Protein-induced changes during the maturation process of human dendritic cells: A 2-D DIGE approach
Ferreira, Gb; Overbergh, L; Hansen, Kasper Lage; D'Hertog, W; Hansen, Daniel Aaen; Maris, M; Moreau, Y; Workman, Christopher; Waelkens, E; Mathieu, C
2008-01-01
Dendritic cells (DCs) are unique antigen presenting cells, which upon maturation change from a specialized antigen-capturing cell towards a professional antigen presenting cells. In this study, a 2-D DIGE analysis of immature and mature DCs was performed, to identify proteins changing in expressi...
Differential analysis of glioblastoma multiforme proteome by a 2D-DIGE approach
Hamlat Abderrahmane
2011-04-01
Full Text Available Abstract Background Genomics, transcriptomics and proteomics of glioblastoma multiforme (GBM have recently emerged as possible tools to discover therapeutic targets and biomarkers for new therapies including immunotherapy. It is well known that macroscopically complete surgical excision, radiotherapy and chemotherapy have therapeutic limitations to improve survival in these patients. In this study, we used a differential proteomic-based technique (2D-Difference Gel Electrophoresis coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF mass spectrometry to identify proteins that may serve as brain tumor antigens in new therapeutic assays. Five samples of patients presenting a GBM and five samples of microscopically normal brain tissues derived from brain epileptic surgery specimen were labeled and run in 2D-PAGE (Two-Dimensional Polyacrylamide Gel Electrophoresis with an internal pool sample on each gel. Five gels were matched and compared with DIA (Difference In-gel Analysis software. Differential spots were picked, in-gel digested and peptide mass fingerprints were obtained. Results From 51 protein-spots significantly up-regulated in GBM samples, mass spectrometry (MS identified twenty-two proteins. The differential expression of a selected protein set was first validated by western-blotting, then tested on large cohorts of GBM specimens and non-tumor tissues, using immunohistochemistry and real-time RT-PCR. Conclusions Our results confirmed the importance of previously described proteins in glioma pathology and their potential usefulness as biological markers but also revealed some new interesting targets for future therapies.
Missous, Ghalia; Thammavongs, Bouachanh; Dieuleveux, Virginie; Houssin, Maryline; Henry, Joël; Panoff, Jean-Michel
2012-01-01
Geotrichum candidum is a micro-fungus widely used as a ripening starter in cheese making. In anthropogenic environments such as dairy industries, this microorganism is subjected to many environmental and technological stresses including low temperature exposure. Our aim was to study the proteomic response of G. candidum to cold stress using a comparative proteomic approach by two-dimensional Differential In Gel Electrophoresis (2D DIGE). This technique consists on the labeling of proteins by specific fluorescent dyes (CyDyes). The results, obtained with G. candidum cells subjected to cold temperature, show significant proteomic patterns differences compared with the standard conditions. Furthermore, this biochemical response seems strain specific. 2D DIGE technology combined with SameSpots™ software analysis support these results through an important statistical validity. The comparative studies in a single gel, using two different fluorescent CyDyes (Cy3 and Cy5), lead to proteins differentiation. Selected spots were treated and analyzed by mass spectrometry. PMID:22987240
Da-Zhi Wang
2011-01-01
Full Text Available The cell wall is an important subcellular component of dinoflagellate cells with regard to various aspects of cell surface-associated ecophysiology, but the full range of cell wall proteins (CWPs and their functions remain to be elucidated. This study identified and characterized CWPs of a toxic dinoflagellate, Alexandrium catenella, using a combination of 2D fluorescence difference gel electrophoresis (DIGE and MALDI TOF-TOF mass spectrometry approaches. Using sequential extraction and temperature shock methods, sequentially extracted CWPs and protoplast proteins, respectively, were separated from A. catenella. From the comparison between sequentially extracted CWPs labeled with Cy3 and protoplast proteins labeled with Cy5, 120 CWPs were confidently identified in the 2D DIGE gel. These proteins gave positive identification of protein orthologues in the protein database using de novo sequence analysis and homology-based search. The majority of the prominent CWPs identified were hypothetical or putative proteins with unknown function or no annotation, while cell wall modification enzymes, cell wall structural proteins, transporter/binding proteins, and signaling and defense proteins were tentatively identified in agreement with the expected role of the extracellular matrix in cell physiology. This work represents the first attempt to investigate dinoflagellate CWPs and provides a potential tool for future comprehensive characterization of dinoflagellate CWPs and elucidation of their physiological functions.
2D-DIGE proteomic analysis of mesenchymal stem cell cultured on the elasticity-tunable hydrogels.
Kuboki, Thasaneeya; Kantawong, Fahsai; Burchmore, Richard; Dalby, Matthew J; Kidoaki, Satoru
2012-01-01
The present study focuses on mechanotransduction in mesenchymal stem cells (MSCs) in response to matrix elasticity. By using photocurable gelatinous gels with tunable stiffness, proteomic profiles of MSCs cultured on tissue culture plastic, soft (3 kPa) and stiff (52 kPa) matrices were deciphered using 2-dimensional differential in-gel analysis (2D-DIGE). The DIGE data, tied to immunofluorescence, indicated abundance and organization changes in the cytoskeletonal proteins as well as differential regulation of important signaling-related proteins, stress-responsing proteins and also proteins involved in collagen synthesis. The major CSK proteins including actin, tubulin and vimentin of the cells cultured on the gels were remarkably changed their expressions. Significant down-regulation of α-tubulin and β-actin can be observed on gel samples in comparison to the rigid tissue culture plates. The expression abundance of vimentin appeared to be highest in the MSCs cultured on hard gels. These results suggested that the substrate stiffness significantly affects expression balances in cytoskeletal proteins of MSCs with some implications to cellular tensegrity. PMID:22971925
2D-DIGE in proteomics applications%2D-DIGE技术在蛋白质组学中的应用
杜俊变; 王丽惠; 段江燕
2011-01-01
双向荧光差异凝胶电泳(2D-DIGE)作为一种新型的蛋白质组分析技术,已经被广泛应用于动物、植物、微生物以及人类差异蛋白的研究.在动物医学方面,采用DIGE技术,通过对不同类型,不同个体的细胞、组织、或经过不同处理和不同生长条件下蛋白质表达差异分析,在研究疾病的分子机理、分子诊断、药物作用机理、毒理学等方面都有广泛的应用.在植物学方面,该技术可以用来分离和分析植物亚细胞结构蛋白质组以及在生物和非生物胁迫下,植物细胞中蛋白质表达的差异性,从而建立差异蛋白相互作用网络图,从而为研究伤害机制提供一定的依据.%Two-way fluorescence difference gel electrophoresis (2D-DIGE) as one of new analytical techniques was widely used in study of animals , plants , microbes and proteins of human differences. In animal medicine , using DIGE technology , through different types of cells in different individuals, organizations, or through different treatments and different protein expression under different growth conditions analyzed in the study of molecular mechanisms of disease, molecular diagnostics, drug mechanism, drug science has a wide range of application areas. In botany , the technology can be used to isolate and analyze the subcellular structures of plant proteins as well as in biotic and abiotic stress, plant cells differences in protein expression in order to establish differences in protein interaction network graph, and thus to study the damage mechanism to provide some basis.
Hayashi, Gohei; Moro, Carlo F; Rohila, Jai Singh; Shibato, Junko; Kubo, Akihiro; Imanaka, Tetsuji; Kimura, Shinzo; Ozawa, Shoji; Fukutani, Satoshi; Endo, Satoru; Ichikawa, Katsuki; Agrawal, Ganesh Kumar; Shioda, Seiji; Hori, Motohide; Fukumoto, Manabu; Rakwal, Randeep
2015-01-01
The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 µSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 µSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves. PMID:26451896
Caniuguir, Andres; Krause, Bernardo J; Hernandez, Cherie; Uauy, Ricardo; Casanello, Paola
2016-05-01
Intrauterine growth restriction (IUGR) associates with fetal and placental vascular dysfunction, and increased cardiovascular risk later on life. We hypothesize that endothelial cells derived from IUGR umbilical veins present significant changes in the proteome which could be involved in the endothelial dysfunction associated to this conditions. To address this the proteome profile of human umbilical endothelial cells (HUVEC) isolated from control and IUGR pregnancies was compared by 2D-Differential In Gel Electrophoresis (DIGE) and further protein identification by MALDI-TOF MS. Using 2D-DIGE 124 spots were identified as differentially expressed between control and IUGR HUVEC, considering a cut-off of 2 fold change, which represented ∼10% of the total spots detected. Further identification by MALDI-TOF MS and in silico clustering of the proteins showed that those differentially expressed proteins between control and IUGR HUVEC were mainly related with cytoskeleton organization, proteasome degradation, oxidative stress response, mRNA processing, chaperones and vascular function. Finally Principal Component analysis of the identified proteins showed that differentially expressed proteins allow distinguishing between control and IUGR HUVEC based on their proteomic profile. This study demonstrates for the first time that IUGR-derived HUVEC maintained in primary culture conditions present an altered proteome profile, which could reflect an abnormal programming of endothelial function in this fetal condition. PMID:27208404
Oxi-DIGE: A novel proteomic approach for detecting and quantifying carbonylated proteins.
Baraibar, Martin; Ladouce, Romain; Friguet, Bertrand
2014-10-01
Proteins are involved in key cellular functions and our health and wellness depends on their quality. Accumulation of oxidatively damaged proteins is a hallmark of deleterious processes such increased oxidative stress, chronic inflammation, ageing and age-related diseases. Thus, quantifying and identifying oxidized proteins is a biomarker of choice for monitoring biological ageing and/or the efficiency of anti-oxidant, ant-inflammatory and anti-ageing therapies. However, the absence of reliable tools for analyses has inhibited its establishment as the gold standard for measuring the efficacy of anti-ageing and age related diseases interventions. Herein, we present a novel proteomics technology, named Oxi-DIGE?, which provides a significant improvement in terms of specificity, reproducibility and statistical support for proteomic analysis of carbonylated proteins. In Oxi-DIGE, protein carbonyls are labelled with fluorescent hydrazide probes that bind specifically to carbonyl groups in proteins. Experimental groups (e.g. control and experimental samples) are labelled with different flurophore-binded hydrazides that fluoresce light at different wavelengths, producing different colour fluorescence. Thus samples from different experimental groups are co-resolved on a single 2D gel. Increased accuracy is provided due to: (i) reduced false positives by using an exogenous synthetic fluorescent tag; (ii) multiplexing, that is the possibility to run multiple samples on the same gel, (iii) the use of an internal standard on each gel which eliminates inter-gel variations and provides an increased statistical confidence. In addition, the resolution of the carbonyl groups is improved, forming distinct spots that can be identified by mass spectrometry. ?Patent Application (M. Baraibar, R. Ladouce., B. Friguet, A method for detecting and/or quantifying carbonylated proteins (WO/2012/175519) filed by UPMC and referring to the technology described in this abstract. PMID:26461312
Fundamentals of the DIGES code
Recently the authors have completed the development of the DIGES code (Direct GEneration of Spectra) for the US Nuclear Regulatory Commission. This paper presents the fundamental theoretical aspects of the code. The basic modeling involves a representation of typical building-foundation configurations as multi degree-of-freedom dynamic which are subjected to dynamic inputs in the form of applied forces or pressure at the superstructure or in the form of ground motions. Both the deterministic as well as the probabilistic aspects of DIGES are described. Alternate ways of defining the seismic input for the estimation of in-structure spectra and their consequences in terms of realistically appraising the variability of the structural response is discussed in detaiL These include definitions of the seismic input by ground acceleration time histories, ground response spectra, Fourier amplitude spectra or power spectral densities. Conversions of one of these forms to another due to requirements imposed by certain analysis techniques have been shown to lead, in certain cases, in controversial results. Further considerations include the definition of the seismic input as the excitation which is directly applied at the foundation of a structure or as the ground motion of the site of interest at a given point. In the latter case issues related to the transferring of this motion to the foundation through convolution/deconvolution and generally through kinematic interaction approaches are considered
杨方云; 李中安; 周常勇; 周彦
2013-01-01
[Objective]To determine the probability of 2D -DIGE technology to identify the differentially expressed proteins in sweet oranges induced by Citrus tristeza virus, CTV. [Method] The same weight leaf samples of each plant were mixed from CTV -inoculated sweet orange plants and healthy plants, respectively. Total proteins were extracted from above mixed samples with three replications. Each protein sample was labeled with three different CyDyes Cy2, Cy3 and Cy5, and Cy2-labeled sample was used as an internal standard pooled from all the samples. Labeled protein samples were separated with 2-D DIGE and differential protein spots were picked out. MALDI-TOF-MS and bioinformatics were adopted to identify and interpret the significance of differentially expressed proteins. [Result]Total 91 Differential protein spots were detected with statistical variance of two groups (relative average volume ratio ≥ 1.5; t-test, P< 0.05). Among these proteins, 56 protein volumes of CTV group were higher than that of healthy group, and 35 proteins lower. PMFs of 37 proteins were obtained by MAIDI-TOF-MS analysis. Through searching NCBI, 19 protein functions were clear, 16 proteins predicted or putative, and 2 proteins unknown. The i-dentified proteins were involved mainly in metabolism (including 2-Phospho-D-glycerate hydrolase, NADP-isocitrate dehydrogenase, Xyloglucan endotransglycosylase, Adenylate kinase), antioxidant activity (including Thioredoxin H-type 5, Ferredoxin-NADP reductase, L-ascorbate peroxidase T, Iron su-peroxide dismutase), photosynthesis (including Ribulose 1,5-bisphosphate carboxylase/oxygenase large or small subunit, Oxygen-evolving enhancer protein 1 and 2, Chlorophyll a/b-binding protein precursor)and molecular chaperone (such as Heat shock protein). [Conclusion] 2D-DIGE can be used to identify the differentially expressed proteins in sweet oranges induced by different pathologic CTV strains in order to clarify the mechanism of CTV pathogenesis.%[目的]为
Convolution-deconvolution in DIGES
Convolution and deconvolution operations is by all means a very important aspect of SSI analysis since it influences the input to the seismic analysis. This paper documents some of the convolution/deconvolution procedures which have been implemented into the DIGES code. The 1-D propagation of shear and dilatational waves in typical layered configurations involving a stack of layers overlying a rock is treated by DIGES in a similar fashion to that of available codes, e.g. CARES, SHAKE. For certain configurations, however, there is no need to perform such analyses since the corresponding solutions can be obtained in analytic form. Typical cases involve deposits which can be modeled by a uniform halfspace or simple layered halfspaces. For such cases DIGES uses closed-form solutions. These solutions are given for one as well as two dimensional deconvolution. The type of waves considered include P, SV and SH waves. The non-vertical incidence is given special attention since deconvolution can be defined differently depending on the problem of interest. For all wave cases considered, corresponding transfer functions are presented in closed-form. Transient solutions are obtained in the frequency domain. Finally, a variety of forms are considered for representing the free field motion both in terms of deterministic as well as probabilistic representations. These include (a) acceleration time histories, (b) response spectra (c) Fourier spectra and (d) cross-spectral densities
Convolution-deconvolution in DIGES
Philippacopoulos, A.J.; Simos, N. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology
1995-05-01
Convolution and deconvolution operations is by all means a very important aspect of SSI analysis since it influences the input to the seismic analysis. This paper documents some of the convolution/deconvolution procedures which have been implemented into the DIGES code. The 1-D propagation of shear and dilatational waves in typical layered configurations involving a stack of layers overlying a rock is treated by DIGES in a similar fashion to that of available codes, e.g. CARES, SHAKE. For certain configurations, however, there is no need to perform such analyses since the corresponding solutions can be obtained in analytic form. Typical cases involve deposits which can be modeled by a uniform halfspace or simple layered halfspaces. For such cases DIGES uses closed-form solutions. These solutions are given for one as well as two dimensional deconvolution. The type of waves considered include P, SV and SH waves. The non-vertical incidence is given special attention since deconvolution can be defined differently depending on the problem of interest. For all wave cases considered, corresponding transfer functions are presented in closed-form. Transient solutions are obtained in the frequency domain. Finally, a variety of forms are considered for representing the free field motion both in terms of deterministic as well as probabilistic representations. These include (a) acceleration time histories, (b) response spectra (c) Fourier spectra and (d) cross-spectral densities.
Differential Expression of Proteins in Lung Cancer Using Difference in Gel Electrophoresis (DIGE)
Beckett, P; Aulak, K. S.; Masri, F.
2011-01-01
Background: Lung cancer remains the leading cause of cancer-related mortality worldwide. Early detection of lung cancer is problematic due to the lack of a marker with high diagnosis sensitivity and specificity. The purpose of this study was to develop techniques to identify the differential expression protein profiles between tumor and tumor free of lung cancer tissues. Methods: 2-dimensional differential ingel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of...
X-ray imaging method based on 2D grating interferometer was proposed and studied recently, to overcome the limitations in signal extraction and phase retrieval when using 1D grating interferometer. In this paper, the concept of angle-signal response function is proposed, and different surfaces of different 2D setups under the condition of parallel coherent light are calculated and depicted with Matlab. Based on this concept, performance of 2D grating interferometer is systematically analyzed and an analytic 2D signal extraction approach is theoretically proposed. Besides, signal extraction, phase retrieval and feasibility of using conventional source are also briefly discussed and compared between 2D grating interferometer and 1D case
2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach
We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...
Organic structure determination using 2-D NMR spectroscopy a problem-based approach
Simpson, Jeffrey H
2011-01-01
Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-Based Approach, Second Edition, provides an introduction to the use of two-dimensional (2-D) nuclear magnetic resonance (NMR) spectroscopy to determine organic structure. The book begins with a discussion of the NMR technique, while subsequent chapters cover instrumental considerations; data collection, processing, and plotting; chemical shifts; symmetry and topicity; through-bond effects; and through-space effects. The book also covers molecular dynamics; strategies for assigning resonances to atoms within a molecule; s
A 2D-3D FEM approach of fuel rod thermomechanical behaviour during a RIA
For better understanding of the fuel rod behaviour during a RIA and to extrapolate the CABRI tests results to PWR conditions, a pellet and its corresponding cladding part have been modelled by means of a 2D axisymmetric meshing, with EDF's finite element code ASTER. The pellet rim region, which is modelled with a 3D meshing, is represented in the global 2D-model with an equivalent homogenized material. The stress distribution is calculated by applying a thermal radial profile computed with the CEA/IPSN SCANAIR code. Then, the local stresses are determined in the rim region, in the neighbourhood of a gas bubble. This 2D-3D FEM approach has been applied successively to REP Na1 rod, at the time and location of the first failure, and to the postulated RCCA ejection accident in a PWR. (R.P.)
An Efficient Multimodal 2D + 3D Feature-based Approach to Automatic Facial Expression Recognition
Li, Huibin
2015-07-29
We present a fully automatic multimodal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU-3DFE database. Our approach combines multi-order gradient-based local texture and shape descriptors in order to achieve efficiency and robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar-CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are used to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both feature-level and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU-3DFE benchmark to compare our approach to the state-of-the-art ones. Our multimodal feature-based approach outperforms the others by achieving an average recognition accuracy of 86.32%. Moreover, a good generalization ability is shown on the Bosphorus database.
Martel, Dimitri; Tse Ve Koon, K.; Le Fur, Yann; Ratiney, Hélène
2015-11-01
Two-dimensional spectroscopy offers the possibility to unambiguously distinguish metabolites by spreading out the multiplet structure of J-coupled spin systems into a second dimension. Quantification methods that perform parametric fitting of the 2D MRS signal have recently been proposed for resolved PRESS (JPRESS) but not explicitly for Localized Correlation Spectroscopy (LCOSY). Here, through a whole metabolite quantification approach, correlation spectroscopy quantification performances are studied. The ability to quantify metabolite relaxation constant times is studied for three localized 2D MRS sequences (LCOSY, LCTCOSY and the JPRESS) in vitro on preclinical MR systems. The issues encountered during implementation and quantification strategies are discussed with the help of the Fisher matrix formalism. The described parameterized models enable the computation of the lower bound for error variance - generally known as the Cramér Rao bounds (CRBs), a standard of precision - on the parameters estimated from these 2D MRS signal fittings. LCOSY has a theoretical net signal loss of two per unit of acquisition time compared to JPRESS. A rapid analysis could point that the relative CRBs of LCOSY compared to JPRESS (expressed as a percentage of the concentration values) should be doubled but we show that this is not necessarily true. Finally, the LCOSY quantification procedure has been applied on data acquired in vivo on a mouse brain.
Nested 1D-2D approach for urban surface flood modeling
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of
One particle properties in the 2D Coulomb problem. Luttinger-Ward variational approach
Agnihotri, M.P.
2007-04-27
In this work, we have studied the 2D Coulomb problem. We used the Luttinger-Ward variational principle to determine the self-energy {sigma} in ring approximation. The use of an ansatz for {sigma} enables us to perform the frequency sums (integrals as T {yields} 0) analytically. Compared to the usual procedure of iterating the self consistency equation with free Green's function as starting points, the present approach is superior. It works for higher density parameter r{sub s} (low density) where the iteration already fails to converge. The motivation of the present work is the quantum Hall system at filling factor 1/2. The Luttinger-Ward procedure is a rather powerful method in particular if combined with an analytical ansatz for {sigma}. The computation performed here for 2DEG has to be seen as a first step: There, the experiment shows the features of a free Fermion system that is interpreted as a system of Composite Fermions. If one studies the self energy of the Composite Fermions in an conserved approximation that corresponds to the ring approximation, one encounters a self consistency equation. However, an iterative solution of this equation meets with a complication: Instead of the polarization part {pi}{sub 00}, in the case of the Composite Fermion there appears the longitudinal polarization part {pi}{sub LL} that has an additional factor (2k + q){sup 2} under the k integral. This integral converges only after the frequency integral is performed. It is highly difficult to reproduce this numerically. Here, the Luttinger-Ward variational approach applied to the 2D Coulomb problem in the present work looks promising. For the 2D Coulomb problem, in the ring approximation for the LW thermodynamic potential, that already leads to a formidable integral equation that has to be studied numerically. (orig.)
One particle properties in the 2D Coulomb problem. Luttinger-Ward variational approach
In this work, we have studied the 2D Coulomb problem. We used the Luttinger-Ward variational principle to determine the self-energy Σ in ring approximation. The use of an ansatz for Σ enables us to perform the frequency sums (integrals as T → 0) analytically. Compared to the usual procedure of iterating the self consistency equation with free Green's function as starting points, the present approach is superior. It works for higher density parameter rs (low density) where the iteration already fails to converge. The motivation of the present work is the quantum Hall system at filling factor 1/2. The Luttinger-Ward procedure is a rather powerful method in particular if combined with an analytical ansatz for Σ. The computation performed here for 2DEG has to be seen as a first step: There, the experiment shows the features of a free Fermion system that is interpreted as a system of Composite Fermions. If one studies the self energy of the Composite Fermions in an conserved approximation that corresponds to the ring approximation, one encounters a self consistency equation. However, an iterative solution of this equation meets with a complication: Instead of the polarization part Π00, in the case of the Composite Fermion there appears the longitudinal polarization part ΠLL that has an additional factor (2k + q)2 under the k integral. This integral converges only after the frequency integral is performed. It is highly difficult to reproduce this numerically. Here, the Luttinger-Ward variational approach applied to the 2D Coulomb problem in the present work looks promising. For the 2D Coulomb problem, in the ring approximation for the LW thermodynamic potential, that already leads to a formidable integral equation that has to be studied numerically. (orig.)
Highlights: ► A new adaptive h-refinement approach has been developed for a class of nodal method. ► The resulting system of nodal equations is more amenable to efficient numerical solution. ► The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. ► Spatially adaptive approach greatly enhances the accuracy of the solution. - Abstract: The aim of this work is to develop a spatially adaptive coarse mesh strategy that progressively refines the nodes in appropriate regions of domain to solve the neutron balance equation by zeroth order nodal expansion method. A flux gradient based a posteriori estimation scheme has been utilized for checking the approximate solutions for various nodes. The relative surface net leakage of nodes has been considered as an assessment criterion. In this approach, the core module is called in by adaptive mesh generator to determine gradients of node surfaces flux to explore the possibility of node refinements in appropriate regions and directions of the problem. The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. For this purpose, a computer program ANRNE-2D, Adaptive Node Refinement Nodal Expansion, has been developed to solve neutron diffusion equation using average current nodal expansion method for 2D rectangular geometries. Implementing the adaptive algorithm confirms its superiority in enhancing the accuracy of the solution without using fine nodes throughout the domain and increasing the number of unknown solution. Some well-known benchmarks have been investigated and improvements are reported
Kang, Yunyi; Techanukul, Tanasit; Mantalaris, Anthanasios; Nagy, Judit M
2009-02-01
The success of high-performance differential gel electrophoresis using fluorescent dyes (DIGE) depends on the quality of the digital image captured after electrophoresis, the DIGE enabled image analysis software tool chosen for highlighting the differences, and the statistical analysis. This study compares three commonly available DIGE enabled software packages for the first time: DeCyder V6.5 (GE-Healthcare), Progenesis SameSpots V3.0 (Nonlinear Dynamics), and Dymension 3 (Syngene). DIGE gel images of cell culture media samples conditioned by HepG2 and END2 cell lines were used to evaluate the software packages both quantitatively and subjectively considering ease of use with minimal user intervention. Consistency of spot matching across the three software packages was compared, focusing on the top fifty spots ranked statistically by each package. In summary, Progenesis SameSpots outperformed the other two software packages in matching accuracy, possibly being benefited by its new approach: that is, identical spot outline across all the gels. Interestingly, the statistical analysis of the software packages was not consistent on account of differences in workflow, algorithms, and default settings. Results obtained for protein fold changes were substantially different in each package, which indicates that in spite of using internal standards, quantification is software dependent. A future research goal must be to reduce or eliminate user controlled settings, either by automatic sample-to-sample optimization by intelligent software, or by alternative parameter-free segmentation methods. PMID:19133722
3-Phase Recognition Approach to Pseudo 3D Building Generation from 2D Floor Plan
Moloo, Raj Kishen; Auleear, Abu Salmaan
2011-01-01
Nowadays three dimension (3D) architectural visualisation has become a powerful tool in the conceptualisation, design and presentation of architectural products in the construction industry, providing realistic interaction and walkthrough on engineering products. Traditional ways of implementing 3D models involves the use of specialised 3D authoring tools along with skilled 3D designers with blueprints of the model and this is a slow and laborious process. The aim of this paper is to automate this process by simply analyzing the blueprint document and generating the 3D scene automatically. For this purpose we have devised a 3-Phase recognition approach to pseudo 3D building generation from 2D floor plan and developed a software accordingly. Our 3-phased 3D building system has been implemented using C, C++ and OpenCV library [24] for the Image Processing module; The Save Module generated an XML file for storing the processed floor plan objects attributes; while the Irrlitch [14] game engine was used to impleme...
An analytic approach to 2D electronic PE spectra of molecular systems
Graphical abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems using direct calculation from electronic Hamiltonians allows peak classification from 3P-PE spectra dynamics. Display Omitted Highlights: → RWA approach to electronic photon echo. → A straightforward calculation of 2D electronic spectrograms in finite molecular systems. → Importance of population time dynamics in relation to inter-site coherent coupling. - Abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems and simplified line broadening models is presented. The Fourier picture of a heterodyne detected three-pulse rephasing PE signal in the δ-pulse limit of the external field is derived in analytic form. The method includes contributions of one and two-excitonic states and allows direct calculation of Fourier PE spectrogram from corresponding Hamiltonian. As an illustration, the proposed treatment is applied to simple systems, e.g. 2-site two-level system (TLS) and n-site TLS model of photosynthetic unit. The importance of relation between Fourier picture of 3P-PE dynamics (corresponding to nonzero population time, T) and coherent inter-state coupling is emphasized.
Augmented Superfield Approach to Nilpotent Symmetries of the Modified Version of 2D Proca Theory
Shukla, A; Malik, R P
2013-01-01
We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations for all the fields of the modified version of two (1+1)-dimensional (2D) Proca theory by exploiting the "augmented" superfield formalism where the (dual-)horizontality conditions and (dual-)gauge-invariant restrictions are exploited together. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian density in the language of superfield formalism. We also express the nilpotency and absolute anticommutativity of the (anti-)BRST and (anti-)co-BRST charges within the framework of augmented superfield formalism. This exercise leads to some novel observations which have, hitherto, not been pointed out in the literature within the framework of superfield approach to BRST formalism. For the sake of completeness, we also mention, very briefly, a unique bosonic symmetry, the ghost-scale symmetry and discrete symmetries of the theory and ...
Fermiology through 2D-ACAR and Compton scattering: A new approach
Two dimensional angular correlation of positron radiation (2D-ACAR) and the measurement of Compton profiles prove complementary methods of investigating electron structure. In a 2D-ACAR experiment, one obtains a 2D projection of the underlying electron-positron momentum density, while a Compton profile yields a doubly integrated (1D) projection of electron momentum density. One of the major research themes of Bristol group has been concerned with retrieval of Fermi surface (FS) information from measured of 2D-ACAR spectra, employing Maximum Entropy deconvolution and reconstruction techniques. A preliminary study has shown that the application of the Maximum Entropy technique to the compton profiles, enables direct FS information to be extracted from the data. (author). 13 refs, 3 figs
Seepage Analysis of Upper Gotvand Dam Concerning Gypsum Karstification (2D and 3D Approaches)
Sadrekarimi, Jamshid; Kiyani, Majid; Fakhri, Behnam;
2011-01-01
model locates the phreatic surface somewhat higher than the 2D model. This means that the 2D model estimates lower pore water pressure pattern in comparison with the 3D model. These may be attributed to the fact that with 2D model the lateral components of vectors of seepage velocity are ignored. In the......Upper Gotvand Dam is constructed on the Karun River at the south west of Iran. In this paper, 2D and 3D models of the dam together with the foundation and abutments were established, and several seepage analyses were carried out. Then, the gypsum veins that are scattered throughout the foundation...... ground were included in the models, and the seepage pattern, considering the dissolution law of gypsum, was analyzed. It was disclosed that the discharge fluxes obtained from 2D and 3D analyses are not similar, and the discharge flux in 3D model is about four times that of the 2D model. Also, the 3D...
Axial turbomachine modelling with a quasi-2-D approach. Application to gas cooled reactor transients
Full text of publication follows: In the frame of the international forum GenIV, CEA has selected two innovative concepts of High Temperature gas cooled Reactor. The first has a fast neutron spectrum, a robust refractory fuel and a direct cycle conversion. The second is a very high temperature reactor with a thermal neutron spectrum. Both concepts make use of technology derived from High Temperature Gas Reactor. Thermal hydraulic performances are a key issue for the design. For transient conditions and decay heat removal situations, the thermal hydraulic performance must remain as high as possible. In this context, all the transient situations, the incidental and accidental scenarios must be evaluated by a validated system code able to correctly describe, in particular, the thermal-hydraulics of the whole plant. With this type of reactor a special emphasis must be laid on turbomachinery modelling. A first step was to compute a HTGR concept using the steady-state characteristics of each element of the turbomachinery with the computer code CATHARE. In a hypothetical transient event (a 10 inches cold duct break of primary loop which causes a rapid depressurization and a decrease of the core mass flow rate) the results seem of great interest (as a forced convection was maintained by the compressors during the entire transient) but not sufficiently justified in the frame of 0D modelling of turbomachinery. A more precise description of the turbomachinery has been developed based on a quasi-two dimensional approach. Although this type of flow analysis is a simplification of a complex three dimensional system, it is able to describe the behaviour of a compressor or a turbine with a better understanding than the models based on component characteristics. This approach consists in the solving of 2D radially averaged Navier-Stokes equations with the hypothesis of circumferentially uniform flow. The assumption of quasi-steady behaviour is made: source terms for the lift and
A Very Simple Approach for 3-D to 2-D Mapping
Dey, Sandipan; Abraham, Ajith; Sanyal, Sugata
2010-01-01
Many times we need to plot 3-D functions e.g., in many scientificc experiments. To plot this 3-D functions on 2-D screen it requires some kind of mapping. Though OpenGL, DirectX etc 3-D rendering libraries have made this job very simple, still these libraries come with many complex pre- operations that are simply not intended, also to integrate these libraries with any kind of system is often a tough trial. This article presents a very simple method of mapping from 3D to 2D, that is free from...
2-D quadratic maps and 3-D ode systems a rigorous approach
Elhadj, Zeraoulia
2010-01-01
This book is based on research on the rigorous proof of chaos and bifurcations in 2-D quadratic maps, especially the invertible case such as the HÃ©non map, and in 3-D ODE's, especially piecewise linear systems such as the Chua's circuit. In addition, the book covers some recent works in the field of general 2-D quadratic maps, especially their classification into equivalence classes, and finding regions for chaos, hyperchaos, and non-chaos in the space of bifurcation parameters.Following the main introduction to the rigorous tools used to prove chaos and bifurcations in the two representative
A new approach for assimilation of 2D radar precipitation in a high-resolution NWP model
Korsholm, Ulrik Smith; Petersen, Claus; Sass, Bent Hansen;
2015-01-01
A new approach for assimilation of 2D precipitation in numerical weather prediction models is presented and tested in a case with convective, heavy precipitation. In the scheme a nudging term is added to the horizontal velocity divergence tendency equation. In case of underproduction of precipita...
Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches
Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko;
2015-01-01
mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo...
A physical pattern recognition approach for 2D electromagnetic induction studies
D. Patella
2000-06-01
Full Text Available We present a new tomographic procedure for the analysis of natural source electromagnetic (EM induction field data collected over any complex 2D buried structure beneath a flat air-earth boundary. The tomography is developed in a pure physical context and the primary goal is the depiction of the space distribution of two occurrence probability functions for the induced electrical charge accumulations on resistivity discontinuities and current channelling inside conductive bodies, respectively. The procedure to obtain tomographic image consists of a scanning operation governed analytically by a set of multiple interference cross-correlations between the observed EM components and the corresponding synthetic components of a pair of elementary charge and dipole. To show the potentiality of the proposed physical tomography, we discuss the results from three 2D synthetic examples.
A physical pattern recognition approach for 2D electromagnetic induction studies
D. PATELLA; P. Mauriello
2000-01-01
We present a new tomographic procedure for the analysis of natural source electromagnetic (EM) induction field data collected over any complex 2D buried structure beneath a flat air-earth boundary. The tomography is developed in a pure physical context and the primary goal is the depiction of the space distribution of two occurrence probability functions for the induced electrical charge accumulations on resistivity discontinuities and current channelling inside conductive bodies, respectivel...
Diego A. Garzón-Alvarado; CARLOS GALEANO; JUAN MANTILLA
2012-01-01
Este articulo presenta distintas pruebas numéricas en dominios que presenta variación de parámetros, de forma espacial, de la ecuación de reacción- difusión en el espacio de Turing. Las pruebas son desarrolladas en cuadrados de lado unitario 2D en el cual se realizan subdivisiones (subdominios). En cada subdomminio se ingresan parámetros que corresponden a los diferentes números de onda, por lo tanto presentan un medio heterogéneo. Cada número de onda fue predicho mediante la teoría lineal de...
Hyperspherical approach to the three-bosons problem in 2D with a magnetic field
Rittenhouse, Seth T; Johnson, B L
2016-01-01
We examine a system of three-bosons confined to two dimensions in the presence of a perpendicular magnetic field within the framework of the adiabatic hyperspherical method. For the case of zero-range, regularized pseudo-potential interactions, we find that the system is nearly separable in hyperspherical coordinates and that, away from a set of narrow avoided crossings, the full energy eigenspectrum as a function of the 2D s-wave scattering length is well described by ignoring coupling between adiabatic hyperradial potentials. In the case of weak attractive or repulsive interactions, we find the lowest three-body energy states exhibit even/odd parity oscillations as a function of total internal 2D angular momentum and that for weak repulsive interactions, the universal lowest energy interacting state has an internal angular momentum of $M=3$. With the inclusion of repulsive higher angular momentum we surmise that the origin of a set of ``magic number'' states (states with anomalously low energy) might emerge...
Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.
2014-12-01
In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is
B. M. Dinelli
2009-10-01
Full Text Available We present a multi-year database of atmospheric state parameters retrieved for the upper tropospheric to mesospheric region from satellite measurements with a 2-dimensional tomographic approach. The full mission of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument, on board the European Space Agency ENVISAT satellite, is analyzed with the Geofit Multi-Target Retrieval (GMTR system to obtain the MIPAS2D database with atmospheric fields of pressure, temperature and volume mixing ratio of MIPAS main targets H_{2}O, O_{3}, HNO_{3}, CH_{4}, N_{2}O, and NO_{2}. The database covers both the MIPAS nominal observation mode measured at Full Resolution (FR from July 2002 to March 2004 and the nominal observation mode of the new configuration, measured at Optimized Resolution (OR and introduced in 2005. Further to the main targets, minor species N_{2}O_{5}, ClONO_{2}, COF_{2}, CFC-11, and CFC-12 for the FR mission only have been included in MIPAS2D to enhance its applicability in studies of stratospheric chemistry. The database is continuously updated with the analysis of the ongoing measurements that are planned to last until the end of 2013. The GMTR algorithm is operated on a fixed vertical grid coincident with the tangent altitudes of the FR nominal mode, spanning the altitude range from 6 to 68 km. In the horizontal domain, FR measurements are retrieved on both the observational grid and an equispaced 5 latitudinal-degrees grid which is made possible by the 2-dimensional retrieval algorithm. The analysis of MIPAS OR observations is operated on the same altitude-latitude fixed retrieval grid used for the FR measurements. This choice provides a homogeneous database in altitude and latitude, over the whole globe, covering to date about seven years of measurements. The equispaced latitudinal grid provides a new and convenient layout for the much
Sarkar, Soham; Das, Swagatam
2013-12-01
Multilevel thresholding amounts to segmenting a gray-level image into several distinct regions. This paper presents a 2D histogram based multilevel thresholding approach to improve the separation between objects. Recent studies indicate that the results obtained with 2D histogram oriented approaches are superior to those obtained with 1D histogram based techniques in the context of bi-level thresholding. Here, a method to incorporate 2D histogram related information for generalized multilevel thresholding is proposed using the maximum Tsallis entropy. Differential evolution (DE), a simple yet efficient evolutionary algorithm of current interest, is employed to improve the computational efficiency of the proposed method. The performance of DE is investigated extensively through comparison with other well-known nature inspired global optimization techniques such as genetic algorithm, particle swarm optimization, artificial bee colony, and simulated annealing. In addition, the outcome of the proposed method is evaluated using a well known benchmark--the Berkley segmentation data set (BSDS300) with 300 distinct images. PMID:23955760
Snow event classification with a 2D video disdrometer - A decision tree approach
Bernauer, F.; Hürkamp, K.; Rühm, W.; Tschiersch, J.
2016-05-01
Snowfall classification according to crystal type or degree of riming of the snowflakes is import for many atmospheric processes, e.g. wet deposition of aerosol particles. 2D video disdrometers (2DVD) have recently proved their capability to measure microphysical parameters of snowfall. The present work has the aim of classifying snowfall according to microphysical properties of single hydrometeors (e.g. shape and fall velocity) measured by means of a 2DVD. The constraints for the shape and velocity parameters which are used in a decision tree for classification of the 2DVD measurements, are derived from detailed on-site observations, combining automatic 2DVD classification with visual inspection. The developed decision tree algorithm subdivides the detected events into three classes of dominating crystal type (single crystals, complex crystals and pellets) and three classes of dominating degree of riming (weak, moderate and strong). The classification results for the crystal type were validated with an independent data set proving the unambiguousness of the classification. In addition, for three long-term events, good agreement of the classification results with independently measured maximum dimension of snowflakes, snowflake bulk density and surrounding temperature was found. The developed classification algorithm is applicable for wind speeds below 5.0 m s -1 and has the advantage of being easily implemented by other users.
An Approach to Face Recognition of 2-D Images Using Eigen Faces and PCA
Annapurna Mishra
2012-04-01
Full Text Available Face detection is to find any face in a given image. Face recognition is a two-dimension problem used for detecting faces. The information contained in a face can be analysed automatically by this system like identity, gender, expression, age, race and pose. Normally face detection is done for a single image but it can also be extended for video stream. As the face images are normally upright, they can be described by a small set of 2-D characteristics views. Here the face images are projected to a feature space or face space to encode the variation between the known face images. The projected feature space or the face space can be defined as ‘eigenfaces’ and can be formed by eigenvectors of the face image set. The above process can be used to recognize a new face in unsupervised manner. This paper introduces an algorithm which is used for effective face recognition. It takes into consideration not only the face extraction but also the mathematical calculations which enable us to bring the image into a simple and technical form. It can also be implemented in real-time using data acquisition hardware and software interface with the face recognition systems. Face recognition can be applied to various domains including security systems, personal identification, image and film processing and human computer interaction.
An Approach to Face Recognition of 2-D Images Using Eigen Faces and PCA
Annapurna Mishra
2012-05-01
Full Text Available Face detection is to find any face in a given image. Face recognition is a two-dimension problem used fordetecting faces. The information contained in a face can be analysed automatically by this system likeidentity, gender, expression, age, race and pose. Normally face detection is done for a single image but itcan also be extended for video stream. As the face images are normally upright, they can be described by asmall set of 2-D characteristics views. Here the face images are projected to a feature space or face spaceto encode the variation between the known face images. The projected feature space or the face space canbe defined as ‘eigenfaces’ and can be formed by eigenvectors of the face image set. The above process canbe used to recognize a new face in unsupervised manner. This paper introduces an algorithm which is usedfor effective face recognition. It takes into consideration not only the face extraction but also themathematical calculations which enable us to bring the image into a simple and technical form. It can alsobe implemented in real-time using data acquisition hardware and software interface with the facerecognition systems. Face recognition can be applied to various domains including security systems,personal identification, image and film processing and human computer interaction.
Analysis of the dose calculation accuracy for IMRT in lung: A 2D approach
The purpose of this study was to compare the dosimetric accuracy of IMRT plans for targets in lung with the accuracy of standard uniform-intensity conformal radiotherapy for different dose calculation algorithms. Tests were performed utilizing a special phantom manufactured from cork and polystyrene in order to quantify the uncertainty of two commercial TPS for IMRT in the lung. Ionization and film measurements were performed at various measuring points/planes. Additionally, single-beam and uniform-intensity multiple-beam tests were performed, in order to investigate deviations due to other characteristics of IMRT. Helax-TMS V6.1(A) was tested for 6, 10 and 25 MV and BrainSCAN 5.2 for 6 MV photon beams, respectively. Pencil beam (PB) with simple inhomogeneity correction and 'collapsed cone' (CC) algorithms were applied for dose calculations. However, the latter was not incorporated during optimization hence only post-optimization recalculation was tested. Two-dimensional dose distributions were evaluated applying the b.gamma index concept. Conformal plans showed the same accuracy as IMRT plans. Ionization chamber measurements detected deviations of up to 5% when a PB algorithm was used for IMRT dose calculations. Significant improvement was observed when IMRT plans were recalculated with the CC algorithm, especially for the highest nominal energy. All b.gamma evaluations confirmed substantial improvement with the CC algorithm in 2D. While PB dose distributions showed most discrepancies in lower (90%) dose regions, the CC dose distributions deviated mainly in the high dose gradient (20-80%) region. The advantages of IMRT (conformity, intra-target dose control) should be counterbalanced with possible calculation inaccuracies for targets in the lung. Until no superior dose calculation algorithms are involved in the iterative optimization process it should be used with great care. When only PB algorithm with simple inhomogeneity correction is used, lower energy photon
Analysis of the dose calculation accuracy for IMRT in lung: A 2D approach
Dvorak, Pavel; Stock, Markus; Kroupa, Bernhard; Bogner, Joachim; Georg, Diet mar [Div. of Medical Radiation Physics, Dept. of Radiotherapy and Radiobiology, AKH Vienna, Medical Univ. Vienna, Vienna (Austria)
2007-10-15
The purpose of this study was to compare the dosimetric accuracy of IMRT plans for targets in lung with the accuracy of standard uniform-intensity conformal radiotherapy for different dose calculation algorithms. Tests were performed utilizing a special phantom manufactured from cork and polystyrene in order to quantify the uncertainty of two commercial TPS for IMRT in the lung. Ionization and film measurements were performed at various measuring points/planes. Additionally, single-beam and uniform-intensity multiple-beam tests were performed, in order to investigate deviations due to other characteristics of IMRT. Helax-TMS V6.1(A) was tested for 6, 10 and 25 MV and BrainSCAN 5.2 for 6 MV photon beams, respectively. Pencil beam (PB) with simple inhomogeneity correction and 'collapsed cone' (CC) algorithms were applied for dose calculations. However, the latter was not incorporated during optimization hence only post-optimization recalculation was tested. Two-dimensional dose distributions were evaluated applying the b.gamma index concept. Conformal plans showed the same accuracy as IMRT plans. Ionization chamber measurements detected deviations of up to 5% when a PB algorithm was used for IMRT dose calculations. Significant improvement was observed when IMRT plans were recalculated with the CC algorithm, especially for the highest nominal energy. All b.gamma evaluations confirmed substantial improvement with the CC algorithm in 2D. While PB dose distributions showed most discrepancies in lower (<50%) and high (>90%) dose regions, the CC dose distributions deviated mainly in the high dose gradient (20-80%) region. The advantages of IMRT (conformity, intra-target dose control) should be counterbalanced with possible calculation inaccuracies for targets in the lung. Until no superior dose calculation algorithms are involved in the iterative optimization process it should be used with great care. When only PB algorithm with simple inhomogeneity correction is
Analysis of the dose calculation accuracy for IMRT in lung: a 2D approach.
Dvorak, Pavel; Stock, Markus; Kroupa, Bernhard; Bogner, Joachim; Georg, Dietmar
2007-01-01
The purpose of this study was to compare the dosimetric accuracy of IMRT plans for targets in lung with the accuracy of standard uniform-intensity conformal radiotherapy for different dose calculation algorithms. Tests were performed utilizing a special phantom manufactured from cork and polystyrene in order to quantify the uncertainty of two commercial TPS for IMRT in the lung. Ionization and film measurements were performed at various measuring points/planes. Additionally, single-beam and uniform-intensity multiple-beam tests were performed, in order to investigate deviations due to other characteristics of IMRT. Helax-TMS V6.1(A) was tested for 6, 10 and 25 MV and BrainSCAN 5.2 for 6 MV photon beams, respectively. Pencil beam (PB) with simple inhomogeneity correction and 'collapsed cone' (CC) algorithms were applied for dose calculations. However, the latter was not incorporated during optimization hence only post-optimization recalculation was tested. Two-dimensional dose distributions were evaluated applying the gamma index concept. Conformal plans showed the same accuracy as IMRT plans. Ionization chamber measurements detected deviations of up to 5% when a PB algorithm was used for IMRT dose calculations. Significant improvement (deviations approximately 2%) was observed when IMRT plans were recalculated with the CC algorithm, especially for the highest nominal energy. All gamma evaluations confirmed substantial improvement with the CC algorithm in 2D. While PB dose distributions showed most discrepancies in lower (90%) dose regions, the CC dose distributions deviated mainly in the high dose gradient (20-80%) region. The advantages of IMRT (conformity, intra-target dose control) should be counterbalanced with possible calculation inaccuracies for targets in the lung. Until no superior dose calculation algorithms are involved in the iterative optimization process it should be used with great care. When only PB algorithm with simple inhomogeneity correction is
Truncated Hilbert space approach to the 2d $\\phi^{4}$ theory
Bajnok, Z
2015-01-01
We apply the massive analogue of the truncated conformal space approach to study the two dimensional $\\phi^{4}$ theory in finite volume. We focus on the broken phase and determine the finite size spectrum of the model numerically. We compare these results against semi-classical analysis and the Bethe-Yang spectrum.
Augmented Superfield Approach to Nilpotent Symmetries of the Modified Version of 2D Proca Theory
A. Shukla
2015-01-01
and absolute anticommutativity of the (anti-BRST and (anti-co-BRST charges within the framework of augmented superfield formalism. This exercise leads to some novel observations which have, hitherto, not been pointed out in the literature within the framework of superfield approach to BRST formalism. For the sake of completeness, we also mention, very briefly, a unique bosonic symmetry, the ghost-scale symmetry, and discrete symmetries of the theory and show that the algebra of conserved charges provides a physical realization of the Hodge algebra (satisfied by the de Rham cohomological operators of differential geometry.
An Indoor Navigation Approach Considering Obstacles and Space Subdivision of 2d Plan
Xu, Man; Wei, Shuangfeng; Zlatanova, Sisi
2016-06-01
The demand for indoor navigation is increasingly urgent in many applications such as safe management of underground spaces or location services in complex indoor environment, e.g. shopping centres, airports, museums, underground parking lot and hospitals. Indoor navigation is still a challenging research field, as currently applied indoor navigation algorithms commonly ignore important environmental and human factors and therefore do not provide precise navigation. Flexible and detailed networks representing the connectivity of spaces and considering indoor objects such as furniture are very important to a precise navigation. In this paper we concentrate on indoor navigation considering obstacles represented as polygons. We introduce a specific space subdivision based on a simplified floor plan to build the indoor navigation network. The experiments demonstrate that we are able to navigate around the obstacles using the proposed network. Considering to well-known path-finding approaches based on Medial Axis Transform (MAT) or Visibility Graph (VG), the approach in this paper provides a quick subdivision of space and routes, which are compatible with the results of VG.
Magne, Pascal
2015-01-01
A concept is proposed for an approach to the learning of dental morphology and occlusion. Dental morphology, function, and esthetics should reflect a fundamental driving force, that is, the faithful emulation of the natural dentition's structural (functional, mechanical) and esthetic properties. The innovative part of the proposed approach is the emphasis on visual arts and the 2D-3D-4D aspect that starts with drawing (2D/3D) and continues with partial wax-up exercises that are followed by labial waxups and, finally, full wax-ups using innovative technical aids (electric waxers, prefabricated wax patterns, etc). Finally, the concept of layers (4D) and the histoanatomy of enamel/dentin and optical depth are taught through the realization of layering exercises (advanced acrylic mock-ups and composite resin restorations). All these techniques and materials are not only used to teach morphology and occlusion, but also constitute essential tools that will be of significant use for the student dentists and dental technologists in their future daily practice. The clinical significance of the presented methodology should allow not only students but also practicing dentists and dental technologists to help their youngest collaborators to develop a deep sense of morphology, function, and esthetics. PMID:25625126
A novel approach of computer-aided detection of focal ground-glass opacity in 2D lung CT images
Li, Song; Liu, Xiabi; Yang, Ali; Pang, Kunpeng; Zhou, Chunwu; Zhao, Xinming; Zhao, Yanfeng
2013-02-01
Focal Ground-Glass Opacity (fGGO) plays an important role in diagnose of lung cancers. This paper proposes a novel approach for detecting fGGOs in 2D lung CT images. The approach consists of two stages: extracting regions of interests (ROIs) and labeling each ROI as fGGO or non-fGGO. In the first stage, we use the techniques of Otsu thresholding and mathematical morphology to segment lung parenchyma from lung CT images and extract ROIs in lung parenchyma. In the second stage, a Bayesian classifier is constructed based on the Gaussian mixture Modeling (GMM) of the distribution of visual features of fGGOs to fulfill ROI identification. The parameters in the classifier are estimated from training data by the discriminative learning method of Max-Min posterior Pseudo-probabilities (MMP). A genetic algorithm is further developed to select compact and discriminative features for the classifier. We evaluated the proposed fGGO detection approach through 5-fold cross-validation experiments on a set of 69 lung CT scans that contain 70 fGGOs. The proposed approach achieves the detection sensitivity of 85.7% at the false positive rate of 2.5 per scan, which proves its effectiveness. We also demonstrate the usefulness of our genetic algorithm based feature selection method and MMP discriminative learning method through comparing them with without-selection strategy and Support Vector Machines (SVMs), respectively, in the experiments.
It is shown that the long-time dynamics (the global attractor) of the 2D Navier-Stokes system is embedded in the long-time dynamics of an ordinary differential equation, called a determining form, in a space of trajectories which is isomorphic to Cb1(R;RN) for sufficiently large N depending on the physical parameters of the Navier-Stokes equations. A unified approach is presented, based on interpolant operators constructed from various determining parameters for the Navier-Stokes equations, namely, determining nodal values, Fourier modes, finite volume elements, finite elements, and so on. There are two immediate and interesting consequences of this unified approach. The first is that the constructed determining form has a Lyapunov function, and thus its solutions converge to the set of steady states of the determining form as the time goes to infinity. The second is that these steady states of the determining form can be uniquely identified with the trajectories in the global attractor of the Navier-Stokes system. It should be added that this unified approach is general enough that it applies, in an almost straightforward manner, to a whole class of dissipative dynamical systems. Bibliography: 23 titles
Khorrami, M.; Alimohammadi, M.
1996-01-01
Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) of the generalized 2D Yang-Mills theories in the Schwinger--Fock gauge. Our calculation is done for arbitrary 2D orientable, and also nonorientable surfaces.
A unified approach to the power law and the critical state modeling of superconductors in 2D
Two main options exist for modeling the non-linearity of the superconductor: the power law and the critical state model. A vanishing electric field is predicted by the critical state model, which does not take into account relaxation phenomena. The power law model is to be used if flux creep is to be taken into account. However, detectable flux creep may not occur in many operating conditions. In these cases the critical state represents a more accurate modeling option. The existing numerical tools usually incorporate either the power law with a finite n-exponent or the critical state model, not both. A numerical model which incorporates both the power law and the critical state modeling of superconductors in 2D is developed in this paper. The same mathematical formulation and discretization method are used in both of the cases, and the same matrix equation is obtained. The difference between the two models only arises when the solution of the matrix equation is dealt with. The model is implemented by means of one unique computer code. The discretization can be made by means of both triangular and rectangular meshes. A circuit interpretation of the model is also introduced. The equivalence of the proposed method with the variational approach reported in the literature for dealing with the critical state is also discussed in the paper. The numerical results for some cases of practical interest are presented. The difference between the results obtained by means of the two models in terms of current distribution and ac loss is pointed out. (paper)
Balchunas, Andrew; Cabanas, Rafael; Fraden, Seth; Dogic, Zvonimir
Previous work has shown that monodisperse rod-like colloidal particles, such as a filamentous bacteriophage, self assemble into a 2D monolayer smectic in the presence of a non-adsorbing depleting polymer. These structures have the same functional form of bending rigidity and lateral compressibility as conventional lipid bi-layers, so we name the monolayer smectic a colloidal membrane. We have developed a microfluidic device such that the osmotic pressure acting on a colloidal membrane may be controlled via a full in situ buffer exchange. Rod density within individual colloidal membranes was measured as a function of osmotic pressure and a first order phase transition, from 2D fluid to 2D solid, was observed. kon and koff rates of rod to membrane binding were measured by lowering the osmotic pressure until membrane evaporation occurred.
Xue, Yang; Ye, Yun-Sheng; Chen, Fang-Yan; Wang, Hao; Chen, Chao; Xue, Zhi-Gang; Zhou, Xing-Ping; Xie, Xiao-Lin; Mai, Yiu-Wing
2016-01-11
Using the versatility of silica chemistry, we describe herein a simple and controllable approach to synthesise two-dimensional (2D) silica-based nanomaterials: the diversity and utility of the resulting structures offer excellent platforms for many potential applications. PMID:26549827
In this work, a deconvolution of the temperatures measured with thermocouples fitted inside the plasma-facing components of a controlled fusion machine is performed. A 2D pulse response is used which is obtained by the thermal quadrupole method. The shape and intensity of the plasma flux deposited at the surface of the component is calculated and some experimental results are presented. (J.S.)
Narayan, Nikhil S; Marziliano, Pina
2015-08-01
Automatic detection and segmentation of the common carotid artery in transverse ultrasound (US) images of the thyroid gland play a vital role in the success of US guided intervention procedures. We propose in this paper a novel method to accurately detect, segment and track the carotid in 2D and 2D+t US images of the thyroid gland using concepts based on tissue echogenicity and ultrasound image formation. We first segment the hypoechoic anatomical regions of interest using local phase and energy in the input image. We then make use of a Hessian based blob like analysis to detect the carotid within the segmented hypoechoic regions. The carotid artery is segmented by making use of least squares ellipse fit for the edge points around the detected carotid candidate. Experiments performed on a multivendor dataset of 41 images show that the proposed algorithm can segment the carotid artery with high sensitivity (99.6 ±m 0.2%) and specificity (92.9 ±m 0.1%). Further experiments on a public database containing 971 images of the carotid artery showed that the proposed algorithm can achieve a detection accuracy of 95.2% with a 2% increase in performance when compared to the state-of-the-art method. PMID:26736920
Tiberi, Gianluigi; Costagli, Mauro; Stara, Riccardo; Cosottini, Mirco; Tropp, James; Tosetti, Michela
2013-05-01
We present an analytical method for the analysis of Radio Frequency (RF) volume coils for Magnetic Resonance Imaging (MRI), using a 2-D full wave solution with loading by multilayered cylinders. This allows the characterization of radio-frequency E, H, B1, B1+ fields. Comparisons are provided with experimental data obtained at 7.0 T. The procedure permits us to clearly separate the solution to single line source problem (which we call the primordial solution) and the composite solution (i.e. full coil, i.e. the summations of primordial solutions according to the resonator drive configuration). The capability of separating the primordial solution and the composite one is fundamental for a thorough analysis of the phenomena of dielectric resonance, and of standing wave and multi-source interference. We show that dielectric resonance can be identified only by looking at the electromagnetic field from a single line source.
A program using two-dimensional dislocation dynamics with anisotropic strain equations has been written to simulate the dimensional change and stored elastic energy of irradiated graphite. A dislocation based model is put forward as a vehicle for both the longstanding atomic displacement model for dimensional change in irradiated graphite and a new model based on basal slip. As expected the introduction of prismatic dislocation loops (climb dipoles in 2D) results in the expansion of the graphite crystal in the c-axis direction. Interestingly the stored elastic energy of the system was found to increase with number of dislocation dipoles and reached a maximum at the density which Burakovsky et al. (Phys. Rev. B 61, 15011-15018 (2000) [1]) predicted for melting. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Ventura, P; Li, L; Sofia, S; Basu, S; Demarque, P
2009-01-01
Understanding the reasons of the cyclic variation of the total solar irradiance is one of the most challenging targets of modern astrophysics. These studies prove to be essential also for a more climatologic issue, associated to the global warming. Any attempt to determine the solar components of this phenomenon must include the effects of the magnetic field, whose strength and shape in the solar interior are far from being completely known. Modelling the presence and the effects of a magnetic field requires a 2D approach, since the assumption of radial symmetry is too limiting for this topic. We present the structure of a 2D evolution code that was purposely designed for this scope; rotation, magnetic field and turbulence can be taken into account. Some preliminary results are presented and commented.
Lectures on 2D gravity and 2D string theory
This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions
Capeillère, J; SEWRAJ,N; Ségur, P.; Bordage, M-C; Marchal, F.
2010-01-01
Abstract This paper constitutes a first step in studying transport phenomena, consecutive to a very brief 2-photon excitation of the Xe(3 P 2) metastable state in neutral xenon, followed by absorption of a further photon leading to ionisation, in Two-Photon Absorption Laser-Induced Fluorescence (TALIF) experiments. Here, the laser beam simply defines the column volume in which electrons and atomic ions are initially confined. Performing a numerical approach, we only consider the reactions ...
Blanc, Emilie; Lombard, Bruno
2015-01-01
A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) model. The properties of both the Biot-JKD and the Biot-DA model are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, two approaches are analyzed: Gaussian quadratures and optimization methods in the frequency range of interest. The nonlinear optimizat...
Gardarein, J.L.; Corre, Y.; Reichle, R. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Rigollet, F.; Le Niliot, Ch. [Universite de Provence (IUSTI UMR CNRS 6595), 13 - Marseille (France)
2006-07-01
In this work, a deconvolution of the temperatures measured with thermocouples fitted inside the plasma-facing components of a controlled fusion machine is performed. A 2D pulse response is used which is obtained by the thermal quadrupole method. The shape and intensity of the plasma flux deposited at the surface of the component is calculated and some experimental results are presented. (J.S.)
Mukesh C. Sharma
2014-01-01
Full Text Available A series of 19 molecules substituted quinazolinone biphenyl acylsulfonamides derivatives displaying variable inhibition of Angiotensin II receptor AT1 activity were selected to develop models for establishing 2D and 3D QSAR. The compounds in the selected series were characterized by spatial, molecular and electro topological descriptors using QSAR module of Molecular Design Suite (VLife MDS™ 3.5. The best 2D QSAR model was selected, having correlation coefficient r2 (0.8056 and cross validated squared correlation coefficient q2 (0.6742 with external predictive ability of pred_r2 0.7583 coefficient of correlation of predicted data set (pred_r2se 0.2165. The results obtained from QSAR studies could be used in designing better Ang II activity among the congeners in future. The optimum QSAR model showed that the parameters SsssCHE index, SddCE-index, T_2_Cl_4, and SssNHE-index contributed in the model. 3D QSAR analysis by kNN-molecular field analysis approach developed based on principles of the k-nearest neighbor method combined with Genetic algorithms, stepwise forward variable selection approach; a leave-one-out cross-validated correlation coefficient (q2 of 0.6516 and a non-cross-validated correlation coefficient (r2 of 0.8316 and pred_r2 0.6954 were obtained. Contour maps using this approach showed that steric, electrostatic, and hydrophobic field effects dominantly determine binding affinities. The information rendered by 3D QSAR models may lead to a better understanding of structural requirements of Angiotensin II receptor and can help in the design of novel potent antihypertensive molecules.
Bordiga, Matteo; Rinaldi, Maurizio; Locatelli, Monica; Piana, Gianluca; Travaglia, Fabiano; Coïsson, Jean Daniel; Arlorio, Marco
2013-09-01
This study presents the application of a headspace solid-phase microextraction (HS-SPME) method on the analysis of Muscat-based wines volatiles by comprehensive two-dimensional gas chromatography (GC×GC) and Time-Of-Flight mass spectrometry (TOF-MS). The aroma patterns were established for different samples of Asti Spumante and Moscato d'Asti wines, stored in bottles for 6 months at different temperatures. Wines stored at 5 °C for 6 months did not show significant changes in flavor; otherwise, the samples stored at 15 and 25 °C, showed a significant decrease in linalool, β-damascenone, ethyl hexanoate, and ethyl octanoate levels. In these last samples, α-terpineol, hotrienol, nerol oxide, furanic linalool oxides A/B and rose oxide concentrations significantly increased. A mathematical approach was developed and applied to raw data exported after the chromatographic course, in order (i) to normalise different 2D chromatograms, permitting their direct comparison and (ii) to automatically identify and calculate from pixel-to-pixel re-designed 2D chromatograms any differences among key volatile compounds. PMID:23578615
Accretion Disks Phase Transitions 2-D or not 2-D?
Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.
2000-01-01
We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.
Klede, S. (Stefanie)
2011-01-01
Ziel dieser Arbeit war es, Faktoren bzw. Mechanismen zu identifizieren, die an der Regulation der MLP-abhängigen Signaltransduktion im Herzen beteiligt sind. Dafür wurde 1. das homozygote MLP knock-out (KO) Mausmodel bezüglich kardialer Proteomveränderungen untersucht und 2. posttranslationale Modifikationen in MLP identifiziert und charakterisiert. 2-D-DIGE-Analysen an ein, vier und 12 Wochen alten MLP KO und wt Herzen ergaben im MLP KO Veränderungen in 200 Proteinspots. Im kardialen MLP wur...
Mader, D.; Westfeld, P.; Maas, H.-G.
2014-06-01
The paper presents a flexible approach for the geometric calibration of a 2D infrared laser scanning range finder. It does not require spatial object data, thus avoiding the time-consuming determination of reference distances or coordinates with superior accuracy. The core contribution is the development of an integrated bundle adjustment, based on the flexible principle of a self-calibration. This method facilitates the precise definition of the geometry of the scanning device, including the estimation of range-measurement-specific correction parameters. The integrated calibration routine jointly adjusts distance and angular data from the laser scanning range finder as well as image data from a supporting DSLR camera, and automatically estimates optimum observation weights. The validation process carried out using a Hokuyo UTM-30LX-EW confirms the correctness of the proposed functional and stochastic contexts and allows detailed accuracy analyses. The level of accuracy of the observations is computed by variance component estimation. For the Hokuyo scanner, we obtained 0.2% of the measured distance in range measurement and 0.2 deg for the angle precision. The RMS error of a 3D coordinate after the calibration becomes 5 mm in lateral and 9 mm in depth direction. Particular challenges have arisen due to a very large elliptical laser beam cross-section of the scanning device used.
Henz, D. R.; Hashino, T.; Tripoli, G. J.; Smith, E. A.
2009-12-01
This study is being conducted to examine the distribution, variability, and formation-decay processes of TTL cirrus associated with tropical deep convection using the University of Wisconsin Non-Hydrostatic modeling system (NMS). The experimental design is based on Tripoli, Hack and Kiehl (1992) which explicitly simulates the radiative-convective equilibrium of the tropical atmosphere over extended periods of weeks or months using a 2D periodic cloud resolving model. The experiment design includes a radiation parameterization to explicitly simulate radiative transfer through simulated crystals. Advanced Microphysics Prediction System (AMP) will be used to simulate microphysics by employing SHIPS (Spectral Habit Ice Prediction System) for ice, SLiPS (Spectral Liquid Prediction System) for droplets, and SAPS (Spectral Aerosol Prediction System) for aerosols. The ice scheme called SHIPS is unique in that ice particle properties (such as size, particle density, and crystal habitats) are explicitly predicted in a CRM (Hashino and Tripoli, 2007, 2008). The Advanced Microphysics Prediction System (AMPS) technology provides a particularly strong tool that effectively enables the explicit modeling of the TTL cloud microphysics and dynamical processes which has yet to be accomplished by more traditional bulk microphysics approaches.
E. Arnone
2012-10-01
Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. On 3 January 2011, PSCs were detected up to 30.5 ± 0.9 km altitude, representing the highest PSCs ever reported in the Arctic. Through inspection of MIPAS spectra, 83% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 17% formed mostly by NAT particles, and only two cases by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day^{−1}. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO_{2}, and significant denitrification, which further delayed the recovery of ozone in spring. Once the PSC season halted, ClO was reconverted primarily into ClONO_{2}. Compared to MIPAS observed 2003–2010 Arctic average values
B. M. Dinelli
2011-12-01
Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. Through inspection of MIPAS spectra, 84% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 16% formed mostly by NAT particles, and only a few by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day−1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Sporadic increases of NO2 associated with evaporation of sedimenting PSCs were also observed. Once the PSC season halted, ClO was reconverted into ClONO2. Compared to MIPAS observed 2003–2010 Arctic average values, the 2010–2011 vortex in late winter had 15 K lower temperatures, 40% lower
Maryam Mobed-Miremadi
2014-12-01
Full Text Available Hollow alginate microfibers (od = 1.3 mm, id = 0.9 mm, th = 400 µm, L = 3.5 cm comprised of 2% (w/v medium molecular weight alginate cross-linked with 0.9 M CaCl2 were fabricated to model outward diffusion capture by 2D fluorescent microscopy. A two-fold comparison of diffusivity determination based on real-time diffusion of Fluorescein isothiocyanate molecular weight (FITC MW markers was conducted using a proposed Fickian-based approach in conjunction with a previously established numerical model developed based on spectrophotometric data. Computed empirical/numerical (Dempiricial/Dnumerical diffusivities characterized by small standard deviations for the 4-, 70- and 500-kDa markers expressed in m2/s are (1.06 × 10−9 ± 1.96 × 10−10/(2.03 × 10−11, (5.89 × 10−11 ± 2.83 × 10−12/(4.6 × 10−12 and (4.89 × 10−12 ± 3.94 × 10−13/(1.27 × 10−12, respectively, with the discrimination between the computation techniques narrowing down as a function of MW. The use of the numerical approach is recommended for fluorescence-based measurements as the standard computational method for effective diffusivity determination until capture rates (minimum 12 fps for the 4-kDa marker and the use of linear instead of polynomial interpolating functions to model temporal intensity gradients have been proven to minimize the extent of systematic errors associated with the proposed empirical method.
Matheus Malta de Sá
2010-12-01
Full Text Available Drugs acting on the central nervous system (CNS have to cross the blood-brain barrier (BBB in order to perform their pharmacological actions. Passive BBB diffusion can be partially expressed by the blood/brain partition coefficient (logBB. As the experimental evaluation of logBB is time and cost consuming, theoretical methods such as quantitative structure-property relationships (QSPR can be useful to predict logBB values. In this study, a 2D-QSPR approach was applied to a set of 28 drugs acting on the CNS, using the logBB property as biological data. The best QSPR model [n = 21, r = 0.94 (r² = 0.88, s = 0.28, and Q² = 0.82] presented three molecular descriptors: calculated n-octanol/water partition coefficient (ClogP, polar surface area (PSA, and polarizability (α. Six out of the seven compounds from the test set were well predicted, which corresponds to good external predictability (85.7%. These findings can be helpful to guide future approaches regarding those molecular descriptors which must be considered for estimating the logBB property, and also for predicting the BBB crossing ability for molecules structurally related to the investigated set.Fármacos que atuam no sistema nervoso central (SNC devem atravessar a barreira hematoencefálica (BHE para exercerem suas ações farmacológicas. A difusão passiva através da BHE pode ser parcialmente expressa pelo coeficiente de partição entre os compartimentos encefálico e sanguíneo (logBB, brain/blood partition coefficient. Considerando-se que a avaliação experimental de logBB é dispendiosa e demorada, métodos teóricos como estudos das relações entre estrutura química e propriedade (QSPR, Quantitative Structure-Property Relationships podem ser utilizados na previsão dos valores de logBB. Neste estudo, uma abordagem de QSPR-2D foi aplicada a um conjunto de 28 moléculas com ação central, usando logBB como propriedade biológica. O melhor modelo de QSPR [n = 21, r = 0,94 (r
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
Alvarez, Sophie; Berla, Bertram M; Sheffield, Jeanne; Cahoon, Rebecca E; Jez, Joseph M; Hicks, Leslie M
2009-05-01
Indian mustard (Brassica juncea L.) is known to both accumulate and tolerate high levels of heavy metals from polluted soils. To gain a comprehensive understanding of the effect of cadmium (Cd) treatment on B. juncea roots, two quantitative proteomics approaches--fluorescence two-dimensional difference gel electrophoresis (2-D DIGE) and multiplexed isobaric tagging technology (iTRAQ)--were implemented. Several proteins involved in sulfur assimilation, redox homeostasis, and xenobiotic detoxification were found to be up-regulated. Multiple proteins involved in protein synthesis and processing were down-regulated. While the two proteomics approaches identified different sets of proteins, the proteins identified in both datasets are involved in similar biological processes. We show that 2-D DIGE and iTRAQ results are complementary, that the data obtained independently using the two techniques validate one another, and that the quality of iTRAQ results depends on both the number of biological replicates and the number of sample injections. This study determined the involvement of enzymes such as peptide methionine sulfoxide reductase and 2-nitropropane dioxygenase in alternatives redox-regulation mechanisms, as well as O-acetylserine sulfhydrylase, glutathione-S-transferase and glutathione-conjugate membrane transporter, as essential players in the Cd hyperaccumation and tolerance of B. juncea. PMID:19343712
Ben Ali, Karim; Lafon, Olivier; Zimmermann, Herbert; Guittet, Eric; Lesot, Philippe
2007-08-01
We describe several homo- and heteronuclear 2D NMR strategies dedicated to the analysis of anisotropic 2H spectra of a mixture of dideuterated unlike/like stereoisomers with two remote stereogenic centers, using weakly orienting chiral liquid crystals. To this end, we propose various 2D correlation experiments, denoted "D(H) nD" or "D(H) nC" (with n = 1, 2), that involve two heteronuclear polarization transfers of INEPT-type with one or two proton relays. The analytical expressions of correlation signals for four pulse sequences reported here were calculated using the product-operators formalism for spin I = 1 and S = 1/2. The features and advantages of each scheme are presented and discussed. The efficiency of these 2D sequences is illustrated using various deuterated model molecules, dissolved in organic solutions of polypeptides made of poly- γ-benzyl- L-glutamate (PBLG) or poly- ɛ-carbobenzyloxy- L-lysine (PCBLL) and NMR numerical simulations.
Bhattacharjee, Archita; Begum, Shamima; Neog, Kashmiri; Ahmaruzzaman, M
2016-06-01
This article reports for the first time a facile, green synthesis of 2D CuO nanoleaves (NLs) using the amino acid, namely aspartic acid, and NaOH by a microwave heating method. The amino acid acts as a complexing/capping agent in the synthesis of CuO NLs. This method resulted in the formation of self-assembled 2D CuO NLs with an average length and width of ~300-400 and ~50-82 nm, respectively. The as-synthesized 2D CuO NLs were built up from the primary CuO nanoparticles by oriented attachment growth mechanism. The CuO NLs were characterized by an X-ray diffraction (XRD) method, transmission electron microscopy (TEM), selected-area electron diffraction (SAED) pattern, and Fourier transform infrared spectroscopy (FT-IR). The optical properties were investigated using UV-visible spectroscopy. For the first time, rose bengal and eosin Y dyes were degraded photochemically by solar irradiation using CuO NLs as a photocatalyst. The synthesized CuO NLs act as an efficient photocatalyst in the degradation of rose bengal and eosin Y dye under direct sunlight. The degradation of both the dyes, namely rose bengal and eosin Y, took place within 120 and 45 min, respectively, using CuO NLs as a photocatalyst, whereas commercial CuO, SnO2 quantum dots (QDs), and commercial SnO2 took more than 120 and 45 min for the degradation of rose bengal and eosin Y, respectively. The synthesized CuO NLs showed a superior photocatalytic activity as compared to that of commercial CuO, SnO2 QDs, and commercial SnO2. The reusability of the CuO NLs as a photocatalyst in the degradation of dyes was investigated, and it was evident that the catalytic efficiency decreases to a small extent (5-6 %) after the fifth cycle of operation. PMID:26939688
Activated sludge model No. 2d, ASM2d
Henze, M.
1999-01-01
The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...
Ekberg, Peter; Stiblert, Lars; Mattsson, Lars
2014-05-01
The manufacturing of flat panel displays requires a number of photomasks for the placement of pixel patterns and supporting transistor arrays. For large area photomasks, dedicated ultra-precision writers have been developed for the production of these chromium patterns on glass or quartz plates. The dimensional tolerances in X and Y for absolute pattern placement on these plates, with areas measured in square meters, are in the range of 200-300 nm (3σ). To verify these photomasks, 2D ultra-precision coordinate measurement machines are used having even tighter tolerance requirements. This paper will present how the world standard metrology tool used for verifying large masks, the Micronic Mydata MMS15000, is calibrated without any other references than the wavelength of the interferometers in an extremely well-controlled temperature environment. This process is called self-calibration and is the only way to calibrate the metrology tool, as no square-meter-sized large area 2D traceable artifact is available. The only parameter that cannot be found using self-calibration is the absolute length scale. To make the MMS15000 traceable, a 1D reference rod, calibrated at a national metrology lab, is used. The reference plates used in the calibration of the MMS15000 may have sizes up to 1 m2 and a weight of 50 kg. Therefore, standard methods for self-calibration on a small scale with exact placements cannot be used in the large area case. A new, more general method had to be developed for the purpose of calibrating the MMS15000. Using this method, it is possible to calibrate the measurement tool down to an uncertainty level of calibration method.
Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D
2016-07-21
Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid. PMID:27363680
di Fiore, V.; Angelino, A.; Buonocunto, F. P.; Rapolla, A.; Tarallo, D.
2009-04-01
We present a model to describe the behavior of a tuff cliff under the dynamic stress considering a law reference input motion. The studied area is located in the Sorrento Peninsula, a major Quaternary morpho-structural unit of the western flank of Southern Apennines. The peninsula forms a narrow and elevated mountain range (up to 1444 m) that separates two major embayments of the eastern Tyrrhenian margin and is characterized by a carbonate bedrock capped by pyroclastic deposits (i.e. "Campania Ignimbrite"), originated from the Campi Flegrei volcanic district. The occurrence of steep slopes and the high relief energy of the area, along with the marine erosion at the base of the coastal cliff creates favorable conditions for the occurrence of a generalized instability of the slopes that is manifested by tuff rock falls as prevailing landslide phenomena. These events are highly dangerous because of the sudden detachments of conspicuous volumes of rocks with high speed, especially when the rock fall initiates in the upper part of the slopes. Prediction of such landslides is difficult if not accompanied by accurate hydrogeologic and geotechnical monitoring and assessment. The geometry of our model is represented by a tuff cliff of 48 m height, covered by a 8 m thick volcaniclastic layer. At the base of the tuff cliff marine sand deposits occur. The geotechnical parameters used for the analysis were selected from the literature. We have used an effective stress non-linear 2D model to determine the dynamic stress field of our model. The effective stress non-linear algorithm uses the Direct Integration Method to compute the motion and excess pore-water pressures arising from inertial forces at user-defined time steps. The seismic response analysis was performed using the field shear stress generated by synthetic 1-30 Hz band-limited accelerogram. The finite elements mesh considered for the test problem was established by 395 element and 401 nodal point. Our results show a
In many radiotherapy clinics, geometric uncertainties in the delivery of 3D conformal radiation therapy and intensity modulated radiation therapy of the prostate are reduced by aligning the patient's bony anatomy in the planning 3D CT to corresponding bony anatomy in 2D portal images acquired before every treatment fraction. In this paper, we seek to determine if there is a frequency band within the portal images and the digitally reconstructed radiographs (DRRs) of the planning CT in which bony anatomy predominates over non-bony anatomy such that portal images and DRRs can be suitably filtered to achieve high registration accuracy in an automated 2D-3D single portal intensity-based registration framework. Two similarity measures, mutual information and the Pearson correlation coefficient were tested on carefully collected gold-standard data consisting of a kilovoltage cone-beam CT (CBCT) and megavoltage portal images in the anterior-posterior (AP) view of an anthropomorphic phantom acquired under clinical conditions at known poses, and on patient data. It was found that filtering the portal images and DRRs during the registration considerably improved registration performance. Without filtering, the registration did not always converge while with filtering it always converged to an accurate solution. For the pose-determination experiments conducted on the anthropomorphic phantom with the correlation coefficient, the mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters were θx:0.18(0.19) deg., θy:0.04(0.04) deg., θz:0.04(0.02) deg., tx:0.14(0.15) mm, ty:0.09(0.05) mm, and tz:0.49(0.40) mm. The mutual information-based registration with filtered images also resulted in similarly small errors. For the patient data, visual inspection of the superimposed registered images showed that they were correctly aligned in all instances. The results presented in this paper suggest that robust and accurate registration
The manufacturing of flat panel displays requires a number of photomasks for the placement of pixel patterns and supporting transistor arrays. For large area photomasks, dedicated ultra-precision writers have been developed for the production of these chromium patterns on glass or quartz plates. The dimensional tolerances in X and Y for absolute pattern placement on these plates, with areas measured in square meters, are in the range of 200–300 nm (3σ). To verify these photomasks, 2D ultra-precision coordinate measurement machines are used having even tighter tolerance requirements. This paper will present how the world standard metrology tool used for verifying large masks, the Micronic Mydata MMS15000, is calibrated without any other references than the wavelength of the interferometers in an extremely well-controlled temperature environment. This process is called self-calibration and is the only way to calibrate the metrology tool, as no square-meter-sized large area 2D traceable artifact is available. The only parameter that cannot be found using self-calibration is the absolute length scale. To make the MMS15000 traceable, a 1D reference rod, calibrated at a national metrology lab, is used. The reference plates used in the calibration of the MMS15000 may have sizes up to 1 m2 and a weight of 50 kg. Therefore, standard methods for self-calibration on a small scale with exact placements cannot be used in the large area case. A new, more general method had to be developed for the purpose of calibrating the MMS15000. Using this method, it is possible to calibrate the measurement tool down to an uncertainty level of <90 nm (3σ) over an area of (0.8 × 0.8) m2. The method used, which is based on the concept of iteration, does not introduce any more noise than the random noise introduced by the measurements, resulting in the lowest possible noise level that can be achieved by any self-calibration method. (paper)
Internal Photoemission Spectroscopy of 2-D Materials
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
Kumar, Hemant; Er, Dequan; Dong, Liang; Li, Junwen; Shenoy, Vivek B.
2015-06-01
Recent technological advances in the isolation and transfer of different 2-dimensional (2D) materials have led to renewed interest in stacked Van der Waals (vdW) heterostructures. Interlayer interactions and lattice mismatch between two different monolayers cause elastic strains, which significantly affects their electronic properties. Using a multiscale computational method, we demonstrate that significant in-plane strains and the out-of-plane displacements are introduced in three different bilayer structures, namely graphene-hBN, MoS2-WS2 and MoSe2-WSe2, due to interlayer interactions which can cause bandgap change of up to ~300 meV. Furthermore, the magnitude of the elastic deformations can be controlled by changing the relative rotation angle between two layers. Magnitude of the out-of-plane displacements in graphene agrees well with those observed in experiments and can explain the experimentally observed bandgap opening in graphene. Upon increasing the relative rotation angle between the two lattices from 0° to 10°, the magnitude of the out-of-plane displacements decrease while in-plane strains peaks when the angle is ~6°. For large misorientation angles (>10°), the out-of-plane displacements become negligible. We further predict the deformation fields for MoS2-WS2 and MoSe2-WSe2 heterostructures that have been recently synthesized experimentally and estimate the effect of these deformation fields on near-gap states.
Monreal-Ibero, Ana; Westmoquette, Mark S; Vilchez, Jose M
2013-01-01
ABRIDGED: NGC5253 is an ideal laboratory for detailed studies of starburst galaxies. We present for the first in a starburst galaxy a 2D study of the spatial behavior of collisional and radiative transfer effects in He^+. The HeI lines are analysed based on data obtained with FLAMES and GMOS. Collisional effects are negligible (i.e. 0.1-0.6%) for transitions in the singlet cascade while relatively important for those in the triplet cascade. In particular, they can contribute up to 20% of the flux in the HeIl7065 line. Radiative transfer effects are important over an extended and circular area of 30pc in diameter centered at the Super Star Clusters. HeI abundance, y^+, has been mapped using extinction corrected fluxes of six HeI lines, realistic assumptions for T_e, n_e, and the stellar absorption equivalent width as well as the most recent emissivities. We found a mean of 10^3 y^+ ~81.6 over the mapped area. The relation between the excitation and the total helium abundance, y_tot, is consistent with no abund...
Xu, Guan; Zhang, Xinyuan; Su, Jian; Li, Xiaotao; Zheng, Anqi
2016-04-01
A calibration method adopting Plücker matrices is proposed to explore the laser plane in a structured light measurement. The calibration model establishes the geometrical relationship among the camera, 2D target, and laser plane. The laser plane is constructed by multiple Plücker matrices of the dual 3D crossing lines between the laser plane and target planes in the camera coordinate system. Moreover, the validity of this calibration method is experimentally analyzed through the impact factors of noise magnitude and number of images. The mean errors of three directional angles of the normal vector to the laser plane are -0.174°, 0.170°, and -0.022°, respectively. The variances of the errors of three directional angles are 0.069°, 0.046°, and 0.160°, respectively. The maximal absolute errors of three directional angles are 1.362°, 1.351°, and 1.347°, respectively. The experiments prove that the calibration method is available to provide an accurate calibration for the laser plane. PMID:27139669
Monreal-Ibero, A.; Walsh, J. R.; Westmoquette, M. S.; Vílchez, J. M.
2013-05-01
Context. NGC 5253 is a nearby peculiar blue compact dwarf (BCD) galaxy that, on account of its proximity, provides an ideal laboratory for detailed spatial study of starburst galaxies. An open issue not addressed so far is how the collisional and self-absorption effects on He i emission influence the determination of the He+ abundance in 2D and what is the relation to the physical and chemical properties of the ionised gas. Aims: A 2D, imaging spectroscopy, study of the spatial behaviour of collisional and radiative transfer effects in He+ and their impact on the determination of He+ abundance is presented for the first time in a starburst galaxy. Methods: The He i lines were analysed based on previously presented integral field spectroscopy (IFS) data, obtained with FLAMES at the VLT and lower resolution gratings of the Giraffe spectrograph, as well as with GMOS at Gemini and the R381 grating. Results: Collisional effects reproduce the electron density (ne) structure. They are negligible (i.e. ~0.1-0.6%) for transitions in the singlet cascade but relatively important for those in the triplet cascade. In particular, they can contribute up to 20% of the flux in the He iλ7065 line. Radiative transfer effects are important over an extended and circular area of ~30 pc in diameter centred on the super star clusters (SSCs). The singly ionised helium abundance, y+, has been mapped using extinction-corrected fluxes of six He i lines, realistic assumptions for electron temperature (Te), ne, and the stellar absorption equivalent width, as well as the most recent emissivities. We find a mean(± standard deviation) of 103y+ ~ 80.3( ± 2.7) over the mapped area. The relation between the excitation and the total helium abundance, ytot, is consistent with no abundance gradient. Uncertainties in the derivation of helium abundances are dominated by the adopted assumptions. We illustrate the difficulty of detecting a putative helium enrichment owing to the presence of Wolf
Hostache, Renaud; Hissler, Christophe; Matgen, Patrick; Guignard, Cédric; Bates, Paul
2014-05-01
Recent years have seen a growing awareness for the central role that fine sediment loads play in transport and diffusion of pollutants by rivers and streams. Suspended sediment can potentially carry important amounts of nutrients and contaminants, such as trace metals among which some are recognized as Potential Harmful Elements (PHE). These threaten water quality in rivers and wetlands and soil quality in floodplains. Currently, many studies focusing on sediment transport modelling deal with marine and estuarine areas. Some studies evaluate sediment transport at basin scales and often evaluate yearly sediment fluxes using hydrologic and simplified hydraulic models. Some more theoretical studies develop and improve numerical models on the basis of physical model experiments. As a matter of fact, sediment transport modelling in small rivers at reach/floodplain scale is a rather new research field. In this study, we aim at simulating sediment transport at the floodplain scale and the single flood event scale in order to predict sediment spreading on alluvial soils. This simulation will help for the estimation of the potential pollution of soils due to the transport of PHEs by suspended sediments. The model is based upon the Telemac hydro-informatic system (i.e. dynamical coupling of Telemac-2D and Sysiphe). As empirical and semi-empirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. In parallel to the modelling exercise, an extensive hydrological/geochemical database has been set up for two flood events. The most sensitive parameters were found to be the hydraulic friction coefficient and the sediment particle settling velocity in water. Using the two monitored hydrological events for calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolved pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment
Sivanesan Ravikumar
2012-02-01
Full Text Available Objective: A proteomics approach used to understand the diabetes mellitus-related changes in muscle proteome composition during diabetes mellitus and treatment with Cynodon dactylon. This approach may provide way to investigate the muscle function associated with diabetes and metabolic protein mechanism responsible for this disease and also new targets of diabetes diagnosis and effective treatment. Methods: We used comparative proteomic techniques to identify muscle proteins associated with diabetes mellitus in alloxan-induced rats by using 2-dimensional electrophoresis (2-DE, matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry (MS and peptide mass fingerprint (PMF analysis. The rats (four groups; six animals each group were made diabetic by single intraperitoneal (i.p. alloxan injection (150 mg/kg b.w. After 72 h alloxan injection, the treatment was with C.dactylon leaf extract for 15 days. The differential protein expressions were analyzed in alloxan-induced diabetic rats and those treated with C.dactylon leaf extract. Results: In this experiment, two proteins, i.e. fructose-bis-phosphate aldolase and glyceraldehyde-3-phosphate dehydrogenase were up-regulated in diabetic treated group. Conclusion: This result suggests that, up-regulated proteins were involved in glucose metabolism and also in transcriptional control of nuclear membrane fusion. These proteins were up-regulated by the effect of C.dactylon extract in muscle tissues playing a critical role in glucose metabolism which in turn control and reduce the severity of diabetes mellitus. [J Exp Integr Med 2012; 2(1.000: 61-70
Zhang, Lei; Ye, Xujiong; Lambrou, Tryphon; Duan, Wenting; Allinson, Nigel; Dudley, Nicholas J.
2016-02-01
This paper presents a supervised texton based approach for the accurate segmentation and measurement of ultrasound fetal head (BPD, OFD, HC) and femur (FL). The method consists of several steps. First, a non-linear diffusion technique is utilized to reduce the speckle noise. Then, based on the assumption that cross sectional intensity profiles of skull and femur can be approximated by Gaussian-like curves, a multi-scale and multi-orientation filter bank is designed to extract texton features specific to ultrasound fetal anatomic structure. The extracted texton cues, together with multi-scale local brightness, are then built into a unified framework for boundary detection of ultrasound fetal head and femur. Finally, for fetal head, a direct least square ellipse fitting method is used to construct a closed head contour, whilst, for fetal femur a closed contour is produced by connecting the detected femur boundaries. The presented method is demonstrated to be promising for clinical applications. Overall the evaluation results of fetal head segmentation and measurement from our method are comparable with the inter-observer difference of experts, with the best average precision of 96.85%, the maximum symmetric contour distance (MSD) of 1.46 mm, average symmetric contour distance (ASD) of 0.53 mm while for fetal femur, the overall performance of our method is better than the inter-observer difference of experts, with the average precision of 84.37%, MSD of 2.72 mm and ASD of 0.31 mm.
2D-hahmoanimaation toteuttamistekniikat
Smolander, Aku
2009-01-01
Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...
Stability Test for 2-D Continuous-Discrete Systems
无
2002-01-01
Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.
Optoelectronics with 2D semiconductors
Mueller, Thomas
2015-03-01
Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is
叶志伟; 王明威; 刘伟; 尹宇洁
2016-01-01
Thresholding method is one of the most common methods for image segmentation, however thresholding methods based on 1 -D histogram are easily ruined by the noise. Thresholding based on 2 -D histogram and Fisher criterion function can overcome the shortcoming of 1-D threshold method, which has the better segmentation performance. But due to huge computation is required for 2-D Fisher criterion function its speed is very slow. Commonly used optimization methods to speed up thresholding based on 2-D Fisher criterion function like particle swarm optimization and genetic algorithm are easily to fall into the local optimum. Cuckoo search is a newly proposed meta-heuristic optimization algorithm; testing results on some benchmarks indicate that cuckoo search has better global convergence ability than particle swarm optimization and genetic algorithm. In this paper, by employing cuckoo search algorithm, a segmentation approach was proposed based on 2 -D Fisher criterion function. The experimental results show that the proposed method decreases the seeking time of optimal threshold with the basic 2 -D Fisher criterion based thresholding method, which is a well performing method and is more suitable for real-time image segmentation.%阈值法是图像分割最为常用的方法之一,然而基于一维直方图的阈值方法分割结果容易受噪声的影响.基于二维直方图的二维Fisher准则能够克服一维阈值法缺陷,具有较好的分割性能.但是二维Fisher准则阈值法在求取最优阈值时需要大量的计算,运算速度非常慢.常用的二维Fisher准则阈值优化计算方法如粒子群算法和遗传算法容易陷入局部最优.杜鹃搜索算法是新近提出的一种元启发优化算法,一些经典的函数优化问题测试结果表明杜鹃搜索算法全局寻优能力优于粒子群算法和遗传算法.在介绍杜鹃搜索算法的基础上,提出一种基于杜鹃搜索算法改进的二维Fisher准则阈值分割方法.
Blanco, O R; Bambade, P
2015-01-01
The Oide effect considers the synchrotron radiation in the final focusing quadrupole and it sets a lower limit on the vertical beam size at the Interaction Point, particularly relevant for high energy linear colliders. The theory of the Oide effect was derived considering only the radiation in the focusing plane of the magnet. This article addresses the theoretical calculation of the radiation effect on the beam size consider- ing both focusing and defocusing planes of the quadrupole, refered to as 2D-Oide. The CLIC 3 TeV final quadrupole (QD0) and beam parameters are used to compare the theoretical results from the Oide effect and the 2D-Oide effect with particle tracking in PLACET. The 2D-oide demonstrates to be important as it increases by 17% the contribution to the beam size. Further insight into the aberrations induced by the synchrotron radiation opens the possibility to partially correct the 2D-Oide effect with octupole magn
SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run
EpS convoy discovery approach based on 2D road networks%基于2D公路网模型的EpS车队发现方法
谭川豫; 曹泽文; 周姚
2011-01-01
对公路网中车辆信息进行监控以发现密集行驶的车队,将会对交通调度起到重要的辅助作用.提出了一种新的公路网中车队的定义,采用2D模型对公路网进行建模,在此基础上以2D模型中的路片为基本单元.提出了EpS(endpoint scanning)车队发现方法.最后通过实验证明了该方法在性能上的优势,并说明了其在车辆调度、缓解交通压力中的作用.%Monitoring traffic information and discovering convoys on the road network plays an important role on assisting the traffic control.This paper proposed a new concept of convoy on road network, and adopted 2D model to modeling the road network.Based on these, it regarded road segment as the basic unit, and proposed EpS (endpoint scanning) convoy discovery approach.Finally, the experiment proves the advantage in performance of the approach and explains the effect of vehicle scheduling and reducing traffic.
de Andrés, Fernando; Terán, Santiago; Bovera, Marcela; Fariñas, Humberto; Terán, Enrique; LLerena, Adrián
2016-02-01
Phenotyping of the CYP450 enzyme activities contributes to personalized medicine, but the past phenotyping approaches have followed a piecemeal strategy measuring single enzyme activities in vivo. A barrier to phenotyping of populations in rural and remote areas is the limited time and resources for sample collection. The CEIBA cocktail approach allows metabolic capacity estimation of multiple CYP450 enzymes in a single sample analysis, but the attendant sample collection schemes for applications in diverse global settings are yet to be optimized. The present study aimed to select an optimal matrix to simultaneously analyze CYP450 enzyme activities so as to simplify the sampling schemes in the phenotyping protocol to enhance its throughput and feasibility in native populations or in remote and underserviced geographies and social contexts. We evaluated 13 Ecuadorian healthy volunteers for CYP1A2, CYP2C9, CYP2C19, and CYP2D6 genotypes and their metabolic phenotypes, including CYP3A4, in plasma and urine after administering one reduced dose of caffeine, losartan, omeprazole, and dextromethorphan. Pharmacokinetic analyses were performed, and the correlation between AUC parent/AUC metabolite and the ratio between concentrations of probe drugs and their corresponding metabolites at timepoints ranging from 0 to 12 hours post-dose were analyzed. A single sampling timepoint, 4 hours post-dose in plasma, was identified as optimal to reflect the metabolic activity of the attendant CYP450 enzymes. This study optimizes the CEIBA multiplexed phenotyping approach and offers new ways forward for integrated drug metabolism analyses, in the pursuit of global personalized medicine applications in resource-limited regions, be they in developed or developing countries. PMID:26600202
2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure
Sezen S
2006-01-01
Full Text Available A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
2D-animaatiotuotannon optimointi
Saturo, Reetta
2015-01-01
Tämän opinnäytetyön tavoitteena on tutkia 2D-animaatiotuotannon optimoinnin mahdollisuuksia tiukan tuotantoaikataulun vaatimuksissa. Tutkielmassa tarkastellaan kahta asiakasprojektia, jotka on toteutettu pienellä tuotantotiimillä. Työkaluna animaatioissa on käytetty pääosin Adoben After Effects -ohjelmistoa. Tutkielman alussa esitellään animaatiotuotannot, joiden tuloksena syntyi kaksi lyhyttä mainoselokuvaa. Sen jälkeen käydään läpi animaatioelokuvan tuotantoprosessia vaiheittain ja tark...
Temple, Aidan
2013-01-01
Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to
Illumination Compensation for 2-D Barcode Recognition Basing Morphologic
Jian-Hua Li
2013-04-01
Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.
无
2003-01-01
A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.
Waldin, Nicholas
2016-06-24
2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.
2D proteome analysis initiates new Insights on the Salmonella Typhimurium LuxS protein
Vanderleyden Jos
2009-09-01
Full Text Available Abstract Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium, we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As
Illumination Compensation for 2-D Barcode Recognition Basing Morphologic
Jian-Hua Li; Yi-Wen Wang; Yi Chen; Meng Zhang
2013-01-01
Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations) are employed to original images using big scale multiple SEs (structuring elements). Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcode...
Learn Unity for 2D game development
Thorn, Alan
2013-01-01
The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity
Sparse Non-negative Tensor 2D Deconvolution (SNTF2D) for multi channel time-frequency analysis
Mørup, Morten; Schmidt, Mikkel N.
2006-01-01
We recently introduced two algorithms for sparse non-negative matrix factor 2-D deconvolution (SNMF2D) that are useful for single channel source separation and music transcription. We here extend this approach to the analysis of the log-frequency spectrograms of a multichannel recording. The model...... algorithms are demonstrated to successfully identify the components of both artificially generated as well as real stereo music....
Metrology for graphene and 2D materials
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
Surface modelling for 2D imagery
Lieng, Henrik
2014-01-01
Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...
Perspectives for spintronics in 2D materials
Wei Han
2016-03-01
Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Perspectives for spintronics in 2D materials
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Kaur, Kuldeep; Khan, Manju
2012-01-01
Let $p$ be an odd prime, $D_{2p}$ be the dihedral group of order 2p, and $F_{2}$ be the finite field with two elements. If * denotes the canonical involution of the group algebra $F_2D_{2p}$, then bicyclic units are unitary units. In this note, we investigate the structure of the group $\\mathcal{B}(F_2D_{2p})$, generated by the bicyclic units of the group algebra $F_2D_{2p}$. Further, we obtain the structure of the unit group $\\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\\mathcal{U}_*(F_...
Bedform characterization through 2D spectral analysis
Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian
energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...... characteristics using twodimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most...
Elena Purcaru
2011-09-01
Full Text Available The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.
Purcaru, Elena
2012-01-01
The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.
Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy
Giraudeau, Patrick; Frydman, Lucio
2014-06-01
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.
Interactive Exploratory Visualization of 2D Vector Fields
Isenberg, Tobias; Everts, Maarten H.; Grubert, Jens; Carpendale, Sheelagh
2008-01-01
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch-sensitive displays, our approach allows individuals to custom-design glyphs (arrows, lines, etc.) that best reveal patterns of the unde
Annotated Bibliography of EDGE2D Use
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables
2D NMR studies of biomolecules
The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs
Applications of 2D helical vortex dynamics
Okulov, Valery; Sørensen, Jens Nørkær
In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand
2011-12-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.
Synthesis of 2D materials in arc plasmas
In this article we review recent efforts focused on synthesis of two-dimensional (2D) materials in an arc-plasma based process with particular focus on graphene. We present state-of-the-art experimental data on various attempts to employ the arc plasma technique for the graphene synthesis and consider growth mechanisms including precipitation, surface-catalyzed processes and a substrate-independent approach. The potential of arc synthesis for the growth of other types of 2D materials and future prospects are discussed. (review article)
Competing coexisting phases in 2D water.
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
Inertial solvation in femtosecond 2D spectra
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
2D supergravity in p+1 dimensions
Gustafsson, H.; Lindstrom, U.
1998-01-01
We describe new $N$-extended 2D supergravities on a $(p+1)$-dimensional (bosonic) space. The fundamental objects are moving frame densities that equip each $(p+1)$-dimensional point with a 2D ``tangent space''. The theory is presented in a $[p+1, 2]$ superspace. For the special case of $p=1$ we recover the 2D supergravities in an unusual form. The formalism has been developed with applications to the string-parton picture of $D$-branes at strong coupling in mind.
Elena Purcaru; Cristian Toma
2012-01-01
The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date
Beltrami States in 2D Electron Magnetohydrodynamics
Shivamoggi, B. K.
2015-01-01
In this paper, the Hamiltonian formulations along with the Poisson brackets for two-dimensional (2D) electron magnetohydrodynamics (EMHD) flows are developed. These formulations are used to deduce the Beltrami states for 2D EMHD flows. In the massless electron limit, the EMHD Beltrami states reduce to the force-free states, though there is no force-free Beltrami state in the general EMHD case.
2D Saturable Absorbers for Fibre Lasers
Robert I. Woodward
2015-11-01
Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.
2d index and surface operators
In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role
In these lectures, I shall focus on the matrix formulation of 2-d gravity. In the first one, I shall discuss the main results of the continuum formulation of 2-d gravity, starting from the first renormalization group calculations which led to the concept of the conformal anomaly, going through the Polyakov bosonic string and the Liouville action, up to the recent results on the scaling properties of conformal field theories coupled to 2-d gravity. In the second lecture, I shall discuss the discrete formulation of 2-d gravity in term of random lattices, and the mapping onto random matrix models. The occurrence of critical points in the planar limit and the scaling limit at those critical points will be described, as well as the identification of these scaling limits with continuum 2-d gravity coupled to some matter field theory. In the third lecture, the double scaling limit in the one matrix model, and its connection with continuum non perturbative 2-d gravity, will be presented. The connection with the KdV hierarchy and the general form of the string equation will be discuted. In the fourth lecture, I shall discuss the non-perturbative effects present in the non perturbative solutions, in the case of pure gravity. The Schwinger-Dyson equations for pure gravity in the double scaling limit are described and their compatibility with the solutions of the string equation for pure gravity is shown to be somewhat problematic
2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计
康亚芳; 王静; 张清泉; 行小帅
2014-01-01
This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究，在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上，以均匀平面阵列为例，对3种不同参数的DOA估计进行了计算机仿真，分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。
Ultrasonic 2D matrix PVDF transducer
Ptchelintsev, A.; Maev, R. Gr.
2000-05-01
During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.
Estimating 2-D Vector Velocities Using Multidimensional Spectrum Analysis
Oddershede, Niels; Løvstakken, Lasse; Torp, Hans;
2008-01-01
. Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2...... minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes......Wilson (1991) presented an ultrasonic wide-band estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity...
Bulk correlation functions in 2D quantum gravity
Kostov, I K
2005-01-01
We compute bulk 3- and 4-point tachyon correlators in the 2d Liouville gravity with non-rational matter central charge c<1, following and comparing two approaches. The continuous CFT approach exploits the action on the tachyons of the ground ring generators deformed by Liouville and matter ``screening charges''. A by-product general formula for the matter 3-point OPE structure constants is derived. We also consider a ``diagonal'' CFT of 2D quantum gravity, in which the degenerate fields are restricted to the diagonal of the semi-infinite Kac table. The discrete formulation of the theory is a generalization of the ADE string theories, in which the target space is the semi-infinite chain of points.
Calculation of wakefields in 2D rectangular structures
We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross-section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in the computer code ECHO(2D). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Numerical examples obtained with the new numerical code are presented.
Rule Based Selection of 2D Urban Area Map Objects
Jagdish Lal Raheja; Umesh Kumar
2010-01-01
The purpose of cartographic generalization is to represent a particular situation adapted to the needs of its users, with adequate legibility of the representation and perceptional congruity with the real situation. In this paper, a simple approach is presented for the selection process of building ground plans that are represented as 2D line, square and polygon segments. It is based on simple selection process from the field of computer graphics. It is important to preserve the overall chara...
Random 2D Composites and the Generalized Method of Schwarz
Vladimir Mityushev
2015-01-01
Two-phase composites with nonoverlapping inclusions randomly embedded in matrix are investigated. A straightforward approach is applied to estimate the effective properties of random 2D composites. First, deterministic boundary value problems are solved for all locations of inclusions, that is, for all events of the considered probabilistic space C by the generalized method of Schwarz. Second, the effective properties are calculated in analytical form and averaged over C. This method is relat...
Conformal field theory and 2D critical phenomena. Part 1
Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs
Automatic Contour Extraction from 2D Image
Panagiotis GIOANNIS
2011-03-01
Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.
Optical modulators with 2D layered materials
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Detection of N$_2$D$^+$ in a protoplanetary disk
Huang, Jane
2015-01-01
Observations of deuterium fractionation in the solar system, and in interstellar and circumstellar material, are commonly used to constrain the formation environment of volatiles. Toward protoplanetary disks, this approach has been limited by the small number of detected deuterated molecules, i.e. DCO$^+$ and DCN. Based on ALMA Cycle 2 observations toward the disk around the T Tauri star AS 209, we report the first detection of N$_2$D$^+$ (J=3-2) in a protoplanetary disk. These data are used together with previous Submillimeter Array observations of N$_2$H$^+$ (J=3-2) to estimate a disk-averaged D/H ratio of 0.3--0.5, an order of magnitude higher than disk-averaged ratios previously derived for DCN/HCN and DCO$^+$/HCO$^+$ around other young stars. The high fractionation in N$_2$H$^+$ is consistent with model predictions. The presence of abundant N$_2$D$^+$ toward AS 209 also suggests that N$_2$D$^+$ and the N$_2$D$^+$/N$_2$H$^+$ ratio can be developed into effective probes of deuterium chemistry, kinematics, ...
Path integral quantization of 2 D- gravity
2 D- gravity is investigated using the Hamilton-Jacobi formalism. The equations of motion and the action integral are obtained as total differential equations in many variables. The integrability conditions, lead us to obtain the path integral quantization without any need to introduce any extra un-physical variables. (author)
Burcharth, Hans F.; Meinert, Palle; Andersen, Thomas Lykke
This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To identify cross section design which restrict the overtopping to acceptable levels and to record the...
Baby universes in 2d quantum gravity
Ambjorn, J.; S. Jain; G. Thorleifsson
1993-01-01
We investigate the fractal structure of $2d$ quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent $\\g_{string}$.
Andersen, Thomas Lykke; Frigaard, Peter
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...
2d-LCA - an alternative to x-wires
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
F. Martínez
2015-08-01
Full Text Available This paper discusses an integrated approach that provides new ideas about the structural geometry of the NNE-striking, Cretaceous Chañarcillo Basin located along the eastern Coastal Cordillera in the western Central Andes of northern Chile (27–28° S. The results obtained from the integration of two transverse (E–W gravity profiles with previous geological information, show that the architecture of this basin is defined by a large NNE–SSE-trending and east-vergent anticline ("Tierra Amarilla Anticlinorium", which is related to the positive reactivation of a former Cretaceous normal fault (Elisa de Bordos Master Fault. Moreover, intercalations of high and low gravity anomalies and steep gravity gradients reveal a set of buried, west-tilted half-grabens associated with a synthetic normal fault pattern. These results, together with the uplift and folding style of the Cretaceous syn-rift recognized within the basin, suggest that their complete structural geometry could be explained by an inverted fault system linked to the shortening of pre-existing Cretaceous normal fault systems. Ages of the synorogenic deposits exposed unconformably over the frontal limb of the Tierra Amarilla Anticlinorium confirm a Late Cretaceous age for the Andean deformation and tectonic inversion of the basin.
ORION, Post-processor for Finite Elements Program NIKE2D and DYNA2D
Description of program or function: ORION is an interactive post- processor for the analysis programs NIKE2D (NESC 9923), DYNA2D (NESC 9910), TOPAZ, TOPAZ2D (NESC9801), GEM2D (NESC9679), and TACO2D. ORION reads the binary plot data files generated by the two- dimensional finite element programs used at LLNL. Contours and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has the capability to plot color fringes, contour lines, vector plots, principal stress lines, deformed meshes and material outlines, time histories, reaction forces along constraint boundaries, interface pressures along slide lines, and user-supplied labels
On the effective shear speed in 2D phononic crystals
Kutsenko, A A; Norris, A N; Poncelet, O
2011-01-01
The quasistatic limit of the antiplane shear-wave speed ('effective speed') $c$ in 2D periodic lattices is studied. Two new closed-form estimates of $c$ are derived by employing two different analytical approaches. The first proceeds from a standard background of the plane wave expansion (PWE). The second is a new approach, which resides in $\\mathbf{x}$-space and centers on the monodromy matrix (MM) introduced in the 2D case as the multiplicative integral, taken in one coordinate, of a matrix with components being the operators with respect to the other coordinate. On the numerical side, an efficient PWE-based scheme for computing $c$ is proposed and implemented. The analytical and numerical findings are applied to several examples of 2D square lattices with two and three high-contrast components, for which the new PWE and MM estimates are compared with the numerical data and with some known approximations. It is demonstrated that the PWE estimate is most efficient in the case of densely packed stiff inclusio...
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
MasterChem: cooking 2D-polymers.
Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F
2016-03-01
2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817
2D/3D Program work summary report
The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author)
DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM
K. Srinivasan
2010-11-01
Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.
Optimal design of 2D digital filters based on neural networks
Wang, Xiao-hua; He, Yi-gang; Zheng, Zhe-zhao; Zhang, Xu-hong
2005-02-01
Two-dimensional (2-D) digital filters are widely useful in image processing and other 2-D digital signal processing fields,but designing 2-D filters is much more difficult than designing one-dimensional (1-D) ones.In this paper, a new design approach for designing linear-phase 2-D digital filters is described,which is based on a new neural networks algorithm (NNA).By using the symmetry of the given 2-D magnitude specification,a compact express for the magnitude response of a linear-phase 2-D finite impulse response (FIR) filter is derived.Consequently,the optimal problem of designing linear-phase 2-D FIR digital filters is turned to approximate the desired 2-D magnitude response by using the compact express.To solve the problem,a new NNA is presented based on minimizing the mean-squared error,and the convergence theorem is presented and proved to ensure the designed 2-D filter stable.Three design examples are also given to illustrate the effectiveness of the NNA-based design approach.
2-D geometrical analysis of deformation
Engineering structures such as dams, bridges, high rise buildings, etc. are subject to deformation. Deformation survey is therefore necessary to determine the magnitude and direction of such movements for the purpose of safety assessment. In this study, a strategy for two-step analyses for deformation survey rising the two dimensional (2-D) geodetic method has been developed, consisting of independent least squares estimation (LSE) of each epoch followed by deformation detection. Important aspects on LSE include global and local testing. In deformation detection, the following aspects were implemented; datum definition by the user. determination of stable datum points, geometrical analysis of deformation and graphic presentation. The developed strategy has been implemented in three computer programs, COMPUT, DEFORM and STRANS. Tests carried out with simulated and known data show that the developed strategy and programs are applicable for 2-D geometrical detection of deformation. (Author)
Ribault, Sylvain E-mail: ribault@mth.kcl.ac.uk; Schomerus, Volker
2004-02-01
We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models. (author)
Ribault, S; Ribault, Sylvain; Schomerus, Volker
2004-01-01
We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models.
We present a comprehensive analysis of branes in the Euclidean 2D black hole (cigar). In particular, exact boundary states and annulus amplitudes are provided for D0-branes which are localized at the tip of the cigar as well as for two families of extended D1 and D2-branes. Our results are based on closely related studies for the Euclidean AdS3 model and, as predicted by the conjectured duality between the 2D black hole and the sine-Liouville model, they share many features with branes in Liouville theory. New features arise here due to the presence of closed string modes which are localized near the tip of the cigar. The paper concludes with some remarks on possible applications to exact tachyon condensation and matrix models. (author)
Realistic and efficient 2D crack simulation
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
2D materials: Graphene and others
Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh
2016-05-01
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
2D-Tasks for Cognitive Rehabilitation
Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.
2011-01-01
Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...
Engineering light outcoupling in 2D materials
Lien, Derhsien
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Inversions for MT data in 2D symmetrical anisotropic media
YANG Chang-fu; LIN Chang-you; SUN Chong-chi; LI Qing-he
2005-01-01
In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.
Implementation of 2-D Discrete Cosine Transform Algorithm on GPU
SHIVANG GHETIA, NAGENDRA GAJJAR, RUCHI GAJJAR
2013-07-01
Full Text Available Discrete Cosine Transform (DCT is a technique to get frequency separation. When DCT is applied on an image, it will give frequency segregation of an image since it is composed of DC value and range of low frequency values to high frequency values. DCT is very useful in image compression. When high frequency values are eliminated from image, it will give efficient compression at the cost of little degradation of image quality. But, the bottleneck is that when 2-Dimentional DCT is carried out on CPU, it takes much time since there is very high order of computation. To overcome this problem, Graphics Processing Unit (GPU has opened the door for parallel processing. In this paper, we have implemented 2-D DCT with parallel approach on NVIDIA GPU using CUDA (Compute Unified Device Architecture. By applying here presented 2-D DCT algorithm for image processing has narrowed down the time requirement and has achieved speed up by factor 97x including data transfer timing from CPU to GPU and again back to CPU. So, parallel processing of 2-D DCT algorithm on GPU has fulfilled the purpose of fast and efficient processing of an image.
Fast 2D Simulation of Superconductors: a Multiscale Approach
Rodriguez Zermeno, Victor Manuel; Sørensen, Mads Peter; Pedersen, Niels Falsig;
2009-01-01
This work presents a method to calculate AC losses in thin conductors such as the commercially available second generation superconducting wires through a multiscale meshing technique. The main idea is to use large aspect ratio elements to accurately simulate thin material layers. For a single thin...
Phase Engineering of 2D Tin Sulfides.
Mutlu, Z; Wu, RJ; Wickramaratne, D.; Shahrezaei, S; Liu, C; Temiz, S; Patalano, A; M Ozkan; Lake, RK; Mkhoyan, KA; Ozkan, CS
2016-01-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2...
2D vector-cyclic deformable templates
Schultz, Nette; Conradsen, Knut
1998-01-01
In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation and...
Limit theorems for 2D invasion percolation
Damron, Michael
2010-01-01
We prove limit theorems and variance estimates for quantities related to ponds and outlets for 2D invasion percolation. We first exhibit several properties of a sequence (O(n)) of outlet variables, the n-th of which gives the number of outlets in the box centered at the origin of side length 2^n. The most important of these properties describe the sequence's renewal structure and exponentially fast mixing behavior. We use these to prove a central limit theorem and strong law of large numbers for (O(n)). We then show consequences of these limit theorems for the pond radii and outlet weights.
Interparticle attraction in 2D complex plasmas
Kompaneets, Roman; Ivlev, Alexei V
2015-01-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecular-like. In this Letter, we propose how to achieve a molecular-like interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
Periodically sheared 2D Yukawa systems
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates
Interparticle Attraction in 2D Complex Plasmas
Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.
2016-03-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
Action, Hamiltonian and CFT of 2D black holes
The boundary terms in the Hamiltonian, in the presence of horizons, are carefully analyzed in a simple 2D theory admitting AdS black holes. The agreement between the Euclidean approach and CFT is obtained modulo certain assumptions regarding the spectrum of the Virasoro's algebra. The results obtained are of general validity, since they rely on general properties of black holes. In particular, the central charge can be understood as a classical result without invoking string theory. The peculiar features of gravity, that the on shell Hamiltonian is determined by boundary terms, is the reason for the mentioned agreement. (author)
Car impact to pedestrian – fast 2D numerical analysis
Čechová H.; Hynčík L.
2011-01-01
The paper concerns a modelling approach for fast 2D car to pedestrian impact analysis. The pedestrian model is composed using the Lagrange equations with multipliers. The model consists of rigid bodies defining the major human body segments. The bodies are connected by rotational joints with non-linear response. The model is scalable based on the age and the gender. The car model is multi-segment composed as an open polygon. Between the pedestrian and the car, there are contacts defined and m...
GAIA: A 2-D Curvilinear moving grid hydrodynamic code
The GAIA computer code is developed for time dependent, compressible, multimaterial fluid flow problems, to overcome some drawbacks of traditional 2-D Lagrangian codes. The initial goals of robustness, entropy accuracies, efficiency in presence of large interfacial slip, have already been achieved. The general GODUNOV approach is applied to an arbitrary time varying control-volume formulation. We review in this paper the Riemann solver, the GODUNOV cartesian and curvilinear moving grid schemes and an efficient grid generation algorithm. We finally outline a possible second order accuracy extension
Interactive initialization of 2D/3D rigid registration
Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the
Interactive initialization of 2D/3D rigid registration
Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children' s National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children' s National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: ZYaniv@childrensnational.org [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)
2013-12-15
Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on
Multienzyme Inkjet Printed 2D Arrays.
Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel
2015-08-19
The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072
Comments on Thermalization in 2D CFT
de Boer, Jan
2016-01-01
We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...
Photocurrent spectroscopy of 2D materials
Cobden, David
Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.
Area preserving diffeomorphisms and 2-d gravity
La, H S
1995-01-01
Area preserving diffeomorphisms of a 2-d compact Riemannian manifold with or without boundary are studied. We find two classes of decompositions of a Riemannian metric, namely, h- and g-decomposition, that help to formulate a gravitational theory which is area preserving diffeomorphism (SDiffM-) invariant but not necessarily diffeomorphism invariant. The general covariance of equations of motion of such a theory can be achieved by incorporating proper Weyl rescaling. The h-decomposition makes the conformal factor of a metric SDiffM-invariant and the rest of the metric invariant under conformal diffeomorphisms, whilst the g-decomposition makes the conformal factor a SDiffM scalar and the rest a SDiffM tensor. Using these, we reformulate Liouville gravity in SDiffM invariant way. In this context we also further clarify the dual formulation of Liouville gravity introduced by the author before, in which the affine spin connection is dual to the Liouville field.
Locality constraints and 2D quasicrystals
The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs
Graphene suspensions for 2D printing
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
Numerical Evaluation of 2D Ground States
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.
2-D Model Test of Dolosse Breakwater
Burcharth, Hans F.; Liu, Zhou
1994-01-01
The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992). To...... extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......-0042. Furthermore, Task IA will give the design diagram for Tetrapod breakwaters without a superstructure. The more complete research results on Dolosse can certainly give some insight into the behaviour of Tetrapods armour layer of the breakwaters with superstructure. The main part of the experiment was on the...
A proteomic approach for the diagnosis of bacterial meningitis.
Sarah Jesse
Full Text Available BACKGROUND: The discrimination of bacterial meningitis (BM versus viral meningitis (VM shapes up as a problem, when laboratory data are not equivocal, in particular, when Gram stain is negative. METHODOLOGY/PRINCIPAL FINDINGS: With the aim to determine reliable marker for bacterial or viral meningitis, we subjected cerebrospinal fluid (CSF to a quantitative proteomic screening. By using a recently established 2D-DIGE protocol which was adapted to the individual CSF flow, we compared a small set of patients with proven BM and VM. Thereby, we identified six potential biomarkers out of which Prostaglandin-H2 D-isomerase was already described in BM, showing proof of concept. In the subsequent validation phase on a more comprehensive collective of 80 patients, we could validate that in BM high levels of glial fibrillary acidic protein (GFAP and low levels of soluble amyloid precursor protein alpha/beta (sAPPalpha/beta are present as possible binding partner of Fibulin-1. CONCLUSIONS/SIGNIFICANCE: We conclude that our CSF flow-adapted 2D-DIGE protocol is valid especially in comparing samples with high differences in total protein and suppose that GFAP and sAPPalpha/beta have a high potential as additional diagnostic markers for differentiation of BM from VM. In the clinical setting, this might lead to an improved early diagnosis and to an individual therapy.
Local 2D-2D tunneling in high mobility electron systems
Pelliccione, Matthew; Sciambi, Adam; Bartel, John; Goldhaber-Gordon, David; Pfeiffer, Loren; West, Ken; Lilly, Michael; Bank, Seth; Gossard, Arthur
2012-02-01
Many scanning probe techniques have been utilized in recent years to measure local properties of high mobility two-dimensional (2D) electron systems in GaAs. However, most techniques lack the ability to tunnel into the buried 2D system and measure local spectroscopic information. We report scanning gate measurements on a bilayer GaAs/AlGaAs heterostructure that allows for a local modulation of tunneling between two 2D electron layers. We call this technique Virtual Scanning Tunneling Microscopy (VSTM) [1,2] as the influence of the scanning gate is analogous to an STM tip, except at a GaAs/AlGaAs interface instead of a surface. We will discuss the spectroscopic capabilities of the technique, and show preliminary results of measurements on a high mobility 2D electron system.[1] A. Sciambi, M. Pelliccione et al., Appl. Phys. Lett. 97, 132103 (2010).[2] A. Sciambi, M. Pelliccione et al., Phys. Rev. B 84, 085301 (2011).
Growth of 2D black phosphorus film from chemical vapor deposition
Smith, Joshua B.; Hagaman, Daniel; Ji, Hai-Feng
2016-05-01
Phosphorene, a novel 2D material isolated from bulk black phosphorus (BP), is an intrinsic p-type material with a variable bandgap for a variety of applications. However, these applications are limited by the inability to isolate large films of phosphorene. Here we present an in situ chemical vapor deposition type approach that demonstrates progress towards growth of large area 2D BP with average areas >3 μm2 and thicknesses representing samples around four layers and thicker samples with average areas >100 μm2. Transmission electron microscopy and Raman spectroscopy have confirmed successful growth of 2D BP from red phosphorus.
Growth of 2D black phosphorus film from chemical vapor deposition.
Smith, Joshua B; Hagaman, Daniel; Ji, Hai-Feng
2016-05-27
Phosphorene, a novel 2D material isolated from bulk black phosphorus (BP), is an intrinsic p-type material with a variable bandgap for a variety of applications. However, these applications are limited by the inability to isolate large films of phosphorene. Here we present an in situ chemical vapor deposition type approach that demonstrates progress towards growth of large area 2D BP with average areas >3 μm(2) and thicknesses representing samples around four layers and thicker samples with average areas >100 μm(2). Transmission electron microscopy and Raman spectroscopy have confirmed successful growth of 2D BP from red phosphorus. PMID:27087456
Objective Evaluation Criteria for 2D-Shape Estimation Results of Moving Objects
Marqués Ferran
2002-01-01
Full Text Available The objective evaluation of 2D-shape estimation results for moving objects in a video sequence is still an open problem. First approaches in the literature evaluate the spatial accuracy and the temporal coherency of the estimated 2D object shape. Thereby, it is not distinguished between several estimation errors located around the object contour and a few, but larger, estimation errors. Both cases would lead to similar evaluation results, although the 2D-shapes would be visually very different. To overcome this problem, in this paper, a new evaluation approach is proposed. In it, the evaluation of the spatial accuracy and the temporal coherency is based on the mean and the standard deviation of the 2D-shape estimation errors.
Face recognition method based on 2D-PCA and 2D-LDA%基于2D-PCA和2D-LDA的人脸识别方法
温福喜; 刘宏伟
2007-01-01
提出了基于2D-PCA、2D-LDA两种特征采用融合分类器的人脸识别方法.首先提取人脸图像的2D-PCA和2D-LDA特征,对不同特征在决策层对分类器进行融合.在ORL人脸库上的试验结果表明,分类器决策层融合方法在识别性能上优于2D-PCA和2D-LDA,更具有鲁棒性.
Lott, Geoffrey A; Utterback, James K; Widom, Julia R; Aspuru-Guzik, Alán; Marcus, Andrew H
2011-01-01
By applying a phase-modulation fluorescence approach to 2D electronic spectroscopy, we studied the conformation-dependent exciton-coupling of a porphyrin dimer embedded in a phospholipid bilayer membrane. Our measurements specify the relative angle and separation between interacting electronic transition dipole moments, and thus provide a detailed characterization of dimer conformation. Phase-modulation 2D fluorescence spectroscopy (PM-2D FS) produces 2D spectra with distinct optical features, similar to those obtained using 2D photon-echo spectroscopy (2D PE). Specifically, we studied magnesium meso tetraphenylporphyrin dimers, which form in the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. Comparison between experimental and simulated spectra show that while a wide range of dimer conformations can be inferred by either the linear absorption spectrum or the 2D spectrum alone, consideration of both types of spectra constrains the possible structures to a "T-shaped" geometry. The...
Abundant solutions of Wick-type stochastic fractional 2D KdV equations
A modified fractional sub-equation method is applied to Wick-type stochastic fractional two-dimensional (2D) KdV equations. With the help of a Hermit transform, we obtain a new set of exact stochastic solutions to Wick-type stochastic fractional 2D KdV equations in the white noise space. These solutions include exponential decay wave solutions, soliton wave solutions, and periodic wave solutions. Two examples are explicitly given to illustrate our approach
An effective depression filling algorithm for DEM-based 2-D surface flow modelling
Zhu, D.; Ren, Q.; Xuan, Y.; Y. Chen; I. D. Cluckie
2013-01-01
The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D) diffusive wave approximation described by grid based digital elevation models (DEMs). However, this approach may cause potential problems when using the 2-D surface flow model which exchanges flows through adjacent cells, with conventional sink removal algorithms which also allow for flow exchange along diagonal directions, due to the existence of artificial dep...
Ion Transport in 2-D Graphene Nanochannels
Xie, Quan; Foo, Elbert; Duan, Chuanhua
2015-11-01
Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).
Phase Engineering of 2D Tin Sulfides.
Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S
2016-06-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950
2D DIGITAL SIMPLIFIED FLOW VALVE
Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D
2004-01-01
The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.
2D manifold-independent spinfoam theory
A number of background-independent quantization procedures have recently been employed in 4D nonperturbative quantum gravity. We investigate and illustrate these techniques and their relation in the context of a simple 2D topological theory. We discuss canonical quantization, loop or spin network states, path integral quantization over a discretization of the manifold, spin foam formulation and the fully background-independent definition of the theory using an auxiliary field theory on a group manifold. While several of these techniques have already been applied to this theory by Witten, the last one is novel: it allows us to give a precise meaning to the sum over topologies, and to compute background-independent and, in fact, 'manifold-independent' transition amplitudes. These transition amplitudes play the role of Wightman functions of the theory. They are physical observable quantities, and the canonical structure of the theory can be reconstructed from them via a C* algebraic GNS construction. We expect an analogous structure to be relevant in 4D quantum gravity
Resolution Independent 2D Cartoon Video Conversion
MSF. Fayaza
2016-03-01
Full Text Available This paper describes a novel system for vectorizing 2D raster cartoon. The output videos are the resolution independent, smaller in file size. As a first step, input video is segment to scene thereafter all processes are done for each scene separately. Every scene contains foreground and background objects so in each and every scene foreground background classification is performed. Background details can occlude by foreground objects but when foreground objects move its previous position such occluded details exposed in one of the next frame so using that frame can fill the occluded area and can generate static background. Classified foreground objects are identified and the motion of the foreground objects tracked for this simple user assistance is required from those motion details of foreground object’s animation generated. Static background and foreground objects segmented using K-means clustering and each and every cluster’s vectorized using potrace. Using vectored background and foreground object animation path vector video regenerated.
3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method
Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level
Marginal fluctuations as instantons on M2/D2-branes
Naghdi, M.
2014-03-01
We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over spaces, where we use and for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis-Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of and , and it agrees with a marginal boundary operator of the conformal dimension of . However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all supersymmetries to , while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations and for the supercharges and scalars, respectively, while the fermions remain fixed in of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full gauge group along the same lines with a similar situation to the one faced in the AdS/CFT correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for as well.
The unitary conformal field theory behind 2D Asymptotic Safety
Nink, Andreas; Reuter, Martin
2016-02-01
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d > 2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c = 25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d > 2 dimensions and Polyakov's induced gravity action in two dimensions.
Scaling in Gravitational Clustering, 2D and 3D Dynamics
Munshi, D; Melott, A L; Schäffer, R
1999-01-01
Perturbation Theory (PT) applied to a cosmological density field with Gaussian initial fluctuations suggests a specific hierarchy for the correlation functions when the variance is small. In particular quantitative predictions have been made for the moments and the shape of the one-point probability distribution function (PDF) of the top-hat smoothed density. In this paper we perform a series of systematic checks of these predictions against N-body computations both in 2D and 3D with a wide range of featureless power spectra. In agreement with previous studies, we found that the reconstructed PDF-s work remarkably well down to very low probabilities, even when the variance approaches unity. Our results for 2D reproduce the features for the 3D dynamics. In particular we found that the PT predictions are more accurate for spectra with less power on small scales. The nonlinear regime has been explored with various tools, PDF-s, moments and Void Probability Function (VPF). These studies have been done with unprec...
Statistical mechanics of shell models for 2D-Turbulence
Aurell, E; Crisanti, A; Frick, P; Paladin, G; Vulpiani, A
1994-01-01
We study shell models that conserve the analogues of energy and enstrophy, hence designed to mimic fluid turbulence in 2D. The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager, Hopf and Lee. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy, and from one branch of the formal statistical equilibrium, coincide in these shell models at difference to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence have previously led to the mistaken conclusion that shell models exhibit a forward ...
Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants
Andrea Gaedigk
2010-10-01
Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.
Finite state models of constrained 2d data
Justesen, Jørn
2004-01-01
This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods.......This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods....
Polynomial solution of 2D Kalman-Bucy filtering problem
Sebek, M.
1992-01-01
The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2)
Polynomial solution of 2D Kalman-Bucy filtering problem
Sebek, M.
1992-01-01
The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2) as well.
Liao, C.; Chutjian, A.; Hitz, D.; Tayal, S. S.
1997-01-01
Experimental and theoretical collisional excitation cross sections are reported for the transitions 3s(exp 2)3p(exp 3)4S(exp o) approaches 3s(exp 2)3p(exp 3) 2D(exp o), 2P(exp o), and 3s3P(exp 4) 4P in S II. The transition wavelengths (energies) are 6716 A (1.85 eV), 4069 A (3.05 eV), and 1256 A (9.87 eV), respectively. In the experiments, use is made of the energy-loss merged-beams method. The metastable fraction of the S II beam was assessed and minimized. The contribution of elastically scattered electrons was reduced by the use of a lowered solenoidal magnetic field and a modulated radio-frequency voltage on the analyzing plates and by retarding grids to reject the elastically scattered electrons with larger Larmor radii. For each transition, comparisons are made among experiments, the new 19 state R-matrix calculation, and three other close-coupling calculations.
FEM-2D, 2-D MultiGroup Diffusion in X-Y Geometry
1 - Nature of physical problem solved: FEM-2D solves the two-dimensional diffusion equation in x-y geometry. This is done by the finite elements method. 2 - Method of solution: FEM-2D uses triangular elements with first and second order Lagrange approximations. The systems equations are formulated in multigroup form and solved by Cholesky procedure which operates only on nonzero elements. Various acceleration techniques are available for the outer iteration. Fluxes along various lines and rates in arbitrary zones may be output. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning. Thus, the problem size is restricted by the largest array which usually is the systems matrix. Fluxes of all groups are kept in memory. This might become another restrictive data set for a large number of groups. The validity of the results is restricted by the approximations used. FEM-2D requires a finite element net which allows the approximation of fluxes by at most parabolas. The node distribution should be more dense in areas of heavy flux changes (near absorbers or the reflector)
DNTM/R2D, 2-D Transport in X-Y Geometry
1 - Description of program or function: DNTM/R2D solves the neutron transport equation in two-dimensional X-Y geometry by the discrete nodal transport method. Source and eigenvalue problems can be solved. As compared to the two-dimensional nodal transport code DNTM/2D, the following new improved features are included: - Anisotropic scattering is considered. The order of anisotropic scattering is from P0 to P3. - The cross section input format is the same as for ANISN. Multi- group cross section libraries such as DLC-37 and DLC-BUGLE-80 can be used. 2 - Method of solution: DNTM/R2D uses the discrete nodal transport method. Anisotropic scattering is treated using Legendre expansion. Order of interior flux approximation is 2. Plane leakage approximation of surface flux is used. 3 - Restrictions on the complexity of the problem: Maximum number of: anisotropic scattering order = 3; material composition = 20; energy groups = 2; angular quadrature = 8; zones = 30. When coarse-mesh re-balancing is used, the maximum number of coarse meshes is 12 in each direction. If the computer permits some arrays can be enlarged to reduce the above restrictions
Car impact to pedestrian – fast 2D numerical analysis
Čechová H.
2011-12-01
Full Text Available The paper concerns a modelling approach for fast 2D car to pedestrian impact analysis. The pedestrian model is composed using the Lagrange equations with multipliers. The model consists of rigid bodies defining the major human body segments. The bodies are connected by rotational joints with non-linear response. The model is scalable based on the age and the gender. The car model is multi-segment composed as an open polygon. Between the pedestrian and the car, there are contacts defined and modelled explicitly by force-penetration dependence. For a given car profile design and a given human gender, age and percentile, the pedestrian impact consequences can be evaluated quickly by means of virtual numerical analysis.
Solution structure of d-GAATTCGAATTC by 2D NMR
A new approach based on the correlated spectroscopy (COSY) in 2D NMR has been described for determination of sugar geometries in oligonucleotides. Under the usual low resolution conditions employed in COSY, the intensities of cross peaks depend on the magnitudes of coupling constants. There are five vicinal coupling constants in a deoxyribose ring which are sensitive to the sugar geometry. The presence, absence and rough comparison of relative intensities of COSY cross peaks arising from such coupling constants enable one to fix the sugar conformation to a fair degree of precision. The methodology has been applied to d-GAATTCGAATTC. It is observed that ten out of the twelve nucleotide units in this sequence exhibit a rare O1'-endo geometry. The EcoRI cleavage sites in the dodecanucleotide show an interesting variation in the conformation with the two sugars attached to the Gs acquiring a geometry between C2'-endo and C4'-endo. (Auth.)
Currency verification by a 2D infrared barcode
Nowadays all the National Central Banks are continuously studying innovative anti-counterfeiting systems for banknotes. In this note, an innovative solution is proposed, which combines the potentiality of a hylemetric approach (methodology conceptually similar to biometry), based on notes' intrinsic characteristics, with a well-known and consolidated 2D barcode identification system. In particular, in this note we propose to extract from the banknotes a univocal binary control sequence (template) and insert an encrypted version of it in a barcode printed on the same banknote. For a more acceptable look and feel of a banknote, the superposed barcode can be stamped using IR ink that is visible to near-IR image sensors. This makes the banknote verification simpler. (technical design note)
2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability
Mayeda, K M; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D S; Morasca, P
2005-07-13
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in
Correlated Electron Phenomena in 2D Materials
Lambert, Joseph G.
In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in
Functional 2D Procrustes Shape Analysis
Larsen, Rasmus
2005-01-01
Using a landmark based approach to Procrustes alignment neglects the functional nature of outlines and surfaces. In order to re-introduce this functional nature into the analysis we will consider alignment of shapes with functional representations. First functional Procrustes analysis of curve sh...
CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping
Amanda K Riffel
2016-01-01
Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe
Few-layer III-VI and IV-VI 2D semiconductor transistors
Sucharitakul, Sukrit; Liu, Mei; Kumar, Rajesh; Sankar, Raman; Chou, Fang C.; Chen, Yit-Tsong; Gao, Xuan
Since the discovery of atomically thin graphene, a large variety of exfoliable 2D materials have been thoroughly explored for their exotic transport behavior and promises in technological breakthroughs. While most attention on 2D materials beyond graphene is focused on transition metal-dichalcogenides, relatively less attention is paid to layered III-VI and IV-VI semiconductors such as InSe, SnSe etc which bear stronger potential as 2D materials with high electron mobility or thermoelectric figure of merit. We will discuss our recent work on few-layer InSe 2D field effect transistors which exhibit carrier mobility approaching 1000 cm2/Vs and ON-OFF ratio exceeding 107 at room temperature. In addition, the fabrication and device performance of transistors made of mechanically exfoliated multilayer IV-VI semiconductor SnSe and SnSe2 will be discussed.
Adaptive Segmentation Method for 2-D Barcode Image Base on Mathematic Morphological
Jianhua Li
2013-10-01
Full Text Available Segmentation is a key process of 2-D barcode identification. In this study we propose a fast adaptive segmentation method that is based on morphological method which is suitable for kinds of 2-D barcode images with different scale, angle and sort. The algorithm is based on mathematical morphology, the basic idea of the algorithm is to use Multi-scale open reconstruction of mathematical morphology to transform the image continuously, then choose whether to terminate by the results of the adjacent image transformation and finally get the final segmentation results by further processing of the images obtain from termination.The proposed approach is applied in experiments on 2-D barcodes with complicated background. The results indicated that the proposed method is very effective in adaptively 2-D barcode image segmentation.
2D-MoO3 nanosheets for superior gas sensors
Ji, Fangxu; Ren, Xianpei; Zheng, Xiaoyao; Liu, Yucheng; Pang, Liuqing; Jiang, Jiaxing; Liu, Shengzhong (Frank)
2016-04-01
By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites.By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00880a
Structure of 2D Topological Stabilizer Codes
Bombin, H
2011-01-01
We provide a detailed study of the general structure of two-dimensional topological stabilizer quantum error correcting codes, including subsystem codes. Under the sole assumption of translational invariance, we show that all such codes can be understood in terms of the homology of string operators that carry a certain topological charge. In the case of subspace codes, we prove that two codes are equivalent under a suitable set of local transformations if and only they have equivalent topological charges. Our approach emphasizes local properties of the codes over global ones.
Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.
Hua Cai
Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.
MAZE, Input Generator for Program DYNA2D and NIKE2D
Description of program or function: MAZE is an interactive input generator for two-dimensional finite element codes. MAZE has three phases. In the first phase, lines and parts are defined. The first phase is terminated by the 'ASSM' or 'PASSM' command which merges all parts. In the second phase, boundary conditions may be specified, slide-lines may be defined, parts may be merged to eliminate nodes along common interfaces, boundary nodes may be moved for graded zoning, the mesh may be smoothed, and load curves may be defined. The second phase is terminated by the 'WBCD' command which causes MAZE to write the output file as soon as the 'T' terminate command is typed. In the third phase, material properties may be defined. Commands that apply to the first phase may not be used in the second or third; likewise, commands that apply in the second may not be used in the first and third, or commands that apply in the third in the first and second. Nine commands - TV, Z, GSET, PLOTS, GRID, NOGRID, FRAME, NOFRAME, and RJET are available in all phases. Comments may be added anywhere in the input stream by prefacing the comment with 'C'. Any DYNA2D or NIKE2D material and equation-of- state model may be defined via the MAT and EOS commands respectively. Maze may be terminated after phase two; it is not necessary to define the materials
Marginal fluctuations as instantons on M2/D2-branes
Naghdi, M. [University of Ilam, Department of Physics, Faculty of Basic Sciences, Ilam (Iran, Islamic Republic of)
2014-03-15
We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over AdS{sub 4} x M{sup 7} {sup vertical} {sup stroke} {sup 6} spaces, where we use S{sup 7}/Z{sub k} and CP{sup 3} for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis- Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of SO(8) and SU(4) x U(1), and it agrees with a marginal boundary operator of the conformal dimension of Δ{sub +} = 3. However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized AdS{sub 4} space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all N = 8, 6 supersymmetries to N = 0, while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations 8s and 8v for the supercharges and scalars, respectively, while the fermions remain fixed in 8c of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full U(N){sub k} x U(N){sub -k} gauge group along the same lines with a similar situation to the one faced in the AdS{sub 5}/CFT{sub 4} correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for k = 1, 2 as well. (orig.)
Surface Approximation Using the 2D FFENN Architecture
Panagopoulos S
2004-01-01
Full Text Available A new two-dimensional feed-forward functionally expanded neural network (2D FFENN used to produce surface models in two dimensions is presented. New nonlinear multilevel surface basis functions are proposed for the network's functional expansion. A network optimization technique based on an iterative function selection strategy is also described. Comparative simulation results for surface mappings generated by the 2D FFENN, multilevel 2D FFENN, multilayered perceptron (MLP, and radial basis function (RBF architectures are presented.
Maximizing entropy of image models for 2-D constrained coding
Forchhammer, Søren; Danieli, Matteo; Burini, Nino; Zamarin, Marco; Ukhanova, Ann
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square const...
Computing 2D constrained delaunay triangulation using the GPU.
Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng
2013-05-01
We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges. PMID:23492377
Non-Iterative Rigid 2D/3D Point-Set Registration Using Semidefinite Programming
Khoo, Yuehaw; Kapoor, Ankur
2016-07-01
We describe a convex programming framework for pose estimation in 2D/3D point-set registration with unknown point correspondences. We give two mixed-integer nonlinear program (MINP) formulations of the 2D/3D registration problem when there are multiple 2D images, and propose convex relaxations for both of the MINPs to semidefinite programs (SDP) that can be solved efficiently by interior point methods. Our approach to the 2D/3D registration problem is non-iterative in nature as we jointly solve for pose and correspondence. Furthermore, these convex programs can readily incorporate feature descriptors of points to enhance registration results. We prove that the convex programs exactly recover the solution to the original nonconvex 2D/3D registration problem under noiseless condition. We apply these formulations to the registration of 3D models of coronary vessels to their 2D projections obtained from multiple intra-operative fluoroscopic images. For this application, we experimentally corroborate the exact recovery property in the absence of noise and further demonstrate robustness of the convex programs in the presence of noise.
Maximizing entropy of image models for 2-D constrained coding
Forchhammer, Søren; Danieli, Matteo; Burini, Nino;
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... of the Markov random field defined by the 2-D constraint is estimated to be (upper bounded by) 0.8570 bits/symbol using the iterative technique of Belief Propagation on 2 £ 2 finite lattices. Based on combinatorial bounding techniques the maximum entropy for the constraint was determined to be 0.848....
Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung
Bergmeir, Christoph; Subramanian, Navneeth
Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.
Iqpc 2015 Track: Evaluation of Automatically Generated 2d Footprints from Urban LIDAR Data
Truong-Hong, L.; Laefer, D.; Bisheng, Y.; Ronggang, H.; Jianping, L.
2015-08-01
Over the last decade, several automatic approaches have been proposed to extract and reconstruct 2D building footprints and 2D road profiles from ALS data, satellite images, and/or aerial imagery. Since these methods have to date been applied to various data sets and assessed through a variety of different quality indicators and ground truths, comparing the relative effectiveness of the techniques and identifying their strengths and short-comings has not been possible in a systematic way. This contest as part of IQPC15 was designed to determine pros and cons of submitted approaches in generating 2D footprint of a city region from ALS data. Specifically, participants were asked to submit 2D footprints (building outlines and road profiles) derived from ALS data from a highly dense dataset (approximately 225 points/m2) across a 1km2 of Dublin, Ireland's city centre. The proposed evaluation strategies were designed to measure not only the capacity of each method to detect and reconstruct 2D buildings and roads but also the quality of the reconstructed building and road models in terms of shape similarity and positional accuracy.
The strength of heterogeneous volcanic rocks: A 2D approximation
Heap, Michael J.; Wadsworth, Fabian B.; Xu, Tao; Chen, Chong-feng; Tang, Chun'an
2016-06-01
Volcanic rocks typically contain heterogeneities in the form of crystals and pores. We investigate here the influence of such heterogeneity on the strength of volcanic rocks using an elastic damage mechanics model in which we numerically deform two-dimensional samples comprising low-strength elements representing crystals and zero-strength elements representing pores. These circular elements are stochastically generated so that there is no overlap in a medium representing the groundmass. Our modelling indicates that increasing the fraction of pores and/or crystals reduces the strength of volcanic rocks, and that increasing the pore fraction results in larger strength reductions than increasing the crystal fraction. The model also highlights an important weakening role for pore diameter, but finds that crystal diameter has a less significant influence for strength. To account for heterogeneity (pores and crystals), we propose an effective medium approach where we define an effective pore fraction ϕp‧ = Vp/(Vp + Vg) where Vp and Vg are the pore and groundmass fractions, respectively. Highly heterogeneous samples (containing high pore and/or crystal fractions) will therefore have high values of ϕp‧, and vice-versa. When we express our numerical samples (more than 200 simulations spanning a wide range of crystal and pore fractions) in terms of ϕp‧, we find that their strengths can be described by a single curve for a given pore diameter. To provide a predictive tool for the strength of heterogeneous volcanic rocks, we propose a modified version of 2D solution for the Sammis and Ashby (1986) pore-emanating crack model, a micromechanical model designed to estimate strength using microstructural attributes such as porosity, pore radius, and fracture toughness. The model, reformulated to include ϕp‧ (and therefore crystal fraction), captures the strength curves for our numerical simulations over a sample heterogeneity range relevant to volcanic systems. We find
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
Numerical simulations in granular matter: The discharge of a 2D silo
Gabriel Pérez
2008-06-01
In this paper I give a short and elementary review of numerical simulations in granular assemblies, giving the process of discharge of a 2D silo as an example. The strengths and limitations of different approaches are discussed, together with some comments on the specific issues related to the numerics of discontinuous dissipative collisions.
Cascading Constrained 2-D Arrays using Periodic Merging Arrays
Forchhammer, Søren; Laursen, Torben Vaarby
2003-01-01
We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....
2D gravity, random surfaces and all that
I review the recent progress in 2d gravity and discuss the new numerical simulations for 2d gravity and for random surfaces in d>2. The random surface theories of interest in d>2 have extrinsic curvature terms, and for a finite value of the extrinsic curvature coupling there seems to be a second order phase transition where the string tension scales. (orig.)
Symmetries and solvable models for evaporating 2D black holes
Cruz Muñoz, José Luis; Navarro-Salas, José; Navarro Navarro, Miguel; Talavera, C. F.
1997-01-01
We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is suddenly switched off. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model. © Elsevier Science B.V