WorldWideScience

Sample records for 1alpha 25-dihydroxyvitamin d3

  1. 1 alpha, 25-Dihydroxyvitamin D3 a metabolite of vitamin D that promotes bone repair.

    Brumbaugh, P. F.; Speer, D. P.; Pitt, M. J.

    1982-01-01

    1 alpha, 25-dihydroxyvitamin D3, the hormonal form of vitamin D3 that mediates calcium translocation in intestine and bone, was tested for its ability to promote fracture repair. Chicks were raised on a vitamin D-deficient diet supplemented with 1 alpha, 25-dihydroxyvitamin D3 for 3 weeks. Following fracture of the humerus, those chicks that did not receive continued 1 alpha, 25-dihydroxyvitamin D3 supplementation showed prolonged fracture healing, abnormal enchondral bone formation delayed r...

  2. Down-regulation of monocyte functions by treatment of healthy adults with 1 alpha,25 dihydroxyvitamin D3

    Müller, K; Gram, J; Bollerslev, J;

    1991-01-01

    A number of in vitro studies suggest an immunoregulatory role of 1 alpha,25 Dihydroxyvitamin D3 (1,25-(OH)2D3). The hormone inhibits production of interleukin-2 and immunoglobulin, and it blocks lymphocyte proliferation. Diverse effects on monocyte functions have been reported. However...... unchanged in one. There was no effect on the release of interleukin-1 beta. There was no measurable effect on interleukin-2, interferon gamma or immunoglobulin production, or on mitogen-induced proliferation of blood mononuclear cells. Serum-osteocalcin and urine excretion of calcium were increased to 131...

  3. 1 alpha,25-dihydroxyvitamin D3 analogs featuring aromatic and heteroaromatic rings: design, synthesis, and preliminary biological testing.

    Posner, G H; Li, Z; White, M C; Vinader, V; Takeuchi, K; Guggino, S E; Dolan, P; Kensler, T W

    1995-10-27

    Aromatic compounds 2a-c, analogs of 1 alpha, 25-dihydroxyvitamin (calcitriol, 1), and heteroaromatic compounds 4a-c and 5a-c, analogs of 19-nor-1 alpha, 25-dihydroxyvitamin D3 (3), were designed to simulate the topology of their biologically potent parent compounds while avoiding previtamin D equilibrium. Convergent and facile total syntheses of the analogs (+)-2b, (+)-2c, (-)-4b, and (-)-5b were achieved via carbonyl addition of regiospecifically formed organolithium nucleophiles to the enantiomerically pure C,D-ring ketone (+)-17, characteristic of natural calcitriol (1). Likewise, hybrid analogs 20a-c were prepared to determine whether incorporation of a known potentiating side chain would lead to increased biological activity. Preliminary in vitro biological testing showed that aromatic analogs (+)-2b, (+)-2c, and 20a-c as well as heteroaromatic analogs (-)-4b and (-)-5b have very low affinities for the calf thymus vitamin D receptor but considerable antiproliferative activities in murine keratinocytes at micromolar concentration. No biological advantage was observed in this keratinocyte assay for the doubly modified hybrid analogs 20a-c over the singly modified parent (+)-2b. Analog (+)-2b, but surprisingly not the corresponding analog 20b differing from (+)-2b only in the side chain, showed considerable activity in nongenomic opening of calcium channels in rat osteosarcoma cells. PMID:7473581

  4. Induction of regulatory dendritic cells by dexamethasone and 1alpha,25-Dihydroxyvitamin D(3)

    Pedersen, Anders Elm; Gad, Monika; Walter, Mark R;

    2004-01-01

    D(3) the active form of Vitamin D(3) (D(3)) in combination with dexamethasone (Dex) has a synergistic effect on LPS-induced maturation of DC. Monocyte-derived DCs cultured with D(3) and Dex during LPS-induced maturation have a low stimulatory effect on allogeneic T cells comparable with that of...

  5. 1Alpha,25-dihydroxyvitamin D3 inhibits programmed cell death in HL-60 cells by activation of sphingosine kinase.

    Kleuser, B; Cuvillier, O; Spiegel, S

    1998-05-01

    Sphingolipid breakdown products [ceramide, sphingosine, and sphingosine-1-phosphate (SPP)] are emerging as a new class of bioactive molecules. In agreement with previous studies, treatment of human promyelocytic leukemia HL-60 cells with 1-alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] induced a transient increase of ceramide levels within 2 h, which then returned to basal levels within 8 h. In contrast, sphingosine kinase activity increased more slowly and reached maximal levels only after 20 h of exposure, leading to a concomitant increase in SPP level. Unlike treatments with cell-permeable ceramide analogues or sphingomyelinase, which induce apoptosis, 1,25-(OH)2D3 did not induce apoptosis, despite the early formation of ceramide. Moreover, prolonged treatment of HL-60 cells with 1,25-(OH)2D3 suppressed ceramide-induced apoptosis. There was a correlation between the time course and dose response of the activation of sphingosine kinase by 1,25-(OH)2D3 and the protection against apoptosis. In contrast, treatment with all-trans-retinoic acid neither stimulated sphingosine kinase activity nor protected cells from ceramide-induced apoptosis. Treatment with SPP protected HL-60 cells from ceramide-induced apoptosis, and N,N-dimethylsphingosine (DMS), a competitive inhibitor of sphingosine kinase, prevented the survival effect of 1,25-(OH)2D3. The effect of DMS was counteracted by SPP, suggesting that SPP is a critical component of the cytoprotective effect of 1,25-(OH)2D3. Chelerythrine chloride, an inhibitor of protein kinase C, markedly reduced sphingosine kinase activity and the apoptosis-sparing effect of 1,25-(OH)2D3, and conversely, the tumor promoter 12-O-tetradecanoylphorhol-13-acetate not only suppressed ceramide-induced apoptosis but also stimulated sphingosine kinase activity. Moreover, the protective effect of 12-O-tetradecanoylphorbol-13-acetate was blocked by DMS. Collectively, our observations indicate that the cytoprotective effect of 1,25-(OH)2D3 is

  6. Induction of a high phagocytic capability in P388D1, a macrophage-like tumor cell line, by 1 alpha, 25-dihydroxyvitamin D3.

    Goldman, R

    1984-01-01

    1 alpha, 25-Dihydroxyvitamin D3 [1,25-(OH)2D3] was shown to induce a high phagocytic capability in the macrophage-like murine tumor cell line P388D1. Induction of phagocytic capability by 1,25-(OH)2D3 was dose-dependent in the range of 0.2 to 5.0 ng/ml, required the continuous presence of the secosteroid in culture, and was reversible. 25-Hydroxyvitamin D3 was an effective inducer only at about 500 ng/ml, while 24R,25-dihydroxyvitamin D3 was ineffective. The induction of the high phagocytic capability was neither accompanied by increased synthesis of lysozyme nor closely associated with an inhibitory effect on cellular proliferation. P388D1 cells bound (without ingestion) nonopsonized sheep erythrocytes (sheep RBC), and the binding increased in 1,25-(OH)2D3-treated cells. Fc-receptor-mediated binding of immunoglobulin G-coated sheep RBC was not modulated in 1,25-(OH)2D3-treated cells, but the cells acquired an Fc-receptor-mediated phagocytic capability that was expressed only when preformed P388D1-sheep RBC rosettes were further exposed to immunoglobulin G. Several differentiation agents of myeloid leukemia cells (including dexamethasone) were not effective in inducing the high-phagocytic phenotype, while retinoic acid was very effective. Different myeloid or macrophage-like tumors (WEHI-265, J774.2, PU-5, and WEHI-3) were variable in their response to 1,25-(OH)2D3. PMID:6546302

  7. Allosteric interaction of the 1alpha,25-dihydroxyvitamin D3 receptor and the retinoid X receptor on DNA.

    Kahlen, J P; Carlberg, C

    1997-01-01

    Genomic actions of the hormone 1alpha,25-dihydroxy-vitamin D3(VD) are mediated by the transcription factor VDR, which is a member of the nuclear receptor superfamily. VDR acts in most cases as a heterodimeric complex with the retinoid X receptor (RXR) from specific DNA sequences in the promoter of VD target genes called VD response elements (VDREs). This study describes a mutation (K45A) of the VDR DNA binding domain that enhances the affinity and ligand responsiveness of VDR-RXR heterodimers...

  8. Dexamethasone/1alpha-25-dihydroxyvitamin D3-treated dendritic cells suppress colitis in the SCID T-cell transfer model

    Pedersen, Anders Elm; Schmidt, Esben Gjerløff Wedebye; Gad, Monika;

    2008-01-01

    Autoantigen-presenting immunomodulatory dendritic cells (DCs) that are used for adoptive transfer have been shown to be a promising therapy for a number of autoimmune diseases. We have previously demonstrated that enteroantigen-pulsed DCs treated with interleukin-10 (IL-10) can partly protect...... severe combined immunodeficient (SCID) mice adoptively transferred with CD4(+) CD25(-) T cells from the development of wasting disease and colitis. We therefore established an in vitro test that could predict the in vivo function of DCs and improve strategies for the preparation of immunomodulatory DCs...... in this model. Based on these in vitro findings, we here evaluate three methods for DC generation including short-term and long-term IL-10 exposure or DC exposure to dexamethasone in combination with vitamin D3 (Dex/D3). All DCs resulted in lower CD4(+) CD25(-) T-cell enteroantigen-specific responses...

  9. Inhibition of Lung Carcinogenesis by 1alpha,25-dihydroxyvitamin D3 and 9-cis Retinoic Acid in the A/J Mouse Model: Evidence of Retinoid Mitigation of Vitamin D Toxicity

    9-cis-retinoic acid (9cRA) and 1alpha,25-dihydroxyvitamin D3 (1,25D) show promise as potential chemopreventive agents. We examined 9cRA and 1,25D, alone and in combination, for their potential to inhibit carcinogen (NNK)-induced lung carcinogenesis in A/J mice. A/J mice (n=14/group) were treated wit...

  10. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin.

    Simpson, R. U.; DeLuca, H F

    1980-01-01

    Isolated rat epidermis possesses a cytosolic 3.5 S receptor-like protein for 1,25-dihydroxyvitamin D3. This 3.5S binder has a high affinity (Kd = 1.4 X 10(-10) M) for 1,25-dihydroxyvitamin D3 and is present in low concentrations (31 fmol of binding sites per mg of cytosol protein). Analog competition for receptor binding revealed the following potency order: 1,25-dihydroxyvitamin D3 > 25-hydroxyvitamin D3 > 1 alpha-hydroxyvitamin D3 > 24 (R),25-dihydroxyvitamin D3 > vitamin D3. The receptor h...

  11. Interaction Between Vitamin D Receptor and Caveolin-3 and Regulation by 1, 25 Dihydroxyvitamin D3 in Adult Rat Cardiomyocytes

    Zhao, Guisheng; Simpson, Robert U.

    2010-01-01

    We show that 1alpha, 25-Dihydroxyvitamin D3 (1,25(OH)2D3) and a synthetic non-genotropic vitamin D analog agonist, 1a,25(OH)2-lumisterol (JN), exhibit similar rapid effects on sarcomere shortening (contraction) of isolated adult cardiomyocyte. We also report that the vitamin D receptor (VDR) specifically interacts with Caveolin-3 in the t-tubules and sarcolemma of isolated adult rat cardiac myocytes. Confocal immunofluorescence microscopy analysis showed co-localization of VDR and Caveolin-3 ...

  12. Photoaffinity labeling of the 1,25-dihydroxyvitamin D-3 receptor.

    Brown, T A; DeLuca, H F

    1991-03-01

    Underivatized 1,25-dihydroxy[26,27-3H]vitamin D-3 was successfully used to photoaffinity label the 1,25-dihydroxyvitamin D-3 receptor. The covalent incorporation of tritium into the receptor protein was induced by ultraviolet irradiation of the receptor-1,25-dihydroxy[26,27-3H]vitamin D-3 complex in crude pig intestinal nuclear extract. The amount of incorporated label increased with increasing time of irradiation and was dependent on light of wavelengths 220-280 nm. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography were used to demonstrate that label was incorporated primarily into the 1,25-dihydroxyvitamin D-3 receptor. In addition, the label incorporation was eliminated by competition with a 100-fold excess nonradioactive 1,25-dihydroxyvitamin D-3, indicating that the label was specific for the steroid binding site. Since 1,25-(OH)2[26,27-3H]vitamin D-3 is readily available and requires no special precautions for its preparation and handling, it should be a useful photoaffinity label for future studies of the receptor. PMID:1849006

  13. Analysis of 1,25-Dihydroxyvitamin D3 Receptors (VDR) in Basal Cell Carcinomas

    Reichrath, Jörg; Kamradt, Jörn; Hong Zhu, Xue; Fu Kong, Xiang; Tilgen, Wolfgang; Holick, Michael F.

    1999-01-01

    We have analyzed expression of 1,25-dihydroxyvitamin D3 receptor (VDR) protein and mRNA in basal cell carcinomas (BCC) of human skin. VDR immunoreactivity in BCCs was compared with the staining pattern of the proliferation marker Ki-67 in the same tumors. Additionally, VDR staining was compared to staining pattern of apoptotic cells by terminal UTP nucleotide end labeling assay. Frozen sections of superficial type, nodular type, and fibrosing type BCCs were consistently immunoreactive for VDR...

  14. Targeted delivery of 1,25-dihydroxyvitamin D3 to colon tissue and identification of a major 1,25-dihydroxyvitamin D3 glycoside from Solanumglaucophyllum plant leaves.

    Zimmerman, Duane R; Koszewski, Nicholas J; Hoy, Derrel A; Goff, Jesse P; Horst, Ronald L

    2015-04-01

    Leaves of the Solanum glaucophyllum (Sg) plant, indigenous to South America, have long been known for their calcinogenic toxicity in ruminant animals. It was determined the leaves contained glycosidic derivatives of 1,25-dihydroxyvitamin D3 (1,25D3) and liberation of the free hormone by rumen bacterial populations elicited a hypercalcemic response. Our interest in the leaves is predicated on the concept that the glycoside forms of 1,25D3 would target release of the active hormone in the lower gut of non-ruminant mammals. This would provide a means of delivering 1,25D3 directly to the colon, where the hormone has been shown to have beneficial effects in models of inflammatory bowel disease (IBD) and colon cancer. We fed mice for 10 days with variable amounts of Sg leaf. Feeding 7-333μg leaf/day produced no changes in plasma Ca(2+) and 1,25D3 concentrations, and only at ≥1000μg leaf/day did these values become significantly elevated compared to controls. Gene expression studies from colon tissue indicated a linear relationship between the amount of leaf consumed and expression of the Cyp24a1 gene. In contrast, Cyp24a1 gene expression in the duodenums and ileums of these mice was unchanged compared to controls. One of the major 1,25D3-glycosides was isolated from leaves following extraction and purification by Sep-Pak cartridges and HPLC fractionation. Ultraviolet absorbance was consistent with modification of the 1-hydroxyl group, and positive ion ESI mass spectrometry indicated a diglycoside of 1,25D3. 2-Dimensional NMR analyses were carried out and established the C1 proton of the A-ring was interacting with a C1' sugar proton, while the C3 proton of the A-ring was linked with a second C1' sugar proton. The structure of the isolated compound is therefore consistent with a β-linked 1,3-diglycoside of 1,25D3. Thus, Sg leaf administered to mice at up to 333 ug/day can elicit colon-specific enhancement of Cyp24a1 gene expression without inducing hypercalcemia, and

  15. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation.

    Shirazi, Hasti Atashi; Rasouli, Javad; Ciric, Bogoljub; Rostami, Abdolmohamad; Zhang, Guang-Xian

    2015-04-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has recently been found to suppress experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Although its effect was attributed to an anti-inflammatory mechanism, it is not clear whether this treatment can also directly act on neural cells to promote CNS recovery. The present study investigates the effect of various concentrations of 1,25(OH)2D3 on neural stem cell (NSC) proliferation and their differentiation to oligodendrocytes, the myelinating cells. We have, for the first time, shown that NSCs constitutively express vitamin D receptor (VDR), which can be upregulated by 1,25(OH)2D3. This vitamin significantly enhanced proliferation of NSCs, and enhanced their differentiation into neurons and oligodendrocytes, but not astrocytes. NSCs treated with 1,25(OH)2D3 showed increased expression of NT-3, BDNF, GDNF and CNTF, important neurotrophic factors for neural cell survival and differentiation. Overall, we demonstrated that 1,25(OH)2D3 has a direct effect on NSC proliferation, survival, and neuron/oligodendrocyte differentiation, thus representing a novel mechanism underlying its remyelinating and neuroprotective effect in MS/EAE therapy. PMID:25681066

  16. A sensitive and simplified radioimmunoassay for 1,25-dihydroxyvitamin D3

    A sensitive radioimmunoassay system for 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] with an improved extraction procedure has been developed. Following one-step extraction and prepurification of 1,25(OH)2D3 by 'Extrelut-1' minicolumns final purification was achieved by high-performance liquid chromatography (HPLC) using a radial compression separation system equipped with a μPorasil cartridge. Recovery of 1,25(OH)2[3H]D3 after HPLC was 77+-2.6% (mean +- SD, n = 51). The sensitivity of the assay was 0.8 pg/tube resulting in a detection limit of 3 ng/l, when 1 ml of serum was extracted. Intra-assay and inter-assay coefficients of variation were 12% and 16.8%, respectively. Serum 1,25(OH)2D3 concentration in 30 normal subjects was 55 +- 12 ng/l (mean +- SD). Patients with chronic renal failure had reduced 1,25(OH)2D3 serum levels (mean 5.4 ng/l, range 3-11 ng/l, n=10). (Auth.)

  17. Regulation of calcium signaling in dendritic cells by 1,25-dihydroxyvitamin D3.

    Shumilina, Ekaterina; Xuan, Nguyen Thi; Matzner, Nicole; Bhandaru, Madhuri; Zemtsova, Irina M; Lang, Florian

    2010-06-01

    Dendritic cells (DCs) are antigen-presenting cells that provide a link between innate and adaptive immunity. Ca(2+)-dependent signaling plays a central regulatory role in DC responses to diverse antigens. DCs are a primary target of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], a secosteroid hormone, that, in addition to its well-established action on Ca(2+) homeostasis, possesses immunomodulatory properties. Surprisingly, nothing is known about its effects on DC cytosolic Ca(2+) activity. The present study explored whether 1,25(OH)(2)D(3) modifies the intracellular Ca(2+) concentration ([Ca(2+)](i)) in DCs. Here we show that mouse DCs expressed K(+)-independent (NCX1-3) and K(+)-dependent (NCKX1, 3, 4, and 5) Na(+)/Ca(2+) exchangers. Acute application of LPS (100 ng/ml) to DCs increased [Ca(2+)](i), an effect significantly blunted by prior incubation with 1,25(OH)(2)D(3). 1,25(OH)(2)D(3) increased the membrane abundance of the NCKX1 protein, up-regulated the K(+)- and Na(+)-dependent Ca(2+) entry and enhanced the K(+)-dependent Na(+)/Ca(2+) exchanger currents. The NCKX blocker 3',4'-dichlorobenzamyl (DBZ) reversed the inhibitory effect of 1,25(OH)(2)D(3) on the LPS-induced increase of [Ca(2+)](i). Expression of the costimulatory molecule CD86 was down-regulated by 1,25(OH)(2)D(3), an effect reversed by DBZ. In summary, 1,25(OH)(2)D(3) blunts the LPS-induced increase in [Ca(2+)](i) by stimulation of Na(+)/Ca(2+) exchanger-dependent Ca(2+) extrusion, an effect that contributes to 1,25(OH)(2)D(3)-mediated immunosuppression. The results disclose completely novel mechanisms in the regulation of DC maturation and function. PMID:20124438

  18. 1,25-Dihydroxyvitamin D3 prevents toluene diisocyanate-induced airway epithelial barrier disruption.

    Li, Wenjia; Dong, Hangming; Zhao, Haijin; Song, Jiafu; Tang, Haixiong; Yao, Lihong; Liu, Laiyu; Tong, Wancheng; Zou, Mengchen; Zou, Fei; Cai, Shaoxi

    2015-07-01

    The loss of airway epithelial integrity contributes significantly to asthma pathogenesis. Evidence suggests that vitamin D plays an important role in the prevention and treatment of asthma. However, its role in airway epithelial barrier function remains uncertain. We have previously demonstrated impaired epithelial junctions in a model of toluene diisocyanate (TDI)-induced asthma. In the present study, we hypothesized that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] may prevent TDI-induced epithelial barrier disruption. Male BALB/c mice were dermally sensitized and then challenged with TDI. The mice were then administered 1,25(OH)2D3 intraperitoneally prior to challenge with TDI. For in vitro experiments, 16HBE bronchial epithelial cells were cultured and stimulated with TDI-human serum albumin (HSA). The results revealed that the mice treated with 1,25(OH)2D3 displayed decreased airway hyperresponsiveness (AHR), suppressed neutrophil and eosinophil infiltration into the airways, as well as an increased E-cadherin and zonula occludens-1 (ZO-1) expression at the cell-cell contact sites. In vitro, exposure of the cells to TDI-HSA induced a rapid decline in transepithelial electrical resistance (TER) and an increase in cell permeability, followed by a decrease in occludin expression and the redistribution of E-cadherin, accompanied by a significant upregulation in the levels of phosphorylated extracellular signal-regulated kinase (ERK)1/2. These effects were all partly reversed by treatment with either 1,25(OH)2D3 or an ERK1/2 inhibitor. In conclusion, the findings of our study demonstrate that 1,25(OH)2D3 prevents TDI-induced epithelial barrier disruption, and that the ERK1/2 pathway may play a role in this process. PMID:25998793

  19. RUNX2 Mutation Impairs 1α,25-Dihydroxyvitamin D3 mediated Osteoclastogenesis in Dental Follicle Cells

    Wang, X. Z.; Sun, X. Y.; Zhang, C. Y.; Yang, X.; Yan, W. J.; Ge, L. H.; Zheng, S. G.

    2016-01-01

    Cleidocranial dysplasia (CCD), a skeletal disorder characterized by delayed permanent tooth eruption and other dental abnormalities, is caused by heterozygous RUNX2 mutations. As an osteoblast-specific transcription factor, RUNX2 plays a role in bone remodeling, tooth formation and tooth eruption. To investigate the crosstalk between RUNX2 and 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) in human dental follicle cells (hDFCs) during osteoclast formation, we established a co-culture system of hDFCs from CCD patient and healthy donors with peripheral blood mononuclear cells (PBMCs). Expression of the osteoclast-associated genes and the number of TRAP+ cells were reduced in CCD hDFCs, indicating its suppressed osteoclast-inductive ability, which was reflected by the downregulated RANKL/OPG ratio. In addition, 1α,25-(OH)2D3-stimulation elevated the expression of osteoclast-related genes, as well as RANKL mRNA levels and RANKL/OPG ratios in control hDFCs. Conversely, RUNX2 mutation abolished this 1α,25-(OH)2D3-induced RANKL gene activation and osteoclast formation in CCD hDFCs. Therefore, RUNX2 haploinsufficiency impairs dental follicle-induced osteoclast formation capacity through RANKL/OPG signaling, which may be partially responsible for delayed permanent tooth eruption in CCD patients. Furthermore, this abnormality was not rescued by 1α,25-(OH)2D3 application because 1α,25-(OH)2D3-induced RANKL activation in hDFCs is mediated principally via the RUNX2-dependent pathway. PMID:27068678

  20. Effect of 24,25-dihydroxyvitamin D3 on 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] metabolism in vitamin D-deficient rats infused with 1,25-(OH)2D3

    Previous studies revealed that administration of 24,25-dihydroxyvitamin D3 [24,25-(OH)2D3] to calcium (Ca)-deficient rats causes a dose-dependent reduction in markedly elevated serum 1,25-(OH)2D3 level. Although the results suggested that the metabolism of 1,25-(OH)2D3 was accelerated by 24,25-(OH)2D3, those experiments could not define whether the enhanced metabolism of 1,25-(OH)2D3 played a role in the reduction in the serum 1,25-(OH)2D3 level. In the present study, in order to address this issue more specifically, serum 1,25-(OH)2D3 was maintained solely by exogenous administration through miniosmotic pumps of 1,25-(OH)2D3 into vitamin D-deficient rats. Thus, by measuring the serum 1,25-(OH)2D3 concentration, the effect of 24,25-(OH)2D3 on the MCR of 1,25-(OH)2D3 could be examined. Administration of 24,25-(OH)2D3 caused a dose-dependent enhancement in the MCR of 1,25-(OH)2D3, and 1 microgram/100 g rat.day 24,25-(OH)2D3, which elevated serum 24,25-(OH)2D3 to 8.6 +/- 1.3 ng/ml, significantly increased MCR and suppressed serum levels of 1,25-(OH)2D3. The effect of 24,25-(OH)2D3 on 1,25-(OH)2D3 metabolism developed with a rapid time course, and the recovery of iv injected [1 beta-3H]1,25-(OH)2D3 in blood was significantly reduced within 1 h. In addition, there was an increase in radioactivity in the water-soluble fraction of serum as well as in urine, suggesting that 1,25-(OH)2D3 is rapidly degraded to a water-soluble metabolite(s). Furthermore, the reduction in serum 1,25-(OH)2D3 was associated with a reduction in both serum and urinary Ca levels. Because the conversion of [3H]24,25-(OH)2D3 to [3H]1,24,25-(OH)2D3 or other metabolites was minimal in these rats, 24,25-(OH)2D3 appears to act without being converted into other metabolites. These results demonstrate that 24,25-(OH)2D3 rapidly stimulates the metabolism of 1,25-(OH)2D3 and reduces its serum level

  1. Antiproliferative effects of 1,25-dihydroxyvitamin D3 on breast cells: a mini review

    Bortman P.

    2002-01-01

    Full Text Available The hormone 1,25-dihydroxyvitamin D3 (1,25-(OH2D3, the active form of vitamin D3, is an important regulator of calcium homeostasis, exerts antiproliferative effects on various cell systems and can induce differentiation in some kinds of hematopoietic cells. These effects are triggered by its receptor, vitamin D receptor (VDR, a phosphoprotein member of the nuclear receptor superfamily, which functions as a transcriptional factor. VDR binds as a heterodimer with retinoid X receptor (R X R to hexameric repeats, characterized as vitamin D-responsive elements present in the regulatory region of target genes such as osteocalcin, osteopontin, calbindin-D28K, calbindin-D9K, p21WAF1/CIP1, TGF-ß2 and vitamin D 24-hydroxylase. Many factors such as glucocorticoids, estrogens, retinoids, proliferation rate and cell transformation can modulate VDR levels. VDR is expressed in mammary tissue and breast cancer cells, which are potential targets to hormone action. Besides having antiproliferative properties, vitamin D might also reduce the invasiveness of cancer cells and act as an anti-angiogenesis agent. All of these antitumoral features suggest that the properties of vitamin D could be explored for chemopreventive and therapeutic purposes in cancer. However, hypercalcemia is an undesirable side effect associated with pharmacological doses of 1,25-(OH2D3. Some promising 1,25-(OH2D3 analogs have been developed, which are less hypercalcemic in spite of being potent antiproliferative agents. They represent a new field of investigation.

  2. The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent

    Ewa Marcinkowska

    2016-05-01

    Full Text Available The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D3 (1,25D has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues.

  3. The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent

    Marcinkowska, Ewa; Wallace, Graham R.; Brown, Geoffrey

    2016-01-01

    The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D3 (1,25D) has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues. PMID:27187375

  4. The effect of 1,25-dihydroxyvitamin D3 on MSX2 gene expression during tooth and alveolar bone development

    Intan Ruspita

    2015-03-01

    Full Text Available Background: 1,25-dihydroxyvitamin D3 has been proven to be able to control the formation and biomineralization of tissue through a regulatory gene. A previous research even showed that a cell responsible for the formation of the enamel (ameloblasts, dentin (odontoblasts and bone (osteoblasts, osteoclasts was the target of  1,25-dihydroxivitamin D3. Purpose: This research was aimed to determine the role of 1,25- dihydroxyvitamin D3 in vivo in the development of teeth and alveolar bone tissue by analyzing MSX2 gene expression as a gene marker responsible for the growth and development of enamel, dentin, tooth root and alveolar bone. Methods: Samples used for RT-PCR analysis were total RNA of insisivus teeth and alveolar bone derived from mice. RT-PCR analysis was conducted by using primer-specific gene, MSX2. Primer gene, GAPDH, was also used as an internal control. Five hundred nanograms of total RNA were used as a template for PCR. Semi quantitative results of PCR were quantified by using ImageJ software. Results: RT-PCR analysis showed that the expression level of MSX2 was enhanced in the samples of teeth and alveolar bone treated with 1,25 dihydroxyvitamin D3. The increasing of MSX2 expression significantly occurred in alveolar bone samples. Conclusion: It can be concluded that 1,25 dihydroxyvitamin D3 could enhance MSX2 expression as a marker of the development of teeth and alveolar bone tissue. Therefore, 1,25-D3 dihydroxyvitamin is expected to be used as an agent to help the regeneration of teeth and bone tissue.

  5. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium

    Healy, Kevin D.; Zella, Julia B.; Prahl, Jean M.; DeLuca, Hector F.

    2003-01-01

    Renal vitamin D receptor (VDR) is required for 1,25-dihydroxyvitamin D3-[1,25(OH)2D3]-induced renal reabsorption of calcium and for 1,25(OH)2D3-induced 1,25(OH)2D3 24-hydroxylase. The long-term effect of vitamin D and dietary calcium on the expression of renal VDR was examined in the nonobese diabetic mouse. Vitamin D-deficient and vitamin D-replete mice were maintained on diets containing 0.02%, 0.25%, 0.47%, and 1.20% calcium with or without 50 ng of 1,25(OH)2D3 ...

  6. Tumor-suppressive activity of 1,25-dihydroxyvitamin D3 against kidney cancer cells via up-regulation of FOXO3.

    Lee, Jongsung; Park, See-Hyoung

    2016-10-01

    1,25-Dihydroxyvitamin D3 has been known to have the tumor-suppressive activity in various kinds of tumors. However, the exact effect and working mechanism of 1,25-dihydroxyvitamin D3 on the tumor-suppressive activity in human kidney cancer cells remains poorly understood. 1,25-Dihydroxyvitamin D3 has cytotoxicity to ACHN cells and inhibited ACHN cell proliferation compared to the vehicle control. 1,25-Dihydroxyvitamin D3 increased the expression of the cleaved PARP1, active Caspase3, Bax, and Bim but decreased the expression of Bcl2 in ACHN cells. Moreover, 1,25-dihydroxyvitamin D3 down-regulated the phosphorylated Akt and Erk which might lead to apoptosis through activation of FOXO3 in ACHN cells. Transfection of siRNA against FOXO3 attenuated the pro-apoptotic BimEL expression in ACHN cells treated with 1,25-dihydroxyvitamin D3. These results suggest that FOXO3 is involved in the apoptosis induced by 1,25-dihydroxyvitamin D3. PMID:27181027

  7. Gravity affects the responsiveness of Runx2 to 1, 25-dihydroxyvitamin D3 (VD3)

    Guo, Feima; Dai, Zhongquan; Wu, Feng; Liu, Zhaoxia; Tan, Yingjun; Wan, Yumin; Shang, Peng; Li, Yinghui

    2013-03-01

    Bone loss resulting from spaceflight is mainly caused by decreased bone formation, and decreased osteoblast proliferation and differentiation. Transcription factor Runx2 plays an important role in osteoblast differentiation and function by responding to microenvironment changes including cytokine and mechanical factors. The effects of 1, 25-dihydroxyvitamin D3 (VD3) on Runx2 in terms of mechanical competence is far less clear. This study describes how gravity affects the response of Runx2 to VD3. A MC3T3-6OSE2-Luc osteoblast model was constructed in which the activity of Runx2 was reflected by reporter luciferase activity identifed by bone-related cytokines. The results showed that luciferase activity in MC3T3-6OSE2-Luc cells transfected with Runx2 was twice that of the vacant vector. Alkaline phosphatase (ALP) activity was increased in MC3T3-6OSE2-Luc cells by different concentrations of IGF-I and BMP2. MC3T3-6OSE2-Luc cells were cultured under simulated microgravity or centrifuge with or without VD3. In simulated microgravity, luciferase activity was decreased after 48 h of clinorotation culture, but increased in the centrifuge culture. Luciferase activity was increased after VD3 treatment in normal conditions and simulated microgravity, the increase in luciferase activity in simulated microgravity was lower than that in the 1 g condition when simultaneously treated with VD3 and higher than that in the centrifuge condition. Co-immunoprecipitation showed that the interaction between the VD3 receptor (VDR) and Runx2 was decreased by simulated microgravity, but increased by centrifugation. From these results, we conclude that gravity affects the response of Runx2 to VD3 which results from an alteration in the interaction between VDR and Runx2 under different gravity conditions.

  8. Calcium and Inorganic Phosphate Transport in Rat Colon: DISSOCIATED RESPONSE TO 1,25-DIHYDROXYVITAMIN D3

    Lee, D. B. N.; Walling, M. W.; Gafter, U; Silis, V.; Coburn, J W

    1980-01-01

    In the small intestine, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] stimulates both calcium (Ca) and inorganic phosphate (Pi) absorption. This is mediated through an increase in mucosal-to-serosal flux (Jms) whereas the serosal-to-mucosal flux (Jsm) remains unchanged. We now report that in rat proximal colon, 1,25(OH)2D3 produces active Ca absorption without affecting Pi transport, and that this induced active Ca absorption is associated with alterations in kinetics of both Jms and Jsm so that bot...

  9. Role of 25-hydroxyvitamin D3 dose in determining rat 1,25-dihydroxyvitamin D3 production

    To understand the relationships among (1) the dose of 25-hydroxyvitamin D [25(OH)D] in vivo, (2) the activity of 1-hydroxylase in renal mitochondria, and (3) the production of 1,25-dihydroxyvitamin D [1,25(OH)2D] in vivo, we gave rats different chronic or acute doses of 25-hydroxyvitamin D3 [25(OH)D3]. We followed the metabolism of intracardially administered [25-hydroxy-26,27-methyl-3H]cholecalciferol [25(OH)[3H]D3] for 24 h before killing by measuring extracts of serum by chromatography. Specific activity of 1-hydroxylase in kidney was measured at death. In rats given 0-2,000 pmol 25(OH)D3 chronically by mouth, there was a dose-dependent decline in the percent of serum radioactivity made up of 1,25-dihydroxy-[26,27-methyl-3H]cholecalciferol [1,25(OH)2[3H]D3] as well as a decline in mitochondrial 1-hydroxylase, and these correlated significantly (r = 0.83, P less than 0.001). Serum %1,25(OH)2[3H]D3 in this experiment ranged from 0.8 to 42%. A small part of this range could be accounted for by a faster metabolic clearance rate (MCR) of 1,25(OH)2D3 from rats supplemented with 25(OH)D3 (MCR, 2.12 +/- 0.10 ml/min) compared with rats restricted in vitamin D (MCR, 0.94 +/- 0.06 ml/min, P less than 0.001). The activity of 1-hydroxylase was by far the major factor determining serum %1,25(OH)2[3H]D3. When different acute doses of 25(OH)D3 were given to rats with identical specific activities of 1-hydroxylase, the resulting 1,25(OH)2D3 concentrations in serum correlated with the 25(OH)D3 dose (r = 0.99, P less than 0.001). We conclude that the behavior of 1-hydroxylase in vivo is analogous to the classic behavior in vitro of an enzyme functioning below its Michaelis constant (Km). The amount of 1-hydroxylase present in renal mitochondria determines the fraction (not simply the quantity) of 25(OH)D metabolized to 1,25(OH)2D3 in vivo

  10. Inhibition by prostaglandin E1 and E2 of 1,25-dihydroxyvitamin D3 synthesis by synovial fluid macrophages from arthritic joints.

    Hayes, M. E.; Rai, A.; Cooper, R G; Bayley, D; Freemont, A. J.; Mawer, E B

    1992-01-01

    Previous work has shown that renal metabolism of 25-dihydroxyvitamin D3 (25(OH)D3) to the active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is stimulated by prostaglandin E2 and inhibited by acetylsalicylate (aspirin). As prostaglandins are primary inflammatory mediators and synovial fluid macrophages are known to synthesise 1,25(OH)2D3 in vitro, the effects of prostaglandin E1, prostaglandin E2, and aspirin on the metabolism of 25(OH)D3 by cells cultured from synovial fluid of patien...

  11. Vitamin D receptor interaction with specific DNA requires a nuclear protein and 1,25-dihydroxyvitamin D3.

    Liao, J.; Ozono, K; Sone, T.; McDonnell, D P; Pike, J W

    1990-01-01

    The regulation of osteocalcin gene expression by 1,25-dihydroxyvitamin D3 is mediated by the vitamin D receptor and a cis-acting DNA response element that has been identified within the 5' region of the osteocalcin promoter. In this report, we show that vitamin D receptors derived from nuclear extracts of mammalian cells bind directly to this cis-acting element in vitro and do so in a manner requiring hormone. Vitamin D receptors derived from reticulocyte lysate translations in vitro or from ...

  12. The role of monocytes and T cells in 1,25-dihydroxyvitamin D3 mediated inhibition of B cell function in vitro

    Müller, K; Heilmann, C; Poulsen, L K;

    1991-01-01

    PWM stimulation, but not after Epstein-Barr virus stimulation which activates B cells independently of T cells and monocytes. Second, 1,25-(OH)2D3 was not effective in T cell and monocyte-depleted cultures. Third, the effect of 1,25-(OH)2D3 on PWM driven MNC was reversed by addition of the recombinant...... monokines: interleukin (IL)-1 beta, tumour necrosis factor alpha (rTNF alpha), rIL-6, as well as the lymphokines: lymphotoxin (rLT) and rIL-2. This is consistent with the finding that 1,25-(OH)2D3 also inhibited IL-1 alpha, TNF alpha and LT production in these cultures. The assumption that B cells are not......1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) inhibits immunoglobulin production by human mononuclear cells (MNC) in vitro. The present study was undertaken to evaluate the role of T cells and monocytes in 1,25-(OH)2D3 induced suppression of B cell functions. The synthetic vitamin D3 analogue MC 903 was...

  13. Treatment with 1,25-dihydroxyvitamin D3 reduces impairment of human osteoblast functions during cellular aging in culture

    Kveiborg, Marie; Rattan, Suresh; Clark, Brian F.C.;

    2001-01-01

    Adequate responses to various hormones, such as 1,25-dihydroxyvitamin D(3) (calcitriol) are a prerequisite for optimal osteoblast functions. We have previously characterized several human diploid osteoblastic cell lines that exhibit typical in vitro aging characteristics during long-term subcultu......Adequate responses to various hormones, such as 1,25-dihydroxyvitamin D(3) (calcitriol) are a prerequisite for optimal osteoblast functions. We have previously characterized several human diploid osteoblastic cell lines that exhibit typical in vitro aging characteristics during long......-term subculturing. In order to study in vitro age-related changes in osteoblast functions, we compared constitutive mRNA levels of osteoblast-specific genes in early-passage (<50% lifespan completed) with those of late-passage cells (> 90% lifespan completed). We found a significant reduction in mRNA levels of...... alkaline phosphatase (AP: 68%), osteocalcin (OC: 67%), and collagen type I (ColI: 76%) in in vitro senescent late-passage cells compared to early-passage cells, suggesting an in vitro age-related impairment of osteoblast functions. We hypothesized that decreased osteoblast functions with in vitro aging is...

  14. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength. PMID:26601949

  15. 1,25-Dihydroxyvitamin D3 inhibits proliferation but not the suppressive function of regulatory T cells in the absence of antigen-presenting cells.

    Khoo, A.L.; Joosten, I.; Michels, M.; Woestenenk, R.M.; Preijers, F.W.M.B.; He, X.; Netea, M.G.; Ven, A.J.A.M. van der; Koenen, H.J.P.M.

    2011-01-01

    Vitamin D3 is known to induce regulatory T (Treg) cells by rendering antigen-presenting cells tolerogenic, its direct effect on human naturally occurring Treg cells is unclear. Here, we investigated if and how 1,25-dihydroxyvitamin D(3) [1,25(OH)2D3] can directly affect the proliferation and functio

  16. Activation of the fructose 1,6-bisphosphatase gene by 1,25-dihydroxyvitamin D3 during monocytic differentiation

    Cells from the human leukemia cell line HL-60 undergo terminal monocyte-like differentiation after exposure to either the active circulating form of vitamin D3, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], or phorbol 12-myristate 13-acetate. Little is known about the genes that regulate monocytic differentiation. Using clonal variant cells of HL-60 origin, the authors constructed a cDNA library enriched for genes that are induced by 1,25-(OH)2D3. They report that in HL-60, the fructose 1,6-bisphosphatase gene is activated during 1,25-(OH)2D3-induced monocytic differentiation. This gene encodes two closely related mRNAs; one, activated by 1,25-(OH)2D3 at an early stage of HL-60 differentiation, encodes a protein that has homology to mammalian FBPase, a key enzyme in gluconeogenesis, although it does not exhibit its classical enzymatic activity. A second mRNA is activated by 1,25-(OH)2D3 mainly in peripheral blood monocytes. This mRNA is present in kidney as a unique transcript and encodes a protein with FBPase activity. The data also show that this FBPase-encoding mRNA can be activated during monocytic maturation since it was detected in human alveolar macrophages

  17. Low-calcium diets increase both production and clearance of 1,25-dihydroxyvitamin D3 in rats

    Administration of large doses of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] to animals induces 1,25(OH)2D3 side-chain oxidative pathways. This study determined if the elevated plasma 1,25(OH)2D3 seen in rats fed low-Ca diets is associated not only with an increased production rate (PR) but also with an increased metabolic clearance rate (MCR) of the hormone. In vitamin D-replete rats fed a Ca-deficient diet for 3-4 wk, the PR increased 21-fold, plasma levels 15-fold, and the MCR by 37%. The increased MCR in Ca-deficient rats was associated with a 48% increase in hepatic microsomal UDP glucuronyl transferase enzyme activity, whereas 1,25(OH)2D3 catabolism by homogenates of liver and small intestinal mucosa was unchanged. In contrast to the effects of low-Ca diets, acute (7 h) pharmacological elevation of plasma 1,25(OH)2D3 to 1.5 ng/ml in normal rats did not influence the MCR. Thus chronically elevated 1,25(OH)2D3 levels are necessary to stimulate clearance. In conclusion, 1,25(OH)2D3 clearance in rats can be stimulated not only by chronic pharmacological doses of 1,25(OH)2D3 but also by the physiological stimulus of a low-Ca diet. Hence, plasma 1,25(OH)2D3 levels can be regulated by changes in both PR and MCR

  18. 1,25-dihydroxyvitamin D3 and dexamethasone increase interleukin-10 production in CD4+ T cells from patients with Crohn's disease

    Bartels, Lars Erik; Jørgensen, Søren Peter; Agnholt, Jørgen;

    2007-01-01

    BACKGROUND AND AIM: In Crohn's disease (CD), epidemiological data and animal studies suggest that vitamin D (vitD) has protective immune-modulating properties. 1,25-dihydroxyvitamin D3 and dexamethasone (DEX) induce interleukin (IL)-10 productions in healthy controls (HC) T cells. We studied if 1...

  19. 1,25-Dihydroxyvitamin D3 stimulates the production of insulin-like growth factor-binding proteins-2, -3 and -4 in human bone marrow stromal cells

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F;

    2001-01-01

    1,25-Dihydroxyvitamin D3 (calcitriol) inhibits proliferation and stimulates differentiation of multiple cell types, including osteoblasts. Human (h) bone marrow stromal cells (MSCs) are a homogenous non-hematopoietic population of cells present in the bone marrow and exhibit a less differentiated...

  20. 1,25-Dihydroxyvitamin D3 Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARγ Signaling Pathway

    Zhang, Xiaoliang; Zhou, Min; Guo, Yinfeng; Song, Zhixia; Liu, Bicheng

    2015-01-01

    Macrophages, especially their activation state, are closely related to the progression of diabetic nephropathy. Classically activated macrophages (M1) are proinflammatory effectors, while alternatively activated macrophages (M2) exhibit anti-inflammatory properties. 1,25-Dihydroxyvitamin D3 has renoprotective roles that extend beyond the regulation of mineral metabolism, and PPARγ, a nuclear receptor, is essential for macrophage polarization. The present study investigates the effect of 1,25-dihydroxyvitamin D3 on macrophage activation state and its underlying mechanism in RAW264.7 cells. We find that, under high glucose conditions, RAW264.7 macrophages tend to switch to the M1 phenotype, expressing higher iNOS and proinflammatory cytokines, including TNFα and IL-12. While 1,25-dihydroxyvitamin D3 significantly inhibited M1 activation, it enhanced M2 macrophage activation; namely, it upregulated the expression of MR, Arg-1, and the anti-inflammatory cytokine IL-10 but downregulated the M1 markers. However, the above effects of 1,25-dihydroxyvitamin D3 were abolished when the expression of VDR and PPARγ was inhibited by VDR siRNA and a PPARγ antagonist. In addition, PPARγ was also decreased upon treatment with VDR siRNA. The above results demonstrate that active vitamin D promoted M1 phenotype switching to M2 via the VDR-PPARγ pathway. PMID:25961000

  1. 1,25-Dihydroxyvitamin D3 Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARγ Signaling Pathway

    Xiaoliang Zhang

    2015-01-01

    Full Text Available Macrophages, especially their activation state, are closely related to the progression of diabetic nephropathy. Classically activated macrophages (M1 are proinflammatory effectors, while alternatively activated macrophages (M2 exhibit anti-inflammatory properties. 1,25-Dihydroxyvitamin D3 has renoprotective roles that extend beyond the regulation of mineral metabolism, and PPARγ, a nuclear receptor, is essential for macrophage polarization. The present study investigates the effect of 1,25-dihydroxyvitamin D3 on macrophage activation state and its underlying mechanism in RAW264.7 cells. We find that, under high glucose conditions, RAW264.7 macrophages tend to switch to the M1 phenotype, expressing higher iNOS and proinflammatory cytokines, including TNFα and IL-12. While 1,25-dihydroxyvitamin D3 significantly inhibited M1 activation, it enhanced M2 macrophage activation; namely, it upregulated the expression of MR, Arg-1, and the anti-inflammatory cytokine IL-10 but downregulated the M1 markers. However, the above effects of 1,25-dihydroxyvitamin D3 were abolished when the expression of VDR and PPARγ was inhibited by VDR siRNA and a PPARγ antagonist. In addition, PPARγ was also decreased upon treatment with VDR siRNA. The above results demonstrate that active vitamin D promoted M1 phenotype switching to M2 via the VDR-PPARγ pathway.

  2. Gene Regulatory Scenarios of Primary 1,25-Dihydroxyvitamin D3 Target Genes in a Human Myeloid Leukemia Cell Line

    Genome- and transcriptome-wide data has significantly increased the amount of available information about primary 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) target genes in cancer cell models, such as human THP-1 myelomonocytic leukemia cells. In this study, we investigated the genes G0S2, CDKN1A and MYC as master examples of primary vitamin D receptor (VDR) targets being involved in the control of cellular proliferation. The chromosomal domains of G0S2 and CDKN1A are 140–170 kb in size and contain one and three VDR binding sites, respectively. This is rather compact compared to the MYC locus that is 15 times larger and accommodates four VDR binding sites. All eight VDR binding sites were studied by chromatin immunoprecipitation in THP-1 cells. Interestingly, the site closest to the transcription start site of the down-regulated MYC gene showed 1,25(OH)2D3-dependent reduction of VDR binding and is not associated with open chromatin. Four of the other seven VDR binding regions contain a typical DR3-type VDR binding sequence, three of which are also occupied with VDR in macrophage-like cells. In conclusion, the three examples suggest that each VDR target gene has an individual regulatory scenario. However, some general components of these scenarios may be useful for the development of new therapy regimens

  3. 1α,25-Dihydroxyvitamin D3 inhibits γ-interferon synthesis by normal human peripheral blood lymphocytes

    1α,25-Dihydroxyvitamin D3 [1,25-(OH)2D3], the biologically active metabolite of vitamin D3, inhibited synthesis of γ-interferon (IFN-γ) by phytohemagglutinin-activated peripheral blood lymphocytes (PBLs). A significant reduction of IFN-γ protein levels in PBL culture medium was achieved with a physiologic 1,25-(OH)2D3 concentration, 1,25-(OH)2D3 also inhibited accumulation of IFN-γ mRNA in activated PBLs in a dose-dependent fashion. The ability of 1,25-(OH)2D3 to modulate IFN-γ protein synthesis was unaltered in the presence of high concentrations of recombinant human interleukin 2. The suppression of IFN-γ synthesis by PBLs was specific for 1,25-(OH)2D3; the potencies of other vitamin D3 metabolites were correlated with their affinities for the cellular 1,25-(OH)2D3 receptor. The time course of 1,25-(OH)2D3 receptor expression in phytohemagglutinin-activated PBLs was correlated with the time course of 1,25-(OH)2D3-mediated inhibition of IFN-γ synthesis. Finally, the authors examined the effects of 1,25-(OH)2D3 on the constitutive IFN-γ production by two human T-lymphocyte lines transformed by human T-lymphotropic virus type I. The cell lines were established from a normal donor (cell line S-LB1) and from a patient with vitamin D-dependent rickets type 2 (cell line Ab-VDR). IFN-γ synthesis by S-LB1 cells was inhibited in a dose-dependent fashion by 1,25-(OH)2D3, whereas IFN-γ synthesis by Ab-VDR cells was not altered by 1,25-(OH)2D3. The data presented in this study provide evidence for a role of 1,25-(OH)2D3 in immunoregulation

  4. In vitro vitamin K(2) and 1α,25-dihydroxyvitamin D(3) combination enhances osteoblasts anabolism of diabetic mice.

    Poon, Christina C W; Li, Rachel W S; Seto, Sai Wang; Kong, Siu Kai; Ho, Ho Pui; Hoi, Maggie P M; Lee, Simon M Y; Ngai, Sai Ming; Chan, Shun Wan; Leung, George P H; Kwan, Yiu Wa

    2015-11-15

    In this study, we evaluated the anabolic effect and the underlying cellular mechanisms involved of vitamin K2 (10 nM) and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) (10 nM), alone and in combination, on primary osteoblasts harvested from the iliac crests of C57BL/KsJ lean (+/+) and obese/diabetic (db/db) mice. A lower alkaline phosphatase (ALP) activity plus a reduced expression of bone anabolic markers and bone formation transcription factors (osteocalcin, Runx2, Dlx5, ATF4 and OSX) were consistently detected in osteoblasts of db/db mice compared to lean mice. A significantly higher calcium deposits formation in osteoblasts was observed in lean mice when compared to db/db mice. Co-administration of vitamin K2 (10 nM) and 1,25(OH)2D3 (10 nM) caused an enhancement of calcium deposits in osteoblasts in both strains of mice. Vitamins K2 and 1,25(OH)2D3 co-administration time-dependently (7, 14 and 21 days) increased the levels of bone anabolic markers and bone formation transcription factors, with a greater magnitude of increase observed in osteoblasts of db/db mice. Combined vitamins K2 plus 1,25(OH)2D3 treatment significantly enhanced migration and the re-appearance of surface microvilli and ruffles of osteoblasts of db/db mice. Thus, our results illustrate that vitamins K2 plus D3 combination could be a novel therapeutic strategy in treating diabetes-associated osteoporosis. PMID:26452518

  5. 1,25-Dihydroxyvitamin-D3 Induces Avian β-Defensin Gene Expression in Chickens.

    Long Zhang

    Full Text Available Host defense peptides (HDPs play a critical role in innate immunity. Specific modulation of endogenous HDP synthesis by dietary compounds has been regarded as a novel approach to boost immunity and disease resistance in animal production. 1,25-dihydroxy vitamin D3 (1,25D3 is well known as a powerful HDP inducer in humans, but limited information about the effect of 1,25D3 on HDPs in poultry is available. Here, we sought to examine whether 1,25D3 could stimulate avian β-defensin (AvBD expression in chickens. We used chicken embryo intestinal epithelial cells (CEIEPCs and peripheral blood mononuclear cells (PBMCs to study the effect of 1,25D3 on the expression of AvBDs. We observed that 1,25D3 is able to up-regulate the expression of several AvBDs in CEIEPCs and PBMCs, whereas it increased the amounts of AvBD4 mRNA in CEIEPCs only in the presence of lipopolysaccharide (LPS. On the other hand, LPS treatment not only inhibited the expression of CYP24A1 but also altered the expression pattern of VDR in CEIEPCs. Furthermore, AvBDs were not directly regulated by 1,25D3, as cycloheximide completely blocked 1,25D3-induced expression of AvBDs. Our observations suggest that 1,25D3 is capable of inducing AvBD gene expression and is a potential antibiotic alternative through augmentation of host innate immunity as well as disease control in chickens.

  6. 1,25-Dihydroxyvitamin-D3 Induces Avian β-Defensin Gene Expression in Chickens

    Zhang, Guolong; Ouyang, Linghua; Robinson, Kelsy; Tang, Yanqiang; Zhu, Qing; Li, Diyan; Hu, Yaodong; Liu, Yiping

    2016-01-01

    Host defense peptides (HDPs) play a critical role in innate immunity. Specific modulation of endogenous HDP synthesis by dietary compounds has been regarded as a novel approach to boost immunity and disease resistance in animal production. 1,25-dihydroxy vitamin D3 (1,25D3) is well known as a powerful HDP inducer in humans, but limited information about the effect of 1,25D3 on HDPs in poultry is available. Here, we sought to examine whether 1,25D3 could stimulate avian β-defensin (AvBD) expression in chickens. We used chicken embryo intestinal epithelial cells (CEIEPCs) and peripheral blood mononuclear cells (PBMCs) to study the effect of 1,25D3 on the expression of AvBDs. We observed that 1,25D3 is able to up-regulate the expression of several AvBDs in CEIEPCs and PBMCs, whereas it increased the amounts of AvBD4 mRNA in CEIEPCs only in the presence of lipopolysaccharide (LPS). On the other hand, LPS treatment not only inhibited the expression of CYP24A1 but also altered the expression pattern of VDR in CEIEPCs. Furthermore, AvBDs were not directly regulated by 1,25D3, as cycloheximide completely blocked 1,25D3-induced expression of AvBDs. Our observations suggest that 1,25D3 is capable of inducing AvBD gene expression and is a potential antibiotic alternative through augmentation of host innate immunity as well as disease control in chickens. PMID:27135828

  7. 1,25-dihydroxyvitamin D3 conditioned CD11c+ dendritic cells are effective initiators of CNS autoimmune disease

    Dario eBesusso

    2015-11-01

    Full Text Available Dendritic cells (DC play a crucial role in regulating T cell activation. Due to their capacity to shape the immune response, tolerogenic DC have been used to treat autoimmune diseases. In this study we examined whether 1,25 dihydroxyvitamin D3 conditioned bone marrow derived DC (VitD-BMDC were able to limit the development of autoimmune pathology in experimental autoimmune encephalomyelitis (EAE. We found that VitD-BMDC had lower expression of MHC class II and co-stimulatory molecules and were less effective at priming autoreactive T cells in-vitro. Using our recently described BMDC driven model of EAE, we demonstrated that VitD-BMDC had a significantly reduced ability to initiate EAE. We found that the impaired ability of VitD-BMDC to initiate EAE was not due to T cell tolerisation. Instead, we discovered that the addition of 1,25(OH2D3 to BMDC cultures resulted in a significant reduction in the proportion of CD11c+ cells. Purified CD11c+VitD-BMDC were significantly less effective at priming T cells in-vitro yet were similarly capable of initiating EAE as vehicle treated CD11c+BMDC. This study demonstrates that in-vitro assays of DC function can be a poor predictor of in-vivo behaviour and that CD11c+VitD-BMDC are highly effective initiators of an autopathogenic T cell response.

  8. 1,25-Dihydroxyvitamin D3 promotes tolerogenic dendritic cells with functional migratory properties in NOD mice.

    Ferreira, Gabriela B; Gysemans, Conny A; Demengeot, Jocelyne; da Cunha, João Paulo M C M; Vanherwegen, An-Sofie; Overbergh, Lut; Van Belle, Tom L; Pauwels, Femke; Verstuyf, Annemieke; Korf, Hannelie; Mathieu, Chantal

    2014-05-01

    The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is able to promote the generation of tolerogenic mature dendritic cells (mDCs) with an impaired ability to activate autoreactive T cells. These cells could represent a reliable tool for the promotion or restoration of Ag-specific tolerance through vaccination strategies, for example in type 1 diabetes patients. However, successful transfer of 1,25(OH)2D3-treated mDCs (1,25D3-mDCs) depends on the capacity of 1,25(OH)2D3 to imprint a similar tolerogenic profile in cells derived from diabetes-prone donors as from diabetes-resistant donors. In this study, we examined the impact of 1,25(OH)2D3 on the function and phenotype of mDCs originating from healthy (C57BL/6) and diabetes-prone (NOD) mice. We show that 1,25(OH)2D3 is able to imprint a phenotypic tolerogenic profile on DCs derived from both mouse strains. Both NOD- and C57BL/6-derived 1,25D3-mDCs decreased the proliferation and activation of autoreactive T cells in vitro, despite strain differences in the regulation of cytokine/chemokine expression. In addition, 1,25D3-mDCs from diabetes-prone mice expanded CD25(+)Foxp3(+) regulatory T cells and induced intracellular IL-10 production by T cells in vitro. Furthermore, 1,25D3-mDCs exhibited an intact functional migratory capacity in vivo that favors homing to the liver and pancreas of adult NOD mice. More importantly, when cotransferred with activated CD4(+) T cells into NOD.SCID recipients, 1,25D3-mDCs potently dampened the proliferation of autoreactive donor T cells in the pancreatic draining lymph nodes. Altogether, these results argue for the potential of 1,25D3-mDCs to restore Ag-specific immune tolerance and arrest autoimmune disease progression in vivo. PMID:24663679

  9. Induction of matrix Gla protein synthesis during prolonged 1,25-dihydroxyvitamin D3 treatment of osteosarcoma cells.

    Fraser, J D; Price, P A

    1990-04-01

    The synthesis of matrix Gla protein (MGP) and bone Gla protein (BGP) have been shown to be mutually exclusive in all osteosarcoma cell lines investigated. In the cell lines that produce the respective proteins, synthesis is stimulated by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) within the first several hours of hormone treatment. In the present studies we have investigated the effects of longer-term treatment with 1,25(OH)2D3 in the ROS 17/2 cell line, a cell line that synthesizes BGP constitutively but does not synthesize MGP. In agreement with earlier studies, the rate of BGP synthesis increases within 8 hours of hormone treatment, is maximal by 24 hours, and remains at the maximal rate through 48 hours of 1,25(OH)2D3 treatment. The present study is the first to report that the rate of BGP secretion at times beyond 48 hours declines to that of control cultures despite the continued administration of 1,25(OH)2D3, and that MGP synthesis is induced in ROS 17/2 cells by 48 hours of 1,25(OH)2D3 treatment. At this time, MGP mRNA could be detected by northern blot analysis and MGP secretion could be demonstrated by radioimmunoassay of culture medium. Both the level of MGP message per unit total RNA and the rate of MGP secretion into culture medium increased steadily between 2 and 6 days of 1,25(OH)2D3 treatment. The MGP synthesized by the 1,25(OH)2D3-treated ROS 17/2 cells was identical to that found in bone by northern blot analysis of message and by western blot analysis of the media antigen. Half-maximal induction of MGP synthesis was obtained with 0.3 nM 1,25(OH)2D3, a 60-fold higher dosage than was required for the half maximal stimulation of BGP synthesis in these cells. Treatment of ROS 17/2 cells with 24,24-F21,25(OH)2D3 suggests that the observed difference in dose dependence is not due to an increased rate of hormone catabolism. PMID:2108798

  10. 1,25 Dihydroxyvitamin D3 Inhibits TGFβ1-Mediated Primary Human Cardiac Myofibroblast Activation.

    Anna Meredith

    Full Text Available Epidemiological and interventional studies have suggested a protective role for vitamin D in cardiovascular disease, and basic research has implicated vitamin D as a potential inhibitor of fibrosis in a number of organ systems; yet little is known regarding direct effects of vitamin D on human cardiac cells. Given the critical role of fibrotic responses in end stage cardiac disease, we examined the effect of active vitamin D treatment on fibrotic responses in primary human adult ventricular cardiac fibroblasts (HCF-av, and investigated the relationship between circulating vitamin D (25(OHD3 and cardiac fibrosis in human myocardial samples.Interstitial cardiac fibrosis in end stage HF was evaluated by image analysis of picrosirius red stained myocardial sections. Serum 25(OHD3 levels were assayed using mass spectrometry. Commercially available HCF-av were treated with transforming growth factor (TGFβ1 to induce activation, in the presence or absence of active vitamin D (1,25(OH2D3. Functional responses of fibroblasts were analyzed by in vitro collagen gel contraction assay. 1,25(OH2D3 treatment significantly inhibited TGFβ1-mediated cell contraction, and confocal imaging demonstrated reduced stress fiber formation in the presence of 1,25(OH2D3. Treatment with 1,25(OH2D3 reduced alpha-smooth muscle actin expression to control levels and inhibited SMAD2 phosphorylation.Our results demonstrate that active vitamin D can prevent TGFβ1-mediated biochemical and functional pro-fibrotic changes in human primary cardiac fibroblasts. An inverse relationship between vitamin D status and cardiac fibrosis in end stage heart failure was observed. Collectively, our data support an inhibitory role for vitamin D in cardiac fibrosis.

  11. 1,25-dihydroxyvitamin D3 modulates NSAIDs-induced expression of growth differentiation factor 15

    Slavíčková, Eva; Lincová, Eva; Pernicová, Zuzana; Staršíchová, Andrea; Kozubík, Alois; Souček, Karel

    Olomouc, 2009. s. 121-122. ISBN 978-80-254-2561-5. [Analytical Cytometry V. 05.09.2009-08.09.2009, Olomouc] R&D Projects: GA ČR(CZ) GA204/07/0834 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : GDF-15 * indomethacin * 1,25-dihoxyvitamin D3 Subject RIV: BO - Biophysics

  12. Inhibition of insulin- and insulin-like growth factor-I-stimulated growth of human breast cancer cells by 1,25-dihydroxyvitamin D3 and the vitamin D3 analogue EB1089

    T. Vink-Van Wijngaarden (Trudy); H.A.P. Pols (Huib); C.J. Buurman (Cok); J.C. Birkenhäger (Jan ); J.P.T.M. van Leeuwen (Hans)

    1996-01-01

    textabstract1, 25 Dihydroxyvitamin D3 (1,25-(OH)2D3) and a number of synthetic vitamin D3 analogues with low calcaemic activity, have been shown to inhibit breast cancer cell growth in vitro as well as in vivo. The purpose of the present study was to investigate a possible interaction of 1, 25-(OH)2

  13. The role of 1α,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells

    Urry, Zoë; Chambers, Emma S; Xystrakis, Emmanuel; Dimeloe, Sarah; Richards, David F.; Gabryšová, Leona; Christensen, Jillian; Gupta, Atul; Saglani, Sejal; Bush, Andrew; O’Garra, Anne; Brown, Zarin; Hawrylowicz, Catherine M.

    2012-01-01

    1α,25-Dihydroxyvitamin D3 (1α25VitD3) has potent immunomodulatory properties. We have previously demonstrated that 1α25VitD3 promotes human and murine IL-10-secreting CD4+ T cells. Because of the clinical relevance of this observation, we characterized these cells further and investigated their relationship with Foxp3+ regulatory T (Treg) cells. 1α25VitD3 increased the frequency of both Foxp3+ and IL-10+ CD4+T cells in vitro. However, Foxp3 was increased at high concentrations of 1α25VitD3 an...

  14. An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D3-resistant rickets in three families

    Hereditary 1,25-dihydroxyvitamin D3-resistant rickets is a rare autosomal-recessive disease resulting from target-organ resistance to the action of the active hormonal form of vitamin D. Four affected children from three related families with the classical syndrome of hereditary 1,25-dihydroxyvitamin D3-resistant rickets and the absence of detectable binding to the vitamin D receptor (VDR) in cultured fibroblasts or lymphoblasts were examined for genetic abnormalities in the VDR gene. Genomic DNA from Epstein-Barr virus-transformed lymphoblasts of eight family members was isolated and amplified by polymerase chain reaction techniques. Amplified fragments containing the eight structural exons encoding the VDR protein were sequenced. The DNA from all affected children exhibited a single C → A base substitution within exon 7 at nucleotide 970. Although the affected children were all homozygotic for the mutation, the four parents tested all exhibited both wild-type and mutant alleles, indicating a heterozygous state. Recreated mutant receptor exhibited no specific 1,25-[3H]dihydroxyvitamin D3 binding and failed to activate a cotransfected VDR promoter-reporter gene construct. Thus these findings identify an ochre mutation in a human steroid hormone receptor in patients with hereditary 1,25-dihydroxyvitamin D3-resistant rickets

  15. 1,25 dihydroxyvitamin D3 and dexamethasone induce the cyclooxygenase 1 gene in osteoclast-supporting stromal cells.

    Adams, A E; Abu-Amer, Y; Chappel, J; Stueckle, S; Ross, F P; Teitelbaum, S L; Suva, L J

    1999-09-15

    Commitment of members of the monocyte/macrophage family to the bone resorptive phenotype, in vitro, requires contact, of these osteoclast precursors, with osteoblasts or related stromal cells. The osteoclast-inductive properties of these stromal cells are typically expressed, however, only in the presence of steroid hormones such as 1,25 dihydroxyvitamin D (1,25D3) and dexamethasone (DEX). To gain insight into the means by which steroid treated accessory cells induce osteoclast differentiation we asked, using differential RNA display (DRD), if gene expression by this stromal cell population differs from that of their untreated, non-osteoclastogenic counterpart. We identified four known genes specifically expressed by 1,25D3/DEX-treated ST2 stromal cells: 1) a family of rat organic anion transporters, 2) Na/K ATPase ss-subunit, 3) tazarotene-induced gene 2 (TIG2), and 4) prostaglandin G/H synthase I, or cyclooxygenase 1 (Cox-1). The regulation of these genes in 1,25D3/DEX-treated ST2 cells was demonstrated by Northern blot analysis of treated (osteoclast-supporting) and untreated (non-osteoclast-supporting) ST2 cells; the genes have a limited and specific tissue mRNA expression pattern. Northern blot analysis of treated and untreated ST2 cell total RNA using either a DRD-derived Cox-1 cDNA or a Cox-1 specific oligonucleotide confirmed the steroid regulation of Cox-1 mRNA. Surprisingly, there is no detectable expression by untreated or steroid exposed ST2 cells, of Cox-2, the classical regulated cyclooxygenase isoform. In contrast to 1, 25D3/DEX, serum treatment rapidly induces Cox-2 mRNA, substantiating the capacity of ST2 cells to express the gene. These data establish that steroid induction of the osteoclastogenic properties of stromal cells is attended by Cox gene expression, a phenomenon consistent with the capacity of eicosinoids to impact the resorptive process. The response of osteoclast-supporting ST2 cells to 1,25D3/DEX treatment may be one prostaglandin

  16. 1,25-dihydroxyvitamin D3 impairs NF-κB activation in human naive B cells

    Highlights: → In naive B cells, VDR activation by calcitriol results in reduced NF-κB p105 and p50 protein expression. → Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-κB p65. → Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. → Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1α,25-dihydroxyvitamin D3 (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  17. Nuclear hormone 1α,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy

    Heikkinen, Sami; Väisänen, Sami; Pehkonen, Petri; Seuter, Sabine; Benes, Vladimir; Carlberg, Carsten

    2011-01-01

    A global understanding of the actions of the nuclear hormone 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) and its vitamin D receptor (VDR) requires a genome-wide analysis of VDR binding sites. In THP-1 human monocytic leukemia cells we identified by ChIP-seq 2340 VDR binding locations, of which 1171 and 520 occurred uniquely with and without 1α,25(OH)2D3 treatment, respectively, while 649 were common. De novo identified direct repeat spaced by 3 nucleotides (DR3)-type response elements (REs) were...

  18. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients.

    Fukuda, N.; Tanaka, H.; Tominaga, Y; Fukagawa, M.; Kurokawa, K; Seino, Y

    1993-01-01

    The resistance of parathyroid cells to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in uremic hyperparathyroidism is thought to be caused, in part, by a 1,25(OH)2D3 receptor (VDR) deficiency in the parathyroids. However, results of biochemical studies addressing VDR numbers in the parathyroids are controversial. Several studies have found VDR content to be decreased in the parathyroids of uremic patients and animals, while others have found no such decrease in the parathyroids of uremic animals. To...

  19. Phenotypic and functional markers for 1alpha,25-dihydroxyvitamin D(3)-modified regulatory dendritic cells

    Pedersen, A W; Holmstrøm, K; Jensen, S S; Fuchs, D; Rasmussen, S; Kvistborg, P; Claesson, M H; Zocca, M-B

    2009-01-01

    The clinical use of dendritic cells (DCs) to induce antigen-specific immune tolerance has been hampered by the lack of a widely acknowledged method for generating human regulatory DCs but even more so by the non-existence of reliable markers. Thus, we set out to find reliable markers that can be...

  20. Role of 1, 25-dihydroxyvitamin D3 in preventing acute rejection of allograft following rat orthotopic liver transplantation

    章爱斌; 郑树森; 贾长库; 王雁

    2004-01-01

    Background We investigated the role of 1, 25-dihydroxyvitamin D3 (1, 25-(OH)2D3) in preventing allograft from acute rejection following orthotopic liver transplantation. Methods A rat orthotopic liver transplantation model was used in this study. SD-Wistar rats served as a high responder strain combination. Recipients were subjected to administration of 1, 25-(OH)2 D3 at dosages ranging from 0.25 μg·kg-1*d-1 to 2.5 μg·kg-1*d-1. Survival after transplantation as well as pathological rejection grades and IFN-γ mRNA, IL-10 mRNA transcription intragraft on day 7, and day 30 post-transplantation were observed. Results After recipients were treated with 1, 25(OH)2 D3 at dosages of 0.5 μg*kg-1*d-1 or 1.0 μ g*kg-1*d-1, survivals of recipients were prolonged. Ninety-five percent confidence intervals of survival were 46-87 days and 69-102 days (both P=0.0005 vs control group), respectively. On day seven post-transplantation, relative levels of IFN-γ mRNA transcription were 0.59±0.12 and 0.49±0.16, which was higher than the control group (P=0.005, P=0.003, respectively). Relative levels of IL-10 mRNA transcription were 0.83±0.09 and 0.76±0.09, which was lower than the control group (P=0.002, P=0.003, respectively). At a dosage of 0.5 μg·kg-1*d-1, the median of pathological rejection grade on day seven and on day thirty post-transplantation were 1.5 and 2.0 in comparison with the CsA-treated group (P=0.178, P=0.171, respectively). At a dosage of 0.5 μg·kg-1*d-1, the median of pathological rejection grade on day seven and day thirty post-transplantation were 1.5 and 1.5 in comparison with CsA-treated group (P=0.350, P=0.693, respectively).Conclusion After each recipient was treated with 1,25-(OH)2 D3 at a dosage of (0.5-1.0) μg·kg-1*d-1, transcription of cytokine intragraft was accommodated effectively and deviated to Th2 type, resulting in alleviation of acute rejection. 1, 25-(OH)2 D3 can prolong survival of recipient after orthotopic liver transplantation.

  1. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060.

    van den Bemd, G C; Pols, H A; Birkenhäger, J C; van Leeuwen, J P

    1996-01-01

    The 1,25-dihydroxyvitamin D3 [1,25-(OH)2vitamin D3] analog KH1060 exerts very potent effects on cell proliferation and cell differentiation via the vitamin D receptor (VDR). However, the activities of KH1060 are not associated with an increased affinity for the VDR. We now show that increased stabilization of the VDR-KH1060 complex could be an explanation for its high potencies. VDR half-life studies performed with cycloheximide-translational blocked rat osteoblast-like ROS 17/2.8 cells demon...

  2. 1,25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H17 cells to protect against experimental autoimmune encephalomyelitis.

    Jae-Hoon Chang

    Full Text Available BACKGROUND: Vitamin D(3, the most physiologically relevant form of vitamin D, is an essential organic compound that has been shown to have a crucial effect on the immune responses. Vitamin D(3 ameliorates the onset of the experimental autoimmune encephalomyelitis (EAE; however, the direct effect of vitamin D(3 on T cells is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In an in vitro system using cells from mice, the active form of vitamin D(3 (1,25-dihydroxyvitamin D(3 suppresses both interleukin (IL-17-producing T cells (T(H17 and regulatory T cells (Treg differentiation via a vitamin D receptor signal. The ability of 1,25-dihydroxyvitamin D(3 (1,25(OH(2D(3 to reduce the amount of IL-2 regulates the generation of Treg cells, but not T(H17 cells. Under T(H17-polarizing conditions, 1,25(OH(2D(3 helps to increase the numbers of IL-10-producing T cells, but 1,25(OH(2D(3's negative regulation of T(H17 development is still defined in the IL-10(-/- T cells. Although the STAT1 signal reciprocally affects the secretion of IL-10 and IL-17, 1,25(OH(2D(3 inhibits IL-17 production in STAT1(-/- T cells. Most interestingly, 1,25(OH(2D(3 negatively regulates CCR6 expression which might be essential for T(H17 cells to enter the central nervous system and initiate EAE. CONCLUSIONS/SIGNIFICANCE: Our present results in an experimental murine model suggest that 1,25(OH(2D(3 can directly regulate T cell differentiation and could be applied in preventive and therapeutic strategies for T(H17-mediated autoimmune diseases.

  3. Effects of 1,25-dihydroxyvitamin D3 on high glucose-induced expression of uncoupling protein 2 and oxidative stress in human renal tubular epithelial cells

    郭汉城

    2013-01-01

    Objective To study the effects of 1,25-dihydroxyvitamin D3on high-induced expression of uncoupling protein 2 and oxidative stress in human renal tubular epithelial cells.Methods The HK-2 cells with different culture media were divided into normal glucose group (NG group,5.5 mmol/L D-glucose) ;high glucose group (HG group,30 mmol/L D-glucose) ;mannitol group (MG group,5.5 mmol/L D-glucose+24.5 mmol/L manni-

  4. The high affinity ligand binding conformation of the nuclear 1,25-dihydroxyvitamin D3 receptor is functionally linked to the transactivation domain 2 (AF-2).

    Nayeri, S; Kahlen, J P; Carlberg, C

    1996-01-01

    The nuclear receptor for 1,25-dihydroxyvitamin D3 (VD), VDR, is a transcription factor that mediates all genomic actions of the hormone. The activation of VDR by ligand induces a conformational change within its ligand binding domain (LBD). Due to the lack of a crystal structure analysis, biochemical methods have to be applied in order to investigate the details of this receptor-ligand interaction. The limited protease digestion assay can be used as a tool for the determination of a functiona...

  5. Inhibition of insulin- and insulin-like growth factor-I-stimulated growth of human breast cancer cells by 1,25-dihydroxyvitamin D3 and the vitamin D3 analogue EB1089

    Vink-Van Wijngaarden, Trudy; Pols, Huib; Buurman, Cok; Birkenhäger, Jan; van Leeuwen, Hans

    1996-01-01

    textabstract1, 25 Dihydroxyvitamin D3 (1,25-(OH)2D3) and a number of synthetic vitamin D3 analogues with low calcaemic activity, have been shown to inhibit breast cancer cell growth in vitro as well as in vivo. The purpose of the present study was to investigate a possible interaction of 1, 25-(OH)2D3 and the vitamin D3 analogue EB1089 with the insulin-IGF-I regulatory system. The oestrogen receptor-positive MCF-7 human breast cancer cells used in this study are able to grow autonomously and ...

  6. Rapid changes in skeletal muscle calcium uptake induced in vitro by 1,25-dihydroxyvitamin D3 are suppressed by calcium channel blockers

    Previous investigations have shown that 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] stimulates muscle Ca uptake through a nuclear mechanism. The possibility that 1,25-(OH)2D3 would induce rapid changes in muscle Ca fluxes independent of de novo protein synthesis was investigated in the present work. In vitro preparations of soleus muscles obtained from vitamin D-deficient chicks were used. A significant increase in 45Ca labeling of the tissue was already observed after 3-min treatment with 2.4 X 10(-10) M 1,25-(OH)2D3. This early stimulation in muscle Ca uptake became maximal at 10-15 min. Cycloheximide (50 microM) did not block the effect of the metabolite at 15 and 30 min. However, the antibiotic effectively blocked the increase in Ca uptake induced by 1,25-(OH)2D3 after 1-h treatment. The rapid 1,25-(OH)2D3-dependent stimulation of 45Ca labeling of soleus muscle was not associated to changes in lipid synthesis as assessed by measurements of 3H-glycerol incorporation into the tissue lipids. However, the calcium antagonists verapamil and nifedipine (50 microM) abolished the stimulation in Ca uptake produced by 1,25-(OH)2D3 in 5 min. These results suggest that 1,25-(OH)2D3 can act directly at the muscle membrane level affecting Ca fluxes through Ca channels

  7. Stimulation by 1,25-dihydroxyvitamin D3 of in vitro mineralization induced by osteoblast-like MC3T3-E1 cells

    Although vitamin D is essential for mineralization of bone, it is as yet unclear whether vitamin D has a direct stimulatory effect on the bone mineralization process. In the present study, the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on in vitro mineralization mediated by osteoblast-like MC3T3-E1 cells was examined. MC3T3-E1 cells continued to grow after they reached confluency, and DNA content and alkaline phosphatase activity increased linearly until about 16 days of culture, whereas 45Ca accumulation into cell and matrix layer remained low. After this period, DNA content plateaued, and 45Ca accumulation increased sharply. Histological examination by von Kossa staining revealed that calcium was accumulated into extracellular matrix. In addition, needle-shaped mineral crystals similar to hydroxyapatite crystals could be demonstrated in between collagen fibrils by electron microscopy. Thus, MC3T3-E1 cells differentiate in vitro into cells with osteoblastic phenotype and exhibit mineralization. When MC3T3-E1 cells were treated with 1,25(OH)2D3 at this stage of culture, there was a dose-dependent stimulation of 45Ca accumulation by 1,25(OH)2D3, and a significant stimulation of 45Ca accumulation was observed with 3 x 10(-10) M 1,25(OH)2D3. Although 1,25(OH)2D3 enhanced alkaline phosphatase activity and collagen synthesis at the early phase of culture, it did not affect any of these parameters at the late phase when 1,25(OH)2D3 stimulated mineralization. Neither 24,25-dihydroxyvitamin D3 nor human PTH(1-34) affected mineralization in the presence or absence of 1,25(OH)2D3. These results demonstrate that 1,25(OH)2D3 stimulates matrix mineralization induced by osteoblastic MC3T3-E1 cells, and are consistent with the possibility that 1,25(OH)2D3 has a direct stimulatory effect on bone mineralization process

  8. 1,25-Dihydroxyvitamin D3 Inhibits the RANKL Pathway and Impacts on the Production of Pathway-Associated Cytokines in Early Rheumatoid Arthritis

    Jing Luo

    2013-01-01

    Full Text Available Objectives. To study effects of 1,25-dihydroxyvitamin D3 (1,25(OH2D3 on RANKL signaling pathway and pathway-associated cytokines in patients with rheumatoid arthritis (RA. Methods. Receptor activator of nuclear factor-kappa B ligand (RANKL, osteoprotegerin (OPG, IFN-γ, IL-6, TNF-α, IL-17, and IL-4 were examined in 54 patients with incipient RA using a cytometric bead array (CBA or an enzyme-linked immunosorbent assay (ELISA. Results. After 72 hours of incubation of peripheral blood mononuclear cells (PBMCs with 1,25(OH2D3 in RA patients, the levels of RANKL, TNF-α, IL-17 and IL-6 significantly decreased compared to those of the control. 1,25(OH2D3 had no significantly impact on the levels of OPG, RANKL/OPG, and IL-4. Conclusions. The present study demonstrated that 1,25(OH2D3 reduced the production of RANKL and the secretion of TNF-α, IL-17, and IL-6 in PBMCs of RA patients, which indicated that 1,25(OH2D3 might be able to decrease damage of cartilage and bone in RA patients by regulating the expression of RANKL signaling pathway and pathway-associated cytokines.

  9. 1,25-Dihydroxyvitamin D3 Protects against Immune-Mediated Killing of Neurons in Culture and in Experimental Autoimmune Encephalomyelitis.

    Scott Sloka

    Full Text Available Several studies have reported that low vitamin D levels are associated with an increased risk of developing multiple sclerosis (MS. As MS is an inflammatory disorder with degeneration of axons and neurons, we examined whether the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3, could protect against the T cell-mediated killing of human neurons in culture, and the axonal loss seen in mice with experimental autoimmune encephalomyelitis (EAE. Human neurons were exposed to activated human T lymphocytes and the loss of neurons was documented 24 hours later by counting the number of microtubule-associated protein-2 positive cells. Mice with EAE were harvested for counts of axonal profiles in the spinal cord. 1,25D3 was exposed to T cells in culture or administered to mice from peak EAE clinical severity when axonal loss was already evolving. Activated T lymphocytes killed human neurons prominently within 24 hours but toxicity was significantly attenuated when T cells were exposed to 1,25D3 prior to the co-culture. In EAE, 1,25D3 treatment initiated from peak clinical severity reduced the extent of clinical disability and mitigated the progressive loss of axons. The reduction of axonal and neuronal loss by 1,25D3 in the context of an inflammatory assault to the central nervous system is a potential contributor to the putative benefits of vitamin D in MS.

  10. Mapping Variation in Cellular and Transcriptional Response to 1,25-Dihydroxyvitamin D3 in Peripheral Blood Mononuclear Cells.

    Kariuki, Silvia N; Maranville, Joseph C; Baxter, Shaneen S; Jeong, Choongwon; Nakagome, Shigeki; Hrusch, Cara L; Witonsky, David B; Sperling, Anne I; Di Rienzo, Anna

    2016-01-01

    The active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is an important modulator of the immune system, inhibiting cellular proliferation and regulating transcription of immune response genes. In order to characterize the genetic basis of variation in the immunomodulatory effects of 1,25D, we mapped quantitative traits of 1,25D response at both the cellular and the transcriptional level. We carried out a genome-wide association scan of percent inhibition of cell proliferation (Imax) induced by 1,25D treatment of peripheral blood mononuclear cells from 88 healthy African-American individuals. Two genome-wide significant variants were identified: rs1893662 in a gene desert on chromosome 18 (p = 2.32 x 10-8) and rs6451692 on chromosome 5 (p = 2.55 x 10-8), which may influence the anti-proliferative activity of 1,25D by regulating the expression of nearby genes such as the chemokine gene, CCL28, and the translation initiation gene, PAIP1. We also identified 8 expression quantitative trait loci at a FDRvitamin D receptor binding sites near genes differentially expressed in response to 1,25D, such as FERM Domain Containing 6 (FRMD6), which plays a critical role in regulating both cell proliferation and apoptosis. Combining information from the GWAS of Imax and the response eQTL mapping enabled identification of putative Imax-associated candidate genes such as PAIP1 and the transcriptional repressor gene ZNF649. Overall, the variants identified in this study are strong candidates for immune traits and diseases linked to vitamin D, such as multiple sclerosis. PMID:27454520

  11. Autoradiographic study of the effect of 1,25-dihydroxyvitamin D3 on bone matrix synthesis in vitamin D replete rats

    An autoradiographic technique using pulse labels of [3H]proline was developed to assess the early effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on bone matrix synthesis in vitamin D replete rats. Rats, 7 days old, were given 0.25, 2.5, or 25 ng of 1,25(OH)2D3 or vehicle alone subcutaneously on days 1, 3, and 5 of the experiment. Rats received a subcutaneous injection of 100 μCi [3H]proline on days 2 and 6 and were killed on day 7. Calvaria and tibia were processed for autoradiography, and morphometric methods were developed to measure the rate and amount of bone matrix formed during the experimental period. When compared to control values, the amount and rate of formation of new bone matrix were both significantly decreased in rats receiving 25 ng of 1,25(OH)2D3 and slightly, but not significantly, decreased in rats receiving 2.5 ng. We conclude that administration of pharmacologic doses of 1,25(OH)2D3 to vitamin D replete rat pups impairs the formation of collagenous bone matrix. (orig.)

  12. Effect of lowered vitamin D binding protein levels on the biological activity and metabolism of 1,25-dihydroxyvitamin D3

    The authors studied the effect of lowered vitamin D binding protein levels on the biological activity and metabolism of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in vivo. Estrogen administration to vitamin D-deficient rats resulted in decrease of plasma vitamin D binding protein concentrations by about 20%. The authors administered graded doses of 1,25(OH)2D3 (5 - 5000 pmol intravenously) to vitamin D-deficient rats given estrogen or vehicle, and studied the biological response in intestine and bone. Intestinal calcium transport, following the administration of 1,25(OH)2D3, was similar in the estrogen or vehicle-treated groups. Serum calcium concentrations were lower in the estrogen-treated rats when compared to rats given vehicle. Serum calcium in both groups, however, increased the same amount over the range of 1,25(OH)2D3 given. The uptake of [3H] 1,25(OH)2D3 by the intestine and bone 8 hours after the administration of [3H] 1,25(OH)2D3 was similar in estrogen- and vehicle-treated rats. The amount of [3H] 1,25(OH)2D3 in plasma of estrogen-treated rats was the same as in vehicle-treated rats. The authors conclude that in estrogen-treated rats, lowered vitamin D binding protein levels do not alter the effect of 1,25(OH)2D3 on intestine or bone and do not alter the metabolism of 1,25(OH)2D3

  13. 1,25-Dihydroxyvitamin D3 Deficiency is Involved in the Pathogenesis of Diabetic Retinopathy in the Uygur Population of China.

    Yi, Xianglong; Sun, Jialin; Li, Li; Wei, Qin; Qian, Yi; Chen, Xueyi; Ma, Ling

    2016-06-01

    1,25-Dihydroxyvitamin D3 [1,25(OH)2 D3 ] has recently been shown to have immunomodulatory property. This study aimed to investigate the expression and potential role of 1,25(OH)2 D3 in the pathogenesis of diabetic retinopathy (DR) in the Uygur population. Blood samples were obtained from 22 patients with proliferative DR (PDR), 29 patients with nonproliferative DR (NPDR), and 24 normal controls. ELISA was performed to estimate the serum levels of 1,25(OH)2 D3 . Peripheral blood mononuclear cells (PBMCs) were cultured with or without 1,25(OH)2 D3 in the presence of anti-CD3 and anti-CD28 antibodies to detect the secretion of cytokines and cell proliferation. The FACS cytometric bead array system was used to analyze cytokine levels in the serum and culture supernatants. The Cell Counting Kit was used to determine the rate of cell proliferation. In this study, we found that the patients with PDR showed a decreased serum level of 1,25(OH)2 D3 and increased production of IFN-γ, TNF-α, IL-6, and IL-17A, by anti-CD3 and anti-CD28 antibodies activated PBMCs. Furthermore, 1,25(OH)2 D3 significantly inhibited the proliferation of PBMCs, as well as the secretion of IFN-γ, TNF-α, IL-6, and IL-17A. Overall, our findings suggest a potential protective effect of 1,25(OH)2 D3 in DR, whereas supplementation with 1,25(OH)2 D3 might be an effective strategy for preventing the development of DR. © 2016 IUBMB Life, 68(6):445-451, 2016. PMID:27080220

  14. Synergistic effects of 1,25-Dihydroxyvitamin D3 and TGF-beta1 on the production of insulin-like growth factor binding protein 3 in human bone marrow stromal cell cultures

    Kveiborg, Marie; Flyvbjerg, Allan; Kassem, M

    2002-01-01

    1,25-Dihydroxyvitamin D3 (calcitriol), transforming growth factor-beta (TGF-beta), and insulin-like growth factors (IGFs) are all important bone regulatory factors known to affect proliferation and differentiation of human bone-forming cells (osteoblasts). We have previously shown that TGF-beta1 ...

  15. Factors associated with 1,25-dihydroxyvitamin D3 concentrations in liver transplant recipients: a prospective observational longitudinal study.

    Prytuła, Agnieszka; Walle, Johan Vande; Van Vlierberghe, Hans; Kaufman, Jean-Marc; Fiers, Tom; Dehoorne, Jo; Raes, Ann

    2016-04-01

    The aim of the study was to identify factors associated with 1,25(OH)2D3 concentrations in liver transplant recipients with emphasis on the renal function and catabolism. We also tested the hypothesis that tacrolimus increases 1,25(OH)2D3 concentrations. Serum 25(OH)D3, 1,25(OH)2D3, and 24,25(OH)2D3 were measured in 41 patients before, at 2 weeks and 3 months after transplantation. Dose-adjusted tacrolimus concentration was used as a surrogate marker of CYP3A4 activity. Factors associated with 1,25(OH)2D3 were identified using multivariate linear regression analysis. The median 1,25(OH)2D3 levels remained stable: 55 versus 46 pg/ml (P = 0.36) despite an increase in 25(OH)D3 from 18 ng/ml at baseline to 26 ng/ml (P = 0.03), serum albumin (34 to 41 g/l, P = 0.02), and comparable eGFR at baseline and month 3 (94 and 92 ml/min, respectively, P = 0.15). At 3 months 19 % of patients had 1,25(OH)2D3 < 25 pg/ml. Low eGFR and a low dose-adjusted tacrolimus concentration were both independently associated with 1,25(OH)2D3 at 3 months. Liver transplant recipients with impaired renal function or a low dose-adjusted tacrolimus concentration suggesting a high CYP3A4 are at risk of low 1,25(OH)2D3 concentrations. The use of tacrolimus does not lead to an increase in 1,25(OH)2D3 concentrations in a clinical setting. PMID:26433738

  16. Avian and mammalian receptors for 1,25-dihydroxyvitamin D3: in vitro translation to characterize size and hormone-dependent regulation

    In vitro translation of cellular poly(A)+ RNA coupled with immunoprecipitation was developed as a technique for characterizing 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] receptors and assessing receptor mRNA activity. Cell-free translation of poly(A)+ RNA isolated from chicken intestine revealed two immunoprecipitable forms of avian receptor at 60 kDa and 58 kDa. 1,25-(OH)2D3 receptors were also synthesized in vitro employing poly(A)+ RNA obtained from several cultured mammalian cell lines. Selective immunoprecipitation revealed a single form of receptor at 54 kDa in mouse fibroblasts (3T6) and pig kidney cells (LLC-PK1) and a 52-kDa species in human breast carcinoma (T47D). Each of these in vitro translated mammalian 1,25-(OH)2D3 receptors migrated identically with its cellular counterpart that was synthesized in vivo employing metabolic labeling of cell protein with [35S]methionine. These results are consistent with the conclusions that 1,25-(OH)2D3 receptors are protein species ranging from 52 to 60 kDa and that, though their functional and immunological domains have been evolutionarily conserved, an inverse relationship apparently exists between phylogenetic status and receptor mass. The data also support the hypothesis that the presence of 1,25-(OH)2D3 leads to a significant increase in receptor mRNA activity in 3T6 cells, indicative of receptor autoregulation

  17. The differential effects of 1,25-dihydroxyvitamin D3 on Salmonella-induced interleukin-8 and human beta-defensin-2 in intestinal epithelial cells.

    Huang, F-C

    2016-07-01

    Salmonellosis or Salmonella, one of the most common food-borne diseases, remains a major public health problem worldwide. Intestinal epithelial cells (IECs) play an essential role in the mucosal innate immunity of the host to defend against the invasion of Salmonella by interleukin (IL)-8 and human β-defensin-2 (hBD-2). Accumulated research has unravelled important roles of vitamin D in the regulation of innate immunity. Therefore, we investigated the effects of 1,25-dihydroxyvitamin D3 (1,25D3) on Salmonella-induced innate immunity in IECs. We demonstrate that pretreatment of 1,25D3 results in suppression of Salmonella-induced IL-8 but enhancement of hBD-2, either protein secretion and mRNA expression, in IECs. Furthermore, 1,25D3 enhanced Salmonella-induced membranous recruitment of nucleotide oligomerization domain (NOD2) and its mRNA expression and activation of protein kinase B (Akt), a downstream effector of phosphoinositide 3-kinase (PI3K). Inhibition of the PI3K/Akt signal counteracted the suppressive effect of 1,25D3 on Salmonella-induced IL-8 expression, while knock-down of NOD2 by siRNA diminished the enhanced hBD-2 expression. These data suggest differential regulation of 1,25D3 on Salmonella-induced IL-8 and hBD-2 expression in IECs via PI3K/Akt signal and NOD2 protein expression, respectively. Active vitamin D-enhanced anti-microbial peptide in Salmonella-infected IECs protected the host against infection, while modulation of proinflammatory responses by active vitamin D prevented the host from the detrimental effects of overwhelming inflammation. Thus, active vitamin D-induced innate immunity in IECs enhances the host's protective mechanism, which may provide an alternative therapy for invasive Salmonella infection. PMID:26990648

  18. 1,25-Dihydroxyvitamin D3 suppresses TLR8 expression and TLR8-mediated inflammatory responses in monocytes in vitro and experimental autoimmune encephalomyelitis in vivo.

    Bo Li

    Full Text Available 1,25-Dihydroxyvitamin D3 (1,25(OH2D3 suppresses autoimmunity and inflammation; however, the mechanism of its action has not been fully understood. We sought in this study to determine whether the anti-immune/anti-inflammatory action of 1,25(OH2D3 is in part mediated through an interplay between 1,25(OH2D3 and toll-like receptor (TLR7/8 signaling. 1,25(OH2D3 treatment prior to and/or following experimental autoimmune encephalomyelitis (EAE induction effectively reduced inflammatory cytokine expression in the spinal cord and ameliorated EAE. These effects were accompanied with a reduction in expression of several TLRs with the most profound effect observed for TLR8. The expression of TLR8 adaptor protein MyD88 was also significantly reduced by 1,25(OH2D3. To determine the molecular mechanism by which 1,25(OH2D3 suppresses EAE induction of TLR8 and inflammatory cytokine expression, we evaluated whether 1,25(OH2D3 can directly inhibit TLR8 signaling and the resulting inflammatory responses in human THP-1 monocytes. 1,25(OH2D3 treatment not only significantly reduced TLR8 expression but also the expression or activity of MyD88, IRF-4, IRF-7 and NF-kB in monocytes challenged with TLR8 ligands. TLR8 promoter-luciferase reporter assays indicated that 1,25(OH2D3 decreases TLR8 mRNA level in part via inhibiting TLR8 gene transcription activity. As a result of inhibition on TLR8 signaling cascade at various stages, 1,25(OH2D3 significantly diminished the TLR8 target gene expression (TNF-α and IL-1β. In summary, our novel findings suggest that TLR8 is a new target of 1,25(OH2D3 and may mediate the anti-inflammatory action of 1,25(OH2D3. Our findings also point to a destructive role of TLR8 in EAE and shed lights on pathogenesis of multiple sclerosis.

  19. 1,25-Dihydroxyvitamin D3 Induces LL-37 and HBD-2 Production in Keratinocytes from Diabetic Foot Ulcers Promoting Wound Healing: An In Vitro Model

    Gonzalez-Curiel, Irma; Trujillo, Valentin; Montoya-Rosales, Alejandra; Rincon, Kublai; Rivas-Calderon, Bruno; deHaro-Acosta, Jeny; Marin-Luevano, Paulina; Lozano-Lopez, Daniel; Enciso-Moreno, Jose A.; Rivas-Santiago, Bruno

    2014-01-01

    Diabetic foot ulcers (DFU) are one of the most common diabetes-related cause of hospitalization and often lead to severe infections and poor healing. It has been recently reported that patients with DFU have lower levels of antimicrobial peptides (AMPs) at the lesion area, which contributes with the impairment of wound healing. The aim of this study was to determine whether 1,25-dihydroxyvitamin D3 (1,25 (OH)2 D3) and L-isoleucine induced HBD-2 and LL-37 in primary cultures from DFU. We developed primary cell cultures from skin biopsies from 15 patients with DFU and 15 from healthy donors. Cultures were treated with 1,25 (OH)2D3 or L-isoleucine for 18 h. Keratinocytes phenotype was identified by western blot and flow cytometry. Real time qPCR for DEFB4, CAMP and VDR gene expression was performed as well as an ELISA to measure HBD-2 and LL-37 in supernatant. Antimicrobial activity, in vitro, wound healing and proliferation assays were performed with conditioned supernatant. The results show that primary culture from DFU treated with 1,25(OH)2D3, increased DEFB4 and CAMP gene expression and increased the production of HBD-2 and LL-37 in the culture supernatant. These supernatants had antimicrobial activity over E. coli and induced remarkable keratinocyte migration. In conclusion the 1,25(OH)2D3 restored the production of AMPs in primary cell from DFU which were capable to improve the in vitro wound healing assays, suggesting their potential therapeutic use on the treatment of DFU. PMID:25337708

  20. 1,25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: an in vitro model.

    Irma Gonzalez-Curiel

    Full Text Available Diabetic foot ulcers (DFU are one of the most common diabetes-related cause of hospitalization and often lead to severe infections and poor healing. It has been recently reported that patients with DFU have lower levels of antimicrobial peptides (AMPs at the lesion area, which contributes with the impairment of wound healing. The aim of this study was to determine whether 1,25-dihydroxyvitamin D3 (1,25 (OH2 D3 and L-isoleucine induced HBD-2 and LL-37 in primary cultures from DFU. We developed primary cell cultures from skin biopsies from 15 patients with DFU and 15 from healthy donors. Cultures were treated with 1,25 (OH2D3 or L-isoleucine for 18 h. Keratinocytes phenotype was identified by western blot and flow cytometry. Real time qPCR for DEFB4, CAMP and VDR gene expression was performed as well as an ELISA to measure HBD-2 and LL-37 in supernatant. Antimicrobial activity, in vitro, wound healing and proliferation assays were performed with conditioned supernatant. The results show that primary culture from DFU treated with 1,25(OH2D3, increased DEFB4 and CAMP gene expression and increased the production of HBD-2 and LL-37 in the culture supernatant. These supernatants had antimicrobial activity over E. coli and induced remarkable keratinocyte migration. In conclusion the 1,25(OH2D3 restored the production of AMPs in primary cell from DFU which were capable to improve the in vitro wound healing assays, suggesting their potential therapeutic use on the treatment of DFU.

  1. Transcriptional effects of 1,25 dihydroxyvitamin D3 physiological and supra-physiological concentrations in breast cancer organotypic culture

    Vitamin D transcriptional effects were linked to tumor growth control, however, the hormone targets were determined in cell cultures exposed to supra physiological concentrations of 1,25(OH)2D3 (50-100nM). Our aim was to evaluate the transcriptional effects of 1,25(OH)2D3 in a more physiological model of breast cancer, consisting of fresh tumor slices exposed to 1,25(OH)2D3 at concentrations that can be attained in vivo. Tumor samples from post-menopausal breast cancer patients were sliced and cultured for 24 hours with or without 1,25(OH)2D3 0.5nM or 100nM. Gene expression was analyzed by microarray (SAM paired analysis, FDR≤0.1) or RT-qPCR (p≤0.05, Friedman/Wilcoxon test). Expression of candidate genes was then evaluated in mammary epithelial/breast cancer lineages and cancer associated fibroblasts (CAFs), exposed or not to 1,25(OH)2D3 0.5nM, using RT-qPCR, western blot or immunocytochemistry. 1,25(OH)2D3 0.5nM or 100nM effects were evaluated in five tumor samples by microarray and seven and 136 genes, respectively, were up-regulated. There was an enrichment of genes containing transcription factor binding sites for the vitamin D receptor (VDR) in samples exposed to 1,25(OH)2D3 near physiological concentration. Genes up-modulated by both 1,25(OH)2D3 concentrations were CYP24A1, DPP4, CA2, EFTUD1, TKTL1, KCNK3. Expression of candidate genes was subsequently evaluated in another 16 samples by RT-qPCR and up-regulation of CYP24A1, DPP4 and CA2 by 1,25(OH)2D3 was confirmed. To evaluate whether the transcripitonal targets of 1,25(OH)2D3 0.5nM were restricted to the epithelial or stromal compartments, gene expression was examined in HB4A, C5.4, SKBR3, MDA-MB231, MCF-7 lineages and CAFs, using RT-qPCR. In epithelial cells, there was a clear induction of CYP24A1, CA2, CD14 and IL1RL1. In fibroblasts, in addition to CYP24A1 induction, there was a trend towards up-regulation of CA2, IL1RL1, and DPP4. A higher protein expression of CD14 in epithelial cells and CA2 and

  2. 1,25-Dihydroxyvitamin D3 and its analog TX527 promote a stable regulatory T cell phenotype in T cells from type 1 diabetes patients.

    Van Belle, Tom L; Vanherwegen, An-Sofie; Feyaerts, Dorien; De Clercq, Pierre; Verstuyf, Annemieke; Korf, Hannelie; Gysemans, Conny; Mathieu, Chantal

    2014-01-01

    The emergence of regulatory T cells (Tregs) as central mediators of peripheral tolerance in the immune system has led to an important area of clinical investigation to target these cells for the treatment of autoimmune diseases such as type 1 diabetes. We have demonstrated earlier that in vitro treatment of T cells from healthy individuals with TX527, a low-calcemic analog of bioactive vitamin D, can promote a CD4+ CD25high CD127low regulatory profile and imprint a migratory signature specific for homing to sites of inflammation. Towards clinical application of vitamin D-induced Tregs in autologous adoptive immunotherapy for type 1 diabetes, we show here that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and TX527 similarly imprint T cells from type 1 diabetes patients with a CD4+ CD25high CD127low regulatory profile, modulate surface expression of skin- and inflammation-homing receptors, and increase expression of CTLA-4 and OX-40. Also, 1,25(OH)2D3 and TX527 treatment inhibit the production of effector cytokines IFN-γ, IL-9, and IL-17. Importantly, 1,25(OH)2D3 and TX527 promote the induction of IL-10-producing CD4+ CD25high CD127low T cells with a stable phenotype and the functional capacity to suppress proliferation of autologous responder T cells in vitro. These findings warrant additional validation of vitamin D-induced Tregs in view of future autologous adoptive immunotherapy in type 1 diabetes. PMID:25279717

  3. 1,25-Dihydroxyvitamin D3 and its analog TX527 promote a stable regulatory T cell phenotype in T cells from type 1 diabetes patients.

    Tom L Van Belle

    Full Text Available The emergence of regulatory T cells (Tregs as central mediators of peripheral tolerance in the immune system has led to an important area of clinical investigation to target these cells for the treatment of autoimmune diseases such as type 1 diabetes. We have demonstrated earlier that in vitro treatment of T cells from healthy individuals with TX527, a low-calcemic analog of bioactive vitamin D, can promote a CD4+ CD25high CD127low regulatory profile and imprint a migratory signature specific for homing to sites of inflammation. Towards clinical application of vitamin D-induced Tregs in autologous adoptive immunotherapy for type 1 diabetes, we show here that 1,25-dihydroxyvitamin D3 [1,25(OH2D3] and TX527 similarly imprint T cells from type 1 diabetes patients with a CD4+ CD25high CD127low regulatory profile, modulate surface expression of skin- and inflammation-homing receptors, and increase expression of CTLA-4 and OX-40. Also, 1,25(OH2D3 and TX527 treatment inhibit the production of effector cytokines IFN-γ, IL-9, and IL-17. Importantly, 1,25(OH2D3 and TX527 promote the induction of IL-10-producing CD4+ CD25high CD127low T cells with a stable phenotype and the functional capacity to suppress proliferation of autologous responder T cells in vitro. These findings warrant additional validation of vitamin D-induced Tregs in view of future autologous adoptive immunotherapy in type 1 diabetes.

  4. Radioreceptor assay for 1,25-dihydroxyvitamin D3 in serum and its application in the study of rachitis

    A modifed radioreceptor assay for 1,25-(OH)2-D3(1,25-Dihydroxy vitamin D3, Dihydroxycholecalciferol, DHCC) in serum was established, which was proved to have high sensitivity, stability and accuracy, and was applied in patients with rachitis. The results showed that DHCC level in serum in rachictic patients was lower than that of the control. The detection rate of DHCC was obviously higher than that through symptoms, laboratory tests and X-ray examination in patients with rachitis. Therefore, this assay technique can be used as a sensitive indicator for diagnosis of rachitis. It was also found that DHCC level in mothers was cor-relative with their infants, so that assay for DHCC level in pregnant mothers has significance in prevention and treatment of rachitis in their infants

  5. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling

    Lin-Yan Wan

    2015-11-01

    Full Text Available Vitamin D Receptor (VDR belongs to the nuclear receptor (NR superfamily. Whereas the structure of the ligand binding domain (LBD of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket (LBP and six of these residues have hydrogen-bonds linking with the ligand. In 1α,25-dihydroxyvitamin D3 signaling, H3 and H12 play an important role in the course of conformational change resulting in the provision of interfaces for dimerization, coactivator (CoA, corepressor (CoR, and hTAFII 28. In this paper we provide a detailed description of the amino acid residues stabilizing the structure and taking part in conformational change of VDR LBD according to functional domains.

  6. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans.

    Wolden-Kirk, H; Rondas, D; Bugliani, M; Korf, H; Van Lommel, L; Brusgaard, K; Christesen, H T; Schuit, F; Proost, P; Masini, M; Marchetti, P; Eizirik, D L; Overbergh, L; Mathieu, C

    2014-03-01

    Protection against insulitis and diabetes by active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), in nonobese diabetic mice has until now mainly been attributed to its immunomodulatory effects, but also protective effects of this hormone on inflammation-induced β-cell death have been reported. The aim of this study was to clarify the molecular mechanisms by which 1,25(OH)2D3 contributes to β-cell protection against cytokine-induced β-cell dysfunction and death. Human and mouse islets were exposed to IL-1β and interferon-γ in the presence or absence of 1,25(OH)2D3. Effects on insulin secretion and β-cell survival were analyzed by glucose-stimulated insulin release and electron microscopy or Hoechst/propidium iodide staining, respectively. Gene expression profiles were assessed by Affymetrix microarrays. Nuclear factor-κB activity was tested, whereas effects on secreted chemokines/cytokines were confirmed by ELISA and migration studies. Cytokine exposure caused a significant increase in β-cell apoptosis, which was almost completely prevented by 1,25(OH)2D3. In addition, 1,25(OH)2D3 restored insulin secretion from cytokine-exposed islets. Microarray analysis of murine islets revealed that the expression of approximately 4000 genes was affected by cytokines after 6 and 24 hours (n = 4; >1.3-fold; P < .02), of which nearly 250 genes were modified by 1,25(OH)2D3. These genes belong to functional groups involved in immune response, chemotaxis, cell death, and pancreatic β-cell function/phenotype. In conclusion, these findings demonstrate a direct protective effect of 1,25(OH)2D3 against inflammation-induced β-cell dysfunction and death in human and murine islets, with, in particular, alterations in chemokine production by the islets. These effects may contribute to the beneficial effects of 1,25(OH)2D3 against the induction of autoimmune diabetes. PMID:24424042

  7. 1α,25-Dihydroxyvitamin D3 Induces Neutrophil Apoptosis through the p38 MAPK Signaling Pathway in Chronic Obstructive Pulmonary Disease Patients.

    Haihua Yang

    Full Text Available Reduced neutrophil apoptosis plays an important role in the pathogenesis of acute exacerbation chronic obstructive pulmonary disease (AECOPD. The p38 mitogen-activated protein kinase (MAPK signaling pathway is involved in neutrophil apoptosis. 1α,25-Dihydroxyvitamin D3 (1α,25VitD3 can induce tumor cell apoptosis. The aim of this study was to assess the effects of 1α,25VitD3 on peripheral blood neutrophil apoptosis in AECOPD and examine the role of the p38 MAPK signaling pathway.The study enrolled 36 AECOPD patients and 36 healthy volunteers. Venous blood samples were obtained from both groups. Serum 25-hydroxyvitamin D (25-(OH D levels in peripheral venous blood were assayed using liquid chromatography-tandem mass spectrometry (LC-MS/MS; the neutrophils were separated and cultured with SB203580 (a p38 inhibitor and 1α,25VitD3. Neutrophil apoptosis was measured using flow cytometry, and phospho-p38 MAPK protein expression was detected by Western blot. Statistical analysis was performed using analysis of variance. Student's t-test and Pearson's correlation coefficient were used for the between-group differences and correlation analysis, respectively.The 25-(OH D levels were lower in AECOPD patients than in healthy controls, and the peripheral blood neutrophil apoptosis results were similar. 1α,25VitD3 increased the apoptosis rate and the level of phospho-p38 MAPK in peripheral blood neutrophils of AECOPD patients. SB203580 partly inhibited 1α,25VitD3-induced peripheral blood neutrophil apoptosis and phospho-p38 MAPK overexpression. The 25-(OH D levels were positively correlated with increased peripheral blood neutrophil apoptosis and phospho-p38 MAPK levels. In addition, expression of the phospho-p38 MAPK protein was also positively correlated with peripheral blood neutrophil apoptosis.Our results suggest that 1α,25VitD3 induces peripheral blood neutrophil apoptosis through the p38 MAPK signaling pathway in AECOPD patients.

  8. Additional Clues for a Protective Role ofVitamin D in Neurodegenerative Diseases: 1,25-Dihydroxyvitamin D3 Triggers an Anti-Inflammatory Response in BrainPericytes

    Nissou, Marie-France; Guttin, Audrey; Zenga, Cyril; Berger, François; Issartel, Jean-Paul; Wion, Didier

    2014-01-01

    International audience Epidemiological and experimental studies suggest that 1,25-dihydroxyvitamin D3 (1,25D) plays a neuroprotectiverole in neurodegenerative diseases including Alzheimer's disease. Most of the experimental data regarding the genes regulatedby this hormone in brain cells have been obtained with neuron and glial cells. Pericytes play a critical role in brain function thatencompasses their classical function in blood-brain barrier control and maintenance. However, the gene r...

  9. 1α,25-Dihydroxyvitamin D3-Liganded Vitamin D Receptor Increases Expression and Transport Activity of P-glycoprotein in Isolated Rat Brain Capillaries and Human and Rat Brain Microvessel Endothelial Cells

    Durk, Matthew R.; Chan, Gary N.Y.; Campos, Christopher R.; Peart, John C.; Chow, Edwin C.Y.; Lee, Eason; Cannon, Ronald E.; Bendayan, Reina; Miller, David S.; Pang, K. Sandy

    2012-01-01

    MDR1/P-gp induction by the vitamin D receptor (VDR) was investigated in isolated rat brain capillaries and rat (RBE4) and human (hCMEC/D3) brain microvessel endothelial cell lines. Incubation of isolated rat brain capillaries with 10 nM of the VDR ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] for 4 h increased P-gp protein expression (4-fold). Incubation with 1,25(OH)2D3 for 4 or 24 h increased P-gp transport activity (specific luminal accumulation of NBD-CSA, the fluorescent P-gp substrate...

  10. 1,25-Dihydroxyvitamin D3 prevents bone loss of the secondary spongiosa in arthritic rats by an increase of bone formation and mineralization and inhibition of bone resorption

    Oelzner, Peter; Petrow, Peter K; Wolf, Gunter; Bräuer, Rolf

    2014-01-01

    Background Active vitamin D metabolites have been shown to have protective effects in experimental arthritis especially when used as preventive treatment. However, because the direct effects of 1,25-dihydroxyvitamin D3 (1,25(OH) 2D3) on bone formation and resorption are very complex, the net effect of 1,25(OH)2D3 on histomorphometric parameters of bone turnover and mineralisation should be investigated. Therefore, we examined the influence of 1,25(OH)2D3 therapy on arthritis-induced alteratio...

  11. 1,25-Dihydroxyvitamin D3 Upregulates Functional CXCR4 Human Immunodeficiency Virus Type 1 Coreceptors in U937 Minus Clones: NF-κB-Independent Enhancement of Viral Replication

    Biswas, Priscilla; Mengozzi, Manuela; Mantelli, Barbara; Delfanti, Fanny; Brambilla, Andrea; Vicenzi, Elisa; Poli, Guido

    1998-01-01

    U937 cell clones which sustain efficient or poor replication of human immunodeficiency virus type 1 (HIV-1) (referred to herein as plus clones and minus clones, respectively) have been previously described. 1,25-Dihydroxyvitamin D3 (vitamin D3) potently induced HIV-1 replication and proviral DNA accumulation in minus clones but not in plus clones. Vitamin D3 did not induce NF-κB activation but selectively upregulated CXCR4 expression in minus clones. The CXCR4 ligand stromal-cell derived fact...

  12. Novel Heteroatom-containing Vitamin D3 Analogs: Efficient Synthesis of 1α,25-Dihydroxyvitamin D3-26,23-lactam

    Kazuo Nagasawa; Yuichi Hashimoto; Yuko Kato

    2003-01-01

    Vitamin D3 and its synthetic analogs are promising compounds for controlling various types of cell differentiation. In this article, we describe the synthesis of novel vitamin D3 analogs containing heteroatoms in their side chains – so-called vitamin D3 lactam analogs – via 1,3-dipolar cycloaddition reaction as a key step.

  13. Crosstalk between the peroxisome proliferator-activated receptor γ (PPARγ) and the vitamin D receptor (VDR) in human breast cancer cells: PPARγ binds to VDR and inhibits 1α,25-dihydroxyvitamin D3 mediated transactivation

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ERα) physically binds to peroxisome proliferator-activated receptor gamma (PPARγ) and inhibits its transcriptional activity. The interaction between PPARγ and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPARγ and VDR signaling, and for the first time we show that PPARγ physically associates with VDR in human breast cancer cells. We found that overexpression of PPARγ decreased 1α,25-dihydroxyvitamin D3 (1,25D3) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPARγ's hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPARγ's AF2 domain attenuated its repressive action on 1,25D3 transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPARγ was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXRα). Overexpression of RXRα blocked PPARγ's suppressive effect on 1,25D3 action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPARγ and VDR pathways. -- Highlights: PPARγ's role on 1α,25-dihydroxyvitamin D3 transcriptional activity is examined. ► PPARγ physically binds to VDR and inhibits 1α,25-dihydroxyvitamin D3 action. ► PPARγ's hinge and ligand binding domains are important for this inhibitory effect. ► PPARγ competes with VDR for the availability of their binding partner, RXRα.

  14. Relationship between 1,25-dihydroxyvitamin D3 and bronchial asthma%1,25(OH)2维生素D3及其受体与支气管哮喘的免疫机制

    徐莉; 苏苗赏

    2015-01-01

    维生素D作为一种免疫调节剂,在支气管哮喘(简称哮喘)的免疫机制中发挥重要的作用,其中涉及到T细胞的信号转导途径的研究尚不明确.目前已知1,25-二羟基维生素D3[1,25(OH)2 D3]通过与维生素D受体结合发挥免疫调节作用.本文主要综述了1,25(OH)2 D3及其受体介导调节性T细胞在哮喘免疫机制中的作用以及1,25(OH)2 D3发挥生物学效应可能的信号转导途径.了解该免疫机制,对哮喘的防治具有重要的意义.%Vitamin D as an immune regulator,playing an important role in the bronchial asthma (asthma).But about the T cell signal transduction pathways involved research is unclear.The active form of vitamin D,1,25-dihydroxyvitamin D3 [1,25(OH)2 D3] with vitamin D receptor has been shown to play a role of immune regulation.This article mainly summarized the 1,25(OH)2 D3 and its receptor mediated the role of regulatory T cells in the immune mechanism of asthma,and the signal transduction pathways that 1,25(OH)2 D3 biological effects may play.Understanding the immune mechanism of asthma control is of great importance.

  15. 26,26,26,27,27,27-Hexadeuterated-1,25-Dihydroxyvitamin D3 (1,25D-d6) As Adjuvant of Chemotherapy in Breast Cancer Cell Lines

    It has been demonstrated that 1,25-dihydroxyvitamin D3 (1,25D) and some of its analogues have antitumor activity. 1,25D labeled with deuterium (26,26,26,27,27,27-hexadeuterated 1α,25-dihydroxyvitamin D3, or 1,25D-d6) is commonly used as internal standard for 1,25D liquid chromatography-mass spectrometry (LC-MS) quantification. In the present study using human breast cancer cell lines, the biological activity of 1,25D-d6 administered alone and in combination with two commonly used antineoplastic agents, 5-fluorouracil and etoposide, was evaluated. Using an MTT assay, flow cytometry, and western blots, our data demonstrated that 1,25D-d6 has effects similar to the natural hormone on cell proliferation, cell cycle, and apoptosis. Furthermore, the combination of 1,25D-d6 and etoposide enhances the antitumoral effects of both compounds. Interestingly, the antitumoral effect is higher in the more aggressive MDA-MB-231 breast cancer cell line. Our data indicate that 1,25D-d6 administered alone or in combination with chemotherapy could be a good experimental method for accurately quantifying active 1,25D levels in cultures or in biological fluids, on both in vitro breast cancer cell lines and in vivo animal experimental models

  16. A radioligand immunoassay for 1,25-dihydroxyvitamin D3 receptors using monoclonal antibody: detection of a phenotypic receptor variant in vitamin D-dependency rickets (type II) which does not bind hormone

    Vitamin D-dependency rickets, type II (VDDRII), is a well recognized heritable disorder characterized by peripheral target organ resistance to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of the vitamin. Recently, cultured skin fibroblasts obtained from a number of patients with VDDRII have been utilized to characterize the underlying molecular defects associated with this malady. Recently monoclonal antibodies to the vitamin D receptor have been generated, and a radioligand immunoassay (RLIA) for the detection of this molecule has been developed which is independent of its hormone-binding capacity. This report describes the application of the immunoassay in the detection of receptor-like molecules in fibroblasts derived from patients with VDDRII. The results indicate that the molecule is generally present in all patients, and provides a mechanism for individual responsiveness to pharmacologic treatment with vitamin D3 metabolites. 8 refs.; 3 figs.; 1 table

  17. Differential effect of 1{alpha},25-dihydroxyvitamin D{sub 3} on Hsp28 and PKC{beta} gene expression in the phorbol ester-resistant human myeloid HL-525 leukemic cells

    Lee, Yong J.; Galoforo, S.S.; Berns, C.M. [William Beaumont Hospital, Royal Oak, MI (United States). Dept. of Radiation Oncology] [and others

    1997-08-01

    We investigated the effect of 1{alpha},25-dihydroxyvitamin D{sub 3} [1,25-(OH){sub 2}D{sub 3}] on the expression of the 28-kDa heat shock protein gene (hsp28) and the protein kinase C beta gene (PKC{beta}) in the human myeloid HL-60 leukemic cell variant HL-525, which is resistance to phorbol ester-induced macrophage differentiation. Northern and Western blot analysis showed little or no hsp28 gene expression in the HL-60 cell variant, HL-205, which is susceptible to such differentiation, while a relatively high basal level of hps28 gene expression was observed in the HL-525 cells. However, both cell lines demonstrated heat shock-induced expression of this gene. During treatment with 50-300 nM 1,25-(OH){sub 2}D{sub 3}, a marked reduction of hsp28 gene expression was not associated with heat shock transcription factor-heat shock element (HSF-HSE) binding activity. Our results suggest that the differential effect of 1,25-(OH){sub 2}D{sub 3} on hsp28 and PKC{beta} gene expression is due to the different sequence composition of the vitamin D response element in the in the promoter region as well as an accessory factor for each gene or that 1,25-(OH){sub 2}D{sub 3} increases PKC{beta} gene expression, which in turn negatively regulates the expression of the hsp28 gene, or vice versa.

  18. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling.

    Wan, Lin-Yan; Zhang, Yan-Qiong; Chen, Meng-Di; Du, You-Qin; Liu, Chang-Bai; Wu, Jiang-Feng

    2015-01-01

    Vitamin D Receptor (VDR) belongs to the nuclear receptor (NR) superfamily. Whereas the structure of the ligand binding domain (LBD) of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket (LBP) and six of these residues have hydrogen-bonds linking with the ligand. In 1α,25-dihydroxyvitamin D₃ signaling, H3 and H12 play an important role in the course of conformational change resulting in the provision of interfaces for dimerization, coactivator (CoA), corepressor (CoR), and hTAFII 28. In this paper we provide a detailed description of the amino acid residues stabilizing the structure and taking part in conformational change of VDR LBD according to functional domains. PMID:26593892

  19. 1,25-Dihydroxyvitamin D3 preserves intestinal epithelial barrier function from TNF-α induced injury via suppression of NF-kB p65 mediated MLCK-P-MLC signaling pathway.

    Chen, Shanwen; Zhu, Jing; Chen, Guowei; Zuo, Shuai; Zhang, Junling; Chen, Ziyi; Wang, Xin; Li, Junxia; Liu, Yucun; Wang, Pengyuan

    2015-05-01

    Substantial studies have demonstrated the protective effect of 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) on intestinal barrier function, but the mechanisms are not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TNF-α induced barrier dysfunction was further investigated in Caco-2 cell monolayers. The barrier function of Caco-2 monolayers was evaluated by measuring trans-epithelial electrical resistance (TEER) and FITC-Dextran 40,000 Da (FD-40) trans-membrane flux. ZO-1 and Occludin were chosen as markers of the localization of tight junction (TJ) proteins for immunofluorescence. The expression of MLCK and phosphorylation level of myosin light chain (MLC) were measured by immunoblotting. The activation of NF-kB p65 was analyzed by EMSA and immunofluorescence. The results suggest that 1,25(OH)2D3 preserves intestinal epithelial barrier function from TNF-α induced injury via suppression of NF-kB p65 mediated activation of MLCK-P-MLC signaling pathway. PMID:25838204

  20. Effects of 1,25-dihydroxyvitamin D3 on IL-17/IL-23 axis, IFN-γ and IL-4 expression in systemic lupus erythematosus induced mice model

    Fatemeh Faraji

    2016-04-01

    Conclusion: Our findings showed that vitamin D3 supplementation in lupus induced mice through modulating the expression rate of some inflammatory cytokines diminished the inflammatory conditions in SLE.

  1. 1α,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-β phagocytosis and inflammation in Alzheimer's disease patients

    Mizwicki, MT; Liu, G; Fiala, M.; Magpantay, L.; J. Sayre; Siani, A.; Mahanian, M; Weitzman, R; Hayden, EY; Rosenthal, MJ; Nemere, I; Ringman, J; Teplow, DB

    2013-01-01

    As immune defects in amyloid-β (Aβ) phagocytosis and degradation underlie Aβ deposition and inflammation in Alzheimer's disease (AD) brain, better understanding of the relation between Aβ phagocytosis and inflammation could lead to promising preventive strategies. We tested two immune modulators in peripheral blood mononuclear cells (PBMCs) of AD patients and controls: 1α,25(OH)2-vitamin D3 (1,25D3) and resolvin D1 (RvD1). Both 1,25D3 and RvD1 improved phagocytosis of FAM-Aβ by AD macrophages...

  2. 1,25-Dihydroxyvitamin D3 translocates protein kinase C beta to nucleus and enhances plasma membrane association of protein kinase C alpha in renal epithelial cells.

    Simboli-Campbell, M; Gagnon, A; Franks, D J; Welsh, J

    1994-02-01

    1,25-Dihydroxycholecalciferol (1,25-(OH)2-D3) increases membrane-associated protein kinase C (PKC) activity and immunoreactivity in renal epithelial (Madin Darby bovine kidney, MDBK) cells (Simboli-Campbell, M., Franks, D. J., and Welsh, J. E. (1992) Cell Signalling 4, 99-109). We have now characterized the effects of 1,25-(OH)2-D3 on the subcellular localization of three individual isozymes by immunofluorescence and immunoblotting. Although the total amount of PKC alpha, PKC beta, and PKC zeta are unaffected by 1,25-(OH)2-D3, this steroid hormone induces subcellular redistribution of both PKC alpha and PKC beta. Treatment with 1,25-(OH)2-D3 (100 nM, 24 h) enhances plasma membrane association of PKC alpha and induces translocation of PKC beta to the nuclear membrane. The effects of 1,25-(OH)2-D3 appear to be limited to the calcium-dependent PKC isozymes, since 1,25-(OH)2-D3 has no effect on the calcium independent isozyme, PKC zeta. In contrast to rapid transient PKC translocation seen in response to agents which interact with membrane receptors to induce phospholipid hydrolysis, modulation of PKC alpha and PKC beta is observed after 24 h treatment with 1,25-(OH)2-D3. In MDBK cells, the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) (100 nM, 24 h) down-regulates PKC alpha and, to a lesser extent, PKC zeta, without altering their subcellular distribution. TPA also induces translocation of PKC beta to the nuclear membrane. MDBK cells treated with 1,25-(OH)2-D3, but not TPA, exhibit enhanced phosphorylation of endogenous nuclear proteins. In addition to the distinct effects of 1,25-(OH)2-D3 and TPA on PKC isozyme patterns, 1,25-(OH)2-D3 up-regulates both the vitamin D receptor and calbindin D-28K, whereas TPA down-regulates the expression of both proteins. These data support the involvement of PKC in the mechanism of action of 1,25-(OH)2-D3 and specifically implicate PKC beta in 1,25-(OH)2-D3-mediated nuclear events. PMID:8106362

  3. 1,25-Dihydroxyvitamin D3 restores sensitivity to cyclophosphamide-induced apoptosis in non-obese diabetic (NOD) mice and protects against diabetes

    Casteels, K; Waer, M; Bouillon, R; Depovere, J; Valckx, D; Laureys, J; Mathieu, C

    1998-01-01

    The activated form of vitamin D, 1,25(OH)2D3, and its analogues can prevent type I diabetes in NOD mice. Protection is achieved without signs of systemic immunosuppression and is associated with a restoration of the defective immune regulator system of the NOD mice. The aim of the present study was to investigate whether this restoration of regulator cell function is the only mechanism in the prevention of diabetes by 1,25(OH)2D3. We tested therefore if 1,25(OH)2D3 could prevent cyclophosphamide-induced diabetes, since diabetes occurring after cyclophosphamide injection is believed to be due to an elimination of suppresser cells. NOD mice treated with 1,25(OH)2D3 (5 μg/kg every 2 days) from the time of weaning were clearly protected against diabetes induced by cyclophosphamide (200 mg/kg body wt at 70 days old) (2/12 (17%) versus 36/53 (68%) in control mice, P < 0.005). By co-transfer experiments it was demonstrated that cyclophosphamide had indeed eliminated the suppresser cells present in 1,25(OH)2D3-treated mice. Since cyclophosphamide injection did not break the protection offered by 1,25(OH)2D3, it was clear that diabetogenic effector cells were affected by 1,25(OH)2D3 treatment as well. This was confirmed by the finding that splenocytes from 1,25(OH)2D3-treated mice were less capable of transferring diabetes in young, irradiated NOD mice, and by the demonstration of lower Th1 cytokine levels in the pancreases of 1,25(OH)2D3-treated, cyclophosphamide-injected mice. This better elimination of effector cells in 1,25(OH)2D3-treated mice could be explained by a restoration of the sensitivity to cyclophosphamide-induced apoptosis in both thymocytes and splenocytes, in normally apoptosis-resistant NOD mice. Altogether, these data indicate that the protection against diabetes offered by 1,25(OH)2D3 may be independent of the presence of suppresser cells, and may involve increased apoptosis of Th1 autoimmune effector cells. PMID:9649179

  4. 1α,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-β phagocytosis and inflammation in Alzheimer's disease patients.

    Mizwicki, Mathew T; Liu, Guanghao; Fiala, Milan; Magpantay, Larry; Sayre, James; Siani, Avi; Mahanian, Michelle; Weitzman, Rachel; Hayden, Eric Y; Rosenthal, Mark J; Nemere, Ilka; Ringman, John; Teplow, David B

    2013-01-01

    As immune defects in amyloid-β (Aβ) phagocytosis and degradation underlie Aβ deposition and inflammation in Alzheimer's disease (AD) brain, better understanding of the relation between Aβ phagocytosis and inflammation could lead to promising preventive strategies. We tested two immune modulators in peripheral blood mononuclear cells (PBMCs) of AD patients and controls: 1α,25(OH)2-vitamin D3 (1,25D3) and resolvin D1 (RvD1). Both 1,25D3 and RvD1 improved phagocytosis of FAM-Aβ by AD macrophages and inhibited fibrillar Aβ-induced apoptosis. The action of 1,25D3 depended on the nuclear vitamin D and the protein disulfide isomerase A3 receptors, whereas RvD1 required the chemokine receptor, GPR32. The activities of 1,25D3 and RvD1 commonly required intracellular calcium, MEK1/2, PKA, and PI3K signaling; however, the effect of RvD1 was more sensitive to pertussis toxin. In this case study, the AD patients: a) showed significant transcriptional up regulation of IL1RN, ITGB2, and NFκB; and b) revealed two distinct groups when compared to controls: group 1 decreased and group 2 increased transcription of TLRs, IL-1, IL1R1 and chemokines. In the PBMCs/macrophages of both groups, soluble Aβ (sAβ) increased the transcription/secretion of cytokines (e.g., IL1 and IL6) and chemokines (e.g., CCLs and CXCLs) and 1,25D3/RvD1 reversed most of the sAβ effects. However, they both further increased the expression of IL1 in the group 1, sβ-treated cells. We conclude that in vitro, 1,25D3 and RvD1 rebalance inflammation to promote Aβ phagocytosis, and suggest that low vitamin D3 and docosahexaenoic acid intake and/or poor anabolic production of 1,25D3/RvD1 in PBMCs could contribute to AD onset/pathology. PMID:23186989

  5. Effect of ovariectomy and 17 beta-estradiol implantation on bone metabolism in female rats fed 1,25 dihydroxyvitamin D3

    Eight-week old Sprague-Dawley female rats were used in two experiments to test the effects of 17-B estradiol (E2) via silastic tubing implants on 3H-labelled tetracycline (TC) incorporation into bone. 1,25(OH)2D3 was the dietary source of vitamin D in a low calcium (.2%) semipurified eggwhite diet. In experiment I, the Ovx + E2 animals showed a significantly (p 3H TC uptake in scapula during a 2-week labelling experiment. An increase in 3H TC content resulted (p 2 was implanted in 1,25(OH)2D3 fed Ovx rats. However, the calcium content was not significantly different. The effect of dietary 1,25(OH)2D3 and E2 implantation appears to be additive. Optimal action of the Vitamin D endocrine system may be dependent on presence of E2

  6. 1,25-Dihydroxyvitamin D3 (1,25(OH2D3 Signaling Capacity and the Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer (NSCLC: Implications for Use of 1,25(OH2D3 in NSCLC Treatment

    Pamela A. Hershberger

    2013-11-01

    Full Text Available 1,25-dihydroxyvitamin D3 (1,25(OH2D3 exerts anti-proliferative activity by binding to the vitamin D receptor (VDR and regulating gene expression. We previously reported that non-small cell lung cancer (NSCLC cells which harbor epidermal growth factor receptor (EGFR mutations display elevated VDR expression (VDRhigh and are vitamin D-sensitive. Conversely, those with K-ras mutations are VDRlow and vitamin D-refractory. Because EGFR mutations are found predominately in NSCLC cells with an epithelial phenotype and K-ras mutations are more common in cells with a mesenchymal phenotype, we investigated the relationship between vitamin D signaling capacity and the epithelial mesenchymal transition (EMT. Using NSCLC cell lines and publically available lung cancer cell line microarray data, we identified a relationship between VDR expression, 1,25(OH2D3 sensitivity, and EMT phenotype. Further, we discovered that 1,25(OH2D3 induces E-cadherin and decreases EMT-related molecules SNAIL, ZEB1, and vimentin in NSCLC cells. 1,25(OH2D3-mediated changes in gene expression are associated with a significant decrease in cell migration and maintenance of epithelial morphology. These data indicate that 1,25(OH2D3 opposes EMT in NSCLC cells. Because EMT is associated with increased migration, invasion, and chemoresistance, our data imply that 1,25(OH2D3 may prevent lung cancer progression in a molecularly defined subset of NSCLC patients.

  7. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) Signaling Capacity and the Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer (NSCLC): Implications for Use of 1,25(OH)2D3 in NSCLC Treatment

    1,25-dihydroxyvitamin D3 (1,25(OH)2D3) exerts anti-proliferative activity by binding to the vitamin D receptor (VDR) and regulating gene expression. We previously reported that non-small cell lung cancer (NSCLC) cells which harbor epidermal growth factor receptor (EGFR) mutations display elevated VDR expression (VDRhigh) and are vitamin D-sensitive. Conversely, those with K-ras mutations are VDRlow and vitamin D-refractory. Because EGFR mutations are found predominately in NSCLC cells with an epithelial phenotype and K-ras mutations are more common in cells with a mesenchymal phenotype, we investigated the relationship between vitamin D signaling capacity and the epithelial mesenchymal transition (EMT). Using NSCLC cell lines and publically available lung cancer cell line microarray data, we identified a relationship between VDR expression, 1,25(OH)2D3 sensitivity, and EMT phenotype. Further, we discovered that 1,25(OH)2D3 induces E-cadherin and decreases EMT-related molecules SNAIL, ZEB1, and vimentin in NSCLC cells. 1,25(OH)2D3-mediated changes in gene expression are associated with a significant decrease in cell migration and maintenance of epithelial morphology. These data indicate that 1,25(OH)2D3 opposes EMT in NSCLC cells. Because EMT is associated with increased migration, invasion, and chemoresistance, our data imply that 1,25(OH)2D3 may prevent lung cancer progression in a molecularly defined subset of NSCLC patients

  8. 1,25-Dihydroxyvitamin D3 regulates expression of LRP1 and RAGE in vitro and in vivo, enhancing Aβ1-40 brain-to-blood efflux and peripheral uptake transport.

    Guo, Y-X; He, L-Y; Zhang, M; Wang, F; Liu, F; Peng, W-X

    2016-05-13

    Alzheimer's disease (AD) is characterized by the accumulation and deposition of plaques of amyloid-β (Aβ) peptide in the brain. Growing epidemiological and experimental studies have shown that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) exerts neuroprotection against AD. However, the underlying mechanisms of the action remain unclear. Since Aβ clearance plays a crucial role in Aβ balance in the brain, the aim of the present study was to investigate potential effects of 1,25(OH)2D3 on Aβ1-40, the major soluble oligomeric form of Aβ, clearance via transport across blood-brain barrier (BBB) mediated by low-density lipoprotein receptor-related protein 1 (LRP1) (efflux) and receptor for advanced glycation end products (RAGE) (influx) and peripheral uptake by liver mediated by LRP1. We identified colocalization of LRP1 and RAGE at BBB of mice, established an in vitro BBB model by culturing monolayer mouse brain microvascular endothelial cell line (bEnd.3) cells under hypoxia and observed that 1,25(OH)2D3 treatment enhanced Aβ1-40 efflux across the BBB model and uptake by HepG2 cells. After 1,25(OH)2D3 exposure, LRP1 expression was increased significantly both in vivo and in vitro, and RAGE expression was reduced in the in vitro BBB model but not in microvascular endothelial cells of mice hippocampus. Additionally, we explored the correlation between the corresponding effects of 1,25(OH)2D3 and its nuclear hormone receptor vitamin D receptor (VDR) level. We found that VDR expression was upregulated after 1,25(OH)2D3 treatment both in vivo and in vitro. Collectively, our finding that 1,25(OH)2D3 reduces cerebral Aβ1-40 level by increasing Aβ1-40 brain-to-blood efflux and peripheral uptake through regulating LRP1 and RAGE could shed light on the mechanism of 1,25(OH)2D3 neuroprotection against AD. And the action of 1,25(OH)2D3 might be associated with the VDR pathway. PMID:26820600

  9. Pulmonary administration of 1,25-dihydroxyvitamin D3 to the lungs induces alveolar regeneration in a mouse model of chronic obstructive pulmonary disease.

    Horiguchi, Michiko; Hirokawa, Mai; Abe, Kaori; Kumagai, Harumi; Yamashita, Chikamasa

    2016-07-10

    Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease with several causes, including smoking, and no curative therapeutic agent is available, particularly for destructive alveolar lesions. In this study, we investigated the differentiation-inducing effect on undifferentiated lung cells (Calu-6) and the alveolar regenerative effect of the active vitamin 1,25-dihydroxy vitamin D3 (VD3) with the ultimate goal of developing a novel curative drug for COPD. First, the differentiation-inducing effect of VD3 on Calu-6 cells was evaluated. Treatment with VD3 increased the proportions of type I alveolar epithelial (AT-I) and type II alveolar epithelial (AT-II) cells constituting alveoli in a concentration- and treatment time-dependent manner, demonstrating the potent differentiation-inducing activity of VD3 on Calu-6 cells. We thus administered VD3 topically to the mice lung using a previously developed intrapulmonary administration via self-inhalation method. To evaluate the alveolus-repairing effect of VD3, we administered VD3 intrapulmonarily to elastase-induced COPD model mice and computed the mean distance between the alveolar walls as an index of the extent of alveolar injury. Results showed significant decreases in the alveolar wall distance in groups of mice that received 0.01, 0.1, and 1μg/kg of intrapulmonary VD3, revealing excellent alveolus-regenerating effect of VD3. Furthermore, we evaluated the effect of VD3 on improving respiratory function using a respiratory function analyzer. Lung elasticity and respiratory competence [forced expiratory volume (FEV) 1 s %] are reduced in COPD, reflecting advanced emphysematous changes. In elastase-induced COPD model mice, although lung elasticity and respiratory competence were reduced, VD3 administered intrapulmonarily twice weekly for 2weeks recovered tissue elastance and forced expiratory volume in 0.05s to the forced vital capacity, which are indicators of lung elasticity and respiratory

  10. Expression of human kinase suppressor of Ras 2 (hKSR-2) gene in HL60 leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D3 and is required for optimal cell differentiation

    Induction of terminal differentiation of neoplastic cells offers potential for a novel approach to cancer therapy. One of the agents being investigated for this purpose in preclinical studies is 1,25-dihydroxyvitamin D3 (1,25D), which can convert myeloid leukemia cells into normal monocyte-like cells, but the molecular mechanisms underlying this process are not fully understood. Here, we report that 1,25D upregulates the expression of hKSR-2, a new member of a small family of proteins that exhibit evolutionarily conserved function of potentiating ras signaling. The upregulation of hKSR-2 is direct, as it occurs in the presence of cycloheximide, and occurs primarily at the transcriptional level, via activation of vitamin D receptor, which acts as a ligand-activated transcription factor. Two VDRE-type motifs identified in the hKSR-2 gene bind VDR-RXR alpha heterodimers present in nuclear extracts of 1,25D-treated HL60 cells, and chromatin immunoprecipitation assays show that these VDRE motifs bind VDR in 1,25D-dependent manner in intact cells, coincident with the recruitment of RNA polymerase II to these motifs. Treatment of the cells with siRNA to hKSR-2 reduced the proportion of the most highly differentiated cells in 1,25D-treated cultures. These results demonstrate that hKSR-2 is a direct target of 1,25D in HL60 cells, and is required for optimal monocytic differentiation

  11. Crosstalk between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and the vitamin D receptor (VDR) in human breast cancer cells: PPAR{gamma} binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} mediated transactivation

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R. [Cancer Biology Division, IIT Research Institute, 10 West 35th Street, Chicago, IL 60616 (United States); Knethen, Andreas von [Institute of Biochemistry, Johann Wolfgang Goethe University, Frankfurt (Germany); Choubey, Divaker [Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, P.O. Box 670056, Cincinnati, OH 45267 (United States); Mehta, Rajendra G., E-mail: rmehta@iitri.org [Cancer Biology Division, IIT Research Institute, 10 West 35th Street, Chicago, IL 60616 (United States)

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ER{alpha}) physically binds to peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and inhibits its transcriptional activity. The interaction between PPAR{gamma} and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPAR{gamma} and VDR signaling, and for the first time we show that PPAR{gamma} physically associates with VDR in human breast cancer cells. We found that overexpression of PPAR{gamma} decreased 1{alpha},25-dihydroxyvitamin D{sub 3} (1,25D{sub 3}) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPAR{gamma}'s hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPAR{gamma}'s AF2 domain attenuated its repressive action on 1,25D{sub 3} transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPAR{gamma} was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXR{alpha}). Overexpression of RXR{alpha} blocked PPAR{gamma}'s suppressive effect on 1,25D{sub 3} action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPAR{gamma} and VDR pathways. -- Highlights: PPAR{gamma}'s role on 1{alpha},25-dihydroxyvitamin D{sub 3} transcriptional activity is examined. Black-Right-Pointing-Pointer PPAR{gamma} physically binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} action. Black-Right-Pointing-Pointer PPAR{gamma}'s hinge and ligand binding domains are important for this inhibitory effect. Black-Right-Pointing-Pointer PPAR{gamma} competes with VDR for the availability of their binding

  12. Simultaneous quantification of vitamin D3, 25-hydroxyvitamin D-3 and 24,25-dihydroxyvitamin D3 in human serum by LC-MS/MS

    Burild, Anders; Frandsen, Henrik Lauritz; Jakobsen, Jette

    2014-01-01

    Introduction. Serum 25-hydroxy-vitamin D is the established biomarker of vitamin D status although serum concentrations of vitamin D and 24,25-dihydroxyvitamin D may also be of interest to understand the in vivo kinetics of serum 25-hydroxyvitamin D. Method. An LC-MS/MS method was developed and v...... were derivatized by 4-phenyl-1,2,4-triazoline-3,5-dione to improve sensitivity in the following LC-MS/MS analysis. Results. Using only 100 L serum the limit of quantification was...

  13. Vitamin D receptor in the paraventricular nucleus of the hypothalamus is necessary for beneficial effects of 1,25D[3] on peripheral glucose levels

    While a wide range of data correlates low vitamin D levels with type 2 diabetes, few studies examine potential mechanisms by which vitamin D might impact key aspects of metabolism. The active form of 1alpha,25-dihydroxyvitamin D[3] (1,25D[3]; calcitriol) is hydroxylated in the liver and kidney from ...

  14. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  15. The effect of 1.25 dihydroxyvitamin D3 on binding and internalization of epidermal growth factor in cultures cells. Studies on BT-20 cells using quantitative electron microscope autoradiography

    The biological effects of 1.25 (OH)2D3 on epidermal growth receptor (EGF-R) and on EGF internalization were examined in human mammary carcinoma BT-20 cells. In this cell line, with known amplification of the epidermal growth factor receptor gene. EGF was not stimulatory for growth. Biological assay and quantitative EM autoradiography combined with iodinated ligand binding to specific receptors demonstrated that the number of binding sites unit of length of plasma membrane was 2.48-fold higher in treated than in control cells. I-EGF was progressively internalized in a time-and temperature-dependent manner after selective association with the membrane-coated pits. No modification of the time course of I-EGF internalization was noted in the control and in the treated cells, but a different distribution of the labeling in the subcellular compartment was observed in treated cells. In 1.25(OH)2D3-treated batches, the grain density remained low in the receptosomes throughout the experiment, whereas it was high and occurred early in the lysosomes. On the other hand, in control cells, the grain density of the receptosomes was high, whereas it occurred late and was relatively low in the lysosomes. These data suggest that 1.25(OH)2D3 is a regulator of EGF-R level in BT-20 cell line, but it cannot affirmed whether this effect is direct or mediated by other parameters

  16. FGF23 gene regulation by 1,25-dihydroxyvitamin D: Opposing effects in adipocytes and osteocytes

    Kaneko, Ichiro; Saini, Rimpi K.; Griffin, Kristin P.; Whitfield, G. Kerr; Haussler, Mark R.; Jurutka, Peter W.

    2015-01-01

    In a closed endocrine loop, 1,25-dihydroxyvitamin D3 (1,25D) induces the expression of fibroblast growth factor-23 (FGF23) in bone, with the phosphaturic peptide in turn acting at kidney to feedback repress CYP27B1 and induce CYP24A1 to limit the levels of 1,25D. In 3T3-L1 differentiated adipocytes, 1,25D represses FGF23 and leptin expression, while not affecting leptin receptor transcription, but inducing C/EBP. Conversely, in UMR-106 osteoblast-like cells, FGF23 mRNA concentrations are upre...

  17. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3.

    Kubota, M; Ohno, J; Shiina, Y; Suda, T

    1982-06-01

    Maternal and fetal metabolism of vitamin D was examined in term pregnant rabbits fed a normal diet and in those supplemented with a large amount of vitamin D3. Term pregnant rabbits (27--30 days of gestation) fed the normal diet showed lower levels of plasma calcium, 25-hydroxyvitamin D3 (250HD3), and 24,25-dihydroxyvitamin D3 [24,25-(OH)2D3] and higher plasma 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25-(OH)2D3] levels than age-matched nonpregnant female rabbits. Kidney homogenates from pregnant rabbits produced mainly 1 alpha 25-(OH)2D3, while those from nonpregnant animals produced 24,25-(OH)2D3 primarily. Plasma concentrations of calcium and phosphorus were significantly higher in fetuses than in mothers. Plasma levels of 250HD3 and 24,25-(OH)2D3 in fetuses were almost identical to those in mothers, whereas 1 alpha,25-(OH)2D3 levels in plasma were significantly higher in mothers than in their fetuses. A daily administration of 650 nmol vitamin D3 for 3 days to term pregnant rabbits caused a significant increase in calcium, phosphorus, 25OHD3, and 24,25-(OH)2D3 in maternal plasma, and in 25OHD3 and 24,25-(OH)2D3, but not calcium and phosphorus in fetal plasma. Treatment with large amounts of vitamin D3 also induced a marked suppression of 1 alpha-hydroxylase activity and a concomitant increase of 24-hydroxylase activity in the maternal but not in the fetal kidney. Plasma concentrations of 1 alpha,25-(OH)2D3 were not affected by treatment with large amounts of vitamin D3 in either the fetuses or the mothers. These results clearly indicate that the renal 25OHD3 metabolism in the fetus is regulated independently of that in the mother. PMID:6280980

  18. 1α,25-dihydroxyvitamin D₃ counteracts the effects of cigarette smoke in airway epithelial cells.

    Zhang, Ruhui; Zhao, Haijin; Dong, Hangming; Zou, Fei; Cai, Shaoxi

    2015-06-01

    Cigarette smoke extracts (CSE) alter calpain-1 expression via ERK signaling pathway in bronchial epithelial cells. 1α,25-dihydroxyvitamin D3 (1,25D3) inhibits cigarette smoke-induced epithelial barrier disruption. This study was aimed to explore whether the 1,25D3 counteracted the CSE effects in a human bronchial epithelial cell line (16HBE). In particular, transepithelial electrical resistance (TER) and permeability, expression and distribution of E-cadherin and β-catenin, calpain-1 expression, and ERK phosphorylation were assessed in the CSE-stimulated 16HBE cells. The CSE induced the ERK phosphorylation, improved the calpain-1 expression, increased the distribution anomalies and the cleaving of E-cadherin and β-catenin, and resulted in the TER reduction and the permeability increase. The 1,25D3 reduced these pathological changes. The 1,25D3 mediated effects were associated with a reduced ERK phosphorylation. In conclusion, the present study provides compelling evidences that the 1,25D3 may be considered a possible valid therapeutic option in controlling the cigarette smoke-induced epithelial barrier disruption. PMID:25880105

  19. Regulation of the vitamin D receptor and cornifin beta expression in vaginal epithelium of the rats through vitamin D3

    G Abban

    2009-08-01

    Full Text Available The aim of the present study was to determine the respective role of 1,25-dihydroxyvitamin D3 on vaginal epithelium and 1,25-dihydroxyvitamin D3 receptor expression in ovariectomized rats and vitamin D3 treated rats. Bilateral ovariectomies were performed in 20 mature, non-pregnant Wistar female rats. All the animals were divided into 2 groups consisting of 10 rats each. Group I served as control. In group II, animals were injected intramuscularly with vitamin D3 (50, 00 IU/kg. Two weeks after the injections, vaginas of animals in group I and group II were removed removed and processed for immunohistochemistry. Epithelial differentiation, 1,25-dihydroxyvitamin D3 receptor and cornifin b expression were investigated in vaginal epithelium of control group (ovariectomized and vitamin D3 treated rats. Vaginal epithelial cells from vitamin D3 treated animals changed into highly- stratified keratinizing layers. 1,25-dihydroxyvitamin D3 receptor and cornifin b as a marker of squamous differentiation were present in ovariectomized rats treated with 1,25- dihydroxyvitamin D3. In contrast, cornifin b and 1,25-dihydroxyvitamin D3 receptor were absent in all layers of vaginal epithelium in control group. We demonstrated for the first time that 1,25-dihydroxyvitamin D3 induced proliferation of vaginal epithelium consistent with the cornifin b expression and 1,25-dihydroxyvitamin D3 up-regulated 1,25-dihydroxyvitamin D3 receptor expression in vaginal epithelium.

  20. A rapid assay for 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D 24-hydroxylase

    A rapid method for the measurement of the 24-hydroxylated metabolites of 25-hydroxy[26,27-3H]vitamin D3 and 1,25-dihydroxy[26,27-3H]vitamin D3 has been developed. This measurement has, in turn, made possible a rapid assay for the 24-hydroxylases of the vitamin D system. The assay involves the use of 26,27-3H-labeled 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 as the substrate and treatment of the enzyme reaction mixture with sodium periodate, which specifically cleaves the 24-hydroxylated products between carbons 24 and 25, releasing tritiated acetone. The acetone is measured after its separation from the labeled substrate by using a reversed-phase cartridge. The results obtained with this assay were validated by comparison with the results obtained with a well-established high-performance liquid chromatography assay. The activity of the enzyme determined by both methods was equal. This assay has been successfully used for the rapid screening of column fractions during purification of the enzyme and in the screening for monoclonal antibodies to the 24-hydroxylase

  1. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans

    Wolden-Kirk, Heidi; Rondas, D; Bugliani, M;

    2014-01-01

    Protection against insulitis and diabetes by active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), in nonobese diabetic mice has until now mainly been attributed to its immunomodulatory effects, but also protective effects of this hormone on inflammation-induced β-cell death have been reported...

  2. 1,25-Dihydroxyvitamin D Promotes Negative Feedback Regulation of Toll-Like Receptor Signaling via Targeting MicroRNA-155-SOCS1 in Macrophages

    Chen, Yunzi; Liu, Weicheng; Sun, Tao; Huang, Yong; Wang, Youli; Deb, Dilip K; Yoon, Dosuk; Kong, Juan; Thadhani, Ravi; Li, Yan Chun

    2013-01-01

    The negative feedback mechanism is essential to maintain effective immunity and tissue homeostasis. 1,25-dihydroxyvitamin D (1,25(OH)2D3) modulates innate immune response, but the mechanism remains poorly understood. Here we report that vitamin D receptor (VDR) signaling attenuates Toll-like receptor-mediated inflammation by enhancing the negative feedback inhibition. VDR inactivation leads to hyper inflammatory response in mice and macrophage cultures when challenged with lipopolysaccharide ...

  3. Simultaneous radiocompetitive assay for 25 hydroxyvitamin D and 24, 25 dihydroxyvitamin D in humam serum

    A specific competitive protein binding assay for 25 hydroxy-vitamin D and 24, 25 dihydroxyvitamin D in human serum has been developed. It includes a chromatographic step on a Sephadex LH 20 column to specifically separate the metabolites. The average value was for 25 hydroxyvitamin D 11.9+-6.6 ng/ml (mean+-SD) and for 24, 25 dihydroxyvitamin D 6.85+-3.29 ng/ml in ten normal subjects sampled in autumn. In hepatic insufficiencies the mean level of 25 hydroxyvitamin D was lower and the mean level of 24, 25 dihydroxyvitamin D was higher than in normal subjects. In patients with renal insufficiency the 25 hydroxyvitamin D levels were normal and the 24, 25 dihydroxyvitamin D levels were low but not suppressed. The two sterols were also determined in some patients with idiopathic hypercalciuria

  4. Effect of Vitamin D Status on the Equilibrium between Occupied and Unoccupied 1,25-Dihydroxyvitamin D Intestinal Receptors in the Chick

    Hunziker, Willi; Walters, Marian R.; Bishop, June E.; Norman, Anthony W.

    1982-01-01

    The dynamic equilibrium between in vivo occupied and unoccupied 1,25-dihydroxyvitamin D3[1,25(OH)2D3] receptors of the chick intestinal mucosa was investigated by the exchange assay previously reported [(1980). J. Biol. Chem. 255: 9534-9537]. These parameters and their correlation to biological response, i.e., the levels of intestinal vitamin D-dependent calcium binding protein (CaBP), were assessed under different physiological conditions. After a single 1,25(OH)2D3 injection (3.25 nmol), oc...

  5. Hereditary 1,25-dihydroxyvitamin D-resistant rickets with alopecia resulting from a novel missense mutation in the DNA-binding domain of the vitamin D receptor

    Malloy, Peter J.; Wang, Jining; Srivastava, Tarak; Feldman, David

    2010-01-01

    The rare genetic recessive disease, hereditary vitamin D resistant rickets (HVDRR), is caused by mutations in the vitamin D receptor (VDR) that result in resistance to the active hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3 or calcitriol). In this study, we examined the VDR from a young boy with clinical features of HVDRR including severe rickets, hypocalcemia, hypophosphatemia and partial alopecia. The pattern of alopecia was very unusual with areas of total baldness, adjacent to normal ha...

  6. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D2 Against Human Malignant Melanoma Cell Lines

    Anna Piotrowska

    2016-01-01

    Full Text Available Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM analogs of 1,25-dihydroxyvitamin D2 (1,25(OH2D2 induced differentiation of the vitamin D receptor (VDR positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH2D2 required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH2D3. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl and in the A-ring (5,6-trans modification, the regular side-chain of vitamin D2 or D3 was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM. Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs.

  7. 1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age.

    Haussler, Mark R; Whitfield, G Kerr; Haussler, Carol A; Sabir, Marya S; Khan, Zainab; Sandoval, Ruby; Jurutka, Peter W

    2016-01-01

    1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging. PMID:26827953

  8. Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription*

    Hidalgo, Alejandro A.; Deeb, Kristin K.; Pike, J. Wesley; Johnson, Candace S.; Trump, Donald L.

    2011-01-01

    Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner. PMID:21868377

  9. Novel Gemini vitamin D3 analogs

    Okamoto, Ryoko; Gery, Sigal; Kuwayama, Yoshio;

    2014-01-01

    We have synthesized 39 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] analogs having two side chains attached to carbon-20 (Gemini) with various modifications and compared their anticancer activities. Five structure-function rules emerged to identify analogs with enhanced anticancer activity. One of thes...

  10. FGF23 gene regulation by 1,25-dihydroxyvitamin D: opposing effects in adipocytes and osteocytes.

    Kaneko, Ichiro; Saini, Rimpi K; Griffin, Kristin P; Whitfield, G Kerr; Haussler, Mark R; Jurutka, Peter W

    2015-09-01

    In a closed endocrine loop, 1,25-dihydroxyvitamin D3 (1,25D) induces the expression of fibroblast growth factor 23 (FGF23) in bone, with the phosphaturic peptide in turn acting at kidney to feedback repress CYP27B1 and induce CYP24A1 to limit the levels of 1,25D. In 3T3-L1 differentiated adipocytes, 1,25D represses FGF23 and leptin expression and induces C/EBPβ, but does not affect leptin receptor transcription. Conversely, in UMR-106 osteoblast-like cells, FGF23 mRNA concentrations are upregulated by 1,25D, an effect that is blunted by lysophosphatidic acid, a cell-surface acting ligand. Progressive truncation of the mouse FGF23 proximal promoter linked in luciferase reporter constructs reveals a 1,25D-responsive region between -400 and -200  bp. A 0.6  kb fragment of the mouse FGF23 promoter, linked in a reporter construct, responds to 1,25D with a fourfold enhancement of transcription in transfected K562 cells. Mutation of either an ETS1 site at -346  bp, or an adjacent candidate vitamin D receptor (VDR)/Nurr1-element, in the 0.6  kb reporter construct reduces the transcriptional activity elicited by 1,25D to a level that is not significantly different from a minimal promoter. This composite ETS1-VDR/Nurr1 cis-element may function as a switch between induction (osteocytes) and repression (adipocytes) of FGF23, depending on the cellular setting of transcription factors. Moreover, experiments demonstrate that a 1 kb mouse FGF23 promoter-reporter construct, transfected into MC3T3-E1 osteoblast-like cells, responds to a high calcium challenge with a statistically significant 1.7- to 2.0-fold enhancement of transcription. Thus, the FGF23 proximal promoter harbors cis elements that drive responsiveness to 1,25D and calcium, agents that induce FGF23 to curtail the pathologic consequences of their excess. PMID:26148725

  11. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats

    Increased circulating levels of 1,25-dihydroxyvitamin D [1,25(OH)2D] during pregnancy could be due to an increase in production or decrease in the metabolic clearance rate of 1,25(OH)2D. To answer this question an isotope dilution method was used to determine the clearance rate of 1,25(OH)2D in pregnant and aged-matched nonpregnant female rats. A bolus of 0.146 muCi 1,25(OH)2[3H]D3 was given to 60 pregnant and 60 aged-matched nonpregnant rats and the disappearance of the isotope was followed in these animals over the next 48 h. In 12 pregnant rats vs. 14 nonpregnant controls not injected with tracer, plasma calcium (9.6 +/- 0.41 vs. 10.7 +/- 0.17 mg/ml) and 25(OH)D (17.1 +/- 1.15 vs. 25.4 +/- 1.58 ng/ml) levels were significantly lower (P less than 0.01 and P less than 0.001), whereas plasma 1,25(OH)2D levels (110 +/- 16.1 pg/ml vs. 77 +/- 6.0 pg/ml) were significantly higher (P less than 0.05). Clearance rates of 1,25(OH)2D of 25.8 +/- 1.31 microliters/min in pregnant rats and 20.2 20.2 +/- 1.38 microliters/min in nonpregnant aged-matched rats were not significantly different. Similarly, the apparent volume of distribution of 1,25(OH)2D in the pregnant rats (15 +/- 1.0 ml) was not significantly different from that in the nonpregnant control animals (18 +/- 2.1 ml). Production rates of.1,25(OH)2D were elevated in the pregnant rats (2.83 pg/min) compared with the nonpregnant controls (1.55 pg/min). In conclusion, the elevated maternal plasma 1,25(OH)2D level during pregnancy is a result of increased production and is not due to a decreased clearance

  12. TRPV6 determines the effect of vitamin D3 on prostate cancer cell growth.

    V'yacheslav Lehen'kyi

    Full Text Available Despite remarkable advances in the therapy and prevention of prostate cancer it is still the second cause of death from cancer in industrialized countries. Many therapies initially shown to be beneficial for the patients were abandoned due to the high drug resistance and the evolution rate of the tumors. One of the prospective therapeutical agents even used in the first stage clinical trials, 1,25-dihydroxyvitamin D3, was shown to be either unpredictable or inefficient in many cases. We have already shown that TRPV6 calcium channel, which is the direct target of 1,25-dihydroxyvitamin D3 receptor, positively controls prostate cancer proliferation and apoptosis resistance (Lehen'kyi et al., Oncogene, 2007. However, how the known 1,25-dihydroxyvitamin D3 antiproliferative effects may be compatible with the upregulation of pro-oncogenic TRPV6 channel remains a mystery. Here we demonstrate that in low steroid conditions 1,25-dihydroxyvitamin D3 upregulates the expression of TRPV6, enhances the proliferation by increasing the number of cells entering into S-phase. We show that these pro-proliferative effects of 1,25-dihydroxyvitamin D3 are directly mediated via the overexpression of TRPV6 channel which increases calcium uptake into LNCaP cells. The apoptosis resistance of androgen-dependent LNCaP cells conferred by TRPV6 channel is drastically inversed when 1,25-dihydroxyvitamin D3 effects were combined with the successful TRPV6 knockdown. In addition, the use of androgen-deficient DU-145 and androgen-insensitive LNCaP C4-2 cell lines allowed to suggest that the ability of 1,25-dihydroxyvitamin D3 to induce the expression of TRPV6 channel is a crucial determinant of the success or failure of 1,25-dihydroxyvitamin D3-based therapies.

  13. The Effect of Analogues of 1α,25-Dihydroxyvitamin D2 on the Regrowth and Gene Expression of Human Colon Cancer Cells Refractory to 5-Fluorouracil

    Jacek Neska

    2016-06-01

    Full Text Available This study aimed to evaluate the capacity of hypocalcemic analogues of 1α,25-dihydroxyvitamin D2 (1,25D2 and 1α,25-dihydroxyvitamin D3 (1,25D3 to inhibit regrowth and regulate the stemness-related gene expression in colon cancer cells undergoing renewal after exposure to 5-fluorouracil (5-FU. All of the tested analogues of 1,25D2 equally potently decreased the clonogenicity and the proliferative activity of HT-29 cells which survived the exposure to 5-FU, but differently regulated gene expression of these cells during their renewal. 1,25D2 and analogues (PRI-1907 and PRI-1917, as well as 1,25D3 and analogue PRI-2191, decreased the relative expression level of several stemness-related genes, such as NANOG, OCT3/4, PROM1, SOX2, ALDHA1, CXCR4, in HT-29/5-FU cells during their renewal, in comparison to untreated HT-29/5-FU cells. The other 1,25D2 analogues (PRI-1906 and PRI-1916 were not capable of downregulating the expression of these stemness-related genes as the analogues PRI-1907 and PRI-1917 did. All of the tested vitamin D analogues upregulated CDH1, the gene encoding E-cadherin associated with epithelial phenotype. Out of the series of analogues studied, side-chain branched analogues of 1,25D2 (PRI-1907, PRI-1917 and the analogue of 1,25D3 (PRI-2191 might be used to target cancer cells with stem-like phenotypes that survive conventional chemotherapy.

  14. 1,25-dihydroxyvitamin D{sub 3} impairs NF-{kappa}B activation in human naive B cells

    Geldmeyer-Hilt, Kerstin, E-mail: kerstin.hilt@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Heine, Guido, E-mail: guido.heine@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Hartmann, Bjoern, E-mail: bjoern.hartmann@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany); Baumgrass, Ria, E-mail: baumgrass@drfz.de [Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Radbruch, Andreas, E-mail: radbruch@drfz.de [Deutsches Rheuma-Forschungszentrum Berlin, Chariteplatz 1, 10117 Berlin (Germany); Worm, Margitta, E-mail: margitta.worm@charite.de [Allergie-Centrum-Charite, CCM, Klinik fuer Dermatologie und Allergologie, Charite - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin (Germany)

    2011-04-22

    Highlights: {yields} In naive B cells, VDR activation by calcitriol results in reduced NF-{kappa}B p105 and p50 protein expression. {yields} Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-{kappa}B p65. {yields} Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. {yields} Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1{alpha},25-dihydroxyvitamin D{sub 3} (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-{kappa}B p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-{kappa}B mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-{kappa}B activation by interference with NF-{kappa}B p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  15. The Effect of Analogues of 1α,25-Dihydroxyvitamin D₂ on the Regrowth and Gene Expression of Human Colon Cancer Cells Refractory to 5-Fluorouracil.

    Neska, Jacek; Swoboda, Paweł; Przybyszewska, Małgorzata; Kotlarz, Agnieszka; Bolla, Narasimha Rao; Miłoszewska, Joanna; Grygorowicz, Monika Anna; Kutner, Andrzej; Markowicz, Sergiusz

    2016-01-01

    This study aimed to evaluate the capacity of hypocalcemic analogues of 1α,25-dihydroxyvitamin D₂ (1,25D2) and 1α,25-dihydroxyvitamin D₃ (1,25D3) to inhibit regrowth and regulate the stemness-related gene expression in colon cancer cells undergoing renewal after exposure to 5-fluorouracil (5-FU). All of the tested analogues of 1,25D2 equally potently decreased the clonogenicity and the proliferative activity of HT-29 cells which survived the exposure to 5-FU, but differently regulated gene expression of these cells during their renewal. 1,25D2 and analogues (PRI-1907 and PRI-1917), as well as 1,25D3 and analogue PRI-2191, decreased the relative expression level of several stemness-related genes, such as NANOG, OCT3/4, PROM1, SOX2, ALDHA1, CXCR4, in HT-29/5-FU cells during their renewal, in comparison to untreated HT-29/5-FU cells. The other 1,25D2 analogues (PRI-1906 and PRI-1916) were not capable of downregulating the expression of these stemness-related genes as the analogues PRI-1907 and PRI-1917 did. All of the tested vitamin D analogues upregulated CDH1, the gene encoding E-cadherin associated with epithelial phenotype. Out of the series of analogues studied, side-chain branched analogues of 1,25D2 (PRI-1907, PRI-1917) and the analogue of 1,25D3 (PRI-2191) might be used to target cancer cells with stem-like phenotypes that survive conventional chemotherapy. PMID:27314328

  16. Biological Evaluation of Double Point Modified Analogues of 1,25-Dihydroxyvitamin D2 as Potential Anti-Leukemic Agents

    Aoife Corcoran

    2016-02-01

    Full Text Available Structurally similar double-point modified analogues of 1,25-dihydroxyvitamin D2 (1,25D2 were screened in vitro for their pro-differentiating activity against the promyeloid cell line HL60. Their affinities towards human full length vitamin D receptor (VDR and metabolic stability against human vitamin D 24-hydroxylase (CYP24A1 were also tested. The analogues (PRI-1730, PRI-1731, PRI-1732, PRI-1733 and PRI-1734 contained 5,6-trans modification of the A-ring and of the triene system, additional hydroxyl or unsaturation at C-22 in the side chain and reversed absolute configuration (24-epi at C-24 of 1,25D2. As presented in this paper, introduction of selected structural modifications simultaneously in two distinct parts of the vitamin D molecule resulted in a divergent group of analogues. Analogues showed lower VDR affinity in comparison to that of the parent hormones, 1,25D2 and 1,25D3, and they caused effective HL60 cell differentiation only at high concentrations of 100 nM and above. Unexpectedly, introducing of a 5,6-trans modification combined with C-22 hydroxyl and 24-epi configuration switched off entirely the cell differentiation activity of the analogue (PRI-1734. However, this analogue remained a moderate substrate for CYP24A1, as it was metabolized at 22%, compared to 35% for 1,25D2. Other analogues from this series were either less (12% for PRI-1731 and PRI-1733 or more (52% for PRI-1732 resistant to the enzymatic deactivation. Although the inactive analogue PRI-1734 failed to show VDR antagonism, when tested in HL60 cells, its structure might be a good starting point for our design of a vitamin D antagonist.

  17. 241Am-photonabsorptiometry in patients with chronic renal failure, with particular reference to the effect of 1-alpha-hydroxyvitamin D3

    The study was undertaken in patients with chronic renal failure (CRF patients) in order to evaluate 1) the degree and course of skeletal demineralization and 2) the effect on the bone mineral content (BMC) of long-term treatment with 1α-hydroxyvitamin D3 (1α(OH)D3). BMC was measured on the radius by 241Am-photonabsorptiometry and the results were corrected for age, sex and bone width. In a cross-sectional study BMC was measured in 191 normal subjects and in 88 renal patients. In a controlled longitudinal trial 22 CRF patients were treated for 25.6 months with 1α(OH)D3, while 22 CRF patients did not receive vitamin D supplements. In non-treated CRF-patients an accelerated bone loss (approx. equal to 3%/year) and a significantly reduced BMC (mean 87.2% of normal) was found. In the 1α(OH)D3 treated patients BMC increased on an average 0.9%/year, significantly different from the continued bone loss recorded in the nontreated control patients. The data indicate that 1) CRF patients via accelerated bone loss develop reduced bone mass, and 2) cessation of this bone loss may be achieved by long-term treatment with 1α(OH)D3. (orig.)

  18. 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages.

    Chen, Yunzi; Liu, Weicheng; Sun, Tao; Huang, Yong; Wang, Youli; Deb, Dilip K; Yoon, Dosuk; Kong, Juan; Thadhani, Ravi; Li, Yan Chun

    2013-04-01

    The negative feedback mechanism is essential to maintain effective immunity and tissue homeostasis. 1,25-dihydroxyvitamin D (1,25[OH]2D3) modulates innate immune response, but the mechanism remains poorly understood. In this article, we report that vitamin D receptor signaling attenuates TLR-mediated inflammation by enhancing the negative feedback inhibition. Vitamin D receptor inactivation leads to hyperinflammatory response in mice and macrophage cultures when challenged with LPS, because of microRNA-155 (miR-155) overproduction that excessively suppresses suppressor of cytokine signaling 1, a key regulator that enhances the negative feedback loop. Deletion of miR-155 attenuates vitamin D suppression of LPS-induced inflammation, confirming that 1,25(OH)2D3 stimulates suppressor of cytokine signaling 1 by downregulating miR-155. 1,25(OH)2D3 downregulates bic transcription by inhibiting NF-κB activation, which is mediated by a κB cis-DNA element located within the first intron of the bic gene. Together, these data identify a novel regulatory mechanism for vitamin D to control innate immunity. PMID:23436936

  19. The Use of 1α,25-Dihydroxyvitamin D₃ as an Anticancer Agent.

    Marcinkowska, Ewa; Wallace, Graham R; Brown, Geoffrey

    2016-01-01

    The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D₃ (1,25D) has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues. PMID:27187375

  20. Research Resource: Whole Transcriptome RNA Sequencing Detects Multiple 1α,25-Dihydroxyvitamin D3-Sensitive Metabolic Pathways in Developing Zebrafish

    Craig, Theodore A.; Zhang, Yuji; McNulty, Melissa S.; Middha, Sumit; Ketha, Hemamalini; SINGH, Ravinder J; Magis, Andrew T.; Funk, Cory; Nathan D Price; Ekker, Stephen C.; Kumar, Rajiv

    2012-01-01

    The biological role of vitamin D receptors (VDR), which are abundantly expressed in developing zebrafish (Danio rerio) as early as 48 h after fertilization, and before the development of a mineralized skeleton and mature intestine and kidney, is unknown. We probed the role of VDR in developing zebrafish biology by examining changes in expression of RNA by whole transcriptome shotgun sequencing (RNA-seq) in fish treated with picomolar concentrations of the VDR ligand and hormonal form of vitam...

  1. Differential Protein Pathways in 1,25-Dihydroxyvitamin D-3 and Dexamethasone Modulated Tolerogenic Human Dendritic Cells

    Ferreira, Gabriela Bomfim; Kleijwegt, Fleur S.; Waelkens, Etienne;

    2012-01-01

    Tolerogenic dendritic cells (DC) that are maturation-resistant and locked in a semimature state are promising tools in clinical applications for tolerance induction. Different immunomodulatory agents have been shown to induce a tolerogenic DC phenotype, such as the biologically active form of vit...

  2. Open trial of topical tacalcitol [1 alpha 24(OH)2D3] and solar irradiation for vitiligo vulgaris: upregulation of c-Kit mRNA by cultured melanocytes.

    Katayama, Ichiro; Ashida, Miwa; Maeda, Aki; Eishi, Kumiko; Murota, Hiroyuki; Bae, Sang Jae

    2003-01-01

    Vitiligo vulgaris is a common skin disease, however some cases show poor clinical responses to topical steroid ointment or PUVA therapy. Such regimens are generally avoided in the treatment of facial lesions or in pediatric cases because of the undesirable side effects. To confirm the excellent response to combination therapy with topical vitamin D3 ointment and solar irradiation for vitiligo achieved in the initial patients, we conducted an open trial on other patients, most of whom had poor clinical responses to the prior therapies. Fifteen patients (9 men and 6 women) with vitiligo vulgaris were enrolled in this study. Each patient was instructed to sunbathe for 30 minutes within 1 hour after topical application of the tacalcitol [1 alpha 24(OH)(2)D(3)] ointment or cream to the skin lesions every day. Six of 15 patients showed a fair and excellent clinical response to the combination therapy (more than 30% clearance of the vitiligo). The clinical effect was more apparent in patients with a history of less than 5 years of vitiligo (4 of 6 cases) in contrast to those with a history of more than 5 years (2 of 9 cases). In vitro experiments revealed that tacalcitol upregulated the expression of c-Kit mRNA by melanocytes irradiated with linear polarized infrared, UVA or short period solar irradiation. These results suggest that combination therapy with topical vitamin D(3) ointment and solar irradiation can be used as an alternate therapy for vitiligo vulgaris. PMID:12948918

  3. Vitamin D Status among Thai School Children and the Association with 1,25-Dihydroxyvitamin D and Parathyroid Hormone Levels

    Lisa A. Houghton; Gray, Andrew R; Harper, Michelle J.; Winichagoon, Pattanee; Pongcharoen, Tippawan; Gowachirapant, Sueppong; Gibson, Rosalind S.

    2014-01-01

    In several low latitude countries, vitamin D deficiency is emerging as a public health issue. Adequate vitamin D is essential for bone health in rapidly growing children. In the Thai population, little is known about serum 25-hydroxyvitamin D [25(OH)D] status of infants and children. Moreover, the association between 25(OH)D and the biological active form of 1,25-dihydroxyvitamin D [1,25(OH)]2D is not clear. The specific aims of this study were to characterize circulating serum 25(OH)D, 1,25(...

  4. A new point mutation in the deoxyribonuclic acid-binding domain of the vitamine D receptor in a kindred with hereditary 1,25-dihydroxyvitamin d-resistant rickets

    Yagi, Hideki; Miyake, Hiroshi; Nagashima, Kanji; Kuroume, Takayoshi (Gunma Univ. School of Medicine (Japan)); Ozone, K.; Pike, J.W. (Baylor College of Medicine, Houston, TX (United States))

    1993-02-01

    Hereditary 1,25-dihydroxyvitamin D [1,25-(OH)[sub 2]D]-resistant rickets (HVDRR) is a rare disorder characterized by rickets, alopecia, hypocalcemia, secondary hyperparathyroidism, and normal or elevated serum 1,25-dihydroxyvitamin D levels. The authors describe a patient with typical clinical characteristics of HVDRR, except that elevated levels of serum phosphorus were present coincident with increased levels of serum intact PTH. The patient was treated with high dose calcium infusion after an ineffective treatment with 1[alpha]-hydroxyvitamin D[sub 3]; serum calcium and phosphorus as well as intact PTH and alkaline phosphatase levels were normalized. Evaluation of phytohemagglutinin-activated lymphocytes derived from this patient revealed that 1,25-(OH)[sub 2]D[sub 3] was unable to inhibit thymidine incooperation, a result that contrast with the capacity of 1,25-(OH)[sub 2]D[sub 3] to inhibit uptake into normal activated lymphocytes. 1,25-(OH)[sub 2]D[sub 3] did not induce human osteocalcin promoter activity after transfection of this DNA linked to a reporter gene into patient cells. Cointroduction of a human vitamin D receptor (VDR) cDNA expression vector with the reporter plasmid, however, restored the hormone response. Evaluation of extracts from the patient cells for VDR DNA binding revealed a defect in DNA binding. Analysis of genomic DNA from the patient's cells by PCR confirmed the presence of a point mutation in exon 2 of the VDR. This exon directs synthesis of a portion of the DNA-binding domain of the receptor. We conclude that the genetic basis for 1,25-(OH)[sub 2]D[sub 3] resistance in this kindred with VDR-positive HVDRR is due to a single base mutation in the VDR that leads to production of a receptor unable to interact appropriately with DNA. 20 refs., 3 figs., 1 tab.

  5. The role of 1,25-dihydroxyvitamin D in the inhibition of bone formation induced by skeletal unloading

    Halloran, B. P.; Bikle, D. D.; Wronski, T. J.; GLOBUS. R.; Levens, M. J.; Morey-Holton, E.

    1983-01-01

    Skeletal unloading results in osteopenia. To examine the involvement of vitamin D in this process, the rear limbs of growing rats were unloaded and alterations in bone calcium and bone histology were related to changes in serum calcium (Ca), inorganic phosphorus (P sub i), 25-hydroxyvitamin D (25-OH-D), 24,25-dihydroxyvitamin D (24,25(OH)2D and 1,25-dihydroxyvitamin D (1,25(OH)2D. Acute skeletal unloading induced a transitory inhibition of Ca accumulation in unloaded bones. This was accompanied by a transitory rise in serum Ca, a 21% decrease in longitudinal bone growth (P 0.01), a 32% decrease in bone surface lined with osteoblasts (P .05), no change in bone surface lined with osteoclasts and a decrease in circulating (1,25(OH)2D. No significant changes in the serum concentrations of P sub i, 25-OH-D or 24,25(OH)2D were observed. After 2 weeks of unloading, bone Ca stabilized at approximately 70% of control and serum Ca and 1,25(OH)2D returned to control values. Maintenance of a constant serum 1,25(OH)2D concentration by chronic infusion of 1,25(OH)2D (Alza osmotic minipump) throughout the study period did not prevent the bone changes induced by acute unloading. These results suggest that acute skeletal unloading in the growing rat produces a transitory inhibition of bone formation which in turn produces a transitory hypercalcemia.

  6. Prenatal diagnosis of vitamin D-dependent rickets, type II: response to 1,25-dihydroxyvitamin D in amniotic fluid cells and fetal tissues.

    Weisman, Y; Jaccard, N; Legum, C; Spirer, Z; Yedwab, G; Even, L; Edelstein, S; Kaye, A M; Hochberg, Z

    1990-10-01

    Vitamin D-dependent rickets type II (VDDR-II; hereditary resistance to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]), an autosomal recessive genetic disease that results from a failure to respond to 1,25-(OH)2D3, is characterized by severe rickets, hypocalcemia, growth retardation, and high prevalence of alopecia. We used amniotic fluid cells in the 17th week of gestation to detect VDDR-II in fetuses at risk for the defect. First, we demonstrated in cells obtained from 15 control pregnancies the presence of a specific high affinity 1,25-(OH)2D3 receptor (Kd = 0.3 x 10(-11) mol/L; maximal number of binding sites, 6.1 fmol/mg protein) and 1,25-(OH)2D3-induced 25-hydroxyvitamin D3-24-hydroxylase activity (up to 30-fold increase). Amniotic fluid cells from a woman who had already given birth to a child with VDDR-II contained receptors that bound [3H]1,25-(OH)2D3 normally and responded to 1,25-(OH)2D3 stimulation with a 10-fold increase in 24-hydroxylase activity. The fetus was, therefore, judged unaffected, and a normal baby girl was born. At the age of 16 months she did not demonstrate clinical or biochemical features of VDDR-II. Amniotic fluid cells from another mother of a child with VDDR-II were unable to bind [3H]1,25-(OH)2D3, and the hormone failed to stimulate 24-hydroxylase activity. VDDR-II in this fetus was confirmed after termination of pregnancy by the total inability of 1,25-(OH)2D3 to stimulate 24-hydroxylase activity in tissue explants and cell cultures prepared from the fetus's kidney and skin. In contrast, tissues from dead control fetuses responded to stimulation by 1,25-(OH)2D3 with a 3- to 10-fold increase in 24-hydroxylase activity. Fetal kidney and skin explants and cell cultures also synthesized a [3H]1,25-(OH)2D3-like metabolite from [3H]25-OHD3 as early as the 17th week of gestation. 1,25-(OH)2D3 (10 nM) decreased the in vitro synthesis of the [3H]1,25-(OH)2D3-like metabolite in tissues from dead control fetuses, but not from the affected fetus. Thus

  7. 1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1

    Clinton Steve K

    2010-01-01

    Full Text Available Abstract Background Prostate cancer is the second leading cause of cancer mortality among US men. Epidemiological evidence suggests that high vitamin D status protects men from prostate cancer and the active form of vitamin D, 1α,25 dihydroxyvitamin D3 (1,25(OH2D has anti-cancer effects in cultured prostate cells. Still, the molecular mechanisms and the gene targets for vitamin D-mediated prostate cancer prevention are unknown. Results We examined the effect of 1,25(OH2D (+/- 100 nM, 6, 24, 48 h on the transcript profile of proliferating RWPE1 cells, an immortalized, non-tumorigenic prostate epithelial cell line that is growth arrested by 1,25(OH2D (Affymetrix U133 Plus 2.0, n = 4/treatment per time and dose. Our analysis revealed many transcript level changes at a 5% false detection rate: 6 h, 1571 (61% up, 24 h, 1816 (60% up, 48 h, 3566 (38% up. 288 transcripts were regulated similarly at all time points (182 up, 80 down and many of the promoters for these transcripts contained putative vitamin D response elements. Functional analysis by pathway or Gene Set Analysis revealed early suppression of WNT, Notch, NF-kB, and IGF1 signaling. Transcripts related to inflammation were suppressed at 6 h (e.g. IL-1 pathway and suppression of proinflammatory pathways continued at later time points (e.g. IL-17 and IL-6 pathways. There was also evidence for induction of anti-angiogenic pathways and induction of transcripts for protection from oxidative stress or maintenance of cell redox homeostasis at 6 h. Conclusions Our data reveal of large number of potential new, direct vitamin D target genes relevant to prostate cancer prevention. In addition, our data suggests that rather than having a single strong regulatory effect, vitamin D orchestrates a pattern of changes within prostate epithelial cells that limit or slow carcinogenesis.

  8. Perspectives of differentiation therapies of acute myeloid leukemia: the search for the molecular basis of patients’ variable responses to 1,25-dihydroxyvitamin D and vitamin D analogs.

    MałgorzataCebrat

    2014-05-01

    Full Text Available The concept of differentiation therapy of cancer is approximately 40 years old. Despite many encouraging results obtained in laboratories, both in vitro and in vivo studies, the only really successful clinical application of differentiation therapy was all-trans-retinoic acid (ATRA based therapy of acute promyelocytic leukemia (APL. ATRA, which induces granulocytic differentiation of APL leukemic blasts, has revolutionized the therapy of this disease by converting it from a fatal to a curable one. However, ATRA does not work for other acute myeloid leukemias (AMLs. Since 1,25-dihydroxyvitamin D3 (1,25D is capable of inducing monocytic differentiation of leukemic cells, the idea of treating other AMLs with vitamin D analogs (VDAs was widely accepted. Also some types of solid cancers responded to in vitro applied VDAs, and hence it was postulated that VDAs can be used in many clinical applications. However, early clinical trials in which cancer patients were treated either with 1,25D or with VDAs, did not lead to conclusive results. In order to search for a molecular basis of such unpredictable responses of AML patients towards VDAs, we performed ex vivo experiments using patient’s blast cells. Experiments were also performed using 1,25D-responsive and 1,25D-non responsive cell lines, to study their mechanisms of resistance towards 1,25D-induced differentiation. We found that one of the possible reasons might be due to a very low expression level of vitamin D receptor (VDR mRNA in resistant cells, which can be increased by exposing the cells to ATRA. Our considerations concerning the molecular mechanism behind the low VDR expression and its regulation by ATRA are reported in this paper.

  9. Elevated 1,25-dihydroxyvitamin D levels in patients with chronic obstructive pulmonary disease treated with prednisone

    Bikle, D. D.; Halloran, B.; Fong, L.; Steinbach, L.; Shellito, J.

    1993-01-01

    Glucocorticoid administration is a well established cause of osteopenia. Mechanisms underlying the deleterious effect of glucocorticoids on bone may include direct inhibition of bone formation as well as indirect effects through changes in intestinal calcium absorption, renal calcium excretion, and/or levels of the calciotropic hormones. To further examine the potential role of the calciotropic hormones we measured serum levels of PTH and 1,25 dihydroxyvitamin D [1,25(OH)2D], as well as serum and urine levels of calcium and vertebral bone density in patients with chronic obstructive pulmonary disease being managed with or without prednisone. Patients treated with prednisone had lower spinal bone density (53 vs. 106 mg/cm3) and higher serum calcium (2.40 vs. 2.33 mmol/l), urine calcium (6.9 vs. 2.7 mmol/24h), and 1,25(OH)2D levels (147 vs. 95 pmol/L). Compared to the patients not treated with glucocorticoids. PTH levels also tended to be higher (33 vs. 26 microliters-eq/ml), but the difference was not significant. Serum and urine calcium levels correlated positively with 1,25(OH)2D levels, but none of these measurements correlated with PTH levels. Our results suggest that prednisone treatment alters the regulation of 1,25(OH)2D production, and this may contribute to the loss of bone mineral induced by prednisone.

  10. The association of 25-hydroxyvitamin D3 and D2 with behavioural problems in childhood

    Tolppanen, A. M.; Sayers, A.; Fraser, W. D.; Lewis, G; Zammit, S.; Lawlor, D A

    2012-01-01

    Background Higher serum concentrations of 25-hydroxyvitamin D (25(OH)D), an indicator of vitamin D synthesis and intake, have been associated with better mental health and cognitive function. Concentrations of 1,25-dihydroxyvitamin D3 (the active vitamin D3 metabolite) have been associated with openness and extrovert behaviour, but 25(OH)D concentrations have not been associated with behavioural problems in humans. Methods We investigated the prospective association between the dif...

  11. Effects of 1,25(OH)2D3, 25OHD3, and EB1089 on cell growth and Vitamin D receptor mRNA and 1alpha-hydroxylase mRNA expression in primary cultures of the canine prostate.

    Kunakornsawat, S; Rosol, T J; Capen, C C; Omdahl, J L; Leroy, B E; Inpanbutr, N

    2004-05-01

    The aim of this study was to investigate effects of 1,25(OH)(2)D(3) (calcitriol), 25OHD(3), and EB1089 on cell growth and on Vitamin D receptor (VDR) mRNA and 1alpha-hydroxylase (1alpha-OHase) mRNA expression in normal canine prostatic primary cultures. Canine prostatic epithelial cells were isolated, cultured, and treated with vehicle (ethanol), calcitriol, 25OHD(3), and EB1089 at 10(-9) and 10(-7)M. The VDR was present in epithelial and stromal cells of the canine prostate gland. 1,25(OH)(2)D(3), 25OHD(3), and EB1089 inhibited epithelial cell growth at 10(-7)M compared to vehicle-treated controls [calcitriol (P < 0.01), EB1089 (P < 0.01), and 25OHD(3) (P < 0.05)]. Epithelial cells treated with calcitriol and EB1089 at 10(-7)M had slightly increased VDR mRNA expression (0.2-0.3-fold) at 6 and 12h compared to controls. There was no difference in 1alpha-OHase mRNA expression in epithelial cells treated with these three compounds. 1,25(OH)(2)D(3) and its analogs may be effective antiproliferative agents of epithelial cells in certain types of prostate cancer. PMID:15225811

  12. 1,25-Dihydroxyvitamin D to PTH(1–84) Ratios Strongly Predict Cardiovascular Death in Heart Failure

    Gruson, Damien; Ferracin, Benjamin; Ahn, Sylvie A.; Zierold, Claudia; Blocki, Frank; Hawkins, Douglas M.; Bonelli, Fabrizio; Rousseau, Michel F.

    2015-01-01

    Objectives Vitamin D deficiency and hyperparathyroidism are common in patients with heart failure (HF). There is a growing body of evidence supporting the role of vitamin D and parathyroid hormone (PTH) in cardiac remodeling and worsening of HF. Lack of reliable automated testing of 1,25-dihydroxyvitamin D (1,25(OH)2D), the biologically active metabolite of vitamin D, has limited its contribution to the prognostic assessment of HF. Here, the association of 1,25(OH)2D and PTH(1–84) levels was evaluated for prediction of cardiovascular death in chronic HF patients. Methods We conducted a single center prospective cohort including 170 chronic HF patients (females n = 36; males n = 134; NYHA II-IV; mean age: 67 years; etiology: ischemic n = 119, dilated cardiomyopathy n = 51; mean LVEF: 23%). The primary outcome was cardiovascular death. Results Serum levels of 1,25(OH)2D decreased markedly with increased HF severity. Medians were 33.3 pg/mL for NYHA-II patients, 23.4 pg/mL for NYHA-III, and 14.0 pg/mL for NYHA-IV patients (p<0.001). Most patients had levels of 25(OH)D below 30ng/mL, and stratification by NYHA functional class did not show significant differences (p = 0.249). The 1,25(OH)2D to PTH(1–84) ratio and the (1,25(OH)2D)2 to PTH(1–84) ratio were found to be the most significantly related to HF severity. After a median follow-up of 4.1 years, 106 out of 170 patients reached the primary endpoint. Cox proportional hazard modeling revealed 1,25(OH)2D and the 1,25(OH)2D to PTH(1–84) ratios to be strongly predictive of outcomes. Conclusions 1,25(OH)2D and its ratios to PTH(1–84) strongly and independently predict cardiovascular mortality in chronic HF. PMID:26308451

  13. Vitamin D status among Thai school children and the association with 1,25-Dihydroxyvitamin D and parathyroid hormone levels.

    Houghton, Lisa A; Gray, Andrew R; Harper, Michelle J; Winichagoon, Pattanee; Pongcharoen, Tippawan; Gowachirapant, Sueppong; Gibson, Rosalind S

    2014-01-01

    In several low latitude countries, vitamin D deficiency is emerging as a public health issue. Adequate vitamin D is essential for bone health in rapidly growing children. In the Thai population, little is known about serum 25-hydroxyvitamin D [25(OH)D] status of infants and children. Moreover, the association between 25(OH)D and the biological active form of 1,25-dihydroxyvitamin D [1,25(OH)]2D is not clear. The specific aims of this study were to characterize circulating serum 25(OH)D, 1,25(OH)2D and their determinants including parathyroid hormone (PTH), age, sex, height and body mass index (BMI) in 529 school-aged Thai children aged 6-14 y. Adjusted linear regression analysis was performed to examine the impact of age and BMI, and its interaction with sex, on serum 25(OH)D concentrations and 1,25(OH)2D concentrations. Serum 25(OH)D, 1,25(OH)2D and PTH concentrations (geometric mean ± geometric SD) were 72.7±1.2 nmol/L, 199.1±1.3 pmol/L and 35.0±1.5 ng/L, respectively. Only 4% (21 of 529) participants had a serum 25(OH)D level below 50 nmol/L. There was statistically significant evidence for an interaction between sex and age with regard to 25(OH)D concentrations. Specifically, 25(OH)D concentrations were 19% higher in males. Moreover, females experienced a statistically significant 4% decline in serum 25(OH)D levels for each increasing year of age (P = 0.001); no decline was seen in male participants with increasing age (P = 0.93). When BMI, age, sex, height and serum 25(OH)D were individually regressed on 1,25(OH)2D, height and sex were associated with 1,25(OH)2D with females exhibiting statistically significantly higher serum 1,25(OH)2D levels compared with males (Pvitamin D status were higher than previous reports suggesting an adaptive mechanism to maximize calcium absorption. PMID:25111832

  14. Vitamin D status among Thai school children and the association with 1,25-Dihydroxyvitamin D and parathyroid hormone levels.

    Lisa A Houghton

    Full Text Available In several low latitude countries, vitamin D deficiency is emerging as a public health issue. Adequate vitamin D is essential for bone health in rapidly growing children. In the Thai population, little is known about serum 25-hydroxyvitamin D [25(OHD] status of infants and children. Moreover, the association between 25(OHD and the biological active form of 1,25-dihydroxyvitamin D [1,25(OH]2D is not clear. The specific aims of this study were to characterize circulating serum 25(OHD, 1,25(OH2D and their determinants including parathyroid hormone (PTH, age, sex, height and body mass index (BMI in 529 school-aged Thai children aged 6-14 y. Adjusted linear regression analysis was performed to examine the impact of age and BMI, and its interaction with sex, on serum 25(OHD concentrations and 1,25(OH2D concentrations. Serum 25(OHD, 1,25(OH2D and PTH concentrations (geometric mean ± geometric SD were 72.7±1.2 nmol/L, 199.1±1.3 pmol/L and 35.0±1.5 ng/L, respectively. Only 4% (21 of 529 participants had a serum 25(OHD level below 50 nmol/L. There was statistically significant evidence for an interaction between sex and age with regard to 25(OHD concentrations. Specifically, 25(OHD concentrations were 19% higher in males. Moreover, females experienced a statistically significant 4% decline in serum 25(OHD levels for each increasing year of age (P = 0.001; no decline was seen in male participants with increasing age (P = 0.93. When BMI, age, sex, height and serum 25(OHD were individually regressed on 1,25(OH2D, height and sex were associated with 1,25(OH2D with females exhibiting statistically significantly higher serum 1,25(OH2D levels compared with males (P<0.001. Serum 1,25(OH2D among our sample of children exhibiting fairly sufficient vitamin D status were higher than previous reports suggesting an adaptive mechanism to maximize calcium absorption.

  15. Association of Arsenic and Metals with Concentrations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D among Adolescents in Torreón, Mexico

    Zamoiski, Rachel D.; Guallar, Eliseo; García-Vargas, Gonzalo G.; Rothenberg, Stephen J.; Resnick, Carol; Andrade, Marisela Rubio; Steuerwald, Amy J.; Parsons, Patrick J.; Weaver, Virginia M.; Navas-Acien, Ana; Silbergeld, Ellen K.

    2014-01-01

    Background: Limited data suggest that lead (Pb), cadmium (Cd), and uranium (U) may disrupt vitamin D metabolism and inhibit production of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active vitamin D metabolite, from 25-hydroxyvitamin D [25(OH)D] in the kidney. Objectives: We evaluated the association between blood lead (BPb) and urine arsenic (As), Cd, molybdenum (Mo), thallium (Tl), and U with markers of vitamin D metabolism [25(OH)D and 1,25(OH)2D]. Methods: We conducted a cross-sectional stu...

  16. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling

    Lin-Yan Wan; Yan-Qiong Zhang; Meng-Di Chen; You-Qin Du; Chang-Bai Liu; Jiang-Feng Wu

    2015-01-01

    Vitamin D Receptor (VDR) belongs to the nuclear receptor (NR) superfamily. Whereas the structure of the ligand binding domain (LBD) of VDR has been determined in great detail, the role of its amino acid residues in stabilizing the structure and ligand triggering conformational change is still under debate. There are 13 α-helices and one β-sheet in the VDR LBD and they form a three-layer sandwich structure stabilized by 10 residues. Thirty-six amino acid residues line the ligand binding pocket...

  17. 维生素D3对自身免疫病的调节作用%Vitamin D3 Regulation Function on Autoimmune Diseases

    王钧

    2012-01-01

    Vitamin D receptor( VDR )express in almost all immune cells. 1,25-dihydroxyvitamin D3 ,th active form of vitamin D,play a role in immune regulation through binding with VDR. In addition to direc effects on T cell activation, 1,25-Dihydroxyvitamin D3 also modulates the phenotype and function of antigen presenting cells and in particular of dendritic cells through multiple mechanisms. Recent advances in under standing 1,25-Dihydroxyvitamin D3 immunomodulatory mechanisms suggest a wider applicability in the treat ment of autoimmune diseases, such as type 1 diabetes, multiple sclerosis, systemic lupus erythematosus ani other autoimmune diseases by several mechanisms, as indicated in recent studies.%免疫细胞存在维生素D受体(VDR),维生素D3通过其体内代谢活性产物1,25-(OH)2D3与VDR结合发挥免疫调节作用.1,25-(OH)2D3除了直接作用于T细胞外,还通过多种机制调节抗原递呈细胞的表型和功能,尤其是树突状细胞.对1,25-(OH)2D3免疫调节机制的认识提示其在自身免疫性疾病的治疗中可广泛应用.近年来的研究表明,1,25-(OH)2D3可通过多种机制调节1型糖尿病、多发性硬化症、系统性红斑狼疮等自身免疫病的发病.

  18. A possible role of vitamin D receptors in regulating vitamin D activation in the kidney.

    Iida, K; Shinki, T; Yamaguchi, A; DeLuca, H F; Kurokawa, K; Suda, T.

    1995-01-01

    The vitamin D endocrine system is regulated reciprocally by renal 25-hydroxyvitamin D3 1 alpha- and 24-hydroxylases. Previously, we reported that renal proximal convoluted tubules, the major site of 1 alpha, 25-dihydroxyvitamin D3 production, have vitamin D receptors. In the presence of vitamin D receptors, renal proximal convoluted tubules cannot maintain the state of enhanced production of 1 alpha, 25-dihydroxyvitamin D3. To clarify this discrepancy, we proposed a working hypothesis for the...

  19. Availability of 25-hydroxyvitamin D3 to antigen presenting cells controls the balance between regulatory and inflammatory T cell responses

    Jeffery, Louisa E.; Wood, Alice M; Qureshi, Omar S.; Hou, Tie Zheng; Gardner, David; Briggs, Zoe; Kaur, Satdip; Raza, Karim; Sansom, David M

    2012-01-01

    1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, exerts potent effects on several tissues including cells of the immune system, where it affects T cell activation, differentiation and migration. The circulating, inactive form of vitamin D, 25(OH)D3, is generally used as an indication of “vitamin D status”. However, utilization of this precursor depends on its uptake by cells and subsequent conversion by the enzyme 25(OH)D3-1α-hydroxylase (CYP27B1) into active 1,25(OH)2D3....

  20. DNA target selectivity by the vitamin D3 receptor: mechanism of dimer binding to an asymmetric repeat element.

    Towers, T L; Luisi, B F; Asianov, A; Freedman, L P

    1993-01-01

    The 1,25-dihydroxyvitamin D3 receptor, like other members of the nuclear receptor superfamily, forms dimers in solution that are probably stabilized by a dyad symmetrical interface formed by the ligand-binding domain. This receptor, however, recognizes DNA targets that are not dyad symmetric but rather are organized as direct repeats of a hexameric sequence with a characteristic 3-bp spacing. Using molecular modeling and site-directed mutagenesis, we have identified regions within the vitamin...

  1. Selective effects of ligands on vitamin D3 receptor- and retinoid X receptor-mediated gene activation in vivo.

    Lemon, B D; Freedman, L P

    1996-01-01

    Steroid/nuclear hormone receptors are ligand-regulated transcription f factors that play key roles in cell regulation, differentiation, and oncogenesis. Many nuclear receptors, including the human 1,25-dihydroxyvitamin D3 receptor (VDR), bind cooperatively to DNA either as homodimers or as heterodimers with the 9-cis retinoic acid (RA) receptor (retinoid X-receptor [RXR]). We have previously reported that the ligands for VDR and RXR can differentially modulate the affinity of the receptors' i...

  2. Two-dimensional liquid chromatography coupled to tandem mass spectrometry for vitamin D metabolite profiling including the C3-epimer-25-monohydroxyvitamin D3.

    Mena-Bravo, A; Priego-Capote, F; Luque de Castro, M D

    2016-06-17

    A method based on automated on-line solid phase extraction coupled to two-dimensional liquid chromatography with tandem mass spectrometry detection (SPE-2DLC-MS/MS) is here reported for vitamin D metabolite profiling in human serum with absolute quantitation. Two-dimensional LC was configured with two complementary analytical columns, pentafluorophenyl (PFP) and C18 phases, for determination of 25 hydroxyvitamin D3 epimers and the resting bioactive metabolites of vitamin D (D3 and D2)-25-hydroxyvitamin D2, 1,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D2 and 24,25-dihydroxyvitamin D3. Quantitative determination was supported on the use of a stable isotopic labelled internal standard for each analyte and the resulting method was validated by analysis of a standard reference material certified by the National Institute of Standards & Technology (NIST-972a) and 5 samples provided by the vitamin D External Quality Assurance Scheme (DEQAS). The limits of detection were between 9 and 90pg/mL for the eight analytes, and precision, expressed as relative standard deviation, was lower than 11.6%. Two-dimensional LC has shown to be the key to discriminate between 25 hydroxyvitamin D3 epimers in a quantitative analysis also involving dihydroxyvitamin D metabolites. PMID:27180887

  3. Cooperative antitumor effects of vitamin D3 derivatives and rosemary preparations in a mouse model of myeloid leukemia

    Sharabani, Hagar; Izumchenko, Eugene; Wang, Qing; Kreinin, Rita; Steiner, Michael; Barvish, Zeev; Kafka, Michael; Sharoni, Yoav; Levy, Joseph; Uskokovic, Milan; Studzinski, George P.; Danilenko, Michael

    2006-01-01

    1α,25-dihydroxyvitamin D3 (1,25D3) is a powerful differentiation agent, which has potential for treatment of myeloid leukemias and other types of cancer, but the calcemia produced by pharmacologically active doses precludes the use of this agent in the clinic. We have shown that carnosic acid, the major rosemary polyphenol, enhances the differentiating and antiproliferative effects of low concentrations of 1,25D3 in human myeloid leukemia cell lines (HL60, U937). Here we translated these find...

  4. Hydroxylation of 20-hydroxyvitamin D3 by human CYP3A4.

    Cheng, Chloe Y S; Slominski, Andrzej T; Tuckey, Robert C

    2016-05-01

    20S-Hydroxyvitamin D3 [20(OH)D3] is the biologically active major product of the action of CYP11A1 on vitamin D3 and is present in human plasma. 20(OH)D3 displays similar therapeutic properties to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], but without causing hypercalcaemia and therefore has potential for development as a therapeutic drug. CYP24A1, the kidney mitochondrial P450 involved in inactivation of 1,25(OH)2D3, can hydroxylate 20(OH)D3 at C24 and C25, with the products displaying more potent inhibition of melanoma cell proliferation than 20(OH)D3. CYP3A4 is the major drug-metabolising P450 in liver endoplasmic reticulum and can metabolise other active forms of vitamin D, so we examined its ability to metabolise 20(OH)D3. We found that CYP3A4 metabolises 20(OH)D3 to three major products, 20,24R-dihydroxyvitamin D3 [20,24R(OH)2D3], 20,24S-dihydroxyvitamin D3 [20,24S(OH)2D3] and 20,25-dihydroxyvitamin D3 [20,25(OH)2D3]. 20,24R(OH)2D3 and 20,24S(OH)2D3, but not 20,25(OH)2D3, were further metabolised to trihydroxyvitamin D3 products by CYP3A4 but with low catalytic efficiency. The same three primary products, 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3, were observed for the metabolism of 20(OH)D3 by human liver microsomes, in which CYP3A4 is a major CYP isoform present. Addition of CYP3A family-specific inhibitors, troleandomycin and azamulin, almost completely inhibited production of 20,24R(OH)2D3, 20,24S(OH)2D3 and 20,25(OH)2D3 by human liver microsomes, further supporting that CYP3A4 plays the major role in 20(OH)D3 metabolism by microsomes. Since both 20,24R(OH)2D3 and 20,25(OH)2D3 have previously been shown to display enhanced biological activity in inhibiting melanoma cell proliferation, our results show that CYP3A4 further activates, rather than inactivates, 20(OH)D3. PMID:26970587

  5. Synthesis of 24S and 24R-hydroxy-[24-3H] vitamin D3 and their metabolism in rachitic rats

    An epimeric mixture of 24-hydroxy-[24-3H] vitamin D3 was synthesized by the reduction of 24-ketovitamin D3 by sodium borotritide. The epimeric mixture was converted to the trimethylsilylether derivatives and subjected to high-pressure liquid chromatography using silica gel columns to separate the 24-hydroxy-[24-3H] vitamin D3 isomers. The 24R-hydroxy-[24-3H]vitamin D3 induced calcification in rachitic rats while the 24S-hydroxy-[24-3H]vitamin D3 had little or no such activity. As both isomers of 24-hydroxy-vitamin D3 are metabolized to 24,25-dihydroxyvitamin D3, it appears that the 24-hydroxyvitamin D3-25-hydroxylase does not discriminate between the isomers. Only the R-isomer of 24-hydroxyvitamin D3 is metabolized to 1,24-dihydroxyvitamin D3, although only trace amounts of this compound were found 2 days after the administration of 24-hydroxyvitamin D3. The striking difference in the metabolism of the isomers is the high selectivity of the 1-hydroxylase for the R-isomer. It is suggested that the high specificity of biological activity for the R-isomer of 24-hydroxyvitamin D3 is because of the specificity of the 1-hydroxylation of 24,25-dihydroxyvitamin D3 for the R configuration

  6. Correlation of Increases in 1,25-Dihydroxyvitamin D During Vitamin D Therapy With Activation of CD4+ T Lymphocytes in HIV-1-Infected Males

    Bang, Ulrich; Kolte, Lilian; Hitz, Mette;

    2012-01-01

    Background: In HIV-1-infected individuals, levels of CD4+ T lymphocytes are depleted and regulatory T-lymphocytes (Tregs) are elevated. In vitro studies have demonstrated effects of vitamin D on the growth and differentiation of these cells. We speculated whether supplementation with vitamin D...... could have an effect on CD4+ T lymphocytes or Tregs in HIV-1-infected males. Methods: We conducted a placebo-controlled randomized study that ran for 16 weeks and included 61 HIV-1-infected males, of whom 51 completed the protocol. The participants were randomized to 1 of 3 daily treatments: (1) 0.......5-1.0 µg calcitriol and 1200 IU (30 µg) cholecalciferol, (2) 1200 IU cholecalciferol, (3) placebo. Percentages of the following T-lymphocyte subsets were determined: naïve CD4+ and CD8+ cells, activated CD4+ and CD8+ cells, and CD3+CD4+CD25+CD127low Tregs. Furthermore 1,25-dihydroxyvitamin D, 25...

  7. Circulating Endothelial Microparticles and Correlation of Serum 1,25-Dihydroxyvitamin D with Adiponectin, Nonesterified Fatty Acids, and Glycerol from Middle-Aged Men in China

    Wan, Zhongxiao; Yu, Lugang; Cheng, Jinbo; Zhang, Zengli; Xu, Baohui; Pang, Xing; Zhou, Hui; Lei, Ting

    2016-01-01

    The aim of the present study is (1) to determine the correlation between circulating 1,25-dihydroxyvitamin D [25(OH)D] and adiponectin, nonesterified fatty acids (NEFAs), and glycerol and (2) to determine the alterations in circulating endothelial microparticles (EMPs) in Chinese male subjects with increased body mass index (BMI). A total of 45 male adults were enrolled with varied BMI [i.e., lean, overweight (OW), and obese (OB), N = 15 per group]. Blood samples were collected under overnight fasting condition, and plasma was isolated for the measurement of endothelial microparticles (EMPs), total and high-molecular weight (HMW) adiponectin, 25(OH)D, nonesterified fatty acids (NEFAs), and glycerol. Circulating 25(OH)D levels were inversely associated with total adiponectin, NEFA, and glycerol levels. There is no difference for CD62E+ or CD31+/CD42b− EMPs among 3 groups. In Chinese male adults with varied BMI, an inverse correlation existed between 25(OH)D levels and total adiponectin, NEFA, and glycerol levels; and there is no significant difference for CD62E+ or CD31+/CD42b− EMPs among lean, overweight, and obese subjects. PMID:27314039

  8. Gene Regulatory Scenarios of Primary 1,25-Dihydroxyvitamin D{sub 3} Target Genes in a Human Myeloid Leukemia Cell Line

    Ryynänen, Jussi; Seuter, Sabine [School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, Kuopio FI-70211 (Finland); Campbell, Moray J. [Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States); Carlberg, Carsten, E-mail: carsten.carlberg@uef.fi [School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, Kuopio FI-70211 (Finland)

    2013-10-16

    Genome- and transcriptome-wide data has significantly increased the amount of available information about primary 1,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) target genes in cancer cell models, such as human THP-1 myelomonocytic leukemia cells. In this study, we investigated the genes G0S2, CDKN1A and MYC as master examples of primary vitamin D receptor (VDR) targets being involved in the control of cellular proliferation. The chromosomal domains of G0S2 and CDKN1A are 140–170 kb in size and contain one and three VDR binding sites, respectively. This is rather compact compared to the MYC locus that is 15 times larger and accommodates four VDR binding sites. All eight VDR binding sites were studied by chromatin immunoprecipitation in THP-1 cells. Interestingly, the site closest to the transcription start site of the down-regulated MYC gene showed 1,25(OH){sub 2}D{sub 3}-dependent reduction of VDR binding and is not associated with open chromatin. Four of the other seven VDR binding regions contain a typical DR3-type VDR binding sequence, three of which are also occupied with VDR in macrophage-like cells. In conclusion, the three examples suggest that each VDR target gene has an individual regulatory scenario. However, some general components of these scenarios may be useful for the development of new therapy regimens.

  9. Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR caused by a VDR mutation: A novel mechanism of dominant inheritance

    Tsuyoshi Isojima

    2015-06-01

    Full Text Available Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR is caused by mutations in the VDR gene, and its inheritance is autosomal recessive. In this report, we aimed to confirm whether HVDRR is occasionally inherited as a dominant trait. An 18-month-old Japanese boy was evaluated for short stature and bowlegs. His father had been treated for rickets during childhood, and his paternal grandfather had bowlegs. We diagnosed him with HVDRR based on laboratory data and radiographic evidence of rickets. Sequence analyses of VDR were performed, and the functional consequences of the detected mutations were analyzed for transcriptional activity, ligand binding, and interaction with the retinoid X receptor, cofactors, and the vitamin D response element (VDRE. A novel mutation (Q400LfsX7 and a reported variant (R370H were identified in the patient. Heterozygous Q400LfsX7 was detected in his father, and heterozygous R370H was detected in his healthy mother. Functional studies revealed that the transcriptional activity of Q400LfsX7-VDR was markedly disturbed. The mutant had a dominant-negative effect on wild-type-VDR, and the ligand binding affinity of Q400LfsX7-VDR was completely impaired. Interestingly, Q400LfsX7-VDR had a strong interaction with corepressor NCoR and could interact with VDRE without the ligand. R370H-VDR was functionally similar to wild-type-VDR. In conclusion, we found a dominant-negative mutant of VDR causing dominantly inherited HVDRR through a constitutive corepressor interaction, a mechanism similar to that in dominantly inherited thyroid hormone receptor mutations. Our report together with a reported pedigree suggested a distinct inheritance of HVDRR and enriched our understanding of VDR abnormalities.

  10. Progress of 1,25 dihydroxy vitamin D3 in anti-tumor%1,25二羟维生素D3治疗肿瘤研究进展

    曹永一; 鲍扬漪

    2011-01-01

    Multi-drug resistance of tumor is one of the main reasons to treatment failure.How to reverse tumor muhidrug resistance is a priority issue of anti-tumor treatment.1,25 dihydroxyvitamin D3 can prevent and treat on tumor.In recent years,studies have shown that 1,25 dihydroxyvitamin D3 combined with chemotherapy,radiotherapy,hormone therapy and other methods can enhance the effec-tiveness of these treatments to reduce or even reverse tumor cells resistance to chemotherapy and radiotherapy.%肿瘤的多药耐药是肿瘤治疗失败的主要原因之一,如何逆转肿瘤的多药耐药是目前治疗的一个重点问题.1,25 二羟维生素D3对肿瘤具有预防和治疗的作用,近年的研究表明1,25 二羟维生素D3联合化疗药物、放疗和内分泌治疗等方法时,可以增强这些治疗方法的效果,降低甚至逆转肿瘤细胞对化放疗的抵抗性.

  11. 26,26,26,27,27,27-Hexadeuterated-1,25-Dihydroxyvitamin D{sub 3} (1,25D-d{sub 6}) As Adjuvant of Chemotherapy in Breast Cancer Cell Lines

    Seoane, Samuel; Bermudez, Maria A.; Sendon-Lago, Juan; Martinez-Ordoñez, Anxo [Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782 (Spain); Abdul-Hadi, Soraya [University of Puerto Rico, Recinto de Rio Piedras, Avda. Barbosa-Ponce de Leon, San Juan 23301 (Puerto Rico); Maestro, Miguel; Mouriño, Antonio [Department of Organic Chemistry, School of Chemistry, Research Laboratory Ignacio Ribas, Avda. das Ciencias s/n, University of Santiago de Compostela, Santiago de Compostela 15782 (Spain); Perez-Fernandez, Roman, E-mail: roman.perez.fernandez@usc.es [Department of Physiology-CIMUS, Endocrine Oncology Laboratories (P1L3), Avda. Barcelona s/n, Campus Vida-University of Santiago de Compostela, Santiago de Compostela 15782 (Spain)

    2013-12-27

    It has been demonstrated that 1,25-dihydroxyvitamin D{sub 3} (1,25D) and some of its analogues have antitumor activity. 1,25D labeled with deuterium (26,26,26,27,27,27-hexadeuterated 1α,25-dihydroxyvitamin D{sub 3}, or 1,25D-d{sub 6}) is commonly used as internal standard for 1,25D liquid chromatography-mass spectrometry (LC-MS) quantification. In the present study using human breast cancer cell lines, the biological activity of 1,25D-d{sub 6} administered alone and in combination with two commonly used antineoplastic agents, 5-fluorouracil and etoposide, was evaluated. Using an MTT assay, flow cytometry, and western blots, our data demonstrated that 1,25D-d{sub 6} has effects similar to the natural hormone on cell proliferation, cell cycle, and apoptosis. Furthermore, the combination of 1,25D-d{sub 6} and etoposide enhances the antitumoral effects of both compounds. Interestingly, the antitumoral effect is higher in the more aggressive MDA-MB-231 breast cancer cell line. Our data indicate that 1,25D-d{sub 6} administered alone or in combination with chemotherapy could be a good experimental method for accurately quantifying active 1,25D levels in cultures or in biological fluids, on both in vitro breast cancer cell lines and in vivo animal experimental models.

  12. A Unique Insertion/Duplication in the VDR Gene that Truncates the VDR Causing Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets Without Alopecia

    Malloy, Peter J.; Wang, Jining; Peng, Lihong; Nayak, Sunil; Sisk, Jeanne M.; Thompson, Catherine C.; Feldman, David

    2006-01-01

    Hereditary vitamin D resistant rickets (HVDRR) is caused by mutations in the vitamin D receptor (VDR). Here we describe a patient with HVDRR who also exhibited some hypotrichosis of the scalp but otherwise had normal hair and skin. A 102 bp insertion/duplication was found in the VDR gene that introduced a premature stop (Y401X). The patient's fibroblasts expressed the truncated VDR, but were resistant to 1,25(OH)2D3. The truncated VDR weakly bound [3H]-1,25(OH)2D3 but was able to heterodimeri...

  13. Regulation of Osteoblast Differentiation by Acid-Etched and/or Grit-Blasted Titanium Substrate Topography Is Enhanced by 1,25(OH)2D3 in a Sex-Dependent Manner

    Rene Olivares-Navarrete; Hyzy, Sharon L.; Boyan, Barbara D; Zvi Schwartz

    2015-01-01

    This study assessed contributions of micron-scale topography on clinically relevant titanium (Ti) to differentiation of osteoprogenitor cells and osteoblasts; the interaction of this effect with 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3); and if the effects are sex-dependent. Male and female rat bone marrow cells (BMCs) were cultured on acid-etched (A, R a = 0.87 μm), grit-blasted (GB, R a = 3.90 μm), or grit-blasted/acid-etched (SLA, R a = 3.22 μm) Ti. BMCs were sensitive to surface topography...

  14. Studies on the analysis of 25-hydroxyvitamin D3 by isotope-dilution liquid chromatography–tandem mass spectrometry using enzyme-assisted derivatisation

    Highlights: • New method for the analysis of 25-hydroxyvitamin D3 exploiting Girard P derivatisation. • Method also applicable to vitamin D3, 1α,25- and 24,25-dihydroxyvitamin D3. • By modification of the method 3-epi-25-hydroxyvitamin D3 can also be analysed. - Abstract: The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D3 and 25-hydroxyvitamin D2) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27-2H6]hydroxyvitamin D3 as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3β-hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17β-Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3α-hydroxy group in the 3α-hydroxy epimer of 25-hydroxyvitamin D3. Quantification is achieved by isotope-dilution liquid chromatography–tandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D3 performed on adult human serum give recovery of 102–106%. Furthermore in addition to 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3 and other uncharacterised dihydroxy metabolites, were detected in adult human serum

  15. Vitamin D3 Induces Tolerance in Human Dendritic Cells by Activation of Intracellular Metabolic Pathways

    Gabriela Bomfim Ferreira

    2015-02-01

    Full Text Available Metabolic switches in various immune cell subsets enforce phenotype and function. In the present study, we demonstrate that the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH2D3, induces human monocyte-derived tolerogenic dendritic cells (DC by metabolic reprogramming. Microarray analysis demonstrated that 1,25(OH2D3 upregulated several genes directly related to glucose metabolism, tricarboxylic acid cycle (TCA, and oxidative phosphorylation (OXPHOS. Although OXPHOS was promoted by 1,25(OH2D3, hypoxia did not change the tolerogenic function of 1,25(OH2D3-treated DCs. Instead, glucose availability and glycolysis, controlled by the PI3K/Akt/mTOR pathway, dictate the induction and maintenance of the 1,25(OH2D3-conditioned tolerogenic DC phenotype and function. This metabolic reprogramming is unique for 1,25(OH2D3, because the tolerogenic DC phenotype induced by other immune modulators did not depend on similar metabolic changes. We put forward that these metabolic insights in tolerogenic DC biology can be used to advance DC-based immunotherapies, influencing DC longevity and their resistance to environmental metabolic stress.

  16. Vitamin D3 and Monomethyl Fumarate Enhance Natural Killer Cell Lysis of Dendritic Cells and Ameliorate the Clinical Score in Mice Suffering from Experimental Autoimmune Encephalomyelitis

    Zaidoon Al-Jaderi

    2015-11-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is a CD4+ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139–151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D3 (vitamin D3, or with monomethyl fumarate (MMF was then examined. We observed that both vitamin D3 and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK cells from vitamin D3-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS is to enhance NK cell lysis of dendritic cells.

  17. Diabetes prevalence is associated with serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D in US middle-aged Caucasian men and women: a cross-sectional analysis within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial.

    Brock, Kaye E; Huang, Wen-Yi; Fraser, David R; Ke, Liang; Tseng, Marilyn; Mason, Rebecca S; Stolzenberg-Solomon, Rachael Z; Freedman, D Michal; Ahn, Jiyoung; Peters, Ulrike; McCarty, Catherine; Hollis, Bruce W; Ziegler, Regina G; Purdue, Mark P; Graubard, Barry I

    2011-08-01

    Hypovitaminosis D may be associated with diabetes, hypertension and CHD. However, because studies examining the associations of all three chronic conditions with circulating 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)(2)D) are limited, we examined these associations in the US Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial (n 2465). Caucasian PLCO participants selected as controls in previous nested case-control studies of 25(OH)D and 1,25(OH)(2)D were included in this analysis. Diabetes, CHD and hypertension prevalence, risk factors for these conditions and intake of vitamin D and Ca were collected from a baseline questionnaire. Results indicated that serum levels of 25(OH)D were low (smoking history, BMI, physical activity, total dietary energy and vitamin D and Ca intake, only diabetes was significantly associated with lower 25(OH)D and 1,25(OH)(2)D levels. Caucasians who had 25(OH)D ≥ 80 nmol/l were half as likely to have diabetes (OR 0·5 (95 % CI 0·3, 0·9)) compared with those who had 25(OH)D studies. PMID:21736838

  18. Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity

    D-type cyclins are essential for the progression through the G1 phase of the cell cycle. Besides serving as cell cycle regulators, D-type cyclins were recently reported to have transcription regulation functions. Here, we report that cyclin D3 is a new interacting partner of vitamin D receptor (VDR), a member of the superfamily of nuclear receptors for steroid hormones, thyroid hormone, and the fat-soluble vitamins A and D. The interaction was confirmed with methods of yeast two-hybrid system, in vitro binding analysis and in vivo co-immunoprecipitation. Cyclin D3 interacted with VDR in a ligand-independent manner, but treatment of the ligand, 1,25-dihydroxyvitamin D3, strengthened the interaction. Confocal microscopy analysis showed that ligand-activated VDR led to an accumulation of cyclin D3 in the nuclear region. Cyclin D3 up-regulated transcriptional activity of VDR and this effect was counteracted by overexpression of CDK4 and CDK6. These findings provide us a new clue to understand the transcription regulation functions of D-type cyclins

  19. Receptor-mediated rapid action of 1 alpha,25-dihydroxycholecalciferol: increase of intracellular cGMP in human skin fibroblasts.

    Barsony, J; Marx, S. J.

    1988-01-01

    The intracellular cGMP concentration in normal human cultured fibroblasts was increased 2- to 3-fold by 1 alpha,25-dihydroxycholecalciferol [1 alpha,25-(OH)2D3] in a dose-dependent manner between 0.01 nM and 1 microM. The response was detectable within 1 min, reached a maximum (225% +/- 8% of baseline) at 6-8 min, and was no longer detectable at 30 min. The half-maximal effect of 1 alpha,25-(OH)2D3 was at 1.8 nM, and 24,25-dihydroxycholecalciferol showed an estimated EC50 100-fold higher. 1 b...

  20. Dietary supplementation with high doses of regular vitamin D3 safely reduces diabetes incidence in NOD mice when given early and long term.

    Takiishi, Tatiana; Ding, Lei; Baeke, Femke; Spagnuolo, Isabella; Sebastiani, Guido; Laureys, Jos; Verstuyf, Annemieke; Carmeliet, Geert; Dotta, Francesco; Van Belle, Tom L; Gysemans, Conny A; Mathieu, Chantal

    2014-06-01

    High doses of the active form of vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], prevent diabetes in the NOD mouse but also elicit unwanted calcemic side effects. Because immune cells themselves can convert vitamin D3 into 1,25(OH)2D3 locally, we hypothesized that dietary vitamin D3 can also prevent disease. Thus, we evaluated whether dietary administration of high doses of regular vitamin D3 (800 IU/day) during different periods of life (pregnancy and lactation, early life [3-14 weeks of age], or lifelong [3-35 weeks of age]) safely prevents diabetes in NOD mice. We found that only lifelong treatment raised serum 25-hydroxyvitamin D3 from 173 nmol/L in controls to 290 nmol/L, without inducing signs of calcemic or bone toxicity, and significantly reduced diabetes development in both male and female NOD mice. This diabetes protection by vitamin D3 correlated with preserved pancreatic insulin content and improved insulitis scores. Moreover, vitamin D3 treatment decreased interferon-γ-positive CD8(+) T cells and increased CD4(+)(CD25(+))FoxP3(+) T cells in pancreatic draining lymph nodes. In conclusion, this study shows for the first time that high doses of regular dietary vitamin D3 can safely prevent diabetes in NOD mice when administered lifelong, although caution is warranted with regards to administering equivalently high doses in humans. PMID:24550187

  1. Negative regulation of human parathyroid hormone gene promoter by vitamin D3 through nuclear factor Y

    The negative regulation of the human parathyroid hormone (PTH) gene by biologically active vitamin D3 (1,25-dihydroxyvitamin D3; 1,25(OH)2D3) was studied in rat pituitary GH4C1 cells, which express factors needed for the negative regulation. We report here that NF-Y binds to sequences downstream of the site previously reported to bind the vitamin D receptor (VDR). Additional binding sites for NF-Y reside in the near vicinity and were shown to be important for full activity of the PTH gene promoter. VDR and NF-Y were shown to exhibit mutually exclusive binding to the VDRE region. According to our results, sequestration of binding partners for NF-Y by VDR also affects transcription through a NF-Y consensus binding element in GH4C1 but not in ROS17/2.8 cells. These results indicate that 1,25(OH)2D3 may affect transcription of the human PTH gene both by competitive binding of VDR and NF-Y, and by modulating transcriptional activity of NF-Y

  2. Cytokine vaccination: neutralising IL-1alpha autoantibodies induced by immunisation with homologous IL-1alpha

    Svenson, M; Hansen, M B; Thomsen, Allan Randrup; Diamant, M; Nansen, A; Rieneck, K; Otterness, I G; Bendtzen, K

    High-affinity IgG autoantibodies (aAb) to IL-1alpha are among the most frequently found aAb to cytokines in humans. To establish an animal model with aAb to IL-1alpha, we immunised mice with recombinant murine IL-1alpha. Unprimed and Bacille Calmette-Guérin (BCG)-primed BALB/cA mice were vaccinat...

  3. 1,25D3 enhances antitumor activity of gemcitabine and cisplatin in human bladder cancer models

    Ma, Yingyu; Yu, Wei-Dong; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Background 1,25 dihydroxyvitamin D3 (1,25D3) potentiates the cytotoxic effects of several common chemotherapeutic agents. The combination of gemcitabine and cisplatin (GC) is a current standard chemotherapy regimen for bladder cancer. We investigated whether 1,25D3 could enhance the antitumor activity of GC in bladder cancer model systems. Methods Human bladder cancer T24 and UMUC3 cells were pretreated with 1,25D3 followed by GC. Apoptosis were assessed by annexin V staining. Caspase activation was examined by immunoblot analysis and substrate-based caspase activity assay. The cytotoxic effects were examined using MTT and in vitro clonogenic assay. p73 protein levels were assessed by immunoblot analysis. Knockdown of p73 was achieved by siRNA. The in vivo antitumor activity was assessed by in vivo excision clonogenic assay and tumor regrowth delay in the T24 xenograft model. Results 1,25D3 pretreatment enhanced GC-induced apoptosis and the activities of caspases- 8, 9 and 3 in T24 and UMUC3 cells. 1,25D3 synergistically reduced GC-suppressed surviving fraction in T24 cells. 1,25D3, gemcitabine, or cisplatin induced p73 accumulation, which was enhanced by GC or 1,25D3 and GC. p73 expression was lower in human primary bladder tumor tissue compared with adjacent normal tissue. Knockdown of p73 increased clonogenic capacity of T24 cells treated with 1,25D3, GC or 1,25D3 and GC. 1,25D3 and GC combination enhanced tumor regression compared with 1,25D3 or GC alone. Conclusions 1,25D3 potentiates GC-mediated growth inhibition in human bladder cancer models in vitro and in vivo, which involves p73 induction and apoptosis. PMID:20564622

  4. Cytokine vaccination: neutralising IL-1alpha autoantibodies induced by immunisation with homologous IL-1alpha

    Svenson, M; Hansen, M B; Thomsen, A R; Diamant, Marcus; Nansen, A; Rieneck, K; Otterness, I G; Bendtzen, K

    High-affinity IgG autoantibodies (aAb) to IL-1alpha are among the most frequently found aAb to cytokines in humans. To establish an animal model with aAb to IL-1alpha, we immunised mice with recombinant murine IL-1alpha. Unprimed and Bacille Calmette-Guérin (BCG)-primed BALB/cA mice were vaccinated...... with IL-1alpha coupled to purified protein derivative of tuberculin (PPD). Both unprimed and primed animals developed IgG aAb to IL-1alpha. These aAb persisted at high levels more than 100 days after vaccination and did not cross-react with murine IL-1beta. The induced anti-IL-1alpha aAb inhibited...... induced in mice by vaccination with recombinant murine IL-1alpha conjugated to PPD. Studies of the effects of IL-1alpha aAb in such animals may help clarify the importance of naturally occurring IL-1alpha aAb in humans and permit the evaluation of future therapies with cytokine aAb in patients with...

  5. In vitro formation of 25-hydroxyvitamin D3 metabolites in endometrium: dependence on the hormonal status of the rat.

    Acker, G M; Garabedian, M; Guillozo, H; Pecquinot, M A; Balsan, S

    1982-12-01

    Rat myometrial tissue and endometrial cells were incubated with labeled 25-hydroxyvitamin D3 ([3H-26,27] 25OHD3) for 70 min at 37 C, and the resulting metabolites were isolated by sequential Sephadex LH-20 chromatography and high performance liquid chromatography. Two peaks more polar than 25OHD3 were present on the Sephadex LH-20 chromatograms. One of these metabolites had an identical chromatographic behavior on three different HPLC systems and an identical sensitivity to periodate cleavage as biosynthetic [3H-26,27] 24,25-dihydroxyvitamin D3 ([3H-26,27]24,25-(OH)2D3]. The in vitro production of this putative 24,25-(OH)2D3 was significantly higher in castrated animals than in normal adult rats. Treatment of rats with 17 beta-estradiol and/or medroxyprogesterone acetate reversed the effect of ovariectomy on 25OHD3 conversion. The in vitro production of the putative 24,25-(OH)2D3 was low during the estrous cycle and the initial stage of pregnancy. A dramatic increase in its production was observed on days 12 and 14 of pregnancy. 25OHD3 conversion was higher in endometrium than in myometrium under every experimental condition tested. These results demonstrate the ability of rat uterine tissue to convert 25OHD3 into more polar derivatives in vitro, and show the influence of the hormonal status of the rat on this in vitro capacity. PMID:6982812

  6. Anti-IL-1alpha autoantibodies in early rheumatoid arthritis

    Forslind, K; Svensson, Birte; Svenson, M;

    2001-01-01

    To investigate the potential predictive value of autoantibodies against IL1-alpha (anti-IL-1alpha) in patients with early rheumatoid arthritis (RA).......To investigate the potential predictive value of autoantibodies against IL1-alpha (anti-IL-1alpha) in patients with early rheumatoid arthritis (RA)....

  7. The association of 25-hydroxyvitamin D3 and D2 with behavioural problems in childhood.

    Anna-Maija Tolppanen

    Full Text Available Higher serum concentrations of 25-hydroxyvitamin D (25(OHD, an indicator of vitamin D synthesis and intake, have been associated with better mental health and cognitive function. Concentrations of 1,25-dihydroxyvitamin D(3 (the active vitamin D(3 metabolite have been associated with openness and extrovert behaviour, but 25(OHD concentrations have not been associated with behavioural problems in humans.We investigated the prospective association between the different forms of 25(OHD - 25(OHD(3 and 25(OHD(2- and childhood behavioural problems in Avon Longitudinal Study of Parents and Children (ALSPAC. Serum 25(OHD(3 and 25(OHD(2 concentrations were assessed at mean age 9.9 years. Incident behavioural problems were assessed with Strengths and Difficulties Questionnaire (SDQ; emotional symptoms, conduct problems, hyperactivity-inattention problems, peer relationship problems and pro-social behaviour subscales and total difficulties score at mean age 11.7. Sample sizes varied between 2413-2666 depending on the outcome.Higher 25(OHD(3 concentrations were weakly associated with lower risk of prosocial problems (fully adjusted odds ratio: OR (95% confidence interval: CI 0.85 (0.74, 0.98. Serum 25(OHD(3 or 25(OHD(2 concentrations were not associated with other subscales of SDQ or total difficulties score after adjusting for concfounders and other measured analytes related to vitamin D.Our findings do not support the hypothesis that 25-hydroxyvitamin D status in childhood has important influences on behavioural traits in humans.

  8. Pathological study on the effect of vitamin D3 on sepsis experimentally induced in rats by cecal ligation and punctures

    A.M. Al-Saidya

    2014-06-01

    Full Text Available The aim of this study was to investigate the effects of the Vitamin D3 on the rats with sepsis that experimentally induced by cecal ligation and puncture. 100 Rats were divided into 5 groups, these include untreated control group, sham-operated group, CLP group and 2 treated groups pretreated daily a Subcutaneous injections of 1,25-dihydroxyvitamin D3 100 ng/kg for 3 days, then one of the pretreated groups subjected to sepsis accomplished by abdominal surgery comprising a cecal ligation and puncture. The following parameters were recorded: survival rate, hematological examinations and histopathological changes of the liver and heart were examined. It was found that vitamin D3 pretreated showed improvement in the survival rats and enhancement in the blood leukocyte count, also protect the rats from thrombocytopenia and Disseminated Intravascular Coagulation (DIC, but vitamin D3 pretreated show slight improvement in the histopathological lesions in the liver and heart due to cecal ligation and puncture sepsis.

  9. Effect of 1,24R-dihydroxyvitamin D3 on the growth of human keratinocytes.

    Matsumoto, K

    1990-02-01

    The effect of 1,24R-dihydroxyvitamin D3 (1,24R(OH)2D3), a synthetic analogue of a biologically active form of vitamin D3 (1,25-dihydroxyvitamin D3, 1,25(OH)2D3), on the growth of human keratinocytes cultured in serum-free medium was investigated. The growth of cultured normal human keratinocytes was inhibited by 65% by 10(-8)M 1,24R(OH)2D3 and by 90% by 10(-7)M 1,24(OH)2D3. It inhibited cell growth almost completely at 10(-6)M. The DNA synthesis of keratinocytes was also inhibited with 1,24R(OH)2D3 by 27% at 10(-8)M, 59% at 10(-7)M, and 92% at 10(-6)M. The inhibition of cell growth and DNA synthesis were more remarkable by 1,24R(OH)2D3 than by 1,25(OH)2D3. 1,24R(OH)2D3 also inhibited the growth of keratinocytes derived from patients with psoriasis vulgaris; the growth inhibitory effect was again more remarkable with 1,24R(OH)2D3 than with 1,25(OH)2D3. The viability and protein synthesis of keratinocytes were not affected by 1,24R(OH)2D3, suggesting that the growth inhibitory effect is due to its biological activity, not to cytotoxicity. The binding of [3H]-labeled 1,25(OH)2D3 to its receptor in the cytosolic fraction of cultured keratinocytes was competitively substituted by unlabeled 1,24R(OH)2D3 as well as 1,25(OH)2D3, suggesting that 1,24R(OH)2D3 binds to the 1,25(OH)2D3 receptor. It was found that the affinity of 1,24R(OH)2D3 for the receptor was slightly higher than that of 1,25(OH)2D3. These results demonstrate that 1,24R(OH)2D3 functions as a potent growth inhibitor in vitro in human keratinocytes from both normal and psoriatic epidermis, and it possesses a higher affinity for the 1,25(OH)2D3 receptor in cultured human keratinocytes. The difference in affinity of 1,24R(OH)2D3 for the 1,25(OH)2D3 receptor correlates with its greater inhibition of keratinocyte growth than 1,25(OH)2D3. 1,24R(OH)2D3 may be useful in the treatment of psoriasis.

  10. Measurement of vitamin D3 metabolites in smelter workers exposed to lead and cadmium

    Chalkley, S. R.; Richmond, J; Barltrop, D.

    1998-01-01

    OBJECTIVES: To investigate the effects of lead and cadmium on the metabolic pathway of vitamin D3. METHODS: Blood and urinary cadmium and urinary total proteins were measured in 59 smelter workers occupationally exposed to lead and cadmium. In 19 of these workers, the plasma vitamin D3 metabolites, (25-hydroxycholecalciferol (25 OHD3), 24R, 25-dihydroxycholecalciferol (24R,25(OH)2D3) and 1 alpha,25- dihydroxycholecalciferol (1 alpha, 25(OH)2D3)) were measured together with blood lead. V...

  11. Biochemical characterization of nuclear receptors for vitamin D3 and glucocorticoids in prostate stroma cell microenvironment

    Highlights: → Fibroblasts from benign and carcinoma-associated stroma were biochemically characterized for VDR and GR function as transcription factors in prostate stroma cell microenvironment. → Decreased SRC-1/CBP coactivators recruitment to VDR and GR may result in hormone resistance to 1,25D3 in stromal cell microenvironment prostate cancer. → 1a,25-Dyhidroxyvitamin D3 (1,25D3) and glucocorticoids, either alone or in combination, may not be an alternative for 'some' advanced prostate cancers that fails androgen therapies. -- Abstract: The disruption of stromal cell signals in prostate tissue microenvironment influences the development of prostate cancer to androgen independence. 1α,25-Dihydroxyvitamin D3 (1,25D3) and glucocorticoids, either alone or in combination, have been investigated as alternatives for the treatment of advanced prostate cancers that fails androgen therapies. The effects of glucocorticoids are mediated by the intracellular glucocorticoid receptor (GR). Similarly, the effect of 1,25D3 is mediated by the 1,25D3 nuclear receptor (VDR). In this study, fibroblasts from benign- (BAS) and carcinoma-associated stroma (CAS) were isolated from human prostates to characterize VDR and GR function as transcription factors in prostate stroma. The VDR-mediated transcriptional activity assessed using the CYP24-luciferase reporter was limited to 3-fold induction by 1,25D3 in 9 out of 13 CAS (70%), as compared to >10-fold induction in the BAS clinical sample pair. Expression of His-tagged VDR (Ad-his-VDR) failed to recover the low transcriptional activity of the luciferase reporter in 7 out of 9 CAS. Interestingly, expression of Ad-his-VDR successfully recovered receptor-mediated induction in 2 out of the 9 CAS analyzed, suggesting that changes in the receptor protein itself was responsible for decreased response and resistance to 1,25D3 action. Conversely, VDR-mediated transcriptional activity was more efficient in 4 out of 13 CAS (30%), as compared

  12. Is the metabolism of 25-hydroxyvitamin D3 age-dependent in dairy cows?

    Wilkens, Mirja R; Cohrs, Imke; Lifschitz, Adrian L; Fraser, David R; Olszewski, Katharina; Schröder, Bernd; Breves, Gerhard

    2013-07-01

    It has recently been demonstrated that prepartum administered 25-hydroxyvitamin D3 (25-OHD3) is a promising candidate to assist the maintenance of peripartal calcium homeostasis in dairy cows. Since the incidence of peripartal hypocalcemia and the reported beneficial effects of the treatment are both associated with the lactation number, we investigated pharmacokinetic aspects of 25-OHD3 related to the age of dairy cows. The daily oral administration of 3mg 25-OHD3 in rapeseed oil as well as a treatment with 4 and 6mg included in the feed during the last eight to ten days of gestation resulted in linear dosage- and age-dependent increases in plasma 25-OHD3. After parturition the administration was stopped and blood samples were taken to calculate the plasma half-life. Irrespective of the supplemented dosage, cows starting the 2nd lactation showed a significantly longer plasma half-life of 25-OHD3 than cows starting the 3rd or higher lactation. Age-dependent differences in the increase of plasma 25-OHD3 could already be found before parturition when calcium homeostasis was not yet significantly challenged. Additionally, no correlations between plasma half-life of 25-OHD3 and 1,25-dihydroxyvitamin D3, PTH or the bone resorption marker CrossLaps were observed after parturition. Thus we conclude that the influence of the lactation number on the pharmacokinetics of 25-OHD3 is related directly to the age of the cows. This article is part of a Special Issue entitled 'Vitamin D Workshop'. PMID:23220546

  13. Involvement of 1,25D3-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells

    In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH)2D3 traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH)2D3 called 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D3-MARRS expression modulates 1,25(OH)2D3 activity in breast cancer cells. Relative levels of 1,25D3-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D3-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH)2D3 in MCF-7 cells, a ribozyme construct designed to knock down 1,25D3-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D3-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH)2D3 ( IC50 56 ± 24 nM) compared to controls (319 ± 181 nM; P 3-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH)2D3. Knockdown of 1,25D3-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D3-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH)2D3 in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D3-MARRS expression or activity as anticancer agents.

  14. 1α,25(OH)2D3 Suppresses the Migration of Ovarian Cancer SKOV-3 Cells through the Inhibition of Epithelial–Mesenchymal Transition

    Hou, Yong-Feng; Gao, Si-Hai; Wang, Ping; Zhang, He-Mei; Liu, Li-Zhi; Ye, Meng-Xuan; Zhou, Guang-Ming; Zhang, Zeng-Li; Li, Bing-Yan

    2016-01-01

    Ovarian cancer is the most lethal gynecological malignancy due to its high metastatic ability. Epithelial-mesenchymal transition (EMT) is essential during both follicular rupture and epithelium regeneration. However, it may also accelerate the progression of ovarian carcinomas. Experimental studies have found that 1α,25-dihydroxyvitamin-D3 [1α,25(OH)2D3] can inhibit the proliferation of ovarian cancer cells. In this study, we investigated whether 1α,25(OH)2D3 could inhibit the migration of ovarian cancer cells via regulating EMT. We established a model of transient transforming growth factor-β1(TGF-β1)-induced EMT in human ovarian adenocarcinoma cell line SKOV-3 cells. Results showed that, compared with control, 1α,25(OH)2D3 not only inhibited the migration and the invasion of SKOV-3 cells, but also promoted the acquisition of an epithelial phenotype of SKOV-3 cells treated with TGF-β1. We discovered that 1α,25(OH)2D3 increased the expression of epithelial marker E-cadherin and decreased the level of mesenchymal marker, Vimentin, which was associated with the elevated expression of VDR. Moreover, 1α,25(OH)2D3 reduced the expression level of transcription factors of EMT, such as slug, snail, and β-catenin. These results indicate that 1α,25(OH)2D3 suppresses the migration and invasion of ovarian cancer cells by inhibiting EMT, implying that 1α,25(OH)2D3 might be a potential therapeutic agent for the treatment of ovarian cancer. PMID:27548154

  15. Phosphorylation of human vitamin D receptor serine-182 by PKA suppresses 1,25(OH)2D3-dependent transactivation

    The human vitamin D receptor (hVDR), which is a substrate for several protein kinases, mediates the actions of its 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) ligand to regulate gene expression. To determine the site, and functional impact, of cAMP-dependent protein kinase (PKA)-catalyzed phosphorylation of hVDR, we generated a series of C-terminally truncated and point mutant receptors. Incubation of mutant hVDRs with PKA and [γ-32P]ATP, in vitro, or overexpressing them in COS-7 kidney cells labeled with [32P]orthophosphate, revealed that serine-182 is the predominant residue in hVDR phosphorylated by PKA. An aspartate substituted mutant (S182D), incorporating a negative charge to mimic phosphorylation, displayed only 50% of the transactivation capacity in response to 1,25(OH)2D3 of either wild-type or an S182A-altered hVDR. When the catalytic subunit of PKA was overexpressed, a similar reduction in wild-type but not S182D hVDR transactivity was observed. In a mammalian two-hybrid system, S182D bound less avidly than wild-type or S182A hVDR to the retinoid X receptor (RXR) heterodimeric partner that co-mediates vitamin D responsive element recognition and transactivation. These data suggest that hVDR serine-182 is a primary site for PKA phosphorylation, an event that leads to an attenuation of both RXR heterodimerization and resultant transactivation of 1,25(OH)2D3 target genes

  16. 99mTc(V)-DMSA scintigraphy in monitoring the response of bone disease to vitamin D3 therapy in renal osteodystrophy

    Renal osteodystrophy (ROD) is a common and serious complication for uremic patients and patients are treated with 1,25-dihydroxyvitamin D3. The bone scanning agent 99mTc-phosphate has also been used to evaluate in ROD but it is not clear that bone scintigraphy has a role in the follow-up of treatment. In this study 99mTc(V)-DMSA scintigraphy was performed in eleven patients [age 40.7±17.3 (mean ±SD) yr] with ROD before and after vitamin D3 therapy. Images were obtained after hemodialysis performed following tracer injection to maintain normal blood levels of the radiopharmaceutical and to reduce soft tissue activity. Lumbar vertebra-to-soft tissue uptake ratios (LUR) were quantified with the planar 99mTc(V)-DMSA images. Alkaline phosphatase and parathyroid hormone levels after treatment had significantly decreased compared with pre-therapy. In all patients there was visually decreased uptake in bone structures after treatment. After treatment the mean LUR ratio was significantly lower than those of before treatment (3.59±2.63 vs. 1.65±0.62; p=0.01). LUR values were correlated with pre-therapy alkaline phosphatase and parathyroid hormone. These findings indicate that 99mTc(V)-DMSA scintigraphy is sensitive in evaluating the response of ROD to vitamin D3 therapy. (author)

  17. Neuroprotective and immune effects of active forms of vitamin D3 and docosahexaenoic acid in Alzheimer disease patients

    Milan Fiala

    2011-12-01

    Full Text Available ABSTRACT:Neurodegenerative diseases, in particular Alzheimer disease (AD, afflict an increasing proportion of the older population with aging. Decreased exposure to sunlight and decreased consumption of fish, fruits, and vegetables, are two epidemiological factors that appear to be related to the pandemic of AD. In addition to replacing simple with complex carbohydrates and avoiding saturated fat, two nutritional components, vitamin D (acting through the endogenous hormonal form 1,25 dihydroxyvitamin D, 1,25D and docosahexaenoic acid (DHA (acting through the docosanoid lipidic modulators resolvins and neuroprotectins have high potential for prevention of Alzheimer disease. 1,25D is a neuroprotective, it acts both directly and indirectly in neurons by improving the clearance of amyloid-beta by macrophages/microglia. Resolvins and neuroprotectins inhibit amyloidogenic processing of amyloid-precursor protein, inflammatory cytokines, and apoptosis. It is likely that the increased consumption of vitamin D and fish oil could prevent neurodegeneration in some subjects by maintaining adequate endocrine, paracrine, and/or autocrine production of 1,25D and the DHA-derived lipidic modulators. Before firm recommendations of the dosage can be proposed, however, the in vivo effects of vitamin D3 and DHA supplementation should be investigated by prospective studies.

  18. PGC-1alpha-mediated adaptations in skeletal muscle

    Olesen, Jesper; Kiilerich, Kristian; Pilegaard, Henriette

    2010-01-01

    Lifestyle-related diseases are rapidly increasing at least in part due to less physical activity. The health beneficial effects of regular physical activity include metabolic adaptations in skeletal muscle, which are thought to be elicited by cumulative effects of transient gene responses to each...... involved in angiogenesis and the anti-oxidant defence as well as to affect expression of inflammatory markers. Exercise increases PGC-1alpha transcription and potentially PGC-1alpha activity through post-translational modifications, and concomitant PGC-1alpha-mediated gene regulation is suggested to be an...... underlying mechanism for adaptations in skeletal muscle, when exercise is repeated. The current review presents some of the key findings in PGC-1alpha-mediated regulation of metabolically related, anti-oxidant and inflammatory proteins in skeletal muscle in the basal state and in response to exercise...

  19. Intersecting D3-D3' system at finite temperature

    Cottrell, William; Hashimoto, Akikazu; Loveridge, Andrew; Pettengill, Duncan

    2015-01-01

    We analyze the embedding of probe D3'-brane in the background of $N$ D3-branes at finite temperature, oriented such that they overlap in 1+1 dimensions. As the distance between the D3'-brane and the D3 brane is varied, we find solutions that appear to intersect the horizon. We find that this brane bends logarithmically, making the precise definition of the distance separating the D3 and the D3' brane scale dependent. We also consider the embedding of a probe M5-brane in the background of $N$ M2-branes at finite temperature, for which the logarithmic bending is absent. These systems appear to open a path to probe physics near and behind the black hole horizon in a strictly field theoretic framework.

  20. Crystallization and preliminary X-ray diffraction studies of vitamin D3 hydroxylase, a novel cytochrome P450 isolated from Pseudonocardia autotrophica

    The purification, crystallization and preliminary X-ray diffraction studies of vitamin D3 hydroxylase isolated from P. autotrophica are reported. Vitamin D3 hydroxylase (Vdh) is a novel cytochrome P450 monooxygenase isolated from the actinomycete Pseudonocardia autotrophica and consisting of 403 amino-acid residues. Vdh catalyzes the activation of vitamin D3via sequential hydroxylation reactions: these reactions involve the conversion of vitamin D3 (cholecalciferol or VD3) to 25-hydroxyvitamin D3 [25(OH)VD3] and the subsequent conversion of 25(OH)VD3 to 1α,25-dihydroxyvitamin D3 [calciferol or 1α,25(OH)2VD3]. Overexpression of recombinant Vdh was carried out using a Rhodococcus erythropolis expression system and the protein was subsequently purified and crystallized. Two different crystal forms were obtained by the hanging-drop vapour-diffusion method at 293 K using polyethylene glycol as a precipitant. The form I crystal belonged to the trigonal space group P31, with unit-cell parameters a = b = 61.7, c = 98.8 Å. There is one Vdh molecule in the asymmetric unit, with a solvent content of 47.6%. The form II crystal was grown in the presence of 25(OH)VD3 and belonged to the orthorhombic system P212121, with unit-cell parameters a = 63.4, b = 65.6 c = 102.2 Å. There is one Vdh molecule in the asymmetric unit, with a solvent content of 46.7%. Native data sets were collected to resolutions of 1.75 and 3.05 Å for form I and form II crystals, respectively, using synchrotron radiation. The structure solution was obtained by the molecular-replacement method and model refinement is in progress for the form I crystal

  1. PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH2D3 signaling

    Maier Christina J

    2012-06-01

    Full Text Available Abstract Background The vitamin D3 receptor (VDR is responsible for mediating the pleiotropic and, in part, cell-type-specific effects of 1,25-dihydroxyvitamin D3 (calcitriol on the cardiovascular and the muscle system, on the bone development and maintenance, mineral homeostasis, cell proliferation, cell differentiation, vitamin D metabolism, and immune response modulation. Results Based on data obtained from genome-wide yeast two-hybrid screenings, domain mapping studies, intracellular co-localization approaches as well as reporter transcription assay measurements, we show here that the C-terminus of human PIM-1 kinase isoform2 (amino acid residues 135–313, a serine/threonine kinase of the calcium/calmodulin-regulated kinase family, directly interacts with VDR through the receptor’s DNA-binding domain. We further demonstrate that PIM-1 modulates calcitriol signaling in HaCaT keratinocytes by enhancing both endogenous calcitriol response gene transcription (osteopontin and an extrachromosomal DR3 reporter response. Conclusion These results, taken together with previous reports of involvement of kinase pathways in VDR transactivation, underscore the biological relevance of this novel protein-protein interaction.

  2. 1,25-Dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) Signaling Capacity and the Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer (NSCLC): Implications for Use of 1,25(OH){sub 2}D{sub 3} in NSCLC Treatment

    Upadhyay, Santosh Kumar; Verone, Alissa; Shoemaker, Suzanne [Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States); Qin, Maochun; Liu, Song [Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States); Campbell, Moray; Hershberger, Pamela A., E-mail: pamela.hershberger@roswellpark.org [Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States)

    2013-11-08

    1,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) exerts anti-proliferative activity by binding to the vitamin D receptor (VDR) and regulating gene expression. We previously reported that non-small cell lung cancer (NSCLC) cells which harbor epidermal growth factor receptor (EGFR) mutations display elevated VDR expression (VDR{sup high}) and are vitamin D-sensitive. Conversely, those with K-ras mutations are VDR{sup low} and vitamin D-refractory. Because EGFR mutations are found predominately in NSCLC cells with an epithelial phenotype and K-ras mutations are more common in cells with a mesenchymal phenotype, we investigated the relationship between vitamin D signaling capacity and the epithelial mesenchymal transition (EMT). Using NSCLC cell lines and publically available lung cancer cell line microarray data, we identified a relationship between VDR expression, 1,25(OH){sub 2}D{sub 3} sensitivity, and EMT phenotype. Further, we discovered that 1,25(OH){sub 2}D{sub 3} induces E-cadherin and decreases EMT-related molecules SNAIL, ZEB1, and vimentin in NSCLC cells. 1,25(OH){sub 2}D{sub 3}-mediated changes in gene expression are associated with a significant decrease in cell migration and maintenance of epithelial morphology. These data indicate that 1,25(OH){sub 2}D{sub 3} opposes EMT in NSCLC cells. Because EMT is associated with increased migration, invasion, and chemoresistance, our data imply that 1,25(OH){sub 2}D{sub 3} may prevent lung cancer progression in a molecularly defined subset of NSCLC patients.

  3. Treatment with 1,25(OH)2D3induced HDAC2 expression and reduced NF-κB p65 expression in a rat model of OVA-induced asthma

    Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH)2D3 on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH)2D3 pretreatment, 1,25(OH)2D3 treatment, Dx treatment, and Dx and 1,25(OH)2D3 treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH)2D3 reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH)2D3 and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH)2D3might be useful as a novel HDAC2 activator in the treatment of asthma

  4. Hepcidin and 1,25(OH)2D3 effectively restore Ca2+ transport in β-thalassemic mice: reciprocal phenomenon of Fe2+ and Ca2+ absorption.

    Kraidith, Kamonshanok; Svasti, Saovaros; Teerapornpuntakit, Jarinthorn; Vadolas, Jim; Chaimana, Rattana; Lapmanee, Sarawut; Suntornsaratoon, Panan; Krishnamra, Nateetip; Fucharoen, Suthat; Charoenphandhu, Narattaphol

    2016-07-01

    Previously, β-thalassemia, an inherited anemic disorder with iron overload caused by loss-of-function mutation of β-globin gene, has been reported to induce osteopenia and impaired whole body calcium metabolism, but the pathogenesis of aberrant calcium homeostasis remains elusive. Herein, we investigated how β-thalassemia impaired intestinal calcium absorption and whether it could be restored by administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or hepcidin, the latter of which was the liver-derived antagonist of intestinal iron absorption. The results showed that, in hemizygous β-globin knockout (BKO) mice, the duodenal calcium transport was lower than that in wild-type littermates, and severity was especially pronounced in female mice. Both active and passive duodenal calcium fluxes in BKO mice were found to be less than those in normal mice. This impaired calcium transport could be restored by 7-day 1,25(OH)2D3 treatment. The 1,25(OH)2D3-induced calcium transport was diminished by inhibitors of calcium transporters, e.g., L-type calcium channel, NCX1, and PMCA1b, as well as vesicular transport inhibitors. Interestingly, the duodenal calcium transport exhibited an inverse correlation with transepithelial iron transport, which was markedly enhanced in thalassemic mice. Thus, 3-day subcutaneous hepcidin injection and acute direct hepcidin exposure in the Ussing chamber were capable of restoring the thalassemia-associated impairment of calcium transport; however, the positive effect of hepcidin on calcium transport was completely blocked by proteasome inhibitors MG132 and bortezomib. In conclusion, both 1,25(OH)2D3 and hepcidin could be used to alleviate the β-thalassemia-associated impairment of calcium absorption. Therefore, our study has shed light on the development of a treatment strategy to rescue calcium dysregulation in β-thalassemia. PMID:27245334

  5. Histochemical examination of adipose derived stem cells combined with β-TCP for bone defects restoration under systemic administration of 1α,25(OH)2D3.

    Feng, Wei; Lv, Shengyu; Cui, Jian; Han, Xiuchun; Du, Juan; Sun, Jing; Wang, Kefeng; Wang, Zhenming; Lu, Xiong; Guo, Jie; Oda, Kimimitsu; Amizuka, Norio; Xu, Xin; Li, Minqi

    2015-09-01

    The purpose of this study was to evaluate the effects of osteogenic differentiated adipose-derived stem cell (ADSC) loaded beta-tricalcium phosphate (β-TCP) in the restoration of bone defects under intraperitoneal administration of 1α,25-dihydroxyvitamin D3(1α,25(OH)2D3). ADSCs were isolated from the fat tissue of 8 week old Wister rats and co-cultured with β-TCP for 21 days under osteogenic induction. Then the ADSC-β-TCP complexes were implanted into bone defects in the femora of rats. 1α,25(OH)2D3 (VD) or normal saline (NS) was administrated intraperitoneally every other day after the surgery. Femora were harvested at day 7, day 14 and day 28 post-surgery. There were 4 groups for all specimens: β-TCP-NS group; β-TCP-ADSC-NS group; β-TCP-VD group and β-TCP-ADSC-VD group. Alkaline phosphatase (ALP) was up-regulated obviously in ADSC groups compared with non-ADSC groups at day 7, day 14 and day 28, although high expression of runt-related transcription factor 2 (RUNX2) was only seen at day 7. Furthermore, the number of TRAP-positive osteoclasts and the expression of cathepsin K (CK) were significantly decreased in VD groups compared with non-VD groups at day 7 and day 14. As a most significant finding, the β-TCP-ADSC-VD group showed the highest BV/TV ratio compared with the other three groups at day 28. Taken together, ADSC-loaded β-TCP under the administration of 1α,25(OH)2D3 made a promising therapy for bone defects restoration. PMID:26046276

  6. An investigation of the toxicity of 1alpha-hydroxycholecalciferol to calves.

    Mullen, P A; Bedford, P G; Ingram, P L

    1979-11-01

    Two calves were treated with 15 micrograms/kg body weight of 1alpha-hydroxycholecalciferol by intramuscular injection on four occasions at seven-day intervals. Anorexia and reduced water consumption persisted for 48 h after each treatment. No clinical signs of iridocyclitis or any other lesions of the eyes were present at any time either macroscopically or microscopically. After the first treatment serum GOT and GD activities increased, serum AP activity fell, serum concentrations of calcium and inorganic phosphate increased, and magnesium concentrations decreased. The reduced serum magnesium concentrations and increased calcium and inorganic phosphate concentrations were maintained for the duration of the experiment, but there was no evidence of a cumulative effect of successive treatments. Blood urea concentrations increased after the third treatment. The gross pathology at post mortem examination was similar to that reported after vitamin D3 supplementation. PMID:542713

  7. Autoantibodies against interleukin 1alpha in rheumatoid arthritis: association with long term radiographic outcome

    Graudal, N A; Svenson, M; Tarp, Ulrik; Garred, P; Jurik, Anne Grethe; Bendtzen, K

    2002-01-01

    To investigate the possible association of interleukin 1alpha autoantibodies (IL1alpha aAb) with the long term course of joint erosion in patients with rheumatoid arthritis (RA).......To investigate the possible association of interleukin 1alpha autoantibodies (IL1alpha aAb) with the long term course of joint erosion in patients with rheumatoid arthritis (RA)....

  8. 1,25(OH)2D3 and Ca-binding protein in fetal rats: Relationship to the maternal vitamin D status

    The autonomy and functional role of fetal 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] were investigated in nondiabetic and diabetic BB rats fed diets containing 0.85% calcium-0.7% phosphorus or 0.2% calcium and phosphorus and in semistarved rats on the low calcium-phosphorus diet. The changes in maternal and fetal plasma 1,25(OH)2D3 were similar: the levels were increased by calcium-phosphorus restriction and decreased by diabetes and semistarvation. Maternal and fetal 1,25(OH)2D3 levels were correlated. The vitamin D-dependent calcium-binding proteins (CaBP9K and CaBP28K) were measured in multiple maternal and fetal tissues and in the placenta of nondiabetic, diabetic, and calcium-phosphorus-restricted rats. The distributions of CaBP9K and CaBP28K in the pregnant rat were similar to that of the growing rat. The increased maternal plasma 1,25(OH)2D3 levels in calcium-phosphorus-restricted rats were associated with higher duodenal CaBP9K and renal CaBPs, but placental CaBP9K was not different. In diabetic pregnant rats, duodenal CaBP9K was not different. In diabetic pregnant rats, duodenal CaBP9K tended to be lower, while renal CaBPs were normal; placental CaBP9K was decreased. The results indicate that in the rat fetal 1,25(OH)2D3 depends on maternal 1,25(OH)2D3 or on factors regulating maternal 1,25(OH)2D3. The lack of changes in fetal CaBP in the presence of altered fetal plasma 1,25(OH)2D3 levels confirms earlier data showing that 1,25(H)2D3 has a limited hormonal function during perinatal development in the rat

  9. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P; Thomsen, Allan R

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  10. $C^{1,\\alpha}$ estimates for the parallel refractor

    Abedin, Farhan; Tralli, Giulio

    2016-01-01

    We consider the parallel refractor problem when the planar radiating source lies in a medium having higher refractive index than the medium in which the target is located. We prove local $C^{1,\\alpha}$ estimates for parallel refractors under suitable geometric assumptions on the source and target, and under local regularity hypotheses on the target set. We also discuss existence of refractors under energy conservation assumptions.

  11. Changes in the vitamin D endocrine system and bone turnover after oral vitamin D3 supplementation in healthy adults: results of a randomised trial

    Holvik Kristin

    2012-06-01

    Full Text Available Abstract Background There is uncertainty as to which intake of vitamin D is needed to suppress PTH and maintain normal bone metabolism throughout winter at northern latitudes. We aimed to investigate whether four weeks’ daily supplementation with 10 μg vitamin D3 from fish oil produced a greater change in serum vitamin D metabolites, parathyroid hormone, and bone turnover in healthy adults compared with solid multivitamin tablets. Furthermore, it was studied whether age, gender, ethnic background, body mass index, or serum concentrations at baseline predicted the magnitude of change in these parameters. Methods Healthy adults aged 19–48 years living in Oslo, Norway (59°N were randomised to receive a daily dose of 10 μg vitamin D3 given as fish oil capsules or multivitamin tablets during four weeks in late winter. Serum samples from baseline and after 28 days were analysed for 25-hydroxyvitamin D (s-25(OHD, 1,25-dihydroxyvitamin D (s-1,25(OH2D, intact parathyroid hormone (s-iPTH, and osteoclast-specific tartrate-resistant acid phosphatase 5b (s-TRACP. Fifty-five eligible participants completed the intervention (74% of those randomised. Results S-25(OHD increased by mean 34.1 (SD 13.1 nmol/l, p 2D increased by mean 13 (SD 48 pmol/l, p = 0.057; and s-TRACP increased by mean 0.38 (SD 0.33 U/l, p  Conclusions Four weeks of daily supplementation with 10 μg vitamin D3 decreased mean s-iPTH and increased s-TRACP concentration, and this did not differ by mode of administration. Our results suggest an increased bone resorption following vitamin D supplementation in young individuals, despite a decrease in parathyroid hormone levels. Trial Registration ClinicalTrials.gov: NCT01482689

  12. Vitamin D Metabolism in Experimental Animals: Kinetics of Solanum glaucophyllum Active Principle in Cows and Assessment of Calcium, Phosphorus and Vitamin D3 Requirements in Broilers

    In 1990 our group began working on the development of a sensitive method to measure the active principle (1,25 dihydroxy-vitamin D3-glycoside) of Solanum glaucophyllum, a plant which grows wild in Argentina and causes calcinosis in breeding cattle. A radioreceptor assay (RRA) was applied to measure the free vitamin D metabolite in the plasma of experimental cows that were fed the plant in order to study the kinetics of the active principle. The 1,25 dihydroxyvitamin D concentration in plasma showed a 33-fold increase four h post treatment. Peak levels were recorded 12 h after dosing, decreased by half between 24-36 h and continued declining until 48 h. More recently, this plant has been proposed as a source of vitamin D activity (VDA) and thereby may contribute to improving Ca and P utilisation by animals and environmental care. The effects of different dietary levels of calcium (Ca) and phosphorus (P) over the range between commercial recommendations (control) and two thirds of NRC requirements (basal) as well as different sources of those minerals were therefore studied in experiments covering either a part or the entire breeding cycle of broilers through measurements of productive, nutritional, skeletal and biochemical parameters. Results indicated that birds fed diets deficient in these minerals exhibited skeletal responses but nevertheless showed better productive responses than those fed control diets. The high levels of vitamin D3 employed in commercial farms (25 times NRC recommendations) could enable birds fed on deficient diets to increase synthesis of the active metabolite of the vitamin in order to partially overcome deficiencies in these minerals. On the other hand, such high levels of vitamin D3 might have been unbalanced for optimal efficiency, at least under the experimental farm conditions of the present work. (author)

  13. Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha

    Elongation Factor 1 alpha (EF-1 alpha), an important eukaryotic translation factor, transports charged aminoacyl-tRNA from the cytosol to the ribosomes during poly-peptide synthesis. Metabolic radiolabeling with [3H] ethanolamine shows that, in all cells examined, EF-1 alpha is the major radiolabeled protein. Radiolabeled EF-1 alpha has an apparent Mr = 53,000 and a basic isoelectric point. It is cytosolic and does not contain N-linked oligosaccharides. Trypsin digestion of murine EF-1 alpha generated two major [3H]ethanolamine-labeled peptides. Three peptides were sequenced and were identical to two distinct regions of the human EF-1 alpha protein. Blank sequencing cycles coinciding with glutamic acid in the human cDNA-derived sequence were also found to release [3H]ethanolamine, and compositional analysis of these peptides confirmed the presence of glutamic acid. Dansylation analysis demonstrates that the amine group of the ethanolamine is blocked. These results indicate that EF-1 alpha is posttranslationally modified by the covalent attachment of ethanolamine via an amide bond to at least two specific glutamic acid residues (Glu-301 and Glu-374). The hydroxyl group of the attached ethanolamine was shown by mass spectrometry and compositional analysis, to be further modified by the addition of a phosphoglycerol unit. This novel posttranslational modification may represent an important alteration of EF-1 alpha, comparable to the regulatory effects of posttranslational methylation of EF-1 alpha lysine residues

  14. The D3 Middleware Architecture

    Walton, Joan; Filman, Robert E.; Korsmeyer, David J.; Lee, Diana D.; Mak, Ron; Patel, Tarang

    2002-01-01

    DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid-dynamics) model executions. DARWIN captures, stores and indexes data; manages derived knowledge (such as visualizations across multiple datasets); and provides an environment for designers to collaborate in the analysis of test results. DARWIN is an interesting application because it supports high-volumes of data. integrates multiple modalities of data display (e.g., images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and views of data. Here we provide an overview of the architecture of D3, the third generation of DARWIN. Earlier versions of DARWIN were characterized by browser-based interfaces and a hodge-podge of server technologies: CGI scripts, applets, PERL, and so forth. But browsers proved difficult to control, and a proliferation of computational mechanisms proved inefficient and difficult to maintain. D3 substitutes a pure-Java approach for that medley: A Java client communicates (though RMI over HTTPS) with a Java-based application server. Code on the server accesses information from JDBC databases, distributed LDAP security services, and a collaborative information system. D3 is a three tier-architecture, but unlike 'E-commerce' applications, the data usage pattern suggests different strategies than traditional Enterprise Java Beans - we need to move volumes of related data together, considerable processing happens on the client, and the 'business logic' on the server-side is primarily data integration and collaboration. With D3, we are extending DARWIN to handle other data domains and to be a distributed system, where a single login allows a user

  15. Plasma and milk concentrations of vitamin D3 and 25-hydroxy vitamin D3 following intravenous injection of vitamin D3 or 25-hydroxy vitamin D3.

    Hidiroglou, M; Knipfel, J E

    1984-01-01

    Plasma levels of vitamin D3 or 25-hydroxyvitamin D3 in ewes after administration of a single massive intravenous dose of vitamin D3 (2 X 10(6) IU) or 25-hydroxy vitamin D3 (5 mg) were determined at zero, one, two, three, five, ten and 20 days postinjection. In six ewes injected with vitamin D3 conversion of vitamin D3 to 25-hydroxy vitamin D3 resulted in a six-fold increase in the plasma 25-hydroxy vitamin D3 level within one day. Elevated levels were maintained until day 10 but by day 20 a s...

  16. Major vault protein forms complexes with hypoxia-inducible factor (HIF)-1alpha and reduces HIF-1alpha level in ACHN human renal adenocarcinoma cells.

    Iwashita, Ken-ichi; Ikeda, Ryuji; Takeda, Yasuo; Sumizawa, Tomoyuki; Furukawa, Tatsuhiko; Yamaguchi, Tatsuya; Akiyama, Shin-ichi; Yamada, Katsushi

    2010-04-01

    Vaults are evolutionarily highly conserved ribonucleoprotein (RNP) particles with a hollow barrel-like structure. Although roles in multidrug resistance and innate immunity have been suggested, the physiological function of vaults remains unclear. Major vault protein (MVP), the main component of the vault particle, has been reported to be induced by hypoxia. However, there are no reports about the effect of vaults on cellular responses to hypoxia. We thus examined whether vaults are implicated in cellular responses to hypoxia. In this study, we focused on hypoxia-inducible factor-1alpha (HIF-1alpha), which is a master regulator of hypoxic responses, and found that: (i) MVP knockdown by RNA interference increases HIF-1alpha protein levels induced by hypoxia and hypoxia mimetics; (ii) MVP knockdown does not affect HIF-1alpha mRNA levels, but decreases the ubiquitination and degradation of HIF-1alpha protein; and (iii) vaults form complexes with HIF-1alpha, PHD2, and pVHL. Taken together, these results suggest that vaults function as scaffolds in HIF-1alpha degradation pathway and promote the ubiquitination and degradation of HIF-1alpha. PMID:20175781

  17. Phosphoglycerylethanolamine posttranslational modification of plant eukaryotic elongation factor 1 alpha

    Eukaryotic elongation factor 1alpha (eEF-1A) is a multifunctional protein. There are three known posttranslational modifications of eEF-1A that could potentially affect its function. Except for phosphorylation, the other posttranslational modifications have not been demonstrated in plants. Using matrix-assisted laser desorption/ionization-mass spectrometry and peptide mass mapping, we show that carrot (Daucus carota L.) eEF-1A contains a phosphoglycerylethanolamine (PGE) posttranslational modification. eEF-1A was the only protein labeled with [14C]ethanolamine in carrot cells and was the predominant ethanolamine-labeled protein in Arabidopsis seedlings and tobacco (Nicotiana tabacum L.) cell cultures. In vivo-labeling studies using [3H]glycerol, [32P][Pi,[14C]myristic acid, and [14C]linoleic acid indicated that the entire phospholipid phosphatidylethanolamine is covalently attached to the protein. The PGE lipid modification did not affect the partitioning of eEF-1A in Triton X-114 or its actin-binding activity in in vitro assays. Our in vitro data indicate that this newly characterized posttranslational modification alone does not affect the function of eEF-1A. Therefore, the PGE lipid modification may work in combination with other posttranslational modifications to affect the distribution and the function of eEF-1A within the cell

  18. Augmentation of host resistance to microbial infections by recombinant human interleukin-1 alpha.

    Minami, A.; Fujimoto, K; Ozaki, Y.; Nakamura, S.

    1988-01-01

    Recombinant human interleukin-1 alpha augmented resistance of mice to microbial infections caused by Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae, Salmonella typhimurium, and Candida albicans. The effective doses of interleukin-1 alpha ranged from 0.01 to 10 micrograms per mouse, depending on the infecting organism, route of administration, and challenge dose. Intravenous interleukin-1 alpha was, dose for dose, more effective than intravenous ...

  19. Membrane Localization, Caveolin-3 Association and Rapid Actions of Vitamin D Receptor in Cardiac Myocytes

    Zhao, Guisheng; Simpson, Robert U.

    2009-01-01

    The active form of vitamin D, 1alpha, 25-Dihydroxyvitamin D3 (1, 25(OH)2D3), mediates both genomic and rapid non-genomic actions in heart cells. We have previously shown that the vitamin D receptor (VDR) is located in the t-tubular structure of cardiomyocytes. Here we show that VDR specifically interacts with Caveolin-3 in the t-tubules and sarcolemma of adult rat cardiac myocytes. Co-Immunoprecipitation studies using VDR antibodies revealed that Caveolin-3 specifically co-precipitates with t...

  20. Crystal structure of porcine reproductive and respiratory syndrome virus leader protease Nsp1alpha.

    Sun, Yuna; Xue, Fei; Guo, Yu; Ma, Ming; Hao, Ning; Zhang, Xuejun C; Lou, Zhiyong; Li, Xuemei; Rao, Zihe

    2009-11-01

    Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV), a positive-strand RNA virus that belongs to the Arteriviridae family of Nidovirales, has been identified as the causative agent of PRRS. Nsp1alpha is the amino (N)-terminal protein in a polyprotein encoded by the PRRSV genome and is reported to be crucial for subgenomic mRNA synthesis, presumably by serving as a transcription factor. Before functioning in transcription, nsp1alpha proteolytically releases itself from nsp1beta. However, the structural basis for the self-releasing and biological functions of nsp1alpha remains elusive. Here we report the crystal structure of nsp1alpha of PRRSV (strain XH-GD) in its naturally self-processed form. Nsp1alpha contains a ZF domain (which may be required for its biological function), a papain-like cysteine protease (PCP) domain with a zinc ion unexpectedly bound at the active site (which is essential for proteolytic self-release of nsp1alpha), and a carboxyl-terminal extension (which occupies the substrate binding site of the PCP domain). Furthermore, we determined the exact location of the nsp1alpha self-processing site at Cys-Ala-Met180 downward arrowAla-Asp-Val by use of crystallographic data and N-terminal amino acid sequencing. The crystal structure also suggested an in cis self-processing mechanism for nsp1alpha. Furthermore, nsp1alpha appears to have a dimeric architecture both in solution and as a crystal, with a hydrophilic groove on the molecular surface that may be related to nsp1alpha's biological function. Compared with existing structure and function data, our results suggest that PRRSV nsp1alpha functions differently from other reported viral leader proteases, such as that of foot-and-mouth disease. PMID:19706710

  1. Photosensitization of trans-Vitamin D3 to cis-Vitamin D3 in Heterogeneous System

    Yong Bin HAN; Jin Ping CHEN; Yun Yan GAO; Bai Ning LIU; Guo Qiang YANG; Yi LI

    2005-01-01

    Two modes of heterogeneous photoisomerization of trans-vitamin D3 to cis-vitamin D3are described. The occurrence of isomerization on the substrate bounded to the polymeric support gives us the possibility in succession synthesis of 1α-hydroxyvitamin D3. The polymer-bound anthracene can sensitize isomerization of trans-vitamin D3 to cis-vitamin D3 efficiently and ease the separation process.

  2. Combination effect of recombinant human interleukin-1 alpha with antimicrobial agents.

    Nakamura, S.; Minami, A.; Fujimoto, K; Kojima, T.

    1989-01-01

    Combination effects of recombinant human interleukin-1 alpha with ceftazidime, moxalactam, gentamicin, enoxacin, amphotericin B, miconazole, or an immunoglobulin preparation were evaluated in systemic infections with Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans in normal mice and systemic infection with P. aeruginosa in mice with leukopenia induced by preadministration of cyclophosphamide. Synergistic effects were generally observed at interleukin-1 alpha doses as low a...

  3. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    Jinquan, T; Jacobi, H H; Jing, C; Reimert, C M; Quan, S; Dissing, S; Poulsen, Lars K.; Skov, P S

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function o...

  4. Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene

    Yoshioka, Toyo; Inagaki, Kenjiro [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Sakai, Mashito; Ogawa, Wataru; Hosooka, Tetsuya [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Iguchi, Haruhisa; Watanabe, Eijiro; Matsuki, Yasushi; Hiramatsu, Ryuji [Genomic Science Laboratories, DainipponSumitomo Pharma Co. Ltd., 4-2-1 Takatsukasa, Takarazuka 665-8555 (Japan); Kasuga, Masato [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655 (Japan)

    2009-04-17

    The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.

  5. Molecular cloning and phylogenetic analysis of Clonorchis sinensis elongation factor-1alpha.

    Kim, Tae Yun; Cho, Pyo Yun; Na, Jong Won; Hong, Sung-Jong

    2007-11-01

    Elongation factor-1 (EF-1) plays a primary role in protein synthesis, e.g., in the regulation of cell growth, aging, motility, embryogenesis, and signal transduction. The authors identified a clone CsIH23 by immunoscreening a Clonorchis sinensis cDNA library. The cDNA of CsIH23 was found to have a putative open reading frame containing 461 amino acids with a predicted molecular mass of 50.5 kDa. Its polypeptide sequence was highly homologous with EF-1alpha of parasites and vertebrate animals. CsIH23 polypeptide contained three GTP/GDP-binding sites, one ribosome-binding domain, one actin-binding domain, one tRNA-binding domain, and two glyceryl-phosphoryl-ethanolamine attachment sites. Based on these primary and secondary structural similarities, it was concluded that CsIH23 cDNA encodes C. sinensis EF-1alpha (CsEF-1alpha). In a molecular phylogenic tree, CsEF-1alpha clustered with the EF-1alpha of helminthic parasites. Subsequently, CsEF-1alpha recombinant protein was bacterially overexpressed and purified by Ni-NTA affinity column chromatography. Immunoblotting using CsEF-1alpha recombinant protein produced positive signals for all serum samples tested from clonorchiasis, opisthorchiasis viverinii, and paragonimiasis westermani patients and normal healthy controls. These findings suggest that recombinant CsEF-1alpha is of limited usefulness as serodiagnostic antigen for clonorchiasis. PMID:17674047

  6. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice

    Leick, Lotte; Hellsten, Ylva; Fentz, Joachim;

    2009-01-01

    littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein...... skeletal muscle VEGF protein expression approximately 50% in WT mice but with no effect in PGC-1alpha KO mice. Furthermore, a training-induced prevention of an age-associated decline in VEGF protein content was observed in WT but not in PGC-1alpha KO muscles. In addition, repeated AICAR treatments...... increased skeletal muscle VEGF protein expression approximately 15% in WT but not in PGC-1alpha KO mice. This study shows that PGC-1alpha is essential for exercise-induced upregulation of skeletal muscle VEGF expression and for a training-induced prevention of an age-associated decline in VEGF protein...

  7. Protective role of 1,25(OH2vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice

    Zhao Hongwei

    2012-05-01

    Full Text Available Abstract Background Intestinal hyper-permeability plays a critical role in the etiopathogenesis of inflammatory bowel disease (IBD by affecting the penetration of pathogens, toxic compounds and macromolecules. 1,25-dihydroxyvitamin D3 [1,25(OH2D3], the active form of vitamin D, has been shown to be an important regulator of IBD and recent epidemiology suggests that patients with IBD have an impaired vitamin D status. The purpose of this study is to investigate the possible protective effects of 1,25(OH2D3 on mucosal injury and epithelial barrier disruption on dextran sulfate sodium (DSS-induced acute colitis model. Methods We used DSS-induced acute colitis model to investigate the protective effects of 1,25(OH2D3 on mucosal injury and epithelial barrier integrity. Severity of colitis was evaluated by disease activity index (DAI, body weight (BW change, colon length, histology, myeloperoxidase (MPO activity, and proinflammatory cytokine production including tumor necrosis factor-α (TNF-α and interferon-γ (IFN-γ. In vitro the protective role of 1,25(OH2D3 was assessed by incubating Caco-2 cells with or without DSS and measuring transepithelial electrical resistance (TEER and fluorescein isothiocyanate dextran (FITC-D. The intestinal permeability was analyzed by FITC-D, bacterial translocation and measurement of lipopolysaccharide (LPS. Ultrastructural features of the colon tissue and Caco-2 cell monolayer were observed by electron microscopy. Expressions of tight junction (TJ proteins in the colon mucosa and Caco-2 cells were detected by immunohistochemistry, immunofluorescence, Western blot and real-time fluorescent quantitative PCR, respectively. Results DSS-induced acute colitis model was characterized by a reduced BW, AUC of BW, serum calcium, higher DAI, AUC of DAI, shortened colon length, elevated MPO activity, worsened histologic inflammation, increased mononuclear cell numbers in mesenteric lymph nodes (MLNs and colonic lamina propria

  8. Metabolism of the vitamin D3 analogue EB1089 alters receptor complex formation and reduces promoter selectivity

    Quack, Marcus; Mørk Hansen, Christina; Binderup, Ernst; Kissmeyer, Anne-Marie; Carlberg, Carsten

    1998-01-01

    1α,25-dihydroxyvitamin3 (VD) is a nuclear hormone that has important cell regulatory functions but also a strong calcemic effect. EB1089 is a potent antiproliferative VD analogue, which has a modified side chain resulting in increased metabolic stability and a selective functional profile. Since EB1089 is considered for potential systemic application, it will be investigated to what extent its recently identified metabolites (hydroxylated at positions C26 and C26a) contribute to biological pr...

  9. Clinical significance of serum 1,25-(OH)2D3 level in elderly patients with gastric cancer%血清1,25-二羟维生素D3水平在老年胃癌患者中的临床意义

    李强; 苏艳玲; 任为国

    2014-01-01

    Objective To detect the serum level of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in the elderly patients with gastric cancer, and further explore the correlations of the level with the clinical features and prognosis of the disease. Methods A total of 65 elderly patients (ranging 62 to 83 years old) with newly diagnosed gastric cancer pathologically in our hospital from September 2009 to September 2012 were enrolled in this study. Their morning fasting blood samples before and after treatment were collected for the determination of serum level of 1,25-(OH)2D3 by enzyme-linked immunosorbent assay (ELISA). The correlations of the levels with clinical pathological features and prognosis were analyzed. Results The original level of 1,25-(OH)2D3 was (18.26±4.13)µg/L in these 65 patients after pathological diagnosis before any treatment, and the advanced level became (9.26±3.21)µg/L after treatment, with statistical difference (P=0.028). The original and advanced levels were significantly correlated with clinical stages and cell differentiation (P0.05). The patients with high levels of 1,25-(OH)2D3 (>20µg/L) had a higher overall survival rate compared with those with lower levels (≤20µg/L;P<0.05). Conclusion Serum level of 1,25-(OH)2D3 might be used as an prognostic index for gastric cancer of the elderly patients.%目的:检测老年胃癌患者血清中1,25-二羟维生素D3[1,25-(OH)2D3]浓度,探讨其浓度水平与胃癌临床病例特征及预后的关系。方法选取惠州市第三人民医院2009年9月至2012年9月65例老年胃癌患者,利用酶联免疫吸附测定(ELISA)血清1,25-(OH)2D3的浓度,并分析其浓度水平与临床病理特征和预后的相关性。结果在65例样本中测得,经病理诊断后未接受任何治疗之前的血清1,25-(OH)2D3起始浓度为(18.26±4.13)µg/L,经治疗评估,出现进展时的浓度为(9.26±3.21)µg/L,差异具有统计学意义(P=0.028)。二者与肿瘤的临

  10. ADD1/SREBP1c activates the PGC1-alpha promoter in brown adipocytes

    Hao, Qin; Hansen, Jacob B; Petersen, Rasmus K;

    2010-01-01

    Cold adaptation elicits a paradoxical simultaneous induction of fatty acid synthesis and beta-oxidation in brown adipose tissue. We show here that cold exposure coordinately induced liver X receptor alpha (LXRalpha), adipocyte determination and differentiation-dependent factor 1 (ADD1)/sterol...... regulatory element-binding protein-1c (SREBP1c) and peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC1alpha) in brown and inguinal white adipose tissues, but not in epididymal white adipose tissue. Using in vitro models of white and brown adipocytes we demonstrate that beta...... regulator of PGC1alpha expression in brown adipose tissue....

  11. Data visualization with D3.js cookbook

    Zhu, Nick Qi

    2013-01-01

    Packed with practical recipes, this is a step-by-step guide to learning data visualization with D3 with the help of detailed illustrations and code samples.If you are a developer familiar with HTML, CSS, and JavaScript, and you wish to get the most out of D3, then this book is for you. This book can also serve as a desktop quick-reference guide for experienced data visualization developers.

  12. Development of lymphoproliferative diseases by hypoxia inducible factor-1alpha is associated with prolonged lymphocyte survival.

    Eisaburo Sueoka

    Full Text Available Hypoxia-inducible factor-1alpha (HIF-1 alpha plays an essential role in the regulation of various genes associated with low oxygen consumption. Elevated expression of HIF-1alpha has been reported to be associated with tumor progression, invasion and metastasis in many cancers. To investigate the role of HIF-1alpha in tumor development and metastasis, we established transgenic mice constitutively expressing HIF1A gene under regulation of the cytomegalovirus gene promoter. Although HIF-1alpha protein levels varied among organs, expression of HIF1A mRNA in most organs gradually increased in an age-dependent manner. The transgenic mice showed no gross morphological abnormality up to 8 weeks after birth, although they subsequently developed tumors in the lymphoid, lung, and breast; the most prominent tumor was lymphoma appearing in the intestinal mucosa and intra-mesenchymal tissues. The prevalence of tumors reached 80% in 13 months after birth. The constitution of lymphocyte populations in the transgenic mice did not differ from that in wild-type mice. However, lymphocytes of the transgenic mice revealed prolonged survival under long-term culture conditions and revealed increased resistance to cytotoxic etoposide. These results suggest that HIF-1alpha itself is not oncogenic but it may play an important role in lymphomagenesis mediated through the prolonged survival of lymphocytes in this transgenic mouse model.

  13. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination. PMID:12181572

  14. Influence of the combination of 25-hydroxyvitamin D3 and a diet negative in cation-anion difference on peripartal calcium homeostasis of dairy cows.

    Wilkens, M R; Oberheide, I; Schröder, B; Azem, E; Steinberg, W; Breves, G

    2012-01-01

    Around parturition, many dairy cows experience varying degrees of hypocalcemia, which increases the incidence of several diseases in early lactation. In the current study, an established concept of feeding a diet negative in cation-anion difference (DCAD) was combined with oral supplementation of 25-hydroxyvitamin D(3) (25-OHD(3)) from d 270 of gestation until parturition. Fifty-six dairy cows were divided into 2 feeding groups (low DCAD and control). Fourteen animals of each group received a daily dosage of 3mg of 25-OHD(3). From the beginning of the treatment to d 10 after parturition, plasma samples for analysis of 25-OHD(3), 1,25-dihydroxyvitamin D(3), parathyroid hormone (PTH), Ca(2+), phosphate, the bone resorption marker CrossLaps, and osteocalcin were collected every other day, at calving, and at 6, 12, and 24h after calving. Urine samples for determination of macrominerals and measures of acid-base status were collected on d 6 of treatment and on d 6 after calving. The induction of a compensated metabolic acidosis by the animals on the DCAD diet could be demonstrated by decreased urinary pH. A linear correlation between treatment duration and the plasma concentration of 25-OHD(3) indicated effective absorption of 25-OHD(3) in supplemented animals. The mean plasma concentrations of Ca(2+) from d -4 prepartum to d 4 postpartum were significantly higher in animals treated with the combination of the low DCAD diet and 25-OHD(3) supplementation (1.24±0.02 mmol/mL) compared with the 3 other groups (low DCAD: 1.17±0.02 mmol/mL; control diet plus 25-OHD(3): 1.16±0.02 mmol/mL; control diet: 1.18±0.02 mmol/mL). We postulate that the increased tissue responsiveness to parathyroid hormone induced by the low DCAD is crucial for the observed positive effects of the 25-OHD(3) treatment. PMID:22192194

  15. Classical Stability of Black D3-branes

    Kang, G; Kang, Gungwon; Lee, Jungjai

    2004-01-01

    We have investigated the classical stability of charged black $D3$-branes in type IIB supergravity under small perturbations. For s-wave perturbations it turns out that black $D3$-branes are unstable when they have small charge density. As the charge density increases for given mass density, however, the instability decreases down to zero at a certain finite value of the charge density, and then black $D3$-branes become stable all the way down to the extremal point. It has also been shown that such critical value at which its stability behavior changes agrees very well with the predicted one by the thermodynamic stability behavior of the corresponding black hole system through the Gubser-Mitra conjecture. Unstable mode solutions we found involve non-vanishing fluctuations of the self-dual five-form field strength. Some implications of our results are also discussed.

  16. Assay of 25-OH vitamin D3

    A simplified version of the competitive protein-binding assay for 25-OH vitamin D3 (25-OH D3) derived from the method of Belsey et al. is presented. The procedure does not include a chromatographic step, and it is performed on an alcoholic extract of 0.1 ml plasma or serum. Normal rat serum (1:20000) was used as binding protein. No β-lipoproteins were added to the assay buffer. A 10% displacement of the tracer was observed at 0.04 ng/tube and a 50% displacement at 0.15 ng/tube, allowing for the measurement of 25-OH D3 concentrations between 2 ng/ml and 200 ng/ml. Mean values in a normal group were 23.1+-6.5 ng/ml (range 16-37 ng/ml, n=11). (author)

  17. Calcium uptake by brush-border and basolateral membrane vesicles in chick duodenum

    Takito, J.; Shinki, T.; Sasaki, T.; Suda, T. (Showa Univ., Tokyo (Japan))

    1990-01-01

    Calcium uptake was compared between duodenal brush-border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) isolated from vitamin D-deficient chicks and those injected with 625 ng of 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)2D3). The uptake by BBMV in the 1 alpha,25-(OH)2D3-treated birds attained a maximum (280% of the control) at 12 h and was maintained at an elevated level (210%) at 24 h after the injection of the vitamin. In contrast, ATP-dependent calcium uptake by BLMV reached a maximum (185% of the control) at 6 h and decreased to the control level at 24 h. The kinetic analysis revealed that 1 alpha,25(OH)2D3 increased Vmax values without any changes in apparent Km values in both BBMV and BLMV. The activity of ATP-dependent calcium uptake was localized exclusively in the basolateral membrane, and the activity was inhibited by vanadate (IC50, 1 microM), but not by oligomycin, theophylline, calmodulin, trifluoperazine, or calbindin D28K. These results indicate that calcium transport through both the brush-border and basolateral membranes is involved in the 1 alpha,25(OH)2D3-dependent intestinal calcium absorption. The initiation of calcium absorption by 1 alpha,25(OH)2D3 appears to be due to an increase in the rate of calcium efflux at the basolateral membrane rather than the rate at the brush-border membrane.

  18. Calcium uptake by brush-border and basolateral membrane vesicles in chick duodenum

    Calcium uptake was compared between duodenal brush-border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) isolated from vitamin D-deficient chicks and those injected with 625 ng of 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. The uptake by BBMV in the 1 alpha,25-(OH)2D3-treated birds attained a maximum (280% of the control) at 12 h and was maintained at an elevated level (210%) at 24 h after the injection of the vitamin. In contrast, ATP-dependent calcium uptake by BLMV reached a maximum (185% of the control) at 6 h and decreased to the control level at 24 h. The kinetic analysis revealed that 1 alpha,25(OH)2D3 increased Vmax values without any changes in apparent Km values in both BBMV and BLMV. The activity of ATP-dependent calcium uptake was localized exclusively in the basolateral membrane, and the activity was inhibited by vanadate (IC50, 1 microM), but not by oligomycin, theophylline, calmodulin, trifluoperazine, or calbindin D28K. These results indicate that calcium transport through both the brush-border and basolateral membranes is involved in the 1 alpha,25(OH)2D3-dependent intestinal calcium absorption. The initiation of calcium absorption by 1 alpha,25(OH)2D3 appears to be due to an increase in the rate of calcium efflux at the basolateral membrane rather than the rate at the brush-border membrane

  19. TIF1alpha: a possible link between KRAB zinc finger proteins and nuclear receptors

    Le Douarin, B; You, J; Nielsen, Anders Lade;

    1998-01-01

    Ligand-induced gene activation by nuclear receptors (NRs) is thought to be mediated by transcriptional intermediary factors (TIFs), that interact with their ligand-dependent AF-2 activating domain. Included in the group of the putative AF-2 TIFs identified so far is TIF1alpha, a member of a new...... family of proteins which contains an N-terminal RBCC (RING finger-B boxes-coiled coil) motif and a C-terminal bromodomain preceded by a PHD finger. In addition to these conserved domains present in a number of transcriptional regulatory proteins, TIF1alpha was found to contain several protein......-protein interaction sites. Of these, one specifically interacts with NRs bound to their agonistic ligand and not with NR mutants that are defective in the AF-2 activity. Immediately adjacent to this 'NR box', TIF1alpha contains an interaction site for members of the chromatin organization modifier (chromo) family, HP...

  20. Murine model of otitis media with effusion: immunohistochemical demonstration of IL-1 alpha antigen expression.

    Johnson, M D; Contrino, A; Contrino, J; Maxwell, K; Leonard, G; Kreutzer, D

    1994-09-01

    Recent studies have suggested that cytokines likely play a central role in the formation and maintenance of otitis media with effusion (OME). Currently, there is no immunologically defined animal model for the study of cytokines as they contribute to the formation of OME. In the present study, a murine model of OME, using eustachian tube blockage via an external surgical approach, was developed. The murine model temporal bone histology appears to mimic the histology found in chronic otitis media with effusion in humans. Additionally, using this murine model, interleukin-1 alpha (IL-1 alpha) expression was detected in the middle ear using standard immunohistochemical techniques. IL-1 alpha seemed localized to the epithelial lining of the middle ear as well as 5% to 10% of inflammatory cells. This model should provide the necessary tool to further study the immunologic aspects of OME. PMID:8072363

  1. Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1alpha

    Kang, Sona; Bajnok, Laszlo; Longo, Kenneth A;

    2005-01-01

    Activation of canonical Wnt signaling inhibits brown adipogenesis of cultured cells by impeding induction of PPARgamma and C/EBPalpha. Although enforced expression of these adipogenic transcription factors restores lipid accumulation and expression of FABP4 in Wnt-expressing cells, additional...... expression of PGC-1alpha and UCP1, the presence of unilocular lipid droplets and expression of white adipocyte genes suggest conversion of brown adipose tissue to white. Reciprocal expression of Wnt10b with UCP1 and PGC-1alpha in interscapular tissue from cold-challenged or genetically obese mice provides...

  2. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    Greenberger, Lee M; Horak, Ivan D; Filpula, David; Sapra, Puja; Westergaard, Majken; Frydenlund, Henrik F; Albaek, Charlotte; Schrøder, Henrik; Ørum, Henrik

    2008-01-01

    pathways, is associated with poor prognosis in many types of cancer. Therefore, down-regulation of HIF-1alpha protein by RNA antagonists may control cancer growth. EZN-2968 is a RNA antagonist composed of third-generation oligonucleotide, locked nucleic acid, technology that specifically binds and inhibits......-regulation of endogenous HIF-1alpha and vascular endothelial growth factor in the liver. The effect can last for days after administration of single dose of EZN-2968 and is associated with long residence time of locked nucleic acid in certain tissues. In efficacy studies, tumor reduction was found in nude mice...

  3. Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1alpha

    Wang, W.; Poovaiah, B. W.

    1999-01-01

    A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) was previously cloned and characterized in this laboratory. To investigate the biological functions of CCaMK, the yeast two-hybrid system was used to isolate genes encoding proteins that interact with CCaMK. One of the cDNA clones obtained from the screening (LlEF-1alpha1) has high similarity with the eukaryotic elongation factor-1alpha (EF-1alpha). CCaMK phosphorylated LlEF-1alpha1 in a Ca2+/calmodulin-dependent manner. The phosphorylation site for CCaMK (Thr-257) was identified by site-directed mutagenesis. Interestingly, Thr-257 is located in the putative tRNA-binding region of LlEF-1alpha1. An isoform of Ca2+-dependent protein kinase (CDPK) phosphorylated multiple sites of LlEF-1alpha1 in a Ca2+-dependent but calmodulin-independent manner. Unlike CDPK, CCaMK phosphorylated only one site, and this site is different from CDPK phosphorylation sites. This suggests that the phosphorylation of EF-1alpha by these two kinases may have different functional significance. Although the phosphorylation of LlEF-1alpha1 by CCaMK is Ca2+/calmodulin-dependent, in vitro binding assays revealed that CCaMK binds to LlEF-1alpha1 in a Ca2+-independent manner. This was further substantiated by coimmunoprecipitation of CCaMK and EF-1alpha using the protein extract from lily anthers. Dissociation of CCaMK from EF-1alpha by Ca2+ and phosphorylation of EF-1alpha by CCaMK in a Ca2+/calmodulin-dependent manner suggests that these interactions may play a role in regulating the biological functions of EF-1alpha.

  4. Vitamin D-3 and 25-hydroxyvitamin D-3 in raw and cooked pork cuts

    Clausen, Ina; Jakobsen, Jette; Leth, Torben;

    2003-01-01

    The contents of vitamin D-3 and its metabolically active metabolite 25-hydroxyvitamin D-3 (25OHD(3)) were examined by HPLC in different parts of four common raw pork cuts (loin boneless, leg inside, thin belly, neck) and in cooked meat (loin boneless). In whole raw pork cuts, varying in fat content...... from 2.2 to 26.5 g/100 g, concentrations of vitamin D-3 from 0.05 to 0.21 mug/100 g were measured. Pork cuts also contained significant amounts of 25OHD(3), from 0.07 to 0.14 mug/100 g. Further, the study demonstrated that most of the vitamin D-3 and 25OHD(3) is located in the fatty tissues, and that...... rind, despite its limited fat content, has a high concentration of vitamin D-3 and 25OHD(3). Cooking increased vitamin D-3 and 25OHD(3) calculated per 100 g of tissue in all parts and in the whole cut (in whole cuts in raw and cooked meat, respectively: vitamin D-3: 0.15 (0.08-0.24) mug/100 g and 0...

  5. Effective hydrodynamics of black D3-branes

    Emparan, Roberto; Rangamani, Mukund

    2013-01-01

    The long-wavelength effective field theory of world-volume fluctuations of black D3-branes is shown to be a hydrodynamical system to leading order in a gradient expansion. We study the system on a fiducial `cutoff' surface: the fluctuating geometry imprints its dynamics on the surface via an induced stress tensor whose conservation encapsulates the hydrodynamical description. For a generic non-extremal D3-brane, as we move our cutoff surface from the asymptotically flat near-boundary region to the near-horizon region, this hydrodynamical system interpolates between a non-conformal relativistic fluid and a non-relativistic incompressible fluid. We also consider the dependence on the deviation from extremality of the D3-branes. In the near-extremal case we recover the description in terms of a conformal relativistic fluid encountered in the AdS/CFT context. We argue that this system allows us therefore to explore the various connections that have hitherto been suggested relating the dynamics of gravitational sy...

  6. Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats

    Shankar, J. [Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago (United States); Thippegowda, P.B., E-mail: btprabha@uic.edu [Department of Pharmacology, (M/C 868), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612 (United States); Kanum, S.A. [Department of Chemistry, Yuvaraj' s College, University of Mysore, Mysore (India)

    2009-09-18

    Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells and arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.

  7. Interleukin-1 alpha, interleukin-1 beta and interleukin-8 gene expression in human aural cholesteatomas.

    Kim, C S; Lee, C H; Chung, J W; Kim, C D

    1996-03-01

    Bone destruction is a common characteristic feature of chronic otitis media, especially aural cholesteatoma. A number of immunohistochemical studies have suggested that interleukin-1 (IL-1) may be responsible for cholesteatomatous bone destruction. We designed this study to present the mRNA expression patterns of IL-1 alpha, IL-1 beta, and IL-8, which can induce and activate the leukocyte, the major reservoir of potent proteolytic enzymes. Total RNAs were extracted from aural cholesteatomas, external auditory canal skin (EACS), postauricular skin (PAS), and granulation tissues and transcribed into cDNAs. cDNAs were amplified by using PCR technique with primers for IL-1 alpha, IL-1 beta, IL-8, and beta-actin. Amplified products were hybridized with each internal probe and the relative density was measured. In granulation tissues, the relative density of IL-1 alpha was greater than that of other tissues. The ratio of IL-1 beta and IL-8 of aural cholesteatoma was significantly higher than that of EACS and PAS. We suggest that both of IL-1 alpha and IL-1 beta may play a role in the pathological changes, and that IL-8, which is mainly produced from cholesteatomatous epithelium, may have an important role in the pathological changes of cholesteatomas. PMID:8725537

  8. Pyhlogeny f the Neocallimastigomycota based on action and elongation 1-alpha sequences

    Fliegerová, Kateřina; Novotná, Zuzana; Hoffmann, K.; Eckart, M.; Voigt, K.

    Clermont - Ferrand: INRA, 2008. s. 1-1. [6th IMRA-RRI SYMPOSIUM : Gut microbiome -Functionality, Interaction with the Host and Impact on the Environment. 18.06.-20.06.2008, Clermont - Ferrand] Institutional research plan: CEZ:AV0Z50450515 Keywords : phylogeny * 1-alpha sequences Subject RIV: EE - Microbiology, Virology

  9. PGC-1alpha Gly482Ser polymorphism associates with hypertension among Danish whites

    Andersen, Gitte; Wegner, Lise; Jensen, Dorit Packert;

    2005-01-01

    PGC-1alpha is a coactivator of numerous transcription factors and is expressed in tissues with high energy demands and abundant in mitochondria. It is induced in the myocardium on fasting and physical exercise, and cardiac-specific overexpression stimulates mitochondrial biogenesis in mice. The...

  10. The role of exercise and PGC1alpha in inflammation and chronic disease

    Handschin, Christoph; Spiegelman, Bruce M.

    2008-01-01

    Inadequate physical activity is linked to many chronic diseases. But the mechanisms that tie muscle activity to health are unclear. The transcriptional coactivator PGC1alpha has recently been shown to regulate several exercise-associated aspects of muscle function. We propose that this protein controls muscle plasticity, suppresses a broad inflammatory response and mediates the beneficial effects of exercise.