WorldWideScience

Sample records for 2-d laser induced

  1. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Arnold, A.; Bombach, R.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  2. 2D electrostatic PIC algorithm for laser induced studying plasma in vacuum

    Álvarez, C. A.; Riascos, H.; Gonzalez, C.

    2016-02-01

    Particle-In-Cell(PIC) method is widely used for simulating plasma kinetic models. A 2D-PIC electrostatic algorithm is implemented for simulating the expansion of a laser- induced plasma plume. For potential and Electric Field calculation, Dirichlet and periodic boundary conditions are used in the X (perpendicular to the ablated material) and Y directions, respectively. Poisson-solver employs FFTW3 library and the five-point Laplacian to compute the electric potential. Electric field calculation is made by central finite differences method. Leap-frog scheme updates particle positions and velocities at each iteration. Plume expansion anlysis is done for the Emission and Post-Emission stages. In the Emission phase (while the laser is turned on), fast electron expansion is observed and ion particles remain near the surface of the ablated material. In the post-emission stage (with the laser turned off) the charge separation produces an electric field that accelerates the ions leading to the formation of a KeV per particle Ion-Front. At the end of the expansion, fastest electrons escape from the simulation space; an almost homogeneous ion-electron distribution is observed, decreasing the electric field value and the Coulomb interactions.

  3. Ultra-low power threshold for laser induced changes in optical properties of 2D Molybdenum dichalcogenides

    Cadiz, Fabian; Wang, Gang; Kong, Wilson; Fan, Xi; Blei, Mark; Lagarde, Delphine; Gay, Maxime; Manca, Marco; Taniguchi, Takashi; Watanabe, Kenji; Amand, Thierry; Marie, Xavier; Renucci, Pierre; Tongay, Sefaattin; Urbaszek, Bernhard

    2016-01-01

    The optical response of traditional semiconductors depends on the laser excitation power used in experiments. For two-dimensional (2D) semiconductors, laser excitation effects are anticipated to be vastly different due to complexity added by their ultimate thinness, high surface to volume ratio, and laser-membrane interaction effects. We show in this article that under laser excitation the optical properties of 2D materials undergo irreversible changes. Most surprisingly these effects take place even at low steady state excitation, which is commonly thought to be non-intrusive. In low temperature photoluminescence (PL) we show for monolayer (ML) MoSe2 samples grown by different techniques that laser treatment increases significantly the trion (i.e. charged exciton) contribution to the emission compared to the neutral exciton emission. Comparison between samples exfoliated onto different substrates shows that laser induced doping is more efficient for ML MoSe2 on SiO2/Si compared to h-BN and gold. For ML MoS2 ...

  4. 2-D analysis of Ge implanted SiO2 surfaces by laser-induced breakdown spectroscopy

    2-D elemental distribution of Ge in silicon oxide substrates with differing implantation doses of between 3 x 1016 cm-2 and 1.5 x 1017 cm-2 has been investigated by Laser-Induced Breakdown Spectroscopy (LIBS). Spectral emission intensity has been optimized with respect to time, crater size, ablation depth and laser energy. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive X-Ray Spectroscopy (EDX) have been utilized to obtain crater depth, morphology and elemental composition of the sample material, respectively. LIBS spectral data revealed the possibility of performing 2-D distribution analysis of Ge atoms in silicon oxide substrate. EDX analysis results confirmed that LIBS is capable to detect Ge atoms at concentrations lower than 0.2% (atomic). LIBS as a fast semi-quantitative analysis method with 50 μm lateral and 800 nm depth resolution has been evaluated. Results illustrate the potential use of LIBS for rapid, on-line assessment of the quality of advanced technology materials during the manufacturing process

  5. 2D Saturable Absorbers for Fibre Lasers

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  6. Quantized 1D- and 2D optical molasses: Laser cooling and spectrum of resonance fluorescene

    We present results for laser cooling of optical molasses and the spectrum of resonance fluorescene based on a fully quantum mechanical treatment of the atomic center-of-mass motion for 1D and 2D laser configurations. Our calculations based on recently developed wave function simulations of the quantum master equation for laser cooling

  7. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed

  8. Terrain Classification for Outdoor Autonomous Robots using 2D Laser Scans

    Rufus Blas, Morten; Riisgaard, Søren; Ravn, Ole;

    2005-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses four distinctly different classifiers: raw height, step size, slope, and...... department developed Medium Mobile Robot and tests conducted in a national park environment....

  9. Terrain Classification for Outdoor Autonomous Robots using 2D Laser Scans

    Rufus Blas, Morten; Riisgaard, Søren; Ravn, Ole;

    2005-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses four distinctly different classifiers: raw height, step size, slope...... with a department developed Medium Mobile Robot and tests conducted in a national park environment....

  10. Manufacture of a 2D optical fiber array coupler with micrometer precision for laser radar applications

    This article presents the manufacture of a 2D-fiber array coupler using UV-LIGA technology for the precise positioning of a two-dimensional (2D) optical fiber array. The precision of the alignment of the eight-by-eight fiber array was demonstrated to be less than 2 μm. The average concentricity error of the fibers to the positioning holes of the array coupler had a minimum and maximum error of 1.7 µm and 6.5 μm, respectively. The 2D fiber array coupler can fulfill the coupling and transmission requirements of 2D light spots for laser radar applications. The method developed here can easily be extended to the manufacture of larger arrays. (paper)

  11. Measurements of laboratory turbulence with the 2d-Laser Cantilever Anemometer

    Puczylowski, Jaroslaw; Peinke, Joachim; Hoelling, Michael

    2013-11-01

    A newly developed anemometer, the 2d-Laser Cantilever Anemometer, was used to measure the two-dimensional wind speed vector in laboratory-generated turbulence. The anemometer provides a temporal and spatial resolution comparable or even higher to those of commercial hot-wires and thus is an excellent alternative for high-resolution measurements. The 2d-Laser Cantilever Anemometer uses a previously unseen measurement technique in the range of anemometers. The principle is adopted from atomic force microscopes (AFM). A tiny micro-structured cantilever is brought into the airflow, where it experiences a drag force due to the moving fluid. The resulting deflection is measured using the laser pointer principle. Unlike the measuring principle of hot-wires this technique can be applied in challenging environments such as in liquids or very close to walls. Our comparing measurements with the 2d-Laser Cantilever Anemometer and an x-wire were carried out in the wake of rigid bodies and grids. The results show a great agreement with regards to the increment statistics on various scales, power spectra and turbulence intensity, thus proving the new anemometer.

  12. 2-D fluid dynamics models for laser driven fusion on IBM 3090 vector multiprocessors

    Fluid-dynamics codes for laser fusion are complex research codes, consisting of many distinct modules and embodying a variety of numerical methods. They are therefore good candidates for testing general purpose advanced computer architectures and the related software. In this paper, after a brief outline of the basic concepts of laser fusion, the implementation of the 2-D laser fusion fluid code DUED on the IBM 3090 VF vector multiprocessors is discussed. Emphasis is put on parallelization, performed by means of IBM Parallel FORTRAN (PF). It is shown how different modules have been optimized by using different features of PF: i) modules based on depth-2 nested loops exploit automatic parallelization; ii) laser light ray tracing is partitioned by scheduling parallel ICCG algorithm (executed in parallel by appropiately synchronized parallel subroutines). Performance results are given for separate modules of the code, as well as for typical complete runs

  13. Enhanced Algorithms for Estimating Tree Trunk Diameter Using 2D Laser Scanner

    Ola Ringdahl

    2013-10-01

    Full Text Available Accurate vehicle localization in forest environments is still an unresolved problem. Global navigation satellite systems (GNSS have well known limitations in dense forest, and have to be combined with for instance laser based SLAM algorithms to provide satisfying accuracy. Such algorithms typically require accurate detection of trees, and estimation of tree center locations in laser data. Both these operations depend on accurate estimations of tree trunk diameter. Diameter estimations are important also for several other forestry automation and remote sensing applications. This paper evaluates several existing algorithms for diameter estimation using 2D laser scanner data. Enhanced algorithms, compensating for beam width and using multiple scans, were also developed and evaluated. The best existing algorithms overestimated tree trunk diameter by ca. 40%. Our enhanced algorithms, compensating for laser beam width, reduced this error to less than 12%.

  14. Traversable terrain classification for outdoor autonomous robots using single 2D laser scans

    Andersen, Jens Christian; Blas, Morten Rufus; Andersen, Nils Axel; Ravn, Ole; Blanke, Mogens

    2006-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses seven distinctly different classifiers: raw height, roughness, step size......, curvature, slope, width and invalid data. These are then used to extract road borders, traversable terrain and identify obstacles. Experimental results are shown and discussed. The results were obtained using a DTU developed mobile robot, and the autonomous tests were conducted in a national park...

  15. Vibration induced flow in hoppers: DEM 2D polygon model

    2008-01-01

    A two-dimensional discrete element model (DEM) simulation of cohesive polygonal particles has been developed to assess the benefit of point source vibration to induce flow in wedge-shaped hoppers. The particle-particle interaction model used is based on a multi-contact principle.The first part of the study investigated particle discharge under gravity without vibration to determine the critical orifice size (Be) to just sustain flow as a function of particle shape. It is shown that polygonal-shaped particles need a larger orifice than circular particles. It is also shown that Be decreases as the number of particle vertices increases. Addition of circular particles promotes flow of polygons in a linear manner.The second part of the study showed that vibration could enhance flow, effectively reducing Be. The model demonstrated the importance of vibrator location (height), consistent with previous continuum model results, and vibration amplitude in enhancing flow.

  16. OBSTACLE DETECTION BY ALV USING TWO 2D LASER RANGE FINDERS

    2001-01-01

    This paper describes an effective method of obstacle detection by ALV (Autonomous Land Vehi- cle) equipped with two 2D laser range finders (LRF) installed at different locations of the ALV to obtain eom- prehensive information on the environment. The data processing includes two main steps: ( 1 ) data-processing of the current sample; (2) fusion of the former range data and the current one. The rough description of the ALV's environnent via the four sub-steps ( Data Filter, Obstacle Extraction, Obstacle Merging, Distinguish- ing Obstacle from Road-Edge) was not reliable enough for our control system. To overcome the shortcoming of the 2D LRF and the motion noise of the ALV, a Kalman filter was used to estimate the position of the obsta- cles; then the data of the two LRFs were collated to obtain the height and width of the obstacles. Experiment results attested the feasibility of the detection system.

  17. LASER-INDUCED PHOTODISSOCIATION

    Rahman, N.

    1985-01-01

    The richness of the field of laser-induced photodissociation is pointed out. Some of the recent works in this area comprising theoretical, computational as well as experimental research are discussed.

  18. Laser Absorption spectrometer instrument for tomographic 2D-measurement of climate gas emission from soils

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2014-05-01

    One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so

  19. A 2D optomechanical focused laser spot scanner: analysis and experimental results for microstereolithography

    Gandhi, P. S.; Deshmukh, S.

    2010-01-01

    This paper proposes and analyzes a 2D optomechanical-focused laser spot scanning system (patent pending) which allows uniform intensity focused spot scanning with high speed and high resolution over a large range of scan. Such scanning is useful where variation of focused spot characteristics affects the performance of applications such as micro-/nano-stereolithography, laser micro-machining, scanning optical tweezers, optical scanning microscopy, and so on. Proposed scanning is achieved by using linear movement of mirrors and lens maintaining the alignment of motion and optical axis of laser. Higher speed and high resolution at the same time are achieved by use of two serial double parallelogram flexural mechanisms with mechatronics developed around them. Optical analysis is carried out to demonstrate effectiveness of the proposed system numerically and is further supported by the experimental results. Additional analysis is carried out to demonstrate robustness of the scanner in the case of small misalignment errors incurred in actual practice. Although the proposed scanner is useful in general in several applications mentioned above, discussion in this paper is focused on microstereolithography.

  20. Nonlinear Raman-Nath diffraction of femtosecond laser pulses in a 2D nonlinear photonic crystal.

    Vyunishev, A M; Arkhipkin, V G; Slabko, V V; Baturin, I S; Akhmatkhanov, A R; Shur, V Ya; Chirkin, A S

    2015-09-01

    We study second-harmonic generation (SHG) of femtosecond laser pulses in a rectangular two-dimensional nonlinear photonic crystal (NLPC). Multiple SH beams were observed in the vicinity of the propagation direction of the fundamental beam. It has been verified that the angular positions of these beams obey the conditions of nonlinear Raman-Nath diffraction (NRND). The measured SH spectra of specific NRND orders consist of narrow peaks that experience a high-frequency spectral shift as the order grows. We derive an analytical expression for the process studied and find the theoretical results to be in good agreement with the experimental data. We estimate the enhancement factor of nonlinear Raman-Nath diffraction in 2D NLPC to be 70. PMID:26368697

  1. Novel Aerial 3D Mapping System Based on UAV Platforms and 2D Laser Scanners

    David Roca

    2016-01-01

    Full Text Available The acquisition of 3D geometric data from an aerial view implies a high number of advantages with respect to terrestrial acquisition, the greatest being that aerial view allows the acquisition of information from areas with no or difficult accessibility, such as roofs and tops of trees. If the aerial platform is copter-type, other advantages are present, such as the capability of displacement at very low-speed, allowing for a more detailed acquisition. This paper presents a novel Aerial 3D Mapping System based on a copter-type platform, where a 2D laser scanner is integrated with a GNSS sensor and an IMU for the generation of georeferenced 3D point clouds. The accuracy and precision of the system are evaluated through the measurement of geometries in the point clouds generated by the system, as well as through the geolocation of target points for which the real global coordinates are known.

  2. Magnetic-field-induced Heisenberg to XY crossover in a quasi-2D quantum antiferromagnet

    The magnetic-field-dependent ordering temperature of the quasi-2D quantum Heisenberg antiferromagnet (QHAF) Cu(pz)2(ClO4)2 was determined by calorimetric measurement in applied dc fields up to 33 tesla. The magnetic phase diagram shows a round maximum at 5.95 K and 17.5 T (at ≈ 1/3 of its saturation field), a 40 percent enhancement of the ordering temperature above the zero field value of 4.25 K. The enhancement and reentrance are consistent with predictions of a field-induced Heisenberg to XY crossover behavior for an ideal 2D QHAF system

  3. Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins

    Scott, Mark Andrew

    When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3

  4. Laser induced plasma spectroscopy

    Kim, Young Suk; Kim, Nak Bae; Woo, Hyung Joo; Kim, Joon Kon; Kim, Gi Dong; Choi, Han Woo; Yoon, Yoon Yeol; Shim, Sang Kwun [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    When the pulsed laser is focused onto a small spot of a solid surface, an optically induced plasma is formed at this surface. This plasma will be formed when the laser power density exceeds the breakdown threshold value of the solid surface. The interaction of high power laser light with a target or solid materials have been an active topic not only in plasma physics but also in the field of analytical chemistry. Recently, LIPS(laser induced plasma spectroscopy) has been applied many kinds of sample analysis including solid, liquid and gas analysis. LIPS has a advantage of the minimal sample preparation required for a solid sample and ability to analyze conducting as well as nonconducting materials, multi-elemental analysis. But this method has a poorer sensitivity than several competing atomic spectroscopic methods and semiquantitative analysis. Numerous factors affect the ablation process, including the laser pulse properties, such as pulse width, spatial and temporal fluctuations of the pulse and laser power fluctuations. The mechanical, physical and chemical properties of the sample also influence the ablation process. We studied LIPS with Nd:YAG second harmonic 532 nm and the induced plasma temperature was studied by observing the emission intensity of Fe(I) line and the plasma temperature of the different kind of samples were calculated using Boltzmann plotting method under same laser condition. Using the above experimental results, LIPS has been applied for the analysis of the elemental distribution mapping of the polished rock section. For the elemental mapping analysis, XY stage controlled by step motor and PC were used and 5 x 5 mm element image was obtained. For the quantitative analysis, rock standard samples were analyzed and Ba, Cu, Fe, Mn, Si and Sr calibration curve were obtained. (author). 22 refs., 2 tabs., 14 figs.

  5. Polarization induced 2D hole gas in GaN/AlGaN heterostructures

    Hackenbuchner, S.; Majewski, J. A.; Zandler, G.; Vogl, P.

    2001-09-01

    The generation of high density 2D hole gases is crucial for further progress in the electronic and optoelectronic nitride devices. In this paper, we present systematic theoretical studies of Mg-doped GaN/AlGaN gated heterostructures and superlattices. Our calculations are based on a self-consistent solution of the multiband k. p Schrödinger and Poisson equation and reveal that the hole 2D sheet density is mainly determined by the polarization induced interface charges. For an aluminium concentration of 30%, the induced hole density in the heterostructure can reach values up to 1.5×10 13 cm -2. In the GaN/AlGaN superlattices, the hole sheet density increases with the superlattice period and saturates for a period of 40 nm at a value of 1.5×10 13 cm -2.

  6. Amygdala activation in response to 2D and 3D emotion-inducing stimuli

    Dores, Artemisa Rocha; Barbosa, Fernando; Monteiro, Luís; Leitão, Miguel; Reis, Mafalda; Coelho, Carlos M.; Ribeiro, Eduardo; Irene P. Carvalho; de Sousa, Liliana; Castro-Caldas, Alexandre

    2014-01-01

    Studying changes in brain activation according to the valence of emotion-inducing stimuli is essential in the research on emotions. Due to the ecological potential of virtual reality, it is also important to examine whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images. This study uses functional Magnetic Resonance Imaging to compare differences between 3D and standard (2D) visual stimuli in the activation of emotion-...

  7. Closed-loop control of a 2-D mems micromirror with sidewall electrodes for a laser scanning microscope system

    Chen, Hui; Chen, Albert; Jie Sun, Wei; Sun, Zhen Dong; Yeow, John TW

    2016-01-01

    This article presents the development and implementation of a robust nonlinear control scheme for a 2-D micromirror-based laser scanning microscope system. The presented control scheme, built around sliding mode control approach and augmented an adaptive algorithm, is proposed to improve the tracking accuracy in presence of cross-axis effect. The closed-loop controlled imaging system is developed through integrating a 2-D micromirror with sidewall electrodes (SW), a laser source, NI field-programmable gate array (FPGA) hardware, the optics, position sensing detector (PSD) and photo detector (PD). The experimental results demonstrated that the proposed scheme is able to achieve accurate tracking of a reference triangular signal. Compared with open-loop control, the scanning performance is significantly improved, and a better 2-D image is obtained using the micromirror with the proposed scheme.

  8. 2D Self-Similar Profile for Laser Beam Propagation in Medium with Saturating Multi-Photon Absorption

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.; Zakharova, Irina G.

    2016-02-01

    We study a self-similar mode of 2D laser beam propagation in media with multiphoton absorption (MA) taking into account a resonant nonlinearity and nonlinear absorption saturating. An analytical solution of the corresponding equations describing the problems under consideration is derived using an eigenvalue problem method generalization for soliton- like solution finding. The developed solution is used as incident beam profile and phase front for computer simulation of the 2D laser beam propagation. In particular, we demonstrate numerically that the laser beam propagation in a self-similar mode occurs within a certain distance, which depends on medium properties. Under certain relations between the nonlinear absorption and resonant nonlinearity, and cubic nonlinear response, we observe the super long distance of the beam propagation without any beam profile distributions.

  9. Resolving spectral information from time domain induced polarization data through 2-D inversion

    Fiandaca, Gianluca; Ramm, James; Binley, A.;

    2013-01-01

    SUMMARY Field-based time domain (TD) induced polarization (IP) surveys are usually modelled by taking into account only the integral chargeability, thus disregarding spectral content. Furthermore, the effect of the transmitted waveform is commonly neglected, biasing inversion results. Given these...... decay series. The inversion algorithm is based around a 2-D complex conductivity kernel that is computed over a range of frequencies and converted to the TD through a fast Hankel transform. Two key points in the implementation ensure that computation times are minimized. First, the speed of the Jacobian...... polarization processes, opening up new applications in environmental and hydrogeophysical investigations. Key words: Inverse theory; Electrical properties; Hydrogeophysics...

  10. Antipsychotic-induced extrapyramidal syndromes and cytochrome P-450 2D6 genotype : a case-control study

    Schillevoort, [No Value; de Boer, A; van der Weide, J; Steijns, LSW; Roos, RAC; Jansen, PAF; Leufkens, HGM

    2002-01-01

    To study the association between polymorphism of the cytochrome P-450 2D6 gene (CYP2D6) and the risk of antipsychotic-induced extrapyramidal syndromes, as measured by the use of anti parkinsonian medication. Data for this case-control study were obtained from a psychiatric hospital where newly admit

  11. Stirring-induced vortical motion measured by ultrasound Doppler velocimetry: initial 2D vector plots

    An experimental investigation on stirring-induced vortical motion of a liquid was conducted in a cylindrical container measuring 280mm diameter x 280mm height. The test medium was water and a magnetic stirrer located at the bottom on the container (centered) induced the flow. The motion can be generally described as rotationally induced vortex motion, which is of relevance to gas entrainment concerns from the free surface of pool-type LMFBR. The objective of the investigation were two-fold: 1) to demonstrate that a two dimensional (2D) velocity field, using ultrasound Doppler velocimetry and a multiple number of ultrasound transducers (TDXs), could be measured and 2) to evaluate the content of the measured velocity information with respect to understanding the relevant vortex dynamics. Our results show that our first objective was fulfilled; that is, using 6 orthogonally situated TDXs to measure the Vr and Vz components of the flow field, a 2D vector field plot of a segment of the meridional plane was generated and shown to change with the rate of induced flow (rotation rate). However, because the number of TDXs used (6) were small, the coarse resolution of the velocity field limits the amount of velocity information. Therefore traditional data presentation methods to evaluate average and fluctuating quantities under steady and stepwise viewed transient conditions, are indispensible for data analysis. The measurement method holds promise as a useful tool in thermohydraulics as the number of TDXs is increased and therefore the spatial resolution. Some of these possibilities are described in this report. (author)

  12. Application of high resolution 2D/3D spectral induced polarization (SIP) in metalliferous ore exploration

    Chen, R.; Zhao, X.; Yao, H.; He, X.; Zeng, P.; Chang, F.; Yang, Y.; Zhang, X.; Xi, X.; He, L.

    2015-12-01

    Induced polarization (IP) is a powerful tool in metalliferous ore exploration. However, there are many sources, such as clay and graphite, which can generate IP anomaly. Spectral induced polarization (SIP) measures IP response on a wide frequency range. This method provides a way to discriminate IP response generated by metalliferous ore or other objects. The best way to explore metalliferous ore is 3D SIP exploration. However, if we consider the exploration cost and efficiency, we can use SIP profiling to find an anomaly, and then use 2D/3D SIP sounding to characterize the anomaly. Based on above idea, we used a large-scale distributed SIP measurement system which can realize 800 sounding sites in one direction at the same time. This system can be used for SIP profiling, 2D/3D SIP sounding with high efficiency, high resolution, and large depth of investigation (> 1000 m). Qiushuwan copper - molybdenum deposit is located in Nanyang city, Henan province, China. It is only a middle-size deposit although over 100 holes were drilled and over 40 years of exploration were spent because of very complex geological setting. We made SIP measurement over 100 rock and ore samples to discriminate IP responses of ore and rock containing graphite. Then we carried out 7 lines of 2D SIP exploration with the depth of investigation great than 1000 m. The minimum electode spacing for potential difference is only 20 m. And we increase the spacing of current electodes at linear scale. This acquisition setting ensures high density data acquired and high quality data acquisition. Modeling and inversion result proves that we can get underground information with high resolution by our method. Our result shows that there exists a strong SIP response related to ore body in depth > 300 m. Pseudo-3D inversion of five 2D SIP sounding lines shows the location and size of IP anomaly. The new drillings based our result found a big copper-molybdenum ore body in new position with depth > 300 m and

  13. Theoretical benchmarking of laser-accelerated ion fluxes by 2D-PIC simulations

    Mackenroth, Felix; Marklund, Mattias

    2016-01-01

    There currently exists a number of different schemes for laser based ion acceleration in the literature. Some of these schemes are also partly overlapping, making a clear distinction between the schemes difficult in certain parameter regimes. Here, we provide a systematic numerical comparison between the following schemes and their analytical models: light-sail acceleration, Coulomb explosions, hole boring acceleration, and target normal sheath acceleration (TNSA). We study realistic laser parameters and various different target designs, each optimized for one of the acceleration schemes, respectively. As a means of comparing the schemes, we compute the ion current density generated at different laser powers, using two-dimensional particle-in-cell (PIC) simulations, and benchmark the particular analytical models for the corresponding schemes against the numerical results. Finally, we discuss the consequences for attaining high fluxes through the studied laser ion-acceleration schemes.

  14. Thermally induced formation of 2D hexagonal BN nanoplates with tunable characteristics

    Nersisyan, Hayk; Lee, Tae-Hyuk [Graduate School of Department of Advanced Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kap-Ho [Department of Nanomaterials Engineering, Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon (Korea, Republic of); Jeong, Seong-Uk; Kang, Kyung-Soo; Bae, Ki-Kwang [Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeong (Korea, Republic of); Lee, Jong-Hyeon, E-mail: jonglee@cnu.ac.kr [Department of Nanomaterials Engineering, Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon (Korea, Republic of); Graduate School of Department of Advanced Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2015-05-15

    We have investigated a thermally induced combustion route for preparing 2D hexagonal BN nanoplates from B{sub 2}O{sub 3}+(3+0.5k)Mg+kNH{sub 4}Cl solid system, for k=1–4 interval. Temperature–time profiles recorded by thermocouples indicated the existence of two sequential exothermic processes in the combustion wave leading to the BN nanoplates formation. The resulting BN nanoplates were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, PL spectrometry, and Brunauer–Emmett–Teller surface area analysis. It was found that B{sub 2}O{sub 3} was converted into BN completely (by XRD) at 1450–1930 °C within tens of seconds in a single-step synthesis process. The BN prepared at a k=1–4 interval comprised well-shaped nanoplates with an average edge length ranging from 50 nm to several micrometer and thickness from 5 to 100 nm. The specific surface area of BN nanoplates was 13.7 g/m{sup 2} for k=2 and 28.4 m{sup 2}/g for k=4. - Graphical abstract: 2D hexagonal BN nanoplates with an average edge length ranging from 50 nm to several micrometer and thickness from 5 to 100 nm were prepared by combustion of B{sub 2}O{sub 3}+(3+0.5k)Mg+kNH{sub 4}Cl solid mixture in nitrogen atmosphere. - Highlights: • Thermally induced combustion route was developed for synthesizing BN nanoplates from B{sub 2}O{sub 3}. • Mg was used as reductive agent and NH{sub 4}Cl as an effective nitrogen source. • Temperature–time profiles and the combustion parameters were recorded and discussed. • BN with an average edge length from 50 nm to several micrometer and thickness from 5 to 100 nm were prepared. • Our study clarifies the formation mechanism of BN in the combustion wave.

  15. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  16. 2D plasmonic and diffractive structures with sharp features by UV laser patterning

    Peláez, R.J.; Afonso, C.N.; Bulíř, Jiří; Novotný, Michal; Lančok, Ján; Piksová, K.

    2013-01-01

    Roč. 24, č. 9 (2013), "095301-1"-"095301-7". ISSN 0957-4484 R&D Projects: GA AV ČR IAA100100718 Institutional support: RVO:68378271 Keywords : silver thin film * silver nanoparticles * plasmonics * diffractive structures * laser processing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.672, year: 2013

  17. Thermally induced formation of 2D hexagonal BN nanoplates with tunable characteristics

    Nersisyan, Hayk; Lee, Tae-Hyuk; Lee, Kap-Ho; Jeong, Seong-Uk; Kang, Kyung-Soo; Bae, Ki-Kwang; Lee, Jong-Hyeon

    2015-05-01

    We have investigated a thermally induced combustion route for preparing 2D hexagonal BN nanoplates from B2O3+(3+0.5k)Mg+kNH4Cl solid system, for k=1-4 interval. Temperature-time profiles recorded by thermocouples indicated the existence of two sequential exothermic processes in the combustion wave leading to the BN nanoplates formation. The resulting BN nanoplates were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, PL spectrometry, and Brunauer-Emmett-Teller surface area analysis. It was found that B2O3 was converted into BN completely (by XRD) at 1450-1930 °C within tens of seconds in a single-step synthesis process. The BN prepared at a k=1-4 interval comprised well-shaped nanoplates with an average edge length ranging from 50 nm to several micrometer and thickness from 5 to 100 nm. The specific surface area of BN nanoplates was 13.7 g/m2 for k=2 and 28.4 m2/g for k=4.

  18. PICLE: a 2-D code for laser-beam - gas-jet interaction studies

    A heat transport hydrodynamic PIC code was adapted for application to the KMSF gas-jet experiments. The input material density profile was changed from the original solid slab geometry to a cylindrically symmetric profile modeling the gas-jet plume. The target material was changed from the original Z = 1 to arbitrary Z. Energy deposition was modified to include inverse bremsstrahlung and resonance absorption. Preliminary results indicate electron thermal conduction dominates over mass flow for times up to about the laser pulse length. Electron thermal conduction is seen to vary between classical and flux-limited values spatially and temporally according to plasma conditions. Applications of this code, entitled PICLE (Particle-In-Cell Laser Equipment code), to absorption and flux-limit parameter studies are described. A source listing and sample input deck are included

  19. Synthesis by pulsed laser ablation of 2D nanostructures for advanced biomedical sensing

    Trusso, S.; Zanchi, C.; Bombelli, A.; Lucotti, A.; Tommasini, M.; de Grazia, U.; Ciusani, E.; Romito, L. M.; Ossi, P. M.

    2016-05-01

    Au nanoparticle arrays with controlled nanostructure were produced by pulsed laser ablation on glass. Such substrates were optimized for biomedical sensing by means of SERS keeping fixed all process parameters but the laser pulse (LP) number that is a key deposition parameter. It allows to fine-tune the Au surface nanostructure with a considerable improvement in the SERS response towards the detection of apomorphine in blood serum (3.3 × 10‑6 M), when LP number is increased from 1 × 104 to 2 × 104. This result is the starting point to correlate the intensity of selected SERS signals of apomorphine to its concentration in the blood of patients with Parkinson's disease.

  20. INTEGRATION OF TERRESTRIAL LASER SCANNING POINTS AND 2D FLOOR PLANS BASED ON MAXIMUM SEQUENTIAL SIMILARITY

    L. Wang

    2012-09-01

    Full Text Available This paper presents a Maximum Sequential Similarity Reasoning (MSSR algorithm based method for co-registration of 3D TLS data and 2D floor plans. The co-registration consists of two tasks: estimating a transformation between the two datasets and finding the vertical locations of windows and doors. The method first extracts TLS line sequences and floor plan line sequences from a series of horizontal cross-section bands of the TLS points and floor plans respectively. Then each line sequence is further decomposed into column vectors defined by using local transformation invariant information between two neighbouring line segments. Based on a normalized cross-correlation based similarity score function, the proposed MSSR algorithm is then used to iteratively estimate the vertical and horizontal locations of each floor plan by finding the longest matched consecutive column vectors between floor plan line sequences and TLS line sequences. A group matching algorithm is applied to simultaneously determine final matching results across floor plans and estimate the transformation parameters between floor plans and TLS points. With real datasets, the proposed method demonstrates its ability to deal with occlusions and multiple matching problems. It also shows the potential to detect conflict between floor plan and as-built, which makes it a promising method that can find many applications in many industrial fields.

  1. Measurement of residual radioactive surface contamination by 2-D laser heated TLD

    The feasibility of applying and adapting a two-dimensional laser heated thermoluminescence dosimetry system to the problem of surveying for radioactive surface contamination was studied. The system consists of a CO2 laser-based reader and monolithic arrays of thin dosimeter elements. The arrays consist of 10,201 thermoluminescent phosphor elements of 40 micron thickness, covering a 900 cm2 area. Array substrates are 125 micron thick polyimide sheets, enabling them to easily conform to regular surface shapes, especially for survey of surfaces that are inaccessible for standard survey instruments. The passive, integrating radiation detectors are sensitive to alpha and beta radiation at contamination levels below release guideline limits. Required contact times with potentially contaminated surfaces are under one hour to achieve detection of transuranic alpha emission at 100 dpm/100 cm2. Positional information obtained from array evaluation is useful for locating contamination zones. Unique capabilities of this system for survey of sites, facilities and material include measurement inside pipes and other geometrical configurations that prevent standard surveys, and below-surface measurement of alpha and beta emitters in contaminated soils. These applications imply a reduction of material that must be classified as radioactive waste by virtue of its possibility of contamination, and cost savings in soil sampling at contaminated sites

  2. Measurement of residual radioactive surface contamination by 2-D laser heated TLD

    Jones, S.C.

    1997-06-01

    The feasibility of applying and adapting a two-dimensional laser heated thermoluminescence dosimetry system to the problem of surveying for radioactive surface contamination was studied. The system consists of a CO{sub 2} laser-based reader and monolithic arrays of thin dosimeter elements. The arrays consist of 10,201 thermoluminescent phosphor elements of 40 micron thickness, covering a 900 cm{sup 2} area. Array substrates are 125 micron thick polyimide sheets, enabling them to easily conform to regular surface shapes, especially for survey of surfaces that are inaccessible for standard survey instruments. The passive, integrating radiation detectors are sensitive to alpha and beta radiation at contamination levels below release guideline limits. Required contact times with potentially contaminated surfaces are under one hour to achieve detection of transuranic alpha emission at 100 dpm/100 cm{sup 2}. Positional information obtained from array evaluation is useful for locating contamination zones. Unique capabilities of this system for survey of sites, facilities and material include measurement inside pipes and other geometrical configurations that prevent standard surveys, and below-surface measurement of alpha and beta emitters in contaminated soils. These applications imply a reduction of material that must be classified as radioactive waste by virtue of its possibility of contamination, and cost savings in soil sampling at contaminated sites.

  3. Abnormal promoter methylation of multiple genes in the malignant transformed PEP2D cells induced by alpha particles exposure

    LiP; SuiJL

    2002-01-01

    The 5' promoter regions of some genes contain CpG-rich areas,known as CpG islands,Methylation of the cytosine in these dinuleotides has important regulatory effects on gene expression.The functional significance of promoter hypermethylation would play the same roles in carcinogenesis as gene mutations.The promoter methylations p14ARF,p16INK4a,MGMT,GSTP1,BUB3 and DAPK genes were analyzed with methylation specific PCR(MSP) in the transformed human bronchial epithelial cells(BEP2D) induced by α-particles.The results indicated that p14ARF gene was not methylated in BEP2D cells,but was methylated in the malignant transformed BERP35T-1 cells,and the level of its transcription was depressed remarkable in the latter.However p16INK4a gene,which shares two exons with p14ARF gene,was not methylated.MGMT gene was methylated in both BEP2D and BERP35T-1.DAPK gene was partially methylated in BEP2D cells and methylated completely in BERP35T1.GSTP1 was not methylated in BEP2D cells and was methylated partly in BERP35T-1.BUB3 gene was not methylated in BEP2D as well as BERP35T1 cells and was further proved by sequencing analysis.

  4. Laser Induced Nuclear Physics

    Ledingham, K. W. D.

    2002-10-01

    The interaction of ultra-intense focused laser beams with solid targets is a new field of research resulting in the production of exotic plasma conditions similar to the conditions which exist in the interior of some stellar objects. The lasers generate very high energy electrons and ions which can subsequently produce γ-rays, positrons, neutrons and pions. The paper will show that results obtained from these studies have major implications to fundamental plasma physics and high energy accelerator physics as well as important technological potential for the production of compact sources of protons, neutrons, positrons and isotopes. One of the applications considered at some length will be the production of protons and the possibility of designing a table top laser to produce radioactive sources for positron emission tomography (PET) as well as proton oncology. The exciting new physics which can be carried out at laser intensities of 1022-23Wcm-2 will also be briefly discussed.

  5. Light-induced heating of dense 2D ensemble of gold nanoparticles: dependence on detuning from surface plasmon resonance

    Yeshchenko, Oleg A., E-mail: yes@univ.kiev.ua; Kozachenko, Viktor V. [Taras Shevchenko National University of Kyiv, Physics Department (Ukraine)

    2015-07-15

    The extinction of white light by dense 2D ensemble of gold nanoparticles with size of 22 nm and interparticle distance of 40 nm has been studied at the simultaneous illumination of nanoparticles by the continuous-wave laser beam in dependence of the detuning of laser frequency from the surface plasmon resonance (SPR). The appreciable red shift, broadening, and increase of intensity of the plasmonic extinction band have been observed at approaching of the laser frequency to SPR. The plasmon band shift and broadening reveal the heating of gold nanoparticles that has an evident resonant character. The strong increase of nanoparticle temperature of 590 K has been observed at moderate laser intensity of 5 × 10{sup 3} W/cm{sup 2} and detuning of 24.6 nm. Such strong heating is probably due to the accumulative effect and the light extinction enhancement by intense local plasmonic field of coupled Au nanoparticles in dense 2D ensemble.

  6. Latent heat induced rotation limited aggregation in 2D ice nanocrystals

    Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene

    2015-07-01

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.

  7. Hyperfine structure and lifetime measurements in the 4s2nd 2D3/2 Rydberg sequence of Ga I by time-resolved laser spectroscopy

    Liu, Chunqing; Tian, Yanshan; Yu, Qi; Bai, Wanshuang; Wang, Xinghao; Wang, Chong; Dai, Zhenwen

    2016-05-01

    The hyperfine structure (HFS) constants of the 4s2nd 2D3/2 (n=6-18) Rydberg sequence and the 4s26p 2P3/2 level for two isotopes of 69Ga and 71Ga atoms were measured by means of the time-resolved laser-induced fluorescence (TR-LIF) technique and the quantum beat method. The observed hyperfine quantum beat spectra were analyzed and the magnetic-dipole HFS constants A as well as the electric-quadrupole HFS constants B of these levels were obtained by Fourier transform and a program for multiple regression analysis. Also using TR-LIF method radiative lifetimes of the above sequence states were determined at room temperature. The measured lifetime values range from 69 to 2279 ns with uncertainties no more than 10%. To our knowledge, the HFS constants of this Rydberg sequence and the lifetimes of the 4s2nd 2D3/2 (n=10-18) levels are reported for the first time. Good agreement between our results and the previous is achieved.

  8. Positron annihilation 2D-ACAR study of irradiation-induced defects in Si

    A positron annihilation method constitutes the most characteristic feature to demonstrate directly the lattice vacancy (hereinafter referred to vacancy) independent of the added elements, the electrical conductance and the charge state of them. The method can detect hole, divacancy and vacancy cluster. The divacancy is introduced into the single crystal sample by using the electron radiation with 15 MeV at room temperature. For 2D-ACAR spectrum of the perfect crystal,the maximum peak to valley showed 12.3% of the peak height of 2D-ACAR spectrum. It was clear from the measurement results of sample with the neutral divacancy (V2deg) that 2D-ACAR spectra of divacancy are isotropic and stable at the different charged states. 2D-ACAR spectra are calculated by using the first principle to the neutral divacancy. The results of the theoretical calculation are very agreed with those of observation and they are very isotropic. (S.Y.)

  9. Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm

    A 16.5 mm long, heavily doped erbium–ytterbium phosphate glass-waveguide amplifier was fabricated by the femtosecond laser (fs-laser) inscription technique. The femtosecond laser inscription of waveguides was carried out at 500 kHz repetition rate using a 0.68 NA aspheric lens. The energy deposition profile in the dielectric material was initially simulated using a generalized adaptive fast-Fourier evolver (GAFFE) algorithm. The size and shape of the guiding structures were carefully controlled by the slit shaping technique to reduce the coupling losses, with achievable values down to less than 0.1 dB. Rigorous simulations of the response of the active waveguides were carried out to optimize their performance as optical amplifiers. A maximum of 8.6 dB internal gain at 1534 nm was obtained upon bidirectional laser pumping at 976 nm, leading to a gain per unit length of 5.2 dB cm−1. Laser action was also achieved for both ring and linear cavity configurations. (letter)

  10. Dominant Phonon Wavevectors and Strain-induced Splitting of the 2D Graphene Raman Mode

    Narula, Rohit; Bonini, Nicola; Marzari, Nicola; Reich, Stephanie

    2011-01-01

    The dominant phonon wavevectors $q^{*}$ probed by the 2D Raman mode of graphene are highly anisotropic and rotate with the orientation of the polarizer:analyzer direction relative to the lattice. The corresponding electronic transitions connect the electronic equibandgap contours where the product of the ingoing and outgoing optical matrix elements is strongest, showing a finite component along $\\bm{K}-\\bm{\\Gamma}$ that sensitively determines $q^{*}$. We revoke the notion of 'inner' and 'oute...

  11. Latent heat induced rotation limited aggregation in 2D ice nanocrystals

    Bampoulis, Pantelis; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene

    2016-01-01

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our Scanning Tunneling Spectroscopy (STS) data we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 $^{\\circ}$C and without significant thermal contact to the ambient. The growth is studied in-situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and conse...

  12. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Taekjun Oh

    2015-07-01

    Full Text Available Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  13. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  14. Point-Like Interactions in String Theory Induced by 2-D Topological Gravity

    Qiu, Zongan

    1992-01-01

    We consider a string theory with two types of strings with geometric interaction. We show that the theory contains strings with constant Dirichlet boundary condition and those strings are glued together by 2-d topological gravity with macroscopic boundaries. A light-cone string field theory is given and the theory has interactions to all orders. (Postscript files of the figures can be obtained by anonymous ftp uful07.phys.ufl.edu and are in the directory /het/ufift-hep-92-26.)

  15. Laser-induced chemical reactions

    A classical model for the interaction of laser radiation with a molecular system is derived. This model is used to study the enhancement of a chemical reaction via a collision induced absorption. It was found that an infrared laser will in general enhance the rate of a chemical reaction, even if the reactants are infrared inactive. Results for an illustrative analytically solvable model are presented, as well as results from classical trajectory studies on a number of systems. The collision induced absorption spectrum in these systems can be written as the Fourier transform of a particular dipole correlation function. This is used to obtain the collision induced absorption spectrum for a state-selected, mono-energetic reactive collision system. Examples treated are a one-dimensional barrier problem, reactive and nonreactive collisions of H + H2, and a modified H + H2 potential energy surface which leads to a collision intermediate. An extension of the classical model to treat laser-induced electronically nonadiabatic collision processes is constructed. The model treats all degrees of freedom, molecular, electronic and radiation, in a dynamically consistent framework within classical mechanics. Application is made to several systems. Several interesting phenomena are discovered including a Franck-Condon-like effect causing maxima in the reaction probability at energies much below the classical threshold, laser de-enhancement of chemical reactions and an isotope effect. In order to assess the validity of the classical model for electronically nonadiabatic process (without a laser field), a model problem involving energy transfer in a collinear atom-diatom system is studied, and the results compared to the available quantum mechanical calculation. The calculations are in qualitative agreement

  16. Vortex contribution to the defect-induced alternating magnetization in 2D antiferromagnets

    Quantum Monte Carlo (MC) simulations of the 2D S=1/2 Heisenberg antiferromagnet (AFM) with a vacancy and an applied magnetic field [1] showed that the characteristic decay length of the alternating magnetization around the defect displays an unexpected maximum in the neighborhood of the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature. Given the role played in the BKT transition by vortex excitations, we investigated their contribution to the alternating-order behaviour, showing that isolated vortices modulate the parameters entering the effective model introduced in [1]: the temperature dependence of the vortex population allows us to explain the observed behaviour of the alternating-order decay length. We support such conclusions with MC simulations of the classical AFM, which also reveal some differences between the quantum and the classical model.

  17. [123I]Epidepride neuroimaging of dopamine D2/D3 receptor in chronic MK-801-induced rat schizophrenia model

    Purpose: [123I]Epidepride is a radio-tracer with very high affinity for dopamine D2/D3 receptors in brain. The importance of alteration in dopamine D2/D3 receptor binding condition has been wildly verified in schizophrenia. In the present study we set up a rat schizophrenia model by chronic injection of a non-competitive NMDA receptor antagonist, MK-801, to examine if [123I]epidepride could be used to evaluate the alterations of dopamine D2/D3 receptor binding condition in specific brain regions. Method: Rats were given repeated injection of MK-801 (dissolved in saline, 0.3 mg/kg) or saline for 1 month. Afterwards, total distance traveled (cm) and social interaction changes were recorded. Radiochemical purity of [123I]epidepride was analyzed by Radio-Thin-Layer Chromatography (chloroform: methanol, 9:1, v/v) and [123I]epidepride neuroimages were obtained by ex vivo autoradiography and small animal SPECT/CT. Data obtained were then analyzed to determine the changes of specific binding ratio. Result: Chronic MK-801 treatment for a month caused significantly increased local motor activity and induced an inhibition of social interaction. As shown in [123I]epidepride ex vivo autoradiographs, MK-801 induced a decrease of specific binding ratio in the striatum (24.01%), hypothalamus (35.43%), midbrain (41.73%) and substantia nigra (37.93%). In addition, [123I]epidepride small animal SPECT/CT neuroimaging was performed in the striatum and midbrain. There were statistically significant decreases in specific binding ratio in both the striatum (P 123I]epidepride is a useful radio-tracer to reveal the alterations of dopamine D2/D3 receptor binding in a rat schizophrenia model and is also helpful to evaluate therapeutic effects of schizophrenia in the future.

  18. Laser-induced tobacco protoplast fusion

    李银妹; 关力劼; 楼立人; 崔国强; 姚湲; 王浩威; 操传顺; 鲁润龙; 陈曦

    1999-01-01

    Laser tweezers can manipulate small particles, such as cells and organdies. When coupling them with laser microbeam selective fusion of two tobacco protoplasts containing some chloroplast was achieved. Physical and biological variables that affect laser trapping and laser-induced fusion were also discussed. The results show that the effect of chloroplast content and distribution on the yield of cell fusion is remarkable.

  19. Molecular fragmentation induced by a femtosecond laser

    Kosmidis, Constantine E.; Ledingham, Kenneth W. D.; Kilic, H. S.; McCanny, T.; Singhal, Raghunandan P.; Smith, D.; Langley, Andrew J.

    1998-07-01

    The 90 femtosecond laser induced fragmentation at 375 nm for a number of different nitro-molecules is compared to that induced by a nanosecond laser at the same wavelength by means of time-of-flight mass spectrometry. The potential of femtosecond laser mass spectrometry for analytical purposes is discussed.

  20. Layered and Laterally Constrained 2D Inversion of Time Domain Induced Polarization Data

    Fiandaca, Gianluca; Ramm, James; Auken, Esben; Binley, A.; Christiansen, Anders Vest

    transform of a complex resistivity forward response and the inversion extracts the spectral information of the time domain measures in terms of the Cole-Cole parameters. The developed forward code and inversion algorithm use the full time decay of the induced polarization response, together with an accurate......In a sedimentary environment, quasi-layered models often represent the actual geology more accurately than smooth minimum-structure models. We have developed a new layered and laterally constrained inversion algorithm for time domain induced polarization data. The algorithm is based on the time...

  1. Laser-induced plasma temperature

    It is of great importance to explore the evolution of laser-induced plasma (LIP) properties, especially plasma temperature, with regard to variations of experiment conditions in both theoretical study and routine applications. By investigating the influence of various factors on plasma temperature, one can gain knowledge about the processes in plasma and adjust experimental conditions to obtain optimum analytical performance. Herein the fundamental theories and calculation methods of LIP temperature via spectroscopic approaches are briefly reviewed. Its temporal and spatial evolutions together with several influencing factors are discussed, such as laser parameters, ambient surrounding, and physical and chemical properties of the sample. The results summarized exhibit the general trend that LIP temperature increases with increasing laser wavelength, pulse width, laser energy, background gas pressure, and sample hardness. On the other hand, it decreases with time elapsing and distance from sample surface. Moreover, plasma temperature generated in argon surrounding is higher than that in other gas species, and the rank of temperature values generated from different samples exhibits a general tendency of Cu > Fe > Ni ≈ Al ≈ glass ≈ rock. Additionally, LIP temperature tends to increase as lens focal point approaches sample surface, and the plasma confinement effect in sample cavity is significant in altering plasma temperature. Various explanations are given to interpret these temperature behaviors. - Highlights: • Fundamental theories and calculation methods of LIP temperature are reviewed. • Influences of various factors on LIP temperature are discussed. • Various explanations are given to interpret the temperature behaviors

  2. IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography

    Karaoulis, M.; Revil, A.; Tsourlos, P.; Werkema, D. D.; Minsley, B. J.

    2013-04-01

    We propose a 2D/3D forward modelling and inversion package to invert direct current (DC)-resistivity, time-domain induced polarization (TDIP), and frequency-domain induced polarization (FDIP) data. Each cell used for the discretization of the 2D/3D problems is characterized by a DC-resistivity value and a chargeability or complex conductivity for TDIP/FDIP problems, respectively. The governing elliptic partial differential equations are solved with the finite element method, which can be applied for both real and complex numbers. The inversion can be performed either for a single snapshot of data or for a sequence of snapshots in order to monitor a dynamic process such as a salt tracer test. For the time-lapse inversion, we have developed an active time constrained (ATC) approach that is very efficient in filtering out noise in the data that is not correlated over time. The forward algorithm is benchmarked with simple analytical solutions. The inversion package IP4DI is benchmarked with three tests, two including simple geometries. The last one corresponds to a time-lapse resistivity problem for cross-well tomography during enhanced oil recovery. The algorithms are based on MATLAB® code package and a graphical user interface (GUI).

  3. Laser-induced damage in optical materials

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  4. Time-resolved investigations of the fragmentation dynamic of H2 (D2) in and with ultra-short laser pulses

    In course of this work pump-probe experiments aimed to study ultrafast nuclear motion in H2 (D2) fragmentation by intense 6-25 fs laser pulses have been carried out. In order to perform time-resolved measurements, a Mach-Zehnder interferometer providing two identical synchronized laser pulses with the time-delay variable from 0 to 3000 fs with 300 as accuracy and long-term stability has been built. The laser pulses at the intensities of up to 1015 W/cm2 were focused onto a H2 (D2) molecular beam leading to the ionization or dissociation of the molecules, and the momenta of all charged reactions fragments were measured with a reaction microscope. With 6-7 fs pulses it was possible to probe the time evolution of the bound H+2 (D+2) nuclear wave packet created by the first (pump) laser pulse, fragmenting the molecule with the second (probe) pulse. A fast delocalization, or ''collapse'', and subsequent ''revival'' of the vibrational wave packet have been observed. In addition, the signatures of the ground state vibrational excitation in neutral D2 molecule have been found, and the dominance of a new, purely quantum mechanical wave packet preparation mechanism (the so-called ''Lochfrass'') has been proved. In the experiments with 25 fs pulses the theoretically predicted enhancement of the ionization probability for the dissociating H+2 molecular ion at large internuclear distances has been detected for the first time. (orig.)

  5. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle;

    2009-01-01

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone could...... directly stimulate functional MICA/B surface expression and MICA promoter activity by a mechanism dependent on intracellular calcium. Deletion and point mutations further demonstrated that a GC-box motif around -110 from the MICA transcription start site is essential for propionate-mediated MICA promoter...... activity. Other short-chain fatty acids such as lactate, acetate, and butyrate could also induce MICA/B expression. We observed a striking difference in the molecular signaling pathways that regulate MICA/B. A functional glycolytic pathway was essential for MICA/B expression after exposure to propionate...

  6. Geometry induced potential on a 2D-section of a wormhole: catenoid

    Dandoloff, Rossen; Jensen, Bjorn

    2009-01-01

    We show that a two dimensional wormhole geometry is equivalent to a catenoid, a minimal surface. We then obtain the curvature induced geometric potential and show that the ground state with zero energy corresponds to a reflectionless potential. By introducing an appropriate coordinate system we also obtain bound states for different angular momentum channels. Our findings can be realized in suitably bent bilayer graphene sheets with a neck or in a honeycomb lattice with an array of dislocations or in nanoscale waveguides in the shape of a catenoid.

  7. 2-D Urans Simulations of Vortex Induced Vibrations of Circular Cylinder at Trsl3 Flow Regime

    Omer Kemal Kinaci

    2016-01-01

    Full Text Available Research on vortex-induced vibrations (VIV mainly involves experimental science but building laboratory setups to investigate the flow are expensive and time consuming. Computational fluid dynamics (CFD methods may offer a faster and a cheaper way to understand this phenomenon depending on the solution approach to the problem. The context of this paper is to present the author’s computational approach to solve for vortex-induced vibrations which cover extensive explanations on the mathematical background, the grid structure and the turbulence models implemented. Current computational research on VIV for smooth cylinders is currently restricted to flows that have Reynolds numbers below 10,000. This paper describes the method to approach the problem with URANS and achieves to return satisfactory results for higher Reynolds numbers.The computational approach is first validated with a benchmark experimental study for rather low Reynolds number which falls into TrSL2 flow regime. Then, some numerical results up to Re=130,000, which falls into TrSL3 flow regime,are given at the end of the paper to reveal the validity of the approach for even higher Reynolds numbers.

  8. Laser Induced Surface Chemical Epitaxy

    Stinespring, Charter D.; Freedman, Andrew

    1990-02-01

    Studies of the thermal and photon-induced surface chemistry of dimethyl cadmium (DMCd) and dimethyl tellurium (DMTe) on GaAs(100) substrates under ultrahigh vacuum conditions have been performed for substrate temperatures in the range of 123 K to 473 K. Results indicate that extremely efficient conversion of admixtures of DMTe and DMCd to CdTe can be obtained using low power (5 - 10 mJ cm-2) 193 nm laser pulses at substrate temperatures of 123 K. Subsequent annealing at 473 K produces an epitaxial film.

  9. Charge-induced effects in the spectra of mixtures of solid H2, D2, HD

    Proton-beam irradiation of mixtures of solid hydrogens, specifically H2 in D2 and H2 in HD, were studied using infrared absorption spectroscopy. Mixture ratios from 5-50% H2 in D2 near 4.2 K represent the ratios of most interest. This study allows direct comparison of the Stark-shifted lines (caused by negative charges, Q1- of H2 and D2 in the same sample. These lines occur in different spectral regions but were thought to have a common cause. Analysis of spectral intensities, as well as timing behaviour as the proton beam is turned off, indicates that the mechanisms giving rise to charge-induced effects are somewhat more complicated than previously thought. (author)

  10. Pressure-induced cooperative spin transition in ironII 2D coordination polymers: room-temperature visible spectroscopic study.

    Levchenko, G; Bukin, G V; Terekhov, S A; Gaspar, A B; Martínez, V; Muñoz, M C; Real, J A

    2011-06-30

    For the 2D coordination polymers [Fe(3-Fpy)(2)M(II)(CN)(4)] (M(II) = Ni, Pd, Pt), the pressure-induced spin crossover behavior has been investigated at 298 K by monitoring the distinct optical properties associated with each spin state. Cooperative first-order spin transition characterized by a piezohysteresis loop ca. 0.1 GPa wide was observed for the three derivatives. Application of the mean field regular solution theory has enabled estimation of the cooperative parameter, Γ(p), and the enthalpy, ΔH(HL)(p), associated with the spin transition for each derivative. These values, found in the intervals 6.8-7.9 and 18.6-20.8 kJ mol(-1), respectively, are consistent with those previously reported for thermally induced spin transition at constant pressure for the title compounds (Chem.-Eur. J.2009, 15, 10960). Relevance of the elastic energy, Δ(elast), as a corrective parameter accounting for the pressure dependence of the critical temperature of thermally induced spin transitions (Clausius-Clapeiron equation) is also demonstrated and discussed. PMID:21599006

  11. Laser-induced selective copper plating of polypropylene surface

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  12. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au-induced

  13. Solution approach of a laser plane based on Plücker matrices of the projective lines on a flexible 2D target.

    Xu, Guan; Zhang, Xinyuan; Su, Jian; Li, Xiaotao; Zheng, Anqi

    2016-04-01

    A calibration method adopting Plücker matrices is proposed to explore the laser plane in a structured light measurement. The calibration model establishes the geometrical relationship among the camera, 2D target, and laser plane. The laser plane is constructed by multiple Plücker matrices of the dual 3D crossing lines between the laser plane and target planes in the camera coordinate system. Moreover, the validity of this calibration method is experimentally analyzed through the impact factors of noise magnitude and number of images. The mean errors of three directional angles of the normal vector to the laser plane are -0.174°, 0.170°, and -0.022°, respectively. The variances of the errors of three directional angles are 0.069°, 0.046°, and 0.160°, respectively. The maximal absolute errors of three directional angles are 1.362°, 1.351°, and 1.347°, respectively. The experiments prove that the calibration method is available to provide an accurate calibration for the laser plane. PMID:27139669

  14. AN H2 (D2)/F2 CHEMICAL LASER INITIATED WITH A NOVEL TEFLON SURFACE SPARK UV FLASH

    Watanabe, K.; Sato, Y; Lee, C; Obara, M.; Fujioka, T.

    1980-01-01

    The performance characteristics and the optimization parameters of a newly developed HF (DF) laser initiated by a novel surface spark UV flash using Teflon are presented. We have obtained an output energy of 0.65 J/pulse (11 J/1, 1.6 µsec FWHM) for HF laser, 0.25 J/pulse (4.2 J/1, 2.0 µsec FWHM) for DF laser with the improved maintenance of the light source. An intense short-pulse surface spark UV source driven by a coaxial Marx generator is realized experimentally in order to improve the pow...

  15. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz. PMID:26907062

  16. Laser-driven proton and deuteron acceleration from a pure solid-density H2/D2 cryogenic jet

    Kim, Jongjin; Gauthier, Maxence; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Goyon, Clement; Williams, Jackson; Kerr, Shaun; Ruby, John; Propp, Adrienne; Ramakrishna, Bhuvanesh; Pak, Art; Hazi, Andy; Glenzer, Siegfried; Roedel, Christian

    2015-11-01

    Laser-driven proton acceleration has become of tremendous interest for the fundamental science and the potential applications in tumor therapy and proton radiography. We have developed a cryogenic liquid hydrogen jet, which can deliver a self-replenishing target of pure solid-density hydrogen or deuterium. This allows for a target compatible with high-repetition-rate experiments and results in a pure hydrogen plasma, facilitating comparison with simulations. A new modification has allowed for the formation of jets with rectangular profiles, facilitating comparison with foil targets. This jet was installed at the Titan laser and driven by laser pulses of 40-60 J of 527 nm laser light in 1 ps. The resulting proton and deuteron spectra were measured in multiple directions with Thomson parabola spectrometers and RCF stacks. The spectral and angular information suggest contribution from both the TNSA and RPA acceleration mechanisms.

  17. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.;

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser-machine...

  18. Field enhancement induced laser ablation

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob;

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures...

  19. Laser Filament Induced Water Condensation

    Kasparian J.; Webe K.; Vogel A; Petit Y.; Lüder J.; Hao Z.Q.; Rohwetter P.; Petrarca M.; Stelmaszczyk K.; Henin S.; Wöste L.; Wolf J.-P.

    2013-01-01

    At relative humidities above 70%, femtosecond laser filaments generate aerosol particles and water droplets in the atmosphere. The water vapour condensation and droplet stabilization are assured by soluble species produced in the laser plasma.

  20. Laser treatment of experimentally induced chronic arthritis

    Guerino, M. R.; Baranauskas, V.; Guerino, A. C.; Parizotto, N.

    2000-02-01

    In this work, we investigated the effects of He-Ne laser irradiation on the inflammatory process induced in the articular cartilage of the right knee of guinea pigs. Through electron microscopy analysis it was possible to identify the induced arthritis in the articular cartilage and its modification after the laser treatment. The laser radiation promoted a reduction in the proliferation of the inflammatory cells in the damaged tissue and also induced the formation of cartilage bridges that tied the destroyed parts favoring the formation of a repaired tissue in the injured cartilage.

  1. Numerical prediction of shock induced oscillations over a 2D airfoil: Influence of turbulence modelling and test section walls

    The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M ≥ 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow

  2. Femtosecond Laser Induced Underwater Superoleophobic Surfaces

    Yong Jiale; Chen Feng; Yang Qing

    2015-01-01

    Femtosecond laser microfabrication has been recently utilized in interface science to modify the liquid wettability of solid surfaces. Silicon surface with hierarchical micro/nanostructure is fabricated by a femtosecond laser. Similar to the fish’s scales, the laser-induced surface shows superhydrophilicity in air and superoleophobicity underwater. The oil contact angles can reach up to 159.4 ± 1° for the 1,2-dichloroethane droplets in water. Besides, the surface exhibits ultralow oil-adhesio...

  3. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  4. Study on oxidative lipid and DNA damages in the malignant transformed BEP2D cells induced by α-particle exposure

    Objective: To investigate the mechanism of malignant transformation in human bronchial epithelial cell line BEP2D exposed to α-particles. Methods: The levels of intracellular ROS and malonaldehyde (MDA) in BEP2D, RH22 (passage 22 of α-particle-irradiated BEP2D cells) and BERP35T-1 cells (derived from nude mice bearing malignant transformed cells generated from the passage 35 of α-particle-irradiated BEP2D cells) were assayed with DCFH-DA and MDA kit, respectively. The expressions of 8-OH-dG and γ-H2AX in BEP2D, RH23 (passage 23 of α-particle-irradiated BEP2D cells) and BERP35T-1 cells were also measured with immunocytochemistry and immunofluorescence staining. Results: Compared to BEP2D cells, the levels of ROS (t=4.30 and 3.94, P<0.05) and MDA (t=4.89 and 15.10, P<0.05) increased in RH22 and BERP35T-1 cells. The expressions of 8-OH-dG (t=3.80 and 2.92, P<0.05) and γ-H2AX (t=7.61 and 12.67, P<0.05) in RH23 and BERP35T-1 cells were also higher than those in BEP2D cells. Conclusions: Oxidative stress induces lipid peroxidation and DNA damage leading to genomic instability, which could contribute to cellular malignant transforming process in the human bronchial epithelial cell line BEP2D with α-particle exposure. (authors)

  5. Boresight calibration of construction misalignments for 3D scanners built with a 2D laser range finder rotating on its optical center.

    Morales, Jesús; Martínez, Jorge L; Mandow, Anthony; Reina, Antonio J; Pequeño-Boter, Alejandro; García-Cerezo, Alfonso

    2014-01-01

    Many applications, like mobile robotics, can profit from acquiring dense, wide-ranging and accurate 3D laser data. Off-the-shelf 2D scanners are commonly customized with an extra rotation as a low-cost, lightweight and low-power-demanding solution. Moreover, aligning the extra rotation axis with the optical center allows the 3D device to maintain the same minimum range as the 2D scanner and avoids offsets in computing Cartesian coordinates. The paper proposes a practical procedure to estimate construction misalignments based on a single scan taken from an arbitrary position in an unprepared environment that contains planar surfaces of unknown dimensions. Inherited measurement limitations from low-cost 2D devices prevent the estimation of very small translation misalignments, so the calibration problem reduces to obtaining boresight parameters. The distinctive approach with respect to previous plane-based intrinsic calibration techniques is the iterative maximization of both the flatness and the area of visible planes. Calibration results are presented for a case study. The method is currently being applied as the final stage in the production of a commercial 3D rangefinder. PMID:25347585

  6. Boresight Calibration of Construction Misalignments for 3D Scanners Built with a 2D Laser Rangefinder Rotating on Its Optical Center

    Jesús Morales

    2014-10-01

    Full Text Available Many applications, like mobile robotics, can profit from acquiring dense, wide-ranging and accurate 3D laser data. Off-the-shelf 2D scanners are commonly customized with an extra rotation as a low-cost, lightweight and low-power-demanding solution. Moreover, aligning the extra rotation axis with the optical center allows the 3D device to maintain the same minimum range as the 2D scanner and avoids offsets in computing Cartesian coordinates. The paper proposes a practical procedure to estimate construction misalignments based on a single scan taken from an arbitrary position in an unprepared environment that contains planar surfaces of unknown dimensions. Inherited measurement limitations from low-cost 2D devices prevent the estimation of very small translation misalignments, so the calibration problem reduces to obtaining boresight parameters. The distinctive approach with respect to previous plane-based intrinsic calibration techniques is the iterative maximization of both the flatness and the area of visible planes. Calibration results are presented for a case study. The method is currently being applied as the final stage in the production of a commercial 3D rangefinder.

  7. An hybrid detector GEM-ASIC for 2-D soft X-ray imaging for laser produced plasma and pulsed sources

    Pacella, D.; Claps, G.; De Angelis, R.; Murtas, F.

    2016-03-01

    The following paper presents a new 2-D detector (`GEMpix') in the soft X-ray range, having a wide dynamic range thanks to its intrisic gain, working in charge integration mode to be used for diagnosing laser produced plasma (LPP) or X-ray pulsed sources. It is a gas detector based on the Gas Electron Multiplier (GEM) technology with a quad-medipix chip as read-out electronics. In our prototype, the substitution of semiconductor material with a gas triple-GEM allows several advantages with respect to the detectors commonly used in LPP, as X-ray CCDs and Micro Channel Plates or Image Plates. In these experiments the configuration Time-over-Threshold (ToT) has been used, to measure the total charge released to the gas and collected by each pixel, integrated over the X-ray burst duration. Intensity response and spatial resolution has been measured first in laboratory for calibration, as function of the voltage applied to the GEMs, in single photon regime with energies between 3.7 and 17 keV. Subsequently it has been tested at the ABC laser facility (ENEA, Frascati). In this case, we measured the X-rays produced when the ABC neodymium laser, with pulse of 50 J and 3 ns time width, hits plane targets of aluminum. 2-D images have been acquired by means of a pinhole configuration with magnification 1.5 and 50 μ m of spatial resolution. The results are encouraging regarding the capability of this imaging detector to work in experiments where soft X-ray emissivity varies over many orders of magnitude.

  8. An hybrid detector GEM-ASIC for 2-D soft X-ray imaging for laser produced plasma and pulsed sources

    The following paper presents a new 2-D detector ('GEMpix') in the soft X-ray range, having a wide dynamic range thanks to its intrisic gain, working in charge integration mode to be used for diagnosing laser produced plasma (LPP) or X-ray pulsed sources. It is a gas detector based on the Gas Electron Multiplier (GEM) technology with a quad-medipix chip as read-out electronics. In our prototype, the substitution of semiconductor material with a gas triple-GEM allows several advantages with respect to the detectors commonly used in LPP, as X-ray CCDs and Micro Channel Plates or Image Plates. In these experiments the configuration Time-over-Threshold (ToT) has been used, to measure the total charge released to the gas and collected by each pixel, integrated over the X-ray burst duration. Intensity response and spatial resolution has been measured first in laboratory for calibration, as function of the voltage applied to the GEMs, in single photon regime with energies between 3.7 and 17 keV. Subsequently it has been tested at the ABC laser facility (ENEA, Frascati). In this case, we measured the X-rays produced when the ABC neodymium laser, with pulse of 50 J and 3 ns time width, hits plane targets of aluminum. 2-D images have been acquired by means of a pinhole configuration with magnification 1.5 and 50 μ m of spatial resolution. The results are encouraging regarding the capability of this imaging detector to work in experiments where soft X-ray emissivity varies over many orders of magnitude

  9. An Integrated Flexible Self-calibration Approach for 2D Laser Scanning Range Finders Applied to the Hokuyo UTM-30LX-EW

    Mader, D.; Westfeld, P.; Maas, H.-G.

    2014-06-01

    The paper presents a flexible approach for the geometric calibration of a 2D infrared laser scanning range finder. It does not require spatial object data, thus avoiding the time-consuming determination of reference distances or coordinates with superior accuracy. The core contribution is the development of an integrated bundle adjustment, based on the flexible principle of a self-calibration. This method facilitates the precise definition of the geometry of the scanning device, including the estimation of range-measurement-specific correction parameters. The integrated calibration routine jointly adjusts distance and angular data from the laser scanning range finder as well as image data from a supporting DSLR camera, and automatically estimates optimum observation weights. The validation process carried out using a Hokuyo UTM-30LX-EW confirms the correctness of the proposed functional and stochastic contexts and allows detailed accuracy analyses. The level of accuracy of the observations is computed by variance component estimation. For the Hokuyo scanner, we obtained 0.2% of the measured distance in range measurement and 0.2 deg for the angle precision. The RMS error of a 3D coordinate after the calibration becomes 5 mm in lateral and 9 mm in depth direction. Particular challenges have arisen due to a very large elliptical laser beam cross-section of the scanning device used.

  10. Vlasov simulation of 2D Modulational Instability of Ion Acoustic Waves and Prospects for Modeling such instabilities in Laser Propagation Codes

    Berger, Richard; Chapman, T.; Banks, J. W.; Brunner, S.

    2015-11-01

    We present 2D+2V Vlasov simulations of Ion Acoustic waves (IAWs) driven by an external traveling-wave potential, ϕ0 (x , t) , with frequency, ω, and wavenumber, k, obeying the kinetic dispersion relation. Both electrons and ions are treated kinetically. Simulations with ϕ0 (x , t) , localized transverse to the propagation direction, model IAWs driven in a laser speckle. The waves bow with a positive or negative curvature of the wave fronts that depends on the sign of the nonlinear frequency shift ΔωNL , which is in turn determined by the magnitude of ZTe /Ti where Z is the charge state and Te , i is the electron, ion temperature. These kinetic effects result can cause modulational and self-focusing instabilities that transfer wave energy to kinetic energy. Linear dispersion properties of IAWs are used in laser propagation codes that predict the amount of light reflected by stimulated Brillouin scattering. At high enough amplitudes, the linear dispersion is invalid and these kinetic effects should be incorporated. Including the spatial and time scales of these instabilities is computationally prohibitive. We report progress including kinetic models in laser propagation codes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 15.

  11. Laser-induced forward transfer (LIFT) of congruent voxels

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  12. MR-guided laser-induced thermotherapy with a cooled power laser system: a case report of a patient with a recurrent carcinoid metastasis in the breast

    Vogl, Thomas J.; Mack, Martin G.; Straub, Ralf; Eichler, Katrin; Zangos, Stephan; Engelmann, Kerstin; Hochmuth, Kathrin; Ballenberger, Sabine; Jacobi, Volkmar; Diebold, Thomas [Institute of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt/Main (Germany)

    2002-07-01

    We report a case of a 52-year-old woman with a palpable recurrent metastasis of a neuroendocrine carcinoma to the upper outer quadrant of the right breast. For the treatment of this lesion, MR-guided laser-induced thermotherapy was performed with a cooled power laser system (Nd:YAG-Laser). An open 0.2-T MR unit was used for the monitoring of the laser energy delivery to the breast; thus, a thermosensitive fast low-angle shot 2D sequence for MR thermometry was used, so the ablation of the tumor and the increase of laser-induced necrosis could be interactively visualized with the repetitive use of this sequence. The postinterventional MR control exams 1 day and 4 months after laser-induced thermotherapy at the 1.5-T MR unit (Magnetom Symphony Quantum, Siemens, Erlangen, Germany) verified the complete ablation of the tumor without any signs of residual or relapsing tumor. (orig.)

  13. Metal surface nitriding by laser induced plasma

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  14. Laser filament-induced aerosol formation

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Y. Petit; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; J.-P. Wolf; Wöste, L.

    2012-01-01

    Using the aerosol and cloud simulation chamber AIDA we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with partic...

  15. Laser filament-induced aerosol formation

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Y. Petit; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; J.-P. Wolf; Wöste, L.

    2013-01-01

    Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with parti...

  16. Laser filament-induced aerosol formation

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Y. Petit; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; Wolf, J.-P.; Wöste, L.

    2013-01-01

    Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to...

  17. Laser induced ponderomotive convection in water

    Shneider, M. N.; Semak, V. V.

    2015-01-01

    A new mechanism for inducing convection during IR laser interaction with water or any absorbing liquid is described theoretically. The numerical simulations performed using the developed model show that the optical pressure and ponderomotive forces produces water flow in the direction of the laser beam propagation. In the later stage of interaction, when water temperature rises, the Archimedes force becomes first comparable and then dominant producing convection directed against the vector of...

  18. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Fujihashi, Yuta; Ishizaki, Akihito

    2015-01-01

    Recently, nuclear vibrational contribution signatures in 2D electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the e...

  19. CYP1A2 and CYP2D6 Gene Polymorphisms in Schizophrenic Patients with Neuroleptic Drug-Induced Side Effects.

    Ivanova, S A; Filipenko, M L; Vyalova, N M; Voronina, E N; Pozhidaev, I V; Osmanova, D Z; Ivanov, M V; Fedorenko, O Yu; Semke, A V; Bokhan, N A

    2016-03-01

    Polymorphic variants of CYP1A2 and CYP2D6 genes of the cytochrome P450 system were studied in patients with schizophrenia with drug-induced motor disorders and hyperprolactinemia against the background of long-term neuroleptic therapy. We revealed an association of polymorphic variant C-163A CYP1A2*1F of CYP1A2 gene with tardive dyskinesia and association of polymorphic variant 1846G>A CY2D6*4 and genotype A/A of CYP2D6 gene (responsible for debrisoquin-4-hydroxylase synthesis) with limbotruncal tardive dyskinesia in patients with schizophrenia receiving neuroleptics for a long time. PMID:27021090

  20. Island Shape-Induced Transition from 2D to 3D Growth for Pt/Pt(111)

    Jacobsen, Joachim; Jacobsen, Karsten Wedel; Stoltze, Per;

    1995-01-01

    We present a kinetic Monte Carlo simulation of the growth of Pt on Pt(111) capable of describing the experimentally observed temperature dependence of the island shapes and the growth mode. We show that the transition from a 2D growth mode at low temperatures to a 3D mode at higher temperatures is...

  1. Protein-induced changes during the maturation process of human dendritic cells: A 2-D DIGE approach

    Ferreira, Gb; Overbergh, L; Hansen, Kasper Lage; D'Hertog, W; Hansen, Daniel Aaen; Maris, M; Moreau, Y; Workman, Christopher; Waelkens, E; Mathieu, C

    2008-01-01

    Dendritic cells (DCs) are unique antigen presenting cells, which upon maturation change from a specialized antigen-capturing cell towards a professional antigen presenting cells. In this study, a 2-D DIGE analysis of immature and mature DCs was performed, to identify proteins changing in expressi...

  2. Femtosecond laser induced breakdown for combustion diagnostics

    The focused beam of a 100 fs, 800 nm laser is used to induce a spark in some laminar premixed air-methane flames operating with variable fuel content (equivalence ratio). The analysis of the light escaping from the plasma revealed that the Balmer hydrogen lines, Hα and Hβ, and some molecular origin emissions were the most prominent spectral features, while the CN (Β2Σ+-Χ2Σ+) band intensity was found to depend linearly with methane content, suggesting that femtosecond laser induced breakdown spectroscopy can be a useful tool for the in-situ determination and local mapping of fuel content in hydrocarbon-air combustible mixtures.

  3. A versatile interaction chamber for laser-based spectroscopic applications, with the emphasis on Laser-Induced Breakdown Spectroscopy

    The technical note describes the interaction chamber developed particularly for the laser spectroscopy technique applications, such as Laser-Induced Breakdown Spectroscopy (LIBS), Raman Spectroscopy and Laser-Induced Fluorescence. The chamber was designed in order to provide advanced possibilities for the research in mentioned fields and to facilitate routine research procedures. Parameters and the main benefits of the chamber are described, such as the built-in module for automatic 2D chemical mapping and the possibility to set different ambient gas conditions (pressure value and gas type). Together with the chamber description, selected LIBS application examples benefiting from chamber properties are described. - Highlights: • Development of the interaction chamber for LIBS applications • Example of automated chemical mapping of lead in a chalcopyrite sample • Example of LIBS measurement of fluorine in underpressure • Overview of chamber benefits

  4. Laser-induced nuclear excitation

    An analysis is presented of the Coulomb excitation of low-lying nuclear levels by the electrons produced by strong-field ionization of atoms. It is shown that the resulting short-lived radioactivity can be as high as on the order of 103 Ci for certain isotopes excited by using modern laser systems. Relativistic effects are demonstrated that substantially increase radioactivity as compared to that predicted by nonrelativistic theory results.

  5. Generation of UV laser light by stimulated Raman scattering in D2, D2/Ar and D2/He using a pulsed Nd:YAG laser at 355nm

    徐贲; 岳古明; 张寅超; 胡欢陵; 周军; 胡顺星

    2003-01-01

    A pulsed Nd:YAG laser at 355nm is used to pump Raman cell filled with D2,D2/Ar and D2/He.With adequately adjusted parameters,the maximum photon conversion efficiency of the first-order Stokes light(S1,396.796nm)reaches 33.33% in D2/Ar and the stability of S1 in pure D2 is fairly high,the energy drift being less than 10% when the pump energy drifts in the range of 5%.The conversion efficiency and stability,which are functions of the composition and pressure of the Raman medium and the energy of pump laser,are investigated.The result has been used to optimize the laser transmitter system for a differential absorption lidar system to measure NO2 concentration profiles.

  6. Antioxidant ability and radiosensitivity in malignant transformed human bronchial epithelial cell line BEP2D induced by α-particle irradiation

    Objective: To investigate the antioxidant ability and radiosensitivity in the malignant transformed human bronchial epithelial cell line BEP2D induced by α-particle exposure. Methods: Glutathione Peroxidase (GPX), Catalase (CAT) and Glutathione (GSH) assay kits were employed to detect GPX and CAT enzyme abilities and the levels of GSH in BEP2D, RH21 (passage 21 of α-particle-irradiated BEP2D cells), and BERP35T-1 cells (derived from nude mice bearing malignant transformed cells generated from cells of passage 35 of α-particle-irradiated BEP2D cells). MTT assay were used to test the growth rate of BEP2D, RH21 and BERP35T-1 cells treated with 0, 30, 60, 90, 120, and 150 μmoL/L H2O2. Colony-forming test and MTT assay were used to examine the cell survival fraction and the growth rate of BEP2D, RH21 and BERP35T-1 cells exposed to 0, 2, 4, and 8 Gy of γ-rays,respectively. Results: GPX and CAT enzyme activities in RH21 and BERP35T-1 cells were obviously lower than in BEP2D (t=5.75-67.92, P<0.05). CAT enzyme activity in BERP35T-1 was lower than that in RH21 cells (t=22.25, P<0.01). Compared to BEP2D cells, decreased level of GSH was detected in BERP35T-1 cells (t=7.76, P<0.05), but there was no change in RH21. After treatment with 30, 60, 90, 120, and 150 μmol/L H2O2, the growth rates of BEP2D were all higher than those of BERP35T-1 cells (t=10.37-58.36, P<0.01). Meanwhile,the growth rates of BEP2D were all higher than those of RH21 cells after treatment with 60, 90, 120, and 150 μ mol/L H2O2 (t =29.90-84.68, P<0.01). In addition,compared to BEP2D cells,decreased cell survival fraction and growth rate of BERP35T-1 cells were observed after irradiation with 2, 4, and 8 Gy of y-rays (t=5.87-34.17, P<0.05). The cell survival fraction and growth rate of RH21 were all lower than those of BEP2D cells at 4 and 8 Gy post-irradiation (t=6.33- 45.00, P<0.05). Conclusion: The function of antioxidant system decreased in the α-particle-induced transformed cells, which could

  7. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Fujihashi, Yuta; Ishizaki, Akihito, E-mail: ishizaki@ims.ac.jp [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Fleming, Graham R. [Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  8. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications

  9. Laser-Induced Point Defects in Fused Silica Irradiated by UV Laser in Vacuum

    Xiaoyan Zhou; Xinda Zhou; Jin Huang; Qiang Cheng; Fengrui Wang; Xin Ye; Xiaodong Jiang; Weidong Wu

    2014-01-01

    High-purity fused silica irradiated by third harmonic of the Nd:YAG laser in vacuum with different laser pulse parameters was studied experimentally. Laser-induced defects are investigated by UV spectroscopy, and fluorescence spectra and correlated to the structural modifications in the glass matrix through Raman spectroscopy. Results show that, for laser fluence below laser-induced damage threshold (LIDT), the absorbance and intensity of fluorescence bands increase with laser energies and/or...

  10. Laser-Induced Fluorescence in Gaseous [I[subscript]2] Excited with a Green Laser Pointer

    Tellinghuisen, Joel

    2007-01-01

    A green laser pointer could be used in a flashy demonstration of laser-induced fluorescence in the gas phase by directing the beam of the laser through a cell containing [I[subscript]2] at its room temperature vapor pressure. The experiment could be used to provide valuable insight into the requirements for laser-induced fluorescence (LIF) and the…

  11. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    Dyer, Gregory C; Allen, S James; Grine, Albert D; Bethke, Don; Reno, John L; Shaner, Eric A

    2016-01-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a sub...

  12. Laser Induced Breakdown Spectroscopy for Classification of High Energy Materials using Elemental Intensity Ratios

    Sreedhar, S.; Manoj Kumar Gundawar; Venugopal Rao, S.

    2014-01-01

    A simple, yet efficient, methodology is proposed to classify three high energy materials (HEMs) with diverse composition using nanosecond laser induced breakdown spectroscopic data. We have calculated O/N, N/H, and O/H elemental peaks ratios using a ratiometric method. The present work describes a novel way to construct 1D, 2D, and 3D classification model using the above mentioned ratios. Multivariate statistical methods are followed for construction of the classification models. A detailed p...

  13. Direct test of defect mediated laser induced melting theory for two dimensional solids

    Chaudhuri, Debasish; Sengupta, Surajit

    2005-01-01

    We investigate by direct numerical solution of appropriate renormalization flow equations, the validity of a recent dislocation unbinding theory for laser induced freezing/melting in two dimensions. The bare elastic moduli and dislocation fugacities which are inputs to the flow equations are obtained for three different 2-d systems (hard disk, inverse $12^{th}$ power and the Derjaguin-Landau-Verwey-Overbeek potentials) from a restricted Monte Carlo simulation sampling only configurations {\\em...

  14. Laser-induced lipolysis on adipose cells

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  15. Laser induced fluorescence of trapped molecular ions

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  16. Laser induced fluorescence of some plant leaves

    Laser induced fluorescence (LIF) is successfully used as a technique for remote detection of spectral characteristics of some plants. A pulsed nitrogen laser at 337.1 nm is used to excite cotton, corn and rice leaves. The fluorescence spectrum is detected in the range from 340 nm to 820 nm. It is found that, these plant leaves have common fluorescence maxima at 440 nm, 685 nm and 740 nm. plant leaves are also found to be identifiable by the ratio of the fluorescence intensity at 440 nm to that at 685 nm. The present technique can be further used as a means of assessing, remotely, plant stresses. 5 fig

  17. Laser induced ponderomotive convection in water

    Shneider, M N

    2015-01-01

    A new mechanism for inducing convection during IR laser interaction with water or any absorbing polar liquid is described theoretically. The numerical simulations performed using the developed model show that the ponderomotive force produces water flow in the direction of the laser beam propagation. In the later stage of interaction, when water temperature rises, the Archimedes force becomes first comparable and then dominant producing convection directed against the vector of gravitational acceleration (upward). The theoretical estimates and the numerical simulations predict fluid dynamics that is similar to the observed in the previous experiments.

  18. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2012-08-15

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.

  19. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic (λ = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ·cm−2. Images of the spark emission were recorded for times between 30 ns and 100 μs after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J·cm−2 fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov–Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: ► We investigated shock wave evolution by Rayleigh scattering method. ► 2D map of shockwave position for several times after plasma generation is presented. ► Shock wave evolution is not satisfactorily described within self-similar models. ► Evolution of shock position similar to theory taking into account counter pressure. ► Density profile behind the shock similar to numerical solution of Euler equations.

  20. Strain and chemical function decoration induced quantum spin Hall effect in 2D silicene and Sn film

    Cao, Guohua; Zhang, Yun; Cao, Juexian, E-mail: jxcao@xtu.edu.cn

    2015-07-17

    The topological properties of silicene and Sn film decorated with chemical functional groups (–H, –F, –Cl, –Br, –I) are investigated by the first-principle calculations. It is found that Sn films decorated with F, Cl, Br and I are topological insulators with sizable gap while the other combinations are normal insulators. The phase transition of X decorated silicene and Sn film was investigated by applying external strain. Our results pointed out that the normal insulators can transform into topological insulators with sizable gap under critical strain. The research provided new routes to design 2D topological insulator with sizable gap which has wide applications in next-generation spintronics devices. - Highlights: • The inverted band order can be obtained with applying external strain. • Band gaps of TIs can be enhanced by external strain. • Quantum phase transition is observed under a critical strain for X−Si and X−Sn.

  1. Laser-Induced Damage of Calcium Fluoride

    Radiation damage of materials has long been of fundamental interest, especially since the growth of laser technology. One such source of damage comes from UV laser light. Laser systems continue to move into shorter wavelength ranges, but unfortunately are limited by the damage threshold of their optical components. For example, semiconductor lithography is making its way into the 157nm range and requires a material that can not only transmit this light (air cannot), but also withstand the highly energetic photons present at this shorter wavelength. CaF2, an alkaline earth halide, is the chosen material for vacuum UV 157 nm excimer radiation. It can transmit light down to 120 nm and is relatively inexpensive. Although it is readily available through natural and synthetic sources, it is often times difficult to find in high purity. Impurities in the crystal can result in occupied states in the band gap that induce photon absorption [2] and ultimately lead to the degradation of the material. In order to predict how well CaF2 will perform under irradiation of short wavelength laser light, one must understand the mechanisms for laser-induced damage. Laser damage is often a two-step process: initial photons create new defects in the lattice and subsequent photons excite these defects. When laser light is incident on a solid surface there is an initial production of electron-hole (e-h) pairs, a heating of free electrons and a generation of local heating around optically absorbing centers [3]. Once this initial excitation converts to the driving energy for nuclear motion, the result is an ejection of atoms, ions and molecules from the surface, known as desorption or ablation [3]. Secondary processes further driving desorption are photoabsorption, successive excitations of self-trapped excitons (STE's) and defects, and ionization of neutrals by incident laser light [3]. The combination of laser-induced desorption and the alterations to the electronic and geometrical

  2. DNA damages induced by Ar F laser

    The photo ablation process used in corneal refractive surgery by the Argon Fluoride (Ar F) laser emitting in ultraviolet C at 193 nm, exposes viable cells round the irradiated zone to sub ablative doses (< 400 joules.m -2). Despite that DNA absorption is higher at 193 nm than 254 nm, cytotoxicity of 193 nm laser radiation is lower than radiation emitted by 254 nm UV-C lamps. In situ, DNA could be protected of laser radiation by cellular components. Consequently, some authors consider that this radiation does not induce genotoxic effect whereas others suspect it to be mutagenic. These lasers are used for fifteen years but many questions remain concerning the long term effects on adjacent cells to irradiated area. The purpose of this study is to describe the effect of 193 nm laser radiation on DNA of stromal keratocytes which are responsible of the corneal structure. The 193 nm laser irradiation induces directly DNA breakage in keratocytes as it has been shown by the comet assay under alkaline conditions. Two hours post irradiation, damages caused by the highest exposure (150 J.m-2) are not repaired as it has been measured with the Olive Tail Moment (product of tail length and tail DNA content). They give partly evidence of induction of an apoptotic process in cells where DNA could be too damaged. In order to characterize specifically double strand breaks, a comparative analysis by immunofluorescence of the H2 Ax histone phosphorylation (H2 Ax) has been performed on irradiated keratocytes and unirradiated keratocytes. Results show a dose dependent increase of the number of H2 Ax positive cells. Consequences of unrepaired DNA lesions could be observed by the generation of micronuclei in cells. Results show again an increase of micronuclei in laser irradiated cells. Chromosomal aberrations have been pointed out by cytogenetic methods 30 mn after irradiation. These aberrations are dose dependent (from 10 to 150 J.m-2). The number of breakage decreases in the long run

  3. Laser induced nuclear waste transmutation

    Hirlimann, Charles

    2007-01-01

    When producing electricity that collects the mass energy that is available at the time of the induced disintegration of radioactive elements, other unstable elements are produced with half-life span durations ranging from less than one second to hundreds of thousands of years and which are considered as waste. Managing nuclear waste with a half-life of less than 30 years is an easy task, as our societies clearly know how to keep buildings safe for more than a century, the time it takes for th...

  4. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  5. Laser-induced electron capture mass spectrometry

    Wang; Giese

    2000-02-15

    Two techniques are reported for detection of electrophorederivatized compounds by laser-induced electron capture time-of-flight mass spectrometry (LI-EC-TOF-MS). In both cases, a nitrogen laser is used to induce the electron capture. The analyte is deposited in a matrix consisting of a compound with a low ionization potential such as benzo[ghi]perylene in the first technique, where the electron for electron capture apparently comes from this matrix. In the second technique, the analyte is deposited on a silver surface in the absence of matrix. It seems that "monoenergetic" ions instantly desorb from the target surface in the latter case, since the peak width in the continuous extraction mode essentially matches the pulse width of the laser (4 ns). Ten picomoles of 3-O-(pentafluorobenzyl)-alpha-estradiol were detected at a S/N > or = 50, where the spot size of the laser was approximately 0.25% of the sample spot. It is attractive that simple conditions can enable sensitive detection of electrophores on routine TOF-MS equipment. The technique can be anticipated to broaden the range of analytes in both polarity and size that can be detected by EC-MS relative to the range for GC/EC-MS. PMID:10701262

  6. Laser induced fluorescence spectroscopy for FTU

    Laser induced fluorescence spectroscopy (LIFS) is based on the absorption of a short pulse of tuned laser light by a group of atoms and the observation of the resulting fluorescence radiation from the excited state. Because the excitation is resonant it is very efficient, and the fluorescence can be many times brighter than the normal spontaneous emission, so low number densities of the selected atoms can be detected and measured. Good spatial resolution can be achieved by using a narrow laser beam. If the laser is sufficiently monochromatic, and it can be tuned over the absorption line profile of the selected atoms, information can also be obtained about the velocities of the atoms from the Doppler effect which can broaden and shift the line. In this report two topics are examined in detail. The first is the effect of high laser irradiance, which can cause 'power broadening' of the apparent absorption line profile. The second is the effect of the high magnetic field in FTU. Detailed calculations are given for LIFS of neutral iron and molybdenum atoms, including the Zeeman effect, and the implementation of LIFS for these atoms on FTU is discussed

  7. Laser induced nuclear waste transmutation

    Hirlimann, Charles

    2016-01-01

    When producing electricity that collects the mass energy that is available at the time of the induced disintegration of radioactive elements, other unstable elements are produced with half-life span durations ranging from less than one second to hundreds of thousands of years and which are considered as waste. Managing nuclear waste with a half-life of less than 30 years is an easy task, as our societies clearly know how to keep buildings safe for more than a century, the time it takes for the activity to be divided by a factor of 8. High-activity, long-lasting waste that can last for thousands of years or even longer, up to geological time laps, cannot be taken care of for such long durations. Therefore, these types of waste are socially unacceptable; nobody wants to leave a polluted planet to descendants.

  8. Laser-Induced Spallation of Microsphere Monolayers

    Hiraiwa, Morgan; Stossel, Melicent; Khanolkar, Amey; Wang, Junlan; Boechler, Nicholas

    2016-01-01

    The detachment of a semi-ordered monolayer of polystyrene microspheres adhered to an aluminum-coated glass substrate is studied using a laser-induced spallation technique. The microsphere-substrate adhesion force is estimated from substrate surface displacement measurements obtained using optical interferometry, and a rigid-body model that accounts for the inertia of the microspheres. The estimated adhesion force is compared with estimates obtained from interferometric measurement of the out-...

  9. Selective Photo-induced Cross-linking of Polynorbornens: Towards the Fabrication of Polymer 2D- and 3D- Microstructures

    Full text: Ring opening metathesis polymerization (ROMP) has become an important tool for the synthesis of highly defined polymers and various polymer architectures. In the present work, the residual double bonds in ROMP derived polymeric materials were exploited for a photoinduced thiol-ene reaction in order to achieve a selective cross-linking of the macromolecules. To demonstrate the versatility of this reaction for the realization of polymeric microstructures, thin films of poly(norbornene dicarboxylic acid, dimethylester) were structured by means of photolithography. Besides the photoinduced thiol-ene reaction, which was investigated by means of FTIR measurements, also the cross-linking of the macromolecules and thus the change in the solubility were assessed by means of sol-gel analysis. Thin films of this polymer were laterally patterned using conventional single photon lithography leading to resolutions in the μm range. Going a step further, this approach can also be used for realizing 3D polynorborne microstructures employing the two photo absorption writing technique. The obtained 3D features have been visualized by scanning electron microscopy and atomic force microscopy, respectively. The accessibility and reactivity of the polynorbornene main chain C = C double bonds in the thiol-ene reaction paves the way towards novel strategies for the realization of polymer 2D and 3D microstructures. (author)

  10. Controllable Orientation of Ester-Group-Induced Intermolecular Halogen Bonding in a 2D Self-Assembly.

    Zha, Bao; Dong, Meiqiu; Miao, Xinrui; Miao, Kai; Hu, Yi; Wu, Yican; Xu, Li; Deng, Wenli

    2016-08-18

    Halogen bonding with high specificity and directionality in the geometry has proven to be an important type of noncovalent interaction to fabricate and control 2D molecular architectures on surfaces. Herein, we first report how the orientation of the ester substituent for thienophenanthrene derivatives (5,10-DBTD and 5,10-DITD) affects positive charge distribution of halogens by density functional theory, thus determining the formation of an intermolecular halogen bond and different self-assembled patterns by scanning tunneling microscopy. The system presented here mainly includes heterohalogen X···O═C and X···S halogen bonds, H···Br and H···O hydrogen bonds, and I···I interaction, where the directionality and strength of such weak bonds determine the molecular arrangement by varying the halogen substituent. This study provides a detailed understanding of the role of ester orientation, concentration, and solvent effects on the formation of halogen bonds and proves relevant for identification of multiple halogen bonding in supramolecular chemistry. PMID:27482936

  11. On the formation mechanism of laser-induced plasma in high-power laser welding

    The formation mechanism of laser-induced plasma and the mechanism of the laser energy loss caused by plasma in high-power laser welding are investigated theoretically and experimentally. The results show that the plasma generation is determined by the power density of impinging laser beam and the laser energy loss caused by plasma is mainly manifested in the form of absorption and scattering, with the magnitude of loss depending on the wavelength of the impinging laser beam

  12. Hyperactivity induced by the dopamine D2/D3 receptor agonist quinpirole is attenuated by inhibitors of endocannabinoid degradation in mice.

    Luque-Rojas, María Jesús; Galeano, Pablo; Suárez, Juan; Araos, Pedro; Santín, Luis J; de Fonseca, Fernando Rodríguez; Calvo, Eduardo Blanco

    2013-04-01

    The present study was designed to investigate the effect of pharmacological inhibition of endocannabinoid degradation on behavioural actions of the dopamine D2/D3 receptor agonist quinpirole in male C57Bl/6J mice. In addition, we studied the effects of endocannabinoid degradation inhibition on both cocaine-induced psychomotor activation and behavioural sensitization. We analysed the effects of inhibition of the two main endocannabinoid degradation enzymes: fatty acid amide hydrolase (FAAH), using inhibitor URB597 (1 mg/kg); monoacylglycerol lipase (MAGL), using inhibitor URB602 (10 mg/kg). Administration of quinpirole (1 mg/kg) caused a temporal biphasic response characterized by a first phase of immobility (0-50 min), followed by enhanced locomotion (next 70 min) that was associated with the introduction of stereotyped behaviours (stereotyped jumping and rearing). Pretreatment with both endocannabinoid degradation inhibitors did not affect the hypoactivity actions of quinpirole. However, this pretreatment resulted in a marked decrease in quinpirole-induced locomotion and stereotyped behaviours. Administration of FAAH or MAGL inhibitors did not attenuate the acute effects of cocaine. Furthermore, these inhibitors did not impair the acquisition of cocaine-induced behavioural sensitization or the expression of cocaine-induced conditioned locomotion. Only MAGL inhibition attenuated the expression of an already acquired cocaine-induced behavioural sensitization. These results suggest that pharmacological inhibition of endocannabinoid degradation might exert a negative feedback on D2/D3 receptor-mediated hyperactivity. This finding might be relevant for therapeutic approaches for either psychomotor disorders (dyskinesia, corea) or disorganized behaviours associated with dopamine-mediated hyperactivity. PMID:22647577

  13. Femtosecond Laser Induced Underwater Superoleophobic Surfaces

    Yong Jiale

    2015-01-01

    Full Text Available Femtosecond laser microfabrication has been recently utilized in interface science to modify the liquid wettability of solid surfaces. Silicon surface with hierarchical micro/nanostructure is fabricated by a femtosecond laser. Similar to the fish’s scales, the laser-induced surface shows superhydrophilicity in air and superoleophobicity underwater. The oil contact angles can reach up to 159.4 ± 1° for the 1,2-dichloroethane droplets in water. Besides, the surface exhibits ultralow oil-adhesion. In the oil/water/solid three-phase system, water can be trapped in the hierarchical rough structure and forms a repulsive oil layer according to underwater Cassie’s theory. The contact area between the asprepared surface and oil droplet is significantly reduced, resulting in superoleophobicity and ultralow oil-adhesion in water. In addition, transparent underwater superoleophobic and anti-oil surfaces are achieved on silica glass surfaces by femtosecond laser ablation. This transparent property is attributed to the presence of the water environment because scattering and refraction are effectively weakened. The presented method is simple and can accurately control the processing location, which may have widely potential applications in, for instance, microfluidics, biotechnologies, and antifouling coatings.

  14. The super Weierstrass ζ-function and operator product expansions in 2D-induced supergravity on the supertorus

    In order to solve the superBeltrami equations (SBE) on the supertorus, we construct the quasielliptic Weierstrass ζ-function as the δ-Cuachy kernel thereon. Using this solution we compute the stress-energy tensor, and Green functions corresponding to induced supergravity in Polyakov's path integral formalism. This allows us to recover the corresponding results on the supercomplex plane and the torus. Finally, we discuss generalizations to super Riemann surfaces of higher genus. (author). 16 refs

  15. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    Debeljak, Marta [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia); Elteren, Johannes T. van, E-mail: elteren@ki.si [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia)

    2013-07-17

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg{sup 2+} does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm{sup −2}; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg{sup −1} DW HgCl{sub 2}. It was

  16. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg2+ does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm−2; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg−1 DW HgCl2. It was found that at given Hg

  17. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.

  18. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases

  19. Laser-induced contamination on high-reflective optics

    Wagner, Paul

    2014-01-01

    Operating high power space-based laser systems in the visible and UV range is problematic due to laser-induced contamination. Organic materials are outgassing in vacuum and deposit on irradiated optical components. To provide reliable space-based laser systems the optical components quality plays a major role. In this thesis laser-induced contamination growth on high-reflective coated optics is investigated for UV irradiation of 355nm with naphthalene as contamination material. Four different...

  20. Nanodot formation induced by femtosecond laser irradiation

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10–100 nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  1. Laser induced fluorescence of dental caries

    Albin, S.; Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.

  2. Modeling laser-induced periodic surface structures: an electromagnetic approach

    Skolski, Johann Zbigniew Pierre

    2014-01-01

    This thesis presents and discusses laser-induced periodic surface structures (LIPSSs), as well as a model explaining their formation. LIPSSs are regular wavy surface structures with dimensions usually in the submicrometer range, which can develop on the surface of many materials exposed to laser radiation. The most common type of LIPSSs, which can be produced with continuous wave lasers or pulsed lasers, have a periodicity close to the laser wavelength and a direction orthogonal to the polari...

  3. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity

    Turunen, S; Kaepylae, E; Kellomaeki, M [Tampere University of Technology, Department of Biomedical Engineering, PO Box 692, 33101 Tampere (Finland); Terzaki, K; Fotakis, C; Farsari, M [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, 70013, Heraklion, Crete (Greece); Viitanen, J, E-mail: elli.kapyla@tut.fi [VTT Technical Research Centre of Finland, PO Box 1300, 33101 Tampere (Finland)

    2011-12-15

    This study reports the pico- and femtosecond laser-induced photocrosslinking of protein microstructures. The capabilities of a picosecond Nd:YAG laser to promote multiphoton excited crosslinking of proteins were evaluated by fabricating 2D and 3D microstructures of avidin, bovine serum albumin (BSA) and biotinylated bovine serum albumin (bBSA). The multiphoton absorption-induced photocrosslinking of proteins was demonstrated here for the first time with a non-toxic biomolecule flavin mononucleotide (FMN) as the photosensitizer. Sub-micrometer and micrometer scale structures were fabricated from several different compositions of protein and photosensitizer by varying the average laser power and scanning speed in order to determine the optimal process parameters for efficient photocrosslinking. In addition, the retention of ligand-binding ability of the crosslinked protein structures was shown by fluorescence imaging of immobilized biotin or streptavidin conjugated fluorescence labels. The surface topography and the resolution of the protein patterns fabricated with the Nd:YAG laser were compared to the results obtained with a femtosecond Ti:Sapphire laser. Quite similar grain characteristics and comparable feature sizes were achieved with both laser sources, which demonstrates the utility of the low-cost Nd:YAG microlaser for direct laser writing of protein microstructures.

  4. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity

    This study reports the pico- and femtosecond laser-induced photocrosslinking of protein microstructures. The capabilities of a picosecond Nd:YAG laser to promote multiphoton excited crosslinking of proteins were evaluated by fabricating 2D and 3D microstructures of avidin, bovine serum albumin (BSA) and biotinylated bovine serum albumin (bBSA). The multiphoton absorption-induced photocrosslinking of proteins was demonstrated here for the first time with a non-toxic biomolecule flavin mononucleotide (FMN) as the photosensitizer. Sub-micrometer and micrometer scale structures were fabricated from several different compositions of protein and photosensitizer by varying the average laser power and scanning speed in order to determine the optimal process parameters for efficient photocrosslinking. In addition, the retention of ligand-binding ability of the crosslinked protein structures was shown by fluorescence imaging of immobilized biotin or streptavidin conjugated fluorescence labels. The surface topography and the resolution of the protein patterns fabricated with the Nd:YAG laser were compared to the results obtained with a femtosecond Ti:Sapphire laser. Quite similar grain characteristics and comparable feature sizes were achieved with both laser sources, which demonstrates the utility of the low-cost Nd:YAG microlaser for direct laser writing of protein microstructures.

  5. Treatment with 1,25(OH)2D3induced HDAC2 expression and reduced NF-κB p65 expression in a rat model of OVA-induced asthma

    Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH)2D3 on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH)2D3 pretreatment, 1,25(OH)2D3 treatment, Dx treatment, and Dx and 1,25(OH)2D3 treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH)2D3 reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH)2D3 and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH)2D3might be useful as a novel HDAC2 activator in the treatment of asthma

  6. Medical Laser-Induced Thermotherapy - Models and Applications

    Sturesson, Christian

    1998-01-01

    Heat has long been utilised as a therapeutic tool in medicine. Laser-induced thermotherapy aims at achieving the local destruction of lesions, relying on the conversion of the light absorbed by the tissue into heat. In interstitial laser-induced thermotherapy, light is focused into thin optical fibres, which are placed deep into the tumour mass. The objective of this work was to increase the understanding of the physical and biological phenomena governing the response to laser-induced thermot...

  7. Laser induced surface stress on water droplets.

    Wang, Neng; Lin, Zhifang; Ng, Jack

    2014-10-01

    Laser induced stress on spherical water droplets is studied. At mechanical equilibrium, the body stress vanishes therefore we consider only the surface stress. The surface stress on sub-wavelength droplets is slightly weaker along the light propagation direction. For larger droplets, due to their light focusing effect, the forward stress is significantly enhanced. For a particle roughly 3 micron in radius, when it is excited at whispering gallery mode with Q ∼ 10⁴ by a 1 Watt Gaussian beam, the stress can be enhanced by two orders of magnitude, and can be comparable with the Laplace pressure. PMID:25321955

  8. Comparision of laser-induced and classical ultasound

    Niederhauser, Joel J.; Jaeger, Michael; Frenz, Martin

    2003-06-01

    A classical medical ultrasound system was combined with a pulsed laser source to allow laser-induced ultrasound imaging (optoacoustics). Classical ultrasound is based on reflection and scattering of an incident acoustic pulse at internal tissue structures. Laser-induced ultrasound is generated in situ by heating optical absorbing structures, such as blood vessels, with a 5 ns laser pulse (few degrees or fraction of degree), which generates pressure transients. Laser-induced ultrasound probes optical properties and therefore provides much higher contrast and complementary information compared to classical ultrasound. An ultrasound array transducer in combination with a commercial medical imaging system was used to record acoustic transients of both methods. Veins and arteries in a human forearm were identified in vivo using classical color doppler and oxygenation dependent optical absorption at 660 nm and 1064 nm laser wavelength. Safety limits of both methods were explored. Laser-induced ultrasound seems well suited to improve classical ultrasound imaging of subcutaneous regions.

  9. Time-resolved investigations of the fragmentation dynamic of H{sub 2} (D{sub 2}) in and with ultra-short laser pulses; Zeitaufgeloeste Untersuchungen zur Fragmentationsdynamik von H{sub 2} (D{sub 2}) in ultra-kurzen Laserpulsen

    Ergler, T.

    2006-07-19

    In course of this work pump-probe experiments aimed to study ultrafast nuclear motion in H{sub 2} (D{sub 2}) fragmentation by intense 6-25 fs laser pulses have been carried out. In order to perform time-resolved measurements, a Mach-Zehnder interferometer providing two identical synchronized laser pulses with the time-delay variable from 0 to 3000 fs with 300 as accuracy and long-term stability has been built. The laser pulses at the intensities of up to 10{sup 15} W/cm{sup 2} were focused onto a H{sub 2} (D{sub 2}) molecular beam leading to the ionization or dissociation of the molecules, and the momenta of all charged reactions fragments were measured with a reaction microscope. With 6-7 fs pulses it was possible to probe the time evolution of the bound H{sup +}{sub 2} (D{sup +}{sub 2}) nuclear wave packet created by the first (pump) laser pulse, fragmenting the molecule with the second (probe) pulse. A fast delocalization, or ''collapse'', and subsequent ''revival'' of the vibrational wave packet have been observed. In addition, the signatures of the ground state vibrational excitation in neutral D{sub 2} molecule have been found, and the dominance of a new, purely quantum mechanical wave packet preparation mechanism (the so-called ''Lochfrass'') has been proved. In the experiments with 25 fs pulses the theoretically predicted enhancement of the ionization probability for the dissociating H{sup +}{sub 2} molecular ion at large internuclear distances has been detected for the first time. (orig.)

  10. Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films

    Highlights: • Femtosecond laser-induced surface nanostructures on sputtered platinum thin films. • Three types of structures obtained: random nanostructures, LSFL and HSFL. • Two different modification regimes have been established based on laser fluence. - Abstract: In this work, submicro and nanostructures self-formed on the surface of Platinum thin films under femtosecond laser-pulse irradiation are investigated. A Ti:Sapphire laser system was used to linearly scan 15 mm lines with 100 fs pulses at a central wavelength of 800 nm with a 1 kHz repetition rate. The resulting structures were characterized by scanning electron microscopy (SEM) and 2D-Fast Fourier Transform (2D-FFT) analysis. This analysis of images revealed different types of structures depending on the laser irradiation parameters: random nanostructures, low spatial frequency LIPSS (LSFL) with a periodicity from about 450 to 600 nm, and high spatial frequency LIPSS (HSFL) with a periodicity from about 80 to 200 nm. Two different modifications regimes have been established for the formation of nanostructures: (a) a high-fluence regime in which random nanostructures and LSFL are obtained and (b) a low-fluence regime in which HSFL and LSFL are obtained

  11. Laser Induced Fluorescence of the Iodine Ion

    Hargus, William

    2014-10-01

    Iodine (I2) has been considered as a potential electrostatic spacecraft thruster propellant for approximately 2 decades, but has only recently been demonstrated. Energy conversion efficiency appears to be on par with xenon without thruster modification. Intriguingly, performance appears to exceed xenon at high acceleration potentials. As part of a continuing program for the development of non-intrusive plasma diagnostics for advanced plasma spacecraft propulsion, we have identified the I II 5d5D4 o state as metastable, and therefore containing a reservoir of excited state ions suitable for laser probing. The 5d5D4 o - 6p5P3 transition at 695.878 nm is convenient for diode laser excitation with the 5s5S2 o - 6p5P3 transition at 516.12 nm as an ideal candidate for non-resonant fluorescence collection. We have constructed a Penning type iodine microwave discharge lamp optimized for I II production for table-top measurements. This work demonstrates I II laser-induced fluorescence in a representative iodine discharge and will validate our previous theoretical work based on the limited available historical I II spectral data.

  12. Laser-Induced Magnetic Dipole Spectroscopy.

    Hintze, Christian; Bücker, Dennis; Domingo Köhler, Silvia; Jeschke, Gunnar; Drescher, Malte

    2016-06-16

    Pulse electron paramagnetic resonance measurements of nanometer scale distance distributions have proven highly effective in structural studies. They exploit the magnetic dipole-dipole coupling between spin labels site-specifically attached to macromolecules. The most commonly applied technique is double electron-electron resonance (DEER, also called pulsed electron double resonance (PELDOR)). Here we present the new technique of laser-induced magnetic dipole (LaserIMD) spectroscopy based on optical switching of the dipole-dipole coupling. In a proof of concept experiment on a model peptide, we find, already at a low quantum yield of triplet excitation, the same sensitivity for measuring the distance between a porphyrin and a nitroxide label as in a DEER measurement between two nitroxide labels. On the heme protein cytochrome C, we demonstrate that LaserIMD allows for distance measurements between a heme prosthetic group and a nitroxide label, although the heme triplet state is not directly observable by an electron spin echo. PMID:27163749

  13. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Kurebayashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Sakurai, H., E-mail: sakurail@sci.kj.yamagata-u.ac.jp [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Takahashi, Y. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Doshita, N. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kikuchi, S. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Tokanai, F. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Horiuchi, K. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Tajima, Y. [Institute of Arts and Sciences, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Oe, T. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sato, T. [Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560 (Japan); Gunji, S. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Inui, E. [Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Kondo, K. [Department of Physics, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Iwata, N. [Dept. of Earth and Environmental Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560 (Japan); Sasaki, N. [Graduate School of Science and Technology, Hirosaki University, 3, Bunkyo-chou, Hirosaki 036-8561, Aomori (Japan); Matsuzaki, H. [Micro Analysis Laboratory, Tandem accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kunieda, S. [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun 319-1195, Ibaraki (Japan)

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10{sup –9} PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×10{sup 13} was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  14. High energy muon induced radioactive nuclides in nickel plate and its use for 2-D muon-beam image profile

    Kurebayashi, Y.; Sakurai, H.; Takahashi, Y.; Doshita, N.; Kikuchi, S.; Tokanai, F.; Horiuchi, K.; Tajima, Y.; Oe, T.; Sato, T.; Gunji, S.; Inui, E.; Kondo, K.; Iwata, N.; Sasaki, N.; Matsuzaki, H.; Kunieda, S.

    2015-11-01

    Target materials were exposed to a muon beam with an energy of 160 GeV/c at the COMPASS experiment line in CERN-SPS to measure the production cross-sections for muon-induced radionuclides. A muon imager containing four nickel plates, each measuring 100 mm×100 mm, exposed to the IP plate successfully detected the muon beam image during an irradiation period of 33 days. The contrasting density rate of the nickel plate was (5.2±0.7)×10-9 PSL/muon per one-day exposure to IP. The image measured 122 mm and 174 mm in horizontal and vertical lengths, respectively, in relation to the surface of the base, indicating that 50±6% of the muon beam flux is confined to an area of 18% of the whole muon beam. The number of muons estimated from the PSL value in the total beam image area (0.81±0.1)×1013 was comparable to the total muon counts of the ion-chamber at the M2 beam line in the CERN-SPS. The production cross-sections of Cr-51, Mn-54, Co-56, Co-57, and Co-58 in nickel were 0.19±0.08, 0.34±0.06, 0.5±0.05, 3.44±0.07, 0.4±0.03 in the unit of mb, respectively, reducing muon associated particles effects. They are approximately 10 times smaller than that a proceeding study by Heisinger et al.

  15. Absorption tomography of laser induced plasmas

    An emission tomography of laser-induced plasmas employed in the laser induced breakdown spectroscopy (LIBS) requires signal integration times in a microsecond range during which the LIBS plasma cannot be considered stationary. Consequently, the use of the data for reconstructing the plasma properties under the assumption that the latter does not change significantly during the integration time leads to inaccurate results. To reduce the integration time, it is proposed to measure a plasma absorption in parallel rays using a scanning rectangular aperture whose dimension Δ along the scanning direction is about a characteristic size of plasma plumes (Δ∼1cm) and the other dimension Δp is of the order of a uniformity length of plasma parameters (Δp∼10μm). The aperture is moved step by step along the scanning direction and the total energy of photons coming through the aperture is measured during time T at each position of the aperture. Owing to the large size of the aperture, the integration time T is reduced by a factor ∼Δp/Δ. A numerical data processing is proposed to restore the spatial resolution of the plasma absorption along the scanning direction. It is determined by the scanning step Δs≤Δp. Another advantage of the proposed procedure is that inexpensive linear CCD or non-discrete (PMT, photodiode) detectors can be used instead of costly 2-dimensional detectors.

  16. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  17. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  18. Induced chirp in laser wake-field generation

    Particle-in-cell simulation is used to illustrate induced chirp in the laser wake-field generation experiment. The evolution of the laser pulse characteristics and the wake-field amplitude is investigated numerically. The local frequency of the laser pulse is influenced during wake-field excitation. The numerical result shows that the negative Gaussian chirp profile is the mainly induced chirp throughout the laser pulse. Hence, the induced negative Gaussian chirp has a significant influence on wake-field generation and consequently on the acceleration gradient in the wake-field acceleration.

  19. Nanosecond pulsed laser induced self-organized nano-dots patterns on GaSb surface

    We report a technique for formation of two-dimensional (2D) nanodot (ND) patterns on gaillium antimoide (GaSb) using a nanosecond pulsed laser irradiation with 532 nm wavelength. The patterns have formed because of the interference and the self-organization under energy deposition of the laser irradiation, which induced the growth of NDs on the local area. The NDs are grown and shrunken in the pattern by energy depositions. In the laser irradiation with average laser energy density of 35 mJ cm−2, large and small NDs are formed on GaSb surface. The large NDs have grown average diameter from 160 to 200 nm with increase of laser pulses, and the small NDs have shrunken average diameter from 75 to 30 nm. The critical dot size is required about 107 nm for growth of the NDs in the patterns. Nanosecond pulsed laser irradiation can control the self-organized ND size on GaSb in air as a function of the laser pulses.

  20. Q-Switched Alexandrite Laser-induced Chrysiasis

    Cohen, Philip R; Victor Ross, E.

    2015-01-01

    Background: Chyriasis is an uncommon side effect that occurs in patients who are receiving prolonged treatment with either intravenous or intramuscular gold as a distinctive blue-gray pigmentation of light-exposed skin. Laser-induced chrysiasis is a rarely described phenomenon in individuals who have received systemic gold and are subsequently treated with a Q-switched laser. Purpose: To describe the characteristics of patients with laser-induced chrysiasis. Methods: The authors describe a 60...

  1. Laser-induced fluorescence for medical diagnostics

    Laser-induced fluorescence as a tool for tissue diagnostics is discussed. Both spectrally and time-resolved fluorescence signals are studied to optimize the demarcation of diseased lesions from normal tissue. The presentation is focused on two fields of application: the identification of malignant tumours and atherosclerotic plaques. Tissue autofluorescence as well as fluorescence from administered drugs have been utilized in diseased tissue diagnosis. The fluorescence criterion for tissue diagnosis is, as far as possible, chosen to be independent of unknown fluorescence parameters, which are not correlated to the type of tissue investigated. Both a dependence on biological parameters, such as light absorption in blood, and instrumental characteristics, such as excitation pulse fluctuations and detection geometry, can be minimized. Several chemical compounds have been studied in animal experiments after intraveneous injection to verify their capacity as malignant tumour marking drugs under laser excitation and fluorescence detection. Another objective of these studies was to improve our understanding of the mechanism and chemistry behind the retention of the various drugs in tissue. The properties of a chemical which maximize its selective retention in tumours are discussed. In order to utilize this diagnostic modality, three different clinically adapted sets of instrumentation have been developed and are presented. Two of the systems are nitrogen-laser-based fluorosensors; one is a point-monitoring system with full spectral resolution and the other one is an imaging system with up to four simultaneously recorded images in different spectral bands. The third system is a low-cost point-monitoring mercury-lamp-based fluoroscence emission as well as reflection characteristics of tissue. (author)

  2. Trapping induced nonlinear behavior of backward stimulated Raman scattering in multi-speckled laser beams

    In inertial confinement fusion experiments, stimulated Raman scattering (SRS) occurs when electron density fluctuations are amplified resonantly by the incident laser beams and scattered light. These beams comprise several thousands of individual laser speckles. We have found in single-speckle studies that electron trapping lowers the threshold intensity for SRS onset to a value below that from linear theory and enhances scattering. The trapping-induced plasma-wave frequency shift leads to wave-front bowing and filamentation processes that saturate SRS and limit scattering within a speckle. With large-scale simulations, we have now examined how laser speckles interact with one another through three-dimensional (3D) particle-in-cell (PIC) simulations of two interacting speckles and 2D PIC simulations of ensembles of laser speckles (hundreds of speckles). Our work shows that kinetic trapping physics also governs the onset and saturation of SRS in ensembles of speckles. Speckles interact in a manner that is nonlinear and nonlocal: An intense speckle can destabilize its neighbors through transport of hot electrons and SRS waves, resulting in enhanced emission of particles and waves that, in turn, act upon the original speckle. In this manner, speckles below threshold when in isolation can be above the threshold in multi-speckled beams under conditions for laser-driven fusion experiments at the National Ignition Facility (NIF) and ensembles of speckles are thus found to collectively lower the SRS onset threshold. Simulations of the hohlraum interior where laser beams overlap show that multi-speckled laser beams at low average intensity (a few times 1014 W/cm2) have correspondingly lower thresholds for enhanced SRS and that the sub-ps bursts of SRS saturate through trapping induced nonlinearities. Because of electron trapping effects, SRS reflectivity grows slowly with average laser intensity. While SRS reflectivity saturates under NIF conditions, SRS hot electron energy

  3. Trapping induced nonlinear behavior of backward stimulated Raman scattering in multi-speckled laser beamsa)

    Yin, L.; Albright, B. J.; Rose, H. A.; Bowers, K. J.; Bergen, B.; Kirkwood, R. K.; Hinkel, D. E.; Langdon, A. B.; Michel, P.; Montgomery, D. S.; Kline, J. L.

    2012-05-01

    In inertial confinement fusion experiments, stimulated Raman scattering (SRS) occurs when electron density fluctuations are amplified resonantly by the incident laser beams and scattered light. These beams comprise several thousands of individual laser speckles. We have found in single-speckle studies that electron trapping lowers the threshold intensity for SRS onset to a value below that from linear theory and enhances scattering. The trapping-induced plasma-wave frequency shift leads to wave-front bowing and filamentation processes that saturate SRS and limit scattering within a speckle. With large-scale simulations, we have now examined how laser speckles interact with one another through three-dimensional (3D) particle-in-cell (PIC) simulations of two interacting speckles and 2D PIC simulations of ensembles of laser speckles (hundreds of speckles). Our work shows that kinetic trapping physics also governs the onset and saturation of SRS in ensembles of speckles. Speckles interact in a manner that is nonlinear and nonlocal: An intense speckle can destabilize its neighbors through transport of hot electrons and SRS waves, resulting in enhanced emission of particles and waves that, in turn, act upon the original speckle. In this manner, speckles below threshold when in isolation can be above the threshold in multi-speckled beams under conditions for laser-driven fusion experiments at the National Ignition Facility (NIF) and ensembles of speckles are thus found to collectively lower the SRS onset threshold. Simulations of the hohlraum interior where laser beams overlap show that multi-speckled laser beams at low average intensity (a few times 1014 W/cm2) have correspondingly lower thresholds for enhanced SRS and that the sub-ps bursts of SRS saturate through trapping induced nonlinearities. Because of electron trapping effects, SRS reflectivity grows slowly with average laser intensity. While SRS reflectivity saturates under NIF conditions, SRS hot electron energy

  4. Laser filament-induced aerosol formation

    H. Saathoff

    2012-11-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by acids generated by the photo-ionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  5. Laser filament-induced aerosol formation

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  6. Volume of a laser-induced microjet

    Kawamoto, Sennosuke; Hayasaka, Keisuke; Noguchi, Yuto; Tagawa, Yoshiyuki

    2015-11-01

    Needle-free injection systems are of great importance for medical treatments. In spite of their great potential, these systems are not commonly used. One of the common problems is strong pain caused by diffusion shape of the jet. To solve this problem, the usage of a high-speed highly-focused microjet as needle-free injection system is expected. It is thus crucial to control important indicators such as ejected volume of the jet for its safe application. We conduct experiments to reveal which parameter influences mostly the ejected volume. In the experiments, we use a glass tube of an inner diameter of 500 micro-meter, which is filled with the liquid. One end is connected to a syringe and the other end is opened. Radiating the pulse laser instantaneously vapors the liquid, followed by the generation of a shockwave. We find that the maximum volume of a laser-induced bubble is approximately proportional to the ejected volume. It is also found that the occurrence of cavitation does not affect the ejected volume while it changes the jet velocity.

  7. Laser filament-induced aerosol formation

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Petit, Y.; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; Wolf, J.-P.; Wöste, L.

    2013-05-01

    Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm-3 plasma s-1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  8. Laser-Induced-Fluorescence Photogrammetry and Videogrammetry

    Danehy, Paul; Jones, Tom; Connell, John; Belvin, Keith; Watson, Kent

    2004-01-01

    surface of the target. The improved method is denoted laser-induced-fluorescence photogrammetry.

  9. Laser-induced periodic surface structuring of biopolymers

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  10. Laser-induced damage of 1064-nm narrow-band interference filters under different laser modes

    Weidong Gao(高卫东); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)

    2004-01-01

    The laser-induced damage behavior of narrow-band interference filters was investigated with a Nd:YAG laser at 1064 nm under single-pulse mode and free-running laser mode.The absorption measurement of such coatings has been performed by surface thermal lensing(STL)technique.The relationship between damage morphology and absorption under the two different laser modes was studied in detail.The explanation was given by the standing-wave distribution theory.

  11. Laser-induced condensation by ultrashort laser pulses at 248 nm

    Joly, P; Petrarca, M.; Vogel, A.(Physikalisches Institut, University of Bonn, Bonn, Germany); Pohl, T; Nagy, T.; Jusforgues, Q.; Simon, P.; Kasparian, J.; Weber, K.; Wolf, J.-P.

    2013-01-01

    We compare laser-induced condensation by UV laser pulses of femtosecond, sub-picosecond, and nanosecond duration between each other, as well as with respect to near-infrared (NIR) (800 nm) ultrashort laser pulses. Particle nucleation by UV pulses is so efficient that their growth beyond several hundreds of nm is limited by the local concentration of water vapour molecules. Furthermore, we evidence a dual mechanism: While condensation induced by ultrashort UV pulses rely on nitrogen photo-oxid...

  12. Treatment with 1,25(OH){sub 2}D{sub 3}induced HDAC2 expression and reduced NF-κB p65 expression in a rat model of OVA-induced asthma

    Zhou, Y.; Wang, G.F.; Yang, L.; Liu, F.; Kang, J.Q.; Wang, R.L.; Gu, W.; Wang, C.Y. [Department of Gerontology Medicine, Xinhua Hospital, Shanghai Jiatong University School of Medicine, Shanghai (China)

    2015-04-28

    Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D{sub 3} (1,25[OH]{sub 2}D{sub 3}) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH){sub 2}D{sub 3} on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH){sub 2}D{sub 3} pretreatment, 1,25(OH){sub 2}D{sub 3} treatment, Dx treatment, and Dx and 1,25(OH){sub 2}D{sub 3} treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH){sub 2}D{sub 3} reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH){sub 2}D{sub 3} and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH){sub 2}D{sub 3}might be useful as a novel HDAC2 activator in the treatment of asthma.

  13. Laser induced incandescence and laser induced breakdown spectroscopy based sensor development

    Eseller, Kemal Efe

    In this doctoral dissertation, two laser-based sensors were evaluated for different applications. Laser Induced Incandescence (LII) is a technique which can provide non-intrusive quantitative measurement of soot and it provides a unique diagnostic tool to characterize engine performance. Since LII is linearly proportional to the soot volume fraction, it can provide in situ, real time measurement of soot volume fraction with high temporal and spatial resolution. LII has the capability to characterize soot formation during combustion. The soot volume fraction from both flames and a soot generator was investigated with LII. The effects of experimental parameters, such as laser fluence, gate delay, gate width and various laser beam focusing, on LII signal was studied. Laser Induced Breakdown Spectroscopy (LIBS), a diagnostic tool for in situ elemental analysis, has been evaluated for on-line, simultaneous, multi-species impurity monitoring in hydrogen. LIBS spectra with different impurity levels of nitrogen, argon, and oxygen were recorded and the intensity of the spectral lines of Ar, O, N, and H observed were used to form calibration plots for impurities in hydrogen measurements. An ungated detection method for LIBS has been developed and applied to equivalence ratio measurements of CH4/air and biofuel/air. LIBS has also been used to quantitatively analyze the composition of a slurry sample. The quenching effect of water in slurry samples causes low LIBS signal quality with poor sensitivity. Univariate and multivariate calibration was performed on LIBS spectra of dried slurry samples for elemental analysis of Mg, Si and Fe. Calibration results show that the dried slurry samples give good correlation between spectral intensity and elemental concentration.

  14. Laser Induced Birefringence in Pure Liquids

    Harrison, Neil J.

    1991-01-01

    Available from UMI in association with The British Library. Laser induced birefringence or the Optical Kerr effect is a subject that has undergone much research over previous years and is an established technique for the study of many classes of materials. To date the measurements on various media have been characterized by the substantial time required to obtain results and the generally poor sensitivity of the apparatus used. This work describes the development of a new apparatus which is the first in the field to automate the signal capture and analysis utilizing a 1 Gigasample/second digitizing oscilloscope connected to a microcomputer to provide fast, accurate transient analysis. Careful design of the apparatus enabled operation at two inducing wavelengths of 532nm and 1064nm. The sensitivity and accuracy of the apparatus coupled with the rapid transient evaluation was tested on a number of well characterized samples including benzene, nitrobenzene, toluene and benzoyl chloride and was found to give excellent agreement with other workers. The apparatus was used to investigate the properties of the organic pure liquid series the n-alkanes before making the first measurements on the 1-alkenes, 1-alkynes, alcohols, carboxylic acids and three alkdienes. Results from these experiments were used to evaluate the contributions of sigma and pi bonds to the Optical Kerr effect in simple organic molecules. A review of all previously published Optical Kerr effect results for pure liquids was also carried out and the first comprehensive table of results complied.

  15. Anisotropy of Laser-Induced Bulk Damage of Single Crystals

    Krupych, O.; Dyachok, Ya.; Smaga, I.; Vlokh, R.

    2007-01-01

    The regularities of laser-induced damage of anisotropic materials, such as LiNbO3 and KDP dielectric single crystals, are experimentally studied. It is revealed that the shape of laser-induced damage in the dielectric crystals depends on the elastic symmetry of crystal and the propagation direction of the laser beam. When the beam propagates along the optic axis of crystals, the figures of the laser damage are six-path stars for LiNbO3 and four-path ones for KDP crystals. For the direction pa...

  16. Photocurrent spectroscopy of 2D materials

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  17. Laser induced x-ray `RADAR' particle physics model

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  18. 2D-Oide effect

    Blanco, O R; Bambade, P

    2015-01-01

    The Oide effect considers the synchrotron radiation in the final focusing quadrupole and it sets a lower limit on the vertical beam size at the Interaction Point, particularly relevant for high energy linear colliders. The theory of the Oide effect was derived considering only the radiation in the focusing plane of the magnet. This article addresses the theoretical calculation of the radiation effect on the beam size consider- ing both focusing and defocusing planes of the quadrupole, refered to as 2D-Oide. The CLIC 3 TeV final quadrupole (QD0) and beam parameters are used to compare the theoretical results from the Oide effect and the 2D-Oide effect with particle tracking in PLACET. The 2D-oide demonstrates to be important as it increases by 17% the contribution to the beam size. Further insight into the aberrations induced by the synchrotron radiation opens the possibility to partially correct the 2D-Oide effect with octupole magn

  19. Locomotor hypoactivity and motor disturbances--behavioral effects induced by intracerebellar microinjections of dopaminergic DA-D2/D3 receptor agonists.

    Kolasiewicz, W; Maj, J

    2001-01-01

    In the light of recent findings, DA-D3 dopamine receptors with an unclear physiological function are present in the cerebellar cortex. Our preliminary results seem to indicate that bilateral injection of 7-OH-DPAT, a DA-D2/D3 receptor agonist (1 and 10 microg/0.5 microl), to lobule 9/10 of rat cerebellar cortex reduces spontaneous locomotor activity (hypolocomotor effects) and induces balance and motor coordination disturbances, respectively. Similar effects can be observed in the case of analogous microinjection of the DA-D3/D2 agonist pramipexole. In earlier studies, peripheral (ip) injection of nafadotride (0.6 mg/kg), a D3 receptor antagonist, neither affected per se spontaneous motor activity, nor modified the above described effects of 7-OH-DPAT. Participation of cerebellar DA-D3 and DA-D2 receptors in hypolocomotor effects, as well as putative participation of other receptors in the generation of motor disturbances, has been discussed. PMID:11990070

  20. Risks induced by laser radiation; Risques induits par le rayonnement laser

    Courant, D. [CEA Fontenay-aux-Roses, 92 (France). Dept. de Radiobiologie et de Radiopathologie

    2001-07-01

    The use of lasers is often dangerous because of the emitted power, the wave length, the conduction system(optical fiber, wave guide, mirrors) and the use conditions. The safety notion involves the precise knowledge of materials, the biological effects in function of laser emission parameters, the knowledge of protection standards, the observance of use rules and the personnel training. This chapter treats the risks induced by the beam. It gives the different biological effects induced by the laser beam, at the eye and skin levels that are at the origin of exposure limits and the lasers classification recommended by the protection standards. (N.C.)

  1. Deuterium Clusters Fusion Induced by the Intense Femtosecond Laser Pulse

    LIU Hong-Jie; CHEN Jia-Bin; WANG Hong-Bin; JIAO Chun-Ye; HE Ying-Ling; WEN Tian-Shu; WEN Xian-Lun; CHEN Ming; ZHENG Zhi-Jian; GU Yu-Qiu; ZHANG Bao-Han; RHEE Yong-Joo; NAM Sung-Mo; HAN Jae-Min; RHEE Yong-Woo; YEA Kwon-Hae

    2007-01-01

    Neutrons (2.45 MeV) from deuterium cluster fusion induced by the intense femtosecond (30 fs) laser pulse are experimentally demonstrated. The average neutron yield 103 per shot is obtained. It is found that the yield slightly increases with the increasing laser spot size. No neutron can be observed when the laser intensity Ⅰ <4.3×1015 W/cm2.

  2. Laser-Induced Chemical Vapour Deposition of Silicon Carbonitride

    Besling, W.; van der Put, P.; Schoonman, J.

    1995-01-01

    Laser-induced Chemical Vapour Deposition of silicon carbonitride coatings and powders has been investigated using hexamethyldisilazane (HMDS) and ammonia as reactants. An industrial CW CO2-laser in parallel configuration has been used to heat up the reactant gases. HMDS dissociates in the laser beam and reactive radicals are formed which increase rapidly in molecular weight by an addition mechanism. Dense polymer-like silicon carbonitride thin films and nanosized powders are formed depending ...

  3. Improving sensitivity of laser-induced breakdown spectroscopy using laser plasmas interaction

    Il'in, Alexey A.; Golik, Sergey S.; Nagorny, Ivan G.; Bulanov, Alexey V.

    2006-11-01

    Laser plasmas interaction and spectral characteristics of plasma were investigated at a laser breakdown in a normal atmosphere with the purpose of improving laser-induced breakdown spectroscopy sensitivity. Colliding plasmas interaction was investigated depending on mechanism of absorption wave of laser radiation and distance between foci. Laser supported detonation wave, breakdown wave and fast wave of ionization are absorption wave observed in experiment. It was shown that seed electrons for cascade breakdown in front of fast wave of ionization is occurred due to oxygen molecules photoionization. Molecular emission and collapse of intensity of plasma continuum during the initial moments of laser plasma expansion were registered. The line/continuum ratio was essentially increased in case of laser plasmas interaction. Thus laser plasmas interaction improves sensitivity of LIBS.

  4. Ionization-induced dynamics of ultrashort laser pulses focused in a dense gas

    Efimenko, E. S.; Kim, A. V.; Quiroga-Teixeiro, M.

    2009-10-01

    In the present paper we address several aspects of ionization-induced laser-gas interaction. First, we consider the ionization dynamics of an ultrashort laser pulse in the presence of additional electromagnetic perturbations, and show theoretically via dispersion relation analysis and numerically via 2D FDTD simulation that ionizationinduced scattering can occur even in the case of limited spatial and temporal scales and significantly affects pulse dynamics. Second, for the case of tight focusing of laser beam we show on the basis of numerical simulation that for 2D TE- and TM-polarized pulses there is a critical angle which delimits two qualitatively different regimes. For angles exceeding the critical one, the formed plasma distribution may become microstructured, otherwise the plasma structures are smooth. It is also shown than the critical angle and plasma-field dynamics depend significantly on pulse spectrum. Finally, we consider the impact of the electron collisions and Kerr nonlinearity and determine the boundaries within which the role of these effects is crucial.

  5. Laser-induced fluorescence in medical diagnostics

    Andersson-Engels, Stefan; Johansson, Jonas; Svanberg, Katarina; Svanberg, Sune

    1990-07-01

    We have performed extensive investigations using laser-induced fluorescence in animal as well as human tissue in order to localize diseased tissue and thus discriminate such tissue from normal surrounding areas. In characterizing different tissue types the endogenous fluorescence (autofluorescence) as well as specific fluorescence from different photosensitising substances was utilized. We have investigated different experimental and human malignant tumors in vivo and in vitro as well as atherosclerotic lesions in vitro. A fiber-optic fluorosensor was constructed and used in the experiments and in the clinical examination of patients. Dimensionless spectroscopic functions were formed to ensure that the signals were independent of clinically uncontrollable variables such as distance variations, tissue topography, light source fluctuations and variations in detection efficiency. A multi-color two-dimensional imaging system was constructed for real-time imaging. The system was tested peroperatively and during standard examination patient procedures. Besides utilizing the time-integrated fluorescence signal we have also investigated the possibility of incorporating time-resolved fluorescence characterization.

  6. Anions in laser-induced plasmas

    Shabanov, S. V.; Gornushkin, I. B.

    2016-07-01

    The equation of state for plasmas containing negative atomic and molecular ions (anions) is modeled. The model is based on the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye-Hückel theory. In particular, the equation of state is obtained for plasmas containing the elements Ca, Cl, C, Si, N, and Ar. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules CaCl_2, CaCl, Cl_2, N_2, C_2, Si_2, CN, SiN, SiC, and their positive and negative ions. The model is applied to laser-induced plasmas (LIPs) by including the equation of state into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas as a reactive viscous flow with radiative losses. In particular, the formation of anions Cl-, C-, Si-, {{Cl}}2^{ - }, {{Si}}2^{ - }, {{C}}2^{ - }, CN-, SiC-, and SiN- in LIPs is investigated in detail.

  7. Medical Applications of Laser Induced Breakdown Spectroscopy

    Pathak, A. K.; Rai, N. K.; Singh, Ankita; Rai, A. K.; Rai, Pradeep K.; Rai, Pramod K.

    2014-11-01

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail.

  8. Medical Applications of Laser Induced Breakdown Spectroscopy

    Sedentary lifestyle of human beings has resulted in various diseases and in turn we require a potential tool that can be used to address various issues related to human health. Laser Induced Breakdown Spectroscopy (LIBS) is one such potential optical analytical tool that has become quite popular because of its distinctive features that include applicability to any type/phase of samples with almost no sample preparation. Several reports are available that discusses the capabilities of LIBS, suitable for various applications in different branches of science which cannot be addressed by traditional analytical methods but only few reports are available for the medical applications of LIBS. In the present work, LIBS has been implemented to understand the role of various elements in the formation of gallstones (formed under the empyema and mucocele state of gallbladder) samples along with patient history that were collected from Purvancal region of Uttar Pradesh, India. The occurrence statistics of gallstones under the present study reveal higher occurrence of gallstones in female patients. The gallstone occurrence was found more prevalent for those male patients who were having the habit of either tobacco chewing, smoking or drinking alcohols. This work further reports in-situ LIBS study of deciduous tooth and in-vivo LIBS study of human nail

  9. Overview of applications of Laser-Induced Breakdown Spectroscopy (LIBS)

    Laser-induced breakdown spectroscopy (LIBS) is a method of performing elemental analyses of solids, liquids, and gases using the microplasma produced by a focused laser pulse. Because the microplasma is formed by optical radiation, LIBS has some important advantages compared to conventional laboratory based analytical methods. Three applications are discussed which use the LIBS method. 6 refs., 8 figs., 2 tabs

  10. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    Zhang, Haisu; Tzortzakis, Stelios

    2016-05-01

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  11. Holographic schlieren investigation of laser-induced plasmas

    Quantitative holographic schlieren studies of a CO2 laser induced breakdown in argon have been made using a pulsed ruby laser. Complete mappings of the density gradient profiles at different temporal stages of the plasma are obtained. The density gradients are integrated to obtain density profiles which compare well with those obtained directly by holographic interferometry. (Auth.)

  12. Modeling laser-induced periodic surface structures: an electromagnetic approach

    Skolski, Johann Zbigniew Pierre

    2014-01-01

    This thesis presents and discusses laser-induced periodic surface structures (LIPSSs), as well as a model explaining their formation. LIPSSs are regular wavy surface structures with dimensions usually in the submicrometer range, which can develop on the surface of many materials exposed to laser rad

  13. Vacuum ultraviolet laser induced fluorescence on a Si atomic beam

    O'Brian, T. R.; Lawler, J. E.

    1991-01-01

    A broadly applicable vacuum ultraviolet experiment is described for measuring radiative lifetimes of neutral and singly-ionized atoms in a beam environment to 5-percent accuracy using laser induced fluorescence. First results for neutral Si are reported.

  14. Compact High Sensitive Laser-Induced Breakdown Spectroscopy Instrument Project

    National Aeronautics and Space Administration — Laser induced breakdown spectroscopy (LIBS) is a versatile tool for in situ substance characterization. Existing LIBS instruments are not compact enough for space...

  15. 2D numerical modelling of the gas temperature in a high-temperature high-power strontium atom laser excited by nanosecond pulsed longitudinal discharge in a He-SrBr2 mixture

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2014-05-01

    Assuming axial symmetry and a uniform power input, a 2D model (r, z) is developed numerically for determination of the gas temperature in the case of a nanosecond pulsed longitudinal discharge in He-SrBr2 formed in a newly-designed large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge-free zone, in order to find the optimal thermal mode for achievement of maximal output laser parameters. The model determines the gas temperature of a nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  16. [The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].

    Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao

    2016-01-01

    The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding. PMID:27228732

  17. MR-guided laser-induced thermotherapy in recurrent extrahepatic abdominal tumors

    Mack, M.G.; Straub, R.; Eichler, K.; Boettger, M.; Woitaschek, D.; Vogl, T.J. [Dept. of Diagnostic and Interventional Radiology, University of Frankfurt (Germany); Roggan, A. [LMTB GmbH, Berlin (Germany)

    2001-10-01

    The aim of this study was to evaluate the feasibility of MR-guided laser-induced thermotherapy (LITT) for treatment of recurrent extrahepatic abdominal tumors. In 11 patients (6 women and 5 men; mean age 53 years, age range 29-67 years) with 14 lesions the following tumors were treated in this study: paravertebral recurrence of hypernephroma (n=1); recurrence of uterus carcinoma (n=1); recurrence of chondrosarcoma of the pubic bone (n=1); presacral recurrence of rectal carcinoma (n=1); recurrent anal cancer (n=1); metastases in the abdominal wall (n=1); and lymph node metastases from colorectal cancer (n=8). A total of 27 laser applications were performed. A fast low-angle shot 2D sequence (TR/TE/flip angle=102 ms/8 ms/70 ) was used for nearly real-time monitoring during treatment. All patients had no other treatment option. Seventeen LITT sessions were performed using a conventional laser system with a mean laser power of 5.2 W (range 4.5-5.7 W), and 10 LITT session were performed using a power laser system with a mean laser power of 28.0 W. In 10 lesions total destruction could be achieved. In the remaining recurrent tumors, significant reduction of tumor volume by 60-80% was obtained. All patients tolerated the procedure well under local anesthesia. No complications occurred during treatment. Laser-induced thermotherapy is a practicable, minimally invasive, well-tolerated technique that can produce large areas of necrosis within recurrent tumors, substantially reducing active tumor volume if not resulting in outright destruction of tumor. (orig.)

  18. NKG2D mediates NK cell hyperresponsiveness and influenza-induced pathologies in a mouse model of chronic obstructive pulmonary disease.

    Wortham, Brian W; Eppert, Bryan L; Motz, Greg T; Flury, Jennifer L; Orozco-Levi, Mauricio; Hoebe, Kasper; Panos, Ralph J; Maxfield, Melissa; Glasser, Stephan W; Senft, Albert P; Raulet, David H; Borchers, Michael T

    2012-05-01

    Chronic obstructive pulmonary disease (COPD) is characterized by peribronchial and perivascular inflammation and largely irreversible airflow obstruction. Acute disease exacerbations, due frequently to viral infections, lead to enhanced disease symptoms and contribute to long-term progression of COPD pathology. Previously, we demonstrated that NK cells from cigarette smoke (CS)-exposed mice exhibit enhanced effector functions in response to stimulating cytokines or TLR ligands. In this article, we show that the activating receptor NKG2D is a key mediator for CS-stimulated NK cell hyperresponsiveness, because CS-exposed NKG2D-deficient mice (Klrk1(-/-)) did not exhibit enhanced effector functions as assessed by cytokine responsiveness. NK cell cytotoxicity against MHC class I-deficient targets was not affected in a COPD model. However, NK cells from CS-exposed mice exhibit greater cytotoxic activity toward cells that express the NKG2D ligand RAET1ε. We also demonstrate that NKG2D-deficient mice exhibit diminished airway damage and reduced inflammation in a model of viral COPD exacerbation, which do not affect viral clearance. Furthermore, adoptive transfer of NKG2D(+) NK cells into CS-exposed, influenza-infected NKG2D-deficient mice recapitulated the phenotypes observed in CS-exposed, influenza-infected wild-type mice. Our findings indicate that NKG2D stimulation during long-term CS exposure is a central pathway in the development of NK cell hyperresponsiveness and influenza-mediated exacerbations of COPD. PMID:22467655

  19. Laser-induced damage of multilayer coated optical components

    A number of optics having high quality and high damage threshold were developed. The damage threshold of borosilicate crown glass has been considerably improved. The surface roughness dependence of the laser-induced surface damage of optical glasses and the laser-induced damage of high resolution coating were found for the first time. These optical technologies meet the GEKKO XII Upgrade fluence requirements. (author)

  20. Laser-induced damage of multilayer coated optical components

    Yoshida, Kunio (Osaka Inst. of Tech. (Japan)); Yoshida, Hidetsugu; Nakatsuka, Masahiro; Jitsuno, Takahisa; Namba, Yoshiharu; Sasaki, Takatomo; Kanabe, Tadashi; Yamanaka, Tatsuhiko; Nakai, Sadao

    1992-11-01

    A number of optics having high quality and high damage threshold were developed. The damage threshold of borosilicate crown glass has been considerably improved. The surface roughness dependence of the laser-induced surface damage of optical glasses and the laser-induced damage of high resolution coating were found for the first time. These optical technologies meet the GEKKO XII Upgrade fluence requirements. (author).

  1. Impact of environmental contamination on laser induced damage of silica optics in Laser MegaJoule

    Laser induced damage impact of molecular contamination on fused polished silica samples in a context of high power laser fusion facility, such as Laser MegaJoule (LMJ) has been studied. One of the possible causes of laser induced degradation of optical component is the adsorption of molecular or particular contamination on optical surfaces. In the peculiar case of LMJ, laser irradiation conditions are a fluence of 10 J/cm2, a wavelength of 351 nm, a pulse duration of 3 ns for a single shot/days frequency. Critical compounds have been identified thanks to environmental measurements, analysis of material outgassing, and identification of surface contamination in the critical environments. Experiments of controlled contamination involving these compounds have been conducted in order to understand and model mechanisms of laser damage. Various hypotheses are proposed to explain the damage mechanism. (author)

  2. Remote sensing of phytoplankton using laser-induced fluorescence

    The results of remote laser sensing of brackish-water phytoplankton on board a research vessel are presented. Field data of laser-induced fluorescence of phytoplankton obtained during the several cruises in the mouth of tile Gulf of Finland are compared with the results of standard chlorophyll a analysis of water samples and phytoplankton species determination by microscopy. The approach of fluorescence excitation by tunable laser radiation is applied to study the spatial distribution of a natural phytoplankton community. The remote analysis of the pigment composition of a phytoplankton community using the method of selective pigment excitation is described. The possibility of elaborating methods of quantitative laser remote biomonitoring is discussed

  3. Laser induced breakdown spectroscopy stratigraphic characterization of multilayered painted surfaces

    Staicu, A.; Apostol, I.; Pascu, A.; Iordache, I.; Damian, V.; Pascu, M. L.

    2012-08-01

    Laser spectroscopy techniques are modern and competitive methods for elemental analysis. Laser induced breakdown spectroscopy (LIBS), due to its advantages as minimally invasive method that provides real time monitoring and selectivity, is a suitable tool to analyze sample composition. Based on the known emission spectra of heavy metals such as Pb, Zn, Au, Ca, a stratigraphic study regarding the identification of the painting layers content of different mock-up samples was performed. LIBS was used to monitor the laser induced stepwise selective removal of the painting layers and to analyze their composition. The obtained LIBS spectra were correlated with profilometric measurements.

  4. Laser induced changes of refractive index of lead - silicate glasses

    The mechanisms of photoinduced changes of refractive index of the TΦ lead - silicate glasses (analogous with the SF glasses from Schott catalog) under the effect of high power laser radiation with quantum energy less bandgap have been studied. It is shown that the laser induced color centers results in increase of refractive index into the exposed bulk during the laser pulse action. This leads to considerable redistribution of irradiance and decrease of laser radiation brightness even in the case of optical elements less 1 mm thickness. The observed effect may be connected both with radiation induced dilatation of matter and heating of interaction region owing to absorption of radiation by color centers. Comparison the kinetics of refractive index change of the glass after exposure by laser pulse at 0.53 μm and the kinetics of color centers decay allowed to draw a conclusion about heat character of observed changes

  5. Laser inducement of Agricus bisporus I

    Mao, Ning; Chen, Rong; Wang, Zesheng

    1996-09-01

    Using different power, different dosage's He-Ne laser (632.8 nm) and semiconductor laser (805 nm) to irradiated mycelia of four Agricus bisporus strains. And using no irradiate strain as contrast. Picking out some mycelium from irradiation position and then transfer them into Potato Dextrose Agar culture medium, culturing 12 - 15 days. We use the polyacrylamide slab gel electrophoresis to examine the esterase (EST) isozymes of mycelium. We could find from the result that laser irradiating could not change the Rf of main bands (F&s zones) of mycelium EST. However, 20 mw He- Ne, 10 minutes irradiation could not only raise the activity of EST distinctly, but also increase the numbers of enzyme zone of M zone, the difference between the semiconductor irradiation of 140 mv, 10 minutes and 20 mv, 10 minutes are not remarkable. And the irradiating effect of He-Ne laser is better than that of semiconductor laser.

  6. Inexpensive laser-induced surface modification in bismuth thin films

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters

  7. Inexpensive laser-induced surface modification in bismuth thin films

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  8. 2D solar modeling

    Ventura, P; Li, L; Sofia, S; Basu, S; Demarque, P

    2009-01-01

    Understanding the reasons of the cyclic variation of the total solar irradiance is one of the most challenging targets of modern astrophysics. These studies prove to be essential also for a more climatologic issue, associated to the global warming. Any attempt to determine the solar components of this phenomenon must include the effects of the magnetic field, whose strength and shape in the solar interior are far from being completely known. Modelling the presence and the effects of a magnetic field requires a 2D approach, since the assumption of radial symmetry is too limiting for this topic. We present the structure of a 2D evolution code that was purposely designed for this scope; rotation, magnetic field and turbulence can be taken into account. Some preliminary results are presented and commented.

  9. Vertical 2D Heterostructures

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  10. Adrenal metastases: CT-guided and MR-thermometry-controlled laser-induced interstitial thermotherapy

    Vogl, Thomas J.; Lehnert, Thomas; Eichler, Katrin; Proschek, Dirk; Floeter, Julius; Mack, Martin G. [Johann Wolfgang Goethe University, Department of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt am Main (Germany)

    2007-08-15

    The aim of the study was to evaluate the feasibility, safety and effectiveness of CT-guided and MR-thermometry-controlled laser-induced interstitial thermotherapy (LITT) in adrenal metastases. Nine patients (seven male, two female; average age 65.0 years; range 58.7-75.0 years) with nine unilateral adrenal metastases (mean diameter 4.3 cm) from primaries comprising colorectal carcinoma (n = 5), renal cell carcinoma (n = 1), oesophageal carcinoma (n = 1), carcinoid (n = 1), and hepatocellular carcinoma (n = 1) underwent CT-guided, MR-thermometry-controlled LITT using a 0.5 T MR unit. LITT was performed with an internally irrigated power laser application system with an Nd:YAG laser. A thermosensitive, fast low-angle shot 2D sequence was used for real-time monitoring. Follow-up studies were performed at 24 h and 3 months and, thereafter, at 6-month intervals (median 14 months). All patients tolerated the procedure well under local anaesthesia. No complications occurred. Average number of laser applicators per tumour: 1.9 (range 1-4); mean applied laser energy 33 kJ (range 15.3-94.6 kJ), mean diameter of the laser-induced coagulation necrosis 4.5 cm (range 2.5-7.5 cm). Complete ablation was achieved in seven lesions, verified by MR imaging; progression was detected in two lesions in the follow-up. The preliminary results suggest that CT-guided, MR-thermometry-controlled LITT is a safe, minimally invasive and promising procedure for treating adrenal metastases. (orig.)

  11. Innovative Drug Injection via Laser Induced Plasma

    Han, Tae-hee; Yoh, Jack J.

    2010-10-01

    A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of micro scale. The focused laser beam causes explosive bubble growth and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of the nozzle is 125 um and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  12. Laser induced ablation studies from gold target

    Laser produced gold plasmas show an enhanced mass ablation rate and ablation pressure as compared to theoretical prediction. This is attributed to radiation effect. Experimental results indicate an increase in the C-J point density and an agreement with self-regulating ablation scaling. Using 1.06 μm laser radiation on 12.5 μm thick planar gold targets, at an absorbed laser intensity IA ≤ 2 x 1013 W/cm2, the experimental results are presented. (Author)

  13. Ablation Plume Induced by Laser Euv Radiation

    Frolov, Oleksandr; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav

    Dordrecht: Springer International Publishing, 2015 - (Rocca, J.; Menoni, C.; Marconi, M.), s. 397-403. (Springer Proceedings in Physics. 169). ISBN 978-3-319-19521-6. [International Conference on X-Ray Laser s/14./. Fort Collins, Colorado (US), 26.05.2014-30.05.2014] R&D Projects: GA ČR(CZ) GA14-29772S; GA MŠk(CZ) LG13029 Institutional support: RVO:61389021 Keywords : EUV laser * laser ablation * plume * Au * Al * Si * Cu * energy measurements Subject RIV: BL - Plasma and Gas Discharge Physics http://link.springer.com/chapter/10.1007/978-3-319-19521-6_52

  14. Analysis of Laser-Induced Plume During Disk Laser Welding at Different Speeds

    Wang, Teng; Gao, Xiangdong; Katayama, Seiji

    2013-08-01

    During high power disk laser welding, the high-speed photography was used to measure the dynamic images of the laser-induced plume at different laser welding speeds. Various plume features (area, height and brightness) were extracted from the images by the color space clustering algorithm. Combined with observation on the surface and the cross sections of welding samples, the effect of welding speed on welding stability was analyzed. From the experimental results, it was found that these features of plume could reflect the welding state. Thus changes of the plume features corresponded to different welding speeds, which was helpful for monitoring the laser welding stability.

  15. Analysis of Laser-Induced Plume During Disk Laser Welding at Different Speeds

    During high power disk laser welding, the high-speed photography was used to measure the dynamic images of the laser-induced plume at different laser welding speeds. Various plume features (area, height and brightness) were extracted from the images by the color space clustering algorithm. Combined with observation on the surface and the cross sections of welding samples, the effect of welding speed on welding stability was analyzed. From the experimental results, it was found that these features of plume could reflect the welding state. Thus changes of the plume features corresponded to different welding speeds, which was helpful for monitoring the laser welding stability. (plasma technology)

  16. Self-induced white-light seeding laser in a femtosecond laser filament

    Chu, Wei; Li, Guihua; Xie, Hongqiang; Ni, Jielei; Yao, Jinping; Zeng, Bin; Zhang, Haisu; Jing, Chenrui; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2013-01-01

    We report, for what we believe to be the first time, on the generation of remote self-seeding laser amplification by using only one 800 nm Ti:Sapphire femtosecond laser pulse. The laser pulse (~ 40 fs) is first used to generate a filament either in pure nitrogen or in ambient air in which population inversion between ground and excited states of nitrogen molecular ions is realized. Self-induced white light inside the filament is then serving as the seed to be amplified. The self-induced narro...

  17. Laser-Induced Ablative Amorphisation of Montmorillonite

    Duchek, P.; Urbanová, Markéta; Pokorná, Dana; Kupčík, Jaroslav; Šubrt, Jan; Pola, Josef

    2012-01-01

    Roč. 358, č. 23 (2012), s. 3382-3387. ISSN 0022-3093 Institutional support: RVO:67985858 ; RVO:61388980 Keywords : laser ablation * montmorillonite * amorphization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.597, year: 2012

  18. Laser-induced quantum pumping in graphene

    San-Jose, Pablo [Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid (Spain); Prada, Elsa; Kohler, Sigmund [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain); Schomerus, Henning [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2012-10-08

    We investigate non-adiabatic electron pumping in graphene generated by laser irradiation with linear polarization parallel or perpendicular to the transport direction. Transport is dominated by the spatially asymmetric excitation of electrons from evanescent into propagating modes. For a laser with parallel polarization, the pumping response exhibits a subharmonic resonant enhancement which directly probes the Fermi energy; no such enhancement occurs for perpendicular polarization. The resonance mechanism relies on the chirality of charge carriers in graphene.

  19. Microstructuring of fused silica by laser-induced backside wet etching using picosecond laser pulses

    The laser-induced backside wet etching (LIBWE) is an advanced laser processing method used for structuring transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated for various materials, e.g. oxides (fused silica, sapphire) or fluorides (CaF2, MgF2), and applied for the fabrication of microstructures. In the present study, LIBWE of fused silica with mode-locked picosecond (tp = 10 ps) lasers at UV wavelengths (λ1 = 355 nm and λ2 = 266 nm) using a (pyrene) toluene solution was demonstrated for the first time. The influence of the experimental parameters, such as laser fluence, pulse number, and absorbing liquid, on the etch rate and the resulting surface morphology were investigated. The etch rate grew linearly with the laser fluence in the low and in the high fluence range with different slopes. Incubation at low pulse numbers as well as a nearly constant etch rate after a specific pulse number for example were observed. Additionally, the etch rate depended on the absorbing liquid used; whereas the higher absorption of the admixture of pyrene in the used toluene enhances the etch rate and decreases the threshold fluence. With a λ1 = 266 nm laser set-up, an exceptionally smooth surface in the etch pits was achieved. For both wavelengths (λ1 = 266 nm and λ2 = 355 nm), LIPSS (laser-induced periodic surface structures) formation was observed, especially at laser fluences near the thresholds of 170 and 120 mJ/cm2, respectively.

  20. Laser-induced breakdown spectroscopy analysis of asbestos

    Laser-induced breakdown spectroscopy was applied to test the possibility of detecting and identifying asbestos in different samples in view of the perspective at field operation without sample preparation which is peculiar to this technique. Several like-resin materials were first investigated by laser-induced breakdown spectroscopy, in order to find an asbestos container assuring safe laboratory operation during the material characterization aimed to identify indicators suitable for a quick identification on field. Successively, spectra of asbestos samples of both in serpentine and amphibole forms were measured and the variability in elemental composition was calculated from the emission spectra. Ratios of intensities of characteristic elements were tested as indicators for asbestos recognition. Laser-induced breakdown spectroscopy results were compared with those obtained by analyzing the same asbestos samples with a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, a good correlation was found for Mg/Si and Fe/Si, thus showing the capability of laser-induced breakdown spectroscopy as a diagnostic tool for this category of materials. In particular, it was demonstrated that the method based on two indicators derived from laser-induced breakdown spectroscopy intensity ratios allows to discriminate between asbestos and cements in single shot measurements suitable to field operation

  1. Anisotropy of Laser-Induced Bulk Damage of Single Crystals

    Krupych, O; Smaga, I; Vlokh, R

    2005-01-01

    The regularities of laser-induced damage of anisotropic materials, such as LiNbO3 and KDP dielectric single crystals, are experimentally studied. It is revealed that the shape of laser-induced damage in the dielectric crystals depends on the elastic symmetry of crystal and the propagation direction of the laser beam. When the beam propagates along the optic axis of crystals, the figures of the laser damage are six-path stars for LiNbO3 and four-path ones for KDP crystals. For the direction parallel to X and Y axes in KDP crystal, the damage has initially cross-like configuration, with further splitting of Z-oriented crack into two cracks in the process of damage evolution, leading to transformation of orthogonal-type damage to a hexagonal-type one.

  2. Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles

    Paeng, Dongwoo; Yeo, Junyeob; Lee, Daeho; Moon, Seung-Jae; Grigoropoulos, Costas P.

    2015-09-01

    This work is concerned with the laser wavelength effect on the electrical properties and surface morphology of laser-sintered nanoparticle thin films. Silver nanoparticle thin films spin-coated on soda lime glass substrates were irradiated with lasers of three different wavelengths (near ultraviolet 405 nm, green 514.5 nm, near infrared 817 nm) at varied laser intensities and scanning speeds. Scanning electron microscopy images and ex situ resistivity measurements show that the photo-thermal sintering alters significantly the film surface morphology and electrical properties, depending on the processing parameters (laser wavelength, laser intensities and scanning speed). While the optical response of the material is determined largely by the processing laser wavelength, the laser beam intensity and scanning speed regulate the induced temperature field. Examination of the optical properties of as-deposited silver nanoparticle thin film in conjunction with scanning electron microscopy images taken from the laser-sintered lines helps elucidate how the processing laser wavelength modulates the optical response of silver nanoparticle thin film and therefore affects the thermal response.

  3. Are laser-induced beams spin polarized?

    Buescher, Markus; Lehrach, Andreas; Raab, Natascha [Institut fuer Kernphysik (IKP), Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Engin, Ilhan; Hessan, Mohammad Aziz [RWTH Aachen (Germany); Institut fuer Kernphysik (IKP), Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Gibbon, Paul; Karmakar, Anupam [Juelich Supercomputing Center (JSC), Forschungszentrum Juelich (Germany); Toncian, Monika; Toncian, Toma; Willi, Oswald [Institut fuer Laser-Plasma Physik (ILPP), Heinrich Heine Universitaet, Duesseldorf (Germany)

    2011-07-01

    The physics of laser-plasma interactions has undergone dramatic developments in recent years, both experimentally and in the theoretical understanding of high-brightness light and particle sources. However, it is a yet untouched issue whether the laser-generated particle beams are or can be spin-polarized and, thus, whether laser-based polarized sources are conceivable. A first measurement of the degree of polarization of laser-accelerated protons have recently been carried out at the Duesseldorf Arcturus Laser Facility where proton beams of typically 3 MeV were produced in foil targets. The results have been analysed with the help of particle-in-cell simulations to follow the generation of static magnetic field gradients ({proportional_to}100s of Megagauss per micron) in thin foil targets. As a next step, measurements with unpolarized H{sub 2} (for proton acceleration) and {sup 3}He gas (for {sup 3}He ions) are planned and, finally, pre-polarized {sup 3}He will be used.

  4. Laser Induced Nuclear Physics and Applications

    Ledingham, Kenneth W. D.

    2002-11-01

    The interaction of ultra-intense focused laser beams with solid targets is a new field of research resulting in the production of exotic plasma conditions similar to the conditions which exist in the interior of some stellar objects. The lasers generate very high energy electrons and ions which can subsequently produce g-rays, positrons, neutrons and pions. The talk will show that results obtained from these studies have major implications to fundamental plasma physics and high energy accelerator physics as well as important technological potential for the production of compact sources of protons1, neutrons, positrons and isotopes2. One of the applications considered at some length will be the production of protons dealing with the optimum target thicknesses and the possibility of designing a table top laser to produce radioactive sources for positron emission tomography (PET) as well as proton oncology . Another will be the laser production of heavy ions and their interactions with secondary targets. In these experiments the influence of proton beams on the ion production mechanisms will be demonstrated and how this can be modified by the temperature of the targets. The exciting new physics which can be carried out at laser intensities of 1022-23Wcm-2 will also be briefly discussed.

  5. Laser-induced break-up of water jet waveguide

    Couty, P.; Hoffmann, P. [EPFL/STI/IOA/Advanced Photonics Laboratory, Lausanne BM, 1015, Lausanne (Switzerland); Spiegel, A.; Vago, N. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest (Hungary); Ugurtas, B.I. [EPFL/STI/IMHEF/Laboratory Fluid Mechanics, Lausanne, 1015, Lausanne (Switzerland)

    2004-06-01

    In this article, an optical method to control the break-up of high-speed liquid jets is proposed. The method consists of focusing the light of a pulsed laser source into the jet behaving as a waveguide. Experiments were performed with the help of a Q-switched frequency doubled Nd:Yag laser ({lambda}=532 nm). The jet diameter was 48 {mu}m and jet velocities from 100 to 200 m/s. To study the laser-induced water jet break-up, observations of the jet coupled with the high power laser were performed for variable coupling and jet velocity conditions. Experimentally determined wavelength and growth rate of the laser-generated disturbance were also compared with the ones predicted by linear stability theory of free jets. (orig.)

  6. Image Analysis of Plasma Induced by Focused IR Pulsed Laser

    Ahmad Hadi Ali

    2011-12-01

    Full Text Available Plasma induced by focused laser beam is very essential especially in laser material interaction. Preliminary study leading to this research has been carried out. A Q-switch Nd:YAG laser was employed as a source of energy. The laser was focused using a wide-angle camera lens. The formation of plasma at the focal region was visualized perpendicularly using a CCD video camera interfaced to an image processing system. The dynamic expansion of the laser plasma was grabbed in conjunction with a high-speed photographic system. The observation results show that the plasma was formed in an ellipsoidal shape. The lateral width and the length of the plasma were found gradually increased

  7. Detection of early caries by laser-induced breakdown spectroscopy

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  8. Mesure de la texture du revêtement routier - Test d'un capteur de déplacement 2D à laser

    Klein, P; CLAIRET, JM

    2010-01-01

    Le présent rapport concerne le test d'un capteur de distance laser bi-dimensionnel sur un ensemble de quatre revêtements de chaussée. Les essais ont été effectués à l'aide d'un dispositif permettant au capteur de balayer la zone à mesurer. La surface balayée est ensuite reconstruite sous la forme de relevés de texture d'environ 1 mètre de longueur et 6 centimètres de largeur. Les résultats obtenus sont satisfaisants et permettent d'envisager l'utilisation d'un tel capteur pour la mesure de te...

  9. Role of Planar Laser-Induced Fluorescence in Combustion Research.

    Grisch, F.; Orain, M.

    2009-01-01

    Laser diagnostics are now considered an indispensable tool in fluid dynamics research. Such measurements provide a deeper understanding of the inner physical and chemical processes, which is required to validate and improve computer-based simulations and to assist applied research in practical combustors. This paper presents an overview of the potential of planar laser-induced fluorescence (PLIF), which currently allows for the imaging of scalar properties such as species concentration, tempe...

  10. Time-resolved laser-induced breakdown spectroscopy of aluminum

    LIU Xian-yun; ZHANG Wei-jun; WANG Zhen-ya; HAO Li-qing; HUANG Ming-qiang; ZHAO Wen-wu; LONG Bo; Zhao Wei

    2008-01-01

    We develop a system to measure the elemental composition of unprepared samples using laser-induced breakdown spectroscopy (LIBS) in our laboratory, which can be used for the determination of elements in solids, liquids and aerosols. A description of the instrumentation, including laser, sample chamber and detection, is followed by a brief discussion. The time-resolved LIBS of aluminum at atmospheric pressure is presented. At the end, the possibilities and later uses of this technique are briefly discussed.

  11. Femtosecond laser-induced microstructure in Foturan glass

    We report on the microstructure formation in Foturan glass, induced by 1 kHz, 120 femtosecond laser irradiation. It is found that the line-shaped filamentation, not void array tends to be formed in this glass. This is different from our previous experimental results in fused silica and BK7 glasses. A possible mechanism Ag+ captures the free electrons generated by laser, is proposed to explain the observed phenomena. (classical areas of phenomenology)

  12. Laser induced oxidation of heavily doped silicon

    We have investigated the incorporation of oxygen into heavily doped silicon during uv excimer laser irradiation. For the case of repetitive laser irradiations in air, the amount of oxygen incorporated into Si depends markedly on the dopant. For As and Sb implanted silicon, there is no anomalous oxygen incorporation. By contrast, increasing amounts of 0 are incorporated into In implanted silicon as a function of number of laser shots. The incorporation of O is associated with degradation of the optical and structural properties of the surface, and a deep diffusion of the dopant. This behavior is believed to be partly related to specific chemical reactions between oxygen and indium present in the surface at high concentrations as the result of dopant segregation during solidification

  13. Latent laser-induced graphitization of diamond

    Kononenko, V. V.; Gololobov, V. M.; Konov, V. I.

    2016-03-01

    Basic features and mechanism of femtosecond laser graphitization of diamond surface were studied in the two regimes of irradiation: (1) by an intensive (>10 J/cm2) single shot and (2) by a train of pulses with near-threshold intensity (~1-10 J/cm2). Special attention was paid to the so-called accumulative regime, when multipulse laser treatment results in prolonged delay of an appearance of crystal modification of the crystal. The light absorption mechanisms dominating in each regime are discussed. The experiments with fundamental (800 nm), second (400 nm) and third (266 nm) harmonics of Ti-sapphire laser (100 fs) have revealed that thermally stimulated processes play an essential role in latent diamond graphitization.

  14. Chemical consequences of laser-induced breakdown in molecular gases

    Babánková, Dagmar; Civiš, Svatopluk; Juha, Libor

    2006-01-01

    Roč. 30, č. 2-3 (2006), s. 75-88. ISSN 0079-6727 R&D Projects: GA ČR GA203/06/1278; GA MŠk LC510; GA MŠk LC528; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100523 Keywords : laser spark * laser-induced dielectric breakdown * laser-plasma chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.500, year: 2006

  15. UV laser induced photochemistry of nitrobenzene and nitrotoluene isomers

    The photofragmentation of nitrobenzene and the isomers of nitrotoluene in the gas phase are studied in the wavelength region 210-270 nm using a pulsed UV laser in conjunction with a time of flight mass spectrometer. Laser induced mass spectra are analysed and compared with those produced by the electron impact (EI) technique. The generation of the observed fragment ions is explained by invoking different fragmentation pathways followed by these molecules. Observed differences in the mass spectra of the o-, m-, and p-nitrotoluene isomers are discussed as a possible way for a laser based method for their identification. (author)

  16. UV laser induced photochemistry of nitrobenzene and nitrotoluene isomers

    Kosmidis, C.; Clark, A.; Deas, R.M.; Ledingham, K.W.D.; Marshall, A.; Singhal, R.P. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy

    1995-03-01

    The photofragmentation of nitrobenzene and the isomers of nitrotoluene in the gas phase are studied in the wavelength region 210-270 nm using a pulsed UV laser in conjunction with a time of flight mass spectrometer. Laser induced mass spectra are analysed and compared with those produced by the electron impact (EI) technique. The generation of the observed fragment ions is explained by invoking different fragmentation pathways followed by these molecules. Observed differences in the mass spectra of the o-, m-, and p-nitrotoluene isomers are discussed as a possible way for a laser based method for their identification. (author).

  17. Computer simulations of laser-induced melting of aluminum

    Laser-induced solid-to-liquid phase transitions in 100 nm aluminum film were simulated using a hybrid model that combines molecular dynamics (MD) with a continuum description of the laser excitation and a two-temperature method (TTM) to model the relaxation of conduction band electrons. When the laser fluence provides more energy than needed for a complete melting of the film, the phase transition is characterized by an ultrafast collapse of the crystal structure within 2–3 ps. Otherwise, the transition involves a homogeneous nucleation and growth of liquid zones inside the crystal and a heterogeneous propagation of transition fronts from the external surfaces or nucleated liquid zones

  18. Comparison of laser and charged particle induced DSB formation

    Splinter, Joern; Jakob, Burkhard; Taucher-Scholz, Gisela [GSI - Biophysics, Darmstadt (Germany)

    2007-07-01

    The spatiotemporal dynamics of DNA damage response processes like the fast accumulation of early repair-related proteins can be observed in real time by our newly developed beamline microscope. For this purpose ion beams offer the advantage to generate strictly localized DNA lesions in cell nuclei, thus inducing distinguishable spots of protein formation. In addition to our beamline microscope, we established a laser system for localized generation of DSBs to look for differences in the recruitment and spatiotemporal behaviour of repair related proteins due to differences in the radiation quality. Therefore we tested the Laser Microdissection System Leica AS LMD and its VSL-337ND-S nitrogen laser ({lambda} = 337.1 nm) for its ability to produce DSBs. The emerging problems indicate that a laser system is not the simple and predictable DSB-inducing system people want it to be. Accompanied by temperature dependent variation of the laser power and the intermittent understandings of the mechanisms of UV-laser-induced DSB formation, the main problem are the complications in dosimetry. A discussion of these complications is done on the vivid example of the only known approach of a visual based comparing dosimetry of {gamma}H2AX signals first introduced by Bekker-Jensen.

  19. Three-dimensional modelling of the laser-induced plasma plume characteristics in laser welding

    Modelling results are presented concerning the spatial distribution of plasma parameters in a laser-induced plasma plume with laser welding as the research background. In the modelling, the plasma plume characteristics are affected by many factors, such as the temperature and flow velocity of the metal vapour leaving the welded workpiece surface, the velocity of the shielding gas injected coaxially with the laser beam, the velocity of the assisting gas injected laterally with respect to the workpiece, and the energy absorption and radiation heat loss of the plasma plume. Typical computed distributions of temperature, velocity, vapour concentration, absorption coefficient and the refraction index within the plasma plume are presented with the continuous-wave (CW) CO2 laser welding of an iron workpiece as the calculation example. The predicted temperatures of the plasma plume are shown to be reasonably consistent with the corresponding experimental data. It is also shown that the metal-vapour/shielding-gas momentum ratio plays an important role in determining the height of the plasma plume formed in the laser welding. Due to the cooling effect of the shielding gas, the dimensions of the plasma plume will become smaller and thus laser absorption and refraction by the plasma plume can be reduced by increasing the shielding-gas velocity. The laterally injected assisting gas may also significantly affect the plasma plume and thus can be used to control the effect of the laser-induced plasma plume on the laser welding process

  20. Excimer laser induced patterning of polymeric surfaces

    The micropatterning of a surface modified polyurethane is proposed in this paper. In previous work, we described the development and characterisation of a series segmented polyurethanes. These polymers are irradiated with UV excimer lasers (ArF: λ=193 nm and KrF: λ=248 nm excimer laser). After determining the ablation properties of the synthesised polymers, one of these polyurethanes is selected and treated with a new developed method to graft hydrophilic polyacrylamide onto the hydrophobic surface. This modification is observed with spectral reflectance IR, static contact angle measurements, scanning electron and atomic force microscopy. This substrate is treated with an UV excimer laser (ArF, 193 nm) for micropatterning. The grafted polyacrylamide layer shows no interference with the patterning procedure: the polyurethane keeps its good ablation properties in terms of no debris formation and cavities with high dimensional quality (sharp edges and low surface roughness), measured with atomic force microscopy. Also the modification with PEO-macromonomers is executed (AFM, attenuated total reflectance IR and scanning electron microscopy) and shows promising results for a successful usage towards the patterning procedure. This combination of surface modification and micropatterning with UV excimer lasers can be of value in the development of new biosensors

  1. Laser induced mortality of Anopheles stephensi mosquitoes

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-02-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.

  2. Accuracy of non-enhanced MRI to monitor histological lesion size during laser-induced interstitial thermotherapy

    Bremer, Christoph; Kreft, Gerald [Department of Clinical Radiology, University of Muenster (Germany); Filler, Timm [Institute for Anatomy, University of Muenster (Germany); Reimer, Peter [Zentralinstitut fuer Bildgebende Diagnostik, Staedtisches Klinikum Karlsruhe (Germany)

    2002-01-01

    The purpose of this study was to assess the accuracy of non-enhanced MRI using a T1-weighted 2D turbo fast low-angle shot (FLASH) sequence during laser-induced interstitial thermotherapy (LITT) to determine histological lesion size of laser-induced hepatic lesions. The LITT was performed on pig liver samples at various power settings and durations. For MR monitoring during and after LITT a T1-weighted 2D turbo-FLASH sequence was applied. Lesions seen by MRI during and after LITT were correlated with histological lesion size. Histologically, a core zone of complete tissue ablation close to the tip of the applicator could be differentiated from an adjacent transitional zone showing incomplete necrosis. Magnetic resonance imaging right at the end of LITT (i.e., with maximum heating effects) grossly overestimated the core zone but accurately described the transitional zone. Magnetic resonance imaging after cooling of the tissue (therefore showing structural as opposed to thermal changes) exactly depicted the core zone of complete tissue ablation. Non-enhanced MRI using a T1-weighted 2D turbo FLASH sequence strongly overestimates the histological lesion size during LITT; however, structural changes of the tissue seen after cooling accurately define lesion size in LITT. For clinical purposes the lesion geometry seen during MR monitoring should therefore well extend the tumor margins. (orig.)

  3. Laser-induced grating in ZnO

    Ravn, Jesper N.

    1992-01-01

    A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self-diffracti......A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self...

  4. Self-induced mode mixing of ultraintense lasers in vacuum

    Paredes, Angel; Tommasini, Daniele

    2014-01-01

    We study the effects of the quantum vacuum on the propagation of a Gaussian laser beam in vacuum. By means of a double perturbative expansion in paraxiality and quantum vacuum terms, we provide analytical expressions for the self-induced transverse mode mixing, rotation of polarization, and third harmonic generarion. We discuss the possibility of searching for the self-induced, spatially dependent phase shift of a multipetawatt laser pulse, which may allow the testing of quantum electrodynamics and new physics models, such as Born-Infeld theory and models involving new minicharged or axion-like particles, in parametric regions that have not yet been explored in laboratory experiments.

  5. A new laser vibrometry-based 2D selective intensity method for source identification in reverberant fields: part II. Application to an aircraft cabin

    The selective intensity technique is a powerful tool for the localization of acoustic sources and for the identification of the structural contribution to the acoustic emission. In practice, the selective intensity method is based on simultaneous measurements of acoustic intensity, by means of a couple of matched microphones, and structural vibration of the emitting object. In this paper high spatial density multi-point vibration data, acquired by using a scanning laser Doppler vibrometer, have been used for the first time. Therefore, by applying the selective intensity algorithm, the contribution of a large number of structural sources to the acoustic field radiated by the vibrating object can be estimated. The selective intensity represents the distribution of the acoustic monopole sources on the emitting surface, as if each monopole acted separately from the others. This innovative selective intensity approach can be very helpful when the measurement is performed on large panels in highly reverberating environments, such as aircraft cabins. In this case the separation of the direct acoustic field (radiated by the vibrating panels of the fuselage) and the reverberant one is difficult by traditional techniques. The work shown in this paper is the application of part of the results of the European project CREDO (Cabin Noise Reduction by Experimental and Numerical Design Optimization) carried out within the framework of the EU. Therefore the aim of this paper is to illustrate a real application of the method to the interior acoustic characterization of an Alenia Aeronautica ATR42 ground test facility, Alenia Aeronautica being a partner of the CREDO project

  6. Line shapes for laser-induced collisions

    The two-state Yakovlenko is shown to lead to cross sections with a universal behavior in terms of the variables z =vertical-barC3vertical-barE0v/sup -3/5/ vertical-barC6vertical-bar/sup -2/5/ and d=deltavertical-barC6vertical-bar/sup 1/5/v/sup -6/5/ sgn(C6). The dimensionless frequency-detuning variable is d proportional (detuning of the laser from the large-R resonance) (time of collision at the Weisskopf radius). The dimensionless variable z is independent of laser frequency and measures the power dependence of the cross section. It is proportional to ∫/sup t//sub -infinity/ C3E0 dt/R (t)3 evaluated at an impact parameter given by the b/sub v/= (C6/v)/sup 1/5/ proportional to Weisskopf radius=impact parameter where the phase shift due to the Van der Waals potential becomes π. Above, C3E0/R3 is the coupling parameter at intranuclear separation R and E0 is the laser field amplitude. The cross section is of the form sigma = ( vertical-barC6vertical-bar /v)/sup 2/5/,z), where H(d,z) is tabulated in detail. For large laser fields (i.e., z>2), the line shape for collisions at a particular relative velocity v, laser field amplitude E0, and detuning (from the large-R resonance frequency), sigma becomes symmetric about delta=0 with the width decreasing with increasing laser power. The reason for the symmetric H(d,z) at large z is the decreased importance of curve-crossing effects for large positive d corresponding to the onset of adiabatic behavior and the increased importance of contributions to sigma from such large impact parameters that the Van der Waals shifts can be neglected. Correspondingly, at large z the linewidth is due entirely to time-of-collision effects. When z> or =2, both the long-range version of the atom-atom interaction and the assumption of straight-line orbits are excellent because of the dominant contribution to delta from impact parameters >15 A

  7. Laser-Induced Continuum Structure of NO Molecules in Two-Colour Femtosecond Pulsed Laser Fields

    WANG Sen-Ming; YUAN Kai-Jun; CONG Shu-Lin

    2006-01-01

    The method of quantum wave packet dynamics is used to study the multiphoton ionization of NO molecules via a two-photon Raman coupling and a laser-induced continuum structure (LICS) state in two-colour strong femtosecond pulsed laser fields.Time-and energy-resolved photoelectron energy spectra are calculated for describing three photoionization channels.The population transfers through the LICS and the Raman coupling passages and discussed.

  8. Comedones induced by vascular laser therapy

    Gulsen Tukenmez Demirci

    2016-01-01

    Full Text Available A 21-year-old female presented with acne-like blackheads on brownish areas located on the cheek. She had been treated with neodymium-doped yttrium aluminium garnet (Nd-YAG laser (1071 nm, 160 j/cm 2 , three months ago for erythema and telangiectasia of her face. Afterwards, she developed atrophic, slightly depressed, hyperpigmented, 3-4 mm scars with superimposed tiny comedones within the treated areas. Topical treatment with tretinoin 0.05% cream on alternate days, and Sun Protection Factor (SPF 50 sunscreen daily were commenced. After 2 months, comedones and hyperpigmentation mostly resolved but mild superficial atrophy persisted. According to our knowledge, this is the first case of atrophic scars studded with open comedones, developing shortly after laser therapy used for facial telangiectasia.

  9. Laser induced mortality of Anopheles stephensi mosquitoes.

    Keller, Matthew D; Leahy, David J; Norton, Bryan J; Johanson, Threeric; Mullen, Emma R; Marvit, Maclen; Makagon, Arty

    2016-01-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild. PMID:26887786

  10. Application of Laser-Induced Bone Therapy by Carbon Dioxide Laser Irradiation in Implant Therapy

    Takahiro Naka; Satoshi Yokose

    2012-01-01

    This study evaluated the application of laser-induced bone therapy (LIBT) to reduce implant healing time in rat tibia. Twenty 10-week-old female Sprague-Dawlay rats were used. The rats received laser irradiation (laser group) or sham operation (control group) on either side of the tibia. Five days after invasion, titanium implants were inserted in proximal tibia. Five, 10, and 20 days after implant placement, tibiae were collected. After taking micro-CT and performing a torque test, the tibia...