Sample records for 2-chloroethyl ethyl sulfide

  1. Decontamination of 2-Chloroethyl Ethyl Sulfide by Pulsed Corona Plasma

    Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH3CH2SCH2CH2Cl) by pulsed corona plasma was investigated. The results show that 212.6 mg/m3 of 2-CEES, with the gas flow rate of 2 m3/h, can be decontaminated to 0.09 mg/m3. According to the variation of the inlet and outlet concentration of 2-CEES vapor with retention time, it is found that the reaction of 2-CEES in a pulsed corona plasma system follows the first order reaction, with the reaction rate constant of 0.463 s−1. The decontamination mechanism is discussed based on an analysis of the dissociation energy of chemical bonds and decontamination products. The C–S bond adjacent to the Cl atom will be destroyed firstly to form CH3CH2S· and ·CH2CH2Cl radicals. CH3CH2S· can be decomposed to ·C2H5 and ·S. ·S can be oxidized to SO2, while ·C2H5 can be finally oxidized to CO2 and H2O. The C–Cl bond in the ·CH2CH2Cl radical can be destroyed to form ·CH2CH2. and ·Cl, which can be mineralized to CO2, H2O and HCl. The H atom in the ·CH2CH2Cl radical can also be substituted by ·Cl to form CHCl2–CHCl2. (plasma technology)

  2. Rotational spectra, nuclear quadrupole hyperfine tensors, and conformational structures of the mustard gas simulent 2-chloroethyl ethyl sulfide

    Tubergen, M. J.; Lesarri, A.; Suenram, R. D.; Samuels, A. C.; Jensen, J. O.; Ellzy, M. W.; Lochner, J. M.


    Rotational spectra have been recorded for both the 35Cl and 37Cl isotopic forms of two structural conformations of 2-chloroethyl ethyl sulfide (CEES). The rotational constants of the 35Cl and 37Cl isotopomers were used to identify the conformational isomers. A total of 236 hyperfine transitions have been assigned for 47 rotational transitions of the 35Cl isotope of a GGT conformer, and 146 hyperfine have been assigned for 37 rotational transitions of the 37Cl isotopomer. For the second conformer, a total of 128 (110) hyperfine and 30 (28) rotational transitions have also been assigned to the 35Cl ( 37Cl) isotopes of a TGT conformation. The extensive hyperfine splitting data, measured to high resolution with a compact Fourier transform microwave spectrometer, were used to determine both the diagonal and off-diagonal elements of the 35Cl and 37Cl nuclear quadrupole coupling tensors in the inertial tensor principal axis system. The experimental rotational constant data, as well as the 35Cl and 37Cl nuclear quadrupole coupling tensors, were compared to the results from 27 optimized ab initio (HF/6-311++G ∗∗ and MP2/6-311++G ∗∗) model structures.

  3. A Role for Mitochondrial Oxidative Stress in Sulfur Mustard Analog 2-Chloroethyl Ethyl Sulfide-Induced Lung Cell Injury and Antioxidant Protection

    Gould, Neal S; White, Carl W; Day, Brian J.


    Sulfur mustards (SMs) have been used as warfare agents since World War I and still pose a significant threat against civilian and military personnel. SM exposure can cause significant blistering of the skin, respiratory injury, and fibrosis. No antidote currently exists for SM exposure, but recent studies, using the SM analog 2-chloroethyl ethyl sulfide (CEES), have focused on the ability of antioxidants to prevent toxicity. Although antioxidants can prevent CEES-induc...

  4. Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide

    Black, Adrienne T.; Joseph, Laurie B.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J; Laskin, Debra L.; Laskin, Jeffrey D.


    Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100...

  5. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    Boulware, Stephen [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); Vasquez, Karen M. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); MacLeod, Michael C., E-mail: [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)


    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.

  6. Protective Effects of Recombinant Kunitz-Domain 1 of Human Tissue Factor Pathway Inhibitor-2 Against 2-Chloroethyl Ethyl Sulfide Toxicity In Vitro

    Moonsuk S. Choi


    Full Text Available Objective: Sulfur mustard is a well-known blistering chemical warfare agent that has been investigated for its toxicological mechanisms and an efficacious antidote. Since sulfur mustard injury involves dermal:epidermal separation, proteolytic enzymes were suspected to be involved for this separation and eventual blister development. Therefore, protease inhibitors could be of therapeutic utility against sulfur mustard injury. In this study, the effects of Kunitz-domain 1 of human tissue factor pathway inhibitor-2 were evaluated against the toxic effects of 2-chloroethyl ethyl sulfide, a surrogate agent of sulfur mustard. Tissue factor pathway inhibitor-2 is a 32-kDa serine protease inhibitor produced by a variety of cell types including human epidermal keratinocytes, fibroblasts, and endothelial cells. It consists of 3 Kunitz-domains and the first Kunitz-domain contains the putative P1 residue (arginine at position 24 responsible for protease inhibitory activity. Methods: Recombinant wild-type and R24Q mutant Kunitz-domain 1s were expressed in Escherichia coli and purified. The purified proteins were refolded, and their effects were tested in an in vitro human epidermal keratinocyte cell wounding assay. Results: Wild-type but not R24Q Kunitz-domain 1 inhibited the amidolytic activity of trypsin and plasmin. Wild-type Kunitz-domain1 was stable for 4 weeks at 42°C and for more than 8 weeks at room temperature. Wild-type Kunitz-domain 1 significantly improved wound healing of unexposed and 2-chloroethyl ethyl sulfide–exposed cells without influencing cell proliferation. Although R24Q Kunitz-domain 1 lacked trypsin and plasmin inhibitory activity, it promoted wound closure of untreated and 2-chloroethyl ethyl sulfide–treated cells but to a much lesser degree. Conclusion: These data suggest that wild-type Kunitz-domain 1 of human tissue factor pathway inhibitor-2 can be developed as a medical countermeasure against sulfur mustard cutaneous injury.

  7. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FTTM, a commercially available full-thickness human skin equivalent. CEES (100-1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE2 synthases, leukotriene (LT) A4 hydrolase and LTC4 synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.

  8. Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide

    Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 μM) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A4 (LTA4) hydrolase and leukotriene C4 (LTC4) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA4 hydrolase and LTC4 synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.

  9. Role of TNFR1 in lung injury and altered lung function induced by the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxide synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNFα (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNFα mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNFα signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.

  10. Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions.

    Debiak, Malgorzata; Lex, Kirsten; Ponath, Viviane; Burckhardt-Boer, Waltraud; Thiermann, Horst; Steinritz, Dirk; Schmidt, Annette; Mangerich, Aswin; Bürkle, Alexander


    Sulfur mustard (SM) is a bifunctional alkylating agent with a long history of use as a chemical weapon. Although its last military use is dated for the eighties of the last century, a potential use in terroristic attacks against civilians remains a significant threat. Thus, improving medical therapy of mustard exposed individuals is still of particular interest. PARP inhibitors were recently brought into the focus as a potential countermeasure for mustard-induced pathologies, supported by the availability of efficient compounds successfully tested in cancer therapy. PARP activation after SM treatment was reported in several cell types and tissues under various conditions; however, a detailed characterization of this phenomenon is still missing. This study provides the basis for such studies by developing and optimizing experimental conditions to investigate poly(ADP-ribosyl)ation (PARylation) in HaCaT keratinocytes upon treatment with the monofunctional alkylating agent 2-chloroethyl ethyl sulfide ("half mustard", CEES). By using an immunofluorescence-based approach, we show that optimization of experimental conditions with regards to the type of solvent, dilution factors and treatment procedure is essential to obtain a homogenous PAR staining in HaCaT cell cultures. Furthermore, we demonstrate that different CEES treatment protocols significantly influence the cytotoxicity profiles of treated cells. Using an optimized treatment protocol, our data reveals that CEES induces a dose- and time-dependent dynamic PARylation response in HaCaT cells that could be completely blocked by treating cells with the clinically relevant pharmacological PARP inhibitor ABT888 (also known as veliparib). Finally, siRNA experiments show that CEES-induced PAR formation is predominantly due to the activation of PARP1. In conclusion, this study provides a detailed analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to study the

  11. Zinc oxide nanocubes as a destructive nanoadsorbent for the neutralization chemistry of 2-chloroethyl phenyl sulfide: A sulfur mustard simulant.

    Kiani, Armin; Dastafkan, Kamran


    Zinc oxide nanocubes were surveyed for their destructive turn-over to decontaminate 2-chloro ethyl phenyl sulfide, a sulfur mustard simulant. Prior to the reaction, nanocubes were prepared through sol-gel method using monoethanolamine, diethylene glycol, and anhydrous citric acid as the stabilizing, cross linking/structure directing agents, respectively. The formation of nanoscale ZnO, the cubic morphology, crystalline structure, and chemical-adsorptive characteristics were certified by FESEM-EDS, TEM-SAED, XRD, FTIR, BET-BJH, H2-TPR, and ESR techniques. Adsorption and destruction reactions were tracked by GC-FID analysis in which the effects of polarity of the media, reaction time, and temperature on the destructive capability of the surface of nanocubes were investigated and discussed. Results demonstrated that maximum neutralization occurred in n-heptane solvent after 1/2h at 55°C. Kinetic study construed that the neutralization reaction followed the pseudo-second order model with a squared correlation coefficient and rate constant of 0.9904 and 0.00004gmg(-1)s(-1), respectively. Furthermore, GC-MS measurement confirmed the formation of 2-hydroxy ethyl phenyl sulfide (2-HEPS) and phenyl vinyl sulfide (PVS) as neutralization products that together with Bronsted and Lewis acid/base approaches exemplify the role of hydrolysis and elimination mechanisms on the surface of zinc oxide nanocubes. PMID:27309947

  12. Significance of porous structure on degradatin of 2 2' dichloro diethyl sulphide and 2 chloroethyl ethyl sulphide on the surface of vanadium oxide nanostructure

    Degradation of the king of chemical warfare agent, 2 2' dichloro diethyl sulphide (HD), and its simulant 2 chloroethyl ethyl sulphide (CEES) were investigated on the surface of porous vanadium oxide nanotubes at room temperature (30 ± 2°C ). Reaction kinetics was monitored by GC-FID technique and the reaction products were characterized by GC-MS. Data indicates that HD degraded faster relative to CEES inside the solid decontaminant compared to the reported liquid phase degradation of CEES and HD. Data explores the role of hydrolysis, elimination and oxidation reactions in the detoxification of HD and CEES and the first order rate constant and t1/2 were calculated to be 0.026 h-1, 26.6 h for CEES and 0.052 h-1, 13.24 h for HD. In this report faster degradation of HD compared to CEES was explained on the basis of porous structure.

  13. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.


    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450’s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroe...

  14. Accurate spectroscopic characterization of ethyl mercaptan and dimethyl sulfide isotopologues: a route toward their astrophysical detection

    Puzzarini, C. [Dipartimento di Chimica, " Giacomo Ciamician," Università diBologna, Via F. Selmi 2, I-40126 Bologna (Italy); Senent, M. L. [Departamento de Química y Física Teóricas, Institsuto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Domínguez-Gómez, R. [Doctora Vinculada IEM-CSIC, Departamento de Ingeniería Civil, Cátedra de Química, E.U.I.T. Obras Públicas, Universidad Politécnica de Madrid (Spain); Carvajal, M. [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Unidad Asociada IEM-CSIC-U.Huelva, Universidad de Huelva, E-21071 Huelva (Spain); Hochlaf, M. [Université Paris-Est, Laboratoire de Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallée (France); Al-Mogren, M. Mogren, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Chemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia)


    Using state-of-the-art computational methodologies, we predict a set of reliable rotational and torsional parameters for ethyl mercaptan and dimethyl sulfide monosubstituted isotopologues. This includes rotational, quartic, and sextic centrifugal-distortion constants, torsional levels, and torsional splittings. The accuracy of the present data was assessed from a comparison to the available experimental data. Generally, our computed parameters should help in the characterization and the identification of these organo-sulfur molecules in laboratory settings and in the interstellar medium.

  15. Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl 2/Bis(2-chloroethyl) ether soluble complex in hexanes

    Kumar, Rajeev Ananda


    The polymerization of isobutylene (IB) to yield highly reactive polyisobutylene (HR PIB) with high exo-olefin content using GaCl3 or FeCl3·diisopropyl ether complexes has been previously reported.1 In an effort to further improve polymerization rates and exo-olefin content, we have studied ethylaluminum dichloride (EADC) complexes with diisopropyl ether, 2-chloroethyl ethyl ether (CEEE), and bis(2-chloroethyl) ether (CEE) as catalysts in conjunction with tert-butyl chloride as initiator in hexanes at different temperatures. All three complexes were readily soluble in hexanes. Polymerization, however, was only observed with CEE. At 0 °C polymerization was complete in 5 min at [t-BuCl] = [EADC·CEE] = 10 mM and resulted in PIB with ∼70% exo-olefin content. Studies on complexation using ATR FTIR and 1H NMR spectroscopy revealed that at 1:1 stoichiometry a small amount of EADC remains uncomplexed. By employing an excess of CEE, exo-olefin contents increased up to 90%, while polymerization rates decreased only slightly. With decreasing temperature, polymerization rates decreased while molecular weights as well as exo-olefin contents increased, suggesting that isomerization has a higher activation energy than β-proton abstraction. Density functional theory (DFT) studies on the Lewis acid·ether binding energies indicated a trend consistent with the polymerization results. The polymerization mechanism proposed previously for Lewis acid·ether complexes1 adequately explains all the findings. © 2014 American Chemical Society.

  16. Effect of cycocel [(2, chloroethyl) trimethyl ammonium chloride] on growth and nutrition of jute

    Studies were conducted on the effect of cycocel [(2, chloroethyl) trimethyl ammonium chloride] on the growth and nutrition of two jute varieties. C. capsularis (JRC 212) and C. olitorius (JRO 632). In general, the soil application was found to be superior to foliar application. The latter method yielded significant results when applied at 30 days to C. capsularis whereas C. olitorius responded well at 45 days of spray. Out of the N, P and K application, P was applied as 32P-superphosphate. (author)

  17. Aminoalkylated Merrifield Resins Reticulated by Tris-(2-chloroethyl Phosphate for Cadmium, Copper, and Iron (II Extraction

    Mokhtar Dardouri


    Full Text Available We aimed to synthesize novel substituted polymers bearing functional groups to chelate heavy metals during depollution applications. Three polyamine functionalized Merrifield resins were prepared via ethylenediamine (EDA, diethylenetriamine (DETA, and triethylenetetramine (TETA modifications named, respectively, MR-EDA, MR-DETA, and MR-TETA. The aminoalkylated polymers were subsequently reticulated by tris-(2-chloroethyl phosphate (TCEP to obtain new polymeric resins called, respectively, MR-EDA-TCEP, MR-DETA-TCEP, and MR-TETA-TCEP. The obtained resins were characterized via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR, elemental analysis (EA, and thermogravimetric (TGA, thermodynamic (DTA, and differential thermogravimetric (DTG analysis. The synthesized resins were then assayed to evaluate their efficiency to extract metallic ions such as Cd2+, Cu2+, and Fe2+ from aqueous solutions.

  18. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide.

    Kinzurik, Matias I; Herbst-Johnstone, Mandy; Gardner, Richard C; Fedrizzi, Bruno


    Hydrogen sulfide (H2S) is produced by yeast during winemaking and possesses off-flavors reminiscent of rotten eggs. The production of H2S during fermentation has also been associated in the finished wine with the rise of additional volatile sulfur compounds (VSCs) with strong aromas of cooked onions and vegetables. To characterize these more complex VSCs produced from H2S, we performed fermentations in synthetic grape juice. H2S production was manipulated experimentally by feeding increasing concentrations of sulfate to mutant strains that are unable to incorporate H2S efficiently as part of the sulfur assimilation pathway. In finished wines from these mutants, three VSCs - ethanethiol, S-ethyl thioacetate and diethyl disulfide - increased proportionally to H2S. (34)S-labeled sulfate fed to the MET17-deleted strain was incorporated into same three VSCs, demonstrating that they are formed directly from H2S. PMID:27173572

  19. N2,N2,N5,N5-Tetrakis(2-chloroethyl-3,4-dimethylthiophene-2,5-dicarboxamide

    Yi-Dan Tang


    Full Text Available In the title compound, C16H22Cl4N2O2S, the two imide groups adopt a trans arrangement relative to the central thienyl ring, so the four terminal 2-chloroethyl arms adopt different orientations. In the crystal, molecules are linked by weak C—H...Cl and C—H...O hydrogen bonds into a three-dimensional network.

  20. Potentiation in the intact rat of the hepatotoxicity of acetaminophen by 1,3-bis(2-chloroethyl)-1-nitrosourea.

    Nakae, D; Oakes, J W; Farber, J L


    Studies of the killing of cultured hepatocytes by acetaminophen indicate that the cells are injured by an oxidative stress that accompanies the metabolism of the toxin (J. L. Farber et al. (1988) Arch. Biochem. Biophys. 267, 640-650). The present report documents that the essential features of the killing of cultured hepatocytes by acetaminophen are reproduced in the intact animal. Male rats had no evidence of liver necrosis 24 h after administration of up to 1000 mg/kg of acetaminophen. Induction of mixed function oxidase activity by 3-methylcholanthrene increased the hepatotoxicity of acetaminophen. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) potentiated the hepatotoxicity of acetaminophen in male rats induced with 3-methylcholanthrene. Whereas the pretreatment with BCNU reduced the GSH content by 40%, a comparable depletion of GSH by diethylmaleate did not potentiate the toxicity of acetaminophen. The antioxidant diphenylphenylenediamine (25 mg/kg) and the ferric iron chelator deferoxamine (1000 mg/kg) prevented the liver necrosis produced by 500 mg/kg acetaminophen in rats pretreated with BCNU. Neither protective agent prevented the fall in GSH produced by acetaminophen. It is concluded the conditions of the irreversible injury of cultured hepatocytes by acetaminophen previously reported are not necessarily different from those that obtain in the intact rat with this toxin. PMID:3214175

  1. In vivo potentiation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea by the radiation sensitizer benznidazole

    Recent studies in mouse tumor systems have indicated a potential therapeutic advantage in combining the radiosensitizer misonidazole (MISO) with cancer chemotherapy drugs. One agent the antitumor activity of which has been enhanced to a greater extent than its hematological or gastrointestinal toxicities is the nitrosourea, 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU). Recently, sensitizers more lipophylic than MISO have been reported to give greater tumor response enhancement when combined with CCNU. The present studies compared the potential therapeutic benefit of combining MISO (partition coefficient, 0.43) or benznidazole (BENZO) (partition coefficient, 8.5) in KHT sarcoma or RIF-1 tumor-bearing C3H mice. Both sensitizers were administered i.p. and given either 30 min before (BENZO) or simultaneously with (MISO) the chemotherapeutic agent. Survival of clonogenic tumor cells assessed 22 to 24 hr after treatment or in situ tumor growth delay were used as assays of tumor response. Normal tissue toxicity was determined using the drug dose yielding 50% animal lethality in 30 days end point. When combined with CCNU, doses of MISO (5.0 mmol/kg) or BENZO (0.3 mmol/kg) were found to yield approximately equivalent increases in both the tumor effect (enhancement ratio, approximately 1.8 to 2.0) and normal tissue toxicity (enhancement ratio approximately 1.3 to 1.4). Both sensitizers therefore led to a therapeutic benefit. However, although a approximately 10-fold lower dose of the more lipophylic sensitizer BENZO proved to be as effective as MISO at enhancing the tumoricidal effects of CCNU, this dose reduction did not result in a greater therapeutic gain for BENZO

  2. Enhancement of 1,3-bis(2-chloroethyl)-1-nitrosourea resistance by gamma-irradiation or drug pretreatment in rat hepatoma cells

    Treatment of rat hepatoma cells (H4 cells) with various DNA-damaging agents increases the number of O6-methylguanine-DNA-methyltransferase (transferase) molecules per cell. Because the cellular resistance to chloroethylnitrosoureas depends on the number of transferase molecules, we studied the influence of pretreatment with gamma-irradiation, cis-dichlorodiammineplatinum(II), or 2-methyl-9-hydroxyellipticinium on the sensitivity of H4 cells to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). The BCNU resistance depends on the gamma-ray dose and increases with time after irradiation: it is maximum when the drug is added 48 h after irradiation, which corresponds to the maximum enhancement of the transferase activity in the cells. Pretreatment with a single dose of cis-dichlorodiammineplatinum(II) or 2-methyl-9-hydroxyellipticinium also increases the cellular resistance to BCNU. This resistance is not due to a modification of the alkylation of the cellular DNA in the pretreated cells but is related to the increased transferase activity, as it is no longer observed when this activity is depleted by incubating the pretreated cells with the free base O6-methylguanine before BCNU treatment. These results suggest that tumor cells surviving after gamma-irradiation or drug treatment may become resistant to chemotherapy with chloroethylnitrosoureas

  3. Tris(2-chloroethyl)phosphate-induced cell growth arrest via attenuation of SIRT1-independent PI3K/Akt/mTOR pathway.

    Zhang, Wenjuan; Zhang, Youjian; Wang, Zhiyuan; Xu, Tian; Huang, Cheng; Yin, Wenjun; Wang, Jing; Xiong, Wei; Lu, Wenhong; Zheng, Hongyan; Yuan, Jing


    Tris(2-chloroethyl)phosphate (TCEP) as an organophosphorus flame retardant and plasticizer has been widely used in industrial and household products. It not only was detected in residential indoor air and dust, surface and drinking water, but also in human plasma and breast milk, and tissue samples of liver, kidneys and brain from rodents. TCEP is classified as carcinogenic category 2 and toxic for reproduction category 1B. Sufficient evidence from experimental animals indicated carcinogenicity of TCEP in the liver, and kidneys as well as cell loss in the brain. However, the underlying mechanisms of TCEP-induced hepatotoxicity are mostly unknown. We investigated the in vitro effects of TCEP as well as TCEP-induced cell growth in the L02 and HepG2 cells through the PI3K/Akt/mTOR pathway. We found that TCEP reduced cell viability of these cell lines, induced the cell growth arrest, upregulated mRNA and protein levels of SIRT1, and attenuated the PI3K/Akt/mTOR pathway. However, growth arrest of the L02 and HepG2 cells were aggravated after inhibiting the SIRT1 expression with EX-527. The findings above suggested that TCEP induced the cell growth arrest of L02 and HepG2 cells via attenuation of the SIRT1-independent PI3K/Akt/mTOR pathway. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26378621

  4. Factors influencing the survival of rat brain tumor cells after in vitro treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea

    Wheeler, K.T.; Tel, N.; Williams, M.E.; Sheppard, S.; Levin, V.A.; Kara, P.M.


    The shape of dose-response curves obtained for asynchronous, exponential growing 9L rat brain tumor cells treated in vitro with 1,3-bis(2-chloroethyl)-l-nitrosourea changed as a function of the drug exposure time. For short treatment times (<1 hr), the dose-response curves had shoulders, indicating that the cells may accumulate sublethal damage; however, after longer treatments (>1 hr), little if any shoulder was apparent. The slope of the exponential portion of the dose-response curve increased progressively with treatment periods from 15 min to 2 hr. Longer exposure times (up to 24 hr) produced no further changes in the cell-kill kinetics. Cell survival was directly related to the BCNU exposure dose and to the amount of bound BCNU per cell. Extrapolation of the curves for these two variables indicated that some BCNU damage accumulates before death occurs. The amount of serum and cell products available in the medium to bind BCNU affected the level of survival; however, there was no evidence that extracellular spontaneous breakdown products or chemical transformation products were involved in the cell-killing mechanism. (auth)

  5. O6-alkylguanine-DNA alkyltransferase activity correlates with the therapeutic response of human rhabdomyosarcoma xenografts to 1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea

    Immune-deprived female CBA/CaJ mice bearing xenografts of six different human rhabdomyosarcoma lines were treated with 1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea (MeCCNU). Tumor responses were compared with levels of O6-methylguanine-DNA methyltransferase activity because of evidence indicating that repair of DNA interstrand cross-link precursors, mediated by the transferase, may be an important determinant of MeCCNU cytotoxicity. Levels of methyltransferase in tumor extracts were measured by determining the loss of O6-methylguanine from 3H-labeled methylated DNA. Five of the six tumor lines examined showed either no response to MeCCNU or regrowth after an incomplete response. In each instance, the extent of tumor regression correlated with the level of O6-methylguanine-DNA methyltransferase activity in tumor extracts. These results suggest that O6-methylguanine-DNA methyltransferase levels in human tumor cells may be a clinically useful predictor of sensitivity to the chloroethylnitrosoureas

  6. Neurotoxicity after intracarotid 1,3-bis(2-chloroethyl)-1-nitrosourea administration in the rat: Hemodynamic changes studied by double-tracer autoradiography

    Nagahiro, S.; Yamamoto, Y.L.; Diksic, M.; Mitsuka, S.; Sugimoto, S.; Feindel, W. (Cone Laboratory for Neurosurgical Research, Montreal Neurological Institute, Quebec (Canada))


    Changes in blood-brain (BBB) permeability and local cerebral blood flow after intracarotid administration of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) were examined quantitatively in rats with double-tracer autoradiography using (14C)alpha-amino-isobutyric acid and (18F)fluoroantipyrine. Forty-eight female Wistar rats were divided into four groups. The control group (Group 1) received 1 ml of 5% dextrose. The other three groups received three different doses of BCNU dissolved in 5% dextrose: Group 2 rats received 1 mg, Group 3 3 mg, and Group 4 10 mg. The tracer study was performed on Day 1 or Days 4 to 12 after intracarotid administration of BCNU. In 11 rats in Group 2, there were no changes of BBB permeability. Transient BBB permeability changes were seen in the striatum or hippocampus in 3 of the 5 rats (60%) in Group 3 within 24 hours. In 8 of 9 rats (89%) in the same group, late BBB permeability changes were observed in the hypothalamus with or without histological changes. BBB permeability changes were seen in all rats of Group 4. Focal increase of local cerebral blood flow on the infused side compared with the non-infused side of the brain was observed, although not at a significant level, in 5 of 25 rats examined with (18F)fluoroantipyrine. The results of BBB permeability and histological examinations and study of heterogenous distribution by (18F)fluorodeoxyglucose indicated that the ipsilateral subcortical structures such as the hypothalamus, amygdala, internal capsule, and caudate putamen have the highest incidence of neurotoxicity, which are closely related to histopathological damage seen in human BCNU leucoencephalopathy.

  7. HILIC-MS Determination of Genotoxic Impurity of 2-Chloro-N-(2-Chloroethyl)Ethanamine in the Vortioxetine Manufacturing Process.

    Douša, Michal; Klvaňa, Robert; Doubský, Jan; Srbek, Jan; Richter, Jindřich; Exner, Marek; Gibala, Petr


    In the last decade, pharmaceutical regulatory agencies are focused on monitoring and evaluation of trace-level genotoxic impurities (GTIs) in drug substances, which requires manufacturers to deliver innovative approaches for their analysis and control. GTIs in the low p.p.m. level rising from the process of drug production have to be positively identified and quantified. Therefore, sensitive and selective analytical methods are necessary for required quantification level of these GTIs. Unfortunately, general guidance on how to develop strategy of the analysis and control of GTIs is currently missing in the pharmaceutical industry. Therefore, practical example of the analytical control of 2-chloro-N-(2-chloroethyl)ethanamine GTI in the vortioxetine (VOR) manufacturing process was demonstrated in this work. QDa mass detection with electrospray ionization in selected-ion recording mode was utilized for quantitation of GTIs. The method of hydrophilic interaction liquid chromatography coupled with mass spectrometry detection (HILIC-MS) was validated as per International Conference on Harmonization guidelines and was able to quantitate GTIs at 75 p.p.m. with respect to VOR. The HILIC-MS method was achieved using a Primesep B column (150 × 4.6 mm, 5.0 µm; Sielc, USA) using mobile phase consisting of 10 mM ammonium formate buffer pH 3.0 and acetonitrile (5 : 95, v/v) at 0.8 mL/min flow rate. The QDa mass detector was operated in the positive ion mode. Quadrupole mass analyzer was employed in selected-ion monitoring mode using target ion at m/z 142 as [M+H](+). PMID:26223463

  8. Miscoding properties of 1,N{sup 6}-ethanoadenine, a DNA adduct derived from reaction with antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea

    Hang, Bo; Guliaev, Anton B.; Chenna, Ahmed; Singer, B.


    1,N{sup 6}-Ethanoadenine (EA) is an exocyclic adduct formed from DNA reaction with the antitumor agent, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). To understand the role of this adduct in the mechanism of mutagenicity or carcinogenicity by BCNU, an oligonucleotide with a site-specific EA was synthesized using phosphoramidite chemistry. We now report the in vitro miscoding properties of EA in translesion DNA synthesis catalyzed by mammalian DNA polymerases (pols) {alpha}, {beta}, {eta} and {iota}. These data were also compared with those obtained for the structurally related exocyclic adduct, 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using a primer extension assay, both pols {alpha} and {beta} were primarily blocked by EA or {var_epsilon}A with very minor extension. Pol {eta} a member of the Y family of polymerases, was capable of catalyzing a significant amount of bypass across both adducts. Pol {eta} incorporated all four nucleotides opposite EA and {var_epsilon}A, but with differential preferences and mainly in an error-prone manner. Human pol {iota}, a paralog of human pol {eta}, was blocked by both adducts with a very small amount of synthesis past {var_epsilon}A. It incorporated C and, to a much lesser extent, T, opposite either adduct. In addition, the presence of an A adduct, e.g. {var_epsilon}A, could affect the specificity of pol {iota} toward the template T immediately 3 feet to the adduct. In conclusion, the four polymerases assayed on templates containing an EA or {var_epsilon}A showed differential bypass capacity and nucleotide incorporation specificity, with the two adducts not completely identical in influencing these properties. Although there was a measurable extent of error-free nucleotide incorporation, all these polymerases primarily misincorporated opposite EA, indicating that the adduct, similar to {var_epsilon}A, is a miscoding lesion.

  9. Neurotoxicity after intracarotid 1,3-bis(2-chloroethyl)-1-nitrosourea administration in the rat: Hemodynamic changes studied by double-tracer autoradiography

    Changes in blood-brain (BBB) permeability and local cerebral blood flow after intracarotid administration of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) were examined quantitatively in rats with double-tracer autoradiography using [14C]alpha-amino-isobutyric acid and [18F]fluoroantipyrine. Forty-eight female Wistar rats were divided into four groups. The control group (Group 1) received 1 ml of 5% dextrose. The other three groups received three different doses of BCNU dissolved in 5% dextrose: Group 2 rats received 1 mg, Group 3 3 mg, and Group 4 10 mg. The tracer study was performed on Day 1 or Days 4 to 12 after intracarotid administration of BCNU. In 11 rats in Group 2, there were no changes of BBB permeability. Transient BBB permeability changes were seen in the striatum or hippocampus in 3 of the 5 rats (60%) in Group 3 within 24 hours. In 8 of 9 rats (89%) in the same group, late BBB permeability changes were observed in the hypothalamus with or without histological changes. BBB permeability changes were seen in all rats of Group 4. Focal increase of local cerebral blood flow on the infused side compared with the non-infused side of the brain was observed, although not at a significant level, in 5 of 25 rats examined with [18F]fluoroantipyrine. The results of BBB permeability and histological examinations and study of heterogenous distribution by [18F]fluorodeoxyglucose indicated that the ipsilateral subcortical structures such as the hypothalamus, amygdala, internal capsule, and caudate putamen have the highest incidence of neurotoxicity, which are closely related to histopathological damage seen in human BCNU leucoencephalopathy

  10. In vitro release of 1,3-bis (2-chloroethyl)-1-nitrosourea sustained-release microspheres and the distribution in rat brain tissues

    Xia Li; Liping Guo; Qin Li


    BACKGROUND: The implantation of released chemotherapeutic drugs, which takes biodegradable polymer as vector, into the tumor site can get high concentration and release the drug for a long time, it can directly act on the tumor cells, and reduce the general toxicity.OBJECTIVE: To explore the in vitro and in vivo course of 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) sustained-release from BCNU-loaded polylactide (PLA) microspheres (MS) and location in rat brain tissue.DESIGN: A repetitive measurement.SETTING: Central Pharmacy, General Hospital of Chinese People's Armed Police Forces.MATERIALS: Thirty male SD rats were used. PLA (Mr5000, batch number: KSL8377) was produced by Wako Pure Chemical Inc.,Ltd. (Japan); BCNU (batch number: 021121) by Tianjin Jinyao Amino Acid Co., Ltd.;BCNU-PLA-MS was prepared by the method of solvent evaporation and pressed into tablets (10 mg/tablet).High-performance liquid chromatography (HPLC) Agilent 1100 (USA); LS9800 liquid-scintillation radiometric apparatus (Beckman). Chromatographic conditions: Elite Hypersil ODS2 C18 chromatographic column (5 μm,4.6 mm ×150 mm); Mobile phase: methanol: water (50:50), flow rate was 1.0 mL per minute, wave length of ultraviolet detection was 237 nm, and the inlet amount of samples was 10 μL.METHODS: The experiments were carried out in the experimental animal center of the General Hospital of Chinese Armed Police from May 2004 to July 2005. ① In vitro BCNU-PLA-MS release test: BCNU-PLA-MS was prepared by the method of solvent evaporation, then placed in 0.1 mol/L phosphate buffered solution (PBS, pH 7.4, 37 ℃), part of MS were taken out at 1, 2, 3, 7, 10 and 15 days respectively, and the rest amount of BCNU in MS was determined by HPLC, then the curve of BCNU-PLA-MS release was drawn. ②In vivo BCNU-PLA-MS release and distribution test: The rats were anesthetized, then BCNU-PLA-MS were implanted to the site 1 mm inferior to the cortex of frontal lobe. Five rats were killed postoperatively

  11. A dominated and resistant subpopulation causes regrowth after response to 1,3-bis(2-chloroethyl)-1-nitrosourea treatment of a heterogeneous small cell lung cancer xenograft in nude mice

    Aabo, K; Roed, H; Vindeløv, L L;


    In order to address the question of the influence of a primarily chemoresistant tumor cell subpopulation on the progression of a heterogeneous tumor after cytotoxic therapy, in vitro established human small cell lung cancer cell lines of a 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-sensitive (592......) and a resistant (NYH) tumor were used to produce mixed solid tumors in nude mice. Mixtures of 592/NYH (9:1 and 1:1) were inoculated s.c. After 3-4 weeks of tumor growth, the mice were stratified according to tumor size and randomized to treatment with BCNU 40 mg/kg i.p. (10% of lethal dose) or no...

  12. Synthesis, characterization, crystal structure determination and computational study of a new Cu(II) complex of bis [2-{(E)-[2-chloroethyl)imino]methyl}phenolato)] copper(II) Schiff base complex

    Grivani, Gholamhossein; Vakili, Mohammad; Khalaji, Aliakbar Dehno; Bruno, Giuseppe; Rudbari, Hadi Amiri; Taghavi, Maedeh


    The copper (II) Schiff base complex of [CuL2] (1), HL = 2-{(E)-[2-chloroethyl) imino]methyl}phenol, has been synthesized and characterized by elemental (CHN) analysis, UV-Vis and FT-IR spectroscopy. The molecular structure of 1 was determined by single crystal X-ray diffraction technique. The conformational analysis and molecular structures of CuL2 were investigated by means of density functional theory (DFT) calculations at B3LYP/6-311G* level. An excellent agreement was observed between theoretical and experimental results. The Schiff base ligand of HL acts as a chelating ligand and coordinates via one nitrogen atom and one oxygen atom to the metal center. The copper (II) center is coordinated by two nitrogen atoms and two oxygen atoms from two Schiff base ligands in an approximately square planar trans-[MN2O2] coordination geometry. Thermogravimetric analysis of CuL2 showed that it was decomposed in five stages. In addition, the CuL2 complex thermally decomposed in air at 660 °C and the XRD pattern of the obtained solid showed the formation of CuO nanoparticles with an average size of 34 nm.

  13. Coupling of Alcohols over Alkali-Promoted Cobalt-Molybdenum Sulfide

    Christensen, Jakob Munkholt; Jensen, Peter Arendt; Schiødt, N.C.;


    Double or nothing: Higher alcohols are produced by the hydrogenation of CO with a K-promoted Co-MoS2/C catalyst. Ethanol, which is passed over the sulfide catalyst along with CO and H2, is mainly converted into 1-butanol, which indicates that alcohol condensation contributes to the build-up of...... higher alcohols over the sulfide catalyst. In a nitrogen atmosphere, ethanol is also in part converted into 1-butanol, although ethyl acetate is the major product....

  14. Protective Effect of Liposome-Encapsulated Glutathione in a Human Epidermal Model Exposed to a Mustard Gas Analog

    Victor Paromov; Sudha Kumari; Marianne Brannon; Kanaparthy, Naga S.; Hongsong Yang; Smith, Milton G.; Stone, William L


    Sulfur mustard or mustard gas (HD) and its monofunctional analog, 2-chloroethyl ethyl sulfide (CEES), or “half-mustard gas,” are alkylating agents that induce DNA damage, oxidative stress, and inflammation. HD/CEES are rapidly absorbed in the skin causing extensive injury. We hypothesize that antioxidant liposomes that deliver both water-soluble and lipid-soluble antioxidants protect skin cells from immediate CEES-induced damage via attenuating oxidative stress. Liposomes containing water-sol...

  15. Catalytic Combustion of Ethyl Acetate

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden


    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  16. Mesostructured metal germanium sulfides

    MacLachlan, M.J.; Coombs, N.; Bedard, R.L.; White, S.; Thompson, L.K.; Ozin, G.A.


    A new class of mesostructured metal germanium sulfide materials has been prepared and characterized. The synthesis, via supramolecular assembly of well-defined germanium sulfide anionic cluster precursors and transition-metal cations in formamide, represents a new strategy for the formation of this class of solids. A variety of techniques were employed to examine the structure and composition of the materials. Structurally, the material is best described as a periodic mesostructured metal sulfide-based coordination framework akin to periodic hexagonal mesoporous silica, MCM-41. At the molecular scale, the materials strongly resemble microstructured metal germanium sulfides, in which the structure of the [Ge{sub 4}S{sub 10}]{sup 4{minus}} cluster building-blocks are intact and linked via {mu}-S-M-S bonds. Evidence for a metal-metal bond in mesostructured Cu/Ge{sub 4}S{sub 10} is also provided.

  17. Use of ethyl glucuronide and ethyl sulphate in forensic toxicology


    List of papers I. Høiseth G, Karinen R, Christophersen AS, Olsen L, Normann PT, Mørland J. (2007) A study of ethyl glucuronide in post-mortem blood as a marker of ante-mortem ingestion of alcohol. Forensic Sci Int 165:41-45 II. Høiseth G, Karinen R, Johnsen L, Normann PT, Christophersen AS, Mørland J. (2008) Disappearance of ethyl glucuronide during heavy putrefaction. For Sci Int. 176:147-51 III. Høiseth G, Kristoffersen L, Larssen B, Arnestad M, Hermansen NO, Mørland J.(2008) ...


    Duffield, R.B.


    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  19. Ethyl diazoacetate synthesis in flow

    Mariëlle M. E. Delville


    Full Text Available Ethyl diazoacetate is a versatile compound in organic chemistry and frequently used on lab scale. Its highly explosive nature, however, severely limits its use in industrial processes. The in-line coupling of microreactor synthesis and separation technology enables the synthesis of this compound in an inherently safe manner, thereby making it available on demand in sufficient quantities. Ethyl diazoacetate was prepared in a biphasic mixture comprising an aqueous solution of glycine ethyl ester, sodium nitrite and dichloromethane. Optimization of the reaction was focused on decreasing the residence time with the smallest amount of sodium nitrite possible. With these boundary conditions, a production yield of 20 g EDA day−1 was achieved using a microreactor with an internal volume of 100 μL. Straightforward scale-up or scale-out of microreactor technology renders this method viable for industrial application.

  20. Titanocene sulfide chemistry

    Horáček, Michal


    Roč. 314, MAY 2016 (2016), s. 83-102. ISSN 0010-8545 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene sulfide chemistry * photolysis * titanocene hydrosulfides Ti-(SH)n Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.239, year: 2014

  1. Spectroscopic characterization of ethyl xanthate oxidation products and analysis by ion interaction chromatography

    Hao; Silvester; Senior


    An ion interaction chromatographic separation method, coupled with UV spectroscopic detection, has been developed for the analysis of ethyl xanthate (O-ethyl dithiocarbonate) and its oxidative decomposition products in mineral flotation systems. The effects of the ion-pairing agent (tetrabutylammonium ion), pH modifier (phosphoric acid), and organic modifier (acetonitrile) in the eluant upon the retention characteristics of the ethyl xanthate oxidation products have been determined. The optimized separation procedure has been successfully applied to the analysis of ethyl xanthate and its oxidation products in a nickel-iron sulfide mineral suspension containing a number of other anionic species, including cyanide complexes of nickel and iron, as well as sulfur-oxy anions. The ethyl xanthate oxidation products investigated in this study have been isolated as pure compounds and characterized by UV-visible, FT-IR, and NMR spectroscopies. The UV-visible and FT-IR spectroscopic properties of these species are discussed in terms of the chemical modifications of the thiocarbonate group. PMID:11055697

  2. Sulfide oxidation in a biofilter

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen;

    oxidizing bacteria but several fungal families including Trichocomaceae. A positive correlation was found between the presence of mold and sulfide uptake. However there have been no reports on fungi metabolizing hydrogen sulfide. We hypothesize that the mold increases the air exposed surface, enabling...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  3. Sulfide oxidation in a biofilter

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen;


    oxidizing bacteria but several fungal families including Trichocomaceae. A positive correlation was found between the presence of mold and sulfide uptake. However there have been no reports on fungi metabolizing hydrogen sulfide. We hypothesize that the mold increases the air exposed surface, enabling...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  4. Pallidol hexaacetate ethyl acetate monosolvate

    Qinyong Mao


    Full Text Available The entire molecule of pallidol hexaacetate {systematic name: (±-(4bR,5R,9bR,10R-5,10-bis[4-(acetyloxyphenyl]-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-1,3,6,8-tetrayl tetraacetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate molecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009. Acta Cryst. D65, 148–155]; the crystallographic data take into account the presence of the solvent. In pallidol hexaacetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100 Å is 54.73 (6°, indicating a significant fold in the molecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70 (5° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C—O(carboxy—C—C torsion angles = −70.24 (14, −114.43 (10 and −72.54 (13°]. In the crystal, a three-dimensional architecture is sustained by C—H...O interactions which encompass channels in which the disordered ethyl acetate molecules reside.

  5. Field method for sulfide determination

    Wilson, B L; Schwarser, R R; Chukwuenye, C O


    A simple and rapid method was developed for determining the total sulfide concentration in water in the field. Direct measurements were made using a silver/sulfide ion selective electrode in conjunction with a double junction reference electrode connected to an Orion Model 407A/F Specific Ion Meter. The method also made use of a sulfide anti-oxidant buffer (SAOB II) which consists of ascorbic acid, sodium hydroxide, and disodium EDTA. Preweighed sodium sulfide crystals were sealed in air tight plastic volumetric flasks which were used in standardization process in the field. Field standards were prepared by adding SAOB II to the flask containing the sulfide crystals and diluting it to the mark with deionized deaerated water. Serial dilutions of the standards were used to prepare standards of lower concentrations. Concentrations as low as 6 ppB were obtained on lake samples with a reproducibility better than +- 10%.

  6. 21 CFR 184.1293 - Ethyl alcohol.


    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl alcohol. 184.1293 Section 184.1293 Food and... Substances Affirmed as GRAS § 184.1293 Ethyl alcohol. (a) Ethyl alcohol (ethanol) is the chemical C2H5OH....

  7. A novel method for improving cerussite sulfidization

    Feng, Qi-cheng; Wen, Shu-ming; Zhao, Wen-juan; Cao, Qin-bo; Lü, Chao


    Evaluation of flotation behavior, solution measurements, and surface analyses were performed to investigate the effects of chloride ion addition on the sulfidization of cerussite in this study. Micro-flotation tests indicate that the addition of chloride ions prior to sulfidization can significantly increase the flotation recovery of cerussite, which is attributed to the formation of more lead sulfide species on the mineral surface. Solution measurement results suggest that the addition of chloride ions prior to sulfidization induces the transformation of more sulfide ions from pulp solution onto the mineral surface by the formation of more lead sulfide species. X-ray diffraction and energy-dispersive spectroscopy indicate that more lead sulfide species form on the mineral surface when chloride ions are added prior to sulfidization. These results demonstrate that the addition of chloride ions prior to sulfidization can significantly improve the sulfidization of cerussite, thereby enhancing the flotation performance.

  8. 21 CFR 173.228 - Ethyl acetate.


    ... the specifications of the Food Chemicals Codex, 1 (Ethyl Acetate; p. 372, 3d Ed., 1981), which are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl acetate. 173.228 Section 173.228 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  9. Mechanochemical reduction of copper sulfide

    Balaz, P.; Takacs, L.; Jiang, Jianzhong; Soika, V.; Luxova, M.

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min of...... milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  10. Pyrophoric nature of iron sulfides

    Walker, R. [Univ. of Surrey, Guildford (United Kingdom). Dept. of Materials Science and Engineering; Steele, A.D.; Morgan, D.T.B. [Shell Research Centre Ltd., Chester (United Kingdom). Thornton Research Centre


    Hydrogen sulfide, often present in crude oil tankers, can react with rust to form various sulfides including mackinawite (FeS), greigite (Fe{sub 3}S{sub 4}), and pyrite (FeS{sub 2}). The tendency for these compounds to react with oxygen in air to form potentially explosive mixtures depends upon their morphology and the environmental conditions. The experimentally determined heat of oxidation of finely divided mackinawite was {minus}7.45 kJ/g. For samples with a larger particle size and smaller surface area the values measured were lower due to incomplete oxidation of the sulfide. All the sulfides produced, whether from magnetite or acicular, prismatic or spherical geothite, were approximately spherical in form. The heat of oxidation of greigite was found to be approximately {minus}2100 kJ/mol, and the heat of formation of greigite is approximately {minus}320 kJ/mol.

  11. Environmental effect of rapeseed oil ethyl ester

    Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NOx), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NOx showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25-50% bio-ester mixed with fossil diesel fuel, NOx emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO2) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed. (author)

  12. The cyanogen-ethyl ethers of glycerin

    The cyanogen-ethylation is one of the characteristic reaction of hydroxyl comprising compounds and run with addition them to acryl nitride. The catalysis of process are substances, which have basic character

  13. Synthesis of furan from allenic sulfide derivatives


    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH, β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group. β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  14. Synthesis of furan from allenic sulfide derivatives

    PENG LingLing; ZHANG Xiu; MA Jie; ZHONG ZhenZhen; ZHANG Zhe; ZHANG Yan; WANG JianBo


    In this paper, we report the synthesis of furan derivatives from allenic sulfides. By the reaction with NaH.,β-Hydroxyl allenic sulfides were found to generate furan products in excellent yields with the removal of phenylthio group.β-Aldehyde allenic sulfides were found to give similar furan products with one more substituent when treated with additional nucleophilic reagents. β-ketone allenic sulfides can also cyclize to give furan derivatives with the promotion of P2O5.

  15. 30 CFR 250.808 - Hydrogen sulfide.


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of...

  16. 30 CFR 250.490 - Hydrogen sulfide.


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.490 Section 250.490... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Hydrogen Sulfide § 250.490 Hydrogen... black lettering as follows: Letter height Wording 12 inches Danger. Poisonous Gas. Hydrogen Sulfide....

  17. 30 CFR 250.604 - Hydrogen sulfide.


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or...

  18. 30 CFR 250.504 - Hydrogen sulfide.


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or...


    T. Lupascu


    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  20. Demand boom boosts ethyl, butyl acetate

    US ethyl and butyl acetate markets are being described as 'extremely tight.' One major domestic producer is 'in a sold-out position' and has 'gone on sales control' with respect to these two products. Producers say that sales of both ethyl and butyl acetate have increased during the past year, and industry observers say they expect to see an April 1 price initiative of 2 cts to 3 cts/lb, and possibly a second increase in October. While one producer suggests that this market strength could be 'a sign that the coatings industry is turning around,' most agree that reformulation is the principal driver of growth. Ethyl acetate is said to be replacing methyl ethyl ketone in many formulations, while butyl acetate and butyl acetate blends are substituting for methyl isobutyl ketone. In addition, both ethyl and butyl acetate work as substitutes for xylene and toluene in certain applications. In an effort to conform to the requirements of the Clean Air Act of 1990 and to cooperate with the Environmental Protection Agency's 33/50 voluntary emissions reduction program, coatings manufacturers are moving as quickly as possible to eliminate solvents from their products. And although solvents as a whole will eventually see a dramatic decline in consumption, the temporary beneficiaries of reformulation will be certain of the oxygenated solvents, says Jeff Back, business manager at Kline ampersand Co

  1. Sulfide intrusion and detoxification in seagrasses ecosystems

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... is known about the strategies of seagrasses to survive sulfide intrusion, their potential detoxification mechanisms and sulfur nutrition in general. By a global review of sulfide intrusion, coupled with a series of field studies and in situ experiments we elucidate sulfide intrusion and different...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...

  2. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides

    Shunmugavel, Saravanamurugan; Riisager, Anders


    Sulfonic acid functionalised SBA-15 (SO3H-SBA-15), sulfated zirconia and beta, Y, ZSM-5 and mordenite zeolite catalysts have been applied for the dehydration of sugars to ethyl levulinate and ethyl-D-glucopyranoside (EDGP) using ethanol as solvent and reactant. The SO3H-SBA-15 catalyst showed a...... high catalytic activity for the selective conversion of fructose to ethyl levulinate (57%) and glucose to EDGP (80%) at 140 °C, whereas the disaccharide sucrose yielded a significant amount of both products. The SO3H-SBA-15 catalysts were found to be highly active compared to the zeolites under...

  3. Study of the Reaction Cl + Ethyl Formate at 700-950 Torr and 297 to 435 K: Product Distribution and the Kinetics of the Reaction C2H5OC(═O) → CO2 + C2H5.

    Kaiser, E W


    The kinetics and mechanism of the reaction of atomic chlorine with ethyl formate [Cl + CH3CH2O(C═O)H, reaction 1] have been examined. These experiments were performed at pressures of 760-950 Torr and temperatures from 297 to 435 K. Reactants and products were quantified by gas chromatography-flame ionization detector (GC/FID) analysis. The initial mixture contained ethyl formate, Cl2, and N2. Cl atoms were generated by UV photolysis of this initial mixture at 360 nm, which dissociates Cl2. The rate constant of reaction 1 was measured at 297 K relative to that of the reaction Cl + C2H5Cl (reaction 2), yielding the rate constant ratio k1/k2 = 1.09 ± 0.05. The final products formed from reaction 1 are ethyl chloroformate, 1-chloroethyl formate, and 2-chloroethyl formate. These products result from the reactions with Cl2 of the three free radicals formed by H atom abstraction from ethylformate in reaction 1. Based on the molar yields of these three chlorinated products, the yields of the three radicals formed from reaction 1 at 297 K are (25 ± 3) mole percent of CH3CH2O(C═O); (67 ± 5) mole percent of CH3CHO(C═O)H; and (8 ± 2) mole percent of CH2CH2O(C═O)H. A second phase of this experiment measured the rate constant of the decarboxylation of the ethoxy carbonyl radical [CH3CH2O(C═O) → CO2 + C2H5, reaction 4] relative to the rate constant of its reaction with Cl2 [CH3CH2O(C═O) + Cl2 → CH3CH2O(C═O)Cl + Cl, reaction 3a]. Over the temperature range 297 to 404 K at 1 atm total pressure, this ratio can be expressed by k4/k3a = 10(23.56±0.22) e(-(12700±375)/RT) molecules cm(-3). Estimating the value of k3a (which has not been measured) based on similar reactions, the expression k4 = 5.8 × 10(12) e(-(12700)/RT) s(-1) is obtained. The estimated error of this rate constant is ± a factor of 2 over the experimental temperature range. This rate expression is compared with recent ab initio calculations of the decarboxylation of the analogous methoxy

  4. Redox Biochemistry of Hydrogen Sulfide*

    Kabil, Omer; Banerjee, Ruma


    H2S, the most recently discovered gasotransmitter, might in fact be the evolutionary matriarch of this family, being both ancient and highly reduced. Disruption of γ-cystathionase in mice leads to cardiovascular dysfunction and marked hypertension, suggesting a key role for this enzyme in H2S production in the vasculature. However, patients with inherited deficiency in γ-cystathionase apparently do not present vascular pathology. A mitochondrial pathway disposes sulfide and couples it to oxid...

  5. 2-Ethyl-6-methylanilinium 4-methylbenzenesulfonate

    Jiao Ye


    Full Text Available The title compound, C9H14N+·C7H7SO3−, contains a 2-ethyl-6-methylanilinium cation and a 4-methylbenzenesulfonic anion. The cations are anchored between the anions through N—H...O hydrogen bonds. Electrostatic and van der Waals interactions, as well as hydrogen bonds, maintain the structural cohesion.

  6. Interação de glyphosate com carfentrazone-ethyl Glyphosate - carfentrazone-ethyl interaction

    R.C. Werlang; Silva, A. A.


    Foi conduzido um experimento em condições controladas para determinar a interação do carfentrazone-ethyl em mistura no tanque com o herbicida glyphosate, no controle de seis espécies de plantas daninhas. Glyphosate aplicado isoladamente na dose de 720 g ha-1 foi eficaz no controle de Amaranthus hybridus (100%), Desmodium tortuosum (100%), Bidens pilosa (99%), Eleusine indica (96%), Digitaria horizontalis (100%) e Commelina benghalensis (93%) aos 21 DAA. Carfentrazone-ethyl aplicado isoladamen...

  7. Kinetic Studies of Sulfide Mineral Oxidation and Xanthate Adsorption

    Mendiratta, Neeraj K.


    Sulfide minerals are a major source of metals; however, certain sulfide minerals, such as pyrite and pyrrhotite, are less desirable. Froth flotation is a commonly used separation technique, which requires the use of several reagents to float and depress different sulfide minerals. Xanthate, a thiol collector, has gained immense usage in sulfide minerals flotation. However, some sulfides are naturally hydrophobic and may float without a collector. Iron sulfides, such as pyrite and pyrrho...

  8. Hydrogen sulfide and vascular relaxation

    SUN Yan; TANG Chao-shu; DU Jun-bao; JIN Hong-fang


    Objective To review the vasorelaxant effects of hydrogen sulfide (H2S) in arterial rings in the cardiovascular system under both physiological and pathophysiological conditions and the possible mechanisms involved.Data sources The data in this review were obtained from Medline and Pubmed sources from 1997 to 2011 using the search terms "hydrogen sulfide" and ""vascular relaxation".Study selection Articles describing the role of hydrogen sulfide in the regulation of vascular activity and its vasorelaxant effects were selected.Results H2S plays an important role in the regulation of cardiovascular tone.The vasomodulatory effects of H2S depend on factors including concentration,species and tissue type.The H2S donor,sodium hydrosulfide (NarS),causes vasorelaxation of rat isolated aortic rings in a dose-dependent manner.This effect was more pronounced than that observed in pulmonary arterial rings.The expression of KATP channel proteins and mRNA in the aortic rings was increased compared with pulmonary artery rings.H2S is involved in the pathogenesis of a variety of cardiovascular diseases.Downregulation of the endogenous H2S pathway is an important factor in the pathogenesis of cardiovascular diseases.The vasorelaxant effects of H2S have been shown to be mediated by activation of KATP channels in vascular smooth muscle cells and via the induction of acidification due to activation of the CI/HCO3 exchanger.It is speculated that the mechanisms underlying the vasoconstrictive function of H2S in the aortic rings involves decreased NO production and inhibition of cAMP accumulation.Conclusion H2S is an important endogenous gasotransmitter in the cardiovascular system and acts as a modulator of vascular tone in the homeostatic regulation of blood pressure.

  9. Clean production of methyl ethyl ketone (MEK)

    Methyl ethyl ketone oxime (MEKO) was obtained by reaction of methyl ethyl ketone (MEK) with ammonia and hydrogen peroxide using titanium silicalite-1 (TS-1) as catalyst. The effect of reaction temperature, type of solvent, molar ratios of NH3/MEK, H2O2/MEK and mg catalyst/mmol MEK ratio was studied. Water was the most appropriate solvent to obtain high selectivity to oxime. 100% selectivity to MEKO and 60% conversion of MEK was obtained at 70 Celsius degrade using the following parameters: H2O2/MEK = 0,7 and NH3/MEK = 1,12. mg.catalyst/mmol MEK = 10,5. Little decrease in the catalytic activity was observed after reusing the catalysts twice suggesting that incorporated Ti in the MFI structure is rather stable under the studied conditions

  10. 21 CFR 184.1295 - Ethyl formate.


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl formate. 184.1295 Section 184.1295 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... percent in chewing gum as defined in § 170.3(n)(6), hard candy as defined in § 170.3(n)(25), and...

  11. Synthesis of Ethyl Salicylate Using Household Chemicals

    Solomon, Sally; Hur, Chinhyu; Lee, Alan; Smith, Kurt


    Ethyl salicylate is synthesized, isolated, and characterized in a three-step process using simple equipment and household chemicals. First, acetylsalicylic acid is extracted from aspirin tablets with isopropyl alcohol, then hydrolyzed to salicylic acid with muriatic acid, and finally, the salicylic acid is esterified using ethanol and a boric acid catalyst. The experiment can be directed towards high school or university level students who have sufficient background in organic chemistry to recognize the structures and reactions that are involved.

  12. Thermal decomposition of 1-ethyl-5-iodotetrazole

    Thermal decomposition of 1-ethyl-5-iodotetrazole in a melt and in solutions has been studied using thermogravimetry, manometry, pyrolytic mass spectrometry, and IR spectroscopy. Kinetic and activation parameters of the process, as well as the nature of decomposition products have been determined. Supposed mechanism of the reaction involves the equilibrium tantomeric rearrangement of tetrazole to azidoazomethyne form followed by homolytic scission of C-I bond. 11 refs.; 3 figs.; 2 tabs

  13. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats

    Miller, Scott R.; Bebout, Brad M.


    Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II.

  14. New biologically active hydrogen sulfide donors.

    Roger, Thomas; Raynaud, Francoise; Bouillaud, Frédéric; Ransy, Céline; Simonet, Serge; Crespo, Christine; Bourguignon, Marie-Pierre; Villeneuve, Nicole; Vilaine, Jean-Paul; Artaud, Isabelle; Galardon, Erwan


    Generous donors: The dithioperoxyanhydrides (CH3 COS)2 , (PhCOS)2 , CH3 COSSCO2 Me and PhCOSSCO2 Me act as thiol-activated hydrogen sulfide donors in aqueous buffer solution. The most efficient donor (CH3 COS)2 can induce a biological response in cells, and advantageously replace hydrogen sulfide in ex vivo vascular studies. PMID:24115650

  15. Sulfide stress cracking of pipeline steels

    The problem of the sulfide stress corrosion cracking of pipeline steels and their welded joints have been presented for pipeline steels. Results of hydrogen sulfide stress cracking inhibitors and corrosion inhibitors of three types protective actions on pipeline steels of two grades petroleum range of products are given. (author)

  16. Ammonia and hydrogen sulfide removal using biochar

    Reducing ammonia and hydrogen sulfide emissions from livestock facilities is an important issue for many communities and livestock producers. Ammonia has been regarded as odorous, precursor for particulate matter (PM), and contributed to livestock mortality. Hydrogen sulfide is highly toxic at elev...

  17. Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide.

    Cataldo, Franco


    Neat ethyl oleate was ozonized in a bubble reactor and the progress of the ozonolysis was followed by infrared (FT-IR) spectroscopy and by the differential scanning calorimetry (DSC). The ozonolysis was conducted till a molar ratio O3/C=C≈1 when the exothermal reaction spontaneously went to completion. A specific thermochemical calculation on ethyl oleate ozonation has been made to determine the theoretical heat of the ozonization reaction using the group increment approach. A linear relationship was found both in the integrated absorptivity of the ozonide infrared band at 1110 cm(-1) and the ozonolysis time as well as the thermal decomposition enthalpy of the ozonides and peroxides formed as a result of the ozonation. The DSC decomposition temperature of ozonated ethyl oleate occurs with an exothermal peak at about 150-155 °C with a decomposition enthalpy of 243.0 kJ/mol at molar ratio O3/C=C≈1. It is shown that the decomposition enthalpy of ozonized ethyl oleate is a constant value (≈243 kJ/mol) at any stage of the O3/C=C once an adequate normalization of the decomposition enthalpy for the amount of the adsorbed ozone is taken into consideration. The decomposition enthalpy of ozonized ethyl oleate was also calculated using a simplified thermochemical model, obtaining a result in reasonable agreement with the experimental value. PMID:23969233

  18. Weathering of sulfides on Mars

    Burns, Roger G.; Fisher, Duncan S.


    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  19. Measurement of dissolved sulfide in geothermal condensate

    Chang, D.P.Y.; Corsi, R.L.; McNeece, C.


    The objective of this study was to develop a reliable method for determining the concentration of sulfide ions in laboratory solutions and in field samples containing geothermal condensate. A method based upon a sulfide selective ion electrode has been tested successfully on both. The method is straightforward to apply, involving collection of filtered samples into a sulfide anti-oxidant buffer (SAOB), subsequent measurement by electrodes and comparison with a calibration curve prepared from solutions containing known concentrations of sulfide ions. The importance of filtering the samples was demonstrated by a marked reduction of electrode potential after sample filtration. For replicate solutions of known composition containing greater than 1 x 10/sup -6/ M (0.032 ppm) of dissolved sulfide the estimated accuracy of the method was about 5%. For geothermal condensate of unknown composition, the mean of replicate samples was estimated to be within about 20% of the true value.

  20. Primordial Xenon in Allende Sulfides

    Lee, J. T.; Manuel, O. K.


    The Allende C3V carbonaceous chondrite incorporated isotopically anomalous components of several medium-heavy elements (Z=36-62) from nucleosynthesis [1]. Isotopically distinct Xe (Z=54) has been found in grains ranging from several _ to a few mm in size. Diamond [2] is the host of Xe that is enriched in isotopes produced by the very rapid p- and r-processes in a supernova explosion [3]. Silicon carbide [4] is the host of Xe that is enriched in the middle isotopes, 128-132Xe, produced by slow neutron capture [3] before a star reaches the supernova stage. The present study was undertaken to identify the isotopic composition of primitive Xe initially trapped in sulfides of the Allende meteorite. Two FeS mineral separates were analyzed by stepwise heating. One sample was first irradiated in a neutron flux to generate a tracer isotope, 131*Xe, by the 130Te(n, gamma beta-)131*Xe reaction. The release pattern of this tracer isotope, 131*Xe, closely paralleled the release of primordial 132Xe up to 950 degrees C, when the sulfide melted and released the bulk of its trapped Xe (Figure 1). The Xe released from both samples at 950 deg C was terrestrial in isotopic composition, except for enrichments from spallogenic and radiogenic components (Figure 2). From the results of this and earlier analyses of Xe in meteoritic FeS [5, 6, 7], we conclude that terrestrial-type Xe was dominant in the central region of the protoplanetary nebula, and it remains a major component in the FeS of diverse meteorites and in the terrestrial planets that are rich in Fe, S [8]. References: [1] Begemann F. (1993) Origin and Evolution of the Elements (N. Prantzos et al., eds.), 518-527, Cambridge Univ. [2] Lewis R. S. and Anders E. (1988) LPS XIX, 679-680. [3] Burbidge et al. (1957) Rev. Modern Phys., 29, 547-650. [4] Tang M. and Anders E. (1988) GCA, 52, 1235-1244. [5] Niemeyer S. (1979) GCA, 43, 843-860. [6] Lewis et al. (1979) GCA, 43, 1743-1752. [7] Hwaung G. and Manuel O. K. (1982) Nature, 299

  1. Interação de glyphosate com carfentrazone-ethyl Glyphosate - carfentrazone-ethyl interaction

    R.C. Werlang


    Full Text Available Foi conduzido um experimento em condições controladas para determinar a interação do carfentrazone-ethyl em mistura no tanque com o herbicida glyphosate, no controle de seis espécies de plantas daninhas. Glyphosate aplicado isoladamente na dose de 720 g ha-1 foi eficaz no controle de Amaranthus hybridus (100%, Desmodium tortuosum (100%, Bidens pilosa (99%, Eleusine indica (96%, Digitaria horizontalis (100% e Commelina benghalensis (93% aos 21 DAA. Carfentrazone-ethyl aplicado isoladamente controlou eficazmente C. benghalensis. As misturas de glyphosate nas doses de 252 e 720 g ha-1 com carfentrazone-ethyl nas doses de 15 e 30 g ha¹ demonstraram efeito aditivo no controle de A. hybridus, D. tortuosum e Bidens pilosa, à exceção das misturas de glyphosate na dose de 252 g ha-1 com as doses de 15 e 30 g ha-1 de carfentrazone-ethyl, que proporcionam efeito sinergístico no controle de D. tortuosum. A adição das duas doses de carfentrazone-ethyl antagonizou o efeito de glyphosate na menor dose (252 g ha-1 no controle de E. indica, apresentando, no entanto, efeito aditivo com o glyphosate na maior dose (720 g ha-1. Já para D. horizontalis, as misturas de carfentrazone-ethyl com glyphosate na menor dose (252 g ha-1 apresentaram efeito sinergístico no controle dessa espécie, demonstrando, ainda, efeito aditivo na mistura com glyphosate na dose de 720 g ha-1. A mistura de carfentrazone-ethyl com glyphosate proporcionou efeito aditivo no controle de C. benghalensis, independentemente das combinações de doses avaliadas. Os resultados deste experimento indicam que carfentrazone-ethyl apresenta comportamento diferenciado quanto à interação com glyphosate, dependendo da espécie de planta daninha e da dose dos herbicidas utilizados na mistura em tanque, sendo complementar na mistura em tanque com glyphosate, pois demonstrou efeito antagônico em poucas das combinações estudadas, prevalecendo seu efeito aditivo na mistura com glyphosate, no

  2. Adequate hydrogen sulfide, healthy circulation

    DU Jun-bao; CHEN Stella; JIN Hong-fang; TANG Chao-shu


    Previously,hydrogen sulfide (H2S) was considered to be a toxic gas.However,recently it was discovered that it could be produced in mammals and even in plants,throughtheproductionandmetabolismof sulfur-containing amino acids.In mammals,H2S is mainly catalyzed by cystathionine-γ-lyase (CSE),cystathionin-β-lyase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) with the substrate of L-cysteine.Endogenous H2S exerts many important physiological and pathophysiological functions,including hypotensive action,vasorelaxation,myocardial dilation,inhibition of smooth muscle cell proliferation,and antioxidatve actions.Importantly,it plays a very important role in the pathogenesis of systemic hypertension,pulmonary hypertension,atherosclerosis,myocardialinjury,angiogenesis,hyperhomocysteinemi aandshock.Therefore,H2S is now being considered to be a novel gasotransmitter after nitric oxide and carbon monoxide in the regulation of circulatory system.

  3. Pelletizing of sulfide molybdenite concentrates

    Palant, A. A.


    The results of a pelletizing investigation using various binding components (water, syrup, sulfite-alcohol distillery grains, and bentonite) of the flotation sulfide molybdenite concentrate (˜84% MoS2) from the Mongolian deposit are discussed. The use of syrup provides rather high-strength pellets (>3 N/pellet or >300 g/pellet) of the required size (2 3 mm) for the consumption of 1 kg binder per 100 kg concentrate. The main advantage of the use of syrup instead of bentonite is that the molybdenum cinder produced by oxidizing roasting of raw ore materials is not impoverished due to complete burning out of the syrup. This fact exerts a positive effect on the subsequent hydrometallurgical process, decreasing molybdenum losses related to dump cakes.

  4. How selection offsets sulfide corrosion

    Steels in Girdler heavy water plants are generally required to withstand wet hydrogen sulfide or its aqueous solution. The reasons for selecting various grades for various locations are explained. Information on welding methods is given, and the codes applicable are listed. Carbon steel can be used only where fluid velocity is low. Sections which fail completely if pitted are made of AISI 316 stainless steel. Diaphragms and other very thin parts located in the stagnant fluid are made of Inconel 625. Where solution-annealing of stainless steels at 1000 deg C after welding is not feasible, low-carbon grades (304L, 316L) are used. Some failures are depicted. All castings are completely radiographically examined. (N.D.H.)

  5. Structural studies in limestone sulfidation

    Fenouil, L.A.; Lynn, S.


    This study investigates the sulfidation of limestone at high temperatures (700--900{degree}C) as the first step in the design of a High-Temperature Coal-Gas Clean-Up system using millimeter-size limestone particles. Several workers have found that the rate of this reaction significantly decreases after an initial 10 to 15% conversion of CaCO{sub 3} to CaS. The present work attempts to explain this feature. It is first established that millimeter-size limestone particles do not sinter at temperatures up to the CaCO{sub 3} calcination point (899{degree}C at 1.03 bar CO{sub 2} partial pressure). It is then shown that CaS sinters rapidly at 750 to 900{degree}C if CO{sub 2} is present in the gas phase. Scanning Electron Microscope (SEM) photographs and Electron Dispersive Spectroscopy (EDS) data reveal that the CaS product layer sinters and forms a quasi-impermeable coating around the CaCO{sub 3} grains that greatly hinders more H{sub 2}S from reaching the still unreacted parts of the stone. Moreover, most of the pores initially present within the limestone structure begin to disappear or, at least, are significantly reduced in size. From then on, subsequent conversion is limited by diffusion of H{sub 2}S through the CaS layer, possibly by S{sup 2{minus}} ionic diffusion. The kinetics is then adequately described by a shrinking-core model, in which a sharp front of completely converted limestone is assumed to progress toward the center of the pellet. Finally, experimental evidence and computer simulations using simple sintering models suggest that the CaS sintering, responsible for the sharp decrease in the sulfidation rate, is surface-diffusion controlled.

  6. Biotransformation and Production from Hansenula Anomala to Natural Ethyl Phenylacetate

    Tian Xun


    Full Text Available Ethyl phenylacetate can be widely applied in many industries, such as food, medicines, cosmetics and medicinal herbs. At the moment, the production of natural ethyl phenylacetate is very limited. However, the biotransformation production of natural ethyl phenylacetate has an very extensive application prospect. This paper is written by taking the phenylacetic acid tolerance and the esterifying enzyme activity as the two indexes for screening the HA14 strain of hansenula anomala mutagenic which is regarded as the microorganism of ethyl phenylacetate production through biotransformation. By optimizing the production condition of phenylacetic acid and the esterification condition of ethyl phenylacetate, the production of ethyl phenylacetate accomplished through biotransformation within 72 hours can reach 864mg/L which is 171% of that of the initial bacterial strain.

  7. Phase Engineering of 2D Tin Sulfides.

    Mutlu, Z; Wu, RJ; Wickramaratne, D.; Shahrezaei, S; Liu, C; Temiz, S; Patalano, A; M Ozkan; Lake, RK; Mkhoyan, KA; Ozkan, CS


    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2...

  8. Microbial control of hydrogen sulfide production

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others


    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  9. The sulfide oxidation in an electrolytic sulfide oxidizing bioreactor using graphite anode

    The goal of the present research was the direct conversion of sulfide (an important contaminant in various industrial wastewaters) to sulfate, whose discharge limits are much less stringent than those for sulfide. The electrolysis of sodium sulfide was investigated under different conditions such as: ph, current density and working area etc. along with cyclic voltammetry. By the use of a graphite anode, we achieved near-quantitative electrochemical conversion of sulfide ions to sulfate with current efficiency of 88%. Kinetically, the reaction is first order in current density. The experimental results revealed that the sulfide removal rate of more than 88% could be achieved under the conditions T=30 deg. C, ph = 7, current density of 1 mA/cm/sup 2/ at anode area of 225 cm/sup 2/.The process can be practically coupled with bioreactor for an effective sulfide removal. (author)

  10. Formation of Copper Sulfide Artifacts During Electrolytic Dissolution of Steel

    Tan, Jia; Pistorius, P. Chris


    Based on equilibrium considerations, copper sulfide is not expected to form in manganese-containing steel, yet previous workers reported finding copper sulfide in transmission electron microscope samples which had been prepared by electropolishing. It is proposed that copper sulfide can form during electrolytic dissolution because of the much greater stability of copper sulfide relative to manganese sulfide in contact with an electrolyte containing copper and manganese cations. This mechanism has been demonstrated with aluminum-killed steel samples.

  11. Going the distance with ethyl alcohol

    If all had gone according to plan, ethyl alcohol would be in the driver's seat now, cruising down the highway and getting ready to speed into high gear. Instead, this renewable fuel, chemical reagent and solvent is navigating a complex obstacle course, watching warily for sharp turns and mixed signals. Globally, the supply and demand for all grades of ethyl alcohol is awry. Production of industrial-grade material is running at full throttle and prices are going up. Much of the upheaval over ethanol can be traced to the US Environmental Protection Agency and the renewable oxygenate standard (ROS) of the Clean Air Act. Under ROS, 15% of oxygenates used in gasoline sold this year was to be derived from a renewable source. Next month, that percentage was to have been doubled to 30%. Enticed by projections of upwards of 2 billion gal/yr of fermentation alcohol to comply with ROS, producers rushed to expand capacity. But to the producers' dismay, EPA was forced to backpedal on ROS. When representatives of the petroleum industry filed suit and won a stay, EPA rescinded its ROS regulation and ethanol producers were left in the lurch. High prices for corn is also putting the squeeze on inventories of industrial alcohol. Synthetic ethanol production, from ethylene for example, is booming, however. This paper discusses the ethanol market factors

  12. High temperature sulfide corrosion and transport properties of transition metal sulfides

    An overview is presented of the role of the defect and transport properties of transition metal sulfides on the kinetics and mechanism of high-temperature sulfide corrosion of metals and alloys. It has been shown that due to the very high concentration of defects in common metal sulfides, not only pure metals but also conventional high-temperature alloys (chromia and alumina formers) undergo very rapid degradation in highly sulfidizing environments. Refractory metals (Mo, Nb), on the other hands, are highly resistant to sulfide corrosion, their sulfidation rates being comparable with the oxidation rate of chromium. Also, alloying of common metals by niobium and molybdenum improve considerably corrosion resistance with respect to highly sulfidizing atmospheres. It has demonstrated that Al.-Mo and Al.-Mo-Si alloys shown excellent resistant to sulfidizing environments, these materials being also simultaneously oxidation resistant. Thus, new prospects have been created for the development of a new generation of coating materials, resistant to multicomponent sulfidizing-oxidizing atmospheres, often encountered in many branches of modern technology. (author)

  13. Inorganic sorbents for concentration of hydrogen sulfide

    Present work is devoted to application of inorganic sorbents for concentration of hydrogen sulfide. The elaboration of method is conducted under controlled concentrations of hydrogen sulphide from 1.00 til 0.01 mg/l.

  14. Managing hydrogen sulfide the natural way

    Beasley, T.; Abry, R.G.F. [New Paradigm Gas Processing Ltd., Calgary, AB (Canada)


    This paper explores the benefits and costs associated with acid gas injection versus flaring and venting. It provides an update of Shell Paques biological gas desulfurization technology and the world's first high pressure application of the technology at the EnCana Bantry Project. The process is particularly well suited to treat sour (acid) natural gases that are currently being flared. It can also be used as an alternative to acid gas injection. Complete removal of hydrogen sulfide can be achieved by selective biotechnological conversion of hydrogen sulfide to elemental sulfur. Compared to conventional processes, this breakthrough technology achieves greater savings in terms of capital and operational costs. The Shell-Paque process produces up to 50 tonnes of sulfur per day with virtually complete conversion of hydrogen sulfide to elemental sulfur, resulting in no hydrogen sulfide based airborne emissions. 2 refs., 2 tabs., 35 figs.

  15. 2-Chloroethyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-ylacetate

    Uk Lee


    Full Text Available In the title compound, C13H12BrClO4S, the O atom and the methyl group of the methylsulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. There is a mean deviation of 0.016 (4 Å from the least-squares plane defined by the nine constituent benzofuran atoms. The crystal structure is stabilized by aromatic π–π interactions between the benzene rings of neighbouring molecules [centroid–centroid distance = 3.689 (7 Å]and by a weak C—H...π interaction between an H atom of the methylene group bonded to the carboxylate O atom and the benzene ring of an adjacent molecule. In addition, the crystal structure exhibits weak non-classical intermolecular C—H...O hydrogen bonds. The chloroethyl group is disordered over two positions, with refined site-occupancy factors of 0.767 (6 and 0.233 (6.


    Gas chromatography coupled to Fourier-transform infrared spectroscopy (GC/FT-IR) is rapidly becoming an accepted analytical technique complementary to GC/mass spectroscopy for identifying organic compounds in mixtures at low to moderate concentrations. irect aqueous injection (DA...

  17. Crystal structure of 6-chloro-5-(2-chloroethyl-3-(propan-2-ylideneindolin-2-one

    K. R. Roopashree


    Full Text Available The title compound, C13H13Cl2NO, has a 3-(propan-2-ylideneindolin-2-one core with a Cl atom and a chloroethyl substituent attached to the aromatic ring. Two atoms of the aromatic ring and the chloroethyl substituent atoms are disordered over two sets of sites with a refined occupancy ratio of 0.826 (3:0.174 (3. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(8 ring motif.

  18. The Search for Interstellar Sulfide Grains

    Keller, Lindsay P.; Messenger, Scott


    The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.

  19. Air-water transfer of hydrogen sulfide

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.;


    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  20. Mechanism of mechanical activation for sulfide ores

    HU Hui-ping; CHEN Qi-yuan; YIN Zhou-lan; HE Yue-hui; HUANG Bai-yun


    Structural changes for mechanically activated pyrite, sphalerite, galena and molybdenite with or without the exposure to ambient air, were systematically investigated using X-ray diffraction analysis(XRD), particle size analysis, gravimetrical method, X-ray photo-electron spectroscopy(XPS) and scanning electron microscopy(SEM), respectively. Based on the above structural changes for mechanically activated sulfide ores and related reports by other researchers, several qualitative rules of the mechanisms and the effects of mechanical activation for sulfide ores are obtained. For brittle sulfide ores with thermal instability, and incomplete cleavage plane or extremely incomplete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with thermal instability, and complete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed, and lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with excellent thermal stability, and complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For sulfide ores with high toughness, good thermal stability and very excellent complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation, but the lattice deformation ratio is very small. The effects of mechanical activation are worst.

  1. 2,6-Bis(9-ethyl-9H-carbazolylmethylenecyclohexanone

    Abdullah M. Asiri


    Full Text Available The title compound, 2,6-bis(ethyl-9-ethyl-9H-carbazolylmethylenecyclohexanone has been synthesized by condensation of 9-ethylcarbazole-3-aldehyde and cyclohexanone in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H NMR, 13C NMR and EI-MS spectral analysis.

  2. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.

    Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L


    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). PMID:24361702

  3. Calorimetric study of methyl and ethyl 2-thiophenecarboxylates and ethyl 2- and 3-thiopheneacetates

    Ribeiro da Silva, Manuel A.V. [Centro de Investigacao em Quimica, Departament of Chemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)], E-mail:; Santos, Ana Filipa L.O.M. [Centro de Investigacao em Quimica, Departament of Chemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)


    The standard (p{sup 0}=0.1MPa) molar enthalpies of formation, in the condensed phase, of the liquids methyl 2-thiophenecarboxylate, ethyl 2-thiophenecarboxylate, ethyl 2-thiopheneacetate, and ethyl 3-thiopheneacetate, at T = 298.15 K, were derived from the standard massic energies of combustion, in oxygen, to yield CO{sub 2} (g) and H{sub 2}SO{sub 4} . 115H{sub 2}O (aq), measured by rotating bomb combustion calorimetry. For these four compounds, the standard molar enthalpies of vaporization, {delta}{sub l}{sup g}H{sub m}{sup 0}, at T = 298.15 K, were obtained by high temperature Calvet microcalorimetry. The standard (p{sup 0}=0.1MPa) molar enthalpies of formation, in the gaseous phase, were derived from the experimental results and they are interpreted in terms of enthalpic increments of the introduction of a methylene group to the substituent chain. Moreover, the results are compared with the analogue benzene derivative.

  4. A Choline Oxidase Amperometric Bioassay for the Detection of Mustard Agents Based on Screen-Printed Electrodes Modified with Prussian Blue Nanoparticles

    Fabiana Arduini


    Full Text Available In this work a novel bioassay for mustard agent detection was proposed. The bioassay is based on the capability of these compounds to inhibit the enzyme choline oxidase. The enzymatic activity, which is correlated to the mustard agents, was electrochemically monitored measuring the enzymatic product, hydrogen peroxide, by means of a screen-printed electrode modified with Prussian Blue nanoparticles. Prussian Blue nanoparticles are able to electrocatalyse the hydrogen peroxide concentration reduction at low applied potential (−50 mV vs. Ag/AgCl, thus allowing the detection of the mustard agents with no electrochemical interferences. The suitability of this novel bioassay was tested with the nitrogen mustard simulant bis(2-chloroethylamine and the sulfur mustard simulants 2-chloroethyl ethyl sulfide and 2-chloroethyl phenyl sulfide. The bioassay proposed in this work allowed the detection of mustard agent simulants with good sensitivity and fast response, which are excellent premises for the development of a miniaturised sensor well suited for an alarm system in case of terrorist attacks.

  5. Stratospheric carbonyl sulfide (OCS) burden

    Kloss, Corinna; Walker, Kaley A.; Deshler, Terry; von Hobe, Marc


    An estimation of the global stratospheric burden of carbonyl sulfide (OCS) calculated using satellite based measurements from the Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE-FTS) will be presented. OCS is the most abundant sulfur containing gas in the atmosphere in the absence of volcanic eruptions. With a long lifetime of 2-6 years it reaches the stratosphere where it is photolyzed and the sulfur oxidized and condensed to aerosols, contributing to the stratospheric aerosol layer. The aerosol layer is the one factor of the middle-atmosphere with a direct impact on the Earth's climate by scattering incoming solar radiation back to space. Therefore it is crucial to understand and estimate the different processes and abundances of the species contributing to the aerosol layer. However, the exact amount of OCS in the stratosphere has not been quantified yet. A study on the OCS mixing ratio distribution based on ACE-FTS data has already been made by Barkley et al. (2008), also giving an estimation for the total atmospheric OCS mass. ACE-FTS is an infrared solar occultation spectrometer providing high- resolution profile observations since 2004. In the scope of this work the focus lies on the stratospheric OCS burden, calculated by integrating the ACE profiles. A global overview on the stratospheric OCS amount in the past and present based on the ACE data as well as a look at regional and seasonal variability will be given. Furthermore, the results of this work will be useful for further studies on OCS fluxes and lifetimes, and in quantifying the contribution of OCS to the global stratospheric sulfur burden. Barkley et al., 2008, Geophys. Res. Lett., 35, L14810.

  6. Hydrogen Sulfide and Urogenital Tract.

    di Villa Bianca, Roberta d'Emmanuele; Cirino, Giuseppe; Sorrentino, Raffaella


    In this chapter the role played by H2S in the physiopathology of urogenital tract revising animal and human data available in the current relevant literature is discussed. H2S pathway has been demonstrated to be involved in the mechanism underlying penile erection in human and experimental animal. Both cystathionine-β synthase (CBS) and cystathionine-γ lyase (CSE) are expressed in the human corpus cavernosum and exogenous H2S relaxes isolated human corpus cavernosum strips in an endothelium-independent manner. Hydrogen sulfide pathway also accounts for the direct vasodilatory effect operated by testosterone on isolated vessels. Convincing evidence suggests that H2S can influence the cGMP pathway by inhibiting the phosphodiesterase 5 (PDE-5) activity. All these findings taken together suggest an important role for the H2S pathway in human corpus cavernosum homeostasis. However, H2S effect is not confined to human corpus cavernosum but also plays an important role in human bladder. Human bladder expresses mainly CBS and generates in vitro detectable amount of H2S. In addition the bladder relaxant effect of the PDE-5 inhibitor sildenafil involves H2S as mediator. In conclusion the H2S pathway is not only involved in penile erection but also plays a role in bladder homeostasis. In addition the finding that it involved in the mechanism of action of PDE-5 inhibitors strongly suggests that modulation of this pathway can represent a therapeutic target for the treatment of erectile dysfunction and bladder diseases. PMID:26162831

  7. Terahertz spectroscopy of hydrogen sulfide

    Pure rotational transitions of hydrogen sulfide (H2S) in its ground and first excited vibrational states have been recorded at room temperature. The spectrum comprises an average of 1020 scans at 0.005 cm−1 resolution recorded in the region 45–360 cm−1 (1.4 to 10.5 THz) with a globar continuum source using a Fourier transform spectrometer located at the AILES beamline of the SOLEIL synchrotron. Over 2400 rotational lines have been detected belonging to ground vibrational state transitions of the four isotopologues H232S, H233S, H234S, and H236S observed in natural abundance. 65% of these lines are recorded and assigned for the first time, sampling levels as high as J=26 and Ka=17 for H232S. 320 pure rotational transitions of H232S in its first excited bending vibrational state are recorded and analysed for the first time and 86 transitions for H234S, where some of these transitions belong to new experimental energy levels. Rotational constants have been fitted for all the isotopologues in both vibrational states using a standard effective Hamiltonian approach. Comprehensive comparisons are made with previously available data as well as the data available in HITRAN, CDMS, and JPL databases. The 91 transitions assigned to H236S give the first proper characterization of its pure rotational spectrum. -- Highlights: • Over 2400 lines are measured and assigned in the 45–360 cm−1 region. • New rotational transitions are assigned for four isotopologues of H2S. • Rotational transitions within the first excited state of H2S are assigned for the first time. • An improved rotational line list is presented

  8. Phase Engineering of 2D Tin Sulfides.

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S


    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  9. Biodegradation of pyrazosulfuron-ethyl by Acinetobacter sp. CW17.

    Wang, Yanhui; Du, Liangwei; Chen, Yingxi; Liu, Xiaoliang; Zhou, Xiaomao; Tan, Huihua; Bai, Lianyang; Zeng, Dongqiang


    The pyrazosulfuron-ethyl-degrading bacterium, designated as CW17, was isolated from contaminated soil near the warehouse of the factory producing pyrazosulfuron-ethyl in Changsha city, China. The strain CW17 was identified as Acinetobacter sp. based on analyses of 94 carbon source utilization or chemical sensitivity in Biolog microplates, conventional phenotypic characteristics, and 16S rRNA gene sequencing. When pyrazosulfuron-ethyl was provided as the sole carbon source, the effects of pyrazosulfuron-ethyl concentration, pH, and temperature on biodegradation were examined. The degradation rates of pyrazosulfuron-ethyl at initial concentrations of 5.0, 20.0, and 50.0 mg/L were 48.0%, 77.0%, and 32.6%, respectively, after inoculation for 7 days. The growth of the strain was inhibited at low pH buffers. The chemical degradation occurs much faster at low pH than at neutral and basic pH conditions. The degradation rate of pyrazosulfuron-ethyl at 30°C was faster than those at 20 and 37°C by CW17 strains. Two metabolites of degradation were analyzed by liquid chromatography-mass spectroscopy (LC/MS). Based on the identified products, strain CW17 seemed to be able to degrade pyrazosulfuron-ethyl by cleavage of the sulfonylurea bridge. PMID:22388979

  10. Ethylated Urea - Ether - Modified Urea - Formaldehyde Resins,

    Mathew Obichukwu EDOGA


    Full Text Available First, phenol - formaldehyde (PF and urea - formaldehyde (UFII resins were separately conventionally prepared in our laboratory. Also, UF resin synthesized from the acid modified synthesis procedure was synthesized in a purely acid medium of pH 1.0, FU molar ratio of 1.0 and at 50oC (one-stage acid modified-synthesis procedure. Subsequently, the UF resin II was modified during synthesis by incorporating ethylated urea-ether (EUER (i.e. UFIII and glycerol (GLYC (i.e. UFV cured with and without acid curing agent. The structural and physicochemical analyses of the various resin samples were carried out.The results showed that the unmodified UF resin (UF II synthesized in acid medium of pH 1.0, F/U molar ratio 1.0, and at 50oC, cured in absence of acid curing catalyst, showed features in their spectra which are consistent with a tri-, and/or tetra-substituted urea in the reaction to give a 3 - dimensional network cured UF resin. Modification of the UF resin(UF II with ethylated urea-ether and glycerol to produce UF resins III and respectively V prominently increased the absorbance of methylene and ether groups in the spectra which are consistent with increased hydrophobicity and improved hydrolytic stability. For the conventional UF resin (UF I, the only clear distinction between spectra for the UF resin II and UF resins (III/V is the presence of diminished peaks for methylene groups at 2.2 ppm. The relationship between the logarithmic viscosity of cured PF resin with time showed continuos dependence of viscosity with time during cure up to 70 minutes. Similar trends were shown by UF resins (III/V, cured in absence of acid catalyst. In contrast, the conventional UF resins I and UF IV (i.e. UF II cured with NH4CL showed abrupt discontinuity in viscosity with time just after about 20 minutes of cure.

  11. Transition Metal Catalyzed Synthesis of Aryl Sulfides

    Chad C. Eichman


    Full Text Available The presence of aryl sulfides in biologically active compounds has resulted in the development of new methods to form carbon-sulfur bonds. The synthesis of aryl sulfides via metal catalysis has significantly increased in recent years. Historically, thiolates and sulfides have been thought to plague catalyst activity in the presence of transition metals. Indeed, strong coordination of thiolates and thioethers to transition metals can often hinder catalytic activity; however, various catalysts are able to withstand catalyst deactivation and form aryl carbon-sulfur bonds in high-yielding transformations. This review discusses the metal-catalyzed arylation of thiols and the use of disulfides as metal-thiolate precursors for the formation of C-S bonds.

  12. Solar thermal extraction of copper from sulfides

    Winkel, L.; Guesdon, C.; Sturzenegger, M.


    With the aim to develop a solar-driven process for the extraction of copper from sulfide concentrates re-search on the decomposition of copper sulfides under inert atmospheres has been initiated. Thermogravimetric measurements on chalcocite (Cu{sub 2}S) revealed that copper is formed already at 1823 K. Chalcopyrite (CuFeS{sub 2}) also disintegrates at this temperature, although at a lower rate. Copper and iron have been identified in the solid residue. The results confirm the feasibility of copper extraction by direct decomposition of sulfides under atmospheric pressure. The decomposition under inert atmosphere prevents generation of SO{sub 2}, and is beneficial to the removal of volatile impurities. Chemical equilibrium calculations for CuFeS{sub 2} contaminated with enargite (Cu{sub 3}AsS{sub 4}) have shown that the absence of an oxidic slag allows for a complete evaporation of arsenic and subsequent separation. (author)

  13. Iron-sulfide crystals in probe deposits

    Laursen, Karin; Frandsen, Flemming


    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......, it was deduced that they were not deposited but instead grew within the deposit. The presence of unburned char particles within the deposits supports the concept that a reducing environment existed in the deposits. Two processes are proposed for explaining the existence of pyrrhotite crystals within...... a deposit: (1) impact of low viscous droplets of iron sulfide; and (2) sulfur diffusion. Previous research on the influence of pyrite on slagging focused on the decomposition of pyrite into pyrrhotite and especially on the oxidation stage of this product during impact on the heat transfer surfaces...

  14. Functional consortium for denitrifying sulfide removal process

    Chen, Chuan [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); Harbin Inst. of Technology (China). School of Municipal and Environmental Engineering; Ren, Nanqi; Wang, Aijie [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); Liu, Lihong [Harbin Inst. of Technology (China). School of Municipal and Environmental Engineering; Lee, Duu-Jong [Harbin Inst. of Technology (CN). State Key Lab. of Water Resource and Environment (SKLWRE); National Taiwan Univ., Taipei (China). Dept. of Chemical Engineering


    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10{sup -2} to 10{sup -6} dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10{sup -2} dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10{sup -4} dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10{sup -6} dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach. (orig.)

  15. Modeling of Sulfide Microenvironments on Mars

    Schwenzer, S. P.; Bridges, J. C.; McAdam, A.; Steer, E. D.; Conrad, P. G.; Kelley, S. P.; Wiens, R. C.; Mangold, N.; Grotzinger, J.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.


    Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.

  16. Sol-gel processing of metal sulfides

    Stanic, Vesha

    Metal sulfides were synthesised via a sol-gel process using various metal alkoxides and hydrogen sulfide in toluene. Colloidal gels were prepared from germanium ethoxide, germanium isopropoxide, zinc tert-butoxide and tungsten (VI) ethoxide, whereas colloidal powder was produced from tungsten (V) dichloride ethoxide. Special precautions were necessary to protect the reaction mixture from water contamination which produced metal oxides. Results indicated that the main source of water is the hydrogen sulfide gas. In addition, synthesis of metal sulfides from a mixture of metal oxide and sulfide was demonstrated by the example of monoclinic germanium disulfide. It was produced by reaction of the sol-gel product with sulfur. Heat treatment of the sol-gel product and sulfur yielded single phase GeSsb2. The sol-gel prepared materials and their heat treated products were characterized by various methods. A chemical kinetics study of the functional groups -OR, -SH and Ssp{2-} was carried out for the sol-gel processing of GeSsb2 from of hydrogen sulfide and two different alkoxides, germanium ethoxide and germanium isopropoxide. The study was performed for different concentrations of precursors at different molar ratios and temperatures. The results indicate that the proposed reaction mechanism was simplified under appropriate reaction conditions. Experimentally determined rate constants of thiolysis and condensations demonstrate that thiolysis is slow and that condensations are fast steps, regardless of the studied reaction conditions. A study of the temperature effect on the reaction rate constant shows that it increases with temperature in accord with both Arrhenius law and transition-state theory. Activation energies, Esba, and activation parameters DeltaSsp{ddagger}, DeltaHsp{ddagger} and DeltaGsp{ddagger}, were determined for thiolysis and condensation reactions. The potentiometric tiration method was used for quantitative determination of germanium sulfide and

  17. Acute inhalation toxicity of carbonyl sulfide

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others


    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  18. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    Agarwal, Pradeep K.


    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  19. Ethyl ester production from (RBD palm oil

    Oscar Mauricio Martínez Ávila


    Full Text Available This work develops a methodology for obtaining ethyl esters from RBD (refined, bleached and deodorised palm oil by evaluating the oil’s transesterification and separation. Two catalysts were first tested (KOH and NaOH by studying the effect of water presence on the reaction. The separation process was then evaluated by using water and water-salt and water-acid mixtures, establishing the agent offering the best results and carrying out the purification stage. Raw materials and products were characterised for comparing the latter with those obtained by traditional means and verifying the quality of the esters so produced; minimum differences were found bet-ween both. The proposed methodology thus allows esters to be used as raw material in petrochemical industry applications. A more profitable process can be obtained compared to those used today, given the amounts of separation agent so established (1% H3PO4 solution, in water. The overall process achieved 74.4% yield, based on the oil being used.

  20. The effect of sulfide inhibition on the ANAMMOX process.

    Jin, Ren-Cun; Yang, Guang-Feng; Zhang, Qian-Qian; Ma, Chun; Yu, Jin-Jin; Xing, Bao-Shan


    The feasibility of anaerobic ammonium oxidation (ANAMMOX) process to treat wastewaters containing sulfide was studied in this work. Serum bottles were used as experimental containers in batch tests to analyze the short-term response of the ANAMMOX process under sulfide stress. The IC(50) of sulfide-S for ANAMMOX biomass was substrates-dependent and was calculated to be 264 mg L(-1) at an initial total nitrogen level of 200 mg L(-1) (molar ratio of ammonium and nitrite was 1:1). The long-term effects and the performance recovery under sulfide stress were continuously monitored and evaluated in an upflow anaerobic sludge blanket reactor. The performance of the ANAMMOX system was halved at an sulfide-S level of 32 mg L(-1) within 13 days; however, the nitrogen removal rate (NRR) decreased by only 17.2% within 18 days at an sulfide-S concentration of 40 mg L(-1) after long-time acclimatization of sludge in the presence of sulfide. The ANAMMOX performance recovered under sulfide-S level of 8 mg L(-1) with a steady NRR increasing speed, linear relationship between the NRR and operation time. The synchronic reduce in the specific ANAMMOX activity and the biomass extended the apparent doubling time of the nitrogen removal capacity and decreased biomass growth rate. PMID:23273856

  1. T.O.C.S. : Hydrogen Sulfide Remission System

    ECT Team, Purdue


    BioEnviroTech, Inc., (BET) developed Toxicity Odor Corrosion Sulfides (T.O.C.S.) Remission System for hydrogen sulfide reduction in municipal and industrial wastewater sewer, lift stations and force mains. This safe and cost effective biotreatment technology uses safe and natural bacteria to interrupt sulfide generation.

  2. Bile-acid-activated farnesoid X receptor regulates hydrogen sulfide production and hepatic microcirculation

    Barbara Renga; Andrea Mencarelli; Marco Migliorati; Eleonora Distrutti; Stefano Fiorucci


    AIM: To investigate whether the farnesoid X receptor (FXR) regulates expression of liver cystathionase (CSE), a gene involved in hydrogen sulfide (H2S) generation. METHODS: The regulation of CSE expression in response to FXR ligands was evaluated in HepG2 cells and in wild-type and FXR null mice treated with 6-ethyl chenodeoxycholic acid (6E-CDCA), a synthetic FXR ligand. The analysis demonstrated an FXR responsive element in the 5'-flanking region of the human CSE gene. The function of this site was investigated by luciferase reporter assays, chromatin immunoprecipitation and electrophoretic mobility shift assays. Livers obtained from rats treated with carbon tetrachloride alone, or in combination with 6-ethyl chenodeoxycholic acid, were studied for hydrogen sulphide generation and portal pressure measurement. RESULTS: Liver expression of CSE is regulated by bile acids by means of an FXR-mediated mechanism. Western blotting, qualitative and quantitative polymerase chain reaction, as well as immunohistochemical analysis, showed that expression of CSE in HepG2 cells and in mice is induced by treatment with an FXR ligand. Administration of 6E-CDCA to carbon tetrachloride treated rats protected against the down-regulation of CSE expression, increased H2S generation, reduced portal pressure and attenuated the endothelial dysfunction of isolated and perfused cirrhotic rat livers. CONCLUSION: These results demonstrate that CSE is an FXR-regulated gene and provide a new molecular explanation for the pathophysiology of portal hypertension.

  3. [Reaction of 1,8-naphthyridine azides with ethyl acrylate].

    Livi, O; Ferrarini, P L; Bertini, D; Tonetti, I


    The reaction of 1,8-naphthyridine azides with ethyl acrylate leads to the formation of 2-pyrazolines instead of 1,2,3-triazolines. Some of the compounds obtained have undergone pharmacological and microbiological (antibacterial) testing. PMID:1204828

  4. Binding Affinity of Novel Cyclodextrin Dimers to Ethyl Orange


    The interaction between ethyl orange (Eto, guest) and β-cyclodextrin dimers (1a~d, host) bridged with 2-t-butoxycarbonyl(Boc)-amino diacid was investigated. A remarkable synergic complexation of two cavities in host molecule was observed.

  5. A newly discovered xenobiotic metabolic pathway: Ethyl ester formation

    Chou, R.C.; Wyss, R.; Huselton, C.A.; Wiegand, U.W. (F. Hoffmann-La Roche Ltd., Basel (Switzerland))


    Formation of etretinate, ethyl ester of acitretin, can be confirmed in vitro and in vivo using acitretin as the substrate. Etretinate was identified by LC/MS. The in vitro incubation was performed using rat and human liver 12000 g supernatant, and the in vivo experiment was conducted in rats after oral dosing of acitretin. The ethyl ester formation was greatly enhanced by addition of or dosing with ethanol.

  6. Process intensification for the ethyl lactate synthesis : integrated pervaporation reactor

    Pereira, C.S.M.; Silva, V.M.T.M.; Pinho, Simão; A. E. Rodrigues


    Ethyl lactate is an important organic ester, which is biodegradable, produced by renewable resources and can be used as food additive, perfumery, flavor chemicals, solvent and pharmaceutical preparations[1]. It is a green solvent and could replace a range of environment-damaging halogenated and toxic solvents (for example: Nmethylpyrrolidone, toluene)[2]. The conventional way to produce ethyl lactate is the esterification of lactic acid with ethanol in the presence of an acid cata...

  7. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices

    Tangerman, Albert


    This review deals with the measurement of the volatile Sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH

  8. The diagenesis of carbohydrates by hydrogen sulfide

    Mango, Frank D.


    Carbohydrates react with hydrogen sulfide under low temperature (100° to 200°C) yielding a variety of organosulfur compounds including thiophenes, thiols, sulfides and sulfones. A polymer is also produced, whose elemental composition is within the range of natural coals. When reductive dehydration is carried out in the presence of hydrocarbon, organosulfur compounds are formed in the carbon number range of the hydrocarbon used. In these processes, an active hydrogen transfer catalyst is produced which facilitates the passage of hydrogen between normal paraffins and saccharide units, distributing sulfur between these two families primarily in the form of thiophene rings. The simplicity of these systems - H 2S, carbohydrates, H 2O, hydrocarbon - and the facility of the chemistry would suggest that the carbohydrates and hydrogen sulfide may be important agents in the diagenetic processes leading to petroleum and coal. Carbohydrate reduction by hydrogen sulfide may constitute an important route through which certain organosulfur compounds found in petroleum and coal entered these materials in early diagenesis.

  9. Support Effect in Hydrodesulfurization over Ruthenium Sulfide

    Gulková, Daniela; Kaluža, Luděk; Vít, Zdeněk; Zdražil, Miroslav

    Prague : JHI, 2008, s. 58-s. 59. [Symposium on Catalysis /40./. Prague (CZ), 03.11.2008-05.11.2008] R&D Projects: GA ČR GA104/06/0705 Institutional research plan: CEZ:AV0Z40720504 Keywords : ruthenium sulfide * hydrodesulfurization * support Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Support Effect in Hydrodesulfurization over Ruthenium Sulfide

    Gulková, Daniela; Kaluža, Luděk; Vít, Zdeněk; Zdražil, Miroslav


    Roč. 51, č. 2 (2009), s. 146-149. ISSN 1337-7027 R&D Projects: GA ČR GA104/06/0705 Institutional research plan: CEZ:AV0Z40720504 Keywords : ruthenium sulfide * hydrodesulfurization * support effect Subject RIV: CC - Organic Chemistry

  11. Monitoring sulfide and sulfate-reducing bacteria

    Tanner, R.S.


    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  12. Reaction between Hydrogen Sulfide and Limestone Calcines

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar; Čermák, Jiří


    Roč. 41, č. 10 (2002), s. 2392-2398. ISSN 0888-5885 R&D Projects: GA AV ČR IAA4072711; GA AV ČR IAA4072801 Keywords : hydrogen sulfide * limestone calcines * desulfurization Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  13. Kinetics and Mechanism of Anilinolyses of Ethyl Methyl, Ethyl Propyl and Diisopropyl Chlorothiophosphates in Acetonitrile

    Barai, Hasi Rani; Lee, Hai Whang [Inha Univ., Incheon (Korea, Republic of); Ehtesham Ul Hoque, Md. [Govt. Brojomohun College, Barisal (Bangladesh)


    Nucleophilic substitution reactions of ethyl methyl (2), ethyl propyl (4) and diisopropyl (7) chlorothiopho-sphates with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at 55.0 .deg. C. A concerted mechanism is proposed based on the selectivity parameters. The deuterium kinetic isotope effects (DKIEs; k{sub H}/k{sub D}) are secondary inverse (k{sub H}/k{sub D} = 0.66-0.99) with 2, primary normal and secondary inverse (k{sub H}/k{sub D} = 0.78-1.19) with 4, and primary normal (k{sub H}/k{sub D} = 1.06-1.21) with 7. The primary normal and secondary inverse DKIEs are rationalized by frontside attack involving hydrogen bonded, four-center-type transition state, and backside attack involving in-line-type transition state, respectively. The anilinolyses of ten chloro-thiophosphates are examined based on the reactivity, steric effect of the two ligands, thio effect, reaction mechanism, DKIE and activation parameter.

  14. Microbial oxidation of mixtures of methylmercaptan and hydrogen sulfide.

    Subramaniyan, A; Kolhatkar, R; Sublette, K L; Beitle, R


    Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment with Thiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixed Thiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptan-containing, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components. PMID:18576062

  15. Continuous production of palm biofuel under supercritical ethyl acetate

    Highlights: • Continuous synthesized biofuel from palm oil in supercritical ethyl acetate was examined. • Mass flow rate of palm oil and ethyl acetate mixture influent to biofuel production in continuous system. • Water addition to reacting mixture improves the production of fatty acid ethyl esters and triacetin. • The generated acetic acid from ETA hydrolysis can protect the products from thermal decomposition. - Abstract: The interesterification of palm oil in supercritical ethyl acetate (ETA) to produce fatty acid ethyl ester (FAEEs) or biofuel was conducted in a continuous tubular reactor. The density of the mixtures in the system was estimated using the Peng–Robinson equation of state process simulator, and the residence time was calculated. The effects of the reaction conditions, including the molar ratios of palm oil to ethyl acetate, the temperature, and the pressure, were investigated under various mass flow rates of the mixtures and optimized. The results showed that reaction temperatures above 653 K and long residence times affected the content of FAEEs and triacetin, a valuable by-product. The addition of water to the mixture in a 1:30:10 M ratio of palm oil to ethyl acetate to water at 653 K, 16 MPa, and a mixture mass flow rate of 1.5 g/min increased the total production of FAEEs and triacetin from 90.9 to 101.5 wt% in 42.4 min. The main finding of the present study is that triglyceride associated with ETA hydrolysis used to form acetic acid protected the products from decomposition at high temperatures and long residence times. The results will aid the selection of an efficient and economical process for alternative biofuel production from palm oil in supercritical ETA

  16. Solubility of Omeprazole Sulfide in Different Solvents at the Range of 280.35–319.65 K

    Li, Yihua; Yang, Wenge; Zhang, Tuan; Wang, Chaoyuan; Wang, Kai; Hu, YongHong


    Solubility data were measured for omeprazole sulfide in ethanol, 95 mass-% ethanol, ethyl acetate, isopropanol, methanol, acetone, n-butanol and n-propanol in the temperature range from 280.35 to 319.65 K by employing the gravimetric method. The solubilities increase with temperature and they are in good agreement with the calculated solubility of the modified Apelblat equation and the λh equation. The experimental solubility and correlation equation in this work can be used as essential data...

  17. Experimental study of the density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate

    Highlights: ► Density of the ionic liquid [EMIM][EtSO4]. ► Viscosity of the ionic liquid [EMIM][EtSO4]. ► Thermodynamic properties of ionic liquid [EMIM][EtSO4]. ► Equation of state of ionic liquid [EMIM][EtSO4]. - Abstract: Density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][EtSO4] have been measured over the temperature range from (283.15 to 413.15) K and at pressures up to 140 MPa and in the temperature range from (283.15 to 373.15) K at 0.1 MPa, respectively. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be (0.01 to 0.08)%, 0.1%, 15 mK, and 0.35%, respectively. The measurements were carried out with an Anton–Paar DMA HPM vibration-tube densimeter and a fully automated SVM 3000 Anton–Paar rotational Stabinger viscometer. The vibration-tube densimeter was calibrated using various reference fluids, double-distilled water, methanol, toluene, and aqueous NaCl solutions. An empiric equation of state for [EMIM][EtSO4] has been developed using the measured (p, ρ, T) data. This equation was used to calculate the various thermodynamic properties of the IL and for compare with measured properties (speed of sound and enthalpy). Theoretically based Arrhenius–Andrade and Vogel–Tamman–Fulcher type equations were use to describe of the temperature dependence of measured viscosities for [EMIM][EtSO4]. All measured properties were detailed compared with the reported data by other author.

  18. [Formation of ethyl carbamate in umeshu (plum liqueur)].

    Suzuki, K; Kamimura, H; Ibe, A; Tabata, S; Yasuda, K; Nishijima, M


    Samples of umeshu, a Japanese plum liqueur made from unripe plums, shochu and crystal sugar, were stored under fluorescent light, in the dark and in the refrigerator. The amount of ethyl carbamate formed in umeshu exposed to light or room temperature was larger than that in the dark or at low temperature. The amount of ethyl carbamate formed in umeshu to which cyanide had been added was larger than that in the absence of added cyanide. Thus, the amount of ethyl carbamate formed in the umeshu was increased by not only light and higher temperature, but also cyanide. Samples of model alcoholic beverages were stored under various conditions using red, yellow and blue cellophanes. The amount of ethyl carbamate formed in the model alcoholic beverage with blue cellophane was larger than in the cases of red and yellow cellophanes. It was found that the amount of ethyl carbamate formed in the model alcoholic beverage was increased by light in the wavelength range of 375-475 nm. PMID:11875819

  19. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF3COOCH2CH3) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R2) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  20. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina.

    Harald Hasler-Sheetal

    Full Text Available Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments.

  1. The Evolution of Sulfide Tolerance in the Cyanobacteria

    Miller, Scott R.; Bebout, Brad M.; DeVincenzi, Donald L. (Technical Monitor)


    Understanding how the function of extant microorganisms has recorded both their evolutionary histories and their past interactions with the environment is a stated goal of astrobiology. We are taking a multidisciplinary approach to investigate the diversification of sulfide tolerance mechanisms in the cyanobacteria, which vary both in their degree of exposure to sulfide and in their capacity to tolerate this inhibitor of photosynthetic electron transport. Since conditions were very reducing during the first part of Earth's history and detrital sulfides have been found in Archean sediments, mechanisms conferring sulfide tolerance may have been important for the evolutionary success of the ancestors of extant cyanobacteria. Two tolerance mechanisms have been identified in this group: (1) resistance of photosystem II, the principal target of sulfide toxicity; and (2) maintenance of the ability to fix carbon despite photosystem II inhibition by utilizing sulfide as an electron donor in photosystem I - dependent, anoxygenic photosynthesis. We are presently collecting comparative data on aspects of sulfide physiology for laboratory clones isolated from a variety of habitats. These data will be analyzed within a phylogenetic framework inferred from molecular sequence data collected for these clones to test how frequently different mechanisms of tolerance have evolved and which tolerance mechanism evolved first. In addition, by analyzing these physiological data together with environmental sulfide data collected from our research sites using microelectrodes, we can also test whether the breadth of an organism's sulfide tolerance can be predicted from the magnitude of variation in environmental sulfide concentration it has experienced in its recent evolutionary past and whether greater average sulfide concentration and/or temporal variability in sulfide favors the evolution of a particular mechanism of sulfide tolerance.

  2. Iron-sulfide redox flow batteries

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L


    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  3. Iron-sulfide redox flow batteries

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L


    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  4. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    Glarborg, Peter; Marshall, Paul


    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...... satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...

  5. Efficiently Dispersing Carbon Nanotubes in Polyphenylene Sulfide

    Sommer, Kevin M; Pipes, R. Byron


    Thermal plastics are replacing conventional metals in the aerospace, sporting, electronics, and other industries. Thermal plastics are able to withstand relatively high temperatures, have good fatigue properties, and are lighter than metals. Unfortunately, they are not very electrically conductive. However, adding carbon nanotubes to thermal plastics such as polyphenylene sulfide (PPS) can drastically increase the plastic's conductivity at a low weight percent of nanotubes called the percolat...

  6. Hydrogen sulfide prodrugs-a review.

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe


    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  7. Hydrogen sulfide prodrugs—a review

    Yueqin Zheng


    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  8. Subsurface heaters with low sulfidation rates

    John, Randy Carl; Vinegar, Harold J


    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  9. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S0), N2, and CO2, or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 1000 mg/L influent sulfide, however, the DSR system will break down.

  10. Microaeration for hydrogen sulfide removal in UASB reactor.

    Krayzelova, Lucie; Bartacek, Jan; Kolesarova, Nina; Jenicek, Pavel


    The removal of hydrogen sulfide from biogas by microaeration was studied in Up-flow Anaerobic Sludge Blanket (UASB) reactors treating synthetic brewery wastewater. A fully anaerobic UASB reactor served as a control while air was dosed into a microaerobic UASB reactor (UMSB). After a year of operation, sulfur balance was described in both reactors. In UASB, sulfur was mainly presented in the effluent as sulfide (49%) and in biogas as hydrogen sulfide (34%). In UMSB, 74% of sulfur was detected in the effluent (41% being sulfide and 33% being elemental sulfur), 10% accumulated in headspace as elemental sulfur and 9% escaped in biogas as hydrogen sulfide. The efficiency of hydrogen sulfide removal in UMSB was on average 73%. Microaeration did not cause any decrease in COD removal or methanogenic activity in UMSB and the elemental sulfur produced by microaeration did not accumulate in granular sludge. PMID:25270045

  11. Study on the sulfidation behavior of smithsonite

    Wu, Dandan; Wen, Shuming, E-mail:; Deng, Jiushuai, E-mail:; Liu, Jian; Mao, Yingbo


    Highlights: • Zeta potential showed that the pH{sub IEP} of smithsonite decreased from 7.7 to 6. • ICP test showed the gradual reduction of C{sub S} in the solution. • SEM showed that the mineral surface was partially changed to ZnS film. • XPS indicated that the presence of a characteristic signal peak of sulfur ions. - Abstract: Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pH{sub IEP} of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, C{sub S} in the solution declined from 1000 × 10{sup −6} mol/L to 1.4 × 10{sup −6} mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S{sup 2−} and CO{sub 3}{sup 2−} ions.

  12. Spectroscopic characterization and detection of Ethyl Mercaptan in Orion

    Kolesniková, L; Cernicharo, J; Alonso, J L; Daly, A M; Gordon, B P; Shipman, S T


    New laboratory data of ethyl mercaptan, CH$_{3}$CH$_{2}$SH, in the millimeter and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of $gauche$-CH$_3$CH$_2$SH towards Orion KL. 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz support this identification. A detection of methyl mercaptan, CH$_{3}$SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is $\\simeq$ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL.

  13. Effects of dispersed sulfides in bronze under line contact conditions

    Tomohiro Sato


    Full Text Available A sintered bronze system is applied to plane bearings with some lubricants. A bronze-based, sulfide-dispersed Cu alloy was developed via sintering. Sulfides had some functions, reduction of friction resistance, preventing scoring and seizure. Effects of the developed sulfide-containing bronze were investigated using a journal-type testing apparatus in wet conditions; results indicate that the developed bronze may have some anti-scoring properties.

  14. Extraction of Nanosized Cobalt Sulfide from Spent Hydrocracking Catalyst

    Samia A. Kosa; Hegazy, Eman Z.


    The processes used for the extraction of metals (Co, Mo, and Al) from spent hydrotreating catalysts were investigated in this study. A detailed mechanism of the metal extraction process is described. Additionally, a simulation study was performed to understand the sulfidizing mechanism. The suggested separation procedure was effective and achieved an extraction of approximately 80–90%. In addition, the sulfidization mechanism was identified. This sulfidizing process for Co was found to involv...

  15. Assistance of ethyl glucuronide and ethyl sulfate in the interpretation of postmortem ethanol findings.

    Krabseth, Hege; Mørland, Jørg; Høiseth, Gudrun


    Postmortem ethanol formation is a well-known problem in forensic toxicology. The aim of this study was to interpret findings of ethanol in blood, in a large collection of forensic autopsy cases, by use of the nonoxidative ethanol metabolites, ethyl glucuronide (EtG), and ethyl sulfate (EtS). In this study, according to previously published literature, antemortem ethanol ingestion was excluded in EtS-negative cases. Among 493 ethanol-positive forensic autopsy cases, collected during the study period, EtS was not detected in 60 (12 %) of the cases. Among cases with a blood alcohol concentration (BAC) of ≤ 0.54 g/kg, antemortem ethanol ingestion was excluded in 38 % of the cases, while among cases with a BAC of ≥ 0.55 g/kg, antemortem ethanol ingestion was excluded in 2.2 % of the cases. For all cases where ethanol was measured at a concentration >1.0 g/kg, EtS was detected. The highest blood ethanol concentration in which EtS was not detected was 1.0 g/kg. The median concentrations of EtG and EtS in blood were 9.5 μmol/L (range: not detected (n.d.) 618.1) and 9.2 μmol/L (range: n.d. 182.5), respectively. There was a statistically significant positive correlation between concentration levels of ethanol and of EtG (Spearman's rho=0.671, p<0.001) and EtS (Spearman's rho=0.670, p<0.001), respectively. In conclusion, this study showed that in a large number of ethanol-positive forensic autopsy cases, ethanol was not ingested before the time of death, particularly among cases where ethanol was present in lower blood concentrations. Routine measurement of EtG and EtS should therefore be recommended, especially in cases with BAC below 1 g/kg. PMID:24935750

  16. (Vapor + liquid) equilibrium for the binary systems {water + glycerol} and {ethanol + glycerol, ethyl stearate, and ethyl palmitate} at low pressures

    Highlights: → We measured VLE for the binary system {ethyl stearate and palmitate + ethanol}. → The boiling temperatures were obtained using Othmer-type ebuliometer. → The experimental data were modeled using NRTL, UNIQUAC, and UNIFAC models. - Abstract: This work reports the experimental measurements {(vapor + liquid) equilibrium} for the systems {water(1) + glycerol(2)}, {ethanol(1) + glycerol(2)}, {ethanol(1) + ethyl stearate(2)}, and {ethanol(1) + ethyl palmitate(2)}. Boiling temperatures were measured using an Othmer-type ebulliometer over a pressure range of 14 kPa to 96 kPa. The experimental data were well correlated using the NRTL and UNIQUAC models. The performance of the UNIFAC-Dortmund model in relation to predicting the phase equilibrium of the systems was also studied.

  17. Limitation of Sulfide Capacity Concept for Molten Slags

    Jung, In-Ho; Moosavi-Khoonsari, Elmira


    The sulfide capacity concept has been widely used in pyrometallurgy to define sulfur removal capacities of slags. Typically, the sulfide capacity is considered to be a unique slag property depending only on temperature regardless of partial pressures of oxygen and sulfur. In the present study, it is demonstrated that sulfide capacities of slags in particular those of Na2O-containing slags can vary with partial pressures of oxygen and sulfur due to large solubility of sulfide in Na2O-containing slag systems.

  18. Recent findings on sinks for sulfide in gravity sewer networks

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes


    Sulfide buildup in sewer networks is associated with several problems, including health impacts, corrosion of sewer structures and odor nuisance. In recent years, significant advances in the knowledge of the major processes governing sulfide buildup in sewer networks have been made. This paper...... summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However...

  19. Investigation into leaching of indium-containing sulfide cake

    Data are given of laboratory investigations into indium leaching from commercial-grade sulfide cake. Two indium extraction methods are studied: exchange sulfide decomposition by blue vitriol treatment, sulfide destruction by means of an oxidizer where manganese ore containing manganese dioxide and zinc cake containing zinc ferrite have been used. The influence of the reagent consumption temperature, duration of leaching on the indium extraction is estimated as well as into on the Copper and arsenic transport into the solution. Optimal conditions for the indium extraction from sulfide cake under salt leaching and oxidizing treatment are established

  20. Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography

    Hammer-Wilson, Marie J.; Nguyen, Vi; Jung, Woong-Gyu; Ahn, Yehchen; Chen, Zhongping; Wilder-Smith, Petra


    Hamster cheek pouches were exposed to 2-chloroethyl ethyl sulfide [CEES, half-mustard gas (HMG)] at a concentration of 0.4, 2.0, or 5.0 mg/ml for 1 or 5 min. Twenty-four hours post-HMG exposure, tissue damage was assessed by both stereomicrography and optical coherence tomography (OCT). Damage that was not visible on gross visual examination was apparent in the OCT images. Tissue changes were found to be dependent on both HMG concentration and exposure time. The submucosal and muscle layers of the cheek pouch tissue showed the greatest amount of structural alteration. Routine light microscope histology was performed to confirm the OCT observations.

  1. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation conditions. Pt. 1

    An ASTM A 516 degree 60 carbon steel superficial protection technique submitted to a hydrogen-water sulfide corrosive medium at 2 MPa of pressure and 40-125 deg C forming on itself an iron sulfide layer was tested. Studies on pH influence, temperature, passivating mean characteristics and exposure time as well as the mechanical resistance of sulfide layers to erosion are included. (Author)


    A sulfide identification protocol was developed to quantify specific metal sulfides that could exist in river water. Using a series of acid additions, nitrogen purges, and voltammetric analyses, metal sulfides were identified and semiquantified in three specific gr...

  3. 1-Ethyl-3-(2,4,6-trimethylphenylimidazolium tetrafluoroborate

    Jin-Tao Guan


    Full Text Available The title compound, C14H19N2+·BF4−, was obtained by reaction of 1-ethyl-3-(2,4,6-trimethylphenylimidazolium tetrafluoroborate with sodium tetrafluoroborate. The imidazole ring makes a dihedral angle of 78.92 (13° with the benzene ring.

  4. The ototoxic effects of ethyl benzene in rats

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Groot, J.C.M.J. de; Kulig, B.M.; Smoorenburg, G.F.


    Exposure to organic solvents has been shown to be ototoxic in animals and there is evidence that these solvents can induce hearing loss in humans. In this study, the effects of inhalation of the possibly ototoxic solvent ethyl benzene on the cochlear function and morphology were evaluated using thre

  5. Radiation induced graft copolymerization of styrene to ethyl cellulose

    In this research, graft copolymer was formed by pre-irradiation method to study the kinetics of radiation grafting method. The copolymer was characterized. The influences of dose, dose rate and solvent on the grafting reaction were studied. Commercial ethyl cellulose was purified by precipitation method. A few fractions were obtained. The fractions were irradiated in air with gamma-ray from a 60Co source. The styrene solution of ethyl cellulose fraction of 4 percent concentration was heated at 65 degree C for 6 hours to form copolymer. The subsequent reaction kinetics were complicated. The reaction medium is very particular. This is constituted by the solution of two newly formed polymers, and the incompatibility of these different polymers leads to phase separation in micro scale. Separation and grafting site characterization of the copolymer were carried out. The polystyrene content in the copolymer was determined from the weight change before and after the reaction. Chain length and the number of branches of the graft copolymer were obtained. Decrease of the molecular weight of ethyl cellulose (number average molecular weight) in the presence of air was measured. The G (break) value calculated was 1.23. Polymerization of styrene in the presence of irradiated ethyl cellulose was carried out, and the rate of polymerization as functions of polymerization time was shown in a figure. Dependence of the polymerization rate on the dose of pre-irradiation was observed. (Kato, T.)

  6. Dissociation of the Ethyl Radical: An Exercise in Computational Chemistry

    Nassabeh, Nahal; Tran, Mark; Fleming, Patrick E.


    A set of exercises for use in a typical physical chemistry laboratory course are described, modeling the unimolecular dissociation of the ethyl radical to form ethylene and atomic hydrogen. Students analyze the computational results both qualitatively and quantitatively. Qualitative structural changes are compared to approximate predicted values…

  7. (Z-Ethyl 2-(3-nitrobenzylidene-3-oxobutanoate

    Xiaopeng Shi


    Full Text Available The title molecule, C13H13NO5, adopts a Z conformation at the C= C double bond. The ethoxy atoms of the ethyl ester group are disordered over two orientations in a 3:2 ratio. Weak intermolecular C—H...O hydrogen bonds help to establish the packing.

  8. Synthesis and degradation behavior of poly(ethyl cyanoacrylate)

    Poly(ethyl cyanoacrylate) was synthesized using N, N'-dimethyl-p-toulidine (DMPT) as an initiator through anionic/zwitterionic pathway. The degradability and the degradation mechanism of the prepared polymers were carefully examined from various points of views. It was found that the polymers were...

  9. Synthesis of Poly(2-Chloro Ethyl Vinylether) and Its Derivatives

    Nuyken, O.; Rieß, G.; Loontjens, J.A.; Linde, R. van der


    The cationic polymerization of 2-chloro ethyl vinylether (CEVE) is initiated by 1-iodo-1-(2-methylpropyloxy)ethane/(n-Bu)4NClO4. The monomer is consumed following first order kinetics. Molar masses are controlled by the ratio [M]:[I]. A rather narrow molar mass distribution is obtained. These observ

  10. Synthesis of Ethyl Nalidixate: A Medicinal Chemistry Experiment

    Leslie, Ray; Leeb, Elaine; Smith, Robert B.


    A series of laboratory experiments that complement a medicinal chemistry lecture course in drug design and development have been developed. The synthesis of ethyl nalidixate covers three separate experimental procedures, all of which can be completed in three, standard three-hour lab classes and incorporate aspects of green chemistry such as…

  11. Solubility of hydrogen sulfide in water

    The solubility of hydrogen sulfide in water, which is of importance in the design and analysis of the dual temperature process for the production of heavy water, has been measured in the temperature range 100 - 1800C at pressures up to 6670 kPa or the hydrate/H2S-rich liquid locus, whichever is lower at the particular temperature. Limited vapor phase data at 900, 1200, and 1500C were also obtained. Henry's coefficients have been determined from the experimental data. (orig./HK)

  12. Normal State of the Metallic Hydrogen Sulfide

    Kudryashov, Nikolay A.; Kutukov, Alexander A.; Mazur, Evgeny A.


    Generalized theory of the normal properties of the metal in the case of the electron-phonon (EP) systems with not constant density of electronic states is used to examine the normal state of the SH3 and SH2 phase of the hydrogen sulfide at different pressures. The frequency dependence of the real and imaginary part of the self-energy part (SP) of the electron Green's function, the real and imaginary part of the complex renormalization of the electron mass, the real and imaginary part of the c...

  13. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Tetsuo Umegaki; Yusuke Yamada; Atsushi Ueda; Nobuhiro Kuriyama; Qiang Xu


    We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-prod...

  14. Effect of Soluble Sulfide on the Activity of Luminescent Bacteria

    Feng Wang


    Full Text Available Sulfide is an important water pollutant widely found in industrial waste water that has attracted much attention. S2−, as a weak acidic anion, is easy hydrolyzed to HS and H2S in aqueous solution. In this study, biological tests were performed to establish the toxicity of sulfide solutions on luminescent bacteria. Considering the sulfide solution was contained three substances—S2−, HS and H2S—the toxicity test was performed at different pH values to investigate which form of sulfide increased light emission and which reduced light emission. It was shown that the EC50 values were close at pH 7.4, 8.0 and 9.0 which were higher than pH 5 and 10. The light emission and sulfide concentrations displayed an inverse exponential dose-response relationship within a certain concentration range at pH 5, 6.5 and 10. The same phenomenon occurred for the high concentration of sulfide at pH 7.4, 8 and 9, in which the concentration of sulfide was HS >> H2S > S2−. An opposite hormesis-effect appeared at the low concentrations of sulfide.

  15. 21 CFR 73.2995 - Luminescent zinc sulfide.


    ... coloring externally applied facial makeup preparations and nail polish included under § 720.4(c)(7)(ix) and... zinc sulfide in facial makeup preparations shall not exceed 10 percent by weight of the final product. (2) Facial makeup preparations containing luminescent zinc sulfide are intended for use only...

  16. 40 CFR 425.03 - Sulfide analytical methods and applicability.


    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sulfide analytical methods and applicability. 425.03 Section 425.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration...

  17. First detection of doubly deuterated hydrogen sulfide

    Vastel, C; Ceccarelli, C; Pearson, J


    This work was carried out with using the Caltech Submillimeter Observatory and presents the observational study of HDS and D2S towards a sample of Class 0 sources, and dense cores. We report the first detection of doubly deuterated hydrogen sulfide (D2S) in two dense cores and analyze the chemistry of these molecules aiming to help understand the deuteration processes in the interstellar medium. The observed values of the D2S/HDS ratio, and upper limits, require an atomic D/H ratio in the accreting gas of 0.1-1. The study presented in this Letter supports the hypothesis that formaldehyde, methanol and hydrogen sulfide are formed on the grain surfaces, during the cold pre-stellar core phase, where the CO depleted gas has large atomic D/H ratios. The high values for the D/H ratios are consistent with the predictions of a recent gas-phase chemical model that includes H3+ and its deuterated isotopomers, H2D+, D2H+ and D3+ (Roberts et al. 2003).

  18. Hydrogen Sulfide and Polysulfides as Biological Mediators

    Hideo Kimura


    Full Text Available Hydrogen sulfide (H2S is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS, cystathionine γ-lyase (CSE, and 3-mercaptopyruvate sulfurtransferase (3MST. The activity of CBS is enhanced by S-adenosyl methionine (SAM and glutathionylation, while it is inhibited by nitric oxide (NO and carbon monoxide (CO. The activity of CSE and cysteine aminotransferase (CAT, which produces the 3MST substrate 3-mercaptopyruvate (3MP, is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR, sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1 channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2 to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN by sulfurating (sulfhydrating the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  19. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang


    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  20. Physical and microstructural aspects of iron sulfide degradation in concrete

    The microstructural aspects of iron sulfide degradation in dam concrete were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) in both dam concrete samples and laboratory concrete. The results show that iron sulfide inclusions with a diameter of a few micrometers in the aggregates are reactive and appear to generate expansion first in the aggregates and consequently in the cement paste. The expansion from the iron sulfides is a consequence of the increase in volume of the reaction products formed. The types of iron sulfide present in the aggregate, mainly pyrrhotite (FeS) and pyrite (FeS2), show similar reaction behavior in the aggregates. The released sulfate can lead to a secondary ettringite formation in the concrete matrix, but the degradation associated with this appears to be minor. The reaction of the iron sulfides was found to be very slow even when laboratory samples were exposed to elevated temperatures.

  1. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Leybovych L.I.


    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  2. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    Priyanka Jood


    Full Text Available Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor.

  3. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Christopher S. Williams


    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.


    Duffield, R.B.


    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  5. Carbon steel protection in G.S. (Girlder sulfide) plants. Pressure influence on iron sulfide scales formation. Pt. 5

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfide, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2MPa, for periods of 14 days). Experiments, at 125 deg C and periods of 10-25 days, were performed in two different ways: 1- constant pressure operations at 0.5 and 1.1 MPa. 2- variable pressure operation between 0.3-1 MPa. In all cases pyrrotite-pyrite scales were obtained. (Author)


    New laboratory data of ethyl mercaptan, CH3CH2SH, in the millimeter- and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauche-CH3CH2SH toward Orion KL. This identification is supported by 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz. A detection of methyl mercaptan, CH3SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is ≅ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL

  7. Reactions of methyl and ethyl radicals with uranium hexafluoride

    Lyman, John L.; Laguna, Glenn


    We have measured the rates of reaction of both methyl and ethyl radicals with uranium hexafluoride (UF6) in the gas phase. The method we used was to photolyze samples of UF6 in the presence of either methane or ethane. The radicals produced by reaction of fluorine atoms with these species then react with either themselves or with UF6. We inferred the rate constants from ratios of the reaction products and the published rate constants for radical recombination. The diagnostic technique was gas chromatography. The resulting rate constants for reaction with UF6 were (1.6±0.8)×10-14 cm3 molecule-1 s-1 for methyl radicals and (4±2)×10-11 cm3 molecule-1 s-1 for ethyl radicals.

  8. Measurement and Correlation of Solubilityof Ethyl Nitrite in Mixed Solvent


    An experimental apparatus was used to measure the solubility of ethylnitrite in mixedsolvents under the lower pressure and higher temperature. The solubilitiesof ethyl nitrite inmixed solvents of ethanol-water at 15° C---40° C and ethanol-diethyloxalate at 20° C---40° C weredetermined. A Henry constant model has been improved, and the interaction parameters havebeen fitted from experimental data. The calculation results have been compared withexperimental data; the results obtained are satisfactory.

  9. Transfer Reactions in Phenyl Carbamate Ethyl Acrylate Polymerizations

    Bennet, Francesca; Roelle, Thomas; Faecke, Thomas; Weiser, Marc-Stephan; Bruder, Friedrich-Karl; Barner-Kowollik, Christopher; Junkers, Thomas


    The transfer reactions occurring during polymerization of 2-(phenylcarbamoyloxy)ethyl acrylate (PhCEA) were studied by a detailed product mapping with electrospray ionization mass spectrometry (ESI-MS). Unlike postulated before, PhCEA exhibits the same characteristic transfer reactions as other acrylic monomers at elevated temperatures, resulting in vinyl-terminated and saturated products. Transfer to monomer via abstraction of a hydrogen atom from the ester side chain as suggested before is ...

  10. Synthesis of new radiotracers based of Ethyl Ester

    The in vivo study of a biochemical or physiological process requires the synthesis of specific radiotracers but also the targeting of these compounds so that they can reach their target tissue. Methodologies original synthesis associated with radioisotopes used, the quantities and chemical forms often have to be available developed. The chemistry of metal complexes booming, we were able to use the ethyl ester combined with technetium, forming a stable radiotracer. Finally, a counting of radioactivity in different rat's organs completed our study. (Author)

  11. Mouse Mutagenesis Using N-Ethyl-N-Nitrosourea (ENU)



    Authors: Andrew P. Salinger and Monica J. Justice1 Corresponding author ([]()) ### INTRODUCTION This protocol describes chemical mutagenesis of male mice using N-ethyl-N-nitrosourea (ENU), which is the most efficient method for obtaining mouse mutations in phenotype-driven screens. A fractionated dose of ENU, an alkylating agent, can produce a mutation rate as high as 1.5 × 10e−3 in male mouse spermatogonial stem cells. Treatment with ENU pr...

  12. Highly efficient palladium-catalyzed hydrostannation of ethyl ethynyl ether

    Andrews, Ian P.; Kwon, Ohyun


    The palladium-catalyzed hydrostannation of acetylenes is widely exploited in organic synthesis as a means of forming vinyl stannanes for use in palladium-catalyzed cross-coupling reactions. Application of this methodology to ethyl ethynyl ether results in an enol ether that is challenging to isolate from the crude reaction mixture because of incompatibility with typical silica gel chromatography. Reported here is a highly efficient procedure for the palladium-catalyzed hydrostannation of ethy...

  13. Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide

    Sequential exposures of trimethylaluminum and hydrogen sulfide are used to deposit aluminum sulfide thin films by atomic layer deposition (ALD) in the temperature ranging from 100 to 200 °C. Growth rate of 1.3 Å per ALD cycle is achieved by in-situ quartz crystal microbalance measurements. It is found that the growth rate per ALD cycle is highly dependent on the purging time between the two precursors. Increased purge time results in higher growth rate. Surface limited chemistry during each ALD half cycle is studied by in-situ Fourier transformed infrared vibration spectroscopy. Time of flight secondary ion-mass spectroscopy measurement is used to confirm elemental composition of the deposited films

  14. Sensory reception of the primer pheromone ethyl oleate

    Muenz, Thomas S.; Maisonnasse, Alban; Plettner, Erika; Le Conte, Yves; Rössler, Wolfgang


    Social work force distribution in honeybee colonies critically depends on subtle adjustments of an age-related polyethism. Pheromones play a crucial role in adjusting physiological and behavioral maturation of nurse bees to foragers. In addition to primer effects of brood pheromone and queen mandibular pheromone—both were shown to influence onset of foraging—direct worker-worker interactions influence adult behavioral maturation. These interactions were narrowed down to the primer pheromone ethyl oleate, which is present at high concentrations in foragers, almost absent in young bees and was shown to delay the onset of foraging. Based on chemical analyses, physiological recordings from the antenna (electroantennograms) and the antennal lobe (calcium imaging), and behavioral assays (associative conditioning of the proboscis extension response), we present evidence that ethyl oleate is most abundant on the cuticle, received by olfactory receptors on the antenna, processed in glomeruli of the antennal lobe, and learned in olfactory centers of the brain. The results are highly suggestive that the primer pheromone ethyl oleate is transmitted and perceived between individuals via olfaction at close range.

  15. Physical Properties of Ethyl Methacrylate as a Bolus in Radiotherapy

    Bolus is a soft and resilient material which is used for increasing skin dose or to even out the irregular patient contour. The main property of various materials used presently as bolus is the water-equivalent electron density. Ethyl methacrylate is used as a soft-liner in dentistry and its physical and chemical properties are proved to be nontoxic for human body. The goal of this study was to assess the feasibility of using this material as bolus in radiotherapy and also evaluating some parameters such as mass, electron densities, and transmission factors. Computed tomography data from the sample material were acquired to assess mass and electron densities with various techniques (mA and kVp). Circular ROIs were delineated on CT DICOM images and densities were calculated using CT numbers. Transmission factors were calculated for 6 and 18 MV. Evaluation of our results are evident that showed that mass and electron densities of ethyl methacrylate are similar to those of water and soft tissue. Furthermore, transmission factors are close to those of water. According to the results of this study and other properties such as flexibility and harmlessness, it seems that ethyl methacrylate is a suitable material to be used as bolus in radiotherapy.

  16. Banded sulfide-magnetite ores of Mauk copper massive sulfide deposit, Central Urals: Composition and genesis

    Safina, N. P.; Maslennikov, V. V.; Maslennikova, S. P.; Kotlyarov, V. A.; Danyushevsky, L. V.; Large, R. R.; Blinov, I. A.


    The results of investigation of metamorphosed sulfide-magnetite ores from the Mauk deposit located within the Main Ural Fault at the junction of Tagil and Magnitogorsk massive sulfide zones are discussed. The ore-hosting sequence comprises metamorphic rocks formed from basalt, carbonaceous and carbonaceous-cherty siltstone, and lenticular serpentinized ultramafic bodies. The ores of the deposit are represented by banded varieties and less frequent breccia. The clastic origin of the banded ore is indicated by load casts at the bottom of sulfide beds, alternation of sulfide and barren beds, and the truncation of the growth zones of pyrite crystals. Pyrite, pyrrhotite, chalcopyrite, sphalerite, and magnetite are the major minerals of the banded ores. The internal structure of the listed minerals testifies to the deep metamorphic recrystallization of primary hydrothermal-sedimentary ores accompanied with deformation. Cubanite, pyrrhotite, mackinawite, greigite, and gold are enclosed in metacrysts of pyrite, magnetite, and chalcopyrite. The accessory minerals of the Pb-Bi-Te, Bi-Te, and Ag-Te systems as well as uraninite have been found at the Mauk deposit for the first time. Magnetite predominantly replaces pyrite and less frequently chalcopyrite, pyrrhotite, and gangue minerals. It was established that the major carriers of As and Co are crystals of metamorphic pyrite. Chalcopyrite is the major carrier of Zn, Sn, Te, Pb, Bi, and Ag. Admixture of Fe and Cu is typical of sphalerite, and Se and Ni are characteristic of pyrrhotite. Ti, V, Mn, Sb, As, Ba, and U are concentrated in magnetite. The banded ores of the Mauk deposit are suggested as having been transformed in several stages: diagenesis, anadiagenesis, epidiagenesis ( t 500°C).

  17. Azo dye decolorization assisted by chemical and biogenic sulfide

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)


    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  18. Azo dye decolorization assisted by chemical and biogenic sulfide

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection

  19. Sulfide elimination by intermittent nitrate dosing in sewer sediments

    Yanchen Liu; Chen Wu; Xiaohong Zhou; David Z.Zhu; Hanchang Shi


    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards,and requires expensive programs for its prevention.The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments.The study was carried out based on lab-scale experiments and batch tests using real sewer sediments.The intermittent nitrate dosing mode and the optimal control condition were investigated.The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment.The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide)ratio with slight excess nitrate is necessary for optimal conditions ofefficient sulfide control with lower carbon source loss.The opth-nal control condition is feasible for the sulfide elimination in sewer systems.

  20. Responsive lanthanide coordination polymer for hydrogen sulfide.

    Liu, Baoxia; Chen, Yang


    Metal organic coordination polymers have received great attention because of their flexible compositions and architecture. Here, we report the design and synthesis of a responsive lanthanide coordination polymer (LCP) for hydrogen sulfide (H2S), utilizing self-assembling of biomolecule nucleotide with luminescent terbium ion (Tb(3+)) and sensitizing silver ion (Ag(+)) in aqueous solution. LCP is highly fluorescent due to the inclusion of Ag(+) ions, which sensitized the fluorescence of Tb(3+) ions. H2S can strongly quench the fluorescence of LCP through its high affinity for Ag(+) ions. Such configurated LCP material from initial building blocks showed high sensitivity and selectivity for H2S and was applied to the determination of H2S in human serum. LCP with Tb(3+) ions also has a long fluorescence lifetime, which allows for time-resolved fluorescence assays, possessing particular advantages to probing H2S in biological systems with autofluorescence. PMID:24191713

  1. Role of iron sulfides in uranium deposition

    The role of iron mono- and disulfides in uranium infiltrated orogenesis is considered on the basis of the results of experimental and mineral-geochemical investigations. it is shown that pyrrhotite decomposing in a weak-acid medium with hydrogen sulfide and hydrogen emission precipitates actively uranium from oxygen-containing waters. Pyrrhotite in oxygen-free medium - when hydrogoethite is absent (probably due to partial proportionalization of Fe2+, SO42- and H2S and electron release causes Eh decrease at the mineral solution boundary up to values - 250 mV and correspondingly recovery uranium deposition. Regions of near-the fracture and over-the-break rock pyritization are of great importance when forecasting and prospecting infiltrated uranium deposits

  2. On the pelletizing of sulfide molybdenite concentrate

    Investigation results are discussed on the process of pelletizing with the use of various binders (water, syrup, sulfite-alcoholic residue and bentonite) for flotation sulfide molybdenite concentrate (∼84 % MoS2) of the Mongolian deposit. It is established that with the use of syrup rather strong pellets (>300 g/p) of desired size (2-3 mm) can be obtained at a binder flowrate of 1 kg per 100 kg of concentrate. The main advantage of using syrup instead of bentonite lies in the fact that in this instance no depletion of a molybdenum calcine obtained by oxidizing roasting of raw ore takes place due to syrup complete burning out. This affects positively subsequent hydrometallurgical conversion because of decreasing molybdenum losses with waste cakes

  3. Chemical foundations of hydrogen sulfide biology.

    Li, Qian; Lancaster, Jack R


    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  4. Modulation of hydrogen sulfide by vascular hypoxia

    Osmond JM


    Full Text Available Jessica M Osmond, Nancy L KanagyVascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USAAbstract: Hydrogen sulfide (H2S has emerged as a key regulator of cardiovascular function. This gasotransmitter is produced in the vasculature and is involved in numerous processes that promote vascular homeostasis, including vasodilation and endothelial cell proliferation. Although H2S plays a role under physiological conditions, it has become clear in recent years that hypoxia modulates the production and action of H2S. Furthermore, there is growing evidence that H2S is cytoprotective in the face of hypoxic insults. This review focuses on the synthesis and signaling of H2S in hypoxic conditions in the vasculature, and highlights recent studies providing evidence that H2S is a potential therapy for preventing tissue damage in hypoxic conditions.Keywords: H2S, cystathionine γ-lyase, vascular smooth muscle, endothelium

  5. Hydrogen sulfide production from subgingival plaque samples.

    Basic, A; Dahlén, G


    Periodontitis is a polymicrobial anaerobe infection. Little is known about the dysbiotic microbiota and the role of bacterial metabolites in the disease process. It is suggested that the production of certain waste products in the proteolytic metabolism may work as markers for disease severity. Hydrogen sulfide (H2S) is a gas produced by degradation of proteins in the subgingival pocket. It is highly toxic and believed to have pro-inflammatory properties. We aimed to study H2S production from subgingival plaque samples in relation to disease severity in subjects with natural development of the disease, using a colorimetric method based on bismuth precipitation. In remote areas of northern Thailand, adults with poor oral hygiene habits and a natural development of periodontal disease were examined for their oral health status. H2S production was measured with the bismuth method and subgingival plaque samples were analyzed for the presence of 20 bacterial species with the checkerboard DNA-DNA hybridization technique. In total, 43 subjects were examined (age 40-60 years, mean PI 95 ± 6.6%). Fifty-six percent had moderate periodontal breakdown (CAL > 3  7 mm) on at least one site. Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis and Fusobacterium nucleatum were frequently detected. H2S production could not be correlated to periodontal disease severity (PPD or CAL at sampled sites) or to a specific bacterial composition. Site 21 had statistically lower production of H2S (p = 0.02) compared to 16 and 46. Betel nut chewers had statistically significant lower H2S production (p = 0.01) than non-chewers. Rapid detection and estimation of subgingival H2S production capacity was easily and reliably tested by the colorimetric bismuth sulfide precipitation method. H2S may be a valuable clinical marker for degradation of proteins in the subgingival pocket. PMID:25280920

  6. Effect of Soluble Sulfide on the Activity of Luminescent Bacteria

    Feng Wang; Ling-Ling Wu; Hong-Wen Gao; Ying Shao


    Sulfide is an important water pollutant widely found in industrial waste water that has attracted much attention. S2−, as a weak acidic anion, is easy hydrolyzed to HS and H2S in aqueous solution. In this study, biological tests were performed to establish the toxicity of sulfide solutions on luminescent bacteria. Considering the sulfide solution was contained three substances—S2−, HS

  7. The electrochemical behavior of sulfide ions in molten cryolite

    The electrochemical behavior of sulfide ions in molten cryolite (Na3A1F6) has been studied by cyclic voltammetry using graphite electrodes at 1323 K. The oxidation of sulfide ions is found to proceed via a quasi-reversible mechanism, i.e., one in which the current is controlled by both diffusion and charge transfer kinetics. The transfer coefficient BETA and the standard rate constant k /SUB s/ are estimated to be 0.5 and 0.0042 cm/sec, respectively. The apparent diffusion coefficient for sulfide ions in cryolite at 1323 K is about 3.93 x 10-5 cm2/sec

  8. Optimization of the superconducting phase of hydrogen sulfide

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH3 phase and the stable orthorhombic structure of hydrogen sulfide SH2, are calculated for the pressure interval 100–225 GPa. It is found that the I4/mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH3 phase. Sequential stages for obtaining and conservation of the SH2 phase are proposed. The properties of two (SH2 and SH3) superconducting phases of hydrogen sulfide are compared

  9. Optimization of the superconducting phase of hydrogen sulfide

    Degtyarenko, N. N.; Masur, E. A., E-mail: [National Research Nuclear University MEPhI (Russian Federation)


    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH{sub 3} phase and the stable orthorhombic structure of hydrogen sulfide SH{sub 2}, are calculated for the pressure interval 100–225 GPa. It is found that the I4/mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH{sub 3} phase. Sequential stages for obtaining and conservation of the SH{sub 2} phase are proposed. The properties of two (SH{sub 2} and SH{sub 3}) superconducting phases of hydrogen sulfide are compared.

  10. Adsorbate thermodynamics as a determinant of reaction mechanism: Pentamethylene sulfide on Mo(110)

    Wiegand, B.C.; Friend, C.M.; Roberts, J.T. (Harvard Univ., Cambridge, MA (USA))

    The reactions of the totally unstrained, six-membered cyclic sulfide pentamethylene sulfide on Mo(110) have been investigated by using temperature-programmed reaction spectroscopy and X-ray photoelectron spectroscopy in an effort to identify the roles of ring size and strain in dictating reaction selectivity. Four gases products are detected in the temperature-programmed reaction of pentamethylene sulfide: dihydrogen at 380 and 590 K, pentane at 350 K, pentene at 345 K, and pentamethylene sulfide at 190 and 280 K. The kinetics for hydrocarbon production from pentamethylene sulfide are qualitatively different than for the four- and five-membered cyclic sulfides, trimethylene sulfide and tetrahydrothiophene.

  11. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    Hasler-Sheetal, Harald; Holmer, Marianne


    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with...... well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic...

  12. Determination of low concentrations of the flotation reagent ethyl xanthate by sampled DC polarography and flow injection with amperometric detection.

    Hidalgo, P; Gutz, I G


    A polarographic DC(tast) method with the static mercury drop electrode, SMDE, was developed for determination of the flotation collector ethyl xanthate (EtX) in the concentration range from 1x10(-5) to 8x10(-5) M. The potentiality of the method was demonstrated by evaluating the capacity of powdered galena ore (PbS) to adsorb EtX in a titration-like procedure. Sulfide could be determined simultaneously with EtX because in NaOH electrolyte their anodic waves are well separated (E(1/2) congruent with-0.72 and -0.42 V versus Ag/AgCl, respectively). In addition, a new FIA method was developed by adapting a simple device to the tip of the glass capillary of a mercury electrode and doing amperometric detection at a fixed potential of -0.1 V, always in the DC(tast) mode. No oxygen removal was required. Reproducible results were obtained at a frequency of 72 injections per h, with automatic renewal of the SMDE every second. The calibration curve for freshly prepared EtX standards rendered a straight line from 5x10(-6) to 8x10(-5) M with correlation coefficient of 0.997, suitable for real applications in flotation processes and its effluents. PMID:18968265

  13. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    Suaniti, Ni Made; Manurung, Manuntun


    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  14. Functional Analysis of Three Sulfide:Quinone Oxidoreductase Homologs in Chlorobaculum tepidum▿ †

    Chan, Leong-Keat; Morgan-Kiss, Rachael M; Hanson, Thomas E.


    Sulfide:quinone oxidoreductase (SQR) catalyzes sulfide oxidation during sulfide-dependent chemo- and phototrophic growth in bacteria. The green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum) can grow on sulfide as the sole electron donor and sulfur source. C. tepidum contains genes encoding three SQR homologs: CT0117, CT0876, and CT1087. This study examined which, if any, of the SQR homologs possess sulfide-dependent ubiquinone reduction activity and are required for gro...

  15. Sulfide oxidizing activity as a survival strategy in mangrove clam Polymesoda erosa (Solander, 1786)

    Clemente, S.; Ingole, B.S.; Sumati, M.; Goltekar, R.

    strategies of sulfide detoxification appear to be common in animals in normoxia. First, sulfide can be bound to blood proteins (Bagarinao and Vetter 1992). Second, sulfide is frequently oxidized to less toxic or nontoxic sulfur compounds, either... with the help of bacterial symbionts (Wilmot and Vetter 1990) or in the animal tissue (Vetter et al. 1987). As a group, thiotrophic (sulfide-utilizing) bacteria employ various enzymatic pathways for conversion of sulfide into energy, including the oxidation...

  16. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman

    Mohammad Ali Rajabzadeh; Fatemeh Al Sadi


    Introduction Worldwide, Ni-Cu and PGE magmatic sulfide deposits are confined to the lower parts of stratiform mafic and ultramafic complexes. However, ophiolite mafic and ultramafic complexes have been rarely explored for sulfide deposits despite the fact that they have been extensively explored and exploited for chromite. Sulfide saturation during magmatic evolution is necessary for sulfide mineralization, in which sulfide melts scavenge chalcophile metals from the parent magma and conc...

  17. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.


    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder

  18. A Novel Colorimetric Sensing Material, Poly(γ-Glutamic acid)-graft-3, 4-Dihydro-3-(2'-ethyl hydroxyl)-6-Ethyl-1,3,2H-Benzoxazine (γ-PGA-graft-ethyl-Bx), for Iron (III) Ions

    A novel rapid ion colorimetric sensing material for iron (III) ions was developed from poly(γ-glutamic acid) and 3,4-dihydro-3-(2'-ethyl hydroxyl)-6-ethyl-1,3,2H-benzoxazine (ethyl-Bx). The benzoxazine as an ionophore segment was grafted into γ-PGA backbone via the esterification reaction, which is a simple and effective reaction. The structure of γ-PGA-graft-ethyl-Bx was characterized by using FT-IR and 1H-NMR. The most attainable degree of conversion was 25 %. The γ-PGA-graft-ethyl-Bx showed a highly selective and sensitive recognition toward iron (III), which was clearly observable with the naked eye. The iron (III) ions sensing property of γ-PGA-graft-ethyl-Bx was further examined by using photometric titration method. After the interaction between the γ-PGA-graft-ethyl-Bx and iron (III) ions was formed, the solution of the polymer in dimethyl sulfoxide was changed from clear and colorless to red color, resulting in the shift of the maximum wavelength from UV to visible range. (author)

  19. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    Lajin, Bassam; Francesconi, Kevin A.


    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools.

  20. Micro-PIXE Analysis of Trace Elements in Sulfides

    Micro-scale Proton-induced X-ray Emission (PIXE) of trace elements (TE) in sulfides provides insights into geologic processes including magmatic system evolution, ore forming events, and fluid-flow processes. The Los Alamos nuclear microprobe was used to determine TE concentrations and ratios in sulfides from diverse geologic environments including hydrothermal ore deposits, coal seams, and metamorphic rocks. Pyrrhotite (Po) from silicic volcanics contains high Cu and Ni; Po from the Clear Lake volcanic field has higher Mo than does Po from other volcanic fields. Coal pyrites contain high Cu, As, Se, Mo and Pb, and show high As/Se and Mo/Se in marine influenced sulfides from the Lower Kittanning coal, but not in other marine-influenced coals. Sulfides are amenable to micro-PIXE studies because of the difficulties in obtaining the homogeneous standards required for many other TE microanalytical techniques

  1. Preliminary air pollution survey of hydrogen sulfide: a literature review

    Miner, S.


    This is a preliminary literature review representing present knowledge of hydrogen sulfide and its effects on humans, animals, plants and materials. Hydrogen sulfide is a colorless gas that has an obnoxious odor at low concentrations. The odor threshold is in the g/cu m range. In higher concentrations, the gas is toxic to humans and animals and corrosive to many metals. It will tarnish silver and react with heavy metals in points to discolor the paint. In humans, it will cause headache, conjunctivitis, sleeplessness, pain in the eyes, and similar symptoms at low air concentrations and death at high air concentrations. However, the majority of the complaints arising from hydrogen sulfide air pollution are due to its obnoxious odor in extremely low air concentrations. Air pollution by hydrogen sulfide is not a widespread urban problem but is generally localized in the vicinity of an emitter such as kraft paper mills, industrial waste disposal ponds, sewage plants, refineries, and coke oven plants.

  2. [Activity of hydrogen sulfide production enzymes in kidneys of rats].

    Mel'nyk, A V; Pentiuk, O O


    An experimental research of activity and kinetic descriptions of enzymes participating in formation of hydrogen sulfide in the kidney of rats has been carried out. It was established that cystein, homocystein and thiosulphate are the basic substrates for hydrogen sulfide synthesis. The higest activity for hydrogen sulfide production belongs to thiosulfate-dithiolsulfurtransferase and cysteine aminotransferase, less activity is characteristic of cystathionine beta-synthase and cystathio-nine gamma-lyase. The highest affinity to substrate is registered for thiosulfate-dithiolsulfurtransferase and cystathionine gamma-lyase. It is discovered that the substrate inhibition is typical of all hydrogen sulfide formation enzymes, although this characteristic is the most expressed thiosulfat-dithiolsulfurtransferase. PMID:20387629

  3. Hydrogen Sulfide Micro-Sensor for Biomass Fouling Detection Project

    National Aeronautics and Space Administration — Hydrogen Sulfide (H2S)is the leading chemical agent causing human fatalities following inhalation exposures. The overall aim of this project is to develop and...

  4. Oxidation and Precipitation of Sulfide in Sewer Networks

    Nielsen, A. H.

    are integrated at a more detailed level in the extended WATS model. This allows effects of pH, temperature and hydraulic conditions on the individual processes to be accounted for. For several of the processes, model parameters were found to be highly site specific. A sound and reliable use of complex models....... The effect of temperature on oxidation kinetics was described by the widely used Arrhenius equation. Rates of chemical and biological sulfide oxidation in the wastewater were found to double with temperature increases of 10 and 7C, respectively. The biofilm experiments indicated a smaller dependency...... on temperature in that the biofilm sulfide oxidation rate was found to double with a temperature increase of approximately 23C. The pH dependency of chemical sulfide oxidation in wastewater represented the dissociation of sulfide, with the hydrosulfide ion being more rapidly oxidized than molecular hydrogen...

  5. No facilitator required for membrane transport of hydrogen sulfide

    Mathai, John C.; Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Zeidel, Mark L.; Lee, John K.; Pohl, Peter


    Hydrogen sulfide (H2S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H2O, it was hypothesized that aquaporins may facilitate H2S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting fa...

  6. DLC coatings in high temperature hydrogen sulfide environment

    Liskiewicz, T; Al-Borno, A; A. Neville; Zhao, H


    Surface protection in high temperature hydrogen sulfide environment remains a significant challenge with limited number of materials providing adequate protection. Diamond-like carbon (DLC) thin films are recognized across different sectors as a promising way of controlling wear and the corrosion performance of components. The aim of this paper is to test the hypothesis that thin DLC coatings may act as an efficient corrosion barrier for steel components in high temperature hydrogen sulfide e...

  7. A new mechanism for the aerobic catabolism of dimethyl sulfide.

    Visscher, P T; Taylor, B F


    Aerobic degradation of dimethyl sulfide (DMS), previously described for thiobacilli and hyphomicrobia, involves catabolism to sulfide via methanethiol (CH3SH). Methyl groups are sequentially eliminated as HCHO by incorporation of O2 catalyzed by DMS monooxygenase and methanethiol oxidase. H2O2 formed during CH3SH oxidation is destroyed by catalase. We recently isolated Thiobacillus strain ASN-1, which grows either aerobically or anaerobically with denitrification on DMS. Comparative experimen...

  8. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    Bassam Lajin; Francesconi, Kevin A


    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ion...

  9. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs



    Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not ...

  10. An eco-friendly oxidation of sulfide compounds



    An improved green route has been developed for the oxidation of sulfide compounds. Albendazole is converted to ricobendazole or albendazole sulfone using H₂O₂ as an oxidant and H₂O as the solvent. High yields of the corresponding products were obtained by carrying out the reaction at room temperature. This synthetic method is environmentally clean and safe, operationally simple for the oxidation of other benzimidazole anthelmintics and various sulfide compounds.

  11. Alternating current electroluminescent properties of zinc sulfide powders

    Salimian, Alireza


    In order to investigate the alternating current electroluminescent properties of zinc sulfide powders the following experiments were conducted: synthesis of zinc sulfide phosphors (comprised of zinc, sulfur and copper dopant); thermal shocking of phosphor materials (sudden cooling, using liquid nitrogen, of phosphor particles heated up to 500oC) and analysis of their alternating current electroluminescent properties as well as studies of particle crystal structures by synchrotron and conventi...


    Yu. P. Sedlukho


    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  13. Lithium-aluminum/iron sulfide batteries

    Henriksen, G. L.; Vissers, D. R.

    Lithium-alloy/metal sulfide batteries have been under development at Argonne National Laboratory since 1972. ANL's technology employs a two-phase Li alloy negative electrode, low-melting point LiCl-rich LiCl-LiBr-KBr molten salt electrolyte, and either an FeS or an upper-plateau (UP) FeS 2 positive electrode. These components are assembled in an 'electrolyte-starved' bipolar cell configuration. Use of the multi-phase Li alloy ((α+β)-Li-Al and Li 5Al 5Fe 2) negative electrode provides in situ overcharge tolerance that renders the bipolar design viable. Employing LiCl-rich LiCl-LiBr-KBr electrolyte is 'electrolyte-starved" cells achieves low-burdened cells that possess low area-specific impedance, comparable with that of flooded cells using LiCl-LiBr-KBr eutectic electrolyte. The combination of dense UP FeS 2 electrodes and low-melting electrolyte produces a stable and reversible couple, achieving over 1000 cycles in flooded cells, with high power capabilities. In addition, a new class of stable chalcogenide ceramic/sealant materials was developed. These materials produce high-strength bonds between a variety of metals and ceramics, which make fabrication of lithium/iron sulfide bipolar stacks practical. Bipolar Li-Al/FeS and Li-Al/FeS 2 cells and four-cell stacks using these seals have been built and tested for electric vehicle (EV) applications. When cell performance characteristics are used to model full-scale EV ad hybrid vehicle (HV) batteries, they are projected to meet or exceed the performance requirements for a large variety of EV and HV applications. In 1992, the US Advanced Battery Consortium awarded contracts to ANL and SAFT America to continue the development of the bipolar Li-Al/FeS 2 battery to meet their long-term criteria. Both ANL and sAFT are working together to refine this technology for EV applications and scale it up to larger stacks and fully integrated battery modules.

  14. MMT promises: how the Ethyl Corporation beat the federal ban

    The manganese-based MMT has been blended in gasoline fuel sold in Canada for almost 20 years. Invoking environmental health and consumer protection grounds, the federal government moved to prohibit the importation and inter-provincial trade of MMT in June 1997. Ethyl Corporation of Richmond, Virginia, the sole producers of MMT, claimed discriminatory treatment under NAFTA and sought $ 250 million in damages as compensation for alleged 'expropriation' of the company's investment interests. A stunning reversal of the Canadian government's decision occurred one year later. Canada agreed to pay Ethyl Corporation $ 13 million (representing legal fees and lost profits) and agreed to rescind the legislation and admit publicly that the use of MMT poses no environmental risk. The reversal was the result of the little-known Agreement on Internal Trade (AIT), a federal-provincial government agreement, intended to reduce 'non-tariff' barriers to inter-provincial trade and create greater economic union. The AIT is modelled on NAFTA and the Uruguay-round GATT, and treats relations between the Canadian provinces as if they were relations among sovereign states. In cases of conflict, provinces are entitled to seek resolution of complaints before dispute resolution panels. Some of the provinces voiced objection to the MMT legislation and Alberta, supported by three other provinces, filed an AIT complaint against the federal government for prohibiting the inter-provincial trade of MMT. The AIT dispute panel upheld Alberta's complaint. The decision was hailed as a 'triumph of principle over bad science'. It was an unmitigated success for Ethyl Corporation, and a humiliating defeat for the federal government. In this author's view, the MMT story is a clear example of yet another instrument by which corporate power can limit the capacity of democratically elected governments to act on behalf of the public good

  15. Photoelectron spectroscopic study of the ethyl cyanoacrylate anion

    Zhang, Xinxing; Tang, Xin; Bowen, Kit


    Anion photoelectron spectroscopy and density functional theory have been utilized to study the parent, ethyl cyanoacrylate molecular anion, ECA-. The measured electron affinity (0.9 ± 0.2 eV), vertical detachment energy (1.3 ± 0.1 eV), and anion-to-triplet neutral, photodetachment transition energies (4.0 ± 0.1 eV and 4.5 ± 0.1 eV) all compare well with their calculated values. The relatively high electron affinity of the ECA monomer is responsible for the fact that its “anionic” polymerization mechanism proceeds even with weak nucleophiles, such as water.

  16. Ethyl­enediaminium hemioxalate thio­cyanate

    Narimani, Leila; Yamin, Bohari M.


    In the title compound, C2H10N2 2+·0.5(C2O4)2−·NCS−, the ethyl­enediaminium dication adopts a (+)-synclinal conformation with an N—C—C—N torsion angle of 62.64 (15)°. The oxalate dianion lies across an inversion centre. In the crystal structure, the ions are linked through N—H⋯N, N—H⋯O and C—H⋯S hydrogen bonds, leading to the formation of a three-dimensional network.

  17. Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells.

    Birkenmeier, Gerd; Hemdan, Nasr Y A; Kurz, Susanne; Bigl, Marina; Pieroh, Philipp; Debebe, Tewodros; Buchold, Martin; Thieme, Rene; Wichmann, Gunnar; Dehghani, Faramarz


    Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry, enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors. PMID:27579985

  18. Anisotropic Optical Properties of Layered Germanium Sulfide

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari


    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  19. Hydrogen Sulfide and Endothelium-Dependent Vasorelaxation

    Jerzy Bełtowski


    Full Text Available In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S, synthesized enzymatically from l-cysteine or l-homocysteine, is the third gasotransmitter in mammals. Endogenous H2S is involved in the regulation of many physiological processes, including vascular tone. Although initially it was suggested that in the vascular wall H2S is synthesized only by smooth muscle cells and relaxes them by activating ATP-sensitive potassium channels, more recent studies indicate that H2S is synthesized in endothelial cells as well. Endothelial H2S production is stimulated by many factors, including acetylcholine, shear stress, adipose tissue hormone leptin, estrogens and plant flavonoids. In some vascular preparations H2S plays a role of endothelium-derived hyperpolarizing factor by activating small and intermediate-conductance calcium-activated potassium channels. Endothelial H2S signaling is up-regulated in some pathologies, such as obesity and cerebral ischemia-reperfusion. In addition, H2S activates endothelial NO synthase and inhibits cGMP degradation by phosphodiesterase 5 thus potentiating the effect of NO-cGMP pathway. Moreover, H2S-derived polysulfides directly activate protein kinase G. Finally, H2S interacts with NO to form nitroxyl (HNO—a potent vasorelaxant. H2S appears to play an important and multidimensional role in endothelium-dependent vasorelaxation.




    Full Text Available The chitin is a natural polymer that is extracted commercially from the shells of crustaceans generated as raw material from the fishing industry. Their chemical structure is constituted by residual units of N-acetyl glucosamine linked by b (1 ® 4 and its derivatives can be obtained from alkaline chitosan. The chitin, chitosan and their derivatives present very good perspectives to be used in agriculture. These derivatives are biodegradable and they exhibit fungicides, germicides, nemacides properties and natural defensive mechanisms of the plants. The chlorophosphonic-2-acid (Ethephon® is a commercial product employed for the early maturation of fruits. The objective of the present work is the synthesis and characterization of chitosan-O-ethyl phosphonate chitosan to obtain a controlled released system with potential plant growth regulation properties. Alkaline chitosan was obtained; and then reacted with the 2-chlorophosphonic acid. The synthesis of new chitosan derivatives and its complete characterization by FT-IR, 13C, ¹H and 31P NMR is described and gas chromatographic, the effects on field blueberries are also tested. A chitosan 99 % deacetylated and Mv = 89,000 g/mol is prepared. The O-(ethyl phosphonic chitosan (QOEP with a degree of substitution of 58% is obtained

  1. Electrical transport in ethyl cellulose–chloranil system

    P K Khare; R K Pandey; P L Jain


    The charge-transport behaviour in pure and chloranil (Chl) doped ethyl cellulose (EC) system has been studied by measuring the dependence of current on field, temperature, electrode material and dopant concentration. The role of doping molecular concentration in the polymer matrix and modification in the conduction characteristics are studied. Lowering of the activation energy due to doping was observed. The current was found to increase with an increase in the chloranil concentration. An explanation for this has been attempted on the basis of formation of molecular aggregates between chloranil molecules and ethoxy groups of ethyl cellulose. It is suggested that chloranil occupies interstitial positions between the polymer chains and assists in carrier transportation by reducing the hopping barriers. The current–voltage characteristics of different samples are analyzed using space charge limited current theory and quantitative information about the transport parameters is derived. The values of effective drift mobility and trapped charge carrier concentration which result in the build up of space charge have been calculated.

  2. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    Okumura, Akihiko


    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  3. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    Johnson, James E.; Bates, Timothy S.


    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  4. Selenium content of sulfide ores related to ophiolites of Greece.

    Economou-Eliopoulos, M; Eliopoulos, D G


    Several deposits of sulfide mineralization have been described in the ophiolites of Greece. Based on their mineralogical and chemical composition and the host rocks, two types can be distinguished: (1) the Fe-Cu-Ni-Co type consisting of pyrrhotite, chalcopyrite, Co-pentlandite, pyrite, magnetite + arsenides, +/- chromite, hosted in serpentinites, gabbros or diabases, which have variable geochemical characteristics, and (2) sulfide mineralization of the Cyprus type containing variable proportions of pyrite, chalcopyrite, bornite, and sphalerite. The spatial association with shear zones and fault systems, which is a common feature in both types of mineralization, provided the necessary permeability for the circulation of the responsible mineralized hydrothermal fluids. The selenium (Se) content in representative samples of both types of mineralization from the ophiolites of Pindos (Kondro, Perivoli, and Neropriona), Othrys (Eretria and A. Theodoroi), Veria (Trilofon), and Argolis (Ermioni) shows a wide variation. The highest values of Se (130 to 1900 ppm) were found in massive Fe-Cu sulfide ores from Kondro, in particular the Cu-rich portions (average 1300 ppm Se). The average values of Se for the Othrys sulfides are low (< 40 ppm Se). The Se content in a diabase breccia pipe (50 x 200 m) with disseminated pyrite mineralization (Neropriona) ranges from < 1 to 35 ppm Se. The highest values were noted in strongly altered samples that also exhibited a significant enrichment in platinum (1 ppm Pt). Sulfide mineralization (irregular to lens-like masses and stringers) associated with magnetite, hosted in gabbros exposed in the Perivoli area (Tsouma hill), shows a content ranging from 40 to 350 ppm Se. The distribution of Se in the studied type of the sulfide mineralization may be of genetic significance, indicating that the Se level, which often is much higher than in typical magmatic sulfides related to mafic-ultramafic rocks (average 90-100 ppm Se), may positively affect

  5. Hydrogen sulfide and nervous system regulation

    ZHOU Cheng-fang; TANG Xiao-qing


    Objective This review discusses the current status and progress in studies on the roles of hydrogen sulfide (H2S) in regulation of neurotoxicity,neuroprotection,and neuromodulator,as well as its therapeutic potential for neurodegenerative disorders.Data sources The data used in this review were mainly from Medline and PubMed published in English from 2001 to August 2011.The search terms were “hydrogen sulfide”,“neuron”,and “neurodegenerative disorders”.Study selection Articles regarding the regulation of neuronal function,the protection against neuronal damage and neurological diseases,and their possible cellular and molecular mechanisms associated with H2S were selected.Results The inhibited generation of endogenous H2S is implicated in 1-methy-4-phenylpyridinium ion,6-OHDA,and homocysteine-triggered neurotoxicity.H2S elicits neuroprotection in Alzheimer's disease and Parkinson's disease models as well as protecting neurons against oxidative stress,ischemia,and hypoxia-induced neuronal death.H2S offers anti-oxidant,anti-inflammatory and anti-apoptotic effects,as well as activates ATP-sensitive potassium channels and cystic fibrosis transmembrane conductance regulator Cl- channels.H2S regulates the long-term potentiation (LTP) and GABAB receptors in the hippocampus,as well as intracellular calcium and pH homeostasis in neurons and glia cells.Conclusions These articles suggest that endogenous H2S may regulate the toxicity of neurotoxin.H2S not only acts as a neuroprotectant but also serves as a novel neuromodulator.

  6. Electrochemical Behavior Of Copper Electrode In Potassium Sulfide Solutions

    I. Zaafarany


    Full Text Available The electro chemical behavior of copper electrode in 2M potassium sulfide solution was studied using cyclic voltammograms and potentiostatic polarization techniques. The morphology studies were applied using scanning electron microscope (SEM and energy dispersive analysis of X-rays (EDAX and X-ray powder diffraction. Three anodic peaks were observed in the anodic scan of cyclic voltammograms. SEM and EDAX analysis show the formation of an anodic copper sulfide layer on the surface of copper. Chemical sulfidization of the copper shown to be an important layer growth pathway. The sulfide layers do not passivate copper and the formation of passivating oxide layer is suppressed. The sulfide layer on copper has a Cu2S stoichiometry with roxybyite and digenite structure and it grows by a nucleation. A small patches were consistent with a CuS composition. The formation of KCu7S4 or any other ternary compound could not be observed. Only a presumable polysulfide phase very similar to KCuS4 could be detected.

  7. Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation

    Xu, Xijun; Chen, Chuan; Wang, Aijie; Guo, Wanqian; Zhou, Xu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Lee, Duu-Jong, E-mail: [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ren, Nanqi, E-mail: [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Chang, Jo-Shu [Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)


    Graphical abstract: Model evaluation applied to case study 1: (A-G) S{sup 2−}, NO{sub 3}{sup −}-N, NO{sub 2}{sup −}-N, and Ac{sup −}-C profiles under initial sulfide concentrations of 156.2 (A), 539 (B), 964 (C), 1490 (D), 342.7 (E), 718 (F), and 1140.7 (G) mg L{sup −1}. The solid line represents simulated result and scatter represents experimental result. -- Highlights: • This work developed a mathematical model for DSR process. • Kinetics of sulfur–nitrogen–carbon and interactions between denitrifiers were studied. • Kinetic parameters of the model were estimated via data fitting. • The model described kinetic behaviors of DSR processes over wide parametric range. -- Abstract: Simultaneous removal of sulfide (S{sup 2−}), nitrate (NO{sub 3}{sup −}) and acetate (Ac{sup −}) under denitrifying sulfide removal process (DSR) is a novel biological wastewater treatment process. This work developed a mathematical model to describe the kinetic behavior of sulfur–nitrogen–carbon and interactions between autotrophic denitrifiers and heterotrophic denitrifiers. The kinetic parameters of the model were estimated via data fitting considering the effects of initial S{sup 2−} concentration, S{sup 2−}/NO{sub 3}{sup −}-N ratio and Ac{sup −}-C/NO{sub 3}{sup −}-N ratio. Simulation supported that the heterotrophic denitratation step (NO{sub 3}{sup −} reduction to NO{sub 2}{sup −}) was inhibited by S{sup 2−} compared with the denitritation step (NO{sub 2}{sup −} reduction to N{sub 2}). Also, the S{sup 2−} oxidation by autotrophic denitrifiers was shown two times lower in rate with NO{sub 2}{sup −} as electron acceptor than that with NO{sub 3}{sup −} as electron acceptor. NO{sub 3}{sup −} reduction by autotrophic denitrifiers occurs 3–10 times slower when S{sup 0} participates as final electron donor compared to the S{sup 2−}-driven pathway. Model simulation on continuous-flow DSR reactor suggested that the adjustment of

  8. Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate

    Highlights: • Measurement solubility of single gases CO2 and H2S in [C2mim][eFAP] ionic liquid. • Evaluation of Henry’s constants for solubility of CO2 and H2S in [C2mim][eFAP]. • Correlation of experimental data by the Redlich–Kwong equation of State. • Correlation of experimental data by the extended Henry’s law and Pitzer model. • Comparison of [C2mim][eFAP] with other ILs for gas sweetening and separation. -- Abstract: The solubility of two single gases carbon dioxide and hydrogen sulfide in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([C2mim][eFAP]) was experimentally determined at temperatures from (303 to 353) K and pressures up to about 2.0 MPa. Results show that hydrogen sulfide is more soluble in that particular ionic liquid than carbon dioxide. At fixed temperature and pressure, the amount of dissolved H2S is more than twice the amount of CO2. The new experimental data were used to determine the Henry’s law constants, which again were used to derive some thermodynamic functions of the gas/solvent systems, such as, for example, the change of the partial molar Gibbs free energy of the gases upon solution in the ionic liquid. Two models were used to correlate the new experimental data: (1) a model comprised of the extended Henry’s law and Pitzer's virial expansion for the excess Gibbs free energy, and (2) a generic Redlich–Kwong (RK) cubic equation of state recently proposed for gas-ionic liquid systems. Both models are equally suited to correlate the experimental results. The (CO2 + H2S) selectivity of [C2mim][eFAP] was calculated from the RK EoS at various temperatures, pressures and CO2/H2S feed ratios and compared with the recently reported results for the selectivity of other ionic liquids

  9. Correlation and prediction of mixing thermodynamic properties of ester-containing systems: Ester + alkane and ester + ester binary systems and the ternary dodecane + ethyl pentanoate + ethyl ethanoate

    Highlights: ► Excess enthalpies and volumes were measured for ester–ester–alkane. ► Mixing behaviour for ester–ester, ester–alkane and ester–ester–alkane are analyzed. ► Correlations with a new polynomial model reproduce well the mixing properties. ► UNIFAC predictions for hE result acceptable excluding the ester–ester mixtures. - Abstract: Excess thermodynamic properties VmE and HmE, have been measured for the ternary mixture dodecane + ethyl pentanoate + ethyl ethanoate and for the corresponding binaries dodecane + ethyl pentanoate, dodecane + ethyl ethanoate, ethyl pentanoate + ethyl ethanoate at 298.15 K. All mixtures show endothermic and expansive effects. Experimental results are correlated with a suitable equation whose final form for the excess ternary quantity ME contains the particular contributions of the three binaries (i–j) and a last term corresponding to the ternary, all of them obtained considering fourth-order interactions. The fit goodness for all mixtures is good and comparable to others equations taken from the literature. In this work the dissolution model for the binaries and ternary is analyzed with a special attention to ester–ester binaries whose behaviour is discussed. The application of the UNIFAC group contribution model to estimate the HmE yields acceptable results for the binaries (with the exception of ester–ester) and for the ternary mixture.

  10. Colorimetric determination of uranium using ammonium thiocyanate in a medium of ethyl acetate, acetone and water

    The method consists of colorimetrically analyzing uranium using ammonium sulfo-cyanide in the solvent phase. The optimum conditions for extracting uranium by ethyl acetate have been studied. A precise colorimetric method was established which depends on the extracted phase and on the behavior of the ethyl acetate-acetone medium. (author)