this basis, it is concluded that a broad and sustained effort be initiated to meet requested FFTF goal accuracies. To this end, recommendations are advanced for improving the current status of gamma heating characterization and temperature measurements in LMFBR

  18. Applications of simulation experiments in LMFBR core materials technology

    The development of charged particle bombardment experiments to simulate neutron irradiation induced swelling in austenitic alloys is briefly described. The applications of these techniques in LMFBR core materials technology are discussed. It is shown that use of the techniques to study the behavior of cold-worked Type-316 was instrumental in demonstrating at an early date the need for advanced materials. The simulation techniques then were used to identify alloying elements which can markedly decrease swelling and thus a focused reactor irradiation program is now in place to allow the future use of a lower swelling alloy for LMFBR core components

  19. Intelligent type sodium instrumentations for LMFBR

    The constructions and performances of lots of newly developed intelligent type sodium instrumentations are described. The graduation characteristic equations for corresponding transducer using the medium temperature as the parameter are given. These intelligent type sodium instrumentations are possessed of good linearity. The accurate measurement data of sodium process parameters (flowrate, pressure and level) can be obtained by means of their on-line compensation function of the temperature effect. Moreover, these intelligent type sodium instrumentations are possessed of the self-inspection, the electric shutoff protection, the setting of full-scale, the setting of alarm limits (two upper limits and two lower limits alarms), the thermocouple breaking alarm, mutual isolative the 0∼10 V direct-current analogue output and the CENTRONICS standard digital output, and the alarm relay contact output. Theses intelligent type sodium instrumentations are suitable particularly for the instrument, control and protective systems of LMFBR by means of these excellent functions based on microprocessor. The basic errors of the intelligent type sodium flowmeter, immersed sodium flowmeter, sodium manometer and sodium level gauge are +-2%, +-2.3%, +-0.3% and +-1.9% of measuring ranges respectively. (9 figs.)

  20. Steam generating system in LMFBR type reactors

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  1. Moving hot cell for LMFBR type reactor

    A moving hot cell for an LMFBR type reactor is made movable on a reactor operation floor between a position just above the reactor container and a position retreated therefrom. Further, it comprises an overhung portion which can incorporate a spent fuel just thereunder, and a crane for moving a fuel assembly between a spent fuel cask and a reactor container. Further, an opening/closing means having a shielding structure is disposed to the bottom portion and the overhung portion thereof, to provide a sealing structure, in which only the receiving port for the spent fuel cask faces to the inner side, and the cask itself is disposed at the outside. Upon exchange of fuels, the movable hot cell is placed just above the reactor to take out the spent fuels, so that a region contaminated with primary sodium is limited within the hot cell. On the other hand, upon maintenance and repair for equipments, the hot cell is moved, thereby enabling to provide a not contaminated reactor operation floor. (N.H.)

  2. Review of PRA methodology for LMFBR

    Yang, J.E

    1999-02-01

    Probabilistic Risk Assessment (PRA) has been widely used as a tool to evaluate the safety of NPPs (Nuclear Power Plants), which are in the design stage as well as in operation. Recently, PRA becomes one of the licensing requirements for many existing and new NPPs. KALIMER is a Liquid Metal Fast Breeder Reactor (LMFBR) being developed by KAERI. Since the design concept of KALIMER is similar to that of the PRISM plant developed by GE, it would be appropriate to review the PRA methodology of PRISM as the first step of KALIMER PRA. Hence, in this report summarizes the PRA methodology of PRISM plant, and the required works for the PSA of KALIMER based on the reviewed results. The PRA technology of PRISM plant consists of following five major tasks: (1) development of initiating event list, (2) development of system event tree, (3) development of core response event tree, (4) development of containment response event tree, and (5) consequences and risk estimation. The estimated individual and societal risk measures show that the risk from a PRISM module is substantially less than the NRC goal. Each task is compared to the PRA methodology of Light Water Reactor (LWR)/Pressurized Heavy Water Reactor (PHWR). In the report, each task of PRISM PRA methodology is reviewed and compared to the corresponding part of LWR/PHWR PSA performed in Korea. The parts that are not modeled appropriately in PRISM PRA are identified, and the recommendations for KALIMER PRA are stated. (author). 14 refs., 9 tabs., 4 figs.

  3. Coolant mixing in the LMFBR outlet plenum

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds Number (Re) values of 33000 and 70000 in a 1/15-scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet velocity field, upon the degree of inlet turbulence, and upon the turbulence momentum exchange model used in the calculations. It is found in the FFTF geometry that the TEACH-T predictions are better than that of VARR-II, and in the CRBR geometry neither code provides a good prediction of the observed behavior. From the sensitivity analysis, it is found that the production and dissipation of turbulence are the dominant terms in the transport equations for turbulent kinetic energy and turbulent energy dissipation rate, and the diffusion terms are relatively small. From the same study a new set of empirical constants for the turbulence model is evolved for the prediction of plenum flows

  4. Liquid lithium control type LMFBR type reactor

    In a liquid lithium control type LMFBR type reactor, a fuel exchange device passing through the center of a stationary lid and capable of reaching a predetermined position of the reactor core is disposed. A control mechanism having a case in parallel with a reactor core shaft and a shrinkable sealed cylinder in the case is disposed in the outer circumferential region of the reactor core, and a tank for liquid lithium is connected to the sealed cylinder, and the pressure in the case is controlled by supplying or discharging coolants. Coolants in the reactor container are sucked and injected into the case. The sealed cylinder is shortened axially to attain balance of the pressure between the inner side and the outer side of the cylinder, and a portion of the liquid lithium is pulled out and recycled to a tank. Neutron absorbers rise by so much, to attain the same condition as in the case that control rods are drawn out. The pressure in the case can be optionally determined by a control device, and axial dimension of the sealed cylinder can be determined optionally. Then, a rotational plug for loading a fuel exchange device and control rod drives are not necessary to extremely simplify the structure of reactor upper structures. (N.H.)

  5. Evaluation of local accidents in LMFBR

    Evaluation of local failures in the LMFBR plant has been made through experiments and analyses. The evaluated subjects are the individual phenomena which are important for the safety analysis of the plant. The areas thus far studied are; the failures in a fuel subassembly --- fission gas release, sodium boiling, local flow blockage, local fuel-sodium interaction etc., and the failures in a steam generator --- small and large leak sodium-water reaction. Thermal and hydrodynamic effects of various abnormal conditions in a fuel subassembly are being evaluated from out-pile experiments. The simulation tests of fission-gas release from a fuel cladding defect were conducted to evaluate its mechanical and thermal effects. Sodium boiling phenomena were studied experimentally and the prediction by computer codes were in satisfactory agreement with the experimental results. For the understanding of local flow blockage effect, the experiment and analysis are now in progress. Out-pile UO2-Na interaction tests are being conducted to confirm the magnitude of generated pressure. The integrity of wrapper tube walls to that pressure was examined by gun-powder explosion tests using water. Various failure detection methods are being studied along with the above experiments. Effects of sodium-water reaction caused by small and large leak of water into sodium in a steam generator are also investigated. Extensive studies were conducted on the failure propagation by small leak. Integrity of the steam generator and secondary circuit components to large leak accident was examined

  6. Postulated accident scenarios in weapons disassembly

    Payne, S.S. [Dept. of Energy, Albuquerque, NM (United States)

    1997-06-01

    A very brief summary of three postulated accident scenarios for weapons disassembly is provided in the paper. The first deals with a tetrahedral configuration of four generic pits; the second, an infinite planar array of generic pits with varying interstitial water density; and the third, a spherical shell with internal mass suspension in water varying the size and mass of the shell. Calculations were performed using the Monte Carlo Neutron Photon transport code MCNP4A. Preliminary calculations pointed to a need for higher resolution of small pit separation regimes and snapshots of hydrodynamic processes of water/plutonium mixtures.

  7. Postulated accident scenarios in weapons disassembly

    A very brief summary of three postulated accident scenarios for weapons disassembly is provided in the paper. The first deals with a tetrahedral configuration of four generic pits; the second, an infinite planar array of generic pits with varying interstitial water density; and the third, a spherical shell with internal mass suspension in water varying the size and mass of the shell. Calculations were performed using the Monte Carlo Neutron Photon transport code MCNP4A. Preliminary calculations pointed to a need for higher resolution of small pit separation regimes and snapshots of hydrodynamic processes of water/plutonium mixtures

  8. German position paper on structural analysis for LMFBR applications

    During the design period of the German LMFBR, the SNR-300, extensive work had been done in the field of elastic and inelastic analysis. Furthermore, special design rules have been developed. A review of these activities and their state-of-the art is outlined in this paper

  9. Technical considerations relative to removal of sodium from LMFBR components

    Reviewed in this paper are technical considerations which are of importance in choosing between an alcohol process and a moist nitrogen process for the removal of sodium from LMFBR components. Results observed in laboratory tests and in the cleaning of large scale components (e.g. a 28 MWt Modular Steam Generator Test Unit) are presented and discussed. (author)

  10. Activated sludge model No. 2d, ASM2d

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  11. Disassembly and Sanitization of Classified Matter

    The Disassembly Sanitization Operation (DSO) process was implemented to support weapon disassembly and disposition by using recycling and waste minimization measures. This process was initiated by treaty agreements and reconfigurations within both the DOD and DOE Complexes. The DOE is faced with disassembling and disposing of a huge inventory of retired weapons, components, training equipment, spare parts, weapon maintenance equipment, and associated material. In addition, regulations have caused a dramatic increase in the need for information required to support the handling and disposition of these parts and materials. In the past, huge inventories of classified weapon components were required to have long-term storage at Sandia and at many other locations throughout the DoE Complex. These materials are placed in onsite storage unit due to classification issues and they may also contain radiological and/or hazardous components. Since no disposal options exist for this material, the only choice was long-term storage. Long-term storage is costly and somewhat problematic, requiring a secured storage area, monitoring, auditing, and presenting the potential for loss or theft of the material. Overall recycling rates for materials sent through the DSO process have enabled 70 to 80% of these components to be recycled. These components are made of high quality materials and once this material has been sanitized, the demand for the component metals for recycling efforts is very high. The DSO process for NGPF, classified components established the credibility of this technique for addressing the long-term storage requirements of the classified weapons component inventory. The success of this application has generated interest from other Sandia organizations and other locations throughout the complex. Other organizations are requesting the help of the DSO team and the DSO is responding to these requests by expanding its scope to include Work-for- Other projects. For example

  12. Disassembler mezikódu jazyka Java

    Macháček, Ondřej

    2013-01-01

    Tato práce se zabývá popisem struktury mezikódu jazyka Java a disassemblováním instrukcí mezikódu jazyka Java. Součástí této práce je knihovna pro disassemblování souborů tříd jazyka Java. Knihovna umožňuje zobrazit veškeré disassemblované informace uložené v souboru tříd. Pro ukázku práce s knihovnou byla napsána i jednoduchá aplikace s grafickým uživatelským rozhraním. This thesis focus on the structure of Java class file and disassembling bytecode instructions of Java language. Part of ...

  13. Disassembling and modification of RA-3

    The objective of this paper is to describe the partial disassembling and modification of RA-3, called the Modernization Project. It comprises all the technical and administrative steps directly related with this task. The improvement of RA-3 is a result of the lack of 90% enriched uranium obliging a change over to 20% enriched uranium. This brought about design modifications both in fuel elements and the reactor. The presentation of documents for the licensing authority as well as are detailed separately. The modernization project was divided in 25 tasks: 1) changing fuel element support table, 2) changing heat exchanger, 3) repairing of cooling towers, 4) repairing of primary circuit valves, 5) repairing of irradiation channels, 6) construction of a new sampler, 7) changing tangential channel, 8) cleaning and disassembling of reactor (inside), 9) changing continuous demineralizer (ion exchange column), 10) detection of failure in fuel elements, 11) modification of nuclear instrumentation, 12) modification of conventional instrumentation, 13) modification of electrical system, 14) changing telemanipulators, 15) construction of mechanism bridge, 16) changing a primary circuit valve when the heat exchanger is changed too, 17) painting ground floor, hall floor, and pump room floor with epoxy resin levelling, 18) installation of fire alarm system, 19) radioactive liquid discharge, 20) modification of secondary circuit (This task involves: a) installation of a third secondary pump, b) extension of this piping, c) installation of two 12 inch valves to the present cooling towers pools independent, d) installation of filtering system), 21) optimization hot water bed, 22) changing detector support table, 23) removal, decontamination and reinstallation of shielding, 25) changing pneumatic system

  14. Montmorillonite-induced Bacteriophage φ6 Disassembly

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  15. LMFBR steam generators in the United Kingdom

    Experience has been gained in the UK on the operation of LMFBR Steam Generator Units (SGU) over a period of 20 years from the Dounreay Fast Reactor (DFR) and the Prototype Fast Reactor (PFR). The DFR steam generator featured a double barrier and therefore did not represent a commercial design. PFR, however, faced the challenge of a single wall design and it is experience from this which is most valuable. The PFR reactor went critical in March 1974 and the plant operating history since then has been dominated by experience with leaks in the tube to tube plate welds of the high performance U-tubes SGU's. Operation at high power using the full complement of three secondary sodium circuits was delayed until July 1976 by the occurrence of leaks in the tube to tube plate welds of the superheater and reheater units which are fabricated in stainless steel. Repairs were carried out to the two superheaters and they were returned to service. The reheater tube bundle was removed from circuit after sodium was found to have entered the steam side. When the sodium had been removed and inspection carried out it was decided not to recover the unit. Since 1976 the remaining five stainless steel units have operated satisfactorily. This year a replacement reheater unit has been installed. This is of a new design in 9-Cr-Mo ferritic steel using a sleeve through which the steam tube passes to eliminate the tube to tube plate weld. Despite a few early leaks in evaporator tube to tube plate welds up to 1979, these failures did not initially present a major problem. However, in 1980 the rate of evaporator weld failures increased and despite the successful application of a shot peening process to eliminate stress corrosion failures from the water side of the weld, failures traced to the sodium side continued. A sleeving process was developed for application to complete evaporator units on a production basis with the objective of bypassing the welds at each end of the 500 tubes. The decision

  16. DESIGN OF MACHINES FOR ASSEMBLY, DISASSEMBLY AND REVERSE LOGISTICS

    Ryszard ROHATYŃSKI

    2014-03-01

    Full Text Available The paper deals with the new problems of machine and other industrial products design that result from reverse logistics needs. Postulate to close the material cycle in economy poses for designer teams new, other than heretofore issues. Design for assembly that principles, methodology, and co-ordination in the frame of concurrent design already exist, does not meet demands of reverse logistics. There is a need for taking into consideration disassembly processes. The disassembly should take into regard material recovery processes and the reverse logistics requirements. In the paper general principles of the design for disassembly with allowing for these processes have been formulated.

  17. Cost-competitive, inherently safe LMFBR pool plant

    McDonald, J.S.; Brunings, J.E.; Chang, Y.I.; Seidensticker, R.W.; Hren, R.R.

    1984-01-01

    The Cost-Competitive, Inherently Safe LMFBR Pool Plant design was prepared in GFY 1983 as a joint effort by Rockwell International and the Argonne National Laboratory with major contributions from the Bechtel Group, Inc.; Combustion Engineering, Inc.; the Chicago Bridge and Iron Company; and the General Electric Company. Using current LMFBR technology, many innovative features were developed and incorporated into the design to meet the ultimate objectives of the Breeder Program, i.e., energy costs competitive with LWRs and inherent safety features to maintain the plant in a safe condition following assumed accidents without requiring operator action. This paper provides a description of the principal features that were incorporated into the design to achieve low cost and inherent safety.

  18. Transient analysis of LMFBR reinforced/prestressed concrete containment

    The use of prestressed concrete reactor vessels (PCRVs) for LMFBR containment creates a need for analytical methods for treating the transient response of such structures, for LMFBR containment must be capable of sustaining the dynamic effects which arise in a hypothetical core disruptive accident (HCDA). These analyses require several unique features: a model of concrete which includes tensile cracking, a methodology for representing the prestressing tendons and for simulating the prestressing operation, and an efficient computational tool for treating the transient response. For the purpose of treating the transient response, a finite element program with explicit time integration was chosen. For the purpose of illustrating the applicability of these techniques and the validity of the models for concrete and the prestressing tendons, several example solutions are presented and compared with experimental results

  19. LMFBR Blanket Physics Project progress report No. 6

    Progress is summarized in experimental and analytical investigations of the neutronics and photonics of benchmark mockups of LMFBR blankets. During the reporting period work was devoted primarily to a wide range of analytical/numerical investigations, including blanket fuel management/economics studies, evaluation of improved blanket designs, and assessment of state-of-the-art methods for gamma heating calculations. Experimental work included preparations for resumption of MIT Reactor operations, primarily fabrication of improved steel reflector assemblies for blanket mockups, and development of an improved radiophotoluminescent readout device for LiF thermoluminescent detectors. The most significant finding was that the neutronic and economic performance of radial blanket assemblies are essentially independent of core size (rating) for radially-power-flattened cores. Hence the methodology and results of current experiments and calculations should be valid for the large commercial LMFBR's of the future

  20. LMFBR Blanket Physics Project progress report No. 6

    Driscoll, M.J. (ed.)

    1975-06-30

    Progress is summarized in experimental and analytical investigations of the neutronics and photonics of benchmark mockups of LMFBR blankets. During the reporting period work was devoted primarily to a wide range of analytical/numerical investigations, including blanket fuel management/economics studies, evaluation of improved blanket designs, and assessment of state-of-the-art methods for gamma heating calculations. Experimental work included preparations for resumption of MIT Reactor operations, primarily fabrication of improved steel reflector assemblies for blanket mockups, and development of an improved radiophotoluminescent readout device for LiF thermoluminescent detectors. The most significant finding was that the neutronic and economic performance of radial blanket assemblies are essentially independent of core size (rating) for radially-power-flattened cores. Hence the methodology and results of current experiments and calculations should be valid for the large commercial LMFBR's of the future.

  1. Seismic analysis of a large-pool type LMFBR concept

    The reactor assembly structure of a large pool-type LMFBR constitutes the primary structural boundary and support for the reactor system and sodium coolant. It must satisfy the conflicting requirements of structural flexibility to minimize thermal stress and structural stiffness to minimize seismic response and withstand seismic loading on a wide range of nuclear plant sites. In addition, fluid-structure interaction involving submerged components (e.g., reactor core and assembly, lower internals structures, upper internal structure, etc.) and the interface between the fluid and the thin-walled vessel must be addressed. This paper describes the preliminary analytic approach to the seismic analysis of a large pool-type LMFBR. This approach uses the response spectra model analysis method with an axisymmetric finite element shell model. The model comprises structural and fluid finite elements in order to account for the fluid-structure interaction

  2. LMFBR Blanket Physics Project progress report No. 2

    This is the second annual report of an experimental program for the investigation of the neutronics of benchmark mock-ups of LMFBR blankets. Work was devoted primarily to measurements on Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial blanket and its steel reflector. Activation traverses and neutron spectra were measured in the blanket; calculations of activities and spectra were made for comparison with the measured data. The heterogeneous self-shielding effect for 238U capture was found to be the most important factor affecting the comparison. Optimization and economic studies were made which indicate that the use of a high-albedo reflector material such as BeO or graphite may improve blanket neutronics and economics

  3. Design approaches to achieve competitive LMFBR capital costs

    Through analysis of the essential functional elements of an LMFBR, numerous ways were found to simplify system design, reduce the size of components and equipment, and eliminate some components and systems. The projected capital cost per net kW of this design is competitive with that of current PWRs. RandD programs and the construction and operation of CRBRP now are needed to prove out the features of this new design

  4. Effect of operating temperature on LMFBR core performance

    The purpose of the study is to provide an engineering evaluation of high and low temperature LMFBR core designs. The study was conducted by C-E supported by HEDL expertise in the areas of materials behavior, fuel performance and fabrication/fuel cycle cost. The evaluation is based primarily on designs and analyses prepared by AI, GE and WARD during Phase I of the PLBR studies

  5. Impact of LMFBR operating experience on PFBR design

    PFBR is a 500 MWe, sodium cooled, pool type, fast breeder reactor currently under detailed design. It is essential to reduce the capital cost of PFBR in order to make it competitive with thermal reactors. Operating experience of LMFBRs provides a vital input towards simplification of the design, improving its reliability, enhancing safety and achieving overall cost reduction. This paper includes a summary of LMFBR operating experience and details the design features of PFBR as influenced by operating experience of LMFBRs. (author)

  6. Non-aqueous reprocessing for the LMFBR fuels

    The fluoride volatility process studies have been conducted at the Japan Atomic Energy Research Institute for the purpose of evaluating the process feasibility to the reprocessing of LMFBR fuels. The already proposed process concept is rearranged against proliferation risks, based on the experimental results obtained so far. Two types of process are shown with low and medium decontamination processes corresponding to the residual radioactivity of Pu. The results of process studies, R/D requirements and proliferation attributes are mainly outlined

  7. Safety role of inservice inspection for LMFBR's: a risk perspective

    The purpose of safety-related inservice inspection (ISI) at nuclear power plants is first reviewed and several key trade-offs involved with selecting an optimum ISI program are identified. A specialized reliability model developed to assist in making these trade-offs is presented, and the effectiveness of one type of ISI (namely, periodic inspection of passive mechanical components in large LMFBR's) is discussed in terms of this model. 5 refs

  8. Biological behavior of mixed LMFBR-fuel-sodium aerosols in rodents

    Clearance of 239Pu from lung and other tissues was determined after nose-only exposure of rats to mixed aerosols of sodium-LMFBR fuel or to LMFBR fuels only. The rates of clearance from lung and from total body were both higher after exposure to the mixed sodium-fuel than after exposure to fuel-only aerosols

  9. New package for Belleville spring permits rate change, easy disassembly

    Mac Glashan, W. F.

    1964-01-01

    A spring package, with grooves to hold the spring washers at the inner and outer edges, reduces hysteresis to a minimum. Three-segment retainers permit easy disassembly so that the spring rate can be changed.

  10. Dismantling and disassembly techniques in nuclear facility decommissioning

    Because of the complexity of demolishing nuclear facilities, the components to be treated require specific measures. One important aspect in nuclear plant decommissioning is the partial or complete disassembly of specific plant structures, especially with a view to minimizing the volume of materials to be moved into final storage. In this connection, both decontamination and disassembly and decomposition techniques and their combinations with handling systems are presented. Decontamination procedures must be adapted to the materials to be treated. Disassembly techniques may be of a mechanical, electro-mechanical, thermal or chemical type, and may be associated with the use of handling systems, such as central mast manipulators or, e.g., master - slave manipulators. Flexible systems lend themselves to many uses also because of their economic advantages. Some selected areas of research in disassembly techniques, manual cutting techniques, and the demolition of graphite structures are discussed in greater detail. (orig.)

  11. Systems impacts of spent fuel disassembly alternatives

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables

  12. Assembly and disassembly of mammalian chromosome pellicle

    NIZUMEI; JELITTLE; 等

    1992-01-01

    By means of indirect double immunofluorescent staining,the coordination of PI antigen and perichromonucleolin(PCN),the constituent of nuclear periphery and nucleolus respectively,in the assembly and disassembly of chromosome pellicle during mitosis was studied.It was found that in 3T3 cells,during mitosis PI antigen began to coat the condensing chromosome surface earlier than PCN did.However,both of them completed their coating on chromosome at approximately the same stage of mitosis,prometaphase metaphase,The dissociation of mitosis,Prometaphase metaphase.The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took place also ahead of that of PCN,At early telophase PI antigen had been extensively involved in the formation of nuclear periphery,while PCN remained in association with the surface of decondensing chromosomes.At late telophase,when PI antigen was localized in an fairly well formed nuclear periphery,PCN was in a stage of forming prenucleolar bodies.

  13. Systems impacts of spent fuel disassembly alternatives

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  14. Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms

    Galantucci, L. M.; Percoco, G.; Spina, R

    2004-01-01

    The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA) methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hybridization consists of the development of a Fuzzy controller for the parameters of an assembly or disassembly planner based on GAs. This controller acts on mutation probability and crossover rate in order to adapt their values dynamically while th...

  15. Experimental comparison studies with the VENUS-II disassembly code

    The Kiwi-TNT, SNAPTRAN-2 and SNAPTRAN-3 reactor disassembly experiments have been analyzed using the VENUS-II disassembly code. Modifications to the basic VENUS-II model required for the analysis of these tests are discussed. Key results from the analyses are compared to the experimental data and conclusions are drawn concerning the experimental validation of VENUS-II afforded by these comparisons

  16. Disassembly and aggregation in computer aided overhaul preparation

    W. Janik

    2011-02-01

    Full Text Available Purpose: Disassembly and aggregation procedures are main aspects of an overhaul process. The paper presents the example of an application that solves automation of technical mean recirculation procedures. Automation in the aspect of overhaul process preparation should be obtained through new tools specially oriented to refurbish mechanically used or damaged components.Design/methodology/approach: Methodology is based on complex overhaul process analysis that conclude technical mean recirculation method. This method brings technical mean back to operation with procedures (like: disassembly, aggregation, examination, preparation of refurbishing technology, overhaul process report generation determined in specific order.Findings: Method of technical mean refurbishing with computer aid application. Proposition of automation in aspects of: disassembly (disassembly correct sequence and aggregation procedures (which elements should be examined.Research limitations/implications: Important limitations are: disassembly based on assembly order, automation widest range possible when disassembly and aggregation is based on existing documentation. Aggregation algorithm based on machined type of elements.Practical implications: Nowadays overhaul processes are based directly in most cases on leading technologist experience. Elaborated method and application leads to more objective solutions (decisions based on algorithms results.Originality/value: CAO is an original and new approach that should be considered especially in heavy industry. Nowadays subjective decisions about how to refurbish in overhaul processes could be replaced by automated computer aided solutions. Positive economic impact to future and present overhaul processes execution in industry.

  17. Lectures on 2D gravity and 2D string theory

    This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions

  18. 2D-hahmoanimaation toteuttamistekniikat

    Smolander, Aku

    2009-01-01

    Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...

  19. structural dynamics in LMFBR containment analysis - a brief survey of computational methods and codes

    In recent years, the use of computer codes to study the response of primary containment of large, liquid-metal fast breeder reactors (LMFBR) under postulated accident conditions has been adopted by most fast reactor projects. This paper gives a brief survey of the computational methods and codes available for LMFBR containment analysis. The various numerical methods commonly used in the computer codes are compared. It provides the reactor engineers up-to-date information on the development of structural dynamics in LMFBR containment analysis. It can also be used as a basis for the selection of the numerical method in the future code development. (Auth.)

  20. LMFBR models for the ORIGEN2 computer code

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th-238U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given

  1. LMFBR models for the ORIGEN2 computer code

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1981-10-01

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th-/sup 238/U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given.

  2. Performance of breached LMFBR fuel pins during continued operation

    Four EBR-II tests were used to scope the behavior of breached mixed-oxide pins. After release of stored fission gas, delayed-neutron signals were large and easily detected, although not readily correlated with exposed fuel area. No problems were met during reactor operation or fuel handling. Fuel-sodium reaction caused only narrow breaches which released minute amounts of fuel and fission products; the reaction product appeared dense and non-friable. These initial results indicated LMFBR oxide pins could have considerable potential for operating in the breached mode

  3. LMFBR physics - Achievements in the last decade and future trends

    Two major points characterize the liquid-metal fast breeder reactor (LMFBR) physics developments in Europe. First, most of the activities which have been devoted in Europe in the last decade to fast reactor physics have been performed with international cooperation. Second, Superphenix start-up has represented a turning point in terms of data and design methods validation.The Superphenix start-up (1985) has provided an extensive neutronics experimental data base. The major findings of relevance for reactor physics are described

  4. Part 3. Status of LMFBR fuels and materials development

    The status of development of the candidate LMFBR fuel type oxide, carbide and metal, cladding/duct alloys, and absorber material is reviewed. The three-fuel types are discussed for the reference breeder cycle, transmuter cycle, denatured cycle, and blanket fuel applications. The preferred design concepts for each fuel type are identified, with discussion of the more significant factors that control burnup and thermal performance for each design and fuel type. The key technical issues for each fuel and material are reviewed and the required effort to resolve the key issues is identified

  5. Fission and corrosion products behavior in primary circuits of LMFBR's

    Most of the 20 presented papers report items belonging to more than one session. The equipment results of primary circuits of LMFBR's relative to corrosion and fission products, release and chemistry of fuel, measurement techniques and analytical procedures of sodium sampling, difficulties with radionuclides and particles, reactor experiences with EBR-II, FFTF, BR10, BOR60, BN350, BN600, JOYO, and KNK-II, DFR, PFR, RAPSODIE, PHENIX, and SUPERPHENIX, and at least the verification of codes for calculation models of radioactive products accumulation and distribution are described. All 20 papers presented at the meeting are separately indexed in the database. (DG)

  6. Optoelectronics with 2D semiconductors

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  7. Accretion Disks Phase Transitions 2-D or not 2-D?

    Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.

    2000-01-01

    We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.

  8. Proposal for computer investigation of LMFBR core meltdown accidents

    The environmental consequences of an LMFBR accident involving breach of containment are so severe that such accidents must not be allowed to happen. Present methods for analyzing hypothetical core disruptive accidents like a loss of flow with failure to scram cannot show conclusively that such accidents do not lead to a rupture of the pressure vessel. A major deficiency of present methods is their inability to follow large motions of a molten LMFBR core. Such motions may lead to a secondary supercritical configuration with a subsequent energy release that is sufficient to rupture the pressure vessel. The Los Alamos Scientific Laboratory proposes to develop a computer program for describing the dynamics of hypothetical accidents. This computer program will utilize implicit Eulerian fluid dynamics methods coupled with a time-dependent transport theory description of the neutronic behavior. This program will be capable of following core motions until a stable coolable configuration is reached. Survey calculations of reactor accidents with a variety of initiating events will be performed for reactors under current design to assess the safety of such reactors

  9. Fuel pins and core response under LMFBR top accident conditions

    Out-of-reactor experiments are currently being performed at Argonne National Laboratory to examine fuel sweepout and related post-failure phenomena under hypothetical TOP accident conditions. These tests are supplementing the TREAT MARK-II loop data base by keying on effects of important parameter variations such as system hydraulics and intrabundle coherency. In these tests, molten UO2, generated by a thermite reaction at 34700K, is injected over approximately 40 msec into flowing sodium in a bundle of simulated LMFBR-type fuel pins. Hydraulic conditions in the bundle are selected to match conditions in either the MARK-II loop (HUMP-series) or the current design LMFBR subassembly (CAMEL-series). To date, four tests have been performed in both single-pin and seven-pin configurations representing coherent and incoherent subassembly power-to-flow cases, respectively. Details of the fuel motion were observed using a flash x-ray cine system. A compilation of significant findings from the four sweepout tests is presented

  10. Seismic behaviour of LMFBR reactor cores. The SYMPHONY program

    As part of a comprehensive program on the seismic behaviour of the LMFBR reactor cores, the SYMPHONY experimental program, performed at the CEA Saclay, is carried out from 1993 up to now. LMFBR reactor cores are composed of fuel assemblies and neutronic shields, immersed in sodium (the primary coolant) or water (for the experimental tests). The main objective of the seismic studies is to evaluate the assembly motions, with consequences on the reactivity and the control rod insertability, and to verify the structural integrity of the assemblies under the impact forces. The experimental program has reached its objectives. Tests have been performed in a satisfying way. Instrumentation allowed to collect displacements, accelerations, and shock forces. All the results constitute a comprehensive base of valuable and reliable data. The interpretation of the tests is based on beam models, taking into account the Fluid Structure Interaction, and the shocks between the assemblies. Theoretical results are in a quite good agreement with the experimental ones. The interpretation of the hexagonal tests in water pointed out very strong coupling between the assemblies and lead to the development of a specific Fluid Structure Interaction, taking into account not only inertial effects, but dissipative effects also. (author)

  11. Analytical approach for confirming the achievement of LMFBR reliability goals

    The approach, recommended by GE-ARSD, for confirming the achievement of LMFBR reliability goals relies upon a comprehensive understanding of the physical and operational characteristics of the system and the environments to which the system will be subjected during its operational life. This kind of understanding is required for an approach based on system hardware testing or analyses, as recommended in this report. However, for a system as complex and expensive as the LMFBR, an approach which relies primarily on system hardware testing would be prohibitive both in cost and time to obtain the required system reliability test information. By using an analytical approach, results of tests (reliability and functional) at a low level within the specific system of interest, as well as results from other similar systems can be used to form the data base for confirming the achievement of the system reliability goals. This data, along with information relating to the design characteristics and operating environments of the specific system, will be used in the assessment of the system's reliability

  12. Benchmark physics experiment of metallic-fueled LMFBR at FCA

    A benchmark physics experiment of a metallic-fueled LMFBR was performed at Japan Atomic Energy Research Institute's Fast Critical Assembly (FCA) in order to examine availability of data and method for a design of metallic-fueled core. The nuclear data and the calculation methods used for a LMFBR core design have been improved based on the oxide fuel core experiments. A metallic-fueled core has a harder neutron spectrum than an oxide-fueled core and has typical nuclear characteristics affected by the neutron spectrum. In this study, availability of the conventional calculation method for the design of the metallic-fueled core was examined by comparing the calculation values of the nuclear characteristics with the measured values. The experimental core (FCA assembly XVI-1) was selected by referring to the conceptual design of Central Research Institute of Electric Power Industry. The calculated-to-experiment (C/E) value for keff of assembly XVI-1 was 1.001. From this, as far as the criticality the prediction accuracy of the conventional calculation for the metallic-fueled core was concluded to be similar to that of an oxide-fueled core. (author)

  13. State of the art review of degradation processes in LMFBR materials. Volume II. Corrosion behavior

    Degradation of materials exposed to Na in LMFBR service is reviewed. The degradation processes are discussed in sections on corrosion and mass transfer, erosion, wear and self welding, sodium--water reactions, and external corrosion. (JRD)

  14. Development and status of LMFBR fuel reprocessing in the Federal Republic of Germany

    The problems associated with reprocessing oxide LMFBR fuel elements result from the higher plutonium content, the higher fission product content and the higher level of thermal decay power; their consequences on the Purex process are well recognizable. Reprocessing LMFBR elements by the conventional Purex process technique is considered to be feasible. If the cooling time of LMFBR fuel elements amount to one year or more, it is only the higher plutonium content which determines the process flowsheet. The necessary chemical steps for reprocessing co-precipitated oxides have been developed at Karlsruhe for this case. The mechanical head end still needs to be developed on a technical scale, as does the management of safety against criticality. If reprocessing is to follow a cooling time of less than 200 days, as envisaged in the original planning for LMFBR fuel elements, the efficiency of offgas treatment and the reliable operation of fas contactors in the first extraction cycle still have to be tested. (orig.)

  15. Development and status of LMFBR fuel reprocessing in the Federal Republic of Germany

    The problems associated with reprocessing oxide LMFBR fuel elements result from the higher plutonium content, the higher fission product content and the higher level of thermal decay power; their consequences on the Purex process are well recognizable. Reprocessing LMFBR elements by the conventional Purex process technique is considered to be feasible. If the cooling time of LMFBR fuel elements amount to one year or more, it is only the higher plutonium content which determines the process flowsheet. The necessary chemical steps for reprocessing co-precipitated oxides have been developed at Karlsruhe for this case. The mechanical head end still needs to be developed on a technical scale, as does the management of safety against criticality. If reprocessing is to follow a cooling time of less than 200 days, as envisaged in the original planning for LMFBR fuel elements, the efficiency of offgas treatment and the reliable operation of fast contactors in the first extraction cycle still have to be tested

  16. The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite

    Eliášová, Pavla; Tian, Y.; Pinar, A. B.; Kubů, Martin; Čejka, Jiří; Morris, R. E.

    2014-01-01

    Roč. 53, č. 27 (2014), s. 7048-7052. ISSN 1433-7851 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : ADOR * germanosilicate * IWW Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.261, year: 2014

  17. SES2D user's manual

    SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run

  18. 2D-Oide effect

    Blanco, O R; Bambade, P

    2015-01-01

    The Oide effect considers the synchrotron radiation in the final focusing quadrupole and it sets a lower limit on the vertical beam size at the Interaction Point, particularly relevant for high energy linear colliders. The theory of the Oide effect was derived considering only the radiation in the focusing plane of the magnet. This article addresses the theoretical calculation of the radiation effect on the beam size consider- ing both focusing and defocusing planes of the quadrupole, refered to as 2D-Oide. The CLIC 3 TeV final quadrupole (QD0) and beam parameters are used to compare the theoretical results from the Oide effect and the 2D-Oide effect with particle tracking in PLACET. The 2D-oide demonstrates to be important as it increases by 17% the contribution to the beam size. Further insight into the aberrations induced by the synchrotron radiation opens the possibility to partially correct the 2D-Oide effect with octupole magn

  19. Analysis of a postulated accident scenario involving loss of forced flow in a LMFBR

    A model to analyse a postulated accident scenario involving loss of forced flow in the reactor vessel of a LMFBR is used. Five phases of the accident are analysed: Natural Circulation, Subcooled Boiling, Nucleate Boiling, Core Dryout and Cladding melt. The heat conduction in the fuel cladding, coolant and lower and upper plenum are calculated by a lump-parameter model. Physical data of a prototype LMFBR reactor were used for the calculation. (author)

  20. MIT LMFBR blanket research project. Quarterly progress report, January 1, 1976--March 31, 1976

    Driscoll, M.J.

    1976-01-01

    Progress in the experimental and theoretical investigation of LMFBR breeding blanket design parameters is reported. State-of-the-art approaches for the calculation of gamma heating in the core, blanket, and reflector regions of LMFBR's have been evaluated, with particular emphasis on coupled neutron-gamma methods cross section sets. The effects of heterogeneity on resonance self-shielding were examined for the blanket region and the capture reaction in /sup 238/U. (DG)

  1. Mathematical and Simulation Modelling of Moisture Diffusion Mechanism during Plastic IC Packages Disassembly

    Peng Mou; Dong Xiang; Guanghong Duan

    2013-01-01

    Reuse of plastic IC packages disassembled from printed circuit boards (PCBs) has significant environmental benefits and economic value. The interface delamination caused by moisture diffusion is the main failure mode of IC packages during the disassembling process, which greatly reduces the reusability and reliability of disassembled IC packages. Exploring moisture diffusion mechanism is a prerequisite to optimize prebaking processes before disassembling that is an effective way to avoid the ...

  2. Teaching Assembly for Disassembly; An Under-Graduate Module Experience

    Alexandri, Eleftheria

    2014-01-01

    This paper is about the experience of teaching Assembly for Disassembly to fourth year architect students within the module of sustainable design. When designing a sustainable building one should take into consideration the fact that the building is going to be demolished in some years; thus the materials should be assembled in such a way so that…

  3. CPAP promotes timely cilium disassembly to maintain neural progenitor pool.

    Gabriel, Elke; Wason, Arpit; Ramani, Anand; Gooi, Li Ming; Keller, Patrick; Pozniakovsky, Andrei; Poser, Ina; Noack, Florian; Telugu, Narasimha Swamy; Calegari, Federico; Šarić, Tomo; Hescheler, Jürgen; Hyman, Anthony A; Gottardo, Marco; Callaini, Giuliano; Alkuraya, Fowzan Sami; Gopalakrishnan, Jay

    2016-04-15

    A mutation in the centrosomal-P4.1-associated protein (CPAP) causes Seckel syndrome with microcephaly, which is suggested to arise from a decline in neural progenitor cells (NPCs) during development. However, mechanisms ofNPCs maintenance remain unclear. Here, we report an unexpected role for the cilium inNPCs maintenance and identifyCPAPas a negative regulator of ciliary length independent of its role in centrosome biogenesis. At the onset of cilium disassembly,CPAPprovides a scaffold for the cilium disassembly complex (CDC), which includes Nde1, Aurora A, andOFD1, recruited to the ciliary base for timely cilium disassembly. In contrast, mutatedCPAPfails to localize at the ciliary base associated with inefficientCDCrecruitment, long cilia, retarded cilium disassembly, and delayed cell cycle re-entry leading to premature differentiation of patientiPS-derivedNPCs. AberrantCDCfunction also promotes premature differentiation ofNPCs in SeckeliPS-derived organoids. Thus, our results suggest a role for cilia in microcephaly and its involvement during neurogenesis and brain size control. PMID:26929011

  4. Analytical method to accurately predict LMFBR core flow distribution

    An accurate and detailed representation of the flow distribution in LMFBR cores is very important as the starting point and basis of the thermal and structural core design. Previous experience indicated that the steady state and transient core design is as good as the core orificing; thus, a new orificing philosophy satisfying a priori all design constraints was developd. However, optimized orificing is a necessary, but not sufficient condition for achieving the optimum core flow distribution, which is affected by the hydraulic characteristics of the remainder of the primary system. Consequently, an analytical model of the overall primary system was developed, resulting in the CATFISH computer code, which, even though specifically written for LMFBRs, can be used for any reactor employing ducted assemblies

  5. MIT LMFBR blanket research project. Final summary report

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record.

  6. New intermediate heat exchanger for loop type LMFBR

    Secondary sodium loop elimination is proposed for the loop type LMFBR with using Advanced Intermediate Heat Exchanger (AIHX) for reduction in size and cost. This heat exchanger contains primary sodium tubes, and tertiary water tubes in a tank filled with intermediate heat transfer media. A concept verifying experiment was performed with using Ga as the intermediate medium in natural convective region to low velocity forced circulation. From the experimental correlation, AIHX - steam generator was conceptually designed. In order to use Pb or Pb-Bi for intermediate medium, a thermal interaction of Pb and Pb-Bi with water was studied experimentally. Interactions ware found to be suppressed under pressurized condition of two to three bars, and possibility of intense interaction could be ruled out. (authors)

  7. Simple LMFBR axial-flow friction-factor correlation

    Complicated LMFBR axial lead-length averaged friction-factor correlations are reduced to an easy, ready-to-use function of bundle Reynolds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer preprocessor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accurate values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest

  8. Simple LMFBR axial-flow friction-factor correlation

    Chan, Y.N.; Todreas, N.E.

    1982-12-01

    Complicated LMFBR axial lead-length averaged friction-factor correlations are reduced to an easy, ready-to-use function of bundle Reynolds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer preprocessor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accurate values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest.

  9. Gravitational agglomeration of post-HCDA LMFBR aerosols: nonspherical particles

    Aerosol behavior analysis computer programs have shown that temporal aerosol size distributions in nuclear reactor containments are sensitive to shape factors. This research investigates shape factors by a detailed theoretical analysis of hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. First, basic definitions and expressions for settling speeds and collisional efficiencies of nonspherical particles are developed. These are then related to corresponding quantities for spherical particles through shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, the density correction factor, and the gravitational collision shape factor, are introduced to describe the collision kernel for collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program (NGCEFF) is constructed, and the dynamical equations are solved by Gear's method

  10. Nonlinear transient deformation of LMFBR fuel elements under impulsive loading

    Hypothetical reactor accidents are characterized by a sudden release of substantial thermal energy in one fuel element. Presently it cannot be excluded that for instance pressure pulses due to a fuel coolant interaction may have such time scales and impulses as to deform neighboring subassemblies permanently. Additionally coherent fuel element motion may limit control rod scram action and possibly cause untolerable reactivity increases. Therefore LMFBR safety requires to analyse the complex mechanical response of the core structure under typical loading conditions. An important contribution to this problem is to examine the nonlinear structural dynamics of an individual fuel element under prescribed loading and boundary conditions. The subject of this paper is the elastoplastic transient behaviour of one subassembly under given space-and-time dependent pressure loading. The interaction of several colliding fuel elements including coolant dynamics is briefly discussed. (Auth.)

  11. Fatigue of LMFBR piping due to flow stratification

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface

  12. MIT LMFBR blanket research project. Final summary report

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record

  13. Comparative transient analysis of metal and oxide fueled LMFBR

    The neutronics and thermodynamics of an LMFBR primary system have been simulated using the DSNP simulation language. A detailed fuel pin and its subchannel model were developed and included in the DSNP library. This permits the reactor core to be simulated with any number of pins having any number of radial and axial nodes. The metal fueled core transients were compared to transients of an oxide fueled core, the conclusion being that for the same perturbations the temperature transients are faster in the metal core. A comparison between pool-type and loop-type reactors was also performed, leading to a conclusion that the transients in the upper plenum temperatures are much slower in the pool-type reactor than in the loop-type reactor

  14. CAT reconstruction and potting comparison of a LMFBR fuel bundle

    A standard Liquid Metal Fast Breeder Reactor (LMFBR) subassembly used in the Experimental Breeder Reactor II (EBR-II) was investigated, by remote techniques, for fuel bundle distortion by both nondestructive and destructive methods, and the results from both methods were compared. The non-destructive method employed neutron tomography to reconstruct the locations of fuel elements through the use of a maximum entropy reconstruction algorithm known as MENT. The destructive method consisted of ''potting'' (a technique that embeds and permanently fixes the fuel elements in a solid matrix) the subassembly, and then cutting and polishing the individual sections. The comparison indicated that the tomography reconstruction provided good results in describing the bundle geometry and spacer-wire locations, with the overall resolution being on the order of a spacer-wire diameter. A dimensional consistency check indicated that the element and spacer-wire dimensions were accurately reproduced in the reconstruction

  15. TREAT F-series LMFBR loss-of-flow experiments

    The F-series tests are done to study fuel behavior in an LMFBR LOF accident. These tests are performed in dry (no sodium) capsules to separate out effects of sodium on fuel behavior and, in F3 and subsequent tests, to permit visual observation. Justification for a dry capsule is that the fuel behavior of interest such as fuel-pin breakup and extensive axial motion are assumed to occur after sodium voiding in a LOF accident. Two distinct F-series designs have been subject to TREAT tests. The design used for tests F1 and F2 permitted a study of extensive axial fuel motion and used the fast neutron hodoscope as the principal instrumentation. The second design, used for tests F3 and F4 and to e used for tests F5 and F6, permits a study of fuel pin break-up with high speed photography as the principal instrumentation

  16. Specialists meeting on LMFBR flow induced vibrations. Summary report

    A Specialists' Meeting on LMFBR Flow-Induced Vibrations was held at ANL in the United States which was sponsored by the International Atomic Energy Agency (IAEA) on the recommendations of the International Working Group on Fast Reactors (IWGFR). It was attended by participants from France, the Federal Republic of Germany, Italy, Japan, Netherlands, the United Kingdom, the Union of Soviet Socialist Republics, the United States and the IAEA. The purpose of the meeting was to provide, for the first time, a common forum for the exchange of information on flow-induced vibration programs of the member countries. As this was a first meeting, information was sought in the broad areas of: 1. Design Criteria and Problem Areas in LMFBR Design; 2. Current Design Procedures; and 3. Ongoing Research. A session was devoted to each of the above topics wherein papers were presented and discussed followed by open discussions on the session topic. The objective of the open discussions was to identify, from a review of specific reactor designs, (a) flow induced vibration problem areas (expected and observed) and their potential for occurrence; (b) failure modes and associated design criteria; (c) specific components that are susceptible to flow induced vibration; and (d) probable excitation mechanisms. It was aimed to assess the current state-of-the-art in designing to avoid flow induced vibration with consideration of licensing requirements; to evaluate existing methods of analysis, testing, and surveillance, along with their limitations and to identify areas requiring research and review ongoing research programmes relative to these research needs

  17. 2D-animaatiotuotannon optimointi

    Saturo, Reetta

    2015-01-01

    Tämän opinnäytetyön tavoitteena on tutkia 2D-animaatiotuotannon optimoinnin mahdollisuuksia tiukan tuotantoaikataulun vaatimuksissa. Tutkielmassa tarkastellaan kahta asiakasprojektia, jotka on toteutettu pienellä tuotantotiimillä. Työkaluna animaatioissa on käytetty pääosin Adoben After Effects -ohjelmistoa. Tutkielman alussa esitellään animaatiotuotannot, joiden tuloksena syntyi kaksi lyhyttä mainoselokuvaa. Sen jälkeen käydään läpi animaatioelokuvan tuotantoprosessia vaiheittain ja tark...

  18. Head First 2D Geometry

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  19. Reversible 26S Proteasome Disassembly upon Mitochondrial Stress

    Nurit Livnat-Levanon

    2014-06-01

    Full Text Available In eukaryotic cells, proteasomes exist primarily as 26S holoenzymes, the most efficient configuration for ubiquitinated protein degradation. Here, we show that acute oxidative stress caused by environmental insults or mitochondrial defects results in rapid disassembly of 26S proteasomes into intact 20S core and 19S regulatory particles. Consequently, polyubiquitinated substrates accumulate, mitochondrial networks fragment, and cellular reactive oxygen species (ROS levels increase. Oxidation of cysteine residues is sufficient to induce proteasome disassembly, and spontaneous reassembly from existing components is observed both in vivo and in vitro upon reduction. Ubiquitin-dependent substrate turnover also resumes after treatment with antioxidants. Reversible attenuation of 26S proteasome activity induced by acute mitochondrial or oxidative stress may be a short-term response distinct from adaptation to long-term ROS exposure or changes during aging.

  20. A review of ANL base technology studies in support of the U.S. LMFBR vibration program

    Argonne National Laboratory (ANL) is the center for base technology studies of flow induced vibration for the U.S. LMFBR Program. This paper reviews and summarizes published results, reports on the status of ongoing programs, and discusses future needs as outlined in the U.S. LMFBR Vibrations Program Plan. (author)

  1. Recycling Potential and Design for Disassembly in Buildings

    Thormark, Catarina

    2001-01-01

    Recycling as part of environmental considerations has become a common feature in architecture and building construction. Recycling of building waste can make a considerable contribution to reducing the total environmental impact of the building sector. To increase the scope for recycling in the future, aspects of recycling have to be included in the design phase. Design for disassembly is a key task to increase the future scope for recycling. One object has been to elucidate the environmental...

  2. Quality management of disassembly of multicomponent compounds using thermal action

    Павлова, Анна Алексеевна; Романов, Сергей Валерьевич; Лагода, Анна Николаевна

    2015-01-01

    Dismantling connections with a tightness or smelting of low-melting filler, Lich non-stationarity of the processes, since in addition to real transformation in their periodic thermal changes occurring elements. To ensure the minimum energy consumption and maximum system performance, fast-heat, and should be targeted, - in the shortest period of time necessary to heat only those portions of the female part of the compound which provides the expansion required for disassembly thermal gap or a p...

  3. On the optimal design of the disassembly and recovery processes

    This paper tackles the problem of the optimal design of the recovery processes of the end-of-life (EOL) electric and electronic products, with a special focus on the disassembly issues. The objective is to recover as much ecological and economic value as possible, and to reduce the overall produced quantities of waste. In this context, a medium-range tactical problem is defined and a novel two-phased algorithm is presented for a remanufacturing-driven reverse supply chain. In the first phase, we propose a multicriteria/goal-programming analysis for the identification and the optimal selection of the most 'desirable' subassemblies and components to be disassembled for recovery, from a set of different types of EOL products. In the second phase, a multi-product, multi-period mixed-integer linear programming (MILP) model is presented, which addresses the optimization of the recovery processes, while taking into account explicitly the lead times of the disassembly and recovery processes. Moreover, a simulation-based solution approach is proposed for capturing the uncertainties in reverse logistics. The overall approach leads to an easy-to-use methodology that could support effectively middle level management decisions. Finally, the applicability of the developed methodology is illustrated by its application on a specific case study

  4. Gelsolin mediates calcium-dependent disassembly of Listeria actin tails

    Larson, Laura; Arnaudeau, Serge; Gibson, Bruce; Li, Wei; Krause, Ryoko; Hao, Binghua; Bamburg, James R.; Lew, Daniel P.; Demaurex, Nicolas; Southwick, Frederick

    2005-01-01

    The role of intracellular Ca2+ in the regulation of actin filament assembly and disassembly has not been clearly defined. We show that reduction of intracellular free Ca2+ concentration ([Ca2+]i) to <40 nM in Listeria monocytogenes-infected, EGFP–actin-transfected Madin–Darby canine kidney cells results in a 3-fold lengthening of actin filament tails. This increase in tail length is the consequence of marked slowing of the actin filament disassembly rate, without a significant change in assembly rate. The Ca2+-sensitive actin-severing protein gelsolin concentrates in the Listeria rocket tails at normal resting [Ca2+]i and disassociates from the tails when [Ca2+]i is lowered. Reduction in [Ca2+]i also blocks the severing activity of gelsolin, but not actin-depolymerizing factor (ADF)/cofilin microinjected into Listeria-infected cells. In Xenopus extracts, Listeria tail lengths are also calcium-sensitive, markedly shortening on addition of calcium. Immunodepletion of gelsolin, but not Xenopus ADF/cofilin, eliminates calcium-sensitive actin-filament shortening. Listeria tail length is also calcium-insensitive in gelsolin-null mouse embryo fibroblasts. We conclude that gelsolin is the primary Ca2+-sensitive actin filament recycling protein in the cell and is capable of enhancing Listeria actin tail disassembly at normal resting [Ca2+]i (145 nM). These experiments illustrate the unique and complementary functions of gelsolin and ADF/cofilin in the recycling of actin filaments. PMID:15671163

  5. 2D SIMPLIFIED SERVO VALVE

    2003-01-01

    A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.

  6. Personalized 2D color maps

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  7. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  8. LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits

  9. LMFBR safety: Task 10 - characterization of sodium fires and fission product

    The objectives of this project are to: develop a computer program for calculating two-dimensional, transient, natural convection phenomena such as those arising from various sodium spill accidents in Liquid Metal Fast Breeder Reactor (LMFBR) heat transfer equipment vaults, head compartments, containment buildings, and secondary heat transfer systems; develop experimental programs and conduct tests that will characterize the behavior of sodium, sodium oxide, fuel, fission product, and other aerosols as they might be generated by various postulated LMFBR accidents; determine by analysis and experiment the generation and transport of these aerosols; and determine the effects of an accident in an LMFBR involving fuel melting by contacting molten UO2 (a fuel simulant) with stainless steel, sodium, concrete, and various sacrificial materials

  10. Comparison of nuclear parameters for a LMFBR heterogenous Benchmark core. Influence of different basic data sets and processing codes

    A LMFBR heterogenous core model was a few years ago proposed by CEA as a Benchmark core for comparative calculations. The geometrical RZ model consists of three radial fissile zones of the same enrichment divided at the midplane by an axial slice of internal breeder material. The fissile zones are separated by three internal breeder zones, one central zone and two breeder rings. The core has been studied with 2D diffusion codes in 10 to 25 energy groups. Comparisons have been made between CEA (CARNAVAL III) INTERATOM (KEKINR) and STUDSVIK (ENDF IV) solutions. THe spread in k (sub)eff is 1.7 percent with the lowest value for STUDSVIK (ENDF IV) and the highest value for INTERATOM (KFKINR). The spread in breeding ratio is 0.03 with the highest value for STUDSVIK and lowest for INTERATOM. This spread in k (sub) eff and BR is of the same magnitude as for homogenous benchmark core. The variations in the sodium void effect between CARNAVAL III, KFKINR and ENDF IV solutions are rather similar for the heterogenous and homogenous benchmark cores. Comparison of one-group core fission and capture cross sections indicate a dominating influence of the processing codes. The influence on k (sub) eff seem to be smaller due to cancelling effects. (author)

  11. Cover gas seals. 11 - FFTF-LMFBR seal-test program, January-March 1974

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor - inert gas environment, (2) demonstrate that these FFTF seals or new seal configuration provide acceptable fission product and cover gas retention capabilities at LMFBR Clinch River Plant operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the LMFBR Clinch River Plant to support the national objective to reduce all atmospheric contaminations to low levels

  12. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  13. 3-D slug flow heat transfer analysis of coupled coolant cells in finite LMFBR bundles

    A three-dimensional single region slug flow heat transfer analysis for finite LMFBR rod bundles using a classical analytical solution method has been performed. According to the isolated single cell analysis, the results show that the peripheral clad temperature variation as well as the thermal entrance length are strongly dependent upon the degree of irregularity displayed by various coolant geometries. Since under the present LMFBR conditions, fully-developed temperature fields may hardly be established in such characteristic rod bundle regions, a 3-D heat transfer analysis seems to be mandatory. This implies that the results of fully developed heat transfer analyses are by far too conservative

  14. Upon local blockage formations in LMFBR fuel rod bundles with wire-wrapped spacers

    A theoretical and experimental study, to improve understanding of local particle depositions in a wire-wrapped LMFBR fuel bundle, has been performed. Theoretical considerations show, that a preferentially axial process of particle depositions occurs. The experiments confirm this and clarify that the blockages arise near the particle source and settle at the spatially arranged minimum gaps in the bundle. The results suggest that, considering flow reduction, cooling and DND-detection, such fuel particle blockages are less dangerous. With reference to these safety-relevant factors, wire-wrapped LMFBR fuel bundles seem to gain advantages compared to the grid design. (orig.)

  15. Spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP)

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than full fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day

  16. Spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP)

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than complete fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day

  17. Learn Unity for 2D game development

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  18. Experience on detection of leakages in LMFBR-steam generators

    One of the advantages of long time on full size LMFBR-components is that experience is gained nut only or, the behaviour of components at normal conditions, but also on the operational consequences (real or imaginary) disturbances. One of the most difficult situations that do occur during steam generator operation is the sudden appearance of a leak indication on the hydrogen detectors. It is possible to connect an automatic trip action to the hydrogen detector however, there are reasons not to do so. Spurious signals, which unfortunately do occur rather frequently, can cause unnecessary shut downs. In the case of a very small leak it can be very difficult to locate the leaking steam generator module and to get an impression of the size of the leak. The time available to confirm the leak, locate the component and to take the proper measures is strongly dependent on the leaking rate or translated into a visual signal, on the rate of rise of the hydrogen level shown on the instrument. During the operation of the 50 MW-SCTF at Hengelo experience was obtained with leak indications caused by real and imaginary leaks

  19. Optimization of an LMFBR reprocessing plant for routine emissions

    The paper deals with the extent to which optimization procedures are likely to affect the design of a notional LMFBR reprocessing plant. Emissions for a plant processing about 50 te/yr are estimated, and the resulting individual and population doses assessed for a typical remote UK site. Broadly speaking individual doses are less than 10% of the ICRP limit. The population dose depends greatly on the limits of time and geography used in its assessment. The use of cost benefit analysis in optimizing the design with respect to dose detriment from emissions is discussed. Some points of principle regarding long lived isotopes are highlighted, and uncertainties in estimates reviewed. Various alternative effluent clean-up options are briefly considered. It is concluded that in this case design decisions can be made without recourse to any very detailed costing of options. This would not necessarily be so for a much larger plant, or for one near to population centres. The extent to which UK designers are likely to be constrained by considerations other than optimization is also discussed briefly. (author)

  20. Assessment of inspectability of LMFBR designs. Final report

    This two-volume report provides a comprehensive review of the inspectability of specific portions of loop- and pool-type LMFBR (1000-MWe) designs selected by EPRI. The designs were developed during the mid to late 1970s by three independent design teams (General Electric Co., Rockwell International, and Westinghouse) under the sponsorship of DOE (formerly ERDA) and EPRI. The requirements for normal, contingency, and post-repair inspections, addressed in this report, were established from Draft 12 of the ASME Boiler and Pressure Vessel Code, Section XI Division 3, issued in September 1979. These requirements, the intrinsic characteristics of the designs, the environmental (radiation, thermal, and atmospheric) aspects, and the available (present and near-term) inspection techniques, formed the basis for assessing the selected portions of the design or (1) accessibility, (2) feasibility, (3) practicality, and (4) costs to perform the above-specified inspections. Changes and additions fly ash has been as a concrete additive; however, extensive pilot scale development is underway to advance ash use in the TVA region in such areas as mineral and magnetite recovery, and mineral wool insulation. Recommended studies include: (1) the feasibility of converting existing wet fly d by the fuels include: residential (which includes residential and commercial), elthodology will be developed and verified in Phase II

  1. Remote examination and disassembly of a biomedical target at LASL

    Group CMB-14 at the Los Alamos Scientific Laboratory examines a failed water-cooled biomedical pion-production target used in the Los Alamos Meson Physics Facility. The target had developed a water leak during service. During investigation of the failure, the target was pressurized in water first to locate the leak generally and second to pinpoint it after the target was partially disassembled. Samples from the target were examined by a metallograph, a scanning electron microscope, an electron and an ion microprobe, and an x-ray diffractometer

  2. Phosphorylation and disassembly of intermediate filaments in mitotic cells

    As baby hamster kidney (BHK-21) cells enter mitosis, networks of intermediate filaments (IFs) are transformed into cytoplasmic aggregates of protofilaments. Coincident with this morphological change, the phosphate content of vimentin increases from 0.3 mol of Pi per mol of protein in interphase to 1.9 mol of Pi per mol of protein in mitosis. A similar increase in phosphate content is observed with desmin, from 0.5 mol of Pi per mol of protein to 1.5 mol of Pi per mol of protein. Fractionation of mitotic cell lysates by hydroxylapatite column chromatography reveals the presence of two IF protein kinase activities, designated as IF protein kinase I and IF protein kinase II. Comparison of two-dimensional 32P-labeled phosphopeptide maps of vimentin and desmin phosphorylated in vivo in mitosis, and in vitro using partially purified kinase fractions, reveals extensive similarity in the two sets of phosphorylation sites. Phosphorylation of in vitro polymerized IFs by IF protein kinase II induces complete disassembly as determined by negative-stain electron microscopy. The results support the idea that the disassembly of IFs in mitosis is regulated by the phosphorylation of its subunit proteins

  3. Phosphorylation and disassembly of intermediate filaments in mitotic cells

    Chou, Yinghao; Rosevear, E.; Goldman, R.D. (Northwestern Univ. Medical School, Chicago, IL (USA))

    1989-03-01

    As baby hamster kidney (BHK-21) cells enter mitosis, networks of intermediate filaments (IFs) are transformed into cytoplasmic aggregates of protofilaments. Coincident with this morphological change, the phosphate content of vimentin increases from 0.3 mol of P{sub i} per mol of protein in interphase to 1.9 mol of P{sub i} per mol of protein in mitosis. A similar increase in phosphate content is observed with desmin, from 0.5 mol of P{sub i} per mol of protein to 1.5 mol of P{sub i} per mol of protein. Fractionation of mitotic cell lysates by hydroxylapatite column chromatography reveals the presence of two IF protein kinase activities, designated as IF protein kinase I and IF protein kinase II. Comparison of two-dimensional {sup 32}P-labeled phosphopeptide maps of vimentin and desmin phosphorylated in vivo in mitosis, and in vitro using partially purified kinase fractions, reveals extensive similarity in the two sets of phosphorylation sites. Phosphorylation of in vitro polymerized IFs by IF protein kinase II induces complete disassembly as determined by negative-stain electron microscopy. The results support the idea that the disassembly of IFs in mitosis is regulated by the phosphorylation of its subunit proteins.

  4. UK contribution to the IWGFR specialists meeting on advances in structural analysis for LMFBR applications

    This summary makes references to some of the work in the UK which is considered relevant to advances in structural analysis of LMFBR applications. The work reviewed was grouped under following headings: structural analysis at elevated temperatures (simplified methods); inelastic analysis methods for elevated temperatures; the effects of cyclic loading; piping analysis in the creep range; design codes and criteria

  5. Reference fuel studies. Seventh quarterly report May-July 1976. [LMFBR

    1976-08-01

    Task 3 of Contract AT03-76SF78003 consists of the following programs: fuel rod chemistry and thermodynamics; fuel rod engineering; fuel irradiations testing and analysis; reference structural materials. The four parts are closely interrelated and in combination are aimed at providing a sound basis for the design and performance evaluation of LMFBR mixed oxide fuel rods.

  6. LMFBR safety. 6. Review of current issues and bibliography of literature (1977)

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development. Selected bibliographic information on LMFBRs relative to the development and safety of the breeder reactor is presented for the year 1977. The bibliography consists of approximately 198 abstracts covering research and development, operating experience, and design practices. Keyword, author, and permuted-title indexes are included for completeness

  7. LARA: Expert system for acoustic localization of robot in a LMFBR

    The expert system LARA (Acoustic Localization of Autonomic Robot) has been developed to show the interest of introducing artificial intelligency for fine automatic positioning of refuelling machine in a LMFBR reactor. LARA which is equipped with an acoustic detector gives rapidly a good positioning on the fuel

  8. The water vapor nitrogen process for removing sodium from LMFBR components

    Application and operation of the Water Vapor-Nitrogen Process for removing sodium from LMFBR components is reviewed. Emphasis is placed on recent efforts to verify the technological bases of the process, to refine the values of process parameters and to ensure the utility of the process for cleaning and requalifying components. (author)

  9. Input parameters to codes which analyze LMFBR wire-wrapped bundles

    This report provides a current summary of recommended values of key input parameters required by ENERGY code analysis of LMFBR wire wrapped bundles. This data is based on the interpretation of experimental results from the MIT and other available laboratory programs

  10. The state of art of the methods for thermohydraulics design of LMFBR fuel elements

    The present (experimental and analytical) state of art of the methods for thermohydraulics design of LMFBR fuel elements is analyzed. A development program is suggested, in order to obtain a computer code for modelling the distribution of coolant enthalpy in reactor core. This computer code is in development. (Author)

  11. Advanced methods for fabrication of PHWR and LMFBR fuels

    For self-reliance in nuclear power, the Department of Atomic Energy (DAE), India is pursuing two specific reactor systems, namely the pressurised heavy water reactors (PHWR) and the liquid metal cooled fast breeder reactors (LMFBR). The reference fuel for PHWR is zircaloy-4 clad high density (≤ 96 per cent T.D.) natural UO2 pellet-pins. The advanced PHWR fuels are UO2-PuO2 (≤ 2 per cent), ThO2-PuO2 (≤ 4 per cent) and ThO2-U233O2 (≤ 2 per cent). Similarly, low density (≤ 85 per cent T.D.) (UPu)O2 pellets clad in SS 316 or D9 is the reference fuel for the first generation of prototype and commercial LMFBRs all over the world. However, (UPu)C and (UPu)N are considered as advanced fuels for LMFBRs mainly because of their shorter doubling time. The conventional method of fabrication of both high and low density oxide, carbide and nitride fuel pellets starting from UO2, PuO2 and ThO2 powders is 'powder metallurgy (P/M)'. The P/M route has, however, the disadvantage of generation and handling of fine powder particles of the fuel and the associated problem of 'radiotoxic dust hazard'. The present paper summarises the state-of-the-art of advanced methods of fabrication of oxide, carbide and nitride fuels and highlights the author's experience on sol-gel-microsphere-pelletisation (SGMP) route for preparation of these materials. The SGMP process uses sol gel derived, dust-free and free-flowing microspheres of oxides, carbide or nitride for direct pelletisation and sintering. Fuel pellets of both low and high density, excellent microhomogeneity and controlled 'open' or 'closed' porosity could be fabricated via the SGMP route. (author). 5 tables, 14 figs., 15 refs

  12. SIMMER-I: an S/sub n/, Implicit, Multifield, Multicomponent, Eulerian, Recriticality code for LMFBR disrupted core analysis

    Physical models, numerical methods, and program description are presented for SIMMER-I, a computer program which predicts the neutronic and fluid dynamic behavior of an LMFBR during a hypothetical core disruptive accident

  13. Use of quantitative risk and probabilistic safety criteria in the conceptual design of a large pool-type LMFBR

    This paper describes how quantitative risk and probabilistic safety criteria have been used to supplement licensing regulations to guide the safety-related design of a large (1000 MWe) pool-type LMFBR

  14. Surface modelling for 2D imagery

    Lieng, Henrik

    2014-01-01

    Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...

  15. Perspectives for spintronics in 2D materials

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  16. Perspectives for spintronics in 2D materials

    Wei Han

    2016-03-01

    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  17. 2D Barcode for DNA Encoding

    Elena Purcaru

    2011-09-01

    Full Text Available The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  18. 2D Barcode for DNA Encoding

    Purcaru, Elena

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  19. Bedform characterization through 2D spectral analysis

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian

    energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...... characteristics using twodimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most...

  20. UNITS IN $F_2D_{2p}$

    Kaur, Kuldeep; Khan, Manju

    2012-01-01

    Let $p$ be an odd prime, $D_{2p}$ be the dihedral group of order 2p, and $F_{2}$ be the finite field with two elements. If * denotes the canonical involution of the group algebra $F_2D_{2p}$, then bicyclic units are unitary units. In this note, we investigate the structure of the group $\\mathcal{B}(F_2D_{2p})$, generated by the bicyclic units of the group algebra $F_2D_{2p}$. Further, we obtain the structure of the unit group $\\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\\mathcal{U}_*(F_...

  1. In Situ Disassembling Behavior of Composite Hydrogels for the Efficient Removal of Crystal Violet Dye from Aqueous Solution

    Venkatesan Srinivasan; Sundaram Thiraviam; Kullagounder Subramani; Sibi Srinivasan; Pragathiswaran Chelliah; Stanley Anthuvan Babu

    2014-01-01

    A novel method for the disassembly of synthetic hydrogels in situ and thereby enhanced adsorption of crystal violet dye is reported. Silicon present in the husk ashes of Panicum miliare is used as the trigger for disassembly of poly(2-acrylamido-1-propane sulfonic acid-co-itaconic acid) hydrogels. Disassembling ability of the ash was determined by changing the temperature of the husk ash. Surface area and particle sizes of both the disassembled and assembled forms of the hydrogels were determ...

  2. Disassembling and reintegration of large telescope primary mirror

    Xu, Qi-rui; Fan, Bin; Zhang, Ming

    2014-09-01

    The success of the large telescope is largely linked to the excellent performance and reliability of the primary mirror. In order to maintain the quality of its reflective surface at the high expectations of astronomers, the primary mirror after almost two or three years of astronomical observations, needs to be removed and reinstalled for its cleaning and re-coating operation. There are a series of procedures such as the primary mirror cell dissembling from telescope, mirror handling, transportation, reintegration, alignment and so on. This paper will describe the experiences of disassembling and reintegration of large telescope primary mirror, taking a two meter grade primary mirror for example. As with all advanced and complex opto-mechanical systems, there has been the usual problems and trouble shooting.

  3. Manipulating Assembly, Disassembly and Exchange in Responsive Polyelectrolyte Multilayers

    Hammond, Paula

    2008-03-01

    Polyelectrolyte multilayer assembly is based on the alternating adsorption of multilvalent positively and negatively charged species to create ionically crosslinked thin films with nanoscale control of film composition and function. We have utilized this method of assembly to manipulate ion transport, molecular transport, and electrochemical transport in these films, enabling the generation of a range of organic and organic-inorganic devices. Biological materials applications are also derived from such films, enabling their use as drug delivery devices. In each of these applications, it is desired to control interdiffusion and exchange within the multilayer systems to maintain desired function and generate isolated regions of composition and function within the z-direction of the film. Here we address these applications and means of controlling this phenomenon. Furthermore, it is desirable to induce controlled means of disassembly of these multilayer thin films. We will address a number of approaches for achieving this, including hydrolytic degradation, hydrogen bond dissociation, and controlled deconstruction on electrochemical impulse.

  4. Workshop on instrumentation of the disassembled BER II

    A workshop on the instrumentation of a disassembled BER II-reactor took place in the Hahn-Meitner-Institute in Berlin on April 19 and 20, 1982. Invited were all groups that are promoted by the associations 'Neutron Scattering for Investigation of Condensed Substance' and 'Neutron Scattering and Complementary Methods in Chemistry and Biology', along with experts for neutron spectrometers. 40 foreign scientists from 22 different institutes had accepted the invitation. The actual questions were treated in 13 presentations and a certain number of posters, with the latter also comprising activation analysis. The present report contains the presentations submitted, the final discussion minutes and a summary from HMI-view. (orig./RW)

  5. Maintenance and disassembly considerations for the Technology Demonstration Facility

    The Technology Demonstration Facility (TDF) is a tandem-mirror design concept carried out under the direction of Lawrence Livermore National Laboratory. It was conceived as a near-term device with a mission of developing engineering technology in a D-T fusion environment. Overall maintenance and component disassembly were among the responsibilities of the Fusion Engineering Design Center (FEDC). A configuration evolved that was based on the operational requirements of the components, as well as the requirements for their replacements. Component lifetime estimates were used to estimate the frequency and the number of replacements. In addition, it was determined that the need for remote handling equipment followed within 1.5 years after initial start-up, emphasizing the direct relationship between developing maintenance scenarios/equipment and the device configuration. Many of the scheduled maintenance operations were investigated to first order, and preliminary handling equipment concepts were developed

  6. Double contingency controls in the pit disassembly and conversion facility

    A Pit Disassembly and Conversion Facility (PDCF) will be built and operated at DOE'S Savannah River Site (SRS) in South Carolina. The facility will process over three metric tons of plutonium per year. There will be a significant amount of special nuclear material (SNM) moving through the various processing modules in the facility, and this will obviously require well-designed engineering controls to prevent criticality accidents. The PDCF control system will interlock glovebox entry doors closed if the correct amount of SNM has not been removed from the exit enclosure. These same engineering controls will also be used to verify that only plutonium goes to plutonium processing gloveboxes, enriched uranium goes to enriched uranium processing, and that neither goes into non-SNM processing gloveboxes.

  7. A model actin comet tail disassembling by severing

    We use a numerical simulation to model an actin comet tail as it grows from the surface of a small object (a bead) and disassembles by severing. We explore the dependence of macroscopic properties such as the local tail radius and tail length on several controllable properties, namely the bead diameter, the bead velocity, the severing rate per unit length, and the actin gel mesh size. The model predicts an F-actin density with an initial exponential decay followed by an abrupt decay at the edge of the tail, and predicts that the comet tail diameter is constant along the length of the tail. The simulation results are used to fit a formula relating the comet tail length to the control parameters, and it is proposed that this formula offers a means to extract quantitative information on the actin gel mesh size and severing kinetics from simple macroscopic measurements

  8. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  9. Annotated Bibliography of EDGE2D Use

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  10. 2D NMR studies of biomolecules

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  11. Applications of 2D helical vortex dynamics

    Okulov, Valery; Sørensen, Jens Nørkær

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...

  12. Annotated Bibliography of EDGE2D Use

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  13. Evaluation of product disassemblibility based on the disassembly extension set%基于拆卸可拓集的产品拆卸性能评估

    赵燕伟; 张美艳; 陈建; 苏楠

    2011-01-01

    针对目前产品拆卸性能评估中图模型方法存在的组合爆炸问题,提出了基于拆卸可拓集理论的评估方法.讨论了联接方式、空间几何约束以及空间可达性与产品拆卸性能之间的关系,给出了评估指标和计算公式,依据所得关联函数值的大小对产品拆卸可拓集进行了不同拆卸区域的划分,为实现产品的快速拆卸和优化设计提供一种理论依据,并以油锯中发动机为例对所提出的方法加以应用,验证了该方法的有效性.%In order to overcome the combination explosion of graph used in evaluation of product's disassemblibility, the new method was stated based on the theory of disassembly extension set, the relations among the connection forms, space geometry restrain,spatial accessibility and disasssemblibility were discussed,then the evaluation process and formula for the calculation of disassemblibility were presented. According to the value of correlation function, the product disassembly extension set was divided into different disassembly areas. Through the division and classification of components,a theoretical basis was provided for the prompt disassembly and product improvement desigr.A complete evaluation of disassemblibility about an engine of oil saw was performed as a case study,which improves the effectiveness and efficiency of the proposed method.

  14. Review of LMFBR dynamic behaviour studies at CNEN, Italy

    Dynamics studies on LMFBR cores are carried out at CNEN in two different frameworks: the design of the core of PEC, a 400 liter, 120 MWth Fast Fuel Element Test Reactor commissioned by CNEN to the Italian company NIRA; the research and development cooperation agreement on Fast Reactors, signed in 1974 with the CEA (France). The transients of the driver and test regions of PEC are calculated routinely and submitted to the Italian Regulatory Commission (DISP) as a part of the documentation required for licensing. It is not surprising to see that obsolete versions of SAS and CAPRI codes are still in use for these calculations. In fact, most core characteristics(in particular, subassembly geometry and mechanical constraints) were defined at an early stage of the PEC project, and were not subjected to substantial modifications in the following years. A notable exception is represented by a key design feature: the fuel composition and enrichment, which has evolved rather dramatically in recent years.Actually, three solutions have been studied (one with enriched uranium and two with mixed U/Pu oxides); a detailed analysis has been made of the effects of the neutron parameters pertinent to these solutions on the transient behaviour of the fuel elements of the driver region. As far as the cooperation with CEA is concerned, it must be remembered that CNEN is not directly involved in the design of SUPERPHENIX 1, but collaborates in the studies for the development of advanced concepts (radially heterogeneous cores). In this field, however, emphasis has been placed so far on steady state performance intercomparisons between. homogeneous and heterogeneous cores, without analysing dynamic implications in any significant details. In a recent CEA/CNEN optimisation study, the sensitivities of some basic quantities like fuel inventory doubling time and average burnup of discharged subassemblies, to design parameter variations in both homogeneous and heterogeneous systems have been

  15. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis.

    Xiaohu Fan

    Full Text Available Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk disassembly precedes that of titin (M-line, suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1 induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin.

  16. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis

    Ali, Mohammad A. M.; Cho, Woo Jung; Lopez, Waleska; Schulz, Richard

    2015-01-01

    Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk) disassembly precedes that of titin (M-line), suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble) and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1) induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin. PMID:26076379

  17. An environmentally friendly technology of disassembling electronic components from waste printed circuit boards.

    Wang, Jianbo; Guo, Jie; Xu, Zhenming

    2016-07-01

    Electronic components (ECs) disassembling from waste printed circuit boards (WPCBs) is the first and essential step in WPCBs recycling chain. Over the past decades, primitive methods like simply heating WPCBs on a coal-heated plate to melt solders are dominated in practice, causing serious environmental pollution and also putting a real threat to the human health. In order to solve this problem, in this article, an automatic system in pilot-scale for ECs disassembling from WPCBs is designed, manufactured, and investigated. This system contains two parts: ECs automatic disassembly and off-gas purification. Meanwhile, WPCBs from television (i.e., TV-WPCBs) and personal computer (i.e., PC-WPCBs) are used for disassembling tests, respectively. When the disassembling temperature, rotating speed, and incubation time are 265±5°C, 10rpm, and 8min, respectively, the solder can be completely removed from both TV-WPCBs and PC-WPCBs. No pollutant is discharged from this system. Finally, the disassembling procedures for ECs from both TV-WPCBs and PC-WPCBs are suggested to promote WPCBs disassembling in an environment-friendly way, without threaten the environment and human health. PMID:27026495

  18. Inertial solvation in femtosecond 2D spectra

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  19. Internal Photoemission Spectroscopy of 2-D Materials

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  20. Safe disassembly and storage of radioactive components of JT-60U torus

    Highlights: •We describe the results of the JT-60U disassembly activities, including treatment of the radioactivated materials and safety work during 2009–2012. •This disassembly was required to newly install the JT-60SA torus at the same position in the torus hall. •About 13,000 components cut into pieces with measuring the contact dose were removed from the torus hall and stored safely in storage facilities. •The total weight of the disassembly components reached up to ∼5,400 tons. •We expect that the project of the JT-60U disassembly has provided the valuable data which will be useful for the disassembly of other fusion devices. -- Abstract: Disassembly of the JT-60U torus was started in 2009 after 18 years of D2 operations and was completed in October 2012 for assembling the JT-60SA torus at the same position. The JT-60U torus was featured by the complicated and welded structure against the strong electromagnetic force, and by the radioactivation due to deuterium–deuterium (D–D) reactions. Since this work is the first experience of disassembling a large radioactivated fusion device in Japan, careful preparations of disassembly activities, including treatment of the radioactivated materials and safety work, have been made. During the disassembly period over 3 years, careful measures against exposure were taken and stringent control of exposure dose were implemented, and as a result, accumulated collective effective dose of ∼41,000 person-day to workers was only ∼22 mSv in total and no internal exposure was observed. About 13,000 components cut into pieces with measuring the contact dose were removed from the torus hall and stored safely in storage facilities. The total weight of the disassembly components reached up to ∼5400 tonnes. Most of the disassembly components will be treated as non-radioactive ones after the clearance level inspection under the Japanese regulations in the future. The assembly of JT-60SA has started in January 2013

  1. 2D supergravity in p+1 dimensions

    Gustafsson, H.; Lindstrom, U.

    1998-01-01

    We describe new $N$-extended 2D supergravities on a $(p+1)$-dimensional (bosonic) space. The fundamental objects are moving frame densities that equip each $(p+1)$-dimensional point with a 2D ``tangent space''. The theory is presented in a $[p+1, 2]$ superspace. For the special case of $p=1$ we recover the 2D supergravities in an unusual form. The formalism has been developed with applications to the string-parton picture of $D$-branes at strong coupling in mind.

  2. 2D Barcode for DNA Encoding

    Elena Purcaru; Cristian Toma

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...

  3. Study on the seismic responses of an experimental LMFBR including fluid-structure interaction

    A liquid metal fast breeder nuclear reactor (LMFBR) usually contains a huge volume of liquid sodium as reactor coolant. Since most reactor components are submerged in the sodium coolant, the seismic-induced fluid-structure interaction is of great importance to the design of reactor block. This paper presents the result of shaking table test of a scaled reactor block model and analysis for China experimental LMFBR. Experimental and analyzed results contain (1) beam-type vibration frequency of the reactor block; (2) sloshing frequency of the sodium coolant; (3) wave heights of non-linear sloshing under seismic action; (4) fluid pressure exerted on the structure under seismic excitation. Several conclusions are obtained. (authors)

  4. Specialists' meeting on maintenance and repair of LMFBR steam generators. Summary report

    The purpose of the meeting was to review and discuss the experience accumulated in various countries on the general design philosophy of LMFBR steam generators from the view point of maintenance and repair, in-service inspection of steam generator tube bundles, identification and inspection of failed tubes and the cleaning and repairing of failed steam generators. The following main topic areas were discussed by participants: National review presentations on maintenance and repair of LMFBR steam generators - design philosophy for maintenance and repair; Research and Development work on maintenance and repair; Experience on steam generator maintenance and repair. During the meeting papers were presented by the participants on behalf of their countries and organizations. A final discussion session was held and summaries, general conclusions and recommendations were approved by consensus

  5. Matrix models of 2d gravity

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  6. 2D Saturable Absorbers for Fibre Lasers

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  7. Beltrami States in 2D Electron Magnetohydrodynamics

    Shivamoggi, B. K.

    2015-01-01

    In this paper, the Hamiltonian formulations along with the Poisson brackets for two-dimensional (2D) electron magnetohydrodynamics (EMHD) flows are developed. These formulations are used to deduce the Beltrami states for 2D EMHD flows. In the massless electron limit, the EMHD Beltrami states reduce to the force-free states, though there is no force-free Beltrami state in the general EMHD case.

  8. Seismic criteria studies and analyses. Quarterly progress report No. 3. [LMFBR

    1975-01-03

    Information is presented concerning the extent to which vibratory motions at the subsurface foundation level might differ from motions at the ground surface and the effects of the various subsurface materials on the overall Clinch River Breeder Reactor site response; seismic analyses of LMFBR type reactors to establish analytical procedures for predicting structure stresses and deformations; and aspects of the current technology regarding the representation of energy losses in nuclear power plants as equivalent viscous damping.

  9. Fuel motion in the CAMEL top-simulation LMFBR safety tests

    Post-failure fuel motion in coolant channels has been examined in a series of CAMEL-loop experiments under conditions of the postulated, unterminated transient overpower accident in an LMFBR. The observed fuel motion behavior, together with test data depicting channel pressurization and sodium flowrate behavior, have given evidence that bundle coherency as well as the occurrence of local, small-scale fuel-coolant interactions have significant bearing on fuel sweepout. 5 refs

  10. LMFBR conceptual design study: an overview of environmental and safety concerns

    The US Department of Energy (DOE) initiated the Liquid Metal Fast Breeder (LMFBR) Conceptual Design Study (CDS) with the objective of maintaining a viable breeder option. The project is scheduled to be completed in FY-1981 but decisions regarding plant construction will be delayed until at least 1985. This report provides a review of the potential environmental and safety engineering concerns for the CDS and recommends specific action for the Environmental and Safety Engineering Division of DOE

  11. Development of an 85,000 gpm (19,303 m3/h) LMFBR primary pump

    The development of an 85,000 gpm two-stage primary pump for liquid metal fast breeder reactor (LMFBR) applications is described. The design was supported by air and cavitation model testing of the hyraulics, and development and feature testing of the level control system and the adjustable frequency solid state power supply. Important fabrication and water test items are also discussed, along with some unique assembly tooling requirements

  12. Thermal hydraulic studies of undercooling accidents in LMFBR safety analysis: Codes and validation

    This communication is related to the LMFBR safety analysis of undercooling accidents such as pump run down or total inlet blockage of a subassembly. The authors present the physical models developed for sodium boiling propagation and clad motion and their application to SCARABEE in pile experiments simulating loss of flow accidents in bundle geometry. These studies showed the validity of our description of boiling propagation and improved our understanding of the clad relocation phenomena

  13. Blockage calculation of LMFBR core subassembly with subchannel code-SOBOS

    Sodium-boiling is a very important subject to be considered in the Liquid Metal Fast Breeder Reactor (LMFBR) design. Blockage is one of the most important causes of sodium boiling. The author shows the calculation results with subchannel code 'SOBOS' with the advanced subchannel model. And the results of calculations match that of experiments very well, indicating that the subchannel code could be used to calculate the blockage boiling

  14. Specialists meeting on leak detection and location in LMFBR steam generators. Summary report

    The following topics covered at the meeting were: with leak detection and location methods and equipment, including concentration measurements, helium tests, and electromagnetic methods; acoustic leak detection and related equipment; techniques and experiences in ensuring and measuring steam generator tightness during manufacturing, installation and repair, tube inspection methods for periodic control and damage assessment following leaks, influence of these methods on design of steam generators for LMFBR type reactors

  15. Matrix models and 2-D gravity

    In these lectures, I shall focus on the matrix formulation of 2-d gravity. In the first one, I shall discuss the main results of the continuum formulation of 2-d gravity, starting from the first renormalization group calculations which led to the concept of the conformal anomaly, going through the Polyakov bosonic string and the Liouville action, up to the recent results on the scaling properties of conformal field theories coupled to 2-d gravity. In the second lecture, I shall discuss the discrete formulation of 2-d gravity in term of random lattices, and the mapping onto random matrix models. The occurrence of critical points in the planar limit and the scaling limit at those critical points will be described, as well as the identification of these scaling limits with continuum 2-d gravity coupled to some matter field theory. In the third lecture, the double scaling limit in the one matrix model, and its connection with continuum non perturbative 2-d gravity, will be presented. The connection with the KdV hierarchy and the general form of the string equation will be discuted. In the fourth lecture, I shall discuss the non-perturbative effects present in the non perturbative solutions, in the case of pure gravity. The Schwinger-Dyson equations for pure gravity in the double scaling limit are described and their compatibility with the solutions of the string equation for pure gravity is shown to be somewhat problematic

  16. 2d index and surface operators

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role

  17. Stirring-induced vortical motion measured by ultrasound Doppler velocimetry: initial 2D vector plots

    An experimental investigation on stirring-induced vortical motion of a liquid was conducted in a cylindrical container measuring 280mm diameter x 280mm height. The test medium was water and a magnetic stirrer located at the bottom on the container (centered) induced the flow. The motion can be generally described as rotationally induced vortex motion, which is of relevance to gas entrainment concerns from the free surface of pool-type LMFBR. The objective of the investigation were two-fold: 1) to demonstrate that a two dimensional (2D) velocity field, using ultrasound Doppler velocimetry and a multiple number of ultrasound transducers (TDXs), could be measured and 2) to evaluate the content of the measured velocity information with respect to understanding the relevant vortex dynamics. Our results show that our first objective was fulfilled; that is, using 6 orthogonally situated TDXs to measure the Vr and Vz components of the flow field, a 2D vector field plot of a segment of the meridional plane was generated and shown to change with the rate of induced flow (rotation rate). However, because the number of TDXs used (6) were small, the coarse resolution of the velocity field limits the amount of velocity information. Therefore traditional data presentation methods to evaluate average and fluctuating quantities under steady and stepwise viewed transient conditions, are indispensible for data analysis. The measurement method holds promise as a useful tool in thermohydraulics as the number of TDXs is increased and therefore the spatial resolution. Some of these possibilities are described in this report. (author)

  18. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    Adler Charles; Sue Lucia; Beach Thomas; Civarella Gina; He Ping; Nural Hikmet; Zhong Zhenyu; Shill Holly; Caviness John; Xia Weiming; Shen Yong

    2009-01-01

    Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  19. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    Adler Charles

    2009-07-01

    Full Text Available Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  20. Reduced function and disassembled microtubules of cultured cardiomyocytes in spaceflight

    YANG Fen; DAI ZhongQuan; TAN YingJun; WAN YuMin; LI YingHui; DING Bai; NIE JieLin; WANG HongHui; ZHANG XiaoYou; WANG ChunYan; LING ShuKuan; NI ChengZhi

    2008-01-01

    Lack of gravity during spaceflight has profound effects on cardiovascular system, but little is known about how the cardiomyocytes respond to microgravity. In the present study, the effects of spaceflight on the structure and function of cultured cardiomyocytes were reported. The primary cultures of neo-natal rat cardiomyocytes were carried on Shenzhou-6 spacecraft and activated at 4 h in orbit. 8 samples were fixed respectively at 4, 48 and 96 h after launching for immunofluorescence of cytoskeleton, and 2 samples remained unfixed to analyze contractile and secretory functions of the cultures. Ground sam-ples were treated in our laboratory in parallel. After 115 h spaceflight, video recordings displayed that the number of spontaneous beating sites in flown samples decreased significantly, and the cells in the beating aggregate contracted in fast frequency without synchrony. Radioimmunoassay of the medium showed that the atrial natriuretic peptide secreted from flown cells reduced by 59.6%. Confocal images demonstrated the time-dependant disassembly of mirotubules versus unchanged distribution and or-ganization of microfilaments. In conclusion, above results indicate reduced function and disorganized cytoskeleton of cardiomyocytes in spaceflight, which might provide some cellular basis for further investigations to probe into the mechanisms underlying space cardiovascular dysfunction.

  1. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules. PMID:21103025

  2. A thermodynamic model of microtubule assembly and disassembly.

    Bernard M A G Piette

    Full Text Available Microtubules are self-assembling polymers whose dynamics are essential for the normal function of cellular processes including chromosome separation and cytokinesis. Therefore understanding what factors effect microtubule growth is fundamental to our understanding of the control of microtubule based processes. An important factor that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap. Here, we derive a Monte Carlo model of the assembly and disassembly of microtubules. We use thermodynamic laws to reduce the number of parameters of our model and, in particular, we take into account the contribution of water to the entropy of the system. We fit all parameters of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. Also we calculate and incorporate the GTP hydrolysis rate. We have applied our model and can mimic published experimental data, which formerly suggested a single layer GTP tubulin dimer microtubule cap, to show that these data demonstrate that the GTP cap can fluctuate and can be several microns long.

  3. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  4. Experimental study of large scale axially heterogeneous LMFBR core at FCA, (6)

    An experimental study for an axially heterogeneous LMFBR has been planned at FCA. Because enough plutonium fuel constructing a full mockup core of a large scale LMFBR are not prepared on FCA, axial and radial nuclear characteristics have been measured using the respective partial mockup cores in the program. Assembly XIII-1 is the standard core for measurements of nuclear characteristics in the radial direction. Assembly XIII-1 is a sector type core and has a test region simulated a core region of an axially heterogeneous LMFBR at the core center. The test region is surrounded by the driver region fueled an enriched uranium. Following nuclear characteristics have been measured (i) criticality, (ii) reaction rate and reaction rate ratios, (iii) power distributions, (iv) material sample worths and (v) B4C control rod worths in the experiment. In order to examine data and method for the calculation of nuclear characteristics of the axially heterogeneous core, the analyses have been made using cross section library JENDL-2 and JAERI's standard calculation system for a nuclear characteristic of a fast reactor. In the experiment, power flattening has been observed at the radial direction, which caused by neutron spectrum change due to exist the internal blanket. While the calculation have underestimated the fission reaction rates except U-238 in the internal blanket. (author)

  5. Damping of the radial impulsive motion of LMFBR core components separated by fluid squeeze films

    The core deformation of a liquid metal cooled fast breeder reactor (LMFBR) due to local pressure propagation from rapid energy releases is a complex three-dimensional fluid-structure-interaction problem. High pressure transients of short duration cause structural deformation of the closely spaced fuel elements, which are surrounded by the flowing coolant. Corresponding relative displacements give rise to a squeezing fluid motion in the thin layers between the subassemblies. Therefore significant backpressures are produced and the resulting time and space dependent fluid forces are acting on the structure as additional non-conservative external loads. Realistic LMFBR safety analyses of several clustered fuel elements have to account for such flow induced forces. This paper describes two fluid flow models (model A, model B), which are shown to be suitable for physically coupled fluid-structure analyses. Important assumptions are discussed in both cases and basic equations are derived for one- and two-dimensional incompressible flow fields. The interface of corresponding computer codes FLUF (model A) and FLOWAX (model B) with structural dynamics programs is outlined. Finally fluid-structure interaction problems relevant to LMFBR design are analyzed; parametric studies indicate a significant cushioning effect, energy dissipation and a strongly nonlinear as well as timedependent damping of the structural response

  6. Damping of the radial impulsive motion of LMFBR core components separated by fluid squeeze films

    The core deformation of a liquid metal cooled fast breeder reactor (LMFBR) due to local pressure propagation from rapid energy releases is a complex three-dimensional fluid-structure-interaction problem. High pressure transients of short duration cause structural deformation of the closely spaced fuel elements, which are surrounded by the flowing coolant. Corresponding relative displacements give rise to squeezing fluid motion in the thin layers between the subassemblies. Therefore significant backpressures are produced and the resulting time and space dependent fluid forces are acting on the structure as additional non-conservative external loads. Realistic LMFBR safety analysis of several clustered fuel elements have to account for such flow induced forces. Several idealized models have been proposed to study some aspects of the complex problem. As part of the core mechanics activities at GfK Karlsruhe this paper describes two fluid flow models (model A, model B), which are shown to be suitable for physically coupled fluid-structure analyses. Important assumptions are discussed in both cases and basic equations are derived for one- and two-dimensional incompressible flow fields. The interface of corresponing computer codes FLUF (model A) and FLOWAX (model B) with structural dynamics programs is outlined. Finally fluid-structure interaction problems relevant to LMFBR design are analyzed; parametric studies indicate a significant cushioning effect, energy dissipation and a strongly nonlinear as well as timedependent damping of the structural response. (Auth.)

  7. 2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计

    康亚芳; 王静; 张清泉; 行小帅

    2014-01-01

    This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究,在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上,以均匀平面阵列为例,对3种不同参数的DOA估计进行了计算机仿真,分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。

  8. Saccharomyces cerevisiae Vacuolar H+-ATPase Regulation by Disassembly and Reassembly: One Structure and Multiple Signals

    Parra, Karlett J.; Chan, Chun-Yuan; Chen, Jun

    2014-01-01

    Vacuolar H+-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/prot...

  9. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea

    Cantu, D.; Vicente, A. R.; L.C.Greve; Dewey, F. M.; Bennett, A.B.; Labavitch, J. M.; Powell, A. L. T.

    2008-01-01

    Fruit ripening is characterized by processes that modify texture and flavor but also by a dramatic increase in susceptibility to necrotrophic pathogens, such as Botrytis cinerea. Disassembly of the major structural polysaccharides of the cell wall (CW) is a significant process associated with ripening and contributes to fruit softening. In tomato, polygalacturonase (PG) and expansin (Exp) are among the CW proteins that cooperatively participate in ripening-associated CW disassembly. To determ...

  10. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle.

    Kim, Sehyun; Lee, Kwanwoo; Choi, Jung-Hwan; Ringstad, Niels; Dynlacht, Brian David

    2015-01-01

    Many proteins are known to promote ciliogenesis, but mechanisms that promote primary cilia disassembly before mitosis are largely unknown. Here we identify a mechanism that favours cilium disassembly and maintains the disassembled state. We show that co-localization of the S/G2 phase kinase, Nek2 and Kif24 triggers Kif24 phosphorylation, inhibiting cilia formation. We show that Kif24, a microtubule depolymerizing kinesin, is phosphorylated by Nek2, which stimulates its activity and prevents the outgrowth of cilia in proliferating cells, independent of Aurora A and HDAC6. Our data also suggest that cilium assembly and disassembly are in dynamic equilibrium, but Nek2 and Kif24 can shift the balance toward disassembly. Further, Nek2 and Kif24 are overexpressed in breast cancer cells, and ablation of these proteins restores ciliation in these cells, thereby reducing proliferation. Thus, Kif24 is a physiological substrate of Nek2, which regulates cilia disassembly through a concerted mechanism involving Kif24-mediated microtubule depolymerization. PMID:26290419

  11. Optical modulators with 2D layered materials

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  12. Automatic Contour Extraction from 2D Image

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  13. 2D microwave imaging reflectometer electronics.

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  14. 2D microwave imaging reflectometer electronics

    Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  15. Selenide isotope generator for the Galileo mission. GDS disassembly report

    The GDS-1 was disassembled to determine the cause for the rapid degradation of the output power. Unfortunately, it was not possible to relate the observations to direct causes for the degradation. However, some positive statements can be made which have an impact on the flight program. First, the outgassing and gas management techniques were shown to be adequate to maintain clean conditions within the generator. Second, the non-modular components within the generator including the receptacles on the housing were not affected by the thermal environment during operation of GDS-1. Third, a significant amount of sublimation of the P-legs has occurred during the relatively short life of 2000 + hours as shown by the bullet nosing of the legs and deposits on the cold end hardware. The fact that the generator atmosphere was not 100% xenon may have some bearing on this observation but the statement is still accurate. Fourth, all exposed N-legs display cracks and/or chips. Fifth, a great deal of misalignment of both N and P-legs was seen both visually and with radiographs. Although no definite conclusions can be made concerning the cause for the rapid degradation of performance, several of the observed conditions within the module could possibly contribute to that fact. They are: cracks in N-legs (increased resistance); deposits on edges of BeO discs (shorting of thermoelectric circuit); and bullet nosing of P-legs (increased resistance). It remains to be shown if any of these effects or the follower hangup described earlier contributed to the poor performance of GDS-1 or if another effect as yet unknown was the important factor

  16. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface. (MMI)

  17. The LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    The U.S. Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element-failure propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurances expected in the United States, USSR, France, UK, Japan, and West Germany are outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission product monitors are briefly discussed to better realize the operational limits

  18. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  19. A Label Correcting Algorithm for Partial Disassembly Sequences in the Production Planning for End-of-Life Products

    Pei-Fang (Jennifer Tsai

    2012-01-01

    Full Text Available Remanufacturing of used products has become a strategic issue for cost-sensitive businesses. Due to the nature of uncertain supply of end-of-life (EoL products, the reverse logistic can only be sustainable with a dynamic production planning for disassembly process. This research investigates the sequencing of disassembly operations as a single-period partial disassembly optimization (SPPDO problem to minimize total disassembly cost. AND/OR graph representation is used to include all disassembly sequences of a returned product. A label correcting algorithm is proposed to find an optimal partial disassembly plan if a specific reusable subpart is retrieved from the original return. Then, a heuristic procedure that utilizes this polynomial-time algorithm is presented to solve the SPPDO problem. Numerical examples are used to demonstrate the effectiveness of this solution procedure.

  20. Path integral quantization of 2 D- gravity

    2 D- gravity is investigated using the Hamilton-Jacobi formalism. The equations of motion and the action integral are obtained as total differential equations in many variables. The integrability conditions, lead us to obtain the path integral quantization without any need to introduce any extra un-physical variables. (author)

  1. Port Adriano, 2D-Model tests

    Burcharth, Hans F.; Meinert, Palle; Andersen, Thomas Lykke

    This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To identify cross section design which restrict the overtopping to acceptable levels and to record the...

  2. Baby universes in 2d quantum gravity

    Ambjorn, J.; S. Jain; G. Thorleifsson

    1993-01-01

    We investigate the fractal structure of $2d$ quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent $\\g_{string}$.

  3. Horns Rev II, 2-D Model Tests

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...

  4. Studies and research concerning BNFP: spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP)

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than complete fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day

  5. The RCC-MR design code for LMFBR components. A useful basic for fusion reactor design tools development

    LMFBR and fusion reactors exhibit common features with regard to structural materials (Stainless steels), temperature service level (550-6000C), loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain

  6. ORION, Post-processor for Finite Elements Program NIKE2D and DYNA2D

    Description of program or function: ORION is an interactive post- processor for the analysis programs NIKE2D (NESC 9923), DYNA2D (NESC 9910), TOPAZ, TOPAZ2D (NESC9801), GEM2D (NESC9679), and TACO2D. ORION reads the binary plot data files generated by the two- dimensional finite element programs used at LLNL. Contours and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has the capability to plot color fringes, contour lines, vector plots, principal stress lines, deformed meshes and material outlines, time histories, reaction forces along constraint boundaries, interface pressures along slide lines, and user-supplied labels

  7. Disassembling "evapotranspiration" in-situ with a complex measurement tool

    Chormanski, Jaroslaw; Kleniewska, Malgorzata; Berezowski, Tomasz; Sporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatylowicz, Jan; Batelaan, Okke

    2014-05-01

    In this work we present a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them from the total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its components transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project will be the estimation of energy and

  8. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  9. Branes in the 2D black hole

    Ribault, Sylvain E-mail: ribault@mth.kcl.ac.uk; Schomerus, Volker

    2004-02-01

    We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models. (author)

  10. Branes in the 2D black hole

    Ribault, S; Ribault, Sylvain; Schomerus, Volker

    2004-01-01

    We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models.

  11. Branes in the 2D black hole

    We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models. (author)

  12. 2-D geometrical analysis of deformation

    Engineering structures such as dams, bridges, high rise buildings, etc. are subject to deformation. Deformation survey is therefore necessary to determine the magnitude and direction of such movements for the purpose of safety assessment. In this study, a strategy for two-step analyses for deformation survey rising the two dimensional (2-D) geodetic method has been developed, consisting of independent least squares estimation (LSE) of each epoch followed by deformation detection. Important aspects on LSE include global and local testing. In deformation detection, the following aspects were implemented; datum definition by the user. determination of stable datum points, geometrical analysis of deformation and graphic presentation. The developed strategy has been implemented in three computer programs, COMPUT, DEFORM and STRANS. Tests carried out with simulated and known data show that the developed strategy and programs are applicable for 2-D geometrical detection of deformation. (Author)

  13. The role of sodium void worth in the optimization of LMFBR cores

    Since the Chernobyl reactor accident, the positive sodium void worth of liquid metal, fast breeder reactor (LMFBR) cores has been of increased concern, even though current LMFBR design features which address core disruptive accident (CDA) prevention and energetics are totally different from those of the RBMK-1000. The concern is whether voiding of the fueled region of LMFBR cores might initiate a core disruptive accident. It appears that designs with reduced void worth are somewhat more tolerant of local cooling, boiling and gas ingress. However, other safety and economic parameters, in addition to sodium void worth, must be considered in LMR core design. These include burnup reactivity swing, fuel enrichment, breeding ratio and fissile utilization. This paper focuses on two major LMR designs: the small modular US Advanced Liquid Metal Reactor (ALMR) with metal fuel and the large monolithic European Fast Reactor (EFR) with oxide fuel. The ALMR and EFR designs emphasize the paramount importance of prevention of severe accidents. As an integral part of their safety design philosophy and in response to regulatory concerns, both the ALMR and the EFR are designed to have extremely low probabilities of core voiding and acceptable public risk consequences even if core voiding were to occur. Optimization studies were performed for both designs, aimed at finding the optimum balance between design and beyond design aspects. The most effective way to reduce the sodium void worth is core height reduction (pancaking). In doing this, compensating measures must be considered in order to avoid exceeding design and safety limits. The major drawbacks of pancaked designs are given. The results of the optimization processes have led to designs with $5--6 void worth for both ALMR and EFR

  14. France position paper: Some comments about structural analysis applied to LMFBR

    In France Structural Analysis for LMFBR applications is strongly related to design, construction and operation of existing or planned Fast Reactor. Experimental reactor Rapsodie had been in operation for 15 years. Prototype plant Phenix was connected to the french grid in 1973 and has now produced more than 10 000 000 MWh (net). Building of Super Phenix, (1200 MW electrical) is nearly completed and its connection to the grid is planned for 1984. Design studies for the next plant is now in progress. It is considered in France, that efficient development in structural analysis for LMFBR can only be obtained if supported by an industrial program of construction of Fast Reactors. Obviously, to day methods of Structural Analysis are not perfect. Moreover, it is hardly believable that they will be ever perfect. Therefore, in order to get the high degree of safety needed for nuclear plant, important safety margins are used. It is a general fact that over conservatism is a characteristic of the structural analysis methods used in the design of present plants. If safety standards are met, the cost of the plants is increased by this over conservatism. The aim of research and development in structural analysis.is not to improve safety which is of very good level, but to reduce component cost which is increased by the conservatism of the methods used to day. The following points must be considered for LMFBR applications: basis od structural analysis and material modeling; elastic and inelastic analysis - elastic follow up; thermal ratchetting; buckling and seismic conditions; damage, fatigue, creep, creep-fatigue interaction

  15. Fast breeder reactor blanket management: comparison of LMFBR and GCFR blankets

    The economic performance of the fast breeder reactor blanket, considering different fuel management schemes was studied. To perform this, the investigation started with a standard reactor physics calculation. Then, two economic models for evaluation of the economic performance of the radial blanket were developed. These models formed the basis of a computer code, ECOBLAN, which computes the net economic gain and the levelized fuel cost due to the radial blanket. The net gain in terms of dollars and $/kgHM-y and the levelized fuel cost in mills/kWhe were obtained as a function of blanket thickness and a residence time of the fuel in the blanket. A LMFBR and a GCFR were the reactor models considered in this study. The optimum radial blanket of a GCFR consists of two rows, that of a LMFBR consists of three rows. Regarding the different fuel management schemes, the fixed blanket was found to be more favorable than reshuffled blanket. Out-in and in-out reshuffled blanket offer almost the same net gain. In all the cases, the burnup calculated for the fuel was found to be less than the acceptable limit. There is an optimum residence time for the fuel in the blanket which depends on the position of the fuel in the blanket and the fuel management scheme studied. As expected, except for very short residence times (less than 2.5 years), the radial blanket is a net income producer. There is no significant difference between the economic performance of the blanket of a LMFBR and a GCFR

  16. Realistic and efficient 2D crack simulation

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  17. 2D materials: Graphene and others

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  18. 2D-Tasks for Cognitive Rehabilitation

    Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.

    2011-01-01

    Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...

  19. Engineering light outcoupling in 2D materials

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  20. Study of structural attachments of a pool type LMFBR vessel through seismic analysis of a simplified three dimensional finite element model

    A simplified three dimensional finite element model of a pool type LMFBR in conjunction with the computer program ANSYS is developed and scoping results of seismic analysis are produced. Through this study various structural attachments of a pool type LMFBR like the reactor vessel skirt support, the pump support and reactor shell-support structure interfaces are studied. This study also provides some useful results on equivalent viscous damping approach and some improvements to the treatment of equivalent viscous damping are recommended. This study also sets forth pertinent guidelines for detailed three dimensional finite element seismic analysis of pool type LMFBR

  1. LMFBR safety. 5. Review of current issues and bibliography of literature (1975--1976)

    The current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA), are discussed. Bibliographic information on worldwide LMFBRs relative to the development and safety of the breeder reactor is presented for the period 1975 through 1976. The bibliography consists of approximately 1618 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Keyword, author, and permuted-title indexes are included for completeness

  2. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author)

  3. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries

  4. Bubble behavior in LMFBR core disruptive accidents. Annual report, June 1, 1975--June 30, 1976

    The work reported here is part of the Aerosol Release and Transport program for LMFBR safety assessment for the Reactor Safety Research Division of the U.S. Nuclear Regulatory Commission. Six areas were at various stages of investigation during this reporting period. A study of nonequilibrium mass transfer during fuel expansion and a study of the dynamics of fuel expansion into the sodium pool were completed. Studies are underway on condensation on above-core structures and on generation of aerosols from condensation. Studies were initiated on small-particle generation from hydrodynamic fragmentation, on particle kinematics and on particle-surface interaction

  5. LMFBR safety. 1. Review of current issues and bibliography of literature, 1960--1969

    Buchanan, J.R.; Keilholtz, G.W.

    1976-08-16

    This report discusses the current status of liquid-metal fast breeder (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1960 through 1969. The bibliography consists of 1560 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  6. LMFBR safety. 3. Review of current issues and bibliography of literature (1972--1974)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-02-24

    The report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1972 through 1974. The bibliography consists of approximately 1380 abstracts covering research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included.

  7. Transient evaporation and stratification of two immiscible liquids for LMFBR transition phase analysis

    Two immiscible liquids at different temperatures are suddenly brought together inside a rectangular box. The colder liquid evaporates upon contact of the hotter, less volatile liquid. Fast thermal equilibrium is achieved by vapor-generated mixing of the fluids. The denser, less volatile liquid finally stratifies below the remaining liquid phase of the more volatile fluid. This report describes the experimental apparatus of the Multiphase Multicomponent Box (MMB) experiment, and presents the experimental results of seven tests. The results may shed some light on the fundamental thermal hydraulics of the transition phase during beyond-design accidents in liquid metal fast breeder reactors (LMFBR). (orig.)

  8. LMFBR safety. 3. Review of current issues and bibliography of literature (1972--1974)

    The report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1972 through 1974. The bibliography consists of approximately 1380 abstracts covering research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included

  9. Comparative analysis of quality assurance requirements for selected LMFBR components of classes 1, 2 and 3

    The study analyses and compares German, French, British and Italian practices and procedures applied for various LMFBR projects both related to the quality assurance system and related to the particular type of class of component:Class 1: primary reactor vessel; Class 2: Secondary sodium pump; Class 3: Primary cold trap. Various areas of analysis and comparison were selected to identify the underlying concepts of grading of requirements and measures, to identify the similarities and differences, and to give recommendations for further actions concerning quality assurance requirements 60 refs., 21 tabs., 6 figs

  10. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  11. LMFBR safety. 2. Review of current issues and bibliography of literature, 1970--1972

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1970 through 1972. The bibliography consists of approximately 1620 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness

  12. LMFBR safety. 4. Review of current issues and bibliography of literature (1974--1975)

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1974 through 1975. The bibliography consists of approximately 1554 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness

  13. LMFBR safety. 2. Review of current issues and bibliography of literature, 1970--1972

    Buchanan, J.R.; Keilholtz, G.W.

    1976-11-22

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1970 through 1972. The bibliography consists of approximately 1620 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  14. Analytical treatment of large leak pressure behavior in LMFBR steam generators

    Simplified analytical methods applicable to the estimation of initial pressure spike in case of a large leak accident in LMFBR steam generators were devised as follows; (i) Estimation of the initial water leak rate by the centered rarefaction wave method, (ii) Estimation of the initial pressure spike by the one-dimensional compressible method with either the columnar bubble growth model or the spherical bubble growth model. These methods were compared with relevant experimental data or other more elaborate analyses and validated to be usable in simple geometry and limited time span cases. Application of these methods to an actual steam generator case was explained and demonstrated. (author)

  15. LMFBR safety. 4. Review of current issues and bibliography of literature (1974--1975)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-03-21

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1974 through 1975. The bibliography consists of approximately 1554 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  16. Deposition of inhaled LMFBR-fuel-sodium aerosols in beagle dogs

    Initial alveolar deposition of LMFBR-fuel aerosols in beagle dogs amounted to 30% of the inhaled activity, but only 5% of the total inhaled activity was deposited in dogs exposed to sodium-fuel aerosols. Aerosol deposition in the gastrointestinal tract amounted to 4% of the initial body burden of fuel-aerosol exposed dogs and 24% of the burden of animals receiving sodium-fuel aerosols. Preliminary analytical data for the dog exposures appear to agree with rodent data for deposition and distribution patterns of aerosols of similar sodium: fuel ratios

  17. Hydrodynamics and heat transfer in a sodium boiling flow. Application to LMFBR safety analyses

    Experimental and theoretical results in the field of sodium boiling flows are presented. Application to LMFBR safety analyses are presented. The emphasis is mainly focused on thermohydraulic consequencies of sodium boiling. One shows how general knowledge of two phase flow applies to sodium boiling; what is particular to liquid metals; what is specific to subassembly geometry; what happens in steady state; what happens in transient regime. The analysis is based on experimental evidence. Simplified analysis are proposed. Code interpretation are given (NATREX, MANDRIN, BACCHUS)

  18. LMFBR safety. 5. Review of current issues and bibliography of literature (1975--1976)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-06-08

    The current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA), are discussed. Bibliographic information on worldwide LMFBRs relative to the development and safety of the breeder reactor is presented for the period 1975 through 1976. The bibliography consists of approximately 1618 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Keyword, author, and permuted-title indexes are included for completeness.

  19. LMFBR safety. 1. Review of current issues and bibliography of literature, 1960--1969

    This report discusses the current status of liquid-metal fast breeder (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1960 through 1969. The bibliography consists of 1560 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness

  20. Development of the spent fuel disassembling process by utilizing the 3D graphic design technology

    For developing the spent fuel disassembling process, the 3D graphic simulation has been established by utilizing the 3D graphic design technology which is widely used in the industry. The spent fuel disassembling process consists of a downender, a rod extraction device, a rod cutting device, a pellet extracting device and a skeleton compaction device. In this study, the 3D graphical design model of these devices is implemented by conceptual design and established the virtual workcell within kinematics to motion of each device. By implementing this graphic simulation, all the unit process involved in the spent fuel disassembling processes are analyzed and optimized. The 3D graphical model and the 3D graphic simulation can be effectively used for designing the process equipment, as well as the optimized process and maintenance process

  1. Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles.

    Yao, Mingfei; Xiao, Hang; McClements, David Julian

    2014-01-01

    The oral bioavailability of lipophilic bioactive molecules can be greatly increased by encapsulating them within engineered lipid nanoparticles (ELNs), such as micelles, microemulsions, nanoemulsions, or solid lipid nanoparticles (SLNs). After ingestion, these ELNs are disassembled in the gastrointestinal tract (GIT) and then reassembled into biological lipid nanoparticles (mixed micelles) in the small intestine. These mixed micelles solubilize and transport lipophilic bioactive components to the epithelial cells. The mixed micelles are then disassembled and reassembled into yet another form of biological lipid nanoparticle [chylomicrons (CMs)] within the enterocyte cells. The CMs carry the bioactive components into the systemic (blood) circulation via the lymphatic system, thereby avoiding first-pass metabolism. This article provides an overview of the various physicochemical and physiological processes responsible for the assembly and disassembly of lipid nanoparticles outside and inside the GIT. This knowledge can be used to design food-grade delivery systems to improve the oral bioavailability of encapsulated lipophilic bioactive components. PMID:24328432

  2. Studies of the effects of fuel EOS uncertainties on FBR disassembly energetics

    A principal source of uncertainty in the energetics of FBR core disassembly is the lack of mechanical and thermophysical data on fresh and irradiated fuel under the conditions of interest. The consequences of uncertainties are analysed in two areas: (i) the equation of state (EOS) or irradiated fuel and (ii) the specific heat of molten fuel. The current UK understanding of the role of fission products in the postulated disassembly phase of an HCDA is outlined giving particular emphasis to the possible effects of pre-disassembly heating. The authors draw as far as possible on the rather sparse experimental data and indicate where further work would be most useful. Further they discuss arguments suggesting there exists substantial uncertainty in the currently-accepted values of the specific heat of molten fuel, and show that this lack of knowledge implies that current estimates of accident excursion yield could be exaggerated by more than a factor of two. (author)

  3. Disassembly of the fusion-1 capsule after irradiation in the BOR-60 reactor

    A U.S./Russia (RF) collaborative irradiation experiment, Fusion-1, was completed in June 1996 after reaching a peak exposure of ∼17 dpa in the BOR-60 fast reactor at the Research Institute of Atomic Reactors (RIAR) in Russia. The specimens were vanadium alloys, mainly of recent heats from both countries. In this reporting period, the capsule was disassembled at the RIAR hot cells and all test specimens were successfully retrieved. For the disassembly, an innovative method of using a heated diffusion oil to melt and separate the lithium bond from the test specimens was adopted. This method proved highly successful

  4. Efficiency Optimization for Disassembly Tools via Using NN-GA Approach

    Guangdong Tian

    2013-01-01

    Full Text Available Disassembly issues have been widely attracted in today’s sustainable development context. One of them is the selection of disassembly tools and their efficiency comparison. To deal with such issue, taking the bolt as a removal object, this work designs their removal experiments for different removal tools considering some factors influencing its removal process. Moreover, based on the obtained experimental data, the removal efficiency for different removal tools is optimized by a hybrid algorithm integrating neural networks (NN and genetic algorithm (GA. Their efficiency comparison is discussed. Some numerical examples are given to illustrate the proposed idea and the effectiveness of the proposed methods.

  5. Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at SRS

    This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins

  6. HEDL contribution to SRL fuel recycle program. Quarterly report, January--March 1977. [Sensitivity analysis of LMFBR fuel fabrication cost

    Fletcher, J.F.

    1977-08-01

    Research on LWR fuel cycle is being done in the following categories: economic studies (sensitivity analysis of LMFBR fuel fabrication costs), spent fuel receipt and storage (failure of PWR and BWR fuel assemblies), fuel materials preparation or finishing processes, reduction of TRU waste generation, and environmental impacts. 12 tables. (DLC)

  7. In service monitoring and servicing after leak detection for the LMFBR steam generators of Phenix and Superphenix

    Great care must be taken to minimize the probability of leaks within LMFBR steam generators. In this paper, the following topics are discussed: leak prevention; description of monitoring devices (hydrogen monitoring, acoustic monitoring) and protection devices; automatic and manual actions; leak localization (with or without sodium dumping); post-leak inspection and repair

  8. A Design Framework for End-of-Life Vehicles Recovery: Optimization of Disassembly Sequence Using Genetic Algorithms

    T. F. Go

    2010-01-01

    Full Text Available Problem statement: It is expected that over the next few years type approval legislation and public awareness will force vehicle manufacturers to identify recovery methods during the design process in order to achieve reuse and recycling targets. Current vehicle design in Malaysia does not sufficiently aid the economic recovery of parts and materials to reach these targets. Approach: This study aimed to provide a framework for automotive components to be designed for ease of recovery. Disassemblability concept evolved from the life cycle engineering concept in which design for disassembly is one of the strategies in reducing the impact of the product to the environment. Results: The proposed methodology that consisted of three distinct elements namely implementing principles and guidelines of design for disassembly into the design, generating optimum disassembly using genetic algorithm approach and evaluating disassemblability of end-of-life products will be discussed. Conclusion/Recommendations: There is a need for effective disassembly in order to enhance the recovery of end-of-life product.The proposed methodology was implemented as a computer-based disassemblability evaluation tool that will enhance disassemblability of the product starting from the design stage.

  9. Interparticle attraction in 2D complex plasmas

    Kompaneets, Roman; Ivlev, Alexei V

    2015-01-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecular-like. In this Letter, we propose how to achieve a molecular-like interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  10. 2D vector-cyclic deformable templates

    Schultz, Nette; Conradsen, Knut

    1998-01-01

    In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation and...

  11. Limit theorems for 2D invasion percolation

    Damron, Michael

    2010-01-01

    We prove limit theorems and variance estimates for quantities related to ponds and outlets for 2D invasion percolation. We first exhibit several properties of a sequence (O(n)) of outlet variables, the n-th of which gives the number of outlets in the box centered at the origin of side length 2^n. The most important of these properties describe the sequence's renewal structure and exponentially fast mixing behavior. We use these to prove a central limit theorem and strong law of large numbers for (O(n)). We then show consequences of these limit theorems for the pond radii and outlet weights.

  12. Instant HTMl5 2D platformer

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  13. Interparticle Attraction in 2D Complex Plasmas

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  14. Periodically sheared 2D Yukawa systems

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates

  15. Phase Engineering of 2D Tin Sulfides.

    Mutlu, Z; Wu, RJ; Wickramaratne, D.; Shahrezaei, S; Liu, C; Temiz, S; Patalano, A; M Ozkan; Lake, RK; Mkhoyan, KA; Ozkan, CS

    2016-01-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2...

  16. Development of eddy current examination techniques for steam generator ferromagnetic tubes in the LMFBR

    In the past, great efforts were made to improve the eddy current testing method as one of the techniques of the periodic examination of the steam generator tube in the liquid-metal fast breeder reactor (LMFBR). Because of the ferro-magnetic material used in the tube, the presence of the welded portion and the complicated configuration of the tube, its flaw detectability in the LMFBR steam generator tube was low compared with that in the pressurized water reactor (PWR). Attracted in part by the great advantage that it is easy to use in the periodic examination, we started to work progressively for the advancement of the testing technique six or seven years ago. An a result, we found it possible to increase the performance by incorporating a specific-shaped permanent magnet in testing probes and a signal processing method. And finally, the technique was so much improved that it could be put to practical use in detecting flaws except for crack-like flaws and flaws in the welded portion. In addition, we saw the way clear for detection of crack-like flaws and welded-portion flaws after carefully studying the shapes of testing probes. (author)

  17. International Atomic Energy Agency specialist meeting on advances in structural analysis for LMFBR applications. Summary report

    After the first session on review of national positions in the subject field, the meeting was divided into five technical sections as follows: General methods of Structural Analysis for Elevated Temperatures; Inelastic Analysis Methods for Elevated Temperature; Effects of Cyclic loading; Design Codes and Criteria; Instability and Buckling - Piping Analysis in the Creep Range. The conclusions of the Meeting were summarised as follows. In view of the complexity of material behaviour and the variability of properties from cast to cast, continuing work is needed to develop simple constitutive relations which ensure an acceptable level of conservatism for design evaluations. It is recognized that simplified design methods require further development for the assessment of ratchetting and shakedown of high temperature structures. More development work is required in the areas of buckling elastic follow up weld factors and these developments should take account of the imperfections inherent in welded fabrications. There is a need for realistic tests on welded structural features to validate design methods. It is proposed that this subject would be the topic of a future specialists meeting. In several countries, organisations are now preparing Guides and Codes concerning Structural Assessment for LMFBR components. It seems that some of these Codes could be drafted within a few years. In order to make a more realistic assessment of LMFBR structures, defect assessment in elevated temperature range must be considered

  18. Status of the safeguards system developed for the LMFBR prototype power plant SNR-300 (KKW Kalkar)

    In this report the features of the safeguards system developed for the LMFBR Prototype Power Plant SNR-300 (KKW Kalkar) are described. Due to the fact that LMFBR fuel assemblies are mostly handled in a sodium or inert gas environment, visual control and counting of the assemblies containing nuclear material, as routinely used in a LWR power plant, cannot be applied for LMFBRs. Consequently, for safeguarding the Kalkar Nuclear Power Station, an automatic and continuous monitoring of the fissile material inventory is the main objective of special instrumentation, the ''Inaccessible Inventory Instrumentation System'' (IIIS). For a qualitative distinction between the various types of assembly the detection of the emitted neutron and gamma radiation turned out to be most adequate. Based upon this conclusion and taking into account its tasks, the IIIS is composed of an activity measurement system, a position-sensing system and a micro-computer system (MCS). The high reliability, high fraud resistance and low maintenance requirements have had an important influence on the IIIS design. Access to IIIS data is protected by special hardware and software measures. To protect the system against the results of power failures the IIIS possesses an automatic restart facility and a battery-buffered power supply for the RAM-unit of the microprocessor system used for data acquisition and evaluation. (author)

  19. Bulk coolant cavitation in LMFBR containment loading following a whole-core explosion

    An LMFBR core undergoing an explosion transmits energy to the containment in a series of pressure waves and the containment loading is determined by their cumulative effect. These pressure waves are modified by their interaction with the coolant through which they propagate. It is necessary to model both the induction of bulk cavitation by tension waves and the interaction of pressure waves with cavitated liquid in realistic containment loading calculations. This paper sets out the progress which has been achieved in such modelling and first indications for the effect of bulk coolant cavitation in LMFBR containment loading. Conclusions may be briefly summarised: 1) Bulk cavitation must be included in realistic containment loading calculations. 2) Phenomenological models of cavitated liquid without memory are inappropriate. The best approach is to model bubble dynamics directly, including at least momentum conservation and surface tension. 3) The containment loading resulting from a given explosion is sensitive to the state of preparation of the coolant. The number density of nucleation sites should therfore accompany the results of model tests. (Auth.)

  20. A study on reactor core failure thresholds to safety operation of LMFBR

    Japan Nuclear Safety Organization (JNES) has been developing the methodology and computer codes for applying level-1 PSA to LMFBR. Many of our efforts have been directed to the judging conditions of reactor core damage and the time allowed to initiate the accident management. Several candidates of the reactor core failure threshold were examined to a typical proto-type LMFBR with MOX fuel based on the plant thermal-hydraulic analyses to the actual progressions leading to the core damage. The results of the present study showed that the judging condition of coolant-boundary integrity failure, 750 degree-C of the boundary temperature, is enough as the threshold of core damage to PLOHS (protected loss-of-heat sink). High-temperature fuel cladding creep failure will not take place before the coolant-boundary reaches the judging temperature and sodium boiling will not occur due to the system pressure rise. In cases of ATWS (anticipated transient without scrum) the accident progression is so fast and the reactor core damage will be inevitable even a realistic negative reactivity insertion due to the temperature rise is considered. Only in the case of ULOHS (unprotected loss-of-heat sink) a relatively long time of 11 min will be allowed till the shut-down of the reactor before the core damage. (authors)

  1. State of the art review of degradation processes in LMFBR materials. Volume I. Mechanical properties. Volume II. Corrosion behavior. Revision 1

    A revision to Volume I and Volume II of the LMFBR materials degradation summary is presented. Information is included on NaOH corrosive effects, effects of metal cleaning procedures, and caustic stress corrosion cracking of reactor materials. (JRD)

  2. Photocurrent spectroscopy of 2D materials

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  3. Multienzyme Inkjet Printed 2D Arrays.

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  4. Comments on Thermalization in 2D CFT

    de Boer, Jan

    2016-01-01

    We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...

  5. 2-D or not 2-D, that is the question: A Northern California test

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is

  6. Using genetic/simulated annealing algorithm to solve disassembly sequence planning

    Wu Hao; Zuo Hongfu

    2009-01-01

    disassembly sequence.And the solution methodology based on the genetic/simulated annealing algorithm with binary-tree algorithm is given.Finally,an example is analyzed in detail,and the result shows that the model is correct and efficient.

  7. Real-Time Imaging of Single HIV-1 Disassembly with Multicolor Viral Particles.

    Ma, Yingxin; He, Zhike; Tan, Tianwei; Li, Wei; Zhang, Zhiping; Song, Shuang; Zhang, Xiaowei; Hu, Qinxue; Zhou, Peng; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2016-06-28

    Viral disassembly is poorly understood and related to the infection mechanism. However, directly observing the process in living cells remains technically challenging. In this study, the genome RNA, capsid, and matrix protein of the HIV-1 virus were labeled with a Ru(II) complex ([Ru(phen)2(dppz)](2+)), the TC-FlAsH/ReAsH system, and EGFP/ECFP, respectively. Using the multicolored virus and single-particle imaging, we were able to track the sequential disassembly process of single HIV-1 virus particles in live host cells. Approximately 0.1% of viral particles were observed to undergo a sequential disassembly process at 60-120 min post infection. The timing and efficiency of the disassembly were influenced by the cellular factor CypA and reverse transcription. The findings facilitate a better understanding of the processes governing the HIV-1 lifecycle. The multicolor labeling protocol developed in this study may find many applications involving virus-host-cell interactions. PMID:27253587

  8. Cotranslational disassembly of flock house virus in a cell-free system.

    Hiscox, J A; Ball, L A

    1997-01-01

    Intact, purified particles of the nodaviruses flock house virus and nodamura virus that were either transfected into cells that were resistant to infection or introduced into in vitro translation systems directed the synthesis of viral proteins. We infer that direct interaction of these nodavirus particles with cytoplasmic components mediated virion disassembly that resulted in release of the viral RNA.

  9. Studies of the effects of fuel EOS uncertainties on FBR disassembly energetics

    The article analyzes the consequences of uncertainties in two areas: (i) the EOS of irradiated fuel; and (ii) the specific heat of molten fuel. The current UK understanding of the role of fission products in the postulated disassembly phase of an HCDA is outlined, giving particular emphasis to the possible effects of predisassembly heating. 21 refs

  10. Rapidly disassembling nanomicelles with disulfide-linked PEG shells for glutathione-mediated intracellular drug delivery.

    Wen, Hui-Yun; Dong, Hai-Qing; Xie, Wen-juan; Li, Yong-Yong; Wang, Kang; Pauletti, Giovanni M; Shi, Dong-Lu

    2011-03-28

    The synthesis and biological efficacy of novel nanomicelles that rapidly disassemble and release their encapsulated payload intracellularly under tumor-relevant glutathione (GSH) levels are reported. The unique design includes a PEG-sheddable shell and poly(ε-benzyloxycarbonyl-l-lysine) core with a redox-sensitive disulfide linkage. PMID:21327187

  11. Development of Disassembly Tool for Intermediate Examination of Nuclear Fuel Rods

    Hong, Jintae; Heo, Sungho; Kim, Kahye; Park, Sungjae; Joung, Changyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    To check the characteristics of nuclear fuels during an irradiation test, the nuclear fuel rod needs to be disassembled from the test rig located in the pool of the research reactor. Then, the disassembled fuel rod is delivered to the hot cell for intermediate examination. A fuel rod that passes the intermediate examination is delivered to the reactor pool to be reassembled into the test rig. The irradiation test is resumed with the reassembled test rig. Because nuclear fuel rods irradiated by neutrons are highly radioactive, all the disassembly and reassembly processes should be carried out in the pool of the research reactor to prevent operators being exposed to radiation. In particular, because a test rig is 5.4-m long and the reactor pool of HANARO is 6-m deep, special tools need to be developed for performing the disassembly and reassembly processes. In this study, a new assembly design of nuclear fuel rods for intermediate examination is introduced. Furthermore, tools for treating the irradiated fuel rod assembly are introduced, and their performance is verified by an out pile test.

  12. Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals.

    Parra, Karlett J; Chan, Chun-Yuan; Chen, Jun

    2014-06-01

    Vacuolar H(+)-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, and phosphoinositides, but the mechanisms involved are elusive. The atomic- and pseudo-atomic-resolution structures of the V-ATPases are shedding light on the molecular dynamics that regulate V-ATPase assembly. Although all eukaryotic V-ATPases may be built with an inherent capacity to reversibly disassemble, not all do so. V-ATPase subunit isoforms and their interactions with membrane lipids and a V-ATPase-exclusive chaperone influence V-ATPase assembly. This minireview reports on the mechanisms governing reversible disassembly in the yeast Saccharomyces cerevisiae, keeping in perspective our present understanding of the V-ATPase architecture and its alignment with the cellular processes and signals involved. PMID:24706019

  13. Conceptual design report for the mechanical disassembly of Fort St. Vrain fuel elements

    A conceptual design study was prepared that: (1) reviewed the operations necessary to perform the mechanical disassembly of Fort St. Vrain fuel elements; (2) contained a description and survey of equipment capable of performing the necessary functions; and (3) performed a tradeoff study for determining the preferred concepts and equipment specifications. A preferred system was recommended and engineering specifications for this system were developed

  14. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB)

    Highlights: ► The disassembly of electric/electronic components (EECs) layered in PCB as the first-step in recycling process. ► The disassembling treatment was carried out by the new designed apparatus. ► Most of the EECs (over 95%) can be recovered in a nondestructive state. ► These EECs contain 17 groups and can be classified into 54 types based on their shapes and sizes. ► The successive 3 stages of physical separation would enables the recovery of minor ingredients. - Abstract: Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (Earea) and the weight ratio of the detached EECs (Eweight). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (Earea) and 98% (Eweight) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5 mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the

  15. Pit disassembly and conversion demonstration environmental assessment and research and development activities

    A significant portion of the surplus plutonium is in the form of pits, a nuclear weapons component. Pits are composed of plutonium which is sealed in a metallic shell. These pits would need to be safely disassembled and permanently converted to an unclassified form that would be suitable for long-term disposition and international inspection. To determine the feasibility of an integrated pit disassembly and conversion system, a Pit Disassembly and Conversion Demonstration is proposed to take place at the Los Alamos National Laboratory (LANL). This demonstration would be done in existing buildings and facilities, and would involve the disassembly of up to 250 pits and conversion of the recovered plutonium to plutonium metal ingots and plutonium dioxide. This demonstration also includes the conversion of up to 80 kilograms of clean plutonium metal to plutonium dioxide because, as part of the disposition process, some surplus plutonium metal may be converted to plutonium dioxide in the same facility as the surplus pits. The equipment to be used for the proposed demonstration addressed in this EA would use some parts of the Advanced Recovery and Integrated Extraction System (ARIES) capability, other existing equipment/capacities, plus new equipment that was developed at other sites. In addition, small-scale R and D activities are currently underway as part of the overall surplus plutonium disposition program. These R and D activities are related to pit disassembly and conversion, MOX fuel fabrication, and immobilization (in glass and ceramic forms). They are described in Section 7.0. On May 16, 1997, the Office of Fissile Materials Disposition (MD) notified potentially affected states and tribes that this EA would be prepared in accordance with NEPA. This EA has been prepared to provide sufficient information for DOE to determine whether a Finding of No Significant Impact (FONSI) is warranted or whether an EIS must be prepared

  16. Pit disassembly and conversion demonstration environmental assessment and research and development activities

    NONE

    1998-08-01

    A significant portion of the surplus plutonium is in the form of pits, a nuclear weapons component. Pits are composed of plutonium which is sealed in a metallic shell. These pits would need to be safely disassembled and permanently converted to an unclassified form that would be suitable for long-term disposition and international inspection. To determine the feasibility of an integrated pit disassembly and conversion system, a Pit Disassembly and Conversion Demonstration is proposed to take place at the Los Alamos National Laboratory (LANL). This demonstration would be done in existing buildings and facilities, and would involve the disassembly of up to 250 pits and conversion of the recovered plutonium to plutonium metal ingots and plutonium dioxide. This demonstration also includes the conversion of up to 80 kilograms of clean plutonium metal to plutonium dioxide because, as part of the disposition process, some surplus plutonium metal may be converted to plutonium dioxide in the same facility as the surplus pits. The equipment to be used for the proposed demonstration addressed in this EA would use some parts of the Advanced Recovery and Integrated Extraction System (ARIES) capability, other existing equipment/capacities, plus new equipment that was developed at other sites. In addition, small-scale R and D activities are currently underway as part of the overall surplus plutonium disposition program. These R and D activities are related to pit disassembly and conversion, MOX fuel fabrication, and immobilization (in glass and ceramic forms). They are described in Section 7.0. On May 16, 1997, the Office of Fissile Materials Disposition (MD) notified potentially affected states and tribes that this EA would be prepared in accordance with NEPA. This EA has been prepared to provide sufficient information for DOE to determine whether a Finding of No Significant Impact (FONSI) is warranted or whether an EIS must be prepared.

  17. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus

    Soonthornsit, Jeerawat [Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555 (Japan); Yamaguchi, Yoko; Tamura, Daisuke [Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho [Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555 (Japan); Yamamoto, Akitsugu [Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 266 Tamura, Nagahama, Shiga, 526‐0829 (Japan); Nakamura, Nobuhiro, E-mail: osaru3@cc.kyoto-su.ac.jp [Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555 (Japan); Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1–2 h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A{sub 2} inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A{sub 2} was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus. - Highlights: • The Golgi apparatus reversibly disassembles by low pH treatment. • The cis-Golgi disassembles quickly generating tubular structures. • Both anterograde and retrograde transport between the ER and the Golgi apparatus are reduced. • Phospholipase A{sub 2} inhibitors (ONO

  18. Locality constraints and 2D quasicrystals

    The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs

  19. Numerical Evaluation of 2D Ground States

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  20. 2-D Model Test of Dolosse Breakwater

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992). To...... extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......-0042. Furthermore, Task IA will give the design diagram for Tetrapod breakwaters without a superstructure. The more complete research results on Dolosse can certainly give some insight into the behaviour of Tetrapods armour layer of the breakwaters with superstructure. The main part of the experiment was on the...

  1. Graphene suspensions for 2D printing

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  2. Area preserving diffeomorphisms and 2-d gravity

    La, H S

    1995-01-01

    Area preserving diffeomorphisms of a 2-d compact Riemannian manifold with or without boundary are studied. We find two classes of decompositions of a Riemannian metric, namely, h- and g-decomposition, that help to formulate a gravitational theory which is area preserving diffeomorphism (SDiffM-) invariant but not necessarily diffeomorphism invariant. The general covariance of equations of motion of such a theory can be achieved by incorporating proper Weyl rescaling. The h-decomposition makes the conformal factor of a metric SDiffM-invariant and the rest of the metric invariant under conformal diffeomorphisms, whilst the g-decomposition makes the conformal factor a SDiffM scalar and the rest a SDiffM tensor. Using these, we reformulate Liouville gravity in SDiffM invariant way. In this context we also further clarify the dual formulation of Liouville gravity introduced by the author before, in which the affine spin connection is dual to the Liouville field.

  3. Metrology for graphene and 2D materials

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  4. An evaluation of passive safety features of the Japanese prototype LMFBR Monju

    Japan Nuclear Energy Safety Organization, JNES, has developed a system dynamics analysis code NALAP-II, in order to apply in the safety regulation of liquid-metal-cooled fast breeder reactor (LMFBR). In this study, the heat removal by the coolant natural circulation (NC), which is one of passive safety features of LMFBR, was examined using the code. This paper presents the model verification of the decay heat removal system and the result of trial calculation to the Japanese prototype LMFBR MONJU. In the MONJU plant, the decay heat is removed normally by three loops of the secondary heat transport system (SHTS) coupled with the intermediate reactor auxiliary cooling system (IRACS) as shown in Fig.1. To enable the cooling by NC, the air cooler (AC) of MONJU is installed in a position where the heat-transfer center is higher than that of the intermediate heat exchanger (IHX). Verification analyses of the IRACS model of NALAP-II have been carried out, by using the data of a 'natural convection test' conducted as a part of MONJU's performance tests. This test was conducted adding the heat generated by the pump operation in the primary heat transport system (PHTS) instead of the reactor power. The test was started by tripping SHTS pony-motored pump and sodium began to flow by the natural convective force through the air cooling system (ACS) of the IRACS. Figure 2 presents the analytical results of the SHTS transient comparing with the test results. In this test, about 2% of the rated SHTS flow rate was kept by the NC resulting from the balance between the heat input at IHX and the heat removal at IRACS. The calculated results of SHTS flow rate and sodium temperature during NC showed a good agreement with the test results. Then, using the verified NALAP-II, an evaluation of heat removal by NC of MONJU IRACS after the trip at the rated power operation was performed. The result showed that even if only one loop operation of IRACS removes the decay heat resulting in

  5. Local 2D-2D tunneling in high mobility electron systems

    Pelliccione, Matthew; Sciambi, Adam; Bartel, John; Goldhaber-Gordon, David; Pfeiffer, Loren; West, Ken; Lilly, Michael; Bank, Seth; Gossard, Arthur

    2012-02-01

    Many scanning probe techniques have been utilized in recent years to measure local properties of high mobility two-dimensional (2D) electron systems in GaAs. However, most techniques lack the ability to tunnel into the buried 2D system and measure local spectroscopic information. We report scanning gate measurements on a bilayer GaAs/AlGaAs heterostructure that allows for a local modulation of tunneling between two 2D electron layers. We call this technique Virtual Scanning Tunneling Microscopy (VSTM) [1,2] as the influence of the scanning gate is analogous to an STM tip, except at a GaAs/AlGaAs interface instead of a surface. We will discuss the spectroscopic capabilities of the technique, and show preliminary results of measurements on a high mobility 2D electron system.[1] A. Sciambi, M. Pelliccione et al., Appl. Phys. Lett. 97, 132103 (2010).[2] A. Sciambi, M. Pelliccione et al., Phys. Rev. B 84, 085301 (2011).

  6. An investigation of nuclear physics characteristics of fast breeder reactors (LMFBR and GCFBR) with various fuel cycles

    The primary emphasis on the study has been placed on comparing neutronic characteristics, e.g. fissile inventory, breeding and safety, of fast breeder reactors with uranium-plutonium and thorium-uranium fuel cycles. The study was performed using identical calculation methods and consistent data basis. As the reference fast breeder reactor, two different types of 1,200 MWe PuO2-UO2 fuelled fast reactors were chosen, which are sodium-cooled fast breeder reactor (LMFBR) and helium-cooled fast breeder reactor (GCFBR). The following four fuel utilisation models were investigated for each of LMFBR and GCFBR. (1) PuO2-UO2 core, and UO2 axial and radial blankets, (2) PuO2-UO2 core, UO2 axial blanket and ThO2 radial blanket, (3) 233UO2-UO2 core, and ThO2 axial and radial blankets, (4) 233UO2-ThO2 core, and ThO2 axial and radial blankets. The main results obtained are summarised as follows: (1) Pu fuelled LMFBR provides sufficiently high breeding gain, but has unfavourable characteristics of considerably large positive sodium-void reactivity effect. (2) U-233 fuelled LMFBR provides the favourable characteristics of negative sodium-void reactivity effect, but provides either negative or very low breeding gain. (3) Pu fuelled GCFBR has the desirable characteristics from the viewpoints investigated in the study, i.e. relatively low fissile inventory, very large breeding gain, sufficiently negative Doppler reactivity effect and negative steam ingress reactivity effect. (4) Use of U-233 in the core of GCFBR is not preferable, because of substantially low breeding gain and terribly large positive steam ingress reactivity effect. (5) Use of ThO2 in the core of LMFBR and GCFBR instead of UO2 leads to increase of fissile inventory and decrease of breeding gain. (6) Use of ThO2 in the blanket of LMFBR and GCFBR instead of UO2 does not give any significant influence on the neutronic characteristics

  7. Face recognition method based on 2D-PCA and 2D-LDA%基于2D-PCA和2D-LDA的人脸识别方法

    温福喜; 刘宏伟

    2007-01-01

    提出了基于2D-PCA、2D-LDA两种特征采用融合分类器的人脸识别方法.首先提取人脸图像的2D-PCA和2D-LDA特征,对不同特征在决策层对分类器进行融合.在ORL人脸库上的试验结果表明,分类器决策层融合方法在识别性能上优于2D-PCA和2D-LDA,更具有鲁棒性.

  8. AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    Paul Demkowicz; Lance Cole; Scott Ploger; Philip Winston; Binh Pham; Michael Abbott

    2011-01-01

    The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement system (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components’ properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor

  9. 2D DIGITAL SIMPLIFIED FLOW VALVE

    Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D

    2004-01-01

    The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.

  10. Competing coexisting phases in 2D water

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  11. 2D manifold-independent spinfoam theory

    A number of background-independent quantization procedures have recently been employed in 4D nonperturbative quantum gravity. We investigate and illustrate these techniques and their relation in the context of a simple 2D topological theory. We discuss canonical quantization, loop or spin network states, path integral quantization over a discretization of the manifold, spin foam formulation and the fully background-independent definition of the theory using an auxiliary field theory on a group manifold. While several of these techniques have already been applied to this theory by Witten, the last one is novel: it allows us to give a precise meaning to the sum over topologies, and to compute background-independent and, in fact, 'manifold-independent' transition amplitudes. These transition amplitudes play the role of Wightman functions of the theory. They are physical observable quantities, and the canonical structure of the theory can be reconstructed from them via a C* algebraic GNS construction. We expect an analogous structure to be relevant in 4D quantum gravity

  12. Ion Transport in 2-D Graphene Nanochannels

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  13. Phase Engineering of 2D Tin Sulfides.

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  14. Competing coexisting phases in 2D water.

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  15. Resolution Independent 2D Cartoon Video Conversion

    MSF. Fayaza

    2016-03-01

    Full Text Available This paper describes a novel system for vectorizing 2D raster cartoon. The output videos are the resolution independent, smaller in file size. As a first step, input video is segment to scene thereafter all processes are done for each scene separately. Every scene contains foreground and background objects so in each and every scene foreground background classification is performed. Background details can occlude by foreground objects but when foreground objects move its previous position such occluded details exposed in one of the next frame so using that frame can fill the occluded area and can generate static background. Classified foreground objects are identified and the motion of the foreground objects tracked for this simple user assistance is required from those motion details of foreground object’s animation generated. Static background and foreground objects segmented using K-means clustering and each and every cluster’s vectorized using potrace. Using vectored background and foreground object animation path vector video regenerated.

  16. Slow transient overpower tests - C04, C05 and L03. [LMFBR

    Culley, G.E.; Herbert, R.; Myron, D.L.; Wood, M.H.; Bowen, G.R.

    1984-11-01

    Among the low probability LMFBR accident scenarios addressed by the collaborative US/UK transient testing program is the slow transient overpower ramp resulting from the hypothetical event of a control rod runaway with failure to trip. This has been simulated in US's TREAT facility with three tests on irradiated driver fuel from the UK's Prototype Fast Reactor. Tests C04 and C05 were single pin experiments designed as a pair to study the effect of burnup on the time, location, and mechanisms of cladding failure and initial fuel escape. They were conducted on individual fuel pins of different burnup and power history; the C04 fuel had an axial peak burnup of approx. 4% while C05 fuel had reached a maximum burnup close to 9%. Test L03, reported in detail previously, studied post-failure fuel dispersal in a bundle of seven pins like the C04 fuel.

  17. LIMBO computer code for analyzing coolant-voiding dynamics in LMFBR safety tests

    The LIMBO (liquid metal boiling) code for the analysis of two-phase flow phenomena in an LMFBR reactor coolant channel is presented. The code uses a nonequilibrium, annular, two-phase flow model, which allows for slip between the phases. Furthermore, the model is intended to be valid for both quasi-steady boiling and rapid coolant voiding of the channel. The code was developed primarily for the prediction of, and the posttest analysis of, coolant-voiding behavior in the SLSF P-series in-pile safety test experiments. The program was conceived to be simple, efficient, and easy to use. It is particularly suited for parametric studies requiring many computer runs and for the evaluation of the effects of model or correlation changes that require modification of the computer program. The LIMBO code, of course, lacks the sophistication and model detail of the reactor safety codes, such as SAS, and is therefore intended to compliment these safety codes

  18. Fluid-structure interaction analysis of a deck structure during a HCDA. [LMFBR

    Kulak, R.F.

    1979-01-01

    Presented is an assessment of the structural integrity of the deck structure of a pool-type LMFBR during a Hypothetical Core Disruptive Accident (HCDA). During this accident the sodium above the core is propelled upward until it impacts against the deck structure. This hydrodynamic loading could produce (1) significant structural damage and (2) sodium leak paths. A finite-element model is used to study the deck dynamics during slug impact. By using the symmetry of the system, a sector model which accounts for the salient features of the system is developed. The main radial I-beam, component support I-beam and bottom annular plate are modeled using triangular plate elements. The concrete fill is modeled using hexahedral continuum elements. Using the above finite-element model the dynamics of the deck during a HCDA are investigated.

  19. Heat transfer and fluid flow aspects of fuel--coolant interactions. [LMFBR

    Corradini, M L

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon.

  20. Effect of exposure sequence on the distribution of LMFBR-fuel-sodium aerosols in rats

    Female Wistar rats were exposed for 30 min to sodium aerosols containing approximately 370 μg/l of sodium. Together with nonexposed rats, they were then exposed, nose-only, for 30 min to aerosols of LMFBR fuel containing approximately 36 nCi/liter. Animals from each group were killed immediately after exposure to the fuel aerosol, or 7 days later. Lungs and other tissues were removed and analyzed for plutonium content. Both the animals exposed previously to sodium aerosol, and those not exposed, showed similar patterns of deposition and retention of 239Pu in tissues at both time periods. Thus, prior exposure of animals to relatively high levels of sodium did not affect the deposition and retention of 239Pu

  1. ASFRE: a computer code for single-phase subchannel thermal hydraulic analysis of LMFBR single subassembly

    The objectives of this work is to develop a computer code ASFRE which analyzes 3D-thermo-hydraulic behaviors of coolant and fuel pins in an LMFBR subassembly under accident conditions such as the local blockage, loss of flow and transient over power accident conditions. Analytical models, calculation procedures and sample calculations for typical experiments are described. The ASFRE code consists of two parts, namely coolant calculation part and fuel pin calculation. The coolant thermal-hydraulic analysis employs basically subchannel analysis approach and the program solves transient mass, momentum and energy conservation equations. The fuel pin thermal analysis program solves transient heat conduction equations by finite difference method in cylindrical coordinate system. Fuel temperature distribution and thermal expansion are calculated taking into account of intra/inter-pin-flux-depression and fuel restructuring. And wire wrap spacer effects for coolant behavior and heat loss through the wrapper tube are also simulated. (author)

  2. Development of Integrated Analytical Tools for Level-2 PSA of LMFBR

    JNES has developed own safety analysis methods for LMFBR to make safety analyses independently from the applicant to support the regulatory body. The area of these computer codes covers the plant response phase, the core disruption phase and the containment vessel response phase of severe accidents. In addition to the codes, the PRD (Phenomenological Relationship Diagram) method was figured out as a logical method to identify the probability distributions of blanching points in event trees for level-2 PSA. After validation of these codes using various experimental data and many trial calculations to actual reactor system, the prepared tools were applied to the level-2 PSA of Monju to evaluate the effectiveness of accident management measures of Monju. (author)

  3. Chemical interaction in uranium-plutonium mixed oxide fuel pins for LMFBR

    A review is made on the current understanding and problems of chemical interaction between uranium-plutonium mixed oxide and stainless steel cladding for LMFBR fuel pins. The oxygen potential of the fuel was considered as one of the key factors that influences the interaction and the methods of its measurement, its change with irradiation, effect of oxygen redistribution and measured values of irradiated fuel are described. The mechanisms of conventional intergranular and matrix attacks and more recent cladding component chemical transport (CCCT), which was proposed by GE and has been often observed in highly irradiated fuel pins, are explained. Finally, description is given on a statistical analysis of the attack depth and method of inhibiting the cladding. (author)

  4. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified

  5. Material properties requirements for LMFBR structural design: general considerations and data needs

    A statement is given of material properties information needed in connection with the structural design technology for liquid-metal fast breeder reactor (LMFBR) primary circuit components. Implementation of current analysis methods and criteria is considered with an emphasis on data and data correlations for performing elastic-plastic and creep analyses, for establishing allowable stress limits, and for computing creep-fatigue damage. Further development of the technology is discussed in relation to properties information. Emphasis is placed on improved constitutive equations for representing inelastic material behavior, on procedures for treating time-dependent fatigue, and on criteria for creep rupture. The properties are generally discussed without regard to specific alloys, since most categories of information are needed for each major structural material. Some sample experimental results are given for type 304 stainless steel and 21/4 Cr-1 Mo steel

  6. Thermal and thermal stress analysis of a pool type LMFBR deck structure

    The thermal capabilities of the ANSYS code were used to construct a thermal model of a pool type LMFBR system. This model included the primary tank of hot sodium covered by the concrete deck. Included in the geometry were the pump, heat exchanger, and control rod penetrations, and the metallic insulation underneath the concrete. The model included radiation and conduction of heat from the hot sodium to the concrete deck, and the cooling of the concrete via water pipes embedded in it. Thermal stresses are calculated within the code for the various plate and shell steel elements used in the code to represent different parts of the structure. This study provides a basis for studying the effect of insulation and coolant in the design of the deck structure

  7. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  8. Integral capture cross-section measurements in the CFRMF for LMFBR control materials

    Integral capture-cross sections for separated isotopes of Eu and Ta are reported for measurements in the Coupled Fast Reactivity Measurements Facility (CFRMF). These cross sections along with that measured in the CFRMF for 10B(n,α) provide an absolute standard for evaluating the relative reactivity worth of Eu2O3, B4C and Ta in neutron fields typical of an LMFBR core. Based on these measurements and for neutron fields characterized by the 235U:238U reaction rate spectral index ranging from 23 to 50, the infinitely dilute relative worth of Eu2O3 has been estimated to be 25 to 40 percent higher than that for B4C and 80 percent to 100 percent higher than that for Ta. 11 references

  9. Partial flow blockage effects within a (liquid metal cooled fast reactor) LMFBR fuel assembly

    A lumped thermal-hydraulic model was used to calculate the increase in the sodium and cladding temperatures in the wake behind a non-porous partial flow blockage within a typical LMFBR fuel rod assembly. The model predicts that over 25 percent of the cross sectional flow area may be blocked before the wake fluid temperature reaches boiling; the actual size depends on the blockage axial location and radial location. Agreement with the limited sodium flow rod bundle blockage data is achieved by the model if the wide variation observed in the experimental cladding temperatures within the wake region is attributed to variations in local heat transfer coefficients. (29 references) (U.S.)

  10. Wire-wrapped rod-bundle heat-transfer analysis for LMFBR

    Helical wire wraps are widely used in the LMFBR fuel and blanket assemblies to provide coolant mixing and maintain proper spacing between fuel pins. The presence of the helical wire, however, may possibly induce heat transfer problems, such as the uncertainty of the maximum clad temperature as a result of the contact between the wires and the pins. In this study, the detailed transient three dimensional velocity and temperature distributions for the coolant around the pin will be determined by solving the governing momentum and energy equation numerically. A computer code HEATRAN has been developed to perform this calculation. Before the computer code HEATRAN is applied to the wire wrapped rod bundle problem, it is used to analyze a wide range of fluid and heat transfer problem to verify its capabilities

  11. Material properties requirements for LMFBR structural design: General considerations and data needs

    A statement is given of material properties information needed in connection with the structural design technology for liquid-metal fast breeder reactor (LMFBR) primary circuit components. Implementation of current analysis methods and criteria is considered with an emphasis on data and data correlations for performing elastic-plastic and creep analyses, for establishing allowable stress limits, and for computing creep-fatigue damage. Further development of the technology is discussed in relation to properties information. Emphasis is placed on improved constitutive equations for representing inelastic material behavior, on procedures for treating time-dependent fatigue, and on criteria for creep rupture. The properties are generally discussed without regard to specific alloys, since most categories of information are needed for each major structural material. Some sample experimental results are given for type 304 stainless steel and 2 1/4 Cr-1 Mo steel. (author)

  12. Analysis of reaction rate and sample worth measured in simulated LMFBR meltdown cores

    An analysis of fission rate, fission rate ratio and sample worth has been made on FCA VIII-2 Assembly built to simulate LMFBR meltdown cores. To check the adoptability of computational methods used in analysing core disruptive accidents, the results obtained by the three methods, transport (Sn), conventional and modified diffusion methods, were compared with the measured ones. Group constants used in the analysis were prepared from JAERI Fast Set Version II. Conventional diffusion theory does not represent the measured fission rates both in the compacted and voided region. The results obtained by transport theory with S4P0 approximation agree fairly well with the measured ones. The use of modified diffusion theory, which changes the diffusion coefficient in the voided region does not significantly improve the agreement. For Pu sample worth, problems still remain partially which need a more detailed analysis, although the use of transport theory improves the agreement to a large extent. (author)

  13. Structural dynamics in LMFBR containment analysis: a brief survey of computational methods and codes

    Chang, Y.W.; Gvildys, J.

    1977-01-01

    In recent years, the use of computer codes to study the response of primary containment of large, liquid-metal fast breeder reactors (LMFBR) under postulated accident conditions has been adopted by most fast reactor projects. Since the first introduction of REXCO-H containment code in 1969, a number of containment codes have evolved and been reported in the literature. The paper briefly summarizes the various numerical methods commonly used in containment analysis in computer programs. They are compared on the basis of truncation errors resulting in the numerical approximation, the method of integration, the resolution of the computed results, and the ease of programming in computer codes. The aim of the paper is to provide enough information to an analyst so that he can suitably define his choice of method, and hence his choice of programs.

  14. Experimental verification of structural models to analyze the nonlinear dynamics of LMFBR fuel elements

    Local fault situations in LMFBR cores may produce severe pressure pulses within one fuel element. The fact cannot be ignored that these pressures can have peaks and impulses that may expand and rupture the wrapper around the element. This will impulsively load the surrounding subassemblies and possibly the control rods due to extreme coolant pressure gradients and/or subassembly collision forces. Fast reactor safety requires this mechanical propagation process through the core to be analyzed, and therefore appropriate models and solution methods are needed to simulate the nonlinear structural dynamics of one typical hexagonal fuel element. The aim of this paper is to outline one- and two-dimensional structural models and discuss their capabilities and suitability for multirow core calculations. For this purpose static and impulsive single subassembly loading experiments are described and typical results are reported and compared with numerical predictions. (Auth.)

  15. Finite element analysis of irradiation-induced dilation of the fuel subassembly duct in LMFBR

    Background: The calculation of irradiation-induced dilation of the fuel subassembly duct in LMFBR is important for fast reactor core design.. Purpose: To investigate how to calculate the dilation by using finite element method (FEM). Methods: First, irradiation-induced creep and swelling material models are introduced. Then, a theoretical solution based on a simplified bending plate model is briefly given. Finally, a stress update scheme for the adopted material models is presented and furthermore embedded into ABAQUS user interface UMAT to conduct finite element analysis. Both solutions are compared and discussed. Results: FEM successfully predicts the duct dilation and its solution agrees well with theoretical one in small deformation. Conclusions: The proposed stress update scheme is effective, The accuracy of the theory solution declines when dilation becomes larger. The maximum stress occurs at the duct corner point, and the location has stress relaxation effect. (authors)

  16. An internal core catcher for a pool L.M.F.B.R. and connected studies

    This paper describes an internal core catcher for a pool LMFBR. Problems related to retention of debris are studied: downward progression of debris from the core to the core catcher, debris bed formation, heat transfer below the core catcher plate and to the main vessel, mechanical resistance. These results are used to estimate the performances of the internal core catcher for a given core melt-down-accident. It is seen that for a uniform thickness layer on the core catcher the retention capabilities are satisfactory. Then the problem of a heap of debris is approached. Dryout is studied. Uncertainties related to the bed characteristics and problems of extended dryout beds are put forward

  17. DYNAPCON: a computer code for dynamic analysis of prestressed concrete structures. [LMFBR

    Marchertas, A.H.

    1982-09-01

    A finite element computer code for the transient analysis of prestressed concrete reactor vessels (PCRVs) for LMFBR containment is described. The method assumes rotational symmetry of the structure. Time integration is by an explicit method. The quasistatic prestressing operation of the PCRV model is performed by a dynamic relaxation technique. The material model accounts for the crushing and tensile cracking in arbitrary direction in concrete and the elastic-plastic behavior of reinforcing steel. The variation of the concrete tensile cracking and compressive crushing limits with strain rate is taken into account. Relative slip is permitted between the concrete and tendons. Several example solutions are presented and compared with experimental results. These sample problems range from simply supported beams to small scale models of PCRV's. It is shown that the analytical methods correlate quite well with experimental results, although in the vicinity of the failure load the response of the models tend to be quite sensitive to input parameters.

  18. Experimental plans for LMFBR cavity liner sodium spill test LT-1

    Reinforced concrete is an important material of construction in LMFBR cavities and cells. Steel liners are often installed on the concrete surfaces to provide a gastight seal for minimizing air inleakage to inerted cell atmospheres and to protect the concrete from direct contact with sodium in the event of a sodium spill. In making safety assessment analyses, it is of interest to determine the adequacy of the liners to maintain their leaktightness during postulated accidents involving large sodium spills. However, data for basing analytical assessments of cell liners are very meager and an experimental program is underway at HEDL to provide some of the needed information. The HEDL cell liner evaluation program consists of both bench-scale feature tests and large-scale sodium spill demonstration tests. The plans for the first large-scale sodium spill test (LT-1) are the subject of this paper

  19. An experimental study on sodium-water reaction in the double pool LMFBR, (4)

    Double Pool type LMFBR set the rectangular cross-sectional steam generator (SGs) inside a secondary vessel. The initial spike pressure rise caused by large sodium-water reaction in SGs might be radiated into a large sodium pool in the secondary vessel. Therefore basic experiments on pressure wave propagation were carried out by generating pressure wave in water by mean of a set of drop hummer and piston. But the experimental apparatus in water was not convenience to simulate the structure near the bottom end of the SGs shell. In this reports, experiments were carried out by generating pulse sound pressure in air, and compared with the results pressure waves in water. (author)

  20. Large-scale tests of aqueous scrubber systems for LMFBR vented containment

    Six large-scale air cleaning tests performed in the Containment Systems Test Facility (CSTF) are described. The test conditions simulated those postulated for hypothetical accidents in an LMFBR involving containment venting to control hydrogen concentration and containment overpressure. Sodium aerosols were generated by continously spraying sodium into air and adding steam and/or carbon dioxide to create the desired Na2O2, Na2CO3 or NaOH aerosol. Two air cleaning systems were tested: (a) spray quench chamber, educator venturi scrubber and high efficiency fibrous scrubber in series; and (b) the same except with the spray quench chamber eliminated. The gas flow rates ranged up to 0.8 m3/s (1700 acfm) at temperatures to 3130C (6000F). Quantities of aerosol removed from the gas stream ranged up to 700 kg per test. The systems performed very satisfactorily with overall aerosol mass removal efficiencies exceeding 99.9% in each test

  1. Collection and evaluation of salt mixing data with the real time data acquisition system. [LMFBR

    Glazer, S.; Chiu, C.; Todreas, N.E.

    1977-09-01

    A minicomputer based real time data acquisition system was designed and built to facilitate data collection during salt mixing tests in mock ups of LMFBR rod bundles. The system represents an expansion of data collection capabilities over previous equipment. It performs steady state and transient monitoring and recording of up to 512 individual electrical resistance probes. Extensive real time software was written to govern all phases of the data collection procedure, including probe definition, probe calibration, salt mixing test data acquisition and storage, and data editing. Offline software was also written to permit data examination and reduction to dimensionless salt concentration maps. Finally, the computer program SUPERENERGY was modified to permit rapid extraction of parameters from dimensionless salt concentration maps. The document describes the computer system, and includes circuit diagrams of all custom built components. It also includes descriptions and listings of all software written, as well as extensive user instructions.

  2. Turbulent sweeping flow-mixing model for wire-wrapped LMFBR assemblies

    A physical model is proposed to derive the sweeping flow for LMFBR triangular array wire-wrapped assemblies under the turbulent flow condition. Two correlations are suggested for the sweeping flow through two different types of gaps between subchannels, the gap between the interior subchannels and the gap between the wall subchannels. These two sweeping flow correlations are evolved by calibrating the constants in the proposed model against the available experimental data. Agreement between the correlations and all the experimental data to +-35% is obtained over the assembly design range of 1.315 greater than or equal to P/D greater than or equal to 1.067 and 52 greater than or equal to H/D greater than or equal to 4. Based on these correlations, flow sweeping input parameters for two popular computer codes, i.e., COBRA and SUPERENERGY, are recommended

  3. Structural dynamics in LMFBR containment analysis. A brief survey of computational methods and codes

    This paper gives a brief survey of the computational methods and codes available for LMFBR containment analysis. The various numerical methods commonly used in the computer codes are compared. It provides the reactor engineers to up-to-date information on the development of structural dynamics in LMFBR containment analysis. It can also be used as a basis for the selection of the numerical method in the future code development. First, the commonly used finite-difference expressions in the Lagrangian codes will be compared. Sample calculations will be used as a basis for discussing and comparing the accuracy of the various finite-difference representations. The distortion of the meshes will also be compared; the techniques used for eliminating the numerical instabilities will be discussed and compared using examples. Next, the numerical methods used in the Eulerian formulation will be compared, first among themselves and then with the Lagrangian formulations. Special emphasis is placed on the effect of mass diffusion of the Eulerian calculation on the propagation of discontinuities. Implicit and explicit numerical integrations will be discussed and results obtained from these two techniques will be compared. Then, the finite-element methods are compared with the finite-difference methods. The advantages and disadvantages of the two methods will be discussed in detail, together with the versatility and ease of application of the method to containment analysis having complex geometries. It will also be shown that the finite-element equations for a constant-pressure fluid element is identical to the finite-difference equations using contour integrations. Finally, conclusions based on this study will be given

  4. Chemical Engineering Division reactor fuels and materials chemistry research: July 1976--September 1977. [LMFBR; GCFR

    None

    1978-07-01

    Reactor safety studies were directed primarily toward obtaining high-temperature physical property data for use in reactor safety analyses. Spectroscopic data and an oxygen-potential model were used to calculate thermodynamic properties applicable to the equations of state of (U,Pu)O/sub 2/ and UO/sub 2/. Work was continued on the compilation of standard sets of property data on reactor fuels and materials. The viscosity of molten alumina and the thermal diffusivity of molten UO/sub 2/ were measured as functions of temperature. Modeling and chemical-interaction studies related to post-accident heat removal were conducted. The efforts in sodium technology supported the LMFBR program. Studies were conducted to explore the feasibility of upgrading the quality of commercial-grade sodium and sodium from decommissioned reactors to provide new sources of reactor-grade sodium. Work was started on the development of methods for disposal of contaminated alkali--metal wastes. In work related to tritium, a model was developed to describe the behavior of tritium in an LMFBR, tritium permeation through steam-generator materials was measured, and an in-sodium tritium meter was developed and tested in reactor environments. Work in the area of fuels and materials chemistry was conducted in support of the GCFR program. Portions of the cesium--uranium--oxygen phase diagram were investigated to aid in understanding the reaction of fission-product cesium with urania blanket material, particularly in relation to axial gas flow in vented GCFR fuel pins. Data on the oxidation of vanadium, niobium, and titanium were assessed to determine the suitability of these materials for use in controlling oxidative attack of stainless steel cladding.

  5. Transients and safety testing of LMFBR fuel pins in the reactor BR2

    Testing of the behaviour of LMFBR fuel pins under operational transients has been performed in the reactor BR2 at S.C.K./C.E.N.-Mol (Belgium) since 1981 in the framework of the DEBENE programme ''SNR-Betriebstransienten-experimente''. A special purpose sodium loop, called ''VIC'', has therefore been developed to allow off-nominal and transient experiments on single fuel pins under realistic fast reactor operating conditions. Two basic types of tests can be run, either separately or simultaneously: fission power alteration, e.g. steady overpower runs, power cycling and fast transient overpower (TOP); mismatch of the sodium cooling, e.g. operation with reduced sodium flow and transient loss of flow (LOF). The loop allows the loading and testing of pre-irradiated fuel pins. In the field of safety oriented tests, the programme ''MOL 7 C'' investigates the LMFBR fuel element behaviour under locally blocked cooling conditions and the possible failure propagation. The work is jointly carried out by the Karlsruhe center KfK (FRG) and S.C.K./C.E.N.-Mol (Belgium). The related in-pile tests in the reactor BR2 have started in 1977 and are performed in a fully integrated sodium loop. The test section contains a 30-rod bundle with fresh or pre-irradiated fuel pins. A local porous blockage within the fuel bundle initiates severe local damage to the central rods. Important informations are obtained with respect to the problems of pin to pin propagation and the long term behaviour of a fuel subassembly with defect pins. The MOL 7 C loop system can also be used to run operational transients on a fuel bundle with representative fuel pins. The paper describes the irradiation devices VIC and MOL 7 C from their technological point of view and depicts their field of testing applications. Also the major experiments already performed and relevant irradiation data are reviewed

  6. Bulk coolant cavitation in LMFBR containment loading following a whole-core explosion

    An LMFBR core undergoing an explosion transmits energy to the containment in a series of pressure waves and the containment loading is determined by their cumulative effect. These pressure waves are modified by their interaction with the coolant through which they propagate. In liquids in their normal state the main effect of the interaction is to steepen the fronts of waves leading to shock formation but in liquids which have undergone bulk cavitation the interaction is much stronger and is expected to be dissipative and dispersive. Since reflections of initial pressure waves from the core at free surfaces lead to the establishment of a state of tension and consequently of bulk cavitation over large volumes of the coolant, it is necessary to model both the induction of bulk cavitation by tension waves and the interaction of pressure waves with cavitated liquid in realistic containment loading calculations. This paper sets out the progress which has been achieved in such modelling and first indications for the effect of bulk coolant cavitation in LMFBR containment loading. A model describing the interaction between cavitation bubbles and a host liquid subject to time-varying pressure fields, including the physical process of momentum conservation, phase change, heat conduction and mass diffusion is presented and used to a) determine which of the various physical processes involved dominate the results. It is shown that if we are only interested in bulk effects momentum transfer is the chief factor for the pressures and timescales of interest. b) determine the effect of the state of purity of the liquid. The main characterising parameters are the initial radii of nucleation sites and their number density, the latter being very influential. c) identify the important differences between model water and reactor sodium as far as cavitation is concerned. These are chiefly the lower surface tension and higher concentration of initially larger nucleation sites in the

  7. Research report on design allowable values of structural materials for LMFBR

    The present report is composed of following two main parts. i) review and re-evaluation on test results by FCI Sub-committee studies, performed from 1973 to 1976, ii) review on procedures for determining design allowable values of structural materials for LMFBR components. Re-evaluation works have been made on monotonic tensile properties at elevated temperatures, creep and creep rupture properties, creep-fatigue properties (strain rate and tensile strain hold time effects on strain fatigue properties at elevated temperatures) of Types 316 and 304 stainless steel and 2 1/4Cr-1Mo steel (base and weld metals) produced in Japan. In the first half of the present report, creep-fatigue test results obtained by FCI Sub-committee studies are subjected to re-evaluation by the present P-FCI Sub-committee. Reviews have been made on testing methods on FCI's-creep-fatigue experiments with other test data of the test materials; high temperature monotonic tensile data, creep and creep rupture data, and origin of the test materials. The data of FCI studies are compared with other reference data obtained by several Japanese laboratories. In the latter half of the present report, procedures including ASME's are reviewed for setting design allowable values for LMFBR components on the basis of high temperature strength properties obtained with materials produced in Japan. A creep rupture data of Japanese steels are issued and examined to make proposal for a design allowable stress of S sub(t) through parameter survey. (author)

  8. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants

    Andrea Gaedigk

    2010-10-01

    Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.

  9. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  10. Finite state models of constrained 2d data

    Justesen, Jørn

    2004-01-01

    This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods.......This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods....

  11. Specialists' meeting on LMFBR fuel rod behaviour under operational transients, Kalpakkam, India, 3-6 December 1985

    IWGFR Specialists' Meeting on ''LMFBR Fuel Rod Behaviour Under Operational Transients'' was held in Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 3-6 December 1985. The meeting was attended by the representatives of Belgium, France, FRG, India, Italy, US, USSR, IAEA and observers from India. The purpose of the meeting was to provide a forum for the exchange of information on the subject of LMFBR Fuel Rod Behaviour Under Operational Transients. The meeting presentations were divided into sessions devoted to the following topics: Overview of National Programmes (3 papers); In-pile and out-pile experimental facilities and results (5 papers); Modelling and Code work (5 papers). A separate abstract was prepared for each of these papers

  12. LMFBR in-core thermal-hydraulics: the state of the art and US research and development needs

    Khan, E.U.

    1980-04-01

    A detailed critical review is presented of the literature relevant to predicting coolant flow and temperature fields in LMFBR core assemblies for nominal and non-nominal rod bundle geometries and reactor operating conditions. The review covers existing thermal-hydraulic models, computational methods, and experimental data useful for the design of an LMFBR core. The literature search made for this review included publications listed by Nuclear Science Abstracts and Energy Data Base as well as papers presented at key nuclear conferences. Based on this extensive review, the report discusses the accuracy with which the models predict flow and temperature fields in rod assemblies, identifying areas where analytical, experimental, and model development needs exist.

  13. Analysis of loss-of-flow transients in a pool-type LMFBR using SSC-P

    In order to have a general analytical capability for the safety evaluation of any proposed LMFBR system, the USNRC is sponsoring the development and validation of computer codes for both pool- and loop-type plants. The computer code for pool-type LMFBRs is designated SSC-P. This paper is concerned with the application of SSC-P to simulate loss-of-flow accident transients in a pool-type LMFBR. The models required for dynamic plant simulation are briefly highlighted. The system response is calculated for (1) a complete loss of electric power event, with scram, leading the plant into buoyancy-induced natural circulation, (2) a protected pipe rupture accident in the primary pump discharge line, and (3) an unprotected loss of off-site power event. For the last case, the predicted results from SSC-P are compared with the published results of Phenix behavior by NOVATOME

  14. LMFBR in-core thermal-hydraulics: the state of the art and US research and development needs

    A detailed critical review is presented of the literature relevant to predicting coolant flow and temperature fields in LMFBR core assemblies for nominal and non-nominal rod bundle geometries and reactor operating conditions. The review covers existing thermal-hydraulic models, computational methods, and experimental data useful for the design of an LMFBR core. The literature search made for this review included publications listed by Nuclear Science Abstracts and Energy Data Base as well as papers presented at key nuclear conferences. Based on this extensive review, the report discusses the accuracy with which the models predict flow and temperature fields in rod assemblies, identifying areas where analytical, experimental, and model development needs exist

  15. Ultrasonic 2D matrix PVDF transducer

    Ptchelintsev, A.; Maev, R. Gr.

    2000-05-01

    During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.

  16. Polynomial solution of 2D Kalman-Bucy filtering problem

    Sebek, M.

    1992-01-01

    The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2)

  17. Polynomial solution of 2D Kalman-Bucy filtering problem

    Sebek, M.

    1992-01-01

    The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2) as well.

  18. Assembly, operation and disassembly manual for the Battelle Large Volume Water Sampler (BLVWS)

    Assembly, operation and disassembly of the Battelle Large Volume Water Sampler (BLVWS) are described in detail. Step by step instructions of assembly, general operation and disassembly are provided to allow an operator completely unfamiliar with the sampler to successfully apply the BLVWS to his research sampling needs. The sampler permits concentration of both particulate and dissolved radionuclides from large volumes of ocean and fresh water. The water sample passes through a filtration section for particle removal then through sorption or ion exchange beds where species of interest are removed. The sampler components which contact the water being sampled are constructed of polyvinylchloride (PVC). The sampler has been successfully applied to many sampling needs over the past fifteen years. 9 references, 8 figures

  19. Detailed design consideration on wire-spaced LMFBR fuel subassemblies under the effects of uncertainties and non-nominal geometries

    This paper explains some analytical methods for evaluating the effects of deviation in subchannel coolant flow rate from the nominal value due to fuel pin bundle deflection and manufacturing tolerances and of inter-sub-channel coolant mixing and local temperature rise due to a wire-spacer on the hot spot temperature. Numerical results are given in each chapter with respect to a prototype LMFBR core. (author)

  20. Experimental evaluation of acoustic agglomerators as an air cleaning system concept for emergency use in LMFBR plants. Final report

    In the development of the Liquid Metal Fast Breeder Reactor, a major safety problem concerns the suppression of the sodium oxides aerosol particles produced during a hypothetical core disruptive accident. Some theoretical calculations are presented concerning sonic agglomeration rates of such a system in terms of acoustic frequency, intensity and particles. The information is useful in providing some guidelines for the evaluation and design of sonic systems for LMFBR emergency applications

  1. Elaboration of a simplified method for LMFBR neutron calculations. Application to some problems related to research programs

    The topics includes two parts. 1) A calculation code specifically adapted to the parametric studies of LMFBR's cores in the neutronic field is presented. 2) A parametric study is made enabling comparison of the respective abilities to flatten flux and power distribution for the folloving core design: - homogeneous with variable compositions, - homogeneous with variable enrichments, - heterogeneous. The study shows the advantage of a hybrid concept on variable compositions and enrichments

  2. FEM-2D, 2-D MultiGroup Diffusion in X-Y Geometry

    1 - Nature of physical problem solved: FEM-2D solves the two-dimensional diffusion equation in x-y geometry. This is done by the finite elements method. 2 - Method of solution: FEM-2D uses triangular elements with first and second order Lagrange approximations. The systems equations are formulated in multigroup form and solved by Cholesky procedure which operates only on nonzero elements. Various acceleration techniques are available for the outer iteration. Fluxes along various lines and rates in arbitrary zones may be output. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning. Thus, the problem size is restricted by the largest array which usually is the systems matrix. Fluxes of all groups are kept in memory. This might become another restrictive data set for a large number of groups. The validity of the results is restricted by the approximations used. FEM-2D requires a finite element net which allows the approximation of fluxes by at most parabolas. The node distribution should be more dense in areas of heavy flux changes (near absorbers or the reflector)

  3. DNTM/R2D, 2-D Transport in X-Y Geometry

    1 - Description of program or function: DNTM/R2D solves the neutron transport equation in two-dimensional X-Y geometry by the discrete nodal transport method. Source and eigenvalue problems can be solved. As compared to the two-dimensional nodal transport code DNTM/2D, the following new improved features are included: - Anisotropic scattering is considered. The order of anisotropic scattering is from P0 to P3. - The cross section input format is the same as for ANISN. Multi- group cross section libraries such as DLC-37 and DLC-BUGLE-80 can be used. 2 - Method of solution: DNTM/R2D uses the discrete nodal transport method. Anisotropic scattering is treated using Legendre expansion. Order of interior flux approximation is 2. Plane leakage approximation of surface flux is used. 3 - Restrictions on the complexity of the problem: Maximum number of: anisotropic scattering order = 3; material composition = 20; energy groups = 2; angular quadrature = 8; zones = 30. When coarse-mesh re-balancing is used, the maximum number of coarse meshes is 12 in each direction. If the computer permits some arrays can be enlarged to reduce the above restrictions

  4. Underwater Nuclear Fuel Disassembly and Rod Storage Process and Equipment Description. Volume II

    The process, equipment, and the demonstration of the Underwater Nuclear Fuel Disassembly and Rod Storage System are presented. The process was shown to be a viable means of increasing spent fuel pool storage density by taking apart fuel assemblies and storing the fuel rods in a denser fashion than in the original storage racks. The assembly's nonfuel-bearing waste is compacted and containerized. The report documents design criteria and analysis, fabrication, demonstration program results, and proposed enhancements to the system

  5. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    Stewart, Elizabeth J.; Mahesh Ganesan; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) co...

  6. Evaporation suppression from spent fuel storage and disassembly basins with monolayer films

    Spent fuel storage and disassembly basins at non-commercial heavy water reactor facilities contain significant quantities of tritiated water. The use of monolayer films for suppressing evaporation from spent nuclear fuel storage basins was investigated. Octadecanol spread easily over large surfaces with a newly designed film pump. This system reduced the evaporation rate by 50%. Consequently, personnel radiation exposure due to tritiated water vapor can be significantly reduced

  7. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly

    Buvelot, Stéphanie; Tatsutani, Sean Y.; Vermaak, Danielle; Biggins, Sue

    2003-01-01

    Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1–GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone ...

  8. Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules

    van der Heijden, Thijn; Seidel, Ralf; Modesti, Mauro; Kanaar, Roland; Wyman, Claire; Dekker, Cees

    2007-01-01

    textabstractThe human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic interactions between RAD51 and DNA. Here, we report the real-time kinetics of human RAD51 filament assembly and disassembly on individual molecules of both single- and double-stranded DNA, as measured using...

  9. Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules

    Van der Heijden, T.; Seidel, R.; Modesti, M.; Kanaar, R.; Wyman, C; Dekker, C.

    2007-01-01

    The human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic interactions between RAD51 and DNA. Here, we report the real-time kinetics of human RAD51 filament assembly and disassembly on individual molecules of both single- and double-stranded DNA, as measured using magnetic tw...

  10. Syndecan-1 controls cell migration by activating Rap1 to regulate focal adhesion disassembly

    Altemeier, William A.; Schlesinger, Saundra Y.; Buell, Catherine A.; Parks, William C.; Chen, Peter

    2012-01-01

    After injury, residual epithelial cells coordinate contextual clues from cell–cell and cell–matrix interactions to polarize and migrate over the wound bed. Protrusion formation, cell body translocation and rear retraction is a repetitive process that allows the cell to move across the substratum. Fundamental to this process is the assembly and disassembly of focal adhesions that facilitate cell adhesion and protrusion formation. Here, we identified syndecan-1 as a regulator of focal adhesion ...

  11. The non-catalytic domains of Drosophila katanin regulate its abundance and microtubule-disassembly activity.

    Kyle D Grode

    Full Text Available Microtubule severing is a biochemical reaction that generates an internal break in a microtubule and regulation of microtubule severing is critical for cellular processes such as ciliogenesis, morphogenesis, and meiosis and mitosis. Katanin is a conserved heterodimeric ATPase that severs and disassembles microtubules, but the molecular determinants for regulation of microtubule severing by katanin remain poorly defined. Here we show that the non-catalytic domains of Drosophila katanin regulate its abundance and activity in living cells. Our data indicate that the microtubule-interacting and trafficking (MIT domain and adjacent linker region of the Drosophila katanin catalytic subunit Kat60 cooperate to regulate microtubule severing in two distinct ways. First, the MIT domain and linker region of Kat60 decrease its abundance by enhancing its proteasome-dependent degradation. The Drosophila katanin regulatory subunit Kat80, which is required to stabilize Kat60 in cells, conversely reduces the proteasome-dependent degradation of Kat60. Second, the MIT domain and linker region of Kat60 augment its microtubule-disassembly activity by enhancing its association with microtubules. On the basis of our data, we propose that the non-catalytic domains of Drosophila katanin serve as the principal sites of integration of regulatory inputs, thereby controlling its ability to sever and disassemble microtubules.

  12. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  13. Preventive maintenance modeling for multi-component systems with considering stochastic failures and disassembly sequence

    The existed PM (preventive maintenance) efforts on multi-component systems usually ignore the PM opportunities at the component failure moments and the structure dependence among the system components. In this paper, a time window based PM model is proposed for multi-component systems with the stochastic failures and the disassembly sequence involved. Whenever one of the system components stochastically fails or reaches its reliability threshold, PM opportunities arise for other system components. A Monte-Carlo based algorithm is built up to simulate the stochastic failures and then to calculate the cumulative maintenance cost of the system. The optimal PM practice is obtained by minimizing the cumulative maintenance cost throughout the given time horizon. Finally, a numerical example is given to illustrate the calculation process and the availability of the proposed PM model. - Highlights: • We propose an opportunistic PM model for multi-component systems. • PM opportunity at stochastic failure moment is considered. • Disassembly sequence among system components is involved. • A Monte Carlo based algorithm is proposed to obtain the optimal PM practice. • More PM opportunity arises with increase of disassembly cost of intermediate nodes

  14. Alveolar Type II Cells Escape Stress Failure Caused by Tonic Stretch through Transient Focal Adhesion Disassembly

    Xiao-Yang Liu, Xiao-Fei Chen, Yan-Hong Ren, Qing-Yuan Zhan, Chen Wang, Chun Yang

    2011-01-01

    Full Text Available Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI treatment. In the present study, primary rat alveolar type II (ATII cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.

  15. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation's inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned

  16. Stability Test for 2-D Continuous-Discrete Systems

    2002-01-01

    Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.

  17. Correlated Electron Phenomena in 2D Materials

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  18. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  19. AGR-2 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    Ploger, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Demkowciz, Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The AGR 2 irradiation experiment began in June 2010 and was completed in October 2013. The test train was shipped to the Materials and Fuels Complex in July 2014 for post-irradiation examination (PIE). The first PIE activities included nondestructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and their graphite fuel holders. Dimensional metrology was then performed on the compacts, graphite holders, and steel capsule shells. AGR 2 disassembly and metrology were performed with the same equipment used successfully on AGR 1 test train components. Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Disassembly of the AGR 2 test train and its capsules was conducted rapidly and efficiently by employing techniques refined during the AGR 1 disassembly campaign. Only one major difficulty was encountered while separating the test train into capsules when thermocouples (of larger diameter than used in AGR 1) and gas lines jammed inside the through tubes of the upper capsules, which required new tooling for extraction. Disassembly of individual capsules was straightforward with only a few minor complications. On the whole, AGR 2 capsule structural components appeared less embrittled than their AGR 1 counterparts. Compacts from AGR 2 Capsules 2, 3, 5, and 6 were in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated radial shrinkage between 0.8 to 1.7%, with the greatest shrinkage observed on Capsule 2 compacts that were irradiated at higher temperature. Length shrinkage ranged from 0.1 to 0.9%, with by far the lowest axial shrinkage on Capsule 3 compacts

  20. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  1. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  2. MAZE, Input Generator for Program DYNA2D and NIKE2D

    Description of program or function: MAZE is an interactive input generator for two-dimensional finite element codes. MAZE has three phases. In the first phase, lines and parts are defined. The first phase is terminated by the 'ASSM' or 'PASSM' command which merges all parts. In the second phase, boundary conditions may be specified, slide-lines may be defined, parts may be merged to eliminate nodes along common interfaces, boundary nodes may be moved for graded zoning, the mesh may be smoothed, and load curves may be defined. The second phase is terminated by the 'WBCD' command which causes MAZE to write the output file as soon as the 'T' terminate command is typed. In the third phase, material properties may be defined. Commands that apply to the first phase may not be used in the second or third; likewise, commands that apply in the second may not be used in the first and third, or commands that apply in the third in the first and second. Nine commands - TV, Z, GSET, PLOTS, GRID, NOGRID, FRAME, NOFRAME, and RJET are available in all phases. Comments may be added anywhere in the input stream by prefacing the comment with 'C'. Any DYNA2D or NIKE2D material and equation-of- state model may be defined via the MAT and EOS commands respectively. Maze may be terminated after phase two; it is not necessary to define the materials

  3. Maintenance and repair of LMFBR steam generators: specialists` meeting, O-Arai Engineering Center, Japan, 4-8 June 1984. Summary report

    NONE

    1984-07-01

    The Specialists` Meeting on "Maintenance and Repair of LMFBR Steam Generators" was held in Oarai, Japan, from 4-8 June 1984. The meeting was sponsored by the International Atomic Energy Agency on the recommendation of the IAEA International Working Group on Fast Reactors and was hosted by the Power Reactor and Nuclear Fuel Development Corporation of Japan. The purpose of the meeting was to review and discuss the experience accumulated in various countries on the general design philosophy of LMFBR steam generators from the view point of maintenance and repair, in-service inspection of steam generator tube bundles, identification and inspection of failed tubes and the cleaning and repairing of failed steam generators. The following main topical areas were discussed by participants: national review presentations on maintenance and repair of LMFBR steam generators - design philosophy for maintenance and repair; research and development work on maintenance and repair; and experience on steam generator maintenance and repair.

  4. Surface Approximation Using the 2D FFENN Architecture

    Panagopoulos S

    2004-01-01

    Full Text Available A new two-dimensional feed-forward functionally expanded neural network (2D FFENN used to produce surface models in two dimensions is presented. New nonlinear multilevel surface basis functions are proposed for the network's functional expansion. A network optimization technique based on an iterative function selection strategy is also described. Comparative simulation results for surface mappings generated by the 2D FFENN, multilevel 2D FFENN, multilayered perceptron (MLP, and radial basis function (RBF architectures are presented.

  5. Maximizing entropy of image models for 2-D constrained coding

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino; Zamarin, Marco; Ukhanova, Ann

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square const...

  6. Maximizing entropy of image models for 2-D constrained coding

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino;

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... of the Markov random field defined by the 2-D constraint is estimated to be (upper bounded by) 0.8570 bits/symbol using the iterative technique of Belief Propagation on 2 £ 2 finite lattices. Based on combinatorial bounding techniques the maximum entropy for the constraint was determined to be 0.848....

  7. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  8. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    Sezen S

    2006-01-01

    Full Text Available A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  9. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Joy G Ghosh

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  10. Engineering scale tests of mechanical disassembly and short stroke shearing systems for FBR fuel assembly

    Japan Atomic Energy Agency (JAEA) and The Japan Atomic Power Company (JAPC) have been developing an advanced head-end process based on mechanical disassembly and short stroke shearing systems as a part of Fast Reactor Cycle Technology Development (FaCT). Fuel pins for a fast reactor are installed within a hexagonal shaped wrapper tube made of stainless steel. In order to reprocess the fast reactor fuel pins, they must be removed from the wrapper tube and transported to the shearing system without failure. In addition, the advanced aqueous reprocessing process, called 'NEXT' (New Extraction System for TRU Recovery) process requires a solution of the spent fuel with relatively high concentration (500g/L). JAEA and JAPC have developed the mechanical disassembly and the short stroke shearing technology which is expected to make fragmented fuel to satisfy these requirements. This paper reports the results of engineering scale tests on the mechanical disassembly and short stroke shearing systems. These tests were carried out with simulated FBR fuel assembly and removed pins. The mechanical cutting method has been developed to avoid fuel pin failure during disassembly operation. The cutting process is divided into two modes, so called 'slit-cut' for cutting the wrapper tube and 'crop-cut' for the end plug region of the fuel pin bundle. In the slit-cut mode, the depth of cutting was automatically controlled based on the calculated wastage of the cutting tool and deformation of the wrapper tube which had been measured before the cutting. This procedure was confirmed to minimize the fuel pin failure which was hard to prevent in the case of laser cutting. The cutting speed was also controlled automatically by the electric current of the cutting motor to lower the load of the cutting tool. The removed fuel pins were transported to the shearing machine, whose fuel shearing magazine width was set to be narrow to realize the suitable configuration for the short stroke shearing

  11. Disassembly and domain structure of the proteins in the signal-recognition particle

    Scoulica, Efstathia; Krause, Elke; Meese, Klaus; Dobberstein, Bernhard

    1987-01-01

    The signal-recognition particle (SRP) is a ribonucleoprotein (RNP) complex consisting of six different polypeptide chains and a 7SL RNA. It participates in initiating the translocation of proteins across the membrane of the endoplasmic reticulum, SRP was disassembled in 2 M KCl into three components, one RNP composed of 7SL RNA and the 54-kDa and 19-kDa proteins, and two heterodimers consisting of the 72/68-kDa and the 14/9-kDa proteins respectively. The 54-kDa protein could be released from ...

  12. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  13. Development of computer code models for analysis of subassembly voiding in the LMFBR

    The research program discussed in this report was started in FY1979 under the combined sponsorship of the US Department of Energy (DOE), General Electric (GE) and Hanford Engineering Development Laboratory (HEDL). The objective of the program is to develop multi-dimensional computer codes which can be used for the analysis of subassembly voiding incoherence under postulated accident conditions in the LMFBR. Two codes are being developed in parallel. The first will use a two fluid (6 equation) model which is more difficult to develop but has the potential for providing a code with the utmost in flexibility and physical consistency for use in the long term. The other will use a mixture (< 6 equation) model which is less general but may be more amenable to interpretation and use of experimental data and therefore, easier to develop for use in the near term. To assure that the models developed are not design dependent, geometries and transient conditions typical of both foreign and US designs are being considered

  14. Evaluation of the structural integrity of LMFBR equipment cell liners: results of preliminary investigations

    The behavior of a plane wall segment of a prototype liquid-metal-cooled fast breeder reactor (LMFBR) cell under conditions of a postulated massive sodium spill was studied. Sodium-concrete reaction calculations were performed assuming an initial flaw existed in the liner such that high-temperature sodium could penetrate to the concrete underneath. Based on existing sodium-concrete reaction rate data, bounding values were established for the maximum energy release per unit volume of concrete. The potential effect of this energy release on the deformation of the liner material was determined. The temperature buildup in the liner and the pressure differential across the flaw in the liner were also studied. The transient thermal and structural responses of the steel liner and backup concrete were analyzed in detail using the inelastic computer code ANSYS. The literature on the mechanical, physical, and general behavior properties of concrete at high temperature was reviewed. This review emphasized the structural behavior of concrete and did not cover the sodium-concrete reaction

  15. LMFBR Emergency Deployment Assuming 45 year Time-Delay Excess CO{sub 2} Removal

    Schenewerk, William Ernest [5060 San Rafael Avenue, Los Angeles, CA, 90042-3239 (United States)

    2008-07-01

    Atmospheric CO{sub 2} is presently increasing 2.25% per year in proportion to 2.25% per year exponential fossil fuel consumption increase. CO{sub 2} removal is modeled as being proportional to 45-year-earlier CO{sub 2} amount above 280 ppmV-C. This is: Exp (-0.0225/year * 45 years) = 0.36 fraction CO{sub 2} removed from anthropological emissions, apparently by seawater. LMFBRs use 15 year doubling time. Deploying 30000 GWe atomic power by year-2080 results in CO{sub 2} doubling year-2065 if World primary energy consumption continues increasing 2.25% per year. CO{sub 2} remains roughly twice pre-industrial until year-2100. Beginning year-2080, CO{sub 2} declines at 2.25% per year. CO{sub 2} will presumably decline back to roughly the year-2000 value by year-2200 if the 45-year-delay sink remains effective. LMFBR and GCFR fleet expands to 30000 GWe by 2080. 1000 GWe LWR fleet consumes 5 Mt HM (Heavy Metal). Breeder first cores require 1 Mt HM. (author)

  16. Calculation of Doses Due to Accidentally Released Plutonium From An LMFBR

    Fish, B.R.

    2001-08-07

    Experimental data and analytical models that should be considered in assessing the transport properties of plutonium aerosols following a hypothetical reactor accident have been examined. Behaviors of released airborne materials within the reactor containment systems, as well as in the atmosphere near the reactor site boundaries, have been semiquantitatively predicted from experimental data and analytical models. The fundamental chemistry of plutonium as it may be applied in biological systems has been used to prepare models related to the intake and metabolism of plutonium dioxide, the fuel material of interest. Attempts have been made to calculate the possible doses from plutonium aerosols for a typical analyzed release in order to evaluate the magnitude of the internal exposure hazards that might exist in the vicinity of the reactor after a hypothetical LMFBR (Liquid-Metal Fast Breeder Reactor) accident. Intake of plutonium (using data for {sup 239}Pu as an example) and its distribution in the body were treated parametrically without regard to the details of transport pathways in the environment. To the extent possible, dose-response data and models have been reviewed, and an assessment of their adequacy has been made so that recommended or preferred practices could be developed.

  17. Studies of flow stratification in the hot plenum of an LMFBR

    The paper reviews work at Berkeley Nuclear Laboratories on the extent and effects of buoyancy in the hot plenum of an LMFBR. It summarizes the experimental, theoretical and numerical work has has been conducted to aid the understanding of the complex transient flows which occur following a reactor trip. The experimental work has been conducted in small-scale idealised geometries which isolate the essential features of the reactor flows and is not intended to provide detailed design data. An integral theory has been devised to describe the thermal hydraulics of negatively-buoyant jets. The predictions are shown to be in good agreement with the experimental results and emphasize the need to correctly represent the inlet velocity and temperature profiles. Some preliminary calculations with a transient, two-dimensional, finite-element code are compared with the experimental results. These calculations reproduce the overall features of the flows but not the details of the stratified interface. The development of turbulence models for stratified flows is seen as a fruitful area for further research. (author)

  18. Design and construction of a reliable microcomputer-based LMFBR protection system

    The objective of a reactor protection system is reliable reactor shut-down in the case of operational disturbances which are characterized by one or more safety signals leaving their predefined safety region. The paper describes the design and part of the construction of such a system which considers the temperatures of all fuel elements in an LMFBR core to be the relevant safety signals. For these signals, upper and lower threshold criteria were established. If the signals go outside their safety regions, a reactor trip signal is to be produced. Fault-tree analysis was performed for a number of protection system configurations in order to select a reliable design. The number of minimal cuts and system unavailability were used for this purpose. The results show that out of a number of analysed systems a network structure with a medium interconnectivity performs best. A sensitivity analysis, based on the formulas for unavailability of the systems, shows the influence of components on system unavailability. For software construction a number of available techniques are being employed to enhance quality. Software quality control procedures are being used throughout the implementation process. To avoid common-mode failures of the computer code, diverse implementations, i.e. different programming languages and systems, are planned for different redundancy lines. One of the objectives of building the system is to find out how to license such a system, in particular its software. Discussions are being held with licensing authorities, but the working procedures are still far from being established. (author)

  19. Specialists' meeting on theoretical modelling of LMFBR fuel pin behaviour. Summary report

    The purpose of the meeting was to provide an opportunity for exchanging views of theoretical modelling of LMFBR fuel pin behaviour and to summarise the IWGFR member countries' knowledge in this field. The special emphasis was placed on normal operating conditions. The technical part of the meeting was divided into six sessions, as follows: An overview of fuel modelling studies; Key factors and basic phenomena relevant to fuel pin behaviour modelling; Application to steady state operation and normal transients; Experimental validation through pins in service and specific irradiation experiments; Advanced fuels; and Brief review of existing codes. During the meeting, papers were presented by the delegates on behalf of their countries or organization. The papers, which are included in this report, were either in the form of a general survey of the subject, or on specific technical subjects. In each subject area presentations appropriate to the subject were made from the submitted papers. The presentations were followed by discussions of the questions raised and summary is made

  20. Boreside rotating ultrasonic tester for wastage determination of LMFBR-type steam generator tubes

    Large sodium-water reaction (SWR) leak tests are being run in near-prototypic steam generators at prototypic plant conditions of the Liquid Metal Fast Breeder Reactor (LMFBR). These tests simulate various types of steam tube failure at predetermined locations. A SWR results in a highly energetic-exothermic-caustic reaction which erodes neighboring tubes. A boreside-rotating ultrasonic inspection device was developed to measure wall thickness and inside diameter of the 2/one quarter/Cr-1 Mo, 10.1 mm I.D. steam tubes. Rotation of the UT beam yields a complimentary scan of the full tube in a single pass. The UT system was designed with a 15 MHz transducer in pulse-echo compression-wave mode at a pulse rate of 10,000/second. The UT beam is rotated at 20 r/s on a 1.27 mm pitch. System outputs are diameter, wall thickness, attitude, and axial position. Measurements are processed, then fed to a CRT and computer for later retrieval and plotting

  1. Review on Japanese activities in the field of maintenance and repair of LMFBR steam generators

    Summary of Japanese activities on maintenance and repair of LMFBR steam generators (SG) is described in this paper. The concept (adoption of helical coil tube etc.) of MONJU SG was established in conceptional design started from 1968, and research and development (R and D) program was prepared. Parallel with basic studies such as material, welding, sodium water reaction and etc., overall verification tests using mock up SGs were conducted. As the first step, 1 Mw SG with two active helical tubes (and eight dummy tubes) was fabricated and operated, and many maintenance and repair experiences were accumulated through two small water leak troubles. Two 50Mw SGs, 1/5 scale of MONJU SG, were constructed and operated for long time. Post test examinations were carried out for No.1 50 Mw SG and feasibility of this type of SG was confirmed. In regard to maintenance and repair techniques, explosive and welding method for tube plugging and UT and ECT techniques for inspection of tube integrity are under development. Overall verification test for on-site and in-factory maintenance and repair techniques was conducted using No.2 50Mw SG evaporator and applicability of those techniques to real plant was evaluated. Many experiences were accumulated for removal and cleaning of sodium water reaction products after sodium water reaction in the cooling system and pressure relief system, using the Large Sodium Water Reaction Test Facility (SWAT-1 and 3). (author)

  2. Analysis and application of prestressed concrete reactor vessels for LMFBR containment

    An analytical model of a prestressed concrete reactor vessel (PCRV) for LMFBR and the associated finite element computer code, involving an explicit time integration procedure, is described. The model is axisymmetric and includes simulations of the tensile cracking of concrete, the reinforcement, and a prestressing capability. The tensile cracking of concrete and the steel reinforcement are both modeled as continuously distributed within the finite element. The stresses in the reinforcement and concrete are computed separately and combined to give an overall stress state of the composite material. Attention is given to the fact that cracks do not form instantaneously, but develop gradually. Thus, after crack initiation the normal stress is reduced to zero gradually as a function of time. Residual shear resistance of cracks due to aggregate interlock is also taken into account. Prestressing of the PCRV is modeled by special structural members which represent an averaged prestressing layer equivalent to an axisymmetric shell. The internal prestressing members are superimposed over the reinforced concrete body of the PCRV; they are permitted to stretch and slide in a predetermined path, simulating the actual tendons. The validity of the code is examined by comparison with experimental data. (Auth.)

  3. Design optimization of ferritic alloy LMFBR fuel assemblies as affected by in-reactor deformation

    Because of the relatively high resistance to irradiation-induced creep and swelling exhibited by the high strength ferritic alloy HT-9, it is a major structural material candidate for use in Liquid Metal Fast Breeder Reactor (LMFBR) fuel assembly hexagonal ducts, principally to minimize the duct dilation due to the nuclear environment. The design of a fuel assembly with an HT-9 duct can be performed as part of an overall plant performance optimization to achieve minimum plant operational costs. Such evaluations were performed to quantify the effect on fuel cycle costs of possible future changes to either the current estimates of HT-9 swelling and creep or to the uncertainty band widths of creep and swelling. The evaluations were conducted using a reactor system design computer code capable of implementing core design tradeoff studies to obtain a minimum cost optimization of the reactor system performance. The results of the study quantify the incentive for minimum creep and swelling and the incentive to obtain sufficient data to minimize the creep and swelling uncertainty band widths

  4. Mechanical behavior of the LMFBR core structure under transient pressure due to local failure

    A satisfactory fast reactor safety analysis requires a comprehensive experimental and theoretical research program. The structural integrity of the reactor core in case of any local failure has to be demonstrated. Such local events may be due to random pin failure which is very likely. As a consequence contact between molten fuel and coolant may occur. The existing uncertainties in the understanding of the physical mechanisms observed during this molten fuel-coolant-interaction (MFCI) emphasize the importance of the comprehensiveness of this research program. This paper describes the effort done at GfK Karlsruhe in cooperation with UKAEA and EURATOM to predict the core deformations caused by local failure within an LMFBR core. These activities try to cover all important questions currently discussed in the analysis of possible core damage. It may be concluded that the reactor can be scrammed in time under pessimistic-realistic pressure transients and that the deformations do not exceed tolerable limits. The computer methods are general enough as to allow for different core designs with varying geometries, material properties, etc. (Auth.)

  5. An appreciation of the events, models and data used for LMFBR radiological source term estimations

    In this report, the events, models and data currently available for analysis of accident source terms in liquid metal cooled fast neutron reactors are reviewed. The types of hypothetical accidents considered are the low probability, more extreme types of severe accident, involving significant degradation of the core and which may lead to the release of radionuclides. The base case reactor design considered is a commercial scale sodium pool reactor of the CDFR type. The feasibility of an integrated calculational approach to radionuclide transport and speciation (such as is used for LWR accident analysis) is explored. It is concluded that there is no fundamental obstacle, in terms of scientific data or understanding of the phenomena involved, to such an approach. However this must be regarded as a long-term goal because of the large amount of effort still required to advance development to a stage comparable with LWR studies. Particular aspects of LMFBR severe accident phenomenology which require attention are the behaviour of radionuclides during core disruptive accident bubble formation and evolution, and during the less rapid sequences of core melt under sodium. The basic requirement for improved thermal hydraulic modelling of core, coolant and structural materials, in these and other scenarios, is highlighted as fundamental to the accuracy and realism of source term estimations. The coupling of such modelling to that of radionuclide behaviour is seen as the key to future development in this area

  6. LMFBR Emergency Deployment Assuming 45 year Time-Delay Excess CO2 Removal

    Atmospheric CO2 is presently increasing 2.25% per year in proportion to 2.25% per year exponential fossil fuel consumption increase. CO2 removal is modeled as being proportional to 45-year-earlier CO2 amount above 280 ppmV-C. This is: Exp (-0.0225/year * 45 years) = 0.36 fraction CO2 removed from anthropological emissions, apparently by seawater. LMFBRs use 15 year doubling time. Deploying 30000 GWe atomic power by year-2080 results in CO2 doubling year-2065 if World primary energy consumption continues increasing 2.25% per year. CO2 remains roughly twice pre-industrial until year-2100. Beginning year-2080, CO2 declines at 2.25% per year. CO2 will presumably decline back to roughly the year-2000 value by year-2200 if the 45-year-delay sink remains effective. LMFBR and GCFR fleet expands to 30000 GWe by 2080. 1000 GWe LWR fleet consumes 5 Mt HM (Heavy Metal). Breeder first cores require 1 Mt HM. (author)

  7. Condensation of fuel onto the above-core structure during an LMFBR core-disruptive accident

    Condensation of a pure, saturated vapor onto a vertical, melting substrate is analyzed for both one- and two-material situations. Examination of the one-material situation indicates that the solution to the full transient condensation-induced melting problem may be approximated by using a transient, conduction-only model for short times and a steady-state, flowing-film model for long times. This concept is extrapolated to the two-material situation in order to obtain a simulation of the transient solution. The models are applied to the specific case of uranium dioxide condensing onto solid stainless steel. Condensate solidification occurs for this pair of materials; however, this solidification may be neglected without introducing a serious error in the other phase-change rates. The condensation heat flux for this pair of materials is a very weak function of the initial substrate temperature and the vapor temperature. The results of this analysis have applications in the area of LMFBR accident analysis

  8. An experimental study of the heterogeneous LMFBR core using FCA assemblies with axial internal blanket

    To investigate physics properties of the heterogeneous LMFBR core and to examine the reliability of the current data and method for heterogeneous core configuration, an experimental study has been made on FCA VII-3 assemblies which have an internal blanket (IB) at midplane of the cylindrical core. Systematic experiments were carried out on the heterogeneous cores whose IBs were different in composition and thickness. A homogeneous core was also built to compare the results with those obtained on the heterogeneous cores. The sodium-void worth is not sensitive to the composition of IB. The positive void worth in the core of the 40 cm IB is lowered by about 40% compared with that in the homogeneous core. The analysis was made using the JAERI-Fast Set Version II and the diffusion code CITATION. Directional diffusion coefficients were used to take account of the axial streaming. To evaluate transport effects, the S4 calculation was made. Comparison between the calculated and experimental results reveals the following: ksub(eff) and Pu worth in the core are not well predicted for the heterogeneous core, although they are represented satisfactorily for the homogeneous core. Reaction rates sensitive to the low-energy neutron are underestimated in the IB when they are normalized in the core. Sodium-void worths are fairly well predicted. However, the positive void worth in the heterogeneous core is underestimated, while that in the homogeneous core is overestimated. (author)

  9. Fluid structure interaction in LMFBR cores modelling by an homogenization method

    The upper plenum of the internals of PWR, the steam generator bundle, the nuclear reactor core, may be schematically represented by a beam bundle immersed in a fluid. The dynamical study of such a system needs to take into account fluid structure interaction. A refined model at the scale of the tubes can be used but leads to a very difficult problem to solve even on the largest computers. The homogenization method allows to have an approximation of the fluid structure interaction for the global behaviour of the bundle. It consists of replacing the heterogeneous physical medium (tubes and fluid) by an equivalent homogeneous medium whose characteristics are determined from the resolution of a set of problems on the elementary cell. The aim of this paper is to present the main steps of the determination of this equivalent medium in the case of small displacements (acoustic behaviour of the fluid). Then an application to LMFBR core geometry has been realised, which shows the lowering effect on eigenfrequencies due to the fluid. Some comparisons with test results will be presented. 6 refs, 7 figs, 2 tabs

  10. Symmetries and solvable models for evaporating 2D black holes

    Cruz Muñoz, José Luis; Navarro-Salas, José; Navarro Navarro, Miguel; Talavera, C. F.

    1997-01-01

    We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is suddenly switched off. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model. © Elsevier Science B.V

  11. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  12. 2D gravity, random surfaces and all that

    I review the recent progress in 2d gravity and discuss the new numerical simulations for 2d gravity and for random surfaces in d>2. The random surface theories of interest in d>2 have extrinsic curvature terms, and for a finite value of the extrinsic curvature coupling there seems to be a second order phase transition where the string tension scales. (orig.)

  13. Van der Waals stacked 2D layered materials for optoelectronics

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  14. DYNA-2D, 2-D Hydrodynamic Finite Elements Method Program with Interactive Rezoning

    1 - Description of program or function: DYNA2D is an explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding with friction along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning with no need for transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of-motion are integrated by the central difference method. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic elastic-plastic, thermo- elastic-plastic, soil and crushable foam, linear visco-elastic, rubber, isotropic elastic-plastic, and temperature-dependent elastic-plastic. The latter two models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state. 2 - Restrictions on the complexity of the problem - Maxima of: 60,000 elements (Cray 1), 5,000 elements (CDC7600)

  15. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables

  16. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements. PMID:14700333

  17. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  18. Actin disassembly 'clock' and membrane tension determine cell shape and turning: a mathematical model

    Motile cells regulate their shape and movements largely by remodeling the actin cytoskeleton. Principles of this regulation are becoming clear for simple-shaped steadily crawling cells, such as fish keratocytes. In particular, the shape of the leading edge and sides of the lamellipodium-cell motile appendage-is determined by graded actin distribution at the cell boundary, so that the denser actin network at the front grows, while sparser actin filaments at the sides are stalled by membrane tension. Shaping of the cell rear is less understood. Here we theoretically examine the hypothesis that the cell rear is shaped by the disassembly clock: the front-to-rear lamellipodial width is defined by the time needed for the actin-adhesion network to disassemble to the point at which the membrane tension can crush this network. We demonstrate that the theory predicts the observed cell shapes. Furthermore, turning of the cells can be explained by biases in the actin distribution. We discuss experimental implications of this hypothesis.

  19. γ-SNAP stimulates disassembly of endosomal SNARE complexes and regulates endocytic trafficking pathways.

    Inoue, Hiroki; Matsuzaki, Yuka; Tanaka, Ayaka; Hosoi, Kaori; Ichimura, Kaoru; Arasaki, Kohei; Wakana, Yuichi; Asano, Kenichi; Tanaka, Masato; Okuzaki, Daisuke; Yamamoto, Akitsugu; Tani, Katsuko; Tagaya, Mitsuo

    2015-08-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that reside in the target membranes and transport vesicles assemble into specific SNARE complexes to drive membrane fusion. N-ethylmaleimide-sensitive factor (NSF) and its attachment protein, α-SNAP (encoded by NAPA), catalyze disassembly of the SNARE complexes in the secretory and endocytic pathways to recycle them for the next round of fusion events. γ-SNAP (encoded by NAPG) is a SNAP isoform, but its function in SNARE-mediated membrane trafficking remains unknown. Here, we show that γ-SNAP regulates the endosomal trafficking of epidermal growth factor (EGF) receptor (EGFR) and transferrin. Immunoprecipitation and mass spectrometry analyses revealed that γ-SNAP interacts with a limited range of SNAREs, including endosomal ones. γ-SNAP, as well as α-SNAP, mediated the disassembly of endosomal syntaxin-7-containing SNARE complexes. Overexpression and small interfering (si)RNA-mediated depletion of γ-SNAP changed the morphologies and intracellular distributions of endosomes. Moreover, the depletion partially suppressed the exit of EGFR and transferrin from EEA1-positive early endosomes to delay their degradation and uptake. Taken together, our findings suggest that γ-SNAP is a unique SNAP that functions in a limited range of organelles - including endosomes - and their trafficking pathways. PMID:26101353

  20. Quantifying cadherin mechanotransduction machinery assembly/disassembly dynamics using fluorescence covariance analysis

    Vedula, Pavan; Cruz, Lissette A.; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J.

    2016-01-01

    Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation. PMID:27357130

  1. Attenuation mechanisms in the transport of in-vessel radiological source term fission products in an LMFBR

    Quantifying the release of radiological source term fission products from an LMFBR reactor vessel (RV) is a necessary input to the containment analysis. To estimate this initial source term value, the distribution of the fission products and actinides inside the RV, prior to release, must be known. The in-vessel source term fission product distribution and transport behavior is also essential in assessing and mitigating the plant contamination and cleanup problems which occur from any significant core disruption. This paper attempts to summarize the current knowledge on the behavior of several radioisotopes in different environments created by the accident, without dealing with the modeling of the transport process itself

  2. Safety criteria for the future LMFBR's in France and main safety issues for the rapide 1500 project

    The main safety criteria for future LMFBR in France and the related issues for the RAPIDE 1500 project are presented and discussed. The evolutions with respect to SUPERPHENIX options and requirements are emphasized, in particular for the concerns of the prevention of core melt accidents, fuel damage limits and related required performances of the protection system, since one main option is not to consider whole core melt accidents in the containment design. One shall also point out the advantages of some mitigating features which were nevertheless added in the containment design, although without any explicit consideration for core melt accidents

  3. Optimization of radially heterogeneous 1000-MW(e) LMFBR core configurations. Appendixes D and E. Research project 620-25

    Barthold, W.P.; Orechwa, Y.; Su, S.F.; Hutter, E.; Batch, R.V.; Beitel, J.C.; Turski, R.B.; Lam, P.S.K.

    1979-11-01

    A parameter study was conducted to determine the interrelated effects of: loosely or tightly coupled fuel regions separated by internal blanket assemblies, number of fuel regions, core height, number and arrangement of internal blanket subassemblies, number and size of fuel pins in a subassembly, etc. the effects of these parameters on sodium void reactivity, Doppler, incoherence, breeding gain, and thermohydraulics were of prime interest. Trends were established and ground work laid for optimization of a large, radially-heterogeneous, LMFBR core that will have low energetics in an HCDA and will have good thermal and breeding performance.

  4. Optimization of radially heterogenous 1000-MW(e) LMFBR core configurations. Appendix C. Research project 620-25

    A parameter study was conducted to determine the interrelated effects of: loosely or tightly coupled fuel regions separated by internal blanket assemblies, number of fuel regions, core height, number and arrangement of internal blanket subassemblies, number and size of fuel pins in a subassembly, etc. The effects of these parameters on sodium void reactivity, Doppler, incoherence, breeding gain, and thermohydraulics were of prime interest. Trends were established and ground work laid for optimization of a large, radially-heterogeneous, LMFBR core that will have low energetics in an HCDA and will have good thermal and breeding performance

  5. Optimization of radially heterogeneous 1000-MW(e) LMFBR core configurations. Appendixes D and E. Research project 620-25

    A parameter study was conducted to determine the interrelated effects of: loosely or tightly coupled fuel regions separated by internal blanket assemblies, number of fuel regions, core height, number and arrangement of internal blanket subassemblies, number and size of fuel pins in a subassembly, etc. the effects of these parameters on sodium void reactivity, Doppler, incoherence, breeding gain, and thermohydraulics were of prime interest. Trends were established and ground work laid for optimization of a large, radially-heterogeneous, LMFBR core that will have low energetics in an HCDA and will have good thermal and breeding performance

  6. Theory and use of GIRAFFE for analysis of decay characteristics of delayed-neutron precursors in an LMFBR

    The application of the computer code GIRAFFE (General Isotope Release Analysis For Failed Elements) written in FORTRAN IV is described. GIRAFFE was designed to provide parameter estimates of the nonlinear discrete-measurement models that govern the transport and decay of delayed-neutron precursors in a liquid-metal fast breeder reactor (LMFBR). The code has been organized into a set of small, relatively independent and well-defined modules to facilitate modification and maintenance. The program logic, the numerical techniques, and the methods of solution used by the code are presented, and the functions of the MAIN program and of each subroutine are discussed

  7. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor

  8. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  9. CASSANDRE, 2-D Reactor Dynamic FEM Program with Thermohydraulic Feedback

    1 - Description of program or function: CASSANDRE is a two-dimensional (x-y or r-z) finite-elements neutronics code with thermohydraulic feedback for reactor dynamics prior to the disassembly phase. The code was conceived in order to be coupled with any thermohydraulics module, although thermohydraulics feedback is only considered in r-z geometry. In the steady state, criticality search is possible either by control-rod insertion or by homogeneous poisoning of the coolant. 2 - Method of solution: The program uses multigroup diffusion theory. Its main characteristics are the use of a generalized quasi-static model, the use of a flexible multigroup point-kinetics algorithm allowing for spectral matching, and the use of a finite elements description. 3 - Restrictions on the complexity of the problem: The user must prepare a cross section library

  10. 2D vs. 3D mammography observer study

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  11. The NH$_2$D hyperfine structure revealed by astrophysical observations

    Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) n...

  12. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  13. Introduction to game physics with Box2D

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  14. Comparison of 2D and 3D gamma analyses

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Bosca, Ryan [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); O’Daniel, Jennifer [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  15. Optimization and practical implementation of ultrafast 2D NMR experiments

    Luiz H. K. Queiroz Júnior

    2013-01-01

    Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.

  16. Optimization and practical implementation of ultrafast 2D NMR experiments

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  17. Kalman Filter for Generalized 2-D Roesser Models

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  18. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  19. SALE-2D, 2-D Fluid Flow, Navier Stokes Equation Using Lagrangian or Eulerian Method

    1 - Description of problem or function: SALE2D calculates two- dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program. 2 - Method of solution: The basic hydrodynamic part of each cycle of SALE is divided into three phases. Phase 1 is a typical explicit Lagrangian calculation in which the velocity field is updated by the effects of all forces. Phase 2 is a Newton-Raphson iteration that provides time-advanced pressures and velocities. It is used for calculations in the low-speed and even completely incompressible regimes. Phase 3 performs all the advective flux calculations. It is required for runs that are Eulerian or contain some other form of mesh rezoning. A powerful feature of SALE is the ease with which different phases can be combined to suit the requirements of individual problems

  20. Proceedings of the ANS/ASME/NRC international topical meeting on nuclear reactor thermal-hydraulics: LMFBR and HTGR advanced reactor concepts and analysis methods

    Separate abstracts are included for each of the papers presented concerning the thermal-hydraulics of LMFBR type reactors; mathematical methods in nuclear reactor thermal-hydraulics; heat transfer in gas-cooled reactors; and thermal-hydraulics of pebble-bed reactors. Two papers have been previously abstracted and input to the data base

  1. Technical Review of the UNET2D Hydraulic Model

    Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  2. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    Jian-Hua Li

    2013-04-01

    Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.

  3. Recent developments in 2D layered inorganic nanomaterials for sensing

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  4. Chemical vapour deposition: Transition metal carbides go 2D

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  5. Contribution of the CEC in structural analysis applied to LMFBR problems

    This paper presents both the activity of DG XII in field of Codes and Standards (harmonization) and the research activity carried out at the JRC in Ispra. The first part describes the activity performed in the field of structural analysis by the Fast Reactor Coordinating Committee of the CEC and its Working Group Codes and Standards. This activity, which is aimed at resolving difficulties encountered in using design procedures based on ASME Code Case N-47, has made good progress in most areas. Results from recent inelastic and seismic benchmark calculations are presented as well as future computational exercises and investigations related to piping analysis, defect analysis, material behaviour and life prediction at elevated temperature. In the second part of the paper results of recent research and future plans in the area of structural mechanics at the JRC Ispra are discussed. In the past years, a large effort was devoted to the COVA (code validation) program intended to validate dynamic fluid/structure codes necessary for predicting the response of LMFBR containments. The main conclusions that can be drawn from COVA which finishes this year are presented, and some still open questions related to the prediction of containment response to an HCDA are discussed. The paper then describes the identification technique which is applied for the determination of constitutive equations for the dynamic behaviour of materials. In the field of fracture mechanics JRC has mostly concentrated its efforts on the elastic-plastic fracture toughness properties of irradiated austenitic steels. In the future, also dynamic ductile fracture problems will be investigated, for these a large dynamic test facility with a max. force of 5 MN will be used. The numerical analysis methods associated with these tests are discussed. (author)

  6. Development of a tritium transport analysis code for the LMFBR system

    A tritium transport analysis code for the LMFBR system, TTT code, has been developed and validated using data from a power rising test conducted at Monju in 1995. The behavior of tritium during future long-term full power operation of Monju has been estimated. The TTT code was created from the tritium and hydrogen transport model devised by R. Kumar and ANL. Actual data from some plants has been used to improve the code. In this study, we used data from Monju to increase the accuracy of the calculated to measured ratio, the C/E ratio. As a result of the study, we were able to: 1. show that the calculated tritium concentration distribution and the change in the primary and secondary sodium, steam and water correlated sufficiently closely with the measured, C/E ratio of 1.1; 2. propose a transport model between sodium and the cover gas system taking into account the mechanisms affecting the partial pressure difference and the isotopic exchange of H and H3; 3. examine the considerable effect of the hydrogen source within the sodium cooling system of Monju on tritium behavior and clarify the characteristics at the initial stage of plant; 4. estimate the tritium transport and distribution for the long-term full power operation of Monju. The tritium release from the core will be 7,400 TBq during 30 years of operation. The primary and secondary cold trap will capture 99% of this and 1% or less will be released to the environment as gaseous radioactive waste from stack and its drainage water from SG; and 5. compare the best fitted tritium source rates from cores in Phenix and Monju and estimate the major release from Monju's helium bond closed type control rods. (author)

  7. Outlet plenum mixing for transient overpower conditions of a one-exit nozzle LMFBR

    Howard, P.A.

    1978-04-01

    Two types of transient tests were employed to model a one-exit nozzle LMFBR outlet plenum. Water was used as a test fluid in the simulation of constant flowrates, Transient Overpower (TOP) conditions. In the first test, simulated fuel flow was 85% and blanket flow was 15%, whereas in the second test, the fuel flow was 100%. This allowed the assessment of the mitigating effects of blanket flow upon the exit nozzle temperature transient. The flow field was clearly three-dimensional, and a less active, though not stagnant, region was observed diametrically opposite the exit nozzle. During steady state, oscillations above the fuel-blanket interface were found to be small. This is attributed to the existence above the reactor core of a recirculating flow field, which served as an effective mixing agent. A simple lumped-parameter model, EXIT1, was developed to simulate TOP transient conditions for the test with both fuel and blanket flows. The predicted temperature profiles for various regions in the plenum were in good agreement with the experimental profiles, except for the region immediately above the reactor blanket. In devising the computer model, the temperature in this region was assumed to remain constant throughout the transient. However, this constant temperature did not prevail owing to the mixing that occurred in this region as a result of the recirculating flow field above the reactor core. The computer model can be readily modified to take into account the mixing due to this recirculation. In the test without blanket flow, good agreement between predictions and data was again obtained. In comparing results of the two tests, it was found that the blanket flow had only a small mitigating influence on the transient at the exit nozzle. The computer model can easily be extrapolated to reactor conditions.

  8. Uncertainties in the interpretation of computer results on the behaviour of LMFBR fuel pins

    Since about ten years a large number of computer programs has been developed for the simulation of the behaviour of fuel pins in a LMFBR. The applications for these programs are manifold. They can be used to explain the results of the post-irradiation examination of test pins and improve the understanding of the irradiation behaviour of these pins. They give valuable assistance in the preparation and optimal design of irradiation experiments. They are indispensable in the detailed analysis of the influence of individual material phenomena. Moreover, they can be used to analyse the influence of individual design parameters on the fuel pin behaviour with the aim to optimize the pin performance and establish appropriate specifications. Further on, they can be used to predict the behaviour of fuel pins in nuclear power reactors under the scheduled operation and analyse the consequences of off-normal operation with the aim to find out critical conditions, maybe for reasons of safety or the optimization of operation. The computer program can only serve its purpose if several conditions are fulfilled. Sufficient knowledge of all the data necessary for its application is one of these conditions. The experience gained with many computer runs resulted in some critical considerations. It follows that the knowledge of those data is still insufficient in many cases and large uncertainties have to be accepted in the interpretation of computed results. Some sources of uncertainties are demonstrated. Their influence on the computed results is discussed. It is clear that, due to the complexity of the problem, only some selected examples can be treated. The computer calculation results presented have been provided by the computer programs SATURN and TEXZ respectively

  9. Transient deformation of LMFBR cores due to local failure: experimental and theoretical investigation

    This paper describes an effort to predict the mechanical core deformation caused by local failure within an LMFBR core. These activities are intended to cover all the potential core damage possibilities currently under discussion and analysis. In particular it is shown that the reactor can be scrammed in time under pessimistic-realistic pressure transients and that the damage does not exceed tolerable limits. A special gas generator technique to simulate a fuel coolant explosion has been developed at AWRE Foulness. This has been used to perform the explosion tests needed to demonstrate the safety of the SNR 300 core. A molten fuel-coolant interaction (MFCI) experimental facility, and a drop tower to carry out sub-assembly crushing tests are described. Theoretical studies are presented which use mass-spring-dashpot, lumped parameter-hinge or micro-rigid-lumped-mass models. They simulate the crushing and bending of a single sub-assembly interacting with the coolant as well as the behaviour of a multirow 'spoke' model. For the core analysis only preliminary computational results are presently available which can be compared with the full scale tests in which the fluid pressure did not exceed a 'threshold' of about 100 bar. Parameter studies show the influence of pulse shape, material properties as well as the time integrator. Some of the unanswered questions concern the hydrodynamic feedback of the deformations on the pressure distribution in space and time. Also the behaviour of the highly irradiation-embrittled cores is poorly understood today. Finally, an enhanced energy release package to describe the MFCI must still be added to the reactivity calculation module of a future fast reactor dynamics code. (Auth.)

  10. Safety issues for LMFBR: important features drawn from the assessments of Superphenix

    Superphenix, which is built on the site of Creys-Malville, is still the biggest LMFBR plant that has been in operation. It is a pool type reactor, as Phenix and the RNR 1 500 and EFR projects. After the analysis of the preliminary safety (1974-1975), the construction was authorised by decree of the Prime Minister in 1977, the authorization for fuel loading and star-up to 3% was given by the minister of industry in July 1985 and full power was achieved in December 1986. The plant was operated until the end of December 1996, producing the equivalent of 320 EFPD, corresponding to half of the maximum barn-up of the first core. The plant was definitively stopped on the 20. of April 1998 by a decision of the French government. During this period of 25 years of licensing, construction and operation of Superphenix, others discussions and preliminary licensing procedures were started for new projects, mainly the RNR 1500 French project and the EFR European project. The operation of Superphenix was also marked by several incidents, which led to additional licensing procedures and important modifications. This period was also marked by an important work of research and development in the safety field, mostly related to the issues concerning hypothetical core disruptive accidents (HCDA) and sodium fires; further, this period was marked by the Three Mile Island accident in 1979 and the Chernobyl accident in 1986. The purpose of this paper is to present some items which were discussed during this period of 25 years and which should be of interest for future LMFBRs. In this presentation, we shall discuss the key issues concerning the safety criteria and options taken with respect to severe accidents, i.e. core melt accidents, giving details on some specific which are less known since they were assessed only lately for Superphenix, sometimes in connection with the on-going safety researches. (author)

  11. The benefits and problems of base seismic isolation for LMFBR reactor plants

    The use of seismic isolation as an approach to aseismic design has gained increasing interest as a viable and efficient engineering solution to earthquake ground motion both within and outside of the nuclear field. Seismic isolation design is fundamentally different from conventional design practice. In the conventional approach, seismic loads are resisted by making the structures, equipment, piping, and associated supports strong enough to resist seismic loads and to provide high levels of ductility. The use of seismic isolation approaches the problem by decoupling the structure (and its contents) from the seismic input resulting from ground shaking. Because LMFBR systems operate at virtually atmospheric pressure, vessels, piping, and associated components tend to be quite thin-walled. The problem is that these thin-walled items have little inherent resistance to earthquake effects and are vulnerable to seismic load effects. As a result, earthquake loads have an even greater influence on LMR designs than they already are in LWR plants. The potential benefits of seismic isolation for an LMR plant are considerable, including minimization of high-cost commodities such as stainless steel, large reductions in internal equipment loads, increased margins of safety for beyond-design-basis loads, and enhancement of plant standardization design. There are, of course, a number of issues and concerns in the use of seismic isolation for a nuclear power plant. These issues cover a number of items such as the lack of experience in actual earthquakes, effects of long-period ground motion, effect of vertical loads, traveling waves, and other related concerns. This paper presents an evaluation of the benefits and problems in the use of seismic isolation in LMR plants. 12 refs, 7 figs

  12. 2d quantum gravity and black hole formation

    The quantum integral of generic 2d quantum gravity can be performed exactly. The equivalence of dilaton theories to 2d theories with torsion and the use of a light cone gauge are crucial. Scalar matter can be treated perturbatively. A generalization of the Polyakov action emerges. For scattering of scalars in a flat background already in the tree approximation for the first time the intermediate formation of a black hole is observed in an ab initio quantum gravity computation

  13. Sparse Non-negative Matrix Factor 2-D Deconvolution

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive and ...... this form of factorization. The developed algorithms have been used for source separation and music transcription....

  14. Excitation of 2D plasmons in Cs/W(110)

    Benemanskaya, G V; Frank-Kamenetskaya, G E

    2001-01-01

    One studied the evolution of surface photoemission spectra for Cs/W(110) system at metastable Cs coatings exceeding monolayer. One showed possibility to observe 2D plasmons by means of threshold photoemission spectroscopy. One detected three photoemission peaks characterized by complicated behavior depending on Cd adsorption dose. The nature of peaks may be related to plasmon photoinduced excitation in quasi-2D Cs clusters, surface Cs plasmon and interface Cs-W plasmon

  15. QSAR Models for P-450 (2D6) Substrate Activity

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;

    2009-01-01

    activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....

  16. The Branching of Graphs in 2-d Quantum Gravity

    Harris, M. G.

    1996-01-01

    The branching ratio is calculated for three different models of 2d gravity, using dynamical planar phi-cubed graphs. These models are pure gravity, the D=-2 Gaussian model coupled to gravity and the single spin Ising model coupled to gravity. The ratio gives a measure of how branched the graphs dominating the partition function are. Hence it can be used to estimate the location of the branched polymer phase for the multiple Ising model coupled to 2d gravity.

  17. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    Jian-Hua Li; Yi-Wen Wang; Yi Chen; Meng Zhang

    2013-01-01

    Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations) are employed to original images using big scale multiple SEs (structuring elements). Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcode...

  18. The relation between Euclidean and Lorentzian 2D quantum gravity

    Ambjørn, J.; Correia, J; Kristjansen, C.; Loll, R.

    2006-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (generalized) Lorentzian spacetime. This motivates a map between the parameter spaces of the two theories, under which their propagators get identified. In two dimensions, Lorentzian quantum gravity ca...

  19. Phenix LMFBR power plant: Radioactive effluent releases and operating team irradiation results after two years of industrial operation

    The increasing number of nuclear power plants necessitates the reduction of radioactive effluent release to as low a level as possible. The operating teams are exposed to radiation during operation in the course of work on active components, particularly during repair and maintenance work, and it is desirable, for economic as well as for more general social reasons, to keep the levels of exposure as low as possible. The release of radioactive effluent and the personnel irradiation levels depend upon the type of reactor. The design of the Phenix LMFBR made it possible from the start to forecast very good results, and after more than two years of normal industrial operation with high load factors the results more than confirm the forecasts of very small liquid and gaseous effluent releases and low irradiation levels, thanks mainly to integral design and in-sodium fuel handling. The figures are given in the paper. The Phenix-type LMFBR has thus proven to be particularly ''clean'' as regards the environment; and as far as operation is concerned, there are few constraints due to personnel exposure. Fast breeder reactors accordingly hold out great promise because, in this sphere, they represent a great advance on present-day nuclear plants. (author)

  20. Current status of Japanese research and development activity and program plan on failed fuel detection and location systems for LMFBR

    Progress of research and development on failed fuel detection and location (FFDL) implemented since 1968 in Japan is summarized and reviewed from the viewpoint of availability to reflect to the design and operation of JOYO and MONJU. These include basic experiments of fission product behavior, component development and testing, feasibility study of detection system response, and comparison of several kinds of location methods. The discussion will extend to the role of FFDL in the other surveillance instruments to secure safety and availability of LMFBR plant. Major concerns in Japan are concentrated on the development tasks of location systems, especially on gas tagging and in- and ex-vessel sipping. Another interest is recently directed to revaluation of the fission product behavior in the primary cooling system and monitor sensitivity to analyze response of FFDL system. Future programs are presented, which is proceeding and under consideration to be performed in JOYO MK-II in order to improve and certify the design of FFDL system for the Japanese fast reactors. An international cooperation in the should be remarked future is considered to be quite important and necessary fully to respond to the development of FFDL system, for LMFBR. A practical proposal to approach this objective will be made. (author)

  1. Economic analysis of the transport of radioactive materials in LWR and LMFBR fuel cycles in the United States

    The costs associated with the transportation of heavy-metals in two LWR fuel cycles and one LMFBR fuel cycle have been estimated, both for existing levels of technology and for advanced shipping technology. The costs of transporting low-level wastes in the two LWR fuel cycles have also been estimated. The cost assessment included not only the package capital costs and the operating transportation costs (tariffs), but also included such items as technology development, fleet servicing and maintenance costs, and package decommissioning costs. Areas in which transportation costs can be reduced through the use of advanced packaging designs have been identified, and the amount of such cost reduction has been estimated. Savings in transportation costs of 20% for the LWR once-through fuel cycle, 13% for the LWR recycle fuel cycle, and 29% for the LMFBR recycle fuel cycle can result from the use of advanced shipping systems instead of the use of current package designs or current technology. Identification of those transportation segments in a given nuclear fuel cycle which offer the possibility of significant cost reduction should permit orderly progress toward a more efficient nuclear transportation industry. 1 figure, 6 tables

  2. Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex.

    Bombardier, Jeffrey P; Munson, Mary

    2015-12-01

    Membrane fusion is a tightly controlled process in all eukaryotic cell types. The SNARE family of proteins is required for fusion throughout the exocytic and endocytic trafficking pathways. SNAREs on a transport vesicle interact with the cognate SNAREs on the target membrane, forming an incredibly stable SNARE complex that provides energy for the membranes to fuse, although many aspects of the mechanism remain elusive. Recent advances in single-molecule and high-resolution structural methods provide exciting new insights into how SNARE complexes assemble, including measurements of assembly energetics and identification of intermediates in the assembly pathway. These techniques were also key in elucidating mechanistic details into how the SNARE complex is disassembled, including details of the energetics required for ATP-dependent α-SNAP/NSF-mediated SNARE complex disassembly, and the structural changes that accompany ATP hydrolysis by the disassembly machinery. Additionally, SNARE complex formation and disassembly are tightly regulated processes; innovative biochemical and biophysical characterization has deepened our understanding of how these regulators work to control membrane fusion and exocytosis. PMID:26498108

  3. Ultratrace Detection of Toxic Chemicals: Triggered Disassembly of Supramolecular Nanotube Wrappers.

    Ishihara, Shinsuke; Azzarelli, Joseph M; Krikorian, Markrete; Swager, Timothy M

    2016-07-01

    Chemical sensors offer opportunities for improving personal security, safety, and health. To enable broad adoption of chemical sensors requires performance and cost advantages that are best realized from innovations in the design of the sensing (transduction) materials. Ideal materials are sensitive and selective to specific chemicals or chemical classes and provide a signal that is readily interfaced with portable electronic devices. Herein we report that wrapping single walled carbon nanotubes with metallo-supramolecular polymers creates sensory devices with a dosimetric (time- and concentration-integrated) increase in electrical conductivity that is triggered by electrophilic chemical substances such as diethylchlorophosphate, a nerve agent simulant. The mechanism of this process involves the disassembly of the supramolecular polymer, and we demonstrate its utility in a wireless inductively powered sensing system based on near-field communication technology. Specifically, the dosimeters can be powered and read wirelessly with conventional smartphones to create sensors with ultratrace detection limits. PMID:27336905

  4. Optimized XML Storage in NXD Based on Tree-Structure Disassemble

    2006-01-01

    Independent XML storage based on XSD (XML Schema Document) is adopted in NXD(Native XML Database), XML storage structure based on tree-structure disassemble and the algorithm used in dynamically updating XML document are provided in this paper. The main idea is that in term of data model of XML document, XML document is parsed to Document Structure-Tree with Hierarchical Model and Leaf-Data with Relation Model for storage. Simultaneously Proxy node is imported in order to solve the problem that XML data store in cross-blocks. And with XSD model information, sparse index is constructed to save storage space. It is proved that this storage structure could improve efficiency of XML document operation.

  5. Electrostatic assembly/disassembly of nanoscaled colloidosomes for light-triggered cargo release

    Li, Song

    2015-04-27

    Colloidosome capsules possess the potential for the encapsulation and release of molecular and macromolecular cargos. However, the stabilization of the colloidosome shell usually requires an additional covalent crosslinking which irreversibly seals the capsules, and greatly limits their applications in large-cargos release. Herein we report nanoscaled colloidosomes designed by the electrostatic assembly of organosilica nanoparticles (NPs) with oppositely charged surfaces (rather than covalent bonds), arising from different contents of a bridged nitrophenylene-alkoxysilane [NB; 3-nitro-N-(3-(triethoxysilyl)propyl)-4-(((3-(triethoxysilyl)propyl)-amino)methyl)benzamid] derivative in the silica. The surface charge of the positively charged NPs was reversed by light irradiation because of a photoreaction in the NB moieties, which impacted the electrostatic interactions between NPs and disassembled the colloidosome nanosystems. This design was successfully applied for the encapsulation and light-triggered release of cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sparse Non-negative Tensor 2D Deconvolution (SNTF2D) for multi channel time-frequency analysis

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We recently introduced two algorithms for sparse non-negative matrix factor 2-D deconvolution (SNMF2D) that are useful for single channel source separation and music transcription. We here extend this approach to the analysis of the log-frequency spectrograms of a multichannel recording. The model...... algorithms are demonstrated to successfully identify the components of both artificially generated as well as real stereo music....

  7. Distinctive PSA-NCAM and NCAM Hallmarks in Glutamate-Induced Dendritic Atrophy and Synaptic Disassembly

    Podestá, María Fernanda; Yam, Patricia; Codagnone, Martín Gabriel; Uccelli, Nonthué Alejandra; Colman, David; Reinés, Analía

    2014-01-01

    Dendritic and synapse remodeling are forms of structural plasticity that play a critical role in normal hippocampal function. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) participate in neurite outgrowth and synapse formation and plasticity. However, it remains unclear whether they contribute to dendritic retraction and synaptic disassembly. Cultured hippocampal neurons exposed to glutamate (5 µM) showed a reduced MAP-2 (+) area in the absence of neuronal death 24 h after the insult. Concomitantly, synapse loss, revealed by decreased synaptophysin and post-synaptic density-95 cluster number and area, together with changes in NCAM and PSA-NCAM levels were found. Dendritic atrophy and PSA-NCAM reduction proved NMDA-receptor dependent. Live-imaging experiments evidenced dendritic atrophy 4 h after the insult; this effect was preceded by smaller NCAM clusters (1 h) and decreased surface and total PSA-NCAM levels (3 h). Simultaneously, total NCAM cluster number and area remained unchanged. The subsequent synapse disassembly (6 h) was accompanied by reductions in total NCAM cluster number and area. A PSA mimetic peptide prevented both the dendritic atrophy and the subsequent synaptic changes (6 h) but had no effect on the earliest synaptic remodeling (3 h). Thus, NCAM-synaptic reorganization and PSA-NCAM level decrease precede glutamate-induced dendritic atrophy, whereas the NCAM level reduction is a delayed event related to synapse loss. Consequently, distinctive stages in PSA-NCAM/NCAM balance seem to accompany glutamate-induced dendritic atrophy and synapse loss. PMID:25279838

  8. The NH$_2$D hyperfine structure revealed by astrophysical observations

    Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...

  9. Failure Mechanism of True 2D Granular Flows

    Nguyen, Cuong T; Fukagawa, R

    2015-01-01

    Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...

  10. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  11. KOREAN MOBILE OPERATORS' VALUE MAP FOR LTE D2D

    Taisiya Kim

    2015-04-01

    Full Text Available Managing the wireless data traffic is a main concern for mobile network operators in Information of Things (IoT environment. Long Term Evolution Device to Device (LTE D2D is regarding as a solution for the spectrum problem. It will bring an impact on providers and the whole mobile environment. The main purpose of this study is to analyze the role of key players, who share spectrum with mobile operators, and to present the value map of relationship among Korean mobile operators and other key players in LTE D2D discovery (commercial channel, as complicated relationships of key players are expected. Then, this study suggests scenario for ‘Targeted Advertising’ service of LTE D2D. LTE D2D is early discussion stage and scenario has limitation of specific business model. However, results of this study are significant for the present stage and provide implications for future researches on strategies for LTE D2D environment.

  12. 2D materials for photon conversion and nanophotonics

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  13. Graphene based 2D-materials for supercapacitors

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  14. Design and Realization of Dynamic Obstacle on URWPSSim2D

    Xiao Chen

    2013-07-01

    Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles,thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.  

  15. CYP2D6 genotype determination in the Danish population

    Brøsen, K; Nielsen, P N; Brusgaard, K;

    1994-01-01

    CYP2D6 genotyping was carried out by XbaI restriction fragment length polymorphism analysis and polymerase chain reaction in 168 healthy Danish volunteers, 77 extensive metabolizers (EM) and 91 poor metabolizers (PM) of sparteine. All EM were genotyped correctly as heterozygous or homozygous for.......11-9.10). The median difference was 0.09 (95% confidence interval: 0.02-0.16). CYP2D6 phenotyping is a promising tool in tailoring the individual dose of tricyclic antidepressants, some neuroleplics and some antiarrhythmics. However if the genotype test could be improved with regard to both sensitivity in PM...... and the ability to predict CYP2D6 activity in EM then it would be of even greater clinical value in therapeutic drug monitoring. Udgivelsesdato: 1994-null...

  16. Statistical mechanics on a 2D-random surface

    Various geometrical models first defined in the Euclidean plane or on a regular lattice have been briefly reviewed, including self-avoiding walks, random walk intersections, percolation and Ising clusters. These systems embody infinite sets of field operators defined in a natural way from the (fractal) geometry of these fluctuating critical systems. Their scaling behavior can be linked to that of associated conformal field theories. These systems can also all be redefined on a random lattice or surface, instead of on a regular 2D lattice. They are then coupled to ''quantum gravity'', and live on the ''world-sheet''. The fact that all their new exponents on a random surface can then be related to those in the usual 2D-plane, although now well known in string theory, is worth publicizing in this Physics in 2D conference. We illustrate it by some exact solutions in the case of polymers and branched polymers (animals) on a random fluid surface. (author)

  17. Effective viscosity of 2D suspensions - Confinement effects

    Peyla, Philippe; Priem, Stephane; Vincent, Doyeux; Farutin, Alexander; Ismail, Mourad

    2014-11-01

    We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. For instance, we examine the role of particle-wall and particle-particle interactions in determining the rheology of confined sheared suspensions. In addition we evaluate the intrinsic viscosity as well as the contribution of hydrodynamic interactions to the dissipation as a function of a wide range of confinements. Thanks to the direct visualisation of the whole 2D Stokes flow, we are able to give a clear interpretation about the rheology of semi-dilute confined suspensions.

  18. S-duality and 2d Topological QFT

    Gadde, Abhijit; Rastelli, Leonardo; Razamat, Shlomo S

    2009-01-01

    We study the superconformal index for the class of N=2 4d superconformal field theories recently introduced by Gaiotto. These theories are defined by compactifying the (2,0) 6d theory on a Riemann surface with punctures. We interpret the index of the 4d theory associated to an n-punctured Riemann surface as the n-point correlation function of a 2d topological QFT living on the surface. Invariance of the index under generalized S-duality transformations (the mapping class group of the Riemann surface) translates into associativity of the operator algebra of the 2d TQFT. In the A_1 case, for which the 4d SCFTs have a Lagrangian realization, the structure constants and metric of the 2d TQFT can be calculated explicitly in terms of elliptic gamma functions. Associativity then holds thanks to a remarkable symmetry of an elliptic hypergeometric beta integral, proved very recently by van de Bult.

  19. 2D growth processes: SLE and Loewner chains

    Bauer, Michel [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: michel.bauer@cea.fr; Bernard, Denis [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: denis.bernard@cea.fr

    2006-10-15

    This review provides an introduction to two dimensional growth processes. Although it covers a variety of processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the remarkable properties of SLE are explained, together with the tools for computing with it. This review has been written with the aim of filling the gap between the mathematical and the physical literature on the subject.

  20. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.