WorldWideScience

Sample records for 19f magnetic resonance

  1. Injectable hyaluronic acid hydrogel for 19F magnetic resonance imaging

    Yang, X.; Sun, Y.; Kootala, S.; Hilborn, J.; Heerschap, A.; Ossipov, D.

    2014-01-01

    We report on a 19F labeled injectable hyaluronic acid (HA) hydrogel that can be monitored by both 1H and 19F MR imaging. The HA based hydrogel formed via carbazone reaction can be obtained within a minute by simple mixing of HA-carbazate and HA-aldehyde derivatized polymers. 19F contrast agent was l

  2. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging.

    Philipp Boehm-Sturm

    Full Text Available BACKGROUND: Magnetic resonance imaging (MRI is a promising tool for monitoring stem cell-based therapy. Conventionally, cells loaded with ironoxide nanoparticles appear hypointense on MR images. However, the contrast generated by ironoxide labeled cells is neither specific due to ambiguous background nor quantitative. A strategy to overcome these drawbacks is (19F MRI of cells labeled with perfluorocarbons. We show here for the first time that human neural stem cells (NSCs, a promising candidate for clinical translation of stem cell-based therapy of the brain, can be labeled with (19F as well as detected and quantified in vitro and after brain implantation. METHODOLOGY/PRINCIPAL FINDINGS: Human NSCs were labeled with perfluoropolyether (PFPE. Labeling efficacy was assessed with (19F MR spectroscopy, influence of the label on cell phenotypes studied by immunocytochemistry. For in vitro MRI, NSCs were suspended in gelatin at varying densities. For in vivo experiments, labeled NSCs were implanted into the striatum of mice. A decrease of cell viability was observed directly after incubation with PFPE, which re-normalized after 7 days in culture of the replated cells. No label-related changes in the numbers of Ki67, nestin, GFAP, or βIII-tubulin+ cells were detected, both in vitro and on histological sections. We found that 1,000 NSCs were needed to accumulate in one image voxel to generate significant signal-to-noise ratio in vitro. A detection limit of ∼10,000 cells was found in vivo. The location and density of human cells (hunu+ on histological sections correlated well with observations in the (19F MR images. CONCLUSION/SIGNIFICANCE: Our results show that NSCs can be efficiently labeled with (19F with little effects on viability or proliferation and differentiation capacity. We show for the first time that (19F MRI can be utilized for tracking human NSCs in brain implantation studies, which ultimately aim for restoring loss of function after

  3. Tracking Transitions in Spider Wrapping Silk Conformation and Dynamics by (19)F Nuclear Magnetic Resonance Spectroscopy.

    Sarker, Muzaddid; Orrell, Kathleen E; Xu, Lingling; Tremblay, Marie-Laurence; Bak, Jessi J; Liu, Xiang-Qin; Rainey, Jan K

    2016-05-31

    Aciniform silk protein (AcSp1) is the primary component of wrapping silk, the toughest of the spider silks because of a combination of high tensile strength and extensibility. Argiope trifasciata AcSp1 contains a core repetitive domain with at least 14 homogeneous 200-amino acid units ("W" units). Upon fibrillogenesis, AcSp1 converts from an α-helix-rich soluble state to a mixed α-helical/β-sheet conformation. Solution-state nuclear magnetic resonance (NMR) spectroscopy allowed demonstration of variable local stability within the W unit, but comprehensive characterization was confounded by spectral overlap, which was exacerbated by decreased chemical shift dispersion upon denaturation. Here, (19)F NMR spectroscopy, in the context of a single W unit (W1), is applied to track changes in structure and dynamics. Four strategic positions in the W unit were mutated to tryptophan and biosynthetically labeled with 5-fluorotryptophan (5F-Trp). Simulated annealing-based structure calculations implied that these substitutions should be tolerated, while circular dichroism (CD) spectroscopy and (1)H-(15)N chemical shift displacements indicated minimal structural perturbation in W1 mutants. Fiber formation by W2 concatemers containing 5F-Trp substitutions in both W units demonstrated retention of functionality, a somewhat surprising finding in light of sequence conservation between species. Each 5F-Trp-labeled W1 exhibited a unique (19)F chemical shift, line width, longitudinal relaxation time constant (T1), and solvent isotope shift. Perturbation to (19)F chemical shift and nuclear spin relaxation parameters reflected changes in the conformation and dynamics at each 5F-Trp site upon addition of urea and dodecylphosphocholine (DPC). (19)F NMR spectroscopy allowed unambiguous localized tracking throughout titration with each perturbant, demonstrating distinct behavior for each perturbant not previously revealed by heteronuclear NMR experiments. PMID:27153372

  4. Tumour oxygenation measurements by 19F magnetic resonance imaging of perfluorocarbons

    Solid tumours are well known to be heterogeneous and contain a significant fraction of hypoxic cells, which are protected against the effects of radiotherapy. A non-invasive method for measuring tissue oxygenation would therefore be useful. The 19F magnetic resonance signals from perfluorocarbons are sensitive to oxygen concentration. We have used this property to measure tumour oxygenation of the GH3 prolactinoma, RIF-1 fibrosarcoma and SaF sarcoma in mice by fluorine magnetic resonance imaging (MRI) of intravenously injected perfluorocarbons which are taken up by macrophages in the tumour. We have also studied the injection of perfluorocarbons directly into the tumour, which allows less of the tumour to be studied but has a higher success rate and gives values more consistent with Eppendorf polarographic electrode measurements. (author)

  5. Study of fluorine in silicate glass with 19F nuclear magnetic resonance spectroscopy

    Duncan, T. M.; Douglass, D. C.; Csencsits, R.; Walker, K. L.

    1986-07-01

    We report an application of nuclear magnetic resonance (NMR) spectroscopy to the study of fluorine-doped silicate glass prepared by the modified chemical vapor deposition process, prior to drawing the rod into fibers. The silica contains 1.03-wt. % fluorine, as determined by the calibrated intensity of the 19F NMR spectrum. The isotropic chemical shift of the 19F spectrum shows that fluorine bonds only to silicon; there is no evidence of oxyfluorides. Analysis of the distribution of nuclear dipolar couplings between fluorine nuclei reveals that the relative populations of silicon monofluoride sites [Si(O-)3F] and species having near-neighbor fluorines, such as silicon difluoride sites [Si(O-)2F2], are nearly statistically random. That is, to a good approximation, the fluorine substitutes randomly into the oxygen sites of the silica network. There is no evidence of local clusters of fluorine sites, silicon trifluoride sites [Si(O-)F3], or silicon tetrafluoride (SiF4).

  6. Study of the metabolism of flucytosine in Aspergillus species by 19F nuclear magnetic resonance spectroscopy

    The metabolism of flucytosine (5FC) in two Aspergillus species (Aspergillus fumigatus and A. niger) was investigated by 19F nuclear magnetic resonance spectroscopy. In intact mycelia, 5FC was found to be deaminated to 5-fluorouracil and then transformed into fluoronucleotides; the catabolite alpha-fluoro-beta-alanine was also detected in A. fumigatus. Neither 5-fluoroorotic acid nor 5-fluoro-2'-deoxyuridine-5'-monophosphate was detected in perchloric acid extracts after any incubation with 5FC. 5FC, 5-fluorouracil, and the classical fluoronucleotides 5-fluorouridine-5'-mono-, di-, and triphosphates were identified in the acid-soluble pool. Two hydrolysis products of 5-fluorouracil incorporated into RNA, 5-fluorouridine-2'-monophosphate and 5-fluorouridine-3'-monophosphate, were found in the acid-insoluble pool. No significant differences in the metabolic transformation of 5FC were noted in the two species of Aspergillus. The main pathway of 5FC metabolism in the two species of Aspergillus studied is thus the biotransformation into ribofluoronucleotides and the subsequent incorporation of 5-fluorouridine-5'-triphosphate into RNA

  7. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI

    Balducci Anthony

    2012-06-01

    Full Text Available Abstract Background Non-invasive imaging of inflammation to measure the progression of autoimmune diseases, such as rheumatoid arthritis (RA, and to monitor responses to therapy is critically needed. V-Sense, a perfluorocarbon (PFC contrast agent that preferentially labels inflammatory cells, which are then recruited out of systemic circulation to sites of inflammation, enables detection by 19F MRI. With no 19F background in the host, detection is highly-specific and can act as a proxy biomarker of the degree of inflammation present. Methods Collagen-induced arthritis in rats, a model with many similarities to human RA, was used to study the ability of the PFC contrast agent to reveal the accumulation of inflammation over time using 19F MRI. Disease progression in the rat hind limbs was monitored by caliper measurements and 19F MRI on days 15, 22 and 29, including the height of clinically symptomatic disease. Naïve rats served as controls. The capacity of the PFC contrast agent and 19F MRI to assess the effectiveness of therapy was studied in a cohort of rats administered oral prednisolone on days 14 to 28. Results Quantification of 19F signal measured by MRI in affected limbs was linearly correlated with disease severity. In animals with progressive disease, increases in 19F signal reflected the ongoing recruitment of inflammatory cells to the site, while no increase in 19F signal was observed in animals receiving treatment which resulted in clinical resolution of disease. Conclusion These results indicate that 19F MRI may be used to quantitatively and qualitatively evaluate longitudinal responses to a therapeutic regimen, while additionally revealing the recruitment of monocytic cells involved in the inflammatory process to the anatomical site. This study may support the use of 19F MRI to clinically quantify and monitor the severity of inflammation, and to assess the effectiveness of treatments in RA and other diseases with an inflammatory

  8. 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons.

    Partlow, Kathryn C; Chen, Junjie; Brant, Jason A; Neubauer, Anne M; Meyerrose, Todd E; Creer, Michael H; Nolta, Jan A; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2007-06-01

    MRI has been employed to elucidate the migratory behavior of stem/progenitor cells noninvasively in vivo with traditional proton (1H) imaging of iron oxide nanoparticle-labeled cells. Alternatively, we demonstrate that fluorine (19F) MRI of cells labeled with different types of liquid perfluorocarbon (PFC) nanoparticles produces unique and sensitive cell markers distinct from any tissue background signal. To define the utility for cell tracking, mononuclear cells harvested from human umbilical cord blood were grown under proendothelial conditions and labeled with nanoparticles composed of two distinct PFC cores (perfluorooctylbromide and perfluoro-15-crown-5 ether). The sensitivity for detecting and imaging labeled cells was defined on 11.7T (research) and 1.5T (clinical) scanners. Stem/progenitor cells (CD34+ CD133+ CD31+) readily internalized PFC nanoparticles without aid of adjunctive labeling techniques, and cells remained functional in vivo. PFC-labeled cells exhibited distinct 19F signals and were readily detected after both local and intravenous injection. PFC nanoparticles provide an unequivocal and unique signature for stem/progenitor cells, enable spatial cell localization with 19F MRI, and permit quantification and detection of multiple fluorine signatures via 19F MR spectroscopy. This method should facilitate longitudinal investigation of cellular events in vivo for multiple cell types simultaneously. PMID:17284484

  9. 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons.

    Partlow KC; Chen J; Brant JA; Neubauer AM; Meyerrose TE; Creer MH; Nolta JA; Caruthers SD; Lanza GM; Wickline SA

    2007-06-01

    MRI has been employed to elucidate the migratory behavior of stem/progenitor cells noninvasively in vivo with traditional proton (1H) imaging of iron oxide nanoparticle-labeled cells. Alternatively, we demonstrate that fluorine (19F) MRI of cells labeled with different types of liquid perfluorocarbon (PFC) nanoparticles produces unique and sensitive cell markers distinct from any tissue background signal. To define the utility for cell tracking, mononuclear cells harvested from human umbilical cord blood were grown under proendothelial conditions and labeled with nanoparticles composed of two distinct PFC cores (perfluorooctylbromide and perfluoro-15-crown-5 ether). The sensitivity for detecting and imaging labeled cells was defined on 11.7T (research) and 1.5T (clinical) scanners. Stem/progenitor cells (CD34+ CD133+ CD31+) readily internalized PFC nanoparticles without aid of adjunctive labeling techniques, and cells remained functional in vivo. PFC-labeled cells exhibited distinct 19F signals and were readily detected after both local and intravenous injection. PFC nanoparticles provide an unequivocal and unique signature for stem/progenitor cells, enable spatial cell localization with 19F MRI, and permit quantification and detection of multiple fluorine signatures via 19F MR spectroscopy. This method should facilitate longitudinal investigation of cellular events in vivo for multiple cell types simultaneously.

  10. 1H and 19F nuclear magnetic resonance microimaging of water and chemical distribution in soil columns.

    Simpson, Myrna J; Simpson, André J; Gross, Dieter; Spraul, Manfred; Kingery, William L

    2007-07-01

    Nuclear magnetic resonance (NMR) microimaging is a noninvasive and nondestructive technique that has great potential for the study of soil processes. Hydrogen-1 NMR microimaging techniques were used to examine the distribution of water in four different soil cores. Fluorine-19 NMR microimaging is also used to study the transport of three model contaminants (hexafluorobenzene, sodium fluoride, and trifluralin) in soil columns. The 1H water distribution studies demonstrate that NMR microimaging can provide unique detail regarding the nature and location of water in soils. Image distortion (magnetic susceptibility) was observed for soil samples low in water (20-28% by weight) and that contained an iron content of 0.73 to 0.99%. Highly resolved images were obtained for the organic-rich soil (Croatan sample) and also facilitated the analysis of bound and unbound soil water through varying spin echo times. The contaminant studies with 19F NMR demonstrated that preferential flow processes can be observed in soil cores in as little as 16 h. Studies with hexafluorobenzene produced the highest quality images whereas the definition decreased over time with both trifluralin and sodium fluoride as the compounds penetrated the soil. Nonetheless, both 1H and 19F NMR microimaging techniques demonstrate great promise for studying soil processes. PMID:17665672

  11. A General and Facile Strategy to Fabricate Multifunctional Nanoprobes for Simultaneous (19)F Magnetic Resonance Imaging, Optical/Thermal Imaging, and Photothermal Therapy.

    Hu, Gaofei; Li, Nannan; Tang, Juan; Xu, Suying; Wang, Leyu

    2016-09-01

    (19)F magnetic resonance imaging (MRI), due to its high sensitivity and negligible background, is anticipated to be a powerful noninvasive, sensitive, and accurate molecular imaging technique. However, the major challenge of (19)F MRI is to increase the number of (19)F atoms while maintaining the solubility and molecular mobility of the probe. Here, we successfully developed a facile and general strategy to synthesize the multifunctional (19)F MRI nanoprobes by encapsulating the hydrophobic inorganic nanoparticles (NPs) into a hybrid polymer micelle consisting of hydrolysates of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDTES) and oleylamine-functionalized poly(succinimide) (PSIOAm). Due to their good water dispersibility, excellent molecular mobility resulting from the ultrathin coating, and high (19)F atom numbers, these nanoprobes generate a separate sharp singlet of (19)F nuclear magnetic resonance (NMR) signal (at -82.8 ppm) with half peak width of ∼28 Hz, which is highly applicable for (19)F MRI. Significantly, by varying the inorganic core from metals (Au), oxides (Fe3O4), fluorides (NaYF4:Yb(3+)/Er(3+)), and phosphates (YPO4) to semiconductors (Cu7S4 and Ag2S, ZnS:Mn(2+)) NPs, which renders the nanoprobes' multifunctional properties such as photothermal ability (Au, Cu7S4), magnetism (Fe3O4), fluorescence (ZnS:Mn(2+)), near-infrared (NIR) fluorescence (Ag2S), and upconversion (UC) luminescence. Meanwhile, the as-prepared nanoprobes possess relatively small sizes (about 50 nm), which is beneficial for long-time circulation. The proof-of-concept in vitro (19)F NMR and photothermal ablation of ZnS:Mn(2+)@PDTES/PSIOAm and Cu7S4@PDTES/PSIOAm nanoprobes further suggest that these nanoprobes hold wide potentials for multifunctional applications in biomedical fields. PMID:27534896

  12. Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19F magnetic resonance imaging in rats

    Simultaneous near-infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) were used to investigate the correlation between tumour vascular oxygenation and tissue oxygen tension dynamics in rat breast 13762NF tumours with respect to hyperoxic gas breathing. NIRS directly detected global variations in the oxygenated haemoglobin concentration (Δ[HbO2]) within tumours and oxygen tension (pO2) maps were achieved using 19F MRI of the reporter molecule hexafluorobenzene. Multiple correlations were examined between rates and magnitudes of vascular (Δ[HbO2]) and tissue (pO2) responses. Significant correlations were found between response to oxygen and carbogen breathing using either modality. Comparison of results for the two methods showed a correlation between the vascular perfusion rate ratio and the mean pO2 values (R2 > 0.7). The initial rates of increase of Δ[HbO2] and the slope of dynamic pO2 response, d(pO2)/dt, of well-oxygenated voxels in response to hyperoxic challenge were also correlated. These results demonstrate the feasibility of simultaneous measurements using NIRS and MRI. As expected, the rate of pO2 response to oxygen is primarily dependent upon the well perfused rather than poorly perfused vasculature

  13. Evidence for the importance of 5'-deoxy-5-fluorouridine catabolism in humans from 19F nuclear magnetic resonance spectrometry.

    Malet-Martino, M C; Armand, J P; Lopez, A; Bernadou, J; Béteille, J P; Bon, M; Martino, R

    1986-04-01

    The use of a new methodology, 19F nuclear magnetic resonance, has allowed detection of all the fluorinated metabolites in the biofluids of patients treated with 5'-deoxy-5-fluorouridine (5'-dFUrd) injected i.v. at a dose of 10 g/m2 over 6 h. This technique, which requires no labeled drug, allows a direct study of the biological sample with no need for extraction or derivatization and a simultaneous identification and quantitation of all the different fluorinated metabolites. As well as the already known metabolites, unmetabolized 5'-dFUrd, 5-fluorouracil, and 5,6-dihydro-5-fluorouracil, the presence of alpha-fluoro-beta-ureidopropionic acid, alpha-fluoro-beta-alanine (FBAL), N-carboxy-alpha-fluoro-beta-alanine, and the fluoride anion F- is reported. The catabolic pathway proposed for 5'-dFUrd is analogous to that of 5-fluorouracil, completed with FBAL----F- step, and the plasmatic equilibrium of FBAL with N-carboxy-alpha-fluoro-beta-alanine, its N-carboxy derivative. The quantitative analysis of the different metabolites found in plasma and urine emphasizes the significance of the catabolic pathway. High concentrations of alpha-fluoro-beta ureidopropionic acid and FBAL are recovered in plasma from 3 h after the beginning of the perfusion to 1 h after its end. The global urinary excretion results show that there is a high excretion of 5'-dFUrd and metabolites. Unchanged 5'-dFUrd and FBAL are by far the major excretory products and are at nearly equal rates. The protocol followed in this study produces relatively low but persistent plasmatic concentrations of 5-fluorouracil throughout the perfusion. PMID:2936452

  14. Intratumoral pharmacokinetic analysis by 19F-magnetic resonance spectroscopy and cytostatic in vivo activity of gemcitabine (dFdC) in two small cell lung cancer xenografts

    Kristjansen, P E; Quistorff, B; Spang-Thomsen, M;

    1993-01-01

    small cell lung cancer (SCLC) tumor xenografts CPH SCCL 54A and 54B in nude mice. Non-invasive monitoring of the uptake and elimination of fluorine in the individual tumors was performed by in vivo 19F-magnetic resonance spectroscopy, using a 2.9 T magnet. Five dose levels in the range 5-80 mg/kg i...... therapy than 54A. This difference in sensitivity seems to be related to different delivery or uptake of the compound in the two tumor lines, since the 19F-MRS demonstrated a significantly higher antitumor accumulation of fluorine in 54B tumors compared with 54A (p < 0.05, Wilcoxons 2-sided test) following...

  15. Alternate strategies to obtain mass balance without the use of radiolabeled compounds: application of quantitative fluorine (19F) nuclear magnetic resonance (NMR) spectroscopy in metabolism studies.

    Mutlib, Abdul; Espina, Robert; Atherton, James; Wang, Jianyao; Talaat, Rasmy; Scatina, JoAnn; Chandrasekaran, Appavu

    2012-03-19

    Nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in the quantitation of small and large molecules. Recently, we demonstrated that (1)H NMR could be used to quantitate drug metabolites isolated in submilligram quantities from biological sources. It was shown that these metabolites, once quantitated by NMR, were suitable to be used as reference standards in quantitative LC/MS-based assays, hence circumventing the need for radiolabeled material or synthetic standards to obtain plasma exposure estimates in humans and preclinical species. The quantitative capabilities of high-field NMR is further demonstrated in the current study by obtaining the mass balance of fluorinated compounds using (19)F-NMR. Two fluorinated compounds which were radio-labeled with carbon-14 on metabolically stable positions were dosed in rats and urine and feces collected. The mass balance of the compounds was obtained initially by counting the radioactivity present in each sample. Subsequently, the same sets of samples were analyzed by (19)F-NMR, and the concentrations determined by this method were compared with data obtained using radioactivity counting. It was shown that the two methods produced comparable values. To demonstrate the value of this analytical technique in drug discovery, a fluorinated compound was dosed intravenously in dogs and feces and urine collected. Initial profiling of samples showed that this compound was excreted mainly unchanged in feces, and hence, an estimate of mass balance was obtained using (19)F-NMR. The data obtained by this method was confirmed by additional quantitative studies using mass spectrometry. Hence cross-validations of the quantitative (19)F-NMR method by radioactivity counting and mass spectrometric analysis were demonstrated in this study. A strategy outlining the use of fluorinated compounds in conjunction with (19)F-NMR to understand their routes of excretion or mass balance in animals is proposed. These

  16. 19F magnetic resonance imaging of perfluorocarbons for the evaluation of response to antibiotic therapy in a Staphylococcus aureus infection model.

    Tobias Hertlein

    Full Text Available BACKGROUND: The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI or magnetic resonance imaging (MRI are promising approaches. In a previous study, we showed the effectiveness of (19F MRI using perfluorocarbon (PFC emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. METHODS/PRINCIPAL FINDINGS: Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu at 7 days post-infection (p.i. showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of (19F at the rim of the abscess in all mice (in the shape of a hollow sphere, and antibiotic treatment decreased the (19F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. CONCLUSIONS: (19F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection.

  17. Theranostic Tumor Targeted Nanoparticles Combining Drug Delivery with Dual Near Infrared and (19)F Magnetic Resonance Imaging Modalities

    Vu-Quang, Hieu; Vinding, Mads Sloth; Nielsen, Thomas;

    2016-01-01

    enhanced uptake of nanoparticles via folate receptors expressed on human nasopharyngeal epidermal carcinoma (KB) cells. In vivo, higher MRI and fluorescence signals were obtained from tumors with (19)F MRI and NIR, respectively, using folate-receptor-targeted nanoparticles compared with non-targeted...

  18. Using "On/Off" (19)F NMR/Magnetic Resonance Imaging Signals to Sense Tyrosine Kinase/Phosphatase Activity in Vitro and in Cell Lysates.

    Zheng, Zhen; Sun, Hongbin; Hu, Chen; Li, Gongyu; Liu, Xiaomei; Chen, Peiyao; Cui, Yusi; Liu, Jing; Wang, Junfeng; Liang, Gaolin

    2016-03-15

    Tyrosine kinase and phosphatase are two important, antagonistic enzymes in organisms. Development of noninvasive approach for sensing their activity with high spatial and temporal resolution remains challenging. Herein, we rationally designed a hydrogelator Nap-Phe-Phe(CF3)-Glu-Tyr-Ile-OH (1a) whose supramolecular hydrogel (i.e., Gel 1a) can be subjected to tyrosine kinase-directed disassembly, and its phosphate precursor Nap-Phe-Phe(CF3)-Glu-Tyr(H2PO3)-Ile-OH (1b), which can be subjected to alkaline phosphatase (ALP)-instructed self-assembly to form supramolecular hydrogel Gel 1b, respectively. Mechanic properties and internal fibrous networks of the hydrogels were characterized with rheology and cryo transmission electron microscopy (cryo-TEM). Disassembly/self-assembly of their corresponding supramolecular hydrogels conferring respective "On/Off" (19)F NMR/MRI signals were employed to sense the activity of these two important enzymes in vitro and in cell lysates for the first time. We anticipate that our new (19)F NMR/magnetic resonance imaging (MRI) method would facilitate pharmaceutical researchers to screen new inhibitors for these two enzymes without steric hindrance. PMID:26901415

  19. 19F nuclear magnetic resonance spectroscopy as a probe of macromolecular interactions: Observations of the bacteriophage λ cro repressor with specific and nonspecific DNA

    The approach taken for these investigations involves the biosynthetic incorporation of the 19F nucleus on fluoroamino acid analogues into cro repressor. The effect of the fluoroanalogues on the overall structure of the protein was investigated using two dimensional proton nuclear magnetic resonance (NMR) spectroscopy. The effect of the fluoroanalogues on the activity of the protein was investigated using a steady state fluorescence assay. 19F NMR studies of the interaction of cro repressor with DNA include the assignment of the fluorotyrosyl residues implicated in the interaction with DNA, a comparison of the interaction of cro repressor with OR3 and nonspecific DNA fragments, and a comparison of the binding of cro repressor with OR3 fragments of various sizes. It has been demonstrated that the incorporation of 3-fluorotyrosin into cro repressor does not effect the overall structure of the protein as detected by nuclear Overhauser enhancement 1H NHR spectroscopy. The results of the fluorescence assay demonstrate that the 3-fluorotyrosyl cro repressor binds to DNA. The incorporation of 3-fluorotyrosine into cro repressor does not alter the binding of the cro repressor to OR3, as measured by the concentration of KCl needed to dissociate the complexes

  20. High-resolution three-dimensional 19F-magnetic resonance imaging of rat lung in situ: evaluation of airway strain in the perfluorocarbon-filled lung

    Perfluorocarbons (PFC) are biologically and chemically inert fluids with high oxygen and CO2 carrying capacities. Their use as liquid intrapulmonary gas carriers during liquid ventilation has been investigated. We established a method of high resolution 3D-19F-MRI of the totally PFC-filled lung. The goal of this study was to investigate longitudinal and circumferential airway strain in the setting of increasing airway pressures on 3D-19F-MR images of the PFC-filled lung. Sixteen female Wistar rats were euthanized and the liquid perfluorocarbon FC-84 instilled into their lungs. 3D-19F-MRI was performed at various intrapulmonary pressures. Measurements of bronchial length and cross-sectional area were obtained from transversal 2D images for each pressure range. Changes in bronchial area were used to determine circumferential strain, while longitudinal strain was calculated from changes in bronchial length. Our method of 3D-19F-MRI allowed clear visualization of the great bronchi. Longitudinal strain increased significantly up to 31.1 cmH2O. The greatest strain could be found in the range of low airway pressures. Circumferential strain increased strongly with the initial pressure rise, but showed no significant changes above 10.4 cmH2O. Longitudinal strain was generally higher in distal airways, while circumferential strain showed no difference. Analysis of mechanical characteristics showed that longitudinal and circumferential airway expansion occurred in an anisotropic fashion. Whereas longitudinal strain still increased with higher pressures, circumferential strain quickly reached a 'strain limit'. Longitudinal strain was higher in distal bronchi, as dense PFCs gravitate to dependent, in this case to dorso-basal parts of the lung, acting as liquid positive end expiratory pressure

  1. Magnetic properties and hyperfine interactions in Cr8, Cr7Cd, and Cr7Ni molecular rings from 19F-NMR

    Bordonali, L.; Garlatti, E.; Casadei, C. M.; Furukawa, Y.; Lascialfari, A.; Carretta, S.; Troiani, F.; Timco, G.; Winpenny, R. E. P.; Borsa, F.

    2014-04-01

    A detailed experimental investigation of the 19F nuclear magnetic resonance is made on single crystals of the homometallic Cr8 antiferromagnetic molecular ring and heterometallic Cr7Cd and Cr7Ni rings in the low temperature ground state. Since the F- ion is located midway between neighboring magnetic metal ions in the ring, the 19F-NMR spectra yield information about the local electronic spin density and 19F hyperfine interactions. In Cr8, where the ground state is a singlet with total spin ST = 0, the 19F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the 19F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state ST = 1. In the heterometallic rings, Cr7Cd and Cr7Ni, whose ground state is magnetic with ST = 3/2 and ST = 1/2, respectively, the 19F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the 19F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F--Ni2+ and the F--Cd2+ bonds. The values of the hyperfine constants compare well to the ones known for F--Ni2+ in KNiF3 and NiF2 and for F--Cr3+ in K2NaCrF6. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F- ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  2. 19F nuclear magnetic resonance analysis of the carbamate reaction of alpha-fluoro-beta-alanine (FBAL), the major catabolite of fluoropyrimidines. Application to FBAL carbamate determination in body fluids of patients treated with 5'-deoxy-5-fluorouridine

    alpha-Fluoro-beta-alanine (FBAL), the major catabolite of the antineoplastic fluoropyrimidines, is an amino acid which is in equilibrium with its carbamate derivative in weakly alkaline aqueous solutions containing carbonate. In both water and control biological fluids (urine, plasma) spiked with FBAL (and sodium bicarbonate, in some cases), 19F NMR was used: (i) to determine the pH range over which FBAL carbamate is present (pH greater than or equal to 7), the maximum concentration formed occurring around pH 9, (ii) to show that the amino group of FBAL interacts very slowly with a non-protein plasma component to form a compound X, unstable in acid medium. The presumed structure of X is RCONHCH2CHFCOOH, with R different from an alkyl group but still unidentified. The behavior of FBAL in urine and plasma of rats treated with FBAL or 5'-deoxy-5-fluorouridine (5'-dFUrd), a prodrug of 5-fluorouracil, and from patients treated with 5'-dFUrd was investigated. FBAL carbamate was not present in acid medium and was therefore absent in acidic human urine. However, it was found in alkaline rat urine. FBAL carbamate was found in plasma along with the compound X. The 19F NMR spectra of FBAL and derivatives are complex since alpha-fluoro-beta-ureido-propionic acid, the precursor of FBAL in the catabolic pathway of antineoplastic fluoropyrimidines, produces a signal overlapping that of FBAL carbamate, and very close to that of compound X

  3. Magnetism, optical absorbance, and 19F NMR spectra of nafion films with self-assembling paramagnetic networks

    Levin, E. M.; Chen, Q.; Bud' ko, S. L.

    2012-01-15

    Magnetization, optical absorbance, and {sup 19}F NMR spectra of Nafion transparent films as received and doped with Mn{sup 2+}, Co{sup 2+}, Fe{sup 2+}, and Fe{sup 3+} ions with and without treatment in 1H-1,2,4-triazole (trz) have been studied. Doping of Nafion with Fe{sup 2+} and Co{sup 2+} and their bridging to nitrogen of triazole yields a hybrid self-assembling paramagnetic system that exhibits interesting magnetic and optical properties. These include spin crossover phenomena between high-spin (HS) and low-spin (LS) states in Nafion-Fe{sup 2+}-trz and Nafion-Co{sup 2+}-trz accompanied by thermochromic effects in the visible range induced by temperature. A large shift of the magnetization curve induced by a magnetic field in the vicinity of the HS {leftrightarrow} LS, {approx}220 K, observed for Nafion-Fe{sup 2+}-trz has a rate of {approx}6 K/kOe, which is about three orders of magnitude larger than that in bulk spin crossover Fe{sup 2+} materials. Selective response of {sup 19}F NMR signals on doping with paramagnetic ions demonstrates that NMR can be used as spatially resolved method to study Nafion film with paramagnetic network. Both chemical shift and width of {sup 19}F NMR signals show that SO groups of Nafion, Fe or Co ions, and nitrogen of triazole are bonded whereas they form a spin crossover system. Based on a model of nanosize cylinders proposed for Nafion [K. Schmidt-Rohr and Q. Chen, Nat Mater (2008), 75], we suggest that paramagnetic ions are located inside these cylinders, forming self-assembling magnetically and optically active nanoscale networks.

  4. Characterization of the ground X1 state of 204Pb19F, 206Pb19F, 207Pb19F, and 208Pb19F

    Pure rotational spectra of the ground electronic-vibrational X1 state of 204Pb19F, 206Pb19F, 207Pb19F, and 208Pb19F are measured with a resonator pulsed supersonic jet Fourier-transform microwave spectrometer. Also reported is a new measurement of the Stark effect on the optical spectra of A(leftarrow)X1 transitions. These spectra are combined with published high-resolution infrared spectra of X2↔X1 transitions in order to create a complete picture of the ground state of lead monofluoride. For the microwave data, molecules are prepared by laser ablation of lead target rods and stabilized in a supersonic jet of neon mixed with sulfur hexafluoride. For the optical Stark spectra, a continuous source of molecules is created in a nozzle heated to 1000 deg. C. The microwave spectra confirm, improve, and extend previously reported constants that describe the rotational, spin-orbit, and hyperfine interactions of the ground electronic state of the PbF molecule. A discrepancy concerning the sign of the hyperfine constant describing the 207Pb nucleus is discussed. Magnetic-field-dependent microwave spectra are used to characterize the Zeeman interaction in terms of two g factors of the body-fixed electronic wave function. The optical Stark spectra are used to characterize the electric dipole moment of the X1 and A states.

  5. Recommendations concerning magnetic resonance spectroscopy

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31P, 13C, 1H (and possibly 19F and 23Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  6. Rotating frame nuclear double resonance of 95Mo and 183W with 19F in polycrystalline MoF6 and WF6

    A series of rotating-frame nuclear-double-resonance experiments was performed in which the NMR of the isotopes 95Mo (I=5/2, natural abundance 16%) and 183W (I=1/2, natural abundance 14%) in MoF6 and WF6 respectively were detected via the strong resonance signal of the abundant 19F nuclei. Resonance peaks of two-quanta transitions were observed for 183W-NMR (I=1/2) in WF6, a nonlinear behavior was discussed 95Mo

  7. 19F Spin-lattice Relaxation of Perfluoropolyethers: Dependence on Temperature and Magnetic Field Strength (7.0-14.1T)

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W.M.; Ahrens, Eric T.

    2014-01-01

    Fluorine (19F) MRI of perfluorocarbon labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed. PMID:24594752

  8. (19)F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1T).

    Kadayakkara, Deepak K; Damodaran, Krishnan; Hitchens, T Kevin; Bulte, Jeff W M; Ahrens, Eric T

    2014-05-01

    Fluorine ((19)F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for (19)F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of (19)F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc<1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new (19)F MRI agents and methods is discussed. PMID:24594752

  9. (19)F-MRI for monitoring human NK cells in vivo.

    Bouchlaka, Myriam N; Ludwig, Kai D; Gordon, Jeremy W; Kutz, Matthew P; Bednarz, Bryan P; Fain, Sean B; Capitini, Christian M

    2016-05-01

    The availability of clinical-grade cytokines and artificial antigen-presenting cells has accelerated interest in using natural killer (NK) cells as adoptive cellular therapy (ACT) for cancer. One of the technological shortcomings of translating therapies from animal models to clinical application is the inability to effectively and non-invasively track these cells after infusion in patients. We have optimized the nonradioactive isotope fluorine-19 ((19)F) as a means to label and track NK cells in preclinical models using magnetic resonance imaging (MRI). Human NK cells were expanded with interleukin (IL)-2 and labeled in vitro with increasing concentrations of (19)F. Doses as low as 2 mg/mL (19)F were detected by MRI. NK cell viability was only decreased at 8 mg/mL (19)F. No effects on NK cell cytotoxicity against K562 leukemia cells were observed with 2, 4 or 8 mg/mL (19)F. Higher doses of (19)F, 4 mg/mL and 8 mg/mL, led to an improved (19)F signal by MRI with 3 × 10(11) (19)F atoms per NK cell. The 4 mg/mL (19)F labeling had no effect on NK cell function via secretion of granzyme B or interferon gamma (IFNγ), compared to NK cells exposed to vehicle alone. (19)F-labeled NK cells were detectable immediately by MRI after intratumoral injection in NSG mice and up to day 8. When (19)F-labeled NK cells were injected subcutaneously, we observed a loss of signal through time at the site of injection suggesting NK cell migration to distant organs. The (19)F perfluorocarbon is a safe and effective reagent for monitoring the persistence and trafficking of NK cell infusions in vivo, and may have potential for developing novel imaging techniques to monitor ACT for cancer. PMID:27467963

  10. Transverse excitations of 19F

    In this thesis aspects of the structure of the nucleus 19F are discussed as a result of transverse electron-scattering experiments, with emphasis on the ground state. The magnetization distribution of this state has been obtained from the measurement of electrons scattered from 19F at backward angles. An introduction to the electron-scattering formalism is presented briefly together with the interpretation of electron-scattering results in terms of the nuclear shell model. The experimental apparatus for the measurement of electron scattering through an angle of 1800 is described. This instrumentation has been installed in the low-energy facility (LEF) at NIKHEF-K. Simultaneously with the study of the magnetic ground state distribution of 19F, also excited states of this nucleus up to an energy of 4.4 MeV have been investigated, mainly from data obtained in the EMIN station. Also for these states, the shell-model calculations have been the guide to determine their structure. (Auth.)

  11. MRI (Magnetic Resonance Imaging)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... 8 MB) Also available in Other Language versions . Magnetic Resonance Imaging (MRI) is a medical imaging procedure for making ...

  12. Magnetic resonance angiography

    MRA; Angiography - magnetic resonance ... Kwong RY. Cardiovascular Magnetic Resonance Imaging. In: Bonow RO, Mann DL, Zipes DP, Libby P, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine . ...

  13. Magnetic Resonance Imaging (MRI)

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  14. The $^{15}$N($\\bm\\alpha$,$\\bm\\gamma$)$^{19}$F reaction and nucleosynthesis of $^{19}$F

    Wilmes, S.; Wilmes, V.; Staudt, G.; Mohr, P; Hammer, J. W.

    2002-01-01

    Several resonances in the $^{15}$N($\\alpha$,$\\gamma$)$^{19}$F reaction have been investigated in the energy range between 0.6 MeV and 2.7 MeV. Resonance strengths and branching ratios have been determined. High sensitivity could be obtained by the combination of the {\\sc{dynamitron}} high current accelerator, the windowless gas target system {\\sc{rhinoceros}}, and actively shielded germanium detectors. Two levels of $^{19}$F could be observed for the first time in the ($\\alpha$,$\\gamma$) chan...

  15. 19-Fluorine nuclear magnetic resonance chemical shift variability in trifluoroacetyl species

    Sloop, Joseph

    2013-01-01

    Joseph C SloopSchool of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USAAbstract: This review examines the variability of chemical shifts observed in 19-fluorine (19F) nuclear magnetic resonance spectra for the trifluoroacetyl (TFA) functional group. The range of 19F chemical shifts reported spectra for the TFA group varies generally from −85 to −67 ppm relative to CFCl3. The literature revealed several factors that impact chemical shifts of the TFA...

  16. Magnetic Resonance Imaging (MRI)

    ... Resonance Imaging (MRI) What is an MRI? MRI stands for Magnetic Resonance Imaging. It is an important ... MRI is often used for diagnosis or for monitoring disease. For example, if someone is having severe ...

  17. Characterization of the ground X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F

    Mawhorter, Richard J.; Murphy, Benjamin S.; Baum, Alexander L.; Sears, Trevor J.; Yang, T.; Rupasinghe, P. M; McRaven, C. P.; Shafer-Ray, N. E.; Alphei, Lukas D.; Grabow, Jens-Uwe [Department of Physics and Astronomy, Pomona College, Claremont, California 91711-6327 (United States); Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma (United States); Gottfried-Wilhelm-Leibniz-Universitaet, Institut fuer Physikalische Chemie and Elektrochemie, Lehrgebiet A, D-30167 Hannover (Germany)

    2011-08-15

    Pure rotational spectra of the ground electronic-vibrational X{sub 1} state of {sup 204}Pb{sup 19}F, {sup 206}Pb{sup 19}F, {sup 207}Pb{sup 19}F, and {sup 208}Pb{sup 19}F are measured with a resonator pulsed supersonic jet Fourier-transform microwave spectrometer. Also reported is a new measurement of the Stark effect on the optical spectra of A(leftarrow)X{sub 1} transitions. These spectra are combined with published high-resolution infrared spectra of X{sub 2}{r_reversible}X{sub 1} transitions in order to create a complete picture of the ground state of lead monofluoride. For the microwave data, molecules are prepared by laser ablation of lead target rods and stabilized in a supersonic jet of neon mixed with sulfur hexafluoride. For the optical Stark spectra, a continuous source of molecules is created in a nozzle heated to 1000 deg. C. The microwave spectra confirm, improve, and extend previously reported constants that describe the rotational, spin-orbit, and hyperfine interactions of the ground electronic state of the PbF molecule. A discrepancy concerning the sign of the hyperfine constant describing the {sup 207}Pb nucleus is discussed. Magnetic-field-dependent microwave spectra are used to characterize the Zeeman interaction in terms of two g factors of the body-fixed electronic wave function. The optical Stark spectra are used to characterize the electric dipole moment of the X{sub 1} and A states.

  18. Accelerated nanoscale magnetic resonance imaging through phase multiplexing

    We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species (1H, 19F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy

  19. Accelerated nanoscale magnetic resonance imaging through phase multiplexing

    Moores, B. A.; Eichler, A., E-mail: eichlera@phys.ethz.ch; Takahashi, H.; Navaretti, P.; Degen, C. L. [Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich (Switzerland); Tao, Y. [Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich (Switzerland); Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States)

    2015-05-25

    We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species ({sup 1}H, {sup 19}F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.

  20. Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Dementias

    Hsu, Yuan-Yu; Du, An-Tao; Schuff, Norbert; Weiner, Michael W.

    2001-01-01

    This article reviews recent studies of magnetic resonance imaging and magnetic resonance spectroscopy in dementia, including Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, idiopathic Parkinson's disease, Huntington's disease, and vascular dementia. Magnetic resonance imaging and magnetic resonance spectroscopy can detect structural alteration and biochemical abnormalities in the brain of demented subjects and may help in the differential diagnosis and early detection...

  1. Efficient isotropic magnetic resonators

    Martin, O. J. F.; Gay-Balmaz, P.

    2002-01-01

    We study experimentally and numerically a novel three-dimensional magnetic resonator structure with high isotropy. It is formed by crossed split-ring resonators and has a response independent of the illumination direction in a specific plane. The utilization of such elements to build a finite left-handed medium is discussed. (C) 2002 American Institute of Physics.

  2. Advances in magnetic resonance 10

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  3. In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI.

    Gesa Weise

    Full Text Available BACKGROUND: (19F magnetic resonance imaging (MRI was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared (19F MRI with iron-enhanced MRI in mice with photothrombosis (PT at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. METHODS/PRINCIPAL FINDINGS: Perfluorocarbons (PFC or superparamagnetic iron oxide particles (SPIO were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong (19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like (19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the (19F markers (infarct core/rim could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. CONCLUSION: Our study shows that vessel occlusion can be followed in vivo by (19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.

  4. Functional Magnetic Resonance Imaging

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  5. Resonant magnetic vortices

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices

  6. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... during MRI, but this is rarely a problem. Tooth fillings and braces usually are not affected by ... Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic Resonance Imaging ( ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) ... conditions such as: brain tumors stroke infections developmental anomalies hydrocephalus — dilatation of fluid spaces within the brain ( ...

  8. Magnetic Resonance Imaging (MRI) Safety

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining very ...

  9. Magnetic resonance of phase transitions

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  10. Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions

    Schmieder, Anne H.; Caruthers, Shelton D.; Keupp, Jochen; Wickline, Samuel A.; Lanza, Gregory M.

    2016-01-01

    The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.

  11. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  14. Parallel Magnetic Resonance Imaging

    Uecker, Martin

    2015-01-01

    The main disadvantage of Magnetic Resonance Imaging (MRI) are its long scan times and, in consequence, its sensitivity to motion. Exploiting the complementary information from multiple receive coils, parallel imaging is able to recover images from under-sampled k-space data and to accelerate the measurement. Because parallel magnetic resonance imaging can be used to accelerate basically any imaging sequence it has many important applications. Parallel imaging brought a fundamental shift in image reconstruction: Image reconstruction changed from a simple direct Fourier transform to the solution of an ill-conditioned inverse problem. This work gives an overview of image reconstruction from the perspective of inverse problems. After introducing basic concepts such as regularization, discretization, and iterative reconstruction, advanced topics are discussed including algorithms for auto-calibration, the connection to approximation theory, and the combination with compressed sensing.

  15. Magnetic resonance spectroscopy: clinical application in neuroradiology

    Full text: Magnetic Resonance Spectroscopy (MRS) provides a non-invasive method of studying metabolism in vivo. Magnetic resonance spectroscopy (MRS) defines neuro chemistry on a regional basis by acquiring a radiofrequency signal with chemical shift from one or many voxels or volumes previously selected on MRI. The tissue's chemical environment determines the frequency of a metabolite peak in an MRS spectrum. Candidates for MRS include: 1H, 31P, 13C, 23Na, 7Li, 19F, 14N, 15N, 17O, 39K The most commonly studied nuclei are 1H and 31P. This lecture is focused on Proton (1H) Spectroscopy. Proton MRS can be added on to conventional MR imaging protocols. It can be used to serially monitor biochemical changes in tumors, stroke, epilepsy, metabolic disorders, infections, and neurodegenerative diseases.The MR spectra do not come labeled with diagnoses. They require interpretation and should always be correlated with the MR images before making a final diagnosis. As a general rule, the single voxel, short TE technique is used to make the initial diagnosis, because the signal-to-noise is high and all metabolites are represented. Multi-voxel, long TE techniques are used to further characterize different regions of a mass and to assess brain parenchyma around or adjacent to the mass. Multi-voxel, long TE techniques are also used to assess response to therapy and to search for tumor recurrence. Each metabolite appears at a specific ppm, and each one reflects specific cellular and biochemical processes

  16. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314

  17. Magnetic Resonance Facility (Fact Sheet)

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  18. Detection of site-specific binding and co-binding of ligands to macromolecules using 19F NMR

    Study of ligand-macromolecular interactions by 19F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed

  19. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful magnetic ... that are clearer and more detailed than other imaging methods. This exam does not use ionizing radiation ...

  1. Dental magnetic resonance imaging

    Growing distribution and utilization of digital volume tomography (DVT) extend the spectrum of clinical dental imaging. Additional diagnostic value, however, comes along with an increasing amount of radiation. In contrast, magnetic resonance imaging is a radiation free imaging technique. Furthermore, it offers a high soft tissue contrast. Morphological and numerical dental anomalies, differentiation of periapical lesions and exclusion of complications of dental diseases are field of applications for dental MRI. In addition, detection of caries and periodontal lesions and injury of inferior alveolar nerve are promising application areas in the future.

  2. Cranial magnetic resonance imaging

    Cranial Magnetic Resonance Imaging is comprehensive, well structured, and well written. The material is current and well referenced. The illustrations are good and complement the text well. The overall quality of publication is above average. The greatest attribute of the book is its readability. The author demonstrates ample skill in making complex subjects, such as MR physics and imaging of cerebral hemorrhage, easy to understand. The book closes with a detailed atlas on the anatomic appearance of the brain on MR images in the axial, coronal, and sagittal planes

  3. Dual tuned 19F/1H multichannel coil for magnetic resonance imaging of human knee at 7.0 Tesla

    Ji, Yiyi

    2013-01-01

    Anti-inflamatórios não esteróides (NSAIDs) tópicos foram introduzidos no tratamento da artrite reumatóide, de forma a evitar os efeitos secundários da administração oral destes medicamentos. Embora seja conhecido que os NSAIDs de aplicação tópica são capazes de penetrar na pele humana, não existem estudos com humanos in vivo que mostrem a eficiência de penetração e o percurso do medicamento até ao local de inflamação. O in vivo tracking do medicamento deve ser efectuado por um método eficaz ...

  4. Magnetic resonance imaging equipments

    Magnetic resonance imaging (MRI) is a new examination technique used in diagnostic medicine. Its use has increased notably during the last few years in Finland, too. The biological effects of electromagnetic fields used in MRI are quite different from the effects of x-rays. This report introduces the physics and the techniques of MRI; the biological effects of magnetic fields and the hazards associated with the use of MRI systems are briefly discussed. The major national and international recommendations are summarized, too. Furthermore, a description is given how safety aspects are considered in Finnish MRI units. Finally, recommendations are given to restrict the exposure caused by MRI and to ensure the safe use of MRI. Diagnostic applications and clinical or economic aspects fall outside the scope of this report. (orig.)

  5. Advances in magnetic resonance 11

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.

  6. Conformational Plasticity of the NNRTI-Binding Pocket in HIV-1 Reverse Transcriptase: A Fluorine Nuclear Magnetic Resonance Study.

    Sharaf, Naima G; Ishima, Rieko; Gronenborn, Angela M

    2016-07-19

    HIV-1 reverse transcriptase (RT) is a major drug target in the treatment of HIV-1 infection. RT inhibitors currently in use include non-nucleoside, allosteric RT inhibitors (NNRTIs), which bind to a hydrophobic pocket, distinct from the enzyme's active site. We investigated RT-NNRTI interactions by solution (19)F nuclear magnetic resonance (NMR), using singly (19)F-labeled RT proteins. Comparison of (19)F chemical shifts of fluorinated RT and drug-resistant variants revealed that the fluorine resonance is a sensitive probe for identifying mutation-induced changes in the enzyme. Our data show that in the unliganded enzyme, the NNRTI-binding pocket is highly plastic and not locked into a single conformation. Upon inhibitor binding, the binding pocket becomes rigidified. In the inhibitor-bound state, the (19)F signal of RT is similar to that of drug-resistant mutant enzymes, distinct from what is observed for the free state. Our results demonstrate the power of (19)F NMR spectroscopy to characterize conformational properties using selectively (19)F-labeled protein. PMID:27163463

  7. Advances in magnetic resonance 6

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  8. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... or cause problems during an MRI exam. Nephrogenic systemic fibrosis is currently a recognized, but rare, complication ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... the same effect. A very irregular heartbeat may affect the quality of images obtained using techniques that ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  10. Magnetic resonance in neuroborreliosis

    Magnetic resonance (MR) is commonly used in diagnosing infections of the central nervous system. The aim of the study is to evaluate central nervous system changes in neuroborreliosis patients. MR examinations were performed in 44 patients with clinical symptoms, epidemiology and laboratory tests results of neuroborreliosis. Abnormalities were detected in 22 patients. Most of them presented cortico-subcortical atrophy (86%). In 9 cases foci of increased signal in T2-weighted and FLAIR images were observed in white matter. They were single or multiple, located subcorticaly and paraventriculary. In 2 subjects areas of increased signal were found in the brain stem. Central nervous system abnormalities detected with MR are not specific for Lyme disease. They can suggest demyelinating lesions and/or gliosis observed in many nervous system disorders (SM, ADEM, lacunar infarcts). (author)

  11. (19)F MRSI of capecitabine in the liver at 7 T using broadband transmit-receive antennas and dual-band RF pulses.

    van Gorp, Jetse S; Seevinck, Peter R; Andreychenko, Anna; Raaijmakers, Alexander J E; Luijten, Peter R; Viergever, Max A; Koopman, Miriam; Boer, Vincent O; Klomp, Dennis W J

    2015-11-01

    Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. (19)F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non-invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi-channel transmit-receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of (19)F detection protocols. The antennas were broadband optimized to facilitate both the (1)H (298 MHz) and (19)F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1(+) simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1(+) and B1(-) information provided at the (1)H frequency for the optimization of B1(+) and B1(-) at the (19)F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual-band RF pulse was designed and evaluated. Finally, (19)F MRS(I) measurements were performed to detect (19)F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, (19)F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set-up for in vivo detection of metabolic rates and drug distribution in the body. PMID:26373355

  12. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a ...

  13. Advances in magnetic resonance 12

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  14. Magnetic resonance imaging methodology

    Magnetic resonance (MR) methods are non-invasive techniques to provide detailed, multi-parametric information on human anatomy, function and metabolism. Sensitivity, specificity, spatial and temporal resolution may, however, vary depending on hardware (e.g., field strength, gradient strength and speed) and software (optimised measurement protocols and parameters for the various techniques). Furthermore, multi-modality imaging may enhance specificity to better characterise complex disease patterns. Positron emission tomography (PET) is an interesting, largely complementary modality, which might be combined with MR. Despite obvious advantages, combining these rather different physical methods may also pose challenging problems. At this early stage, it seems that PET quality may be preserved in the magnetic field and, if an adequate detector material is used for the PET, MR sensitivity should not be significantly degraded. Again, this may vary for the different MR techniques, whereby functional and metabolic MR is more susceptible than standard anatomical imaging. Here we provide a short introduction to MR basics and MR techniques, also discussing advantages, artefacts and problems when MR hardware and PET detectors are combined. In addition to references for more detailed descriptions of MR fundamentals and applications, we provide an early outlook on this novel and exciting multi-modality approach to PET/MR. (orig.)

  15. Mapping In Vivo Tumor Oxygenation within Viable Tumor by 19F-MRI and Multispectral Analysis

    Yunzhou Shi

    2013-11-01

    Full Text Available Quantifying oxygenation in viable tumor remains a major obstacle toward a better understanding of the tumor microenvironment and improving treatment strategies. Current techniques are often complicated by tumor heterogeneity. Herein, a novel in vivo approach that combines 19F magnetic resonance imaging (19F-MRIR1 mapping with diffusionbased multispectral (MS analysis is introduced. This approach restricts the partial pressure of oxygen (pO2 measurements to viable tumor, the tissue of therapeutic interest. The technique exhibited sufficient sensitivity to detect a breathing gas challenge in a xenograft tumor model, and the hypoxic region measured by MS 19F-MRI was strongly correlated with histologic estimates of hypoxia. This approach was then applied to address the effects of antivascular agents on tumor oxygenation, which is a research question that is still under debate. The technique was used to monitor longitudinal pO2 changes in response to an antibody to vascular endothelial growth factor (B20.4.1.1 and a selective dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor (GDC-0980. GDC-0980 reduced viable tumor pO2 during a 3-day treatment period, and a significant reduction was also produced by B20.4.1.1. Overall, this method provides an unprecedented view of viable tumor pO2 and contributes to a greater understanding of the effects of antivascular therapies on the tumor's microenvironment.

  16. CHARACTERIZATION OF TANK 19F SAMPLES

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  17. Characterization Of Tank 19F Samples

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 (micro)Ci/g for most radionuclides and customer desired detection values of 1E-05 (micro)Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  18. Magnetic Resonance Studies of Energy Storage Materials

    Vazquez Reina, Rafael

    In today's society there is high demand to have access to energy for portable devices in different forms. Capacitors with high performance in small package to achieve high charge/discharge rates, and batteries with their ability to store electricity and make energy mobile are part of this demand. The types of internal dielectric material strongly affect the characteristics of a capacitor, and its applications. In a battery, the choice of the electrolyte plays an important role in the Solid Electrolyte Interphase (SEI) formation, and the cathode material for high output voltage. Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR) spectroscopy are research techniques that exploit the magnetic properties of the electron and certain atomic nuclei to determine physical and chemical properties of the atoms or molecules in which they are contained. Both EPR and NMR spectroscopy technique can yield meaningful structural and dynamic information. Three different projects are discussed in this dissertation. First, High energy density capacitors where EPR measurements described herein provide an insight into structural and chemical differences in the dielectric material of a capacitor. Next, as the second project, Electrolyte solutions where an oxygen-17 NMR study has been employed to assess the degree of preferential solvation of Li+ ions in binary mixtures of EC (ethylene carbonate) and DMC (dimethyl carbonate) containing LiPF6 (lithium hexafluo-rophosphate) which may be ultimately related to the SEI formation mechanism. The third project was to study Bismuth fluoride as cathode material for rechargeable batteries. The objective was to study 19F and 7Li MAS NMR of some nanocomposite cathode materials as a conversion reaction occurring during lithiation and delithation of the BiF3/C nanocomposite.

  19. PAD investigation of 19F in fullerites

    Perturbed angular distribution experiments on 19F implanted into fullerites revealed a large fraction of fluorine atoms which are not subject to static quadrupole interactions in contrast to other allotropic forms of carbon. (orig.)

  20. Magnetic Resonance angiography. Pt 1

    The objective of this paper is to describe the basic physical principles important in magnetic resonance angiography (MRA). The data used were obtained from recent articles on MRA and direct experience working with prototype MRA sequence. The information is presented in a manner suitable for those unfamiliar with the principles of MRA and magnetic resonance imaging (MRI). Magnetic resonance angiography is an important method that can be used to obtain angiograms without the injection of intravascular contrast medium. It is already proving to be of clinical use in the assessment of vascular disease. 11 refs., 5 figs

  1. Advances in magnetic resonance 9

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  2. Advances in magnetic resonance 1

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 1, discusses developments in various areas of magnetic resonance. The subject matter ranges from original theoretical contributions through syntheses of points of view toward series of phenomena to critical and painstaking tabulations of experimental data. The book contains six chapters and begins with a discussion of the theory of relaxation processes. This is followed by separate chapters on the development of magnetic resonance techniques for studying rate processes in chemistry and the application of these techniques to various problems; the geometri

  3. Functional magnetic resonance imaging.

    Buchbinder, Bradley R

    2016-01-01

    Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. PMID:27432660

  4. Magnetic resonance energy and topological resonance energy.

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference. PMID:26878709

  5. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat ...

  7. Magnetic resonance imaging the basics

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat medical ... CD. Currently, MRI is the most sensitive imaging test of the head (particularly the brain) in routine ...

  9. Nuclear magnetic resonance force microscopy with a microwire rf source

    The authors use a 1.0 μm wide patterned Cu wire with an integrated nanomagnetic tip to measure the statistical nuclear polarization of 19F in CaF2 by magnetic resonance force microscopy. With less than 350 μW of dissipated power, the authors achieve rf magnetic fields over 4 mT at 115 MHz for a sample positioned within 100 nm of the 'microwire' rf source. A 200 nm diameter FeCo tip integrated onto the wire produces field gradients greater than 105 T/m at the same position. The large rf fields from the broadband microwire enable long rotating-frame spin lifetimes of up to 15 s at 4 K

  10. Magnetic Resonance Connectome Automated Pipeline

    Gray, William R.; Bogovic, John A.; Vogelstein, Joshua T; Landman, Bennett A.; Prince, Jerry L.; Vogelstein, R. Jacob

    2011-01-01

    This manuscript presents a novel, tightly integrated pipeline for estimating a connectome, which is a comprehensive description of the neural circuits in the brain. The pipeline utilizes magnetic resonance imaging (MRI) data to produce a high-level estimate of the structural connectivity in the human brain. The Magnetic Resonance Connectome Automated Pipeline (MRCAP) is efficient and its modular construction allows researchers to modify algorithms to meet their specific requirements. The pipe...

  11. Advances in magnetic resonance 2

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 2, features a mixture of experimental and theoretical contributions. The book contains four chapters and begins with an ambitious and general treatment of the problem of signal-to-noise ratio in magnetic resonance. This is followed by separate chapters on the interpretation of nuclear relaxation in fluids, with special reference to hydrogen; and various aspects of molecular theory of importance in NMR.

  12. Advances in magnetic resonance 4

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 4 deals with the relaxation, irradiation, and other dynamical effects that is specific to systems having resolved structure in their magnetic resonance spectra. This book discusses the anisotropic rotation of molecules in liquids by NMR quadrupolar relaxation; rotational diffusion constants; alternating linewidth effect; and theoretical formulations of the problem. The line shapes in high-resolution NMR; matrix representations of the equations of motion; matrix representations of the equations of motion; and intramolecular hydrogen bonds are also delibera

  13. Nuclear magnetic gamma double resonance

    A number of problems corresponding to different variants of experiments using nuclear magnetic-gamma double resonance (NMGDR) are theoretically investigated. Calculation is carried out and its results are compared to experimental ones concerning NMGDR for tantalum. Time dynamics of the source or scatterer nucleus sublevel populations under double resonance conditions with non-uniform initial population of this nucleus sublevels is studied

  14. Magnetic resonance imaging; Imagerie par resonance magnetique

    Fontanel, F. [Centre Hospitalier, 40 - Mont-de -Marsan (France); Clerc, T. [Centre Hospitalier Universitaire, 76 - Rouen (France); Theolier, S. [Hospice Civils de Lyon, 69 - Lyon (France); Verdenet, J. [Centre Hospitalier Universitaire, 25 - Besancon (France)

    1997-04-01

    The last improvements in nuclear magnetic resonance imaging are detailed here, society by society with an expose of their different devices. In the future the different technological evolutions will be on a faster acquisition, allowing to reduce the examination time, on the development of a more acute cardiac imaging, of a functional neuro-imaging and an interactive imaging for intervention. With the contrast products, staying a longer time in the vascular area, the angiography will find its place. Finally, the studies on magnetic fields should allow to increase the volume to examine. (N.C.).

  15. Magnetic Resonance Imaging of Thoracic Aortic Dissections

    Sax, Steven L.

    1990-01-01

    Magnetic resonance imaging is an excellent noninvasive method for evaluating thoracic aortic dissections. A variety of magnetic resonance scans of aortic dissections are shown, documenting the ability of magnetic resonance to image the true lumen, the false channel, and the intimal septum. Detail is provided on magnetic resonance imaging techniques and findings. (Texas Heart Institute Journal 1990;17:262-70)

  16. Advances in magnetic resonance 5

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 5 deals with the interpretation of ESR spectra and provides descriptions of experimental apparatus. This book discusses the halogen hyperfine interactions; organic radicals in single crystals; pulsed-Fourier-transform nuclear magnetic resonance spectrometer; and inhomogenizer and decoupler. The spectrometers for multiple-pulse NMR; weak collision theory of relaxation in the rotating frame; and spin Hamiltonian for the electron spin resonance of irradiated organic single crystals are also deliberated. This text likewise covers the NMR in helium three and m

  17. In Vivo Quantification of Inflammation in Experimental Autoimmune Encephalomyelitis Rats Using Fluorine-19 Magnetic Resonance Imaging Reveals Immune Cell Recruitment outside the Nervous System.

    Jia Zhong

    Full Text Available Progress in identifying new therapies for multiple sclerosis (MS can be accelerated by using imaging biomarkers of disease progression or abatement in model systems. In this study, we evaluate the ability to noninvasively image and quantitate disease pathology using emerging "hot-spot" 19F MRI methods in an experimental autoimmune encephalomyelitis (EAE rat, a model of MS. Rats with clinical symptoms of EAE were compared to control rats without EAE, as well as to EAE rats that received daily prophylactic treatments with cyclophosphamide. Perfluorocarbon (PFC nanoemulsion was injected intravenously, which labels predominately monocytes and macrophages in situ. Analysis of the spin-density weighted 19F MRI data enabled quantification of the apparent macrophage burden in the central nervous system and other tissues. The in vivo MRI results were confirmed by extremely high-resolution 19F/1H magnetic resonance microscopy in excised tissue samples and histopathologic analyses. Additionally, 19F nuclear magnetic resonance spectroscopy of intact tissue samples was used to assay the PFC biodistribution in EAE and control rats. In vivo hot-spot 19F signals were detected predominantly in the EAE spinal cord, consistent with the presence of inflammatory infiltrates. Surprising, prominent 19F hot-spots were observed in bone-marrow cavities adjacent to spinal cord lesions; these were not observed in control animals. Quantitative evaluation of cohorts receiving cyclophosphamide treatment displayed significant reduction in 19F signal within the spinal cord and bone marrow of EAE rats. Overall, 19F MRI can be used to quantitatively monitored EAE disease burden, discover unexpected sites of inflammatory activity, and may serve as a sensitive biomarker for the discovery and preclinical assessment of novel MS therapeutic interventions.

  18. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging

    Kislukhin, Alexander A.; Xu, Hongyan; Adams, Stephen R.; Narsinh, Kazim H.; Tsien, Roger Y.; Ahrens, Eric T.

    2016-06-01

    Fluorine-19 magnetic resonance imaging (19F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metallated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate (`FETRIS’) nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the 19F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting 19F MRI detection sensitivity is enhanced by three- to fivefold over previously used tracers at 11.7 T, and is predicted to increase by at least eightfold at the clinical field strength of 3 T.

  19. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging.

    Kislukhin, Alexander A; Xu, Hongyan; Adams, Stephen R; Narsinh, Kazim H; Tsien, Roger Y; Ahrens, Eric T

    2016-06-01

    Fluorine-19 magnetic resonance imaging ((19)F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the (19)F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metallated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the (19)F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting (19)F MRI detection sensitivity is enhanced by three- to fivefold over previously used tracers at 11.7 T, and is predicted to increase by at least eightfold at the clinical field strength of 3 T. PMID:26974409

  20. Magnetic resonance and porous materials

    Mention the words magnetic resonance to your medical advisor and he or she will immediately think of a multi-million pound scanner that peers deep into the brain. A chemist, on the other hand, will imagine a machine that costs several hundred thousand pounds and produces high-resolution spectra for chemical analysis. Food technologists will probably think of a bench-top instrument for determining moisture content, while an oil prospector will envisage a device that can be operated several kilometres down an oil well. To a physicist the term is more likely to conjure up a mental picture of nuclear spins precessing in a magnetic field. These examples illustrate the diverse aspects of a phenomenon discovered by physicists over 50 years ago. Electron spin resonance was first discovered by Russian scientists, and nuclear magnetic resonance was discovered in the US shortly afterwards by Ed Purcell at Harvard University and Felix Bloch at Stanford University. Today, nuclear magnetic resonance (NMR) is the most widely used technique. Modern NMR machines are making it possible to probe microstructure and molecular movement in materials as diverse as polymers, cements, rocks, soil and foods. NMR allows the distribution of different components in a material to be determined with a resolution approaching 1μm, although the signal can be sensitive to even smaller lengthscales. In this article the authors describe how physicists are still developing magnetic resonance to exploit a range of new applications. (UK)

  1. GHz nuclear magnetic resonance

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  2. magnetic resonance imaging,etc.

    张福基

    1998-01-01

    magnetic resonance imaging n.[1984] a noninvasive diagnostic technique that produces computerized images of internal body tissues and is based on nuclear magnetic resonance of atoms within he body induced by the application of radio waves磁共振成像(指一种非侵害 性诊断技术,能生成内部身体组织的计算机化影像,其依据是应用无线电波 感生体内原子并使之产磁共振)

  3. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... Español More Info Images/Videos News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - ... into the bloodstream. The radiologist , technologist or a nurse may ask if you have allergies of any ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z Magnetic Resonance ... allergic reaction than iodinated contrast material. Tell your doctor about any health problems, recent surgeries or allergies ...

  6. Magnetometer of nuclear magnetic resonance

    We present a nuclear magnetic resonance magnetometer that measures magnetic fields, between 2,500 gauss and 5,000 gauss, with an accuracy of a few parts per million. The circuit of the magnetometer, based on a marginal oscillator, permits a continuous tunning in the frequency range comprised between 10.0 MHz, with a signal to noise ratio of about 20. The radiofrequency amplifier is of the cascode type in integrated circuit and it operates with two 9V batteries. The modulation is at 35 Hz and it is provided by an external oscillator. The instrument is compact, inexpensive and easy to operate; it can also be used for didactic purposes to show the phenomenon of magnetic nuclear resonance and its main characteristics. (author)

  7. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    ... produced by: Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot ... I’d like to talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA ...

  8. Advances in magnetic and optical resonance

    Warren, Warren S

    1997-01-01

    Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.

  9. Probing Organometallic Reactions With 19F NMR

    Hawrelak, Eric James

    2002-01-01

    This dissertation explores fundamental aspects of the reaction of group 4 metallocenes with methylaluminoxane (MAO) that lead to active Ziegler-Natta olefin polymerization catalysts. A novel experimental approach is described, in which a unique spectroscopic probe (a fluorinated substituent) is attached to the metallocene ancillary ligands and the metallocene/MAO mixtures are analyzed using 19F NMR spectroscopy. Group 4 metallocene dimethides bearing pentafluorophenyl (C6F5) substituents ...

  10. Optically detected magnetic resonance imaging

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors

  11. Metabolism of 5-fluorouracil in human liver: an in vivo 19F NMR study

    In vivo fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy was used to study the metabolism and pharmacokinetics of 5-fluorouracil (5-FU) in human liver. Nine patients received 5-FU, and additional chemotherapeutic agents (methotrexate, leucovorin, or levamisole) either prophylactically after breast cancer surgery or for colorectal cancer. The time constant for the disappearance of 5-FU from the liver in vivo varied from 5 to 17 min, while the time constant for the appearance of α-fluoro-β-alanine (the major catabolite of 5 FU) varied from 7 to 86 min. The modulators of 5-FU metabolism did not appear to affect the time constant for the disappearance of 5-FU from the liver or for the appearance of α-fluoro-β-alanine. Results obtained indicate that the pharmacokinetics of 5-FU and α-fluoro-β-alanine may vary substantially at different times in a given individual. (author)

  12. 19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles

    Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated bio-markers. In this work, the potential of 19F MRI was investigated to detect angiogenesis with αvβ3-targeted perfluoro-octylbromide nanoparticles (PFOB NP) in a U87 glioblastoma mouse model at 7 Tesla. Mice were injected intravenously with targeted or non-targeted NP and 19F images were immediately acquired for 90 min using a PFOB-dedicated MRI sequence. Mice infused with targeted NP exhibited higher concentrations in tumors than mice of the control group, despite the presence of nonspecific signal originating from the blood. Imaging results were corroborated by histology and fluorescence imaging, suggesting specific binding of targeted NP to αvβ3 integrin. Two other groups of mice were injected 24 h before imaging to allow blood clearance but no significant differences were found between both groups, probably due to a loss of specificity of PFOB NP. This is the first demonstration of the ability of 19F MRI to detect αvβ3 -integrin endothelial expression in brain tumors in vivo. (authors)

  13. Resonant magnetic fields from inflation

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of O(10−15 Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing

  14. Pediatric Body Magnetic Resonance Imaging.

    Kandasamy, Devasenathipathy; Goyal, Ankur; Sharma, Raju; Gupta, Arun Kumar

    2016-09-01

    Magnetic resonance imaging (MRI) is a radiation-free imaging modality with excellent contrast resolution and multiplanar capabilities. Since ionizing radiation is an important concern in the pediatric population, MRI serves as a useful alternative to computed tomography (CT) and also provides additional clues to diagnosis, not discernible on other investigations. Magnetic resonance cholangiopancreatography (MRCP), urography, angiography, enterography, dynamic multiphasic imaging and diffusion-weighted imaging provide wealth of information. The main limitations include, long scan time, need for sedation/anesthesia, cost and lack of widespread availability. With the emergence of newer sequences and variety of contrast agents, MRI has become a robust modality and may serve as a one-stop shop for both anatomical and functional information. PMID:26916887

  15. Evanescent Waves Nuclear Magnetic Resonance

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad;

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to char...... a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging....

  16. Tomography by nuclear magnetic resonance

    Imaging methods based on nuclear magnetic resonance allow the production of sectional images of the human body without ionizing radiation. It is possible to measure the density and relaxation times of the water protons in body fluids or tissue. This allows not only to obtain morphological information but also to get some insight into the spatial distribution of physiological data. Starting with a review of the principles of nuclear magnetic resonance it is explained how the measured signal can be associated with an image point; it is also explained what type of apparatus is necessary and what the physical limitations are. Possible risks the patient may be exposed to in an examination using nuclear magnetic resonance are discussed. The present state of the technical development enables the production of whole-body sectional images of a living person within about one minute. By means of some typical examples the nature and properties of these images are explained. Although extensive clinical studies will be necessary before a more general assessment can be made of this method, an outlook is provided on expected further developments and possible future fields of application. (orig.)

  17. Nuclear and astrophysical aspects of 18O(p,γ)19F

    The capture reaction 18O(p,γ)19F has been investigated in the energy range Esub(p) = 80-2200 keV. The seven known resonances have been studied in detail and twelve new resonances have been found. The resonances at Esub(R) = 680, 977 and 1670 keV correspond to new states in 19F. The known resonance at Esub(R) = 631 keV is observed to consist of a doublet (ΔEsub(p) = 7 keV). Information on resonance energies, total and partial widths, branching and mixing ratios and ωγ values is reported. Transition strength arguments as well as analyses of γ-ray angular distribution data combined with results from previous work resulted in Jsup(π) assignments for some of the resonances and low-lying states in 19F. The assignment of several states in 19F as T = 3/2 analogue states of 19O is discussed. A direct capture process to several final states in 19F up to Esub(x) = 8.8 MeV has been observed revealing information on the orbital momenta of the captured protons in the final states, their spectroscopic factors and Jsup(π) assignments for interfering resonances. Special efforts were made to detect this process to states near the proton threshold, which are of importance to stellar hydrogen burning of 18O. The results are compared with corresponding information from other reactions. The investigated energy range of the 18O(p,γ)19F reaction corresponds to the important stellar temperature range of T = 0.01 to 5 X 109 K. The energy-averaged astrophysical reaction rates determined from the present data are compared with previous estimates for this reaction. The data permit reliable conclusions to be drawn concerning the final termination of the CNO tri-cycle. (orig.)

  18. Magnetic Resonance Force Detection using a Membrane Resonator

    Scozzaro, Nicolas; Ruchotzke, Will; Belding, Amanda; Cardellino, Jeremy D.; Blomberg, Erick C.; McCullian, Brendan A.; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Hammel, P. Chris

    2016-01-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiN$_x$) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection...

  19. Ultra-high frequency magnetic resonance imaging

    Magill, Arthur W.

    2007-01-01

    This thesis addresses the problem of radiofrequency probe design for Ultra High Frequency Magnetic Resonance Imaging (7T). The signal-to-noise ratio available in Magnetic Resonance Imaging (MRI) is determined by the static magnetic field strength, causing a continued drive toward higher fields to enable faster image acquisition at finer spatial resolution. The resonant frequency increases linearly with static field strength. At 7T the proton resonant frequency is 300MHz, with a wavelength...

  20. Magnetic resonance imaging in oncology

    Nuclear magnetic resonance (NMR) employs radio-frequency radiation in the presence of a static magnetic field to produce signals from naturally occurring nuclei in biological tissue. The information in magnetic resonance imaging (MRI) can be derived from these signals in any orthogonal plane. Hydrogen is the most abundant of such nuclei, occurring naturally in water and lipid, and can be detected at relatively low magnetic field strength (0.04 tesla (T) upwards). The MR signal from hydrogen depends not only on the proton density and the T1 and T2 relaxation times of those protons following radio-frequency pulse disturbances, but also on the timing parameters of the radio-frequency pulse sequences employed. Image contrast depends on the interaction between all these factors; not simply as in X-ray computed tomography (CT) on the properties of the tissue itself. Therefore an understanding of both the imaging process and the pathology under investigation is essential in the proper use of MRI

  1. Binding of 5-fluorotryptamine to polynucleotides as a model for protein-nucleic acid interactions: fluorine-19 nuclear magnetic resonance, absorption, and fluorescence studies

    Fluorine-19 nuclear magnetic resonance (19F NMR), optical absorption, and fluorescence spectroscopy have been used to study the interaction of 5-fluorotryptamine (5FTA) with polynucleotides as a model for protein-nucleic acid interactions. In the presence of DNA, denatured DNA, poly(A), and poly(A)-poly(U), the 19F resonance of 5FTA shifted 0.3-0.6 ppm upfield while the presence of poly(I)-poly(C) had little effect on the chemical shift. Differences in the 19F chemical shift induced upon changing from H2O to 2H2O indicate difference in the solvent accesibility of 5FTA bound to the various polynucleotides. 19F NMR relaxation experiments were carried out for free 5FTA and in its nucleic acid complexes, and the results were interpreted by using a two correlation time model that included contributions to relaxation from dipolar coupling and chemical shift anisotropy. Values for the internal motion correlation time and the overall motion correlation time are reported. The effect of 5FTA on the melting transition of the double-stranded polynucleotides and on the quenching of 5FTA fluorescence was also studied. The 19F NMR results support the model of partial intercalation of the 5FTA chromophore into the polynucleotides, and the implications for protein-nucleic acid interactions are discussed

  2. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  3. 1H and 19F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms

    Beckmann, Peter A.; Rheingold, Arnold L.

    2016-04-01

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state 1H and 19F spin-lattice relaxation experiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance (NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of 19F-19F and 19F-1H spin-spin dipolar interactions on the complicated nonexponential NMR relaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually 1H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components.

  4. Sequestration of a fluorinated analog of 2,4-dichlorophenol and metabolic products by L. minor as evidenced by 19F NMR

    Fate of halogenated phenols in plants was investigated using nuclear magnetic resonance (NMR) to identify and quantify contaminants and their metabolites. Metabolites of 4-chloro-2-fluorophenol (4-Cl-2-FP), as well as the parent compound, were detected in acetonitrile extracts using 19F NMR after various exposure periods. Several fluorinated metabolites with chemical shifts ∼3.5 ppm from the parent compound were present in plant extracts. Metabolites isolated in extracts were tentatively identified as fluorinated-chlorophenol conjugates through examination of signal-splitting patterns and relative chemical shifts. Signal intensity was used to quantify contaminant and metabolite accumulation within plant tissues. The quantity of 4-Cl-2-F metabolites increased with time and mass balance closures of 90-110% were achieved. In addition, solid phase 19F NMR was used to identify 4-Cl-2-FP which was chemically bound to plant material. This work used 19F NMR for developing a time series description of contaminant accumulation and transformation in aquatic plant systems. - The aquatic plant L. minor accumulates, sequesters and binds 4-chloro-2-fluorophenol and its metabolites, as was demonstrated using 19F-NMR

  5. Detection of psychoactive drugs using 19F MR spectroscopy

    In vivo 19F resonance spectroscopy measurements of tri fluorinated neuroleptics (flu phenazine and tri fluoperazine) and later tri fluorinated antidepressants (fluoxetine and fluvoxamine) began with animal experiments in 1983. Using rats which have been treated with high oral doses of flu phenazine over a period of three weeks at the beginning of these experiments the measurement time was very long (up to 10 h). The application of better techniques using surface coils led to a marked improvement of the signal noise ratio and measurement times in animal experiments could be reduced to minutes. These results encouraged us and other groups to perform experiments in humans to detect and try to estimate brain levels of tri fluorinated neuroleptics and antidepressants. The present data of several research groups demonstrate that 19F MR spectroscopy has the potential of becoming a valuable tool for monitoring drug levels at the site of action. The extension of the animal studies to humans might facilitate a better treatment of schizophrenic and depressive patients. (author)

  6. Fast magnetization reversal of nanoclusters in resonator

    Yukalov, V. I.; Yukalova, E. P.

    2012-01-01

    An effective method for ultrafast magnetization reversal of nanoclusters is suggested. The method is based on coupling a nanocluster to a resonant electric circuit. This coupling causes the appearance of a magnetic feedback field acting on the cluster, which drastically shortens the magnetization reversal time. The influence of the resonator properties, nanocluster parameters, and external fields on the magnetization dynamics and reversal time is analyzed. The magnetization reversal time can ...

  7. Wide-range nuclear magnetic resonance detector

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  8. Evanescent Waves Nuclear Magnetic Resonance.

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad; Kenouche, Samir; Coillot, Christophe; Alibert, Eric; Jabakhanji, Bilal; Schimpf, Remy; Zanca, Michel; Stein, Paul; Goze-Bac, Christophe

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to characterize and model evanescent electromagnetic fields originating from NMR phenomenon. We report that in this experimental configuration the available NMR signal is one order of magnitude larger and follows an exponential decay inversely proportional to the size of the emitters. Those investigations open a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging. PMID:26751800

  9. Hyperpolarized Renal Magnetic Resonance Imaging

    Laustsen, Christoffer

    2016-01-01

    The introduction of dissolution dynamic nuclear polarization (d-DNP) technology has enabled a new paradigm for renal imaging investigations. It allows standard magnetic resonance imaging complementary renal metabolic and functional fingerprints within seconds without the use of ionizing radiation....... Increasing evidence supports its utility in preclinical research in which the real-time interrogation of metabolic turnover can aid the physiological and pathophysiological metabolic and functional effects in ex vivo and in vivo models. The method has already been translated to humans, although the clinical...

  10. Advances in magnetic resonance 3

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 3, describes a number of important developments which are finding increasing application by chemists. The book contains five chapters and begins with a discussion of how the properties of random molecular rotations reflect themselves in NMR and how they show up, often differently, in other kinds of experiments. This is followed by separate chapters on the Kubo method, showing its equivalence to the Redfield approach in the cases of most general interest; the current state of dynamic nuclear polarization measurements in solutions and what they tell us abou

  11. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  12. Cerebellar hemangioblastoma: magnetic resonance findings

    To characterize the results of magnetic resonance imaging in cerebellar hemangioblastoma. This retrospective study deals with seven cases of histologically-confirmed cerebellar hemangioblastoma after surgery. Another patient, diagnosed as having Von Hippel-Lindau disease, also developed this lesions, but the finding was not histologically confirmed. In all, there were 2 women and 6 men. Three of these patients presented Von Hippel-Lindaus disease. All were studied on a 0.5 T imager with T1, T2 and PD-weighted spin-echo axial planes; T1-weighted sequences were repeated after intravenous gadolinium administration. According to their aspects, the lesions were divided into three groups as follows: cyst containing a mural nodule (n=3)solid tumor (n=3) and cavitated tumor (n=1). In one patient, the lesion was initially solid and was found to present cavitation two years later. Abnormal vascularization was observed in all the tumors except for two small solid tumors, and the findings were not clear in one of the cysts containing a mural nodule. In the differential diagnosis it may be difficult to rule out other tumors, such as cystic astrocytoma. However, magnetic resonance imaging, together with the clinical data, is of diagnostic value in the three morphological types of cerebellar hemangioblastoma. (Author) 15 refs

  13. Magnetic resonance imaging of hemochromatosis arthropathy

    This study was undertaken to compare plain film radiography and magnetic resonance imaging in the assessment of hemochromatosis arthropathy of the knees of ten patients with a biopsy-proven diagnosis. Both modalities enabled visualisation of bony degenerative changes; magnetic resonance imaging enabled additional visualization of deformity of both cartilage and menisci. Magnetic resonance imaging failed reliably to confirm the presence of intra-articular iron in the patients studied. No correlation was observed between synovial fluid magnetic resonance signal values, corresponding serum ferritin levels, or the severity of the observed degenerative changes. (orig.)

  14. Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations

    van Rossum Albert C; Raman Subha V; McConnell Michael V; Lawson Mark A; Higgins Charles B; Friedrich Matthias G; Bogaert Jan G; Bluemke David; Hundley W Gregory; Flamm Scott; Kramer Christopher M; Nagel Eike; Neubauer Stefan

    2009-01-01

    Abstract These reporting guidelines are recommended by the Society for Cardiovascular Magnetic Resonance (SCMR) to provide a framework for healthcare delivery systems to disseminate cardiac and vascular imaging findings related to the performance of cardiovascular magnetic resonance (CMR) examinations.

  15. Fetal abdominal magnetic resonance imaging

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages

  16. Magnetic Resonance Imaging of Electrolysis.

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  17. Magnetic Resonance Imaging of Neurosarcoidosis

    Daniel T Ginat

    2011-01-01

    Full Text Available Neurosarcoidosis is an uncommon condition with protean manifestations. Magnetic resonance imaging (MRI is often used in the diagnostic evaluation and follow-up of patients with neurosarcoidosis. Therefore, familiarity with the variety of MRI appearances is important. In this pictorial essay, the range of possible patterns of involvement in neurosarcoidosis are depicted and discussed. These include intracranial and spine leptomeningeal involvement, cortical and cerebral white matter lesions, corpus callosum involvement, sellar and suprasellar involvement, periventricular involvement, cranial nerve involvement, cavernous sinus involvement, hydrocephalus, dural involvement, ischemic lesions, perivascular involvement, orbit lesions, osseous involvement, nerve root involvement, and spinal cord intramedullary involvement. Differential diagnoses for each pattern of involvement of neurosarcoidosis are also provided.

  18. Synovial pathology: Magnetic resonance study

    The synovial membrane lines the inner surface of the entire joint capsule of the so-called synovial, or diarthrosis, joints. It also constitutes the lining synovial bursa and tendon sheaths. It is lubricated at all these sites by the synovial fluid secreted by the membrane itself. The identification of this structure is bases on the correct knowledge of its anatomical locations. Synovial membrane pathology includes lesions produced by tumors, inflammation, degeneration and trauma. In this report, we classify them as benign (cysts, chondromatosis, pigmented villonodular synovitis, inflammatory synovitis and hemangioma) or malignant (synovial sarcoma and hemangiosarcoma). Magnetic resonance (MR) constitutes a useful and reliable method for diagnosis synovial lesions, providing a means of determining their origin and identifying distinctive features of some types. We present our experience in 12 cases of synovial pathology studied by MR over the past year, all of which were confirmed by histopathological study. 13 refs

  19. Fetal abdominal magnetic resonance imaging

    Brugger, Peter C. [Center of Anatomy and Cell Biology, Integrative Morphology Group, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna (Austria)]. E-mail: peter.brugger@meduniwien.ac.at; Prayer, Daniela [Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna (Austria)

    2006-02-15

    This review deals with the in vivo magnetic resonance imaging (MRI) appearance of the human fetal abdomen. Imaging findings are correlated with current knowledge of human fetal anatomy and physiology, which are crucial to understand and interpret fetal abdominal MRI scans. As fetal MRI covers a period of more than 20 weeks, which is characterized not only by organ growth, but also by changes and maturation of organ function, a different MR appearance of the fetal abdomen results. This not only applies to the fetal intestines, but also to the fetal liver, spleen, and adrenal glands. Choosing the appropriate sequences, various aspects of age-related and organ-specific function can be visualized with fetal MRI, as these are mirrored by changes in signal intensities. Knowledge of normal development is essential to delineate normal from pathological findings in the respective developmental stages.

  20. Contrast agents in magnetic resonance imaging

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes

  1. Pituitary tumors: Diagnosis by magnetic resonance imaging

    This paper presents a survey of the current status of the diagnosis of pituitary tumors by means of magnetic resonance imaging. It focuses on the clinical and practical aspects. The recommended procedure and the sequences and slice orientations for magnetic resonance imaging of the pituitary gland are presented, and the features that are essential for the diagnosis of pituitary tumors are discussed. (orig.)

  2. Magnetic resonance force microscopy: recent results

    Force detection of magnetic resonance has been demonstrated experimentally and used for imaging in EPR. This paper will review the basic principles of Magnetic Resonance Force Microscopy (MRFM) and will report some recent results in NMR imaging and the operation of a low-temperature MRFM. (author). 31 refs., 14 figs

  3. Nuclear magnetic resonance studies of erythrocyte membranes

    Chapman, D.; Kamat, V.B.; Gier, J. de; Penkett, S.A.

    1968-01-01

    The use of nuclear magnetic resonance spectroscopy for studying molecular interactions in biological membranes has been investigated using erythrocyte membrane fragments. Sonic dispersion of these fragments produces a sharp and well-defined high-resolution nuclear magnetic resonance spectrum. The sp

  4. Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.

    McQuarrie, Donald A.

    1988-01-01

    Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)

  5. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Full Text Available ... produced by: Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot ... I’d like to talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA ...

  6. Magnetic resonance imaging of the prostate

    Iversen, P; Kjaer, L; Thomsen, C;

    1987-01-01

    Magnetic resonance imaging offers new possibilities in the investigation of the prostate. The current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be of value in the staging of carcinoma of the prostate....

  7. Magnetic resonance imaging of the prostate

    Iversen, P; Kjaer, L; Thomsen, C;

    1988-01-01

    Magnetic resonance imaging offers new possibilities in investigation of the prostate gland. Current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be useful in the staging of carcinoma of the prostate....

  8. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  9. Magnetic non-collinear neutron wave resonator

    Khaidukov, Yu N

    2009-01-01

    The expression are received for amplitude of neutron reflection from layered magnetic non-collinear structure (neutron wave resonator (NWR)). It is showed the magnetic non-collinear NWR is characterized by the system of pairs of resonances for the spin flipped neutrons. The conditions are defined at which amplifying of spin-flipped neutron flux in wave resonator is multiple increased in comparison with amplifying of neutron absorption.

  10. Magnetic Resonance of the Knee

    Magnetic Resonance Imaging (MRI) has been applied to muscoloskeletal pathoanatomy and has proved to be useful in the detection and characterization of knees and 8 normal knees were examined. The images were obtained in the Diagnostic Centre RMRC of Naples on a 0.5 T superconductive magnetic system, using a surface coil and a spin-echo pulse sequence (SE 600/28 ms). The examined limb was immobilized and bent at 8-10 grade, extrarotated for the examination of the anterior cruciate ligament (ACL) only. Images were obtained on a 256x256 matrix and had a 2 or 4-mm thickness. MRI cleary showed all the anatomical structures. The anterior and posterior cruciate ligaments (ACL and PAL) and tha patellar ligament were shown by sagittal SE images through the intercondylar notch; the tibial and fibular collateral ligaments (TCL and FCL) were evaluated on coronal SE images; the articular capsula and menisci on axial transverse SE images. Objective criteria for ACL and PCL tears were: lack of continuity of the signal and change in signal intensity; in meniscal pathology, menisci with small linear regions of increased signal or with grossly truncated shape were interpreted as tears. Preliminary results of this study indicate that MRI together with clinical evaluation may be an useful non-invasive procedure in the assessment of acute injuries of the knee

  11. Stepped Impedance Resonators for High Field Magnetic Resonance Imaging

    Akgun, Can E.; DelaBarre, Lance; Yoo, Hyoungsuk; Sohn, Sung-Min; Snyder, Carl J.; Adriany, Gregor; Ugurbil, Kamil; Gopinath, Anand; Vaughan, J. Thomas

    2014-01-01

    Multi-element volume radio-frequency (RF) coils are an integral aspect of the growing field of high field magnetic resonance imaging (MRI). In these systems, a popular volume coil of choice has become the transverse electromagnetic (TEM) multi-element transceiver coil consisting of microstrip resonators. In this paper, to further advance this design approach, a new microstrip resonator strategy in which the transmission line is segmented into alternating impedance sections referred to as step...

  12. Magnetic Microparticle Aggregation For Viscosity Determination By Magnetic Resonance

    Hong, Rui; Cima, Michael J; Weissleder, Ralph; Josephson, Lee

    2008-01-01

    Micron-sized magnetic particles were induced to aggregate when placed in homogeneous magnetic fields, like those of magnetic resonance (MR) imagers and relaxometers, and then spontaneously returned to their dispersed state when removed from the field. Associated with the aggregation and dispersion of the magnetic particles were time dependent increases and decreases in the spin-spin relaxation time (T2) of the water. Magnetic nanoparticles, with far smaller magnetic moments per particle, did ...

  13. Nuclear Magnetic Resonance imaging; Resonance magnetique nucleaire

    Thibierge, M.; Sevestre, L.; Slupecki, P. [Centre Hospitalier de Charleville-Mezieres, 08 (France)

    1998-06-01

    After many years of low profile business in the USA, MRI is back. Improvements are focused on high field magnets and on low field magnets. The former, are dedicated to high quality imaging. The new scanners are more and more efficient because of the spreading use of real time imaging. They can do now, procedures that just could not be imagined some years ago. Vascular imaging is done routinely. Abdominal imaging in apnea of EPI, perfusion and diffusion imaging, and, last not least, all the field of functional imaging are on the verge of coming out. The new magnets unveiled in 1997 are lighter, smaller, more, user friendly, less impressive for patients subject to claustrophobia. They also need less helium to operate and less space to be sited. The latter, are dedicated to interventional procedures. The new magnets are wide opened and a lot of companies show off. Though Picker unveiled a new light superconductive 0.5 Tesla magnet, it seems that this kind of machines are about to disappear. No significant progress was noticed in the field of dedicated MRI devices. Some features can be highlighted: the new Siemens short bore and its table integrates the Panoramic Array Coil Concept. It will allow simultaneous scanning with up to four coils; the excellent homogeneity of the new Picker magnet that will allow spectroscopy at 1 Tesla; the twin gradients of the Elscint Prisma that will open the field of microscopy MRI; the Philips `floppy gradients` that could speed up 4 or 6 times, the time needed for imaging; some new sequences sensitive to temperature are studied as WIP; a lot of work is achieved on 3 or 4 Tesla scanners etc. (author)

  14. Magnetic resonance imaging in mucopolysaccharidosis

    Nakajima, Seijun; Tanaka, Akemi; Kawawaki, Hisashi; Hattori, Hideji; Matsuoka, Osamu; Murata, Ryosuke; Isshiki, Gen; Inoue, Yuichi

    1988-11-01

    Magnetic resonance (MR) images in six patients with mucopolysaccharidosis (MPS), two with type I S, one with type II A, two with type III B, and one with type VI MPS, were reviewed and compared with reported pathological findings and with CT scans. We used a Picker International MR imager with a 0.5-tesla superconducting magnet. The pulse sequences involved the inversion recovery technique (TR, 2,100 msec ; TI, 600 msec ; TE, 40 msec) for the T/sub 1/-weighted images and spin echo technique (TR, 1,800 msec ; TE, 120 msec) for the T/sub 2/-weighted images. The TC scanner was a Somatom 2 or DR3. In the patients with type II A and type VI MPS, there were multi-focal lesions of various sizes that showed prolonged T/sub 1/ and T/sub 2/ in the white matter. These lesions, which were not detected by CT, seemed to be correlated with the pathological findings of cavitation and dilated periadventitial space with viscous fluid. In the patients with type II A and type III B MPS, the T/sub 2/-weighted images showed a reduced contrast between gray and white matters, which may be related to the deposition of glycolipids and mucopolysaccharides in the lysosomes of the neurons and astrocytes of the gray and white matters. These findings seemed to be correlated with the clinical finding of mental retardation. In the patient of type II A MPS, there were lesions that showed prolonged T/sub 2/ of the periventricular white matter, suggesting periventricular edema. But CT hardly detected these lesions. In the patients with type I S MPS, no abnormal findings were found in MR imaging. It was concluded that MR imaging was far more sensitive for the detection of MPS lesions than CT, and was a useful method for differential diagnosis in MPS.

  15. Magnetic resonance imaging in mucopolysaccharidosis

    Magnetic resonance (MR) images in six patients with mucopolysaccharidosis (MPS), two with type I S, one with type II A, two with type III B, and one with type VI MPS, were reviewed and compared with reported pathological findings and with CT scans. We used a Picker International MR imager with a 0.5-tesla superconducting magnet. The pulse sequences involved the inversion recovery technique (TR, 2,100 msec ; TI, 600 msec ; TE, 40 msec) for the T1-weighted images and spin echo technique (TR, 1,800 msec ; TE, 120 msec) for the T2-weighted images. The TC scanner was a Somatom 2 or DR3. In the patients with type II A and type VI MPS, there were multi-focal lesions of various sizes that showed prolonged T1 and T2 in the white matter. These lesions, which were not detected by CT, seemed to be correlated with the pathological findings of cavitation and dilated periadventitial space with viscous fluid. In the patients with type II A and type III B MPS, the T2-weighted images showed a reduced contrast between gray and white matters, which may be related to the deposition of glycolipids and mucopolysaccharides in the lysosomes of the neurons and astrocytes of the gray and white matters. These findings seemed to be correlated with the clinical finding of mental retardation. In the patient of type II A MPS, there were lesions that showed prolonged T2 of the periventricular white matter, suggesting periventricular edema. But CT hardly detected these lesions. In the patients with type I S MPS, no abnormal findings were found in MR imaging. It was concluded that MR imaging was far more sensitive for the detection of MPS lesions than CT, and was a useful method for differential diagnosis in MPS. (author)

  16. Artifacts in Magnetic Resonance Imaging

    Artifacts in magnetic resonance imaging and foreign bodies within the patient’s body may be confused with a pathology or may reduce the quality of examinations. Radiologists are frequently not informed about the medical history of patients and face postoperative/other images they are not familiar with. A gallery of such images was presented in this manuscript. A truncation artifact in the spinal cord could be misinterpreted as a syrinx. Motion artifacts caused by breathing, cardiac movement, CSF pulsation/blood flow create a ghost artifact which can be reduced by patient immobilization, or cardiac/respiratory gating. Aliasing artifacts can be eliminated by increasing the field of view. An artificially hyperintense signal on FLAIR images can result from magnetic susceptibility artifacts, CSF/vascular pulsation, motion, but can also be found in patients undergoing MRI examinations while receiving supplemental oxygen. Metallic and other foreign bodies which may be found on and in patients’ bodies are the main group of artifacts and these are the focus of this study: e.g. make-up, tattoos, hairbands, clothes, endovascular embolization, prostheses, surgical clips, intraorbital and other medical implants, etc. Knowledge of different types of artifacts and their origin, and of possible foreign bodies is necessary to eliminate them or to reduce their negative influence on MR images by adjusting acquisition parameters. It is also necessary to take them into consideration when interpreting the images. Some proposals of reducing artifacts have been mentioned. Describing in detail the procedures to avoid or limit the artifacts would go beyond the scope of this paper but technical ways to reduce them can be found in the cited literature

  17. DFT-GIAO calculation of properties of {sup 19}F NMR and stability study of environmentally relevant perfluoroalkylsulfonamides (PFASAmide)

    Mejia-Urueta, Rafael; Mestre-Quintero, Kleyber; Vivas-Reyes, Ricardo, E-mail: rvivasr@unicartagena.edu.co [Grupo de Quimica Cuantica y Teorica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena (Colombia)

    2011-09-15

    Perfluorinated organic compounds (POCs), such as perfluorooctanesulfonate (PFOS) and perfluoroalkylsulfonamide (PFASA) are compounds that have recently attracted considerable attention worldwide because of its high persistence and wide distribution in the environment. Among the spectroscopic methods used to study the PFASA, {sup 19}F nuclear magnetic resonance (NMR {sup 19}F) is very effective, due to its ability to determine concentrations of PFASA in biological samples and measure pollution in water samples. For this reason, a theoretical study of the properties of {sup 19}F NMR was performed. In this study we have determined the shielding constant ({sigma}) for different fluorine nucleus of the 18 molecules under study, using density functional theory (DFT) and GIAO method with the B3PW91/6-31+G(d,p) level of calculation. The {sigma} calculations were made at vacuum and in presence of a solvent. The values of chemical shifts ({delta}), were also calculated in a different level of theory. The best results were obtained with the level of calculation DFT-GIAO/B3PW91/6-31+G(d,p) by considering the solvent such as dimethylsulfoxide (DMSO), chloroform (CHCl{sub 3}), acetone (CH{sub 3}COCH{sub 3}) and methanol (CH{sup 3}OH). The results were interpreted in terms of calculated hardness at DFT/B3PW91/6-31+G(d, p) level. The behaviour of the hardness was higher in the molecules of four carbons PFASA than eight carbons. This explain theoretically resistance of four carbons PFAS to be transformed into perfluorobutanesulfonate (PFBS). (author)

  18. Interaction of magnetic resonators studied by the magnetic field enhancement

    Yumin Hou

    2013-01-01

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE osci...

  19. Functional magnetic resonance imaging by visual stimulation

    We evaluated functional magnetic resonance images obtained in 8 healthy subjects in response to visual stimulation using a conventional clinical magnetic resonance imaging system with multi-slice spin-echo echo planar imaging. Activation in the visual cortex was clearly demonstrated by the multi-slice experiment with a task-related change in signal intensity. In addition to the primary visual cortex, other areas were also activated by a complicated visual task. Multi-slice spin-echo echo planar imaging offers high temporal resolution and allows the three-dimensional analysis of brain function. Functional magnetic resonance imaging provides a useful noninvasive method of mapping brain function. (author)

  20. Presurgical functional magnetic resonance imaging

    Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI. (orig.)

  1. Magnetic resonance in multiple sclerosis

    Magnetic Resonance Imaging was performed in more than 200 patients with clinical suspicion or knowledge of Multiple Sclerosis. One hundred and forty-seven (60 males and 87 females) had MR evidence of multiple sclerosis lesions. The MR signal of demyelinating plaques characteristically has prolonged T1 and T2 relaxation times and the T2-weighted spin-echo sequences are generally superior to the T1-weighted images because the lesions are better visualized as areas of increased signal intensity. MR is also able to detect plaques in the brainstem, cerebellum and within the cervical spinal cord. MR appears to be an important, non-invasive method for the diagnosis of Multiple Sclerosis and has proven to be diagnostically superior to CT, evoked potentials (EP) and CSF examination. In a selected group of 30 patients, with the whole battery of the relevant MS studies, MR was positive in 100%, CT in 33,3%, EP in 56% and CSF examination in 60%. In patients clinically presenting only with signs of spinal cord involvement or optic neuritis or when the clinical presentation is uncertain MR has proven to be a very useful diagnostic tool for diagnosis of MS by demonstrating unsuspected lesions in the cerebral hemispheres. (orig.)

  2. NMR shielding and spin–rotation constants of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants

  3. NMR shielding and spin–rotation constants of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules

    Demissie, Taye B. [Centre for Theoretical and Computational Chemistry Department of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø (Norway)

    2015-12-31

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  4. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  5. Enhancement of artificial magnetism via resonant bianisotropy

    Markovich, Dmitry; Baryshnikova, Kseniia; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2016-03-01

    All-dielectric “magnetic light” nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of the magnetic moment, tailoring the latter in the dynamical range of 100% and delivering enhancement up to 36% relative to performances of standalone spherical particles. The proposed approach provides pathways for designs of all-dielectric metamaterials and metasurfaces with strong magnetic responses.

  6. Reducing Field Distortion in Magnetic Resonance Imaging

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  7. Detection sensitivity of fluorine in dental enamel through the 19F(p,psup(')γ)19F reaction

    The total cross sections for production of 109 and 197 keV gamma rays in the reaction 19F(p,psup(')γ)19F have been measured, over a range of energies up to 4.3 MeV. From these cross sections, the thick detection sensitivities for a uniform distribution of fluorine in dental enamel have been calculated

  8. Biliary Ascariasis on Magnetic Resonance Cholangiopancreatography

    Hashmi, Mohammad A; Jevan K De

    2009-01-01

    A 17-year-old girl presented with features of biliary obstruction. Magnetic resonance cholangi-pancreatography revealed typical linear signals in common bile duct, which appears like Ascaris lumbricoides. The diagnosis was confirmed by endoscopic removal of the worm.

  9. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) ... Recently posted: Focused Ultrasound for Uterine Fibroids Dementia Video: General Ultrasound Video: Pediatric Nuclear Medicine Radiology and ...

  10. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Full Text Available ... Pediatric Ultrasound Video: Angioplasty & vascular stenting Video: Arthrography Radiology and You About this Site RadiologyInfo.org is ... Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot org Hello, I’m Dr. Elliot ...

  11. Chronic liver disease: evaluation by magnetic resonance

    Magnetic resonance (MR) imaging distinguished hepatitis from fatty liver and cirrhosis in a woman with a history of alcohol abuse. Anatomic and physiologic manifestations of portal hypertension were also demonstrated by MR

  12. International Society for Magnetic Resonance in Medicine

    ... Join the ISMRM Journals History & Mission Central Office Society Award Winners Strategic Plan Policies Corporate Members Contact ... E-Library Virtual Meetings Connect With Us International Society for Magnetic Resonance in Medicine 2300 Clayton Road, ...

  13. Magnetic moment of the Roper resonance

    Bauer, T. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Gegelia, J., E-mail: gegelia@kph.uni-mainz.de [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Institut fuer Theoretische Physik II, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); High Energy Physics Institute of TSU, 0186 Tbilisi, Georgia (United States); Scherer, S. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany)

    2012-08-29

    The magnetic moment of the Roper resonance is calculated in the framework of a low-energy effective field theory of the strong interactions. A systematic power-counting procedure is implemented by applying the complex-mass scheme.

  14. Magnetic resonance imaging for uterus leiomyoma diagnosis

    The possibilities of a new technique, magnetic resonance imaging (MRI) in leiomyoma diagnosis was studied. MRI has clear advantages to differentiate adenomyosis from lysosomes and to reveal combination of these processes, which can considerably influence the tactics of the treatment

  15. Magnetic moment of the Roper resonance

    Bauer, T.; Gegelia, J.; Scherer, S.

    2012-01-01

    The magnetic moment of the Roper resonance is calculated in the framework of a low-energy effective field theory of the strong interactions. A systematic power-counting procedure is implemented by applying the complex-mass scheme.

  16. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Full Text Available ... Angioplasty & vascular stenting Video: Arthrography Video: Contrast Material Radiology and You Take our survey About this Site ... Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot org Hello, I’m Dr. Elliot ...

  17. Contribution to nuclear magnetic resonance imager using permanent magnets

    After some recalls of nuclear magnetic resonance, ways to get a stable and homogeneous magnetic field are studied with permanent magnets. Development of correction coils on integrated circuits has been particularly stressed. Gradient coil specific systems have been studied taking in account ferromagnetic material presence. Antenna system has been improved and possibility of image obtention with the prototype realized has been shown

  18. Nuclear Magnetic Resonance Imaging: Current Capabilities

    Davis, Peter L.; Crooks, Lawrence E.; Margulis, Alexander R.; Kaufman, Leon

    1982-01-01

    Nuclear magnetic resonance imaging can produce tomographic images of the body without ionizing radiation. Images of the head, chest, abdomen, pelvis and extremities have been obtained and normal structures and pathology have been identified. Soft tissue contrast with this method is superior to that with x-ray computerized tomography and its spatial resolution is approaching that of x-ray computerized tomography. In addition, nuclear magnetic resonance imaging enables us to image along the sag...

  19. Cardiovascular magnetic resonance of the right ventricle

    Alpendurada, Francisco Diogo

    2013-01-01

    Introduction: Whilst most of the attention has been devoted to the left ventricle in cardiovascular disease, the right ventricle has been somewhat neglected. In the last decades, there has been a renewal of interest in the right ventricle, in part driven by advances in cardiovascular imaging. Methods: Cardiovascular magnetic resonance is arguably the best imaging modality for the study of the right ventricle. In this research thesis, cardiovascular magnetic resonance w...

  20. Cat scratch disease: magnetic resonance imaging findings

    Cat scratch disease is an infectious lymphadenitis frequently occurring in children and adolescents. We present the magnetic resonance imaging findings of two patients with this disease. In both cases, lymphadenopathy was characterized by extensive stranding of the surrounding soft tissues, consistent with the inflammatory nature of this condition. Magnetic resonance imaging can be diagnostic and may obviate the need for invasive means of evaluation in patients suspected of having cat scratch disease. (orig.)

  1. Advanced magnetic resonance spectroscopy techniques and applications

    Cao, Peng; 曹鹏

    2013-01-01

    Magnetic resonance (MR) is a well-known non-invasive technique that provides spectra (by MR spectroscopy, MRS) and images (by magnetic resonance imaging, MRI) of the examined tissue with detailed metabolic, structural, and functional information. This doctoral work is focused on advanced methodologies and applications of MRS for probing cellular and molecular changes in vivo. A single-voxel diffusion-weighted (DW) MRS method was first developed for monitoring the size changes of intramyocellu...

  2. Concepts and indications of abdominal magnetic resonance

    A literature review and conceptualization was performed of the main indications of magnetic resonance studies of the abdomen and the characteristic findings for each sequence, according to organ and pathology. The radiologist has had in mind main indications for magnetic resonance studies of the abdomen, with the purpose to guide the clinician in the choice of imaging modality that works best for the patient at diagnosis

  3. Magnetic Resonance Imaging with a Dielectric Lens

    Vazquez, F.; Marrufo, O.; MARTIN,R; Rodriguez, A. O.

    2009-01-01

    Recently, metamaterials have been introduced to improve the signal-to-noise ratio (SNR) of magnetic resonance images with very promising results. However, the use polymers in the generation of high quality images in magnetic resonance imaging has not been fully been investigated. These investigations explored the use of a dielectric periodical array as a lens to improve the image SNR generated with single surface coils. Commercial polycarbonate glazing sheets were used together with a circula...

  4. Proton magnetic resonance spectroscopy in depression

    Naren P Rao; Venkatasubramanian, Ganesan; Bangalore N Gangadhar

    2011-01-01

    Magnetic Resonance Spectroscopy (MRS) is a unique technique that can directly assess the concentration of various biochemical metabolites in the brain. Thus, it is used in the study of molecular pathophysiology of different neuropsychiatric disorders, such as, the major depressive disorder and has been an area of active research. We conducted a computer-based literature search using the Pubmed database with ‘magnetic resonance spectroscopy’, ‘MRS’, ‘depression’, and ‘major depressive disorder...

  5. Can magnetic resonance imaging differentiate undifferentiated arthritis?

    Østergaard, Mikkel; Duer, Anne; Hørslev-Petersen, K

    2005-01-01

    A high sensitivity for the detection of inflammatory and destructive changes in inflammatory joint diseases makes magnetic resonance imaging potentially useful for assigning specific diagnoses, such as rheumatoid arthritis and psoriatic arthritis in arthritides, that remain undifferentiated after...... conventional clinical, biochemical and radiographic examinations. With recent data as the starting point, the present paper describes the current knowledge on magnetic resonance imaging in the differential diagnosis of undifferentiated arthritis....

  6. Magnetic resonance urography in children

    The imaging methods play an important role in the diagnosing of the urinary tract diseases in children. The magnetic resonance urography (MRU) aids the morphological and functional assessment of the urinary tract as well as the increase of the accuracy of the diagnosing process. Objective: The aim of the study is to assess the capabilities of the MRU for the diagnosing of the urogenital tract in children. Material and methods: In 30 children, age between 20 days and 14 years, suspected for urinary tract pathology MRU is performed. The technique includes a native and contrast examination of the abdomen and the pelvis. The duration, depending on the pathology, is between 20 and 30 min. The axial scans and the 3-dimensional reconstructed images have been processed at different reconstruction angle. The findings have been compared to the other imaging methods applied and the postoperative results. Results: The MRU has allowed to diagnose different types of urogenital diseases in children - 3 with double pyelo-calyx system, 12 with obstructed mega ureter, 5 with obstruction of the pyelo-urinary segment, 5 with accompanying parenchyma anomalies, 6 with renal calculi, 5 with tumors, 1 with extrarenal tumor formation, 3 with bladder anomalies and 1 with kidney transplantation. Most of the children have combined pathology. Conclusions: MRU shows significant advantages in a number of pathological conditions as urinary tract obstruction, renal tumors, transplanted kidney and some congenital anomalies. The technique is safe, non-invasive and relatively fast for children examinations. These features of MRU presents a reason to assume that it will replace a number of conventional radiography techniques, giving more precise diagnostic information

  7. Complex Response Function of Magnetic Resonance Spectrometers

    Annino, G.; Cassettari, M.; Fittipaldi, M.; M. Martinelli

    2002-01-01

    A vectorial analysis of magnetic resonance spectrometers, based on traveling wave resonators and including the reference arm and the automatic control of frequency, has been developed. The proposed model, valid also for stationary wave resonators, gives the response function of the spectrometer for any working condition, including scalar detectors with arbitrary response law and arbitrary excitation frequency. The purely dispersive and purely absorptive linear responses are discussed in detai...

  8. Enhancement of artificial magnetism via resonant bianisotropy

    Markovich, Dmitry; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2015-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here a new approach for increasing magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer nanoantenna. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of magnetic polarizability, tailoring the later in the dynamical range of 100 % and enhancement up to 36 % relative to performances of standalone spherical particles....

  9. Nanoscale magnetic resonance imaging: Progress and challenges

    Magnetic resonance imaging (MRI), based on the sensitive detection of nuclear spins, enables three dimensional imaging without radiation damage. Conventional MRI techniques achieve spatial resolution that is at best a few micrometers due to sensitivity limitations of conventional inductive detection. The advent of ultrasensitive nanoscale magnetic sensing opens the possibility of extending MRI to the nanometer scale. If this can be pushed far enough, one can envision taking 3D images of individual biomolecules and, perhaps, even solving molecular structures of proteins. In this talk we will discuss issues related to nanoscale magnetic resonance imaging, especially its implementation using magnetic resonance force microscopy (MRFM). MRFM is based on the detection of ultrasmall (attonewton) magnetic forces. While 3D spatial resolution below 5 nm has been demonstrated, further progress depends on overcoming poorly understood near-surface force noise effects. We also consider the future possibility of using NV centers in diamond for detection of nanoMRI.

  10. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... of the head uses a powerful magnetic field, radio waves and a computer to produce detailed pictures ... medical conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the brain and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...

  12. Coherence of magnetic resonators in a metamaterial

    Yumin Hou

    2013-12-01

    Full Text Available The coherence of periodic magnetic resonators (MRs under oblique incidence is studied using simulations. The correlated phase of interaction including both the retardation effect and relative phase difference between two MRs is defined, and it plays a key role in the MR interaction. The correlated phase is anisotropic, as is the coherence condition. The coherence condition is the same as the Wood's anomaly and verified by the Fano resonance. This study shows that the applications of the Fano resonance of periodic MRs will become widespread owing to achieving the Fano resonance simply by tuning the incident angle.

  13. Low-temperature magnetic resonance force microscopy

    Wago, Koichi

    Magnetic resonance force microscopy (MRFM) is a technique whose goal is to combine the three-dimensional, chemically specific imaging capability of magnetic resonance imaging with the atomic-scale spatial resolution of scanning force microscopy. MRFM relies on the detection of small oscillatory magnetic forces between spins in the sample and a magnetic tip, using a micromechanical cantilever. The force resolution is a key issue for successfully operating MRFM experiments. Operating at low temperature improves the force resolution because of the reduced thermal energy and increased mechanical Q of the cantilever. The spin polarization is also enhanced at low temperature, leading to the improved magnetic resonance sensitivity for ensemble spin samples. A low-temperature magnetic resonance force detection apparatus was built and used to demonstrate a force resolution of 8×10sp{-17}\\ N/sqrt{Hz} at 6 K with a commercial single-crystal silicon cantilever. Both nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) were detected in micron-size samples. Force-detection technique was also applied to a wide range of magnetic resonance measurements, including inversion recovery, nutation, and spin echoes. Force-detected EPR spectra of phosphorus-doped silicon revealed hyperfine splitting, illustrating the possibility of using the MRFM technique for spectroscopic purposes. An improved low-temperature magnetic resonance force microscope was also built, incorporating a magnetic tip mounted directly on the cantilever. This allows a much wider variety of samples to be investigated and greatly improves the convenience of the technique. Using the improved microscope, three-dimensional EPR imaging of diphenylpicrylhydrazil (DPPH) particles was accomplished by scanning the sample in two dimensions while stepping an external field. The EPR force map showed a broad response reflecting the size and shape of the sample, allowing a three-dimensional real

  14. 170 Nanometer Nuclear Magnetic Resonance Imaging using Magnetic Resonance Force Microscopy

    Thurber, K R; Smith, D D; Thurber, Kent R.; Harrell, Lee E.; Smith, Doran D.

    2003-01-01

    We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nanometer slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nanometers. This is achieved by force detection of the magnetic resonance, Magnetic Resonance Force Microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs creates spin polarization up to 12 times larger than the thermal nuclear spin polarization at 5 K and 4 T. The experiment is sensitive to sample volumes containing $\\sim 4 \\times 10^{11}$ $^{71}$Ga$/\\sqrt{Hz}$. These results demonstrate the ability of force-detected magnetic resonance to apply magnetic resonance imaging to semiconductor devices and other nanostructures.

  15. Embroidered Coils for Magnetic Resonance Sensors

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  16. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220–258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243–318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258–323 K). The dispersion of 1H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz–20 MHz, and the studies are complemented by 19F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the 1H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the 1H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the 19F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids

  17. Yield Stress and Physical Data Results for the Tank 19F Radioactive Mound Sample and Tank 19F Simulant Samples

    The purpose of this work was to characterize and compare the settling behavior of the radioactive Tank 19F mound sample and non-radioactive Pacific Northwest Nation Laboratory simulants at 6, 11, and 16 weight percent total solids

  18. Planar Magnetic Metamaterial Slabs for Magnetic Resonance Imaging Applications

    Li, Chun-Lai; Guo, Jie; Zhang, Peng; Yu, Quan-Qiang; Ma, Wei-Tao; Miao, Xi-Gen; Zhao, Zhi-Ya; Luan, Lin

    2014-07-01

    A type of planar magnetic metamaterial is proposed with a square winding microstructure as a superlens for magnetic resonance imaging (MRI) applications. A direct magnetic field mapping measurement demonstrates that the radio-frequency magnetic field passing through the superlens is increased by as high as 46.9% at the position of about 3 cm behind the superlens. The resonance frequency of the fabricated slabs is found to be in good agreement with the target frequency (63.6 MHz) for a 1.5T MRI system. MRI experiments with the magnetic superlens show that the intensity of the image and the SNR (signal-to-noise ratio) are both enhanced, implying promising MRI applications of our planar magnetic superlens.

  19. Generation of nuclear magnetic resonance images

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  20. Susceptibility effects in nuclear magnetic resonance imaging

    The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. (orig.)

  1. Focal renal masses: magnetic resonance imaging

    Thirty patients with focal renal masses were evaluated on a .12-Tesla resistive magnetic resonance unit using partial saturation and spin echo pulse sequence. Fifteen patients had cystic lesions, nine patients had renal cell carcinoma, two had metastatic lesions, one had an angiomyolipoma, and three had focal bacterial infection. Renal cell carcinomas demonstrated areas of increased signal using a partial saturation sequence. Magnetic resonance imaging accurately detected perinephric extension and vascular invasion in all patients. Metastatic disease to the kidney was uniformly low in signal, in contrast to primary renal cell carcinoma; an angiomyolipoma demonstrated very high signal intensity. Two masses resulting from acute focal bacterial nephritis were uniformly low in signal. Magnetic resonance imaging appears to be an accurate way of detecting, identifying, and staging focal renal masses

  2. Magnetic plasmonic Fano resonance at optical frequency.

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials. PMID:25594885

  3. Magnetic resonance imaging of the body

    Higgins, C.B.; Hricak, H.

    1987-01-01

    This text provides reference to magnetic resonance imaging (MRI) of the body. Beginning with explanatory chapters on the physics, instrumentation, and interpretation of MRI, it proceeds to the normal anatomy of the neck, thorax, abdomen, and pelvis. Other chapters cover magnetic resonance imaging of blood flow, the larynx, the lymph nodes, and the spine, as well as MRI in obstetrics. The text features detailed coverage of magnetic resonance imaging of numerous disorders and disease states, including neck disease, thoracic disease; breast disease; congenital and acquired heart disease; vascular disease; diseases of the liver, pancreas, and spleen; diseases of the kidney, adrenals, and retroperitoneum; diseases of the male and female pelvis; and musculoskeletal diseases. Chapters on the biological and environmental hazards of MRI, the current clinical status of MRI in comparison to other imaging modalities, and economic considerations are also included.

  4. Tutte polynomial in functional magnetic resonance imaging

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  5. Magnetic resonance signal moment determination using the Earth's magnetic field

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  6. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... pregnant. The magnetic field is not harmful, but it may cause some medical devices to malfunction. Most ... number of abrupt onset or long-standing symptoms. It can help diagnose conditions such as: brain tumors ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ... also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or headphones ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of ... sounds when the coils that generate the radiofrequency pulses are activated. Some centers provide earplugs, while others ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... look like? The traditional MRI unit is a large cylinder-shaped tube surrounded by a circular magnet. ... still during imaging. A person who is very large may not fit into the opening of certain ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or headphones ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media MR Angiography ( ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no risk, ... magnetic field is not harmful in itself, implanted medical devices that contain metal may malfunction or cause problems ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... material called gadolinium, which is less likely to cause an allergic reaction than iodinated contrast material. Tell ... magnetic field is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... x-ray contrast material, drugs, food, or the environment, or if you have asthma. The contrast material ... are also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... MRI centers allow a friend or parent to stay in the room as long as they are also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or headphones ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Full Text Available ... allergies and whether there’s a possibility you are pregnant. The magnetic field is not harmful, but it ... if there is any possibility that they are pregnant. MRI has been used for scanning patients since ...

  17. Nuclear magnetic resonance as a petrophysical measurement

    Nuclear magnetic resonance (NMR) of hydrogen nuclei in fluids which saturate porous rocks is important in oil exploration and production, since NMR logs can provide good estimates of permeability and fluid flow. This paper reviews developments which connect the NMR properties of rocks with petrophysical properties, and particularly those relating to fluid flow. The recent advances in the use of NMR in boreholes which have spurred these developments are also discussed. The relevance of other NMR measurements on geological samples, including magnetic resonance imaging, is briefly referred to. (author)

  18. Magnetic resonance neurography. Imaging of peripheral nerves

    Magnetic resonance neurography (MRN) is a non-invasive technique using magnetic resonance imaging (MRI) in order to diagnose peripheral nerve pathologies and their underlying etiologies. MRN is already in clinical use and is now mostly used to delineate the anatomy of nerves and to establish the continuity or discontinuity of nerves in patients with traumatic nerve injuries, as well as to monitor processes of peripheral nerve degeneration and regeneration. This article reviews established and evolving novel MRN technologies with regard to their potential to meet the requirements for non-invasive imaging of peripheral nerves in clinical settings. (orig.)

  19. Magnetic Resonance Imaging with a Dielectric Lens

    Vazquez, F; Martin, R; Rodriguez, A O

    2009-01-01

    Recently, metamaterials have been introduced to improve the signal-to-noise ratio (SNR) of magnetic resonance images with very promising results. However, the use polymers in the generation of high quality images in magnetic resonance imaging has not been fully been investigated. These investigations explored the use of a dielectric periodical array as a lens to improve the image SNR generated with single surface coils. Commercial polycarbonate glazing sheets were used together with a circular coil to generate phantom images at 3 Tesla on a clinical MR imager.

  20. The progress of coronary magnetic resonance imaging

    Coronary heart disease (CHD) is a kind of disease with high morbidity and mortality. The early detection and treatment has important significance to patient. With the features of noninvasive, no radiation, good soft tissue contrast and multi parameter, and displaying anatomy in arbitrary plane, magnetic resonance imaging (MRI) was gradually applied in coronary artery imaging. In this paper, the main sequence and scanning technology of coronary MRI were reviewed, factors that affecting the quality of coronary magnetic resonance imaging were summarized, and the main advantages and disadvantages were concluded. (authors)

  1. Progress in nuclear magnetic resonance spectroscopy

    Emsley, J W; Sutcliffe, L H

    2013-01-01

    Progress in Nuclear Magnetic Resonance Spectroscopy, Part 1 is a two-chapter text that reviews significant developments in nuclear magnetic resonance (NMR) applications.The first chapter discusses NMR studies of molecules physisorbed on homogeneous surfaces. This chapter also describes the phase changes in the adsorbed layer detected by following the variation in the NMR parameters. The second chapter examines the process to obtain a plotted, data reduced Fourier transform NMR spectrum. This chapter highlights the pitfalls that can cause a decrease in information content in a NMR spectrum. The

  2. Magnetic resonance neurography of the brachial plexus

    Vaishali Upadhyaya

    2015-01-01

    Full Text Available Magnetic Resonance Imaging (MRI is being increasingly recognised all over the world as the imaging modality of choice for brachial plexus and peripheral nerve lesions. Recent refinements in MRI protocols have helped in imaging nerve tissue with greater clarity thereby helping in the identification, localisation and classification of nerve lesions with greater confidence than was possible till now. This article on Magnetic Resonance Neurography (MRN is based on the authors′ experience of imaging the brachial plexus and peripheral nerves using these protocols over the last several years.

  3. Complex Response Function of Magnetic Resonance Spectrometers

    Annino, G; Fittipaldi, M; Martinelli, M

    2002-01-01

    A vectorial analysis of magnetic resonance spectrometers, based on traveling wave resonators and including the reference arm and the automatic control of frequency, has been developed. The proposed modelization, valid also for stationary wave resonators, gives the response function of the spectrometer for any working condition, including scalar detectors with arbitrary responsivity law and arbitrary excitation frequency. The purely dispersive and purely absorptive linear responses are discussed in detail for different scalar detectors. The developed approach allows to optimize the performances of the spectrometer and to obtain the intrinsic lineshape of the sample in a very broad range of working conditions. More complex setups can be modelized following the proposed scheme.

  4. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance

    Arima, Eiji; Naitoh, Yoshitaka; Li, Yan Jun; Yoshimura, Satoru; Saito, Hitoshi; Nomura, Hikaru; Nakatani, Ryoichi; Sugawara, Yasuhiro

    2015-03-01

    In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium.

  5. Magnetic force microscopy using tip magnetization modulated by ferromagnetic resonance

    In magnetic force microscopy (MFM), the tip–sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip–sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium. (paper)

  6. Proton magnetic resonance spectroscopy and perfusion magnetic resonance imaging in the evaluation of musculoskeletal tumors

    Objective: To assess the role of proton magnetic resonance spectroscopy and dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign musculoskeletal tumors. Materials And Methods: Fifty-five patients with musculoskeletal tumors (27 malignant and 28 benign) were studied. The examinations were performed in a 1.5 T magnetic resonance scanner with standard protocol, and single voxel proton magnetic resonance spectroscopy with 135 msec echo time. The dynamic contrast study was performed using T1-weighted gradient-echo sequence after intravenous gadolinium injection. Time signal intensity curves and slope values were calculated. The statistical analysis was performed with the Levene's test, followed by a Student's t-test, besides the Pearson's chi-squared and Fischer's exact tests. Results: Proton magnetic resonance spectroscopy sensitivity, specificity and accuracy were, respectively, 87.5%, 92.3% and 90.9% (p < 0.0001). Statistically significant difference was observed in the slope (%/min) between benign (mean, 27.5%/min) and malignant (mean, 110.9%/min) lesions (p < 0.0001). Conclusion: The time-intensity curve and slope values using dynamic-enhanced perfusion magnetic resonance imaging in association with the presence of choline peak demonstrated by single voxel magnetic resonance spectroscopy study are useful in the differentiation between malignant and benign musculoskeletal tumors. (author)

  7. Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: a 19F NMR study.

    P. Tang; Yan, B.; Xu, Y

    1997-01-01

    Despite their structural resemblance, a pair of cyclic halogenated compounds, 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1,2-dichlorohexafluorocyclobutane (F6), exhibit completely different anesthetic properties. Whereas the former is a potent general anesthetic, the latter produces no anesthesia. Two linear compounds, isoflurane and 2,3-dichlorooctofluorobutane (F8), although not a structural pair, also show the same anesthetic discrepancy. Using 19F nuclear magnetic spectroscopy, we inves...

  8. Multi-dimensionally encoded magnetic resonance imaging

    Lin, Fa-Hsuan

    2012-01-01

    Magnetic resonance imaging typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image...

  9. Nuclear magnetic resonance of thermally oriented nuclei

    The more recent developments in the spectroscopy of Nuclear Magnetic Resonance on Oriented Nuclei (NMRON) are reviewed; both theoretical and experimental advances are summarised with applications to On-Line and Off-Line determination of magnetic dipole and electric quadrupole hyperfine parameters. Some emphasis is provided on solid state considerations with indications of where likely enhancements in technique will lead in conventional hyperfine studies. (orig.)

  10. 19F NMR study of LiTbF4 single crystals

    The angular dependences of 19F NMR spectra have been measured in the external magnetic field of 0.5 T oriented in the basis plane of LiTbF4 at the room temperature. We have obtained the constants of transferred hyperfine interaction and the corrected set of crystal field parameters for the Tb3+ ions in LiTbF4. The results of simulations of the magnetization in high pulsed magnetic fields with taking into account magnetoelastic interactions agree satisfactorily with experimental data presented in the literature.

  11. Magnetic resonance angiography in meningovascular syphilis

    Meningovascular neurosyphilis (MN) is an unusual cause of stroke in young adults. The clinical manifestations include prodromal symptoms weeks or months before definitive stroke. The diagnosis is based on clinical findings and examination of the serum and cerebrospinal fluid. We report a case of MN with basilar artery irregularities demonstrated by magnetic resonance angiography. (orig.)

  12. Biliary ascariasis on magnetic resonance cholangiopancreatography

    Mohammad A Hashmi

    2009-01-01

    Full Text Available A 17-year-old girl presented with features of biliary obstruction. Magnetic resonance cholangi-pancreatography revealed typical linear signals in common bile duct, which appears like Ascaris lumbricoides. The diagnosis was confirmed by endoscopic removal of the worm.

  13. Evaluation of nuclear magnetic resonance spectroscopy variability

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  14. Sensorineural hearing loss after magnetic resonance imaging

    Mollasadeghi, Abolfazl; Mehrparvar, Amir Houshang; Atighechi, Saeid;

    2013-01-01

    Magnetic resonance imaging (MRI) devices produce noise, which may affect patient's or operators' hearing. Some cases of hearing impairment after MRI procedure have been reported with different patterns (temporary or permanent, unilateral or bilateral, with or without other symptoms like tinnitus...

  15. Recent progress in magnetic resonance imaging

    Magnetic resonance imaging (MRI) has become a powerful tool in the life sciences and medical diagnosis, for which it was awarded the 2003 Nobel prize in physiology or medicine. The latest progress in MRI, including medical, brain-functional, in-vivo spectroscopic, and microscopic imaging are briefly reviewed

  16. 3D Reconstruction in Magnetic Resonance Imaging

    Mikulka, J.; Bartušek, Karel

    2010-01-01

    Roč. 6, č. 7 (2010), s. 617-620. ISSN 1931-7360 R&D Projects: GA ČR GA102/09/0314 Institutional research plan: CEZ:AV0Z20650511 Keywords : reconstruction methods * magnetic resonance imaging Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. 3D Reconstruction in Magnetic Resonance Imaging

    Mikulka, J.; Bartušek, Karel

    Cambridge : The Electromagnetics Academy, 2010, s. 1043-1046. ISBN 978-1-934142-14-1. [PIERS 2010 Cambridge. Cambridge (US), 05.07.2010-08.07.2010] R&D Projects: GA ČR GA102/09/0314 Institutional research plan: CEZ:AV0Z20650511 Keywords : 3D reconstruction * magnetic resonance imaging Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. Magnetic resonance imaging in sudden deafness

    The etiology of sudden deafness can remain undetermined despite extensive investigation. This study addresses the value of magnetic resonance imaging in the analysis of sudden deafness patients.Study Design: transversal cohort.Material And Method: In a prospective study, 49 patients attended at otolaryngology emergency room of Federal University of Sao Paulo - Escola Paulista de Medicina, from April 2001 to May 2003, were submitted to magnetic resonance imaging.Results: Magnetic Resonance abnormalities were seen in 23 (46.9%) patients and revealed two tumors suggestive of meningioma, three vestibular schwannomas, thirteen microangiopathic changes of the brain and five (21.7%) pathological conditions of the labyrinth.Conclusion: Sudden deafness should be approached as a symptom common to different diseases. The presence of cerebellopontine angle tumors in 10.2% of our cases, among other treatable causes, justifies the recommendation of gadolinium-enhanced magnetic resonance use, not only to study the auditory peripheral pathway, but to study the whole auditory pathway including the brain. (author)

  19. Numerical methods in electron magnetic resonance

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system

  20. Measurement of myocardial perfusion using magnetic resonance

    Fritz-Hansen, T.; Jensen, L.T.; Larsson, H.B.;

    2008-01-01

    Cardiac magnetic resonance imaging (MRI) has evolved rapidly. Recent developments have made non-invasive quantitative myocardial perfusion measurements possible. MRI is particularly attractive due to its high spatial resolution and because it does not involve ionising radiation. This paper reviews...

  1. Sports Health Magnetic Resonance Imaging Challenge

    Howell, Gary A.; Stadnick, Michael E.; Awh, Mark H.

    2010-01-01

    Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians.

  2. Sports Health Magnetic Resonance Imaging Challenge

    Howell, Gary A.; Stadnick, Michael E.; Awh, Mark H.

    2010-01-01

    Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians. PMID:23015984

  3. Evaluation of nuclear magnetic resonance spectroscopy variability

    Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia

    2014-11-01

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  4. Imaging Intelligence with Proton Magnetic Resonance Spectroscopy

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Caprihan, Arvind; Barrow, Ranee; Yeo, Ronald A.

    2009-01-01

    Proton magnetic resonance spectroscopy ([to the first power]H-MRS) is a technique for the assay of brain neurochemistry "in vivo." N-acetylaspartate (NAA), the most prominent metabolite visible within the [to the first power]H-MRS spectrum, is found primarily within neurons. The current study was designed to further elucidate NAA-cognition…

  5. Magnetic resonance imaging in radiotherapy treatment planning

    Moerland, Marinus Adriaan

    2001-01-01

    From its inception in the early 1970's up to the present, magnetic resonance imaging (MRI) has evolved into a sophisticated technique, which has aroused considerable interest in var- ious subelds of medicine including radiotherapy. MRI is capable of imaging in any plane and does not use ionizing rad

  6. Numerical methods in electron magnetic resonance

    Soernes, A.R

    1998-07-01

    The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system.

  7. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  8. Automated Segmentation of Cardiac Magnetic Resonance Images

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  9. Modelling Strategies for Functional Magnetic Resonance Imaging

    Madsen, Kristoffer Hougaard

    2009-01-01

    This thesis collects research done on several models for the analysis of functional magnetic resonance neuroimaging (fMRI) data. Several extensions for unsupervised factor analysis type decompositions including explicit delay modelling as well as handling of spatial and temporal smoothness and...

  10. Quantitative dosing by nuclear magnetic resonance

    The measurement of the absolute concentration of a heavy water reference containing approximately 99.8 per cent of D2O has been performed, by an original magnetic resonance method ('Adiabatic fast passage method') with a precision of 5.10-5 on the D2O concentration. (author)