WorldWideScience

Sample records for 1937-1987 lawrence berkeley

  1. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  2. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  3. Lawrence Berkeley Laboratory 1994 site environmental report

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  4. Lawrence Berkeley Laboratory 1994 site environmental report

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  5. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  6. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  7. Life sciences: Lawrence Berkeley Laboratory, 1988

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  8. Life sciences: Lawrence Berkeley Laboratory, 1988

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  9. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    NONE

    1995-06-01

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  10. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    Schleimer, G.E. (ed.)

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed.

  11. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  12. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Schleimer, G.E.; Pauer, R.O. (eds.)

    1990-08-01

    The Lawrence Berkeley Laboratory (LBL) is a multiprogram national laboratory managed by the University of California (UC) for the US Department of Energy (DOE). LBL's major role is to conduct basic and applied science research that is appropriate for an energy research laboratory. The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1989 are presented, and general trends are discussed. 17 refs., 12 figs., 23 tabs.

  13. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    NONE

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  14. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    Schleimer, G.E. (ed.)

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs.

  15. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs

  16. Annual site environmental report of the Lawrence Berkeley Laboratory

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs

  17. Annual site environmental report of the Lawrence Berkeley Laboratory

    Schleimer, G.E.; Pauer, R.O. (eds.)

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs.

  18. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  19. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  20. Lawrence Berkeley National Laboratory 1995 site environmental report

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  1. Lawrence Berkeley Laboratory upgrading approaches to existing facilities

    The Lawrence Berkeley Laboratory Plant Engineering Department instituted a seismic risk investigation and seismic upgrade program in 1970. This paper covers the upgrade of two buildings with dissimilar framing systems; Building No. 10, a World War II vintage heavy timber frame building, and Building No. 80, a steel frame structure constructed in 1954. The seismic upgrade task for both structures required that the buildings be kept in service during rehabilitation with a minimum of disruption to occupants. Rehabilitations were phased over two and three year periods with construction management and supervision performed by LBL Plant Engineering staff

  2. Lawrence Berkeley National Laboratory 1995 site environmental report

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  3. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  4. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  5. USING DOE-2.1 AT LAWRENCE BERKELEY LABORATORY

    Building Energy Analysis Group.; Authors, Various

    1980-09-01

    The purpose of this manual is to assist the DOE-2 user to run DOE-2 and its utility programs at Lawrence Berkeley Laboratory (LBL). It is organized to reflect the facts that every DOE-2 job run at LBL requires certain steps, and that there are options related to DOE-2 job runs available to any DOE-2 user. The standard steps for running a DOE-2 job are as follows: 1. Prepare a job deck 2. Process a job deck 3. Obtain standard output reports.

  6. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  7. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  8. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  9. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1977

    Stephens, L.D. (ed.)

    1978-03-01

    The data obtained from the Environmental Monitoring Program of the Lawrence Berkeley Laboratory for the Calendar year 1977 are described and general trends are discussed. The general trend of decreasing radiation levels at our site boundary due to accelerator operation during past years has leveled off during 1977 and in some areas shows a slight but not statistically significant increase as predicted in last year's summary. There were changes in both ion beams as well as current which have resulted in shifts in maxima at the monitoring stations. The gamma levels are once again reported as zero. There is only one period of detectable gamma radiation due to accelerator operation. The annual dose equivalent are reported from the environmental monitoring stations since they have been established. Radiation levels at the Olympus Gate Station have shown a steady decline since 1959 when estimates were first made. The Olympus Gate Station is in direct view of the Bevatron and most directly influenced by that accelerator. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations.

  10. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES ampersand H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES ampersand H awareness at all staff levels and in identifying ES ampersand H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES ampersand H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES ampersand H program. 4 figs., 24 tabs

  11. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  12. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  13. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  14. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    Various

    1986-12-01

    The Lawrence Berkeley Laboratory, operated by the University of California for the Department of Energy, provides national scientific leadership and supports technological innovation through its mission to: (1) Perform leading multidisciplinary research in general sciences and energy sciences; (2) Develop and operate unique national experimental facilities for use by qualified investigators; (3) Educate and train future generations of scientists and engineers; and (4) Foster productive relationships between LBL research programs and industry. The following areas of research excellence implement this mission and provide current focus for achieving DOE goals. GENERAL SCIENCES--(1) Accelerator and Fusion Research--accelerator design and operation, advanced accelerator technology development, accelerator and ion source research for heavy-ion fusion and magnetic fusion, and x-ray optics; (2) Nuclear Science--relativistic heavy-ion physics, medium- and low-energy nuclear physics, nuclear theory, nuclear astrophysics, nuclear chemistry, transuranium elements studies, nuclear data evaluation, and detector development; (3) Physics--experimental and theoretical particle physics, detector development, astrophysics, and applied mathematics. ENERGY SCIENCES--(1) Applied Science--building energy efficiency, solar for building systems, fossil energy conversion, energy storage, and atmospheric effects of combustion; (2) Biology and Medicine--molecular and cellular biology, diagnostic imaging, radiation biophysics, therapy and radiosurgery, mutagenesis and carcinogenesis, lipoproteins, cardiovascular disease, and hemopoiesis research; (3) Center for Advanced Materials--catalysts, electronic materials, ceramic and metal interfaces, polymer research, instrumentation, and metallic alloys; (4) Chemical Biodynamics--molecular biology of nucleic acids and proteins, genetics of photosynthesis, and photochemistry; (5) Earth Sciences--continental lithosphere properties, structures and

  15. Hydrogeology and tritium transport in Chicken Creek Canyon,Lawrence Berkeley National Laboratory, Berkeley, California

    Jordan, Preston D.; Javandel, Iraj

    2007-10-31

    This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow. Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.

  16. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award; scientist's work on supernovae reveals accelerating Universe

    2002-01-01

    Saul Perlmutter, from Lawrence Berkeley National Laboratory Physics Division and leader of the Supernova Cosmology Project based there, has won the DOE's 2002 E.O. Lawrence Award in the physics category (2 pages).

  17. Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California

    NONE

    1994-12-01

    Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

  18. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs.

  19. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs

  20. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  1. Remote operation of DOE-1 on the Lawrence Berkeley Laboratory CDC 7600, 6600, and 6400 computers

    1978-03-01

    How to run the DOE-1 building energy analysis program on the Lawrence Berkeley Laboratory CDC computers is described. An overview of the LBL operating system and how to run a job on the 7600 are presented. The DOE-1 program, a control card sequence for running the program, and how to store input, output, and intermediate files are discussed. A detailed description is given of the DOE-1 Weather Package.

  2. Transactinide studies at U.C. Berkeley and the Lawrence Berkeley National Laboratory

    Chemical studies of the heaviest elements have a long-standing history at Berkeley. The Heavy Element Nuclear and Radiochemistry Group at LBNL conducts heavy element nuclear physics as well as transactinide chemistry studies. The new capabilities of the Berkeley Gas-filled Separator (BGS) have added to a further vitalization of the heavy element studies at LBNL. This talk gives an overview of the recent collaborative first ever chemical studies of elements 107, bohrium, and 108, hassium. A recoil transfer chamber (RTC) connected to the back end of the BGS was constructed and tested. With the RTC, compound nucleus evaporation residues (EVR) pass through a thin Mylar window at the BGS focal plane and are stopped in a gas, for gas-jet transport to remote chemical experiments; the transport gas has a substantially higher pressure than the gas in the BGS. The efficiency of the transport was tested with various EVR's and different chemical detection systems, such as the SISAK centrifugal aqueous/organic phase extraction system and the novel Cryogenic Thermo-chromatographic Separator (CTS) were used. The CTS is based on the high volatility at near-ambient temperature of the heavy metal oxides such as Osmium tetroxide, OsO4, the homologue of hassium tetroxide. The CTS consists of an assembly of two rows of silicon PIN-diodes arranged opposite to each other, thus forming a narrow rectangular channel through which the reaction gas flows. A decreasing thermal gradient ranging from room temperature to about minus 120 deg C is applied to the PIN-diode assembly. This results in the deposition of the heavy metal oxide on one of the detectors, where it is identified by alpha counting. Separation factor of 107 - 109 for actinides from the combined BGS-CTS system can be achieved. The successful combination of the BGS with chemical separation systems is a true breakthrough. It opens a new possibility to study more effectively the chemical behaviour of the heaviest elements by

  3. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy's inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  4. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award scientist's work on supernovae reveals accelerating universe

    2002-01-01

    "Saul Perlmutter, a member of Lawrence Berkeley National Laboratory's Physics Division and leader of the international Supernova Cosmology Project based there, has won the Department of Energy's 2002 E.O. Lawrence Award in the physics category" (1/2 page).

  5. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  6. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  7. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  8. Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  9. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  10. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  11. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  12. Heavy ion facilities and heavy ion research at Lawrence Berkeley Laboratory

    NONE

    1973-10-01

    Lawrence Berkeley Laboratory has been heavily involved since 1956 in the construction and adaptation of particle accelerators for the acceleration of heavy ions. At the present time it has the most extensive group of accelerators with heavy-ion capability in the United States: The SuperHILAC, the 88-Inch Cyclotron, and the Bevatron/Bevalac. An extensive heavy-ion program in nuclear and particle physics, in nuclear chemistry, and in the study of biological effects of heavy-ion irradiations has been supported in the past; and the Laboratory has a strong interest in expanding both its capabilities for heavy-ion acceleration and its participation in heavy-ion science. The first heavy-ion accelerator at LBL was the HILAC, which began operation in 1957. A vigorous program of research with ion beams of masses 4 through 40 began at that time and continued until the machine was shut down for modifications in February 1971. At that time, a grant of $3 M had been received from the AEC for a total reconstruction of the HILAC, to turn it into an upgraded accelerator, the SuperHILAC. This new machine is designed for the acceleration of all ions through uranium to an energy of 8.5 MeV/u. The SuperHILAC is equipped with two injectors. The lower energy injector, a 750-kV Cockcroft-Walton machine, was put into service in late 1972 for acceleration of ions up through {sup 40}Ar. By spring of 1973, operation of the SuperHILAC with this injector exceeded the performance of the original HILAC. The second injector, a 2.5-MV Dynamitron, was originally designed for the Omnitron project and built with $1 M of Omnitron R and D funds. Commissioning of this injector began in 1973 and proceeded to the point where nanoampere beams of krypton were available for a series of research studies in May and June. The first publishable new results with beams heavier than {sup 40}Ar were obtained at that time. Debugging and injector improvement projects will continue in FY 74.

  13. Analysis of background distributions of metals in the soil at Lawrence Berkeley National Laboratory

    Diamond, David; Baskin, David; Brown, Dennis; Lund, Loren; Najita, Julie; Javandel, Iraj

    2009-03-15

    As part of its Resource Conservation and Recovery Act (RCRA) Corrective Action Program (CAP), the Lawrence Berkeley National Laboratory (LBNL) Environmental Restoration Program conducted an evaluation of naturally occurring metals in soils at the facility. The purpose of the evaluation was to provide a basis for determining if soils at specific locations contained elevated concentrations of metals relative to ambient conditions. Ambient conditions (sometimes referred to as 'local background') are defined as concentrations of metals in the vicinity of a site, but which are unaffected by site-related activities (Cal-EPA 1997). Local background concentrations of 17 metals were initially estimated by LBNL using data from 498 soil samples collected from borings made during the construction of 71 groundwater monitoring wells (LBNL 1995). These concentration values were estimated using the United States Environmental Protection Agency's (USEPA's) guidance that was available at that time (USEPA 1989). Since that time, many more soil samples were collected and analyzed for metals by the Environmental Restoration Program. In addition, the California Environmental Protection Agency (Cal-EPA) subsequently published a recommended approach for calculating background concentrations of metals at hazardous waste sites and permitted facilities (Cal-EPA 1997). This more recent approach differs from that recommended by the USEPA and used initially by LBNL (LBNL 2002). The purpose of the 2002 report was to apply the recommended Cal-EPA procedure to the expanded data set for metals that was available at LBNL. This revision to the 2002 report has been updated to include more rigorous tests of normality, revisions to the statistical methods used for some metals based on the results of the normality tests, and consideration of the depth-dependence of some sample results. As a result of these modifications, estimated background concentrations for some metals have been

  14. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  15. Environmental assessment for the recycling of slightly activated copper coil windings from the 184-Inch Cyclotron at Lawrence Berkeley Laboratory, Berkeley, California

    1993-08-02

    The proposed action is to recycle slightly activated copper that is currently stored in a warehouse leased by Lawrence Berkeley Laboratory (LBL) to a scrap metal dealer. Subsequent reutilization of the copper would be unrestricted. This document addresses the potential environmental effects of recycling and reutilizing the activated copper. In addition, the potential environmental effects of possible future uses by the dealer are addressed. Direct environmental effects from the proposed action are assessed, such as air emissions from reprocessing the activated copper, as well as indirect beneficial effects, such as averting air emissions that would result from mining and smelting an equivalent quantity of copper ore. Evaluation of the human health impacts of the proposed action focuses on the pertinent issues of radiological doses and protection of workers and the public. Five alternatives to the proposed action are considered, and their associated potential impacts are addressed. The no-action alternative is the continued storage of the activated copper at the LBL warehouse. Two recycling alternatives are considered: recycling the activated copper at the Scientific Ecology Group (SEG) facility for re-use at a DOE facility and selling or giving the activated copper to a foreign government. In addition, two disposal alternatives evaluate the impacts attributable to disposing of the activated copper either at a local sanitary landfill or at the Hanford Low-Level Waste Burial Site. The proposed project and alternatives include no new construction or development of new industry.

  16. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    The Advanced Light Source (ALS), now under construction at the Lawrence Berkeley Laboratory, is being planned as a national user facility for the production of high-brightness and partially coherent x-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bend-magnet ports. High-brightness photon beams, from less than 10 eV to more than 1 keV, will be produced by undulators, thereby providing many research opportunities in materials and surface science, biology, atomic physics and chemistry. Wigglers and bend magnets will provide high-flux, broad-band radiation at energies to 10 keV. 6 refs., 10 figs., 2 tabs

  17. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects

  18. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects.

  19. Decontamination and decommissioning of rooms 62-248 and 62-250 at Ernest Orlando Lawrence Berkeley National Laboratory

    Garabedian, G.

    1996-05-01

    This document details the decontamination and decommissioning (D&D) process of Rooms 248 and 250 of Building 62 at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL). The document describes the D&D efforts for the rooms, their contents, and adjacent areas containing ancillary equipment. The rooms and equipment, before being released, were required to meet the unrestricted release criteria and requirements set forth in DOE orders 5400.5 and 5480.11, LBNL`s internal release-criteria procedure (EH&S Procedure 708), and the LBNL Radiological Control Manual. The radioactive material and items not meeting the release criteria were either sent to the Hazardous Waste Handling Facility (HWHF) for disposal or transferred to other locations approved for radioactive material. The D&D was undertaken by the Radiation Protection Group of LBNL`s Environment, Health and Safety (EH&S) Division at the request of the Materials Sciences Division. Current and past use of radioactive material in both Rooms 248 and 250 necessitated the D&D in order to release both rooms for nonradioactive work. (1) Room 248 was designated a {open_quotes}controlled area.{close_quotes} There was contained radioactive material in some of the equipment. The previous occupants of Room 248 had worked with radioactive materials. (2) Room 250 was designated a {open_quotes}Radioactive Materials Management Area{close_quotes} (RMMA) because the current occupants used potentially dispersible radioisotopes. Both laboratories, during the occupancy of U.C. Berkeley Professor Leo Brewer and Ms. Karen Krushwitz, were kept in excellent condition. There was a detailed inventory of all radioactive materials and chemicals. All work and self surveys were documented. The labs were kept extremely orderly, clean, and in compliance. In October 1993 Ms. Krushwitz received an award in recognition of her efforts in Environmental Protection, Health, and Safety at LBNL.

  20. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS [Lawrence Berkeley Laboratory Advanced Light Source] Booster Dipole Magnets

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs

  1. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs

  2. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    The Advanced Light Source (ALS), presently under construction at the Lawrence Berkeley Laboratory, will be the world's brightest synchrotron-radiation source of ultraviolet and soft x-ray photons when it opens its doors to users in April 1993. The ALS is a third-generation source that is based on a low-emittance electron storage ring, optimized for operation at 1.5 GeV, with long straight sections for insertion devices. Its naturally short pulses are ideal for time-resolved measurements. Undulators will produce high-brightness beams from below 10 eV to above 2 keV; wigglers will produce high fluxes of harder x-rays to energies above 10 keV. The ALS will support an extensive research program in a broad spectrum of scientific and technological areas. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. Undulator radiation can excite the K shell of elements up to silicon and the L shell of elements up to krypton, and wiggler radiation can excite the L shell of nearly every element. The ALS will operate as a national user facility; interested scientists are encouraged to contact the ALS Scientific Program Coordinator to explore their scientific and technological research interests

  3. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime

  4. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  5. Environmental research at Berkeley

    1973-01-01

    The information concerning the Energy and Environment Programme at the Lawrence Berkeley Laboratory is based on a talk given at CERN by A.M. Sessler, one of the initiators of the Programme. (Dr. Sessler has been appointed Director of the Lawrence Berkeley Laboratory, in succession to Prof. E. M. McMillan, from 1 November.) Many of the topics mentioned merit an extended story in themselves but the purpose of this article is simply to give a sketch of what is happening.

  6. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, part 11: Lawrence Berkeley Laboratory working group assessment team report

    President Clinton has directed an Interagency Working Group to initiate a comprehensive review of long-term options for the disposition of surplus plutonium. As part of this initiative, Secretary of Energy, Hazel O'Leary, has directed that a Department of Energy project be initiated to develop options and recommendations for the safe storage of these materials in the interim. A step in the process is a plutonium vulnerability assessment of facilities throughout the Department. The Plutonium Vulnerability Working Group was formed to produce the Project and Assessment Plans, to manage the assessments and to produce a final report for the Secretary by September 30, 1994. The plans established the approach and methodology for the assessment. The Project Plan specifies a Working Group Assessment Team (WGAT) to examine each of the twelve DOE sites with significant holdings of plutonium. The Assessment Plan describes the methodology that the Site Assessment Team (SAT) used to report on the plutonium holdings for each specific site.This report provides results of the assessment of the Lawrence Berkeley Laboratory

  7. Beyond the Soundtrack: Representing Music in Cinema, a cura di Daniel Goldmark, Lawrence Kramer e Richard Leppert, Berkeley, University of California Press, 2007

    Francesco Finocchiaro

    2012-11-01

    Full Text Available Beyond the Soundtrack: Representing Music in Cinema (edited by Daniel Goldmark, Lawrence Kramer and Richard Leppert, Berkeley, University of California Press, 2007, viii-324 pp. offers sixteen essays of various authors about film music. These papers were presented in 2004 in a study congress at the University of Minnesota. In introducing the book, the editors assert an assumption, today broadly accepted: indeed they affirm, that music has traditionally been regarded as a subordinate element in cinematographic text: film music literature still has a marginal position in the much larger field of film studies which focuses on image, narrative, film history. In this theoretical and historiographic context, the expression “Beyond the Soundtrack” is meant to be more than a title: it is the manifesto of a conceptual shift. We can summarize this change in reconsidering the importance of film music, in order to understand a movie not only as a visual, but also as a musical medium. The change of paradigm brings renewed questions and completely new issues. If we abandon the assumption, at this point obsolete, that film music has a mere functional role, it will be necessary to ask not how to conceptualize the use of music in film, but rather how the film conceptualizes music: how films imagine music, how films represent music as an artistic and social phenomenon, and how films position music as an integral parts of a fictional world. Such questions aim to consider film music not as an atmospheric expedient, but «as an agent, a force, and an object engaged in ongoing negotiations with image, narrative, and context», as the editors assert at the very beginning of their book.

  8. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, Appendix B, Part 11: Lawrence Berkeley Laboratory site assessment team report

    The Lawrence Berkeley Laboratory was founded in 1931 on the Berkeley campus of the University of California. The laboratory evolved from accelerator development and related nuclear physics programs to include energy production, atomic imaging, research medicine, and life sciences. The LBL research with actinide elements, including plutonium, focuses principally to develop methods to dispose of nuclear wastes. Also, LBL uses sources of plutonium to calibrate neutron detectors used at the laboratory. All radiological work at LBL is governed by Publication 3000. In accordance with the directive of Energy Secretary O'Leary open-quote Department of Energy Plutonium ES ampersand H Vulnerability Assessment: Project Plan,close-quote April 25, 19941. Sandia National Laboratories/New Mexico has conducted a site assessment of the SNL/NM site's plutonium environment, safety and health (ES ampersand H) vulnerabilities associated with plutonium and other transuranic material. The results are presented in this report

  9. Bishop Berkeley

    Bindon, Francis (Irish artist, 1690-1765)

    2008-01-01

    'Berkeley was born at his family home, Dysart Castle, near Thomastown, County Kilkenny, Ireland, the eldest son of William Berkeley, a cadet of the noble family of Berkeley. He was educated at Kilkenny College and attended Trinity College, Dublin, completing a Master's degree in 1707. He remained at Trinity College after completion of his degree as a tutor and Greek lecturer.' (en.wikipedia.org)

  10. Molecular Foundry, Berkeley, California (Revised)

    Carlisle, N.

    2008-03-01

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers. The result is an energy efficient high-performing sustainable laboratory.

  11. Magnetic measurements at Lawrence Berkeley Laboratory

    Recent magnetic measurement activities at LBL have been concentrated in two separate areas, electro-magnets and permanent magnets for the Advanced Light Source (ALS), and superconducting magnets for the Superconducting Super Collider Laboratory (SSCL). A survey of the many different measurement systems is presented. These include: AC magnetic measurements of an ALS booster dipole engineering model magnet, dipole moment measurements of permanent magnet blocks for ALS wigglers and undulators, permeability measurements of samples destined for wiggler and undulator poles, harmonic error analysis of SSC one meter model dipoles and quadrupoles and five meter long SSC prototype quadrupoles, harmonic error analysis of ALS dipoles, quadrupoles, and sextupoles, precision Hall probe mapping of ALS storage ring combined function magnets, and the design of the ALS insertion device magnets mapping system. We also describe a new UNIX based data acquisition system that is being developed for the SSC. Probes used for magnetic measurements include Helmholtz coils, integral coils, point coils, and bucking harmonic analysis coils, several different types of Hall probes, and nuclear magnetic resonance magnetometers. Both analog and digital integrators are used with the coils. Some problems that occurred and their rectification is described. The mechanisms used include rotating systems with optical encoders, X-Y mapping systems with optical encoders and a laser position measuring device. 10 refs., 3 figs., 1 tab

  12. Norman-Bloodsaw v. Lawrence Berkeley Laboratory.

    1998-02-01

    The U.S. Court of Appeals for the Ninth Circuit overturned the lower court's dismissal and allowed clerical or administrative workers to sue their employer for testing for "highly private and sensitive medical genetic information such as syphilis, sickle cell trait, and pregnancy" without either their consent or their knowledge during a general employee health examination. The court noted that "the most basic violation possible" of constitutional privacy interests involves the performance of unauthorized testing for medical information and that such testing may be viewed as illegal search under the Fourth Amendment in addition to violation of due process under the Fifth or Fourteenth Amendments. Because there are "few subject areas more personal and more likely to implicate privacy interests than that of one's health or genetic make-up," the court concluded that the unauthorized testing constituted a significant invasion of the right to privacy under the Fourth Amendment. The court reasoned that neither consent to a general medical examination nor consent to providing blood or urine samples abolishes the privacy right not to be tested for intimate, personal matters involving one's health. Also, because black employees were singled out for sickle cell trait testing and female employees for pregnancy testing, the employer discriminated against them concerning terms or conditions of employment, thus violating Title VII of the Civil Rights Act. PMID:11648435

  13. Isotopes Project. Lawrence Berkeley National Laboratory

    This report covers the period December 1998 to November 2000. It deals with the evaluation and compilation of nuclear decay data and continuation of activities in the IAEA Coordinated Research Program to develop an (n,γ) database. Special effort was devoted to nuclear data dissemination by means of Web services. A list of nuclear data publications (Nuclear Data Sheets) is included

  14. Berkeley Low Background Facility

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  15. Berkeley Low Background Facility

    Thomas, K. J.; Norman, E. B. [Department of Nuclear Engineering, University of California-Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 (United States); Smith, A. R.; Poon, A. W. P.; Chan, Y. D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 (United States); Lesko, K. T. [Physics Division, Lawrence Berkeley National Laboratory, CA 94720 (United States)

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  16. BERKELEY: ALS ring

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  17. LAWRENCE RADIATION LABORATORY COUNTING HANDBOOK

    Group, Nuclear Instrumentation

    1966-10-01

    The Counting Handbook is a compilation of operational techniques and performance specifications on counting equipment in use at the Lawrence Radiation Laboratory, Berkeley. Counting notes have been written from the viewpoint of the user rather than that of the designer or maintenance man. The only maintenance instructions that have been included are those that can easily be performed by the experimenter to assure that the equipment is operating properly.

  18. Laboratories for the 21st Century: Case Studies, Molecular Foundry, Berkeley, California

    2010-11-01

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers.

  19. UC-Berkeley-area citizens decry waste transfer from lab.

    Nakasato, L

    2002-01-01

    Residents are working to stop the transfer of potentially hazardous and radioactive material from Lawrence Berkeley National Laboratory. The lab has begun to dismantle the Bevatron which has been shut down since 1993 and says eight trucks per day will move material offsite (1 page).

  20. El idealismo de Berkeley

    David Sobrevilla

    1995-01-01

    En esta conferencia se examina en qué consiste el idealismo de Berkeley. Para ello se sigue el mismo camino propuesto por G .J. Warnock: se indaga contra qué se opone Berkeley, el materialismo, y cómo lo entiende, y por qué está en contra del mismo. A continuación se reexamina el idealismo berkeleyano, y en la consideración final se juzgan sus virtudes y defectos: algunas de las críticas fundadas que se le han formulado y la visión de la ciencia que se desprende de los escritos de Berkeley. A...

  1. The Berkeley TRIGA Mark III research reactor

    The Berkeley Research Reactor went critical on August 10, 1966, and achieved licensed operating power of 1000 kW shortly thereafter. Since then, the reactor has operated, by and large, trouble free on a one-shift basis. The major use of the reactor is in service irradiations, and many scientific programs are accommodated, both on and off campus. The principal off-campus user is the Lawrence Radiation Laboratory at Berkeley. The reactor is also an important instructional tool in the Nuclear Engineering Department reactor experiments laboratory course, and as a source of radioisotopes for two other laboratory courses given by the Department. Finally, the reactor is used in several research programs conducted within the Department, involving studies with neutron beams and in reactor kinetics

  2. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1981

    Results for 1981 of the LBL Environmental Monitoring Program are given. Data include monitoring results for accelerator-produced radiation, airborne and waterborne radionuclides, and nonradioactive pollutants. Population doses resulting from LBL operations are given in terms of accelerator-produced and airborne radioactivities. Trends in the environmental impacts of LBL operations are discussed in terms of accelerator-produced, airborne, and waterborne radionuclides

  3. Semiconductor research capabilities at the Lawrence Berkeley Laboratory

    This document discusses semiconductor research capabilities (advanced materials, processing, packaging) and national user facilities (electron microscopy, heavy-ion accelerators, advanced light source)

  4. Lawrence Berkeley Laboratory research highlights for FY 1975

    Brief, nontechnical reviews are presented of work in the following areas: solar energy projects, fusion research, silicon cell research, superconducting magnetometers, psi particles, positron--electron project (PEP), pulsar measurements, nuclear dynamics, element 106, computer control of accelerators, the Bevalac biomedical facility, blood--lipid analysis, and bungarotoxin and the brain. Financial data and personnel lists are given, along with citations to well over a thousand research papers

  5. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations during 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population

  6. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1981

    Schleimer, G.E. (ed.)

    1982-06-01

    Results for 1981 of the LBL Environmental Monitoring Program are given. Data include monitoring results for accelerator-produced radiation, airborne and waterborne radionuclides, and nonradioactive pollutants. Population doses resulting from LBL operations are given in terms of accelerator-produced and airborne radioactivities. Trends in the environmental impacts of LBL operations are discussed in terms of accelerator-produced, airborne, and waterborne radionuclides. (ERB)

  7. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Schleimer, G.E. (ed.)

    1983-04-01

    In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations during 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population.

  8. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1978

    Schleimer, G.E. (ed.)

    1979-04-01

    Environmental monitoring data are reported for accelerator produced radiation; radionuclide measurements and release data from atmospheric and water sampling; population dose equivalent resulting from LBL operations; and non-radioactive pollutants. (HLW)

  9. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1979

    Schleimer, G.E. (ed.)

    1980-06-01

    Monitoring data obtained for the calendar year 1979 are described, and general trends are discussed. The following areas are covered: accelerator produced radiation; radionuclide measurements and release (atmospheric, water, and sewer sampling); population dose equivalent resulting from LBL operations; and nonradioactive pollutants. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations.

  10. Lawrence Berkeley Laboratory research highlights for FY 1975

    Sessler, Andrew M.

    1978-01-01

    Brief, nontechnical reviews are presented of work in the following areas: solar energy projects, fusion research, silicon cell research, superconducting magnetometers, psi particles, positron--electron project (PEP), pulsar measurements, nuclear dynamics, element 106, computer control of accelerators, the Bevalac biomedical facility, blood--lipid analysis, and bungarotoxin and the brain. Financial data and personnel lists are given, along with citations to well over a thousand research papers. (RWR)

  11. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H[sub 2], and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO[sub 2], potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-[Tc] systems is reported under work for others. (DLC)

  12. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-{Tc} systems is reported under work for others. (DLC)

  13. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. Although this proof-of-principle experiment made use of visible light on a borrowed beamline, the laser 'time-slicing' technique at the heart of the demonstration will soon be applied in a new bend-magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness

  14. El idealismo de Berkeley

    David Sobrevilla

    1995-12-01

    Full Text Available En esta conferencia se examina en qué consiste el idealismo de Berkeley. Para ello se sigue el mismo camino propuesto por G .J. Warnock: se indaga contra qué se opone Berkeley, el materialismo, y cómo lo entiende, y por qué está en contra del mismo. A continuación se reexamina el idealismo berkeleyano, y en la consideración final se juzgan sus virtudes y defectos: algunas de las críticas fundadas que se le han formulado y la visión de la ciencia que se desprende de los escritos de Berkeley. A este respecto se pone en conexión las ideas del autor con algunos planteamientos del último Husserl y con una interpretación de Popper sobre la sorprendente modernidad de algunas de las ideas berkeleyanas sobre la ciencia.

  15. Berkeley mini-collider

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  16. High speed optical links between LLNL and Berkeley

    Lennon, W.J.; Thombley, R.L.

    1994-08-08

    The Advanced Telecommunications Program at Lawrence Livermore National Laboratory, in collaboration with Pacific Bell, is developing an experimental high speed, four wavelength, protocol independent optical link for evaluating wide area networking interconnection schemes and the use of fiber amplifiers. Lawrence Livermore National Laboratory, as a super-user, supercomputer, and super-application site, is anticipating the future bandwidth and protocol requirements to connect to other such sites as well as to connect to remote sited control centers and experiments. In this paper we discuss our vision of the future of Wide Area Networking and describe the plans for the wavelength division multiplexed link between Livermore and the University of California at Berkeley.

  17. Berkeley Lab's ALS generates femtosecond synchrotron radiation

    Robinson, A L

    2000-01-01

    A team at Berkeley's Advanced Light Source has shown how a laser time-slicing technique provides a path to experiments with ultrafast time resolution. A Lawrence Berkeley National Laboratory team has succeeded in generating 300 fs pulses of synchrotron radiation at the ALS synchrotron radiation machine. The team's members come from the Materials Sciences Division (MSD), the Center for Beam Physics in the Accelerator and Fusion Research Division and the Advanced Light Source (ALS). Although this proof-of principle experiment made use of visible light on a borrowed beamline, the laser "time-slicing" technique at the heart of the demonstration will soon be applied in a new bend magnet beamline that was designed specially for the production of femtosecond pulses of X-rays to study long-range and local order in condensed matter with ultrafast time resolution. An undulator beamline based on the same technique has been proposed that will dramatically increase the flux and brightness. The use of X-rays to study the c...

  18. Berkeley automated supernova search

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982

  19. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954

  20. 2009 SCDNR Berkeley County Lidar

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Berkeley County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  1. Ernest Orlando Lawrence

    Alvarez, Luis W.

    1967-02-01

    In his relatively short life of 57 years, Ernest Orlando Lawrence accomplished more than one might believe possible in a life twice as long. The important ingredients of his success were native ingenuity and basic good judgement in science, great stamina, an enthusiastic and outgoing personality, and a sense of integrity that was overwhelming. Many articles on the life and accomplishments of Ernest Lawrence have been published, and George Herbert Childs has written a book-length biography. This biographical memoir, however, has not made use of any sources other than the author's memory of Ernest Lawrence and of things learned from him. A more balanced picture will emerge when Herbert Childs biography is published; this sketch simply shows how Ernest Lawrence looked to one of his many friends.

  2. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developing nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material

  3. Lawrence Klein i Oslo

    BJERKHOLT, Olav

    2014-01-01

    Lawrence R. Klein som i 1980 ble tildelt Sveriges Riksbanks pris i økonomisk vitenskap til minne om Alfred Nobel «for the creation of econometric models and the application to the analysis of economic fluctuations and economic policies,» døde 20. oktober 2013. Mer en noen annen var det Klein som etter annen verdenskrig skapte makroøkonometrisk modellutvikling som et eget fagfelt. Denne artikkelen redegjør for Kleins tidlige karriere og hans kontakt med Ragnar Frisch og Trygve H...

  4. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    Chu, William T.

    2005-09-01

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''The motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston

  5. Berkeley High-Resolution Ball

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  6. The decommissioning of Berkeley II

    This paper describes the decommissioning progress at the Magnox site at Berkeley in Gloucestershire.Throughout the work at Berkeley the emphasis has been on conducting decommissioning safely. This has been reflected in the progress of decommissioning starting with removal of the fuel from site and thus much greater than 99% of the radioactive inventory. The major radioactive hazard is the Intermediate Level Waste in the form of fuel element debris (graphite struts and extraneous magnox components removed to increase the packing density of fuel elements in flasks going to Sellafield), miscellaneous activated components, sludges and resins. Approximately 1500 m3 of such material exists and is stored in underground waste vaults on site. Work is underway to recover and encapsulate the waste in cement so rendering it 'passively safe'. All work on site is covered by a nuclear safety case which has a key objective of minimising the radiological exposures that could accrue to workers. Reflecting this an early decision has been taken to leave work on the Reactor Pressure Vessels themselves for several decades. Also important in protection of the workforce has been control of asbestos.Much material has been removed with redundant plant and equipment, but a programme of remediation in line with government legislation has been required to ensure personnel safety throughout the decommissioning period and into Care and Maintenance.In addition to health and safety matters the site approach to environmental issues has been consistent. Formally such standards as ISO 14001 have been adhered to and the appropriate certification maintained. At a working level the principles of reduce, reuse and recycle have been inculcated

  7. Obituary: Lawrence Hugh Aller, 1913-2003

    Kaler, James B.

    2003-12-01

    The announcement still lies in my inbox: ``Lawrence Aller died last Sunday." On 16 March 2003, one of the world's fine astronomers passed away at the age of 89, leaving behind a legacy that will ripple as long as there are students of the celestial science, one that incorporated observation, theory, education, care, decency, and kindness. Lawrence was born in the humblest of conditions in Tacoma, Washington, on 24 September 1913. His mother, Lella (Belle) Allen, was a homemaker and his father Leslie Aller, was an occassional printer and gold prospector who thought that the use of the mind was a waste of time. With fierce persistence and dedication, Lawrence pulled off a feat that would probably not be possible now: getting into college without having finished high school, the result of being dragged to work in his father's primitive gold mining camp. His interest, sparked by leaflets from the Astronomical Society of the Pacific and by Russell, Dugan, and Stewart's venerable textbook, led him to a correspondence, and finally a meeting, with Donald Menzel of Harvard, who persuaded the admissions director of the University of California at Berkeley to admit him in 1932. From there, Lawrence went on to graduate school at Harvard and the Harvard Society of Fellows, where he studied with Menzel and developed his interest in stellar and nebular astronomy. After working in the War effort, he made his professorial debut at Indiana University, where he stayed until 1948 before leaving for the University of Michigan. Residing there for the next 14 years, he established his research reputation and helped develop the Michigan graduate program. In 1962, the opportunity arose to return to California, to UCLA, where he again was instrumental in founding a PhD program. There he stayed, through his retirement in 1984, doing research right up to the end. Eight other schools received him as visiting professor. Lawrence knew that to make inroads into astronomy, he needed to apply

  8. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory

  9. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    Cheng, Robert K.

    1999-07-07

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.

  10. Clinical results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. Since then, over 800 patients have received stereotactically-directed plateau-beam heavy-charged particle pituitary irradiation at this institution. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of these treatments. 11 refs.

  11. Annual Site Environmental Report of the Lawrence Berkeley Laboratory, Calendar year 1992

    This Annual Site Environmental Report summarizes LBL environmental activities in calendar year (CY) 1992. The purpose of this Report is to present summary environmental information in order to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, ''General Environmental Protection Program.''

  12. Protection and fault detection for Lawrence Berkeley Laboratory neutral beam sources

    Testing of TFTR neutral beam (NB) sources has begun at the LBL Neutral Beam System Test Facility (NBSTF). Operation at 120 kV, 65 A, 0.5 sec should be achieved soon. Because NB sources spark down frequently during conditioning, the main accelerating (accel) power supply must be interrupted within a few microseconds to avoid degrading the voltage holding capability, or even the damaging, of the NB source. A variety of improper magnitudes and/or ratios of voltages, currents, and times can occur and must be recognized as fault conditions in order to initiate a prompt interruption of the accel power supply. This paper discusses in detail the key signals which must be monitored and the manner in which they are processed in fault detector circuitry for safe operation of LBL NB sources. The paper also reviews the more standard interlocks and protective features recommended for these sources

  13. Protection and fault detection for Lawrence Berkeley Laboratory neutral beam sources

    Hopkins, D.B.; Baker, W.R.; Berkner, K.H.; Ehlers, K.W.; Honey, V.J.; Lietzke, A.F.; Milnes, K.A.; Owren, H.M.

    1979-11-01

    Testing of TFTR neutral beam (NB) sources has begun at the LBL Neutral Beam System Test Facility (NBSTF). Operation at 120 kV, 65 A, 0.5 sec should be achieved soon. Because NB sources spark down frequently during conditioning, the main accelerating (accel) power supply must be interrupted within a few microseconds to avoid degrading the voltage holding capability, or even the damaging, of the NB source. A variety of improper magnitudes and/or ratios of voltages, currents, and times can occur and must be recognized as fault conditions in order to initiate a prompt interruption of the accel power supply. This paper discusses in detail the key signals which must be monitored and the manner in which they are processed in fault detector circuitry for safe operation of LBL NB sources. The paper also reviews the more standard interlocks and protective features recommended for these sources.

  14. Analysis and stabilization of Lawrence Berkeley Laboratory`s multiphase mixed waste

    Crawford, B.A.

    1995-05-19

    Five drums of mixed waste were accepted from LBL during FY 1994; they contain inorganic acids and compounds, as well as organic reagents and radioactive materials. This document defines the work plan for stabilization and characterization of the waste in three of these 5 drums.

  15. Annual Site Environmental Report of the Lawrence Berkeley Laboratory, Calendar year 1992

    Balgobin, D.A.; Javandel, I.; Pauer, R.O.; Schleimer, G.E.; Thorson, P.A. [eds.

    1993-05-01

    This Annual Site Environmental Report summarizes LBL environmental activities in calendar year (CY) 1992. The purpose of this Report is to present summary environmental information in order to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, ``General Environmental Protection Program.``

  16. Annual Site Environmental Report of the Lawrence Berkeley Laboratory, calendar year 1991

    Pauer, R.O.; Schleimer, G.E.; Javendel, I. (eds.)

    1992-05-01

    This Annual Site Environmental Report (ASER) summarizes LBL environmental activities in calendar year (CY) 1991. The purpose of this Report is to present summary environmental data in order to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts.

  17. Nuclear science annual report, July 1, 1977-June 30, 1978. [Lawrence Berkeley Laboratory

    Schroeder, L.S.; Gough, R.A.; Nurmia, M.J. (eds.)

    1978-01-01

    Activities for the period July 1, 1977, through June 30, 1978, are reported in the following areas: experimental research (nuclear structure; nuclear reactions and scattering; relativistic heavy ions - projectile and target fragmentation, central collisions; the Table of Isotopes Project, atomic physics, and magnetic monopoles), theory of nuclear collisions (microscopic, macroscopic, relativistic), and apparatus (accelerator operations and development, nuclear instrumentation). Also included are thesis abstracts, publications lists, and an author index. Individual abstracts were prepared for 33 of the reports in this volume. (RWR)

  18. SCFA lead lab technical assistance at Lawrence Berkeley National Laboratory: Baseline review of three groundwater plumes

    Hazen, Terry; et al.

    2002-09-26

    During the closeout session, members of the technical assistance team conveyed to the site how impressed they were at the thoroughness of the site's investigation and attempts at remediation. Team members were uniformly pleased at the skilled detection work to identify sources, make quick remediation decisions, and change course when a strategy did not work well. The technical assistance team also noted that, to their knowledge, this is the only DOE site at which a world-class scientist has had primary responsibility for the environmental restoration activities. This has undoubtedly contributed to the successes observed and DOE should take careful note. The following overall recommendations were agreed upon: (1) The site has done a phenomenal job of characterization and identifying and removing source terms. (2) Technologies selected to date are appropriate and high impact, e.g. collection trenches are an effective remedial strategy for this complicated geology. The site should continue using technology that is adapted to the site's unique geology, such as the collection trenches. (3) The site should develop a better way to determine the basis of cleanup for all sites. (4) The sentinel well system should be evaluated and modified, if needed, to assure that the sentinel wells provide coverage to the current site boundary. Potential modifications could include installation, abandonment or relocation of wells based on the large amount of data collected since the original sentinel well system was designed. (5) Modeling to assist in remedial design and communication should continue. (6) The site should develop a plan to ensure institutional memory. (7) The most likely possibility for improving closure to 2006 is by removing the residual source of the Old Town plume and establishing the efficacy of remediation for the 51/64 plume.

  19. Effects of undulators on the ALS: The early work on the LBL [Lawrence Berkeley Laboratory

    In this paper we describe the early work carried out at LBL on the consequences of installing insertion devices (wigglers and undulators) on the beam dynamics of the ALS. This included analytical and tracking studies, and led to an insight to the reasons behind the predicted reduction in dynamic aperture. For completeness, a description of the unperturbed storage ring characteristics are also given. 3 refs., 16 figs., 2 tabs

  20. Clinical results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. Since then, over 800 patients have received stereotactically-directed plateau-beam heavy-charged particle pituitary irradiation at this institution. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of these treatments. 11 refs

  1. Heavy particle clinical radiotherapy trial at Lawrence Berkeley Laboratory. Progress report, July 1975-July 1979

    Castro, J.R.

    1979-01-01

    The primary objectives of the clinical radiotherapy program are: to evaluate the potential of improved dose localization particularly as exemplified by helium ion irradiation; and to evaluate the combined potential of improved dose localization and increased biologic effect available with heavier ions such as carbon, neon, and argon. It was possible to make modifications rapidly to provide for large field, fractionated, Bragg peak irradiation at the 184-inch cyclotron with the helium ion beam. This allowed the opportunity to gain experience with charged particle irradiation treatment techniques, patient immobilization techniques, treatment planning and dosimetry studies including the utilization of CT scanning for tumor localization and charged particle dose distributions as well as beginning studies in compensating for tissue inhomogeneities in the beam path. These treatment techniques have been directly transferable to the Bevalac facility where a similar patient positioner has been installed for human irradiation with heavier particles. For the studies both with helium and now with heavier particles, patients with multiple skin and subcutaneous metastatic nodules for evaluation of skin RBE data and patients with locally advanced and/or unresectable tumors unlikely to be effectively treated by any conventional modality were sought. In order to facilitate intercomparison with megavoltage irradiation techniques, a conventional dose fractionation scheme has been adopted. A few exceptions to this dose specification scheme have been patients in which pulmonary, subcutaneous or skin nodules have been irradiated with larger fraction sizes ranging up to 400 rads per fraction in order to obtain clinical RBE studies in 8 to 10 fractions of heavy particles.

  2. Heavy particle clinical radiotherapy trial at Lawrence Berkeley Laboratory. Progress report, July 1975-July 1979

    The primary objectives of the clinical radiotherapy program are: to evaluate the potential of improved dose localization particularly as exemplified by helium ion irradiation; and to evaluate the combined potential of improved dose localization and increased biologic effect available with heavier ions such as carbon, neon, and argon. It was possible to make modifications rapidly to provide for large field, fractionated, Bragg peak irradiation at the 184-inch cyclotron with the helium ion beam. This allowed the opportunity to gain experience with charged particle irradiation treatment techniques, patient immobilization techniques, treatment planning and dosimetry studies including the utilization of CT scanning for tumor localization and charged particle dose distributions as well as beginning studies in compensating for tissue inhomogeneities in the beam path. These treatment techniques have been directly transferable to the Bevalac facility where a similar patient positioner has been installed for human irradiation with heavier particles. For the studies both with helium and now with heavier particles, patients with multiple skin and subcutaneous metastatic nodules for evaluation of skin RBE data and patients with locally advanced and/or unresectable tumors unlikely to be effectively treated by any conventional modality were sought. In order to facilitate intercomparison with megavoltage irradiation techniques, a conventional dose fractionation scheme has been adopted. A few exceptions to this dose specification scheme have been patients in which pulmonary, subcutaneous or skin nodules have been irradiated with larger fraction sizes ranging up to 400 rads per fraction in order to obtain clinical RBE studies in 8 to 10 fractions of heavy particles

  3. The anticentre old open clusters Berkeley 27, Berkeley 34, and Berkeley 36: new additions to the BOCCE project

    Donati, P; Cignoni, M; Cocozza, G; Tosi, M

    2012-01-01

    In this paper we present the investigation of the evolutionary status of three open clusters: Berkeley 27, Berkeley 34, and Berkeley 36, all located in the Galactic anti-centre direction. All of them were observed with SUSI2@NTT using the Bessel B, V, and I filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method i.e. the direct comparison of the observational CMDs with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC, and FST). This analysis shows that Berkeley 27 has an age between 1.5 and 1.7 Gyr, a reddening E(B-V) in the range 0.40 and 0.50, and a distance modulus (m-M)_0 between 13.1 and 13.3; Berkeley 34 is older with an age in the range 2.1 and 2.5 Gyr, E(B-V) between 0.57 and 0.64, and (m-M)_0 between 14.1 and 14.3; Berkeley 36, with an age between 7.0 and 7.5 Gyr, has a reddening E(B-V)~0.50 and a distance modulus (m-M)_0 between 13.1 and 13.2. For all the clusters our analysis suggests a sub-solar metallicity ...

  4. The Berkeley Digital Seismic Network

    Romanowicz, B.; Dreger, D.; Neuhauser, D.; Karavas, W.; Hellweg, M.; Uhrhammer, R.; Lombard, P.; Friday, J.; Lellinger, R.; Gardner, J.; McKenzie, M. R.; Bresloff, C.

    2007-05-01

    Since it began monitoring earthquakes in northern California 120 years ago, the Berkeley Seismological Laboratory (BSL) has been striving to produce the highest quality and most complete seismic data possible in the most modern way. This goal has influenced choices in instrumentation, installation and telemetry, as well as the investment in expertise and manpower. Since the transition to broadband (BB) instrumentation in the mid- 1980s and to a fully digitally telemetered network in the early 1990s, we have continued these efforts. Each of our 25 BB installations includes three component BB seismometers (STS-1s or STS-2) and digital accelerometers to capture the full range of ground motion from distant teleseisms to large, nearby earthquakes (almost 250 dB). The ground motion is recorded on-site by 24 bit dataloggers. Additional environmental parameters, such as temperature and pressure, are also monitored continuously. Many stations record also C-GPS data that is transmitted continuously to the BSL via shared real-time telemetry. The BDSN's first stations were installed in abandoned mines. In the last 15 years, we developed installations using buried shipping containers to reduce environmental noise and provide security and easy access to the equipment. Data are transmitted in real-time at several sampling rates to one or more processing centers, using frame relay, radio, microwave, and/or satellite. Each site has 7-30 days of onsite data storage to guard against data loss during telemetry outages. Each station is supplied with backup batteries to provide power for 3 days. The BDSN real-time data acquisition, earthquake analysis and archiving computers are housed in a building built to "emergency grade" seismic standards, with air conditioning and power backed up by a UPS and a large generator. Data latency and power are monitored by automated processes that alert staff via pager and email. Data completeness and timing quality are automatically assessed on a daily

  5. Berkeley Lab Laser Accelerator (BELLA) facility

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  6. BERKELEY: Farewell to the Bevatron/Bevalac

    Full text: Nearly a hundred current and former Lawrence Berkeley Laboratory employees gathered at the Bevatron accelerator on 21 February to watch Ed Lofgren turn off the beam for the last time. Lofgren, in charge of the venerable machine from its completion in 1954 until his retirement in 1979, pushed a button that someone long ago labeled ''atom smasher offer'', bringing to an end four decades of accomplishment in high energy and heavy ion physics. Owen Chamberlain, who shared the 1959 physics Nobel with Emilio Segré for the discovery of the antiproton at the Bevatron, was among those present at the closing ceremony. The shutdown came 39 years to the week after Bevatron beam first circulated, and a touching moment came just after Lofgren shut the machine down when the poignant strains of the ''Taps'' salute wafted out over the PA system. The Bevatron - or Bevalac, as it was called after being linked to the Super HILAC linear accelerator in the 1970s - made major contributions in four distinct areas of research: high energy physics, heavy ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space. As well as the discovery of the antiproton, the early years of the Bevatron saw classic studies of the kaon, leading to a deeper understanding of both strong and weak interaction physics. With Luis Alvarez' development of Donald Glaser's original bubble chamber idea into a prolific physics technique, the Bevatron was a major focus of the heady days of resonance hunting in the late 1950s and early 1960s. Most recently the Bevalac (Bevatron-SuperHILAC combination) pioneered relativistic heavy ion physics. The central focus of this research programme was the production and study of extreme conditions in nuclear matter. Highlights include the first definitive evidence of collective flow of nuclear matter at high temperatures and densities, studies of the nuclear

  7. Reorganizing the Biological Sciences at Berkeley.

    Trow, Martin A.

    1983-01-01

    The University of California at Berkeley's substantial reorganization of the biological sciences due to internal and external needs is chronicled, focusing on the coordinated efforts of the institution and the strong, supportive leadership of the chancellor. The story is presented as an unusual case of institutional leadership within a highly…

  8. Political-social reactor problems at Berkeley

    For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitioned the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)

  9. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    Hules, John A

    2009-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics.

  10. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  11. C. Judson King of UC Berkeley

    Prausnitz, John

    2005-06-01

    In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director of the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.

  12. An interview with Peter Lawrence.

    Vicente, Catarina

    2016-01-15

    Peter Lawrence, FRS, is a fly geneticist based at the Department of Zoology at the University of Cambridge. During his illustrious career he has carried out pioneering work on pattern formation and polarity, and his contributions have been recognised by many honours, including the Prince of Asturias prize with Gines Morata and election to the Royal Swedish Academy of Sciences. He is also an outspoken critic of the current scientific system and particularly how it affects young scientists. We recently had the opportunity to chat with Peter, and we asked him about the influence of his mentor Sir V. B. Wigglesworth, writing his first grant at age 65 and his time as an editor of Development. PMID:26786208

  13. Three new bricks in the wall: Berkeley 23, Berkeley 31, and King 8

    Cignoni, Michele; Bragaglia, Angela; Tosi, Monica

    2011-01-01

    A comprehensive census of Galactic open cluster properties places unique constraints on the Galactic disc structure and evolution. In this framework we investigate the evolutionary status of three poorly-studied open clusters, Berkeley 31, Berkeley 23 and King 8, all located in the Galactic anti-centre direction. To this aim, we make use of deep LBT observations, reaching more than 6 mag below the main sequence Turn- Off. To determine the cluster parameters, namely age, metallicity, distance, reddening and binary fraction, we compare the observational colour-magnitude diagrams (CMDs) with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC and FST) and metallicities. We find that Berkeley 31 is relatively old, with an age between 2.3 and 2.9 Gyr, and rather high above the Galactic plane, at about 700 pc. Berkeley 23 and King 8 are younger, with best fitting ages in the range 1.1-1.3 Gyr and 0.8-1.3 Gyr, respectively. The position above the Galactic plane is about 500- 600 pc...

  14. LAWRENCE RISK-BASED AIR SCREENING

    The pediatric asthma rate in the city of Lawrence is the highest in the state of Massachusetts. This project will evaluate whether the cumulative risks due to the air pollution in Lawrence is contributing to the high asthma rates and other respiratory problems. The project will...

  15. Careers in Data Science: A Berkeley Perspective

    Koy, K.

    2015-12-01

    Last year, I took on an amazing opportunity to serve as the Executive Director of the new Berkeley Institute for Data Science (BIDS). After a 15-year career working with geospatial data to advance our understanding of the environment, I have been presented with a unique opportunity through BIDS to work with talented researchers from a wide variety of backgrounds. Founded in 2013, BIDS is a central hub of research and education at UC Berkeley designed to facilitate and nurture data-intensive science. We are building a community centered on a cohort of talented data science fellows and senior fellows who are representative of the world-class researchers from across our campus and are leading the data science revolution within their disciplines. Our initiatives are designed to bring together broad constituents of the data science community, including domain experts from the life, social, and physical sciences and methodological experts from computer science, statistics, and applied mathematics. While many of these individuals rarely cross professional paths, BIDS actively seeks new and creative ways to engage and foster collaboration across these different research fields. In this presentation, I will share my own story, along with some insights into how BIDS is supporting the careers of data scientists, including graduate students, postdocs, faculty, and research staff. I will also describe how these individuals we are helping support are working to address a number of data science-related challenges in scientific research.

  16. Mr Lawrence'ilt best-of

    2007-01-01

    Renee Meriste ja muusikaettevõtte Eesti Artistide Agentuuri poolt välja antavate heliplaatide seas ka 12. dets. ilmuvast rokkansambli Mr. Lawrence kogumikalbumist "Greatest Hits", heliplaatide sarjast "Eesti Rock Antoloogia"

  17. D.H. Lawrence's philosophy of nature

    Zang, Tianying

    2006-01-01

    This study examines Lawrence's views of nature and their relations to perspectives drawn from Oriental traditions and philosophies. Many of Lawrence's non-Christian perspectives concerning the universe and man's relationship with nature bear strong affinities with Eastern thought systems, particularly his understanding of such fundamental matters as the enigma of nature, nature's duality and oneness, the mutual identity between man and nature, issues of god and evolution, mind and body, life ...

  18. What Made Berkeley Great? The Sources of Berkeley's Sustained Academic Excellence. Research & Occasional Paper Series CSHE.3.11

    Breslauer, George W.

    2011-01-01

    University of California (UC) Berkeley's chief academic officer explores the historical sources of Berkeley' academic excellence. He identifies five key factors: (1) wealth from many sources; (2) supportive and skilled governors; (3) leadership from key UC presidents; (4) the pioneering ethos within the State of California; and (5) a process of…

  19. Spatial data on energy, environmental, socioeconomic, health and demographic themes at Lawrence Berkeley Laboratory: 1978 inventory. [SEEDIS system

    Burkhart, B.R.; Merrill, D.W. (eds.)

    1979-04-01

    Spatial data files covering energy, environmental, socio-economic, health, and demographic themes are described. Descriptions provide data dates, abstracts, geographic coverage, documentation, original data source, availability limitations, and contact person. A current version of this document is maintained as part of the Socio-Economic-Environmental-Demographic Information System (SEEDIS) within the Computer Science and Applied Mathematics Department, and is available for on-line retrieval using the Virginia Sventek, (415) 486-5216 or (FTS) 451-5216 for further information.

  20. Injection system design for the LBL [Lawrence Berkeley Laboratory] 1-2 GeV synchrotron radiation source

    The injection system for the LBL 1 to 2 GeV Synchrotron Radiation Source is designed to provide an electron beam of 400 mA at 1.5 GeV to the storage ring in a filling time of less than 5 minutes. An alternate mode of operation requires that 7.6 mA be delivered to one, or a few rf bunches in the storage ring. To accomplish these tasks, a high intensity electron gun, a 50 MeV electron linac, and a 1.5 GeV booster synchrotron are used. The performance requirements of the injector complex are summarized. The electron gun and subharmonic buncher, linac design, and linac to booster and booster to storage ring transport are discussed as well as the booster synchrotron

  1. Opportunities for high aspect ratio micro-electro-magnetic-mechanical systems (HAR-MEMMS) at Lawrence Berkeley Laboratory

    This report contains viewgraphs on the following topics: Opportunities for HAR-MEMMS at LBL; Industrial Needs and Opportunities; Deep Etch X-ray Lithography; MEMS Activities at BSAC; DNA Amplification with Microfabricated Reaction Chamber; Electrochemistry Research at LBL; MEMS Activities at LLNL; Space Microsensors and Microinstruments; The Advanced Light Source; Institute for Micromaching; IBM MEMS Interests; and Technology Transfer Opportunities at LBL

  2. Opportunities for high aspect ratio micro-electro-magnetic-mechanical systems (HAR-MEMMS) at Lawrence Berkeley Laboratory

    Hunter, S. [ed.

    1993-10-01

    This report contains viewgraphs on the following topics: Opportunities for HAR-MEMMS at LBL; Industrial Needs and Opportunities; Deep Etch X-ray Lithography; MEMS Activities at BSAC; DNA Amplification with Microfabricated Reaction Chamber; Electrochemistry Research at LBL; MEMS Activities at LLNL; Space Microsensors and Microinstruments; The Advanced Light Source; Institute for Micromaching; IBM MEMS Interests; and Technology Transfer Opportunities at LBL.

  3. Lawrence Berkeley Laboratory, Jackson State University, Ana G. Mendez Educational Foundation Consortium: Progress report, October 1985-September 1986

    1986-09-01

    Seventeen student papers are included, treating various topics in computer languages and software, physics, combustion and atmosphere, and biology. All are processed separately for the data base. (DLC)

  4. Symposium commemorating the 25th anniversary of elements 99 and 100. [Lawrence Berkeley Lab. , January 23, 1978

    Seaborg, G.T.; Webb, C. (eds.)

    1979-04-01

    Separate abstracts were prepared for five of the contributions to this symposium. The four remaining ones have already been cited in ERA and may be located by reference as the entry CONF-780134-- in the Report Number Index. (RWR)

  5. ORFEUS focal plane instrumentation: The Berkeley spectrometer

    Hurwitz, Mark; Bowyer, Stuart

    1988-01-01

    A spectrograph for the ORFEUS mission that incorporates four varied line-space, spherically figured diffraction gratings was designed. The ORFEUS, a 1-m normal incidence telescope is equipped with 2 focal plane spectrographs. The Berkeley spectrograph was developed with an optimizing raytracing computer code. Each grating accepts the light from 20 percent of the aperture of the telescope primary mirror and has a unique set of characteristics to cover a sub-bandpass within the 390 to 1200 A spectral range. Two photon-counting detectors incorporating a time delay readout system are used to record the spectra from all four gratings simultaneously. The nominal design achieves a spectral resolution (FWHM) in excess of 5500 at all wavelengths within the bandpass. The resolution is limited primarily by the detector spatial resolution. The 1 sigma astigmatism of this design varies between 13 and 150 micrometer on the same focal surface. An independent, direct imaging system tracks the drift of the target within the spectrometer aperture and allows measurement of the misalignment between the telescope optical axis and that of the external star tracker. The resolution and astigmatism achievable with this design are superior to those of a standard Rowland spectrograph designed with the same constraints.

  6. Obituary: Fred Lawrence Whipple, 1906-2004

    Yeomans, Donald Keith

    2004-12-01

    Fred Whipple, one of the founding fathers of planetary science, died on August 30, 2004 just two months shy of his 98th birthday. The breadth of Fred's published research from 1927 through 2000 is quite extraordinary. Although his collected works were published in two massive volumes in 1972, shortly before his retirement, Fred's research contributions continued for another three decades - and another volume is planned. Fred Lawrence Whipple was born on November 5, 1906 on a farm in Red Oak Iowa. His parents were Harry Lawrence and Celestia (MacFarl) Whipple. At the age of fifteen, the Whipple family moved to California where Fred studied mathematics at Occidental College and the University of California at Los Angeles. As a graduate student at the University of California at Berkeley in 1930, he was one of the first to compute an orbit for the newly discovered planet Pluto. Upon receiving his PhD in 1931, he joined the staff of the Harvard College Observatory. He was Chairman of the Harvard Department of Astronomy (1949 - 1956), Director or the Smithsonian Astrophysical Observatory (1955 - 1973), Phillips Professor of Astronomy (1968 - 1977) and Emeritus Phillips Professor of astronomy (1977 - 2004). In 1928 he married Dorothy Woods and their son, Earle Raymond, survives him. The marriage ended in divorce in 1935. Eleven years later, he married Babette F. Samelson and she too survives him, as do their two daughters Laura and (Dorothy) Sandra. Shortly after arriving at Harvard in the early 1930's, Fred developed a photographic tracking network to determine meteor trajectories from simultaneous observations from two or more stations. The photographic trails, chopped by a rotating shutter, allowed their orbits in space to be determined accurately. With the strong involvement of Richard McCrosky and others, he concluded in the early 1960's that most of these meteors were on comet-like orbits and less than 1% of the naked eye, sporadic meteors could be traced to an

  7. The Earth Sciences at St. Lawrence University?

    Romey, William D.

    1983-01-01

    The elimination of traditional courses in favor of student-originated, self-graded projects in the Department of Geology and Geography at St. Lawrence University in Canton (New York) proved too radical for the entire faculty. The program eventually became two-tracked, offering students both traditional and student-generated learning situations.…

  8. Lawrence Livermore National Laboratory Environmental Report 2014

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, W. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swanson, K. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  9. Marine geology of the St. Lawrence Estuary

    St-Onge, Guillaume [Canada Research Chair in Marine Geology, Institut des sciences de la mer de Rimouski (ISMER) and GEOTOP Research Center, 310 allee des Ursulines, Rimouski, Quebec, G5L 3A1 (Canada); Duchesne, Mathieu J [Geological Survey of Canada, Quebec Division, 490 de la Couronne, Quebec City, Quebec, G1K 9A9 (Canada); Lajeunesse, Patrick, E-mail: guillaume_st-onge@uqar.qc.ca [Departement de geographie and Centre d' etudes nordiques, Universite Laval, Quebec City, Quebec, G1V 0A6 (Canada)

    2011-05-15

    The St. Lawrence Estuary, Eastern Canada, contains a very thick (>450 m) Quaternary sedimentary sequence. The results from recently conducted geophysical surveys in conjunction with piston coring indicate that these sediments were deposited under very high sedimentation rates, sometimes as high as {approx}30 m/ka during the last deglaciation. Results also reveal evidence of large submarine landslides during the Holocene, changes in sedimentation rates and the significant role of submarine canyons and channels to transfer sediments from the coast to the deeper marine environment. Finally, this paper highlights the presence of more than 1900 pockmarks on the seafloor of the St. Lawrence Estuary and discusses their possible origins: active hydrocarbon seeps in the Laurentian Channel and biogenic gas seepage on the northwestern shoulder of the Laurentian Channel.

  10. Environmental report 1996, Lawrence Livermore National Laboratory

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1996. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  11. Lawrence Livermore National Laboratory Summer Employment Summary

    Wilson, A J

    2002-08-06

    This document will serve as a summary of my work activities as a summer employee for the Lawrence Livermore National Laboratory (LLNL). The intent of this document is to provide an overview of the National Ignition Facility (NIF) project, to explain the role of the department that I am working for, and to discuss my specific assigned tasks and their impact on the NIF project as a whole.

  12. Environmental report 1997, Lawrence Livermore National Laboratory

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1997. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  13. Pass-Fail Grading at Berkeley: Facts and Opinions.

    Suslow, Sidney

    The facts and opinions regarding pass/no pass grading at Berkeley discussed in this report are based on three sources of information. These sources include a survey of faculty conducted in the spring quarter 1970, a survey of undergraduate students in the winter quarter 1971, and the records routinely generated in the Registrar's Office for the…

  14. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  15. Pressure safety program Lawrence Livermore National Laboratory

    Borzileri, C.; Traini, M.

    1992-10-01

    The Lawrence Livermore National Laboratory (LLNL) is a Research and Development facility. Programs include research in: nuclear weapons, energy, environmental, biomedical, and other DOE funded programs. LLNL is managed by the University of California for the Department of Energy. Many research and development programs require the use of pressurized fluid systems. In the early 1960`s, courses were developed to train personnel to safely work with pressurized systems. These courses served as a foundation for the Pressure Safety Program. The Pressure Safety Program is administered by the Pressure Safety Manager through the Hazards Control Department, and responsibilities include: (1) Pressure Safety course development and training, (2) Equipment documentation, tracking and inspections/retests, (3) Formal and informal review of pressure systems. The program uses accepted codes and standards and closely follows the DOE Pressure Safety Guidelines Manual. This manual was developed for DOE by Lawrence Livermore National Laboratory. The DOE Pressure Safety Guidelines Manual defines five (5) basic elements which constitute this Pressure Safety Program. These elements are: (1) A Pressure Safety Manual, (2) A Safety Committee, (3) Personnel who are trained and qualified, (4) Documentation and accountability for each pressure vessel or system, (5) Control of the selection and the use of high pressure hardware.

  16. "Blood" in D.H. Lawrence and O. Wilde

    中山, 本文; Motofumi, NAKAYAMA

    2015-01-01

    Lawrence and Wilde found something special in "blood." Lawrence had a firm belief in "blood" symbolizing primitive "daemonic" energy. Lawrence's blood operates as energy to encourage one to transcend individuality and acquire "a greater life." With profound insight, he asserts that an invisible world of "blood-consciousness" underlies the visible world. Wilde too stresses "blood" as seen in "The Nightingale and the Rose," "The Happy Prince." or "The Selfish Giant." The "blood," which is insep...

  17. Calibration of the Berkeley EUV Airglow Rocket Spectrometer

    Cotton, Daniel M.; Chakrabarti, Supriya; Siegmund, Oswald

    1989-01-01

    The Berkeley Extreme-ultraviolet Airglow Rocket Spectrometer (BEARS), a multiinstrument sounding rocket payload, made comprehensive measurements of the earth's dayglow. The primary instruments consisted of two near-normal Rowland mount spectrometers: one channel to measure several atomic oxygen features at high spectral resolution (about 1.5 A) in the band passes 980-1040 and 1300-1360 A, and the other to measure EUV dayglow and the solar EUV simultaneously in a much broader bandpass (250-1150 A) at moderate resolution (about 10 A). The payload also included a hydrogen Lyman-alpha photometer to monitor the solar irradiance and goecoronal emissions. The instrument was calibrated at the EUV calibration facility at the University of California at Berkeley, and was subsequently launched successfully on September 30, 1988 aboard a four-stage experimental sounding rocket, Black Brant XII flight 12.041 WT. The calibration procedure and resulting data are presented.

  18. Autogrammid, oma aja märk / Mike Lawrence

    Lawrence, Mike

    2004-01-01

    Autogrammide kogumisest, nende ehtsusest, sportlastele kuulunud esemete kollektsioneerimisest. Lisatud: Kollektsionääride maiuspalu. Autor Mike Lawrence on oksjonifirma Bonhams/Brooks konsultant, ajakirjanik

  19. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    Collier, M

    2002-01-01

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  20. Lipoprotein subclasses in genetic studies: The Berkeley Data Set

    Krauss, R.M.; Williams, P.T.; Blanche, P.J.; Cavanaugh, A.; Holl, L.G. [Lawrence Berkeley Lab., CA (United States); Austin, M.A. [Washington Univ., Seattle, WA (United States). Dept. of Epidemiology

    1992-10-01

    Data from the Berkeley Data Set was used to investigate familial correlations of HDL-subclasses. Analysis of the sibling intraclass correlation coefficient by HDL particle diameter showed that sibling HDL levels were significantly correlated for HDL{sub 2b}, HDL{sub 3a} and HDL{sub 3b} subclasses. The percentage of the offsprings` variance explained by their two parents. Our finding that parents and offspring-have the highest correlation for HDL{sub 2b} is consistent with published reports that show higher heritability estimates for HDL{sub 2} compared with HDL{sub 3}{minus} cholesterol.

  1. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    Collier, Michael

    2002-12-17

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  2. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle

  3. Lawrence Livermore National Laboratory Environmental Report 2010

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff

  4. Vircator studies at Lawrence Livermore National Laboratory

    A high power, pulsed microwave generator is in operation of Lawrence Livermore National Laboratory. The microwave source uses a Virtual Cathode Oscillator (VIRCATOR) which is driven by a 500 kV, 11 ohm electron beam diode. In a VIRCATOR, an electron beam, having a current well above the space charge limiting current, is injected into a drift tube. A virtual cathode forms due to the electron space charge and electrons are reflected back towards the diode. This action couples electron energy into microwave energy. At present, the authors have obtained a microwave output of 600 MW in the range of 5.5 GHz to 15 GHz (an efficiency of 2.5%) and 300 MW between 6.75 and 7.25 GHz. Microwave diagnostics include a calorimeter for power measurements and D field probes for frequency measurements. Diagnostics are calibrated using a low power CW microwave source. In order to further understand basic VIRCATOR operation, tests are being done to determine the effects of beam emittance, beam voltage and anode material on the microwave frequency spectrum and power output

  5. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  6. Simulation of the Berkeley research reactor using DSNP

    Preliminary results have been obtained from a simulation of the TRIGA Mark III Berkeley Research Reactor (BRR) using DSNP. The BRR utilizes fuel that is a mixture of zirconium hydride and uranium hydride, with a hydride-to-metal ratio of 1.65 and a 235U enrichment of 28%. At Berkeley, version 3.4 of DSNP runs on an IBM 3081 Computer. The neutronic modules used to simulate the BRR were CNTRL1, NEUTR4, TPOWR4, CORTR4, and FDBEK4. The hydraulic loop consisted of modules LPLEN4, CORTR4, UPLEN4, PIPEUI, IHMXA1, and PIPEIL. As indicated from their names, several of the modules contained in library 1 were rewritten to incorporate a better model. The problem-description program was written to allow data entry from the console, and thus the FORTRAN program did not have to be recompiled for differing reactivity insertions. The decay heat module, GAMAR1, was not employed, since the ultimate objective of the simulation was to investigate operation of the reactor beyond its licensed limits

  7. Berkeley extreme-ultraviolet airglow rocket spectrometer: BEARS.

    Cotton, D M; Chakrabarti, S

    1992-09-20

    We describe the Berkeley extreme-UV airglow rocket spectrometer, which is a payload designed to test several thermospheric remote-sensing concepts by measuring the terrestrial O I far-UV and extreme-UV dayglow and the solar extreme-UV spectrum simultaneously. The instrument consisted of two near-normal Rowland mount spectrometers and a Lyman-alpha photometer. The dayglow spectrometer covered two spectral regions from 980 to 1040 A and from 1300 to 1360 A with 1.5-A resolution. The solar spectrometer had a bandpass of 250-1150 A with an ~ 10-A resolution. All three spectra were accumulated by using a icrochannel-plate-intensified, two-dimensional imaging detector with three separate wedge-and strip anode readouts. The hydrogen Lyman-alpha photometer was included to monitor the solar Lyman-alpha irradiance and geocoronal Lyman-alpha emissions. The instrument was designed, fabricated, and calibrated at the University of California, Berkeley and was successfully launched on 30 September 1988 aboard the first test flight of a four-stage sounding rocket, Black Brant XII. PMID:20733778

  8. Seismic Protection of Laboratory Contents: The UC Berkeley Science Building Case Study

    Comerio, Mary C.

    2003-01-01

    The research described in this report is a part of the Disaster Resistant University (DRU) initiative funded by the Federal Emergency Management Agency (FEMA) and the University of California, Berkeley. The first phase of the Disaster Resistant University initiative produced a study of potential earthquake losses at UC Berkeley together with an analysis of the economic impacts. In that report, Comerio (2000) found that despite the extraordinary building retrofit program, the UC Berkeley cam...

  9. Lawrence Livermore National Laboratory 2007 Annual Report

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  10. Chemical analysis of sediments from the St. Lawrence River

    US Fish and Wildlife Service, Department of the Interior — This report provides the results of a preliminary study of sediment contaminant levels in the St. Lawrence River. Sediment was sampled at 1 6 different locations...

  11. Early History of Heavy Isotope Research at Berkeley

    Glenn T. Seaborg

    1976-06-01

    I have had the idea for some time that it would be interesting and worthwhile to put together an account of the early work on heavy isotopes at Berkeley. Of a special interest is the discovery of plutonium (atomic number 94) and the isotope U{sup 233}, and the demonstration of their fission with slow neutrons. This work served as a prelude to the subsequent Plutonium Project (Metallurgical Project) centered at the University of Chicago, in connection with which I have also had the idea of putting together a history of the work of my chemistry group. I have decided that it would be an interesting challenge to write this account on a day-to-day basis in a style that would be consistent with the entries having been written at the end of each day. The aim would be to make this history as accurate as possible by going back to the original records and using them with meticulous care.

  12. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions

  13. Study of the macrozooplankton within the samples taken at the Mobile site from November 1977 through November 1978. A data report of the Lawrence Berkeley Laboratory

    Steen, J.; Gunter, G.

    1981-11-01

    This report brings together the results of a re-examination of zooplankton samples from the Mobile OTEC site (29/sup 0/N-88/sup 0/W) in the northern Gulf of Mexico for macrozooplankton larger than 15 mm.

  14. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters

  15. Status of the UC-Berkeley SETI Efforts

    Korpela, Eric J; Bankay, Robert; Cobb, Jeff; Howard, Andrew; Lebofsky, Matt; Siemion, Andrew P V; von Korff, Joshua; Werthimer, Dan

    2011-01-01

    We summarize radio and optical SETI programs based at the University of California, Berkeley. The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths using an automated 30 inch telescope. The ongoing SERENDIP V.v sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with ~1.6 Hz spectral resolution. SETI@home uses the desktop computers of volunteers to analyze over 160 TB of data at taken at Arecibo looking for two types of continuous wave signals and two types of pulsed signals. A version to be released this summer adds autocorrelation analysis to look for complex wave forms that have been repeated (and overlayed) after a short delay. SETI@home will soon be processing data of Kepler exoplanet systems collected at the GBT. The Astropulse project is the first SETI search for $\\mu$s time scale dispersed pulses in the radio spectrum. We recently reobserved 114 sky loc...

  16. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    Hargrove, Paul H.; Duell, Jason C.

    2006-09-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters.

  17. Lawrence Livermore National Laboratory Annual Report 2006

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer

  18. Guidelines for the segregation characterization management of dry waste at Berkeley Lab

    Managing and disposing of dry low level radioactive waste at Berkeley Lab. is problematic. The Waste Management Group must assure off site treatment, storage, and disposal facilities that dry waste from Berkeley Lab. is free of liquids and regulated metals (such as lead and mercury). RTR (Real Time Radioagraphy) used for waste to be rejected. This pamphlet helps to clarify dry waste management requirements that will ensure that Berkeley Lab. dry waste will be accepted for off site shipment. These issues are critical if we are to have an off site disposal option for your dry radioactive waste

  19. Proposed University of California Berkeley fast pulsar search machine

    With the discovery of 1937+21 by Backer et al. (1982) there is much renewed interest in an all sky survey for fast pulsars. University of California Berkeley has designed and is in the process of building an innovative and powerful, stand-alone, real-time, digital signal-processor to conduct an all sky survey for pulsars with rotation rates as high as 2000 Hz and dispersion measures less than 120 cm-3 pc at 800 MHz. The machine is anticipated to be completed in the Fall of 1985. The search technique consists of obtaining a 2-dimensional Fourier transform of the microwave signal. The transform is effected in two stages: a 64-channel, 3-level digital autocorrelator provides the radio frequency to delay transform and a fast 128K-point array processor effects the time to intensity fluctuation frequency transform. The use of a digital correlator allows flexibility in the choice of the observing radio frequency. Besides, the bandwidth is not fixed as in a multi-channel filter bank. In the machine, bandwidths can range from less than a MHz to 40 MHz. In the transform plane, the signature of a pulsar consists of harmonically related peaks which lie on a straight line which passes through the origin. The increased computational demand of a fast pulsar survey will be met by a combination of multi-CPU processing and pipeline design which involves a fast array processor and five commercial 68,000-based micro-processors. 6 references, 3 figures

  20. D.H.Lawrence's Views On European Industrial Civilization

    冯建明

    2001-01-01

    In Women in Love (1921)the reader can easily perceive the author's abhorrence to European industrial civilization T Lawrence, the inescapable fate of this sort of social deveolpment is destruction And he takes it for granted that"Rananim"--the Lawrencian utopia, is a social outlet for human salvation.

  1. Edward Spencer receives first Zenobia Lawrence Hikes leadership award

    DeLauder, Rachel

    2009-01-01

    Edward Spencer and Angela DeSoto were recognized by Virginia Tech's Student Government Association for their exemplary leadership and contribution to the Virginia Tech community with the first Zenobia Lawrence Hikes Leadership Award and the first Don Williams Service Award.

  2. Spending Time and Money: Memories of Life in St. Lawrences

    Abraham, Jane; Cooper, Mabel; Ferris, Gloria

    2010-01-01

    Mabel Cooper and Gloria Ferris spent their early adult life in St. Lawrence's Hospital in Caterham. This was in the late 1950s to early 1970s. This is their memories of how they spent their time. It includes the work they did and leisure. They also write about the tokens that were used in the hospital instead of money.

  3. Waste management study: Process development at Lawrence Livermore National Laboratory

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes

  4. Environmental monitoring at the Lawrence Livermore Laboratory. 1979 annual report

    Information on monitoring activities is reported in two sections for EDB/ERA/INIS. The first section covers all information reported except Appendix D, which gives details of sampling and analytical procedures for environmental monitoring used at Lawrence Livermore Laboratory. A separate abstract was prepared for Appendix D

  5. Crystal clear the autobiographies of Sir Lawrence and Lady Bragg

    Thomson, Patience

    2015-01-01

    The main body of this book contains the hitherto unpublished autobiographies of both William Lawrence Bragg, an innovative scientist who won the Nobel Prize for Physics in 1915, and his wife, Alice, a Mayor of Cambridge and National Chairman of Marriage Guidance. Their autobiographies give unusual insights into the lives and times of two distinguished people and the real personalities behind their public appearance.

  6. Environmental monitoring at the Lawrence Livermore Laboratory. 1979 annual report

    Silver, W.J.; Lindeken, C.L.; White, J.H.; Buddemeir, R.W.

    1980-04-25

    Information on monitoring activities is reported in two sections for EDB/ERA/INIS. The first section covers all information reported except Appendix D, which gives details of sampling and analytical procedures for environmental monitoring used at Lawrence Livermore Laboratory. A separate abstract was prepared for Appendix D. (JGB)

  7. 75 FR 1010 - CSX Transportation, Inc.-Discontinuance of Service Exemption-in Clark, Floyd, Lawrence, Orange...

    2010-01-07

    ..., Floyd, Lawrence, Orange, and Washington Counties, IN On December 18, 2009, CSX Transportation, Inc... Albany, in Clark, Floyd, Lawrence, Orange, and Washington Counties, IN.\\1\\ The line traverses...

  8. Berkeley e o papel das hipóteses na filosofia natural Berkeley and the role of hypothesis in natural philosophy

    Silvio Seno Chibeni

    2010-09-01

    Full Text Available A questão do estatuto epistemológico das hipóteses que postulam entes e mecanismos inobserváveis tornou-se proeminente com o advento da ciência moderna, no século XVII. Uma das razões para isso é que, por um lado, as novas teorias científicas passaram a empregá-las amplamente na explicação dos fenômenos naturais, enquanto que, por outro lado, a epistemologia empirista, geralmente adotada desde então para a análise da ciência, parecia proscrever seu uso. Neste artigo analisam-se as soluções propostas por George Berkeley para essa tensão. Mostra-se que nos Princípios do conhecimento humano ele introduz uma nova noção de explicação científica, segundo a qual a ciência poderia prescindir de hipóteses sobre inobserváveis, quaisquer que sejam. Depois, para acomodar epistemologicamente a mecânica newtoniana, ele propõe, no De motu, a interpretação instrumentalista das hipóteses sobre forças, que são centrais nessa teoria, considerada por ele "a melhor chave para a ciência natural". Finalmente, em sua obra tardia, Siris, Berkeley envolve-se, de forma aparentemente realista, na discussão e defesa de uma série de hipóteses sobre fluidos inobserváveis. Examina-se brevemente, no final do artigo, a possibilidade de conciliar essa posição com os princípios fundamentais da epistemologia e metafísica de Berkeley.The issue of the epistemological status of hypotheses postulating unobservable entities became prominent with the advent of modern science, in the 17th century. The basic reason is that such entities were widely employed by the new scientific theories in the explanation and prediction of natural phenomena, whereas empiricist epistemology, which at that time became very popular among philosophers and scientists, formed a clearly inhospitable background for unobservable elements in general. This paper examines the stands adopted, and the proposals made on this topic by George Berkeley, one of the most important

  9. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  10. The Indirect Perception of Distance: Interpretive Complexities in Berkeley's Theory of Vision

    Michael James Braund

    2007-12-01

    Full Text Available The problem of whether perception is direct or if it depends on additional, cognitive contributions made by the perceiving subject, is posed with particular force in an Essay towards a New Theory of Vision (NTV. It is evident from the recurrent treatment it receives therein that Berkeley considers it to be one of the central issues concerning perception. Fittingly, the NTV devotes the most attention to it. In this essay, I deal exclusively with Berkeley's treatment of the problem of indirect distance perception, as it is presented in the context of that work.

  11. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  12. Optical Design Capabilities at Lawrence Livermore National Laboratory

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  13. Pyrochemical processing automation at Lawrence Livermore National Laboratory

    Lawrence Livermore National Laboratory (LLNL) is developing a fully automated system for pyrochemical processing of special nuclear materials (SNM). The system utilizes a glove box, an automated tilt-pour furnace (TPF), an IBM developed gantry robot, and specialized automation tooling. All material handling within the glove box (i.e., furnace loading, furnace unloading, product and slag separation, and product packaging) is performed automatically. The objectives of the effort are to increase process productivity, decrease operator radiation, reduce process wastes, and demonstrate system reliability and availability. This paper provides an overview of the automated system hardware, outlines the overall operations sequence, and discusses the current status

  14. 77 FR 75448 - Welded Tube-Berkeley Including On-Site Leased Workers From Snelling, Aerotek and Express...

    2012-12-20

    ... Employment and Training Administration Welded Tube--Berkeley Including On-Site Leased Workers From Snelling... Worker Adjustment Assistance on October 10, 2012, applicable to workers of Welded Tube--Berkeley... Register on October 29, 2012 (77 FR 65583). At the request of South Carolina State, the Department...

  15. The Berkeley Puppet Interview: A Screening Instrument for Measuring Psychopathology in Young Children

    Stone, Lisanne L.; van Daal, Carlijn; van der Maten, Marloes; Engels, Rutger C. M. E.; Janssens, Jan M. A. M.; Otten, Roy

    2014-01-01

    Background: While child self-reports of psychopathology are increasingly accepted, little standardized instruments are utilized for these practices. The Berkeley Puppet Interview (BPI) is an age-appropriate instrument for self-reports of problem behavior by young children. Objective: Psychometric properties of the Dutch version of the BPI will be…

  16. Berkeley Foundation for Opportunities in Information Technology: A Decade of Broadening Participation

    Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter

    2011-01-01

    The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…

  17. An Evaluation of the New Curriculum at the University of California, Berkeley, School of Optometry.

    Harris, Michael G.; Kashani, Sandy; Saroj, Namrata

    2001-01-01

    Evaluated the new curriculum at the University of California, Berkeley, School of Optometry by comparing the content of the new curriculum to the old curriculum and by surveying faculty and students regarding their opinion of the new curriculum. Findings indicated that the curriculum is successful in implementing desired changes, including reduced…

  18. Cyclist safety on bicycle boulevards and parallel arterial routes in Berkeley, California.

    Minikel, Eric

    2012-03-01

    This study compares the safety of bicyclists riding on bicycle boulevards to those riding on parallel arterial routes in Berkeley, California. Literature on the impact of motor vehicle traffic characteristics on cyclist safety shows that high motor vehicle speeds and volumes and the presence of heavy vehicles are all detrimental to cyclist safety. This suggests that cyclists may be safer on side streets than on busy arterials. Bicycle boulevards-traffic-calmed side streets signed and improved for cyclist use-purport to offer cyclists a safer alternative to riding on arterials. Police-reported bicycle collision data and manually collected cyclist count data from bicycle boulevards and parallel arterial routes in Berkeley, California from 2003 to 2010 are used to test the hypothesis that Berkeley's bicycle boulevards have lower cyclist collision rates and a lower proportion of bicycle collisions resulting in severe injury. While no significant difference is found in the proportion of collisions that are severe, results show that collision rates on Berkeley's bicycle boulevards are two to eight times lower than those on parallel, adjacent arterial routes. The difference in collision rate is highly statistically significant, unlikely to be caused by any bias in the collision and count data, and cannot be easily explained away by self-selection or safety in numbers. Though the used dataset is limited and the study design is correlational, this study provides some evidence that Berkeley's bicycle boulevards are safer for cyclists than its parallel arterial routes. The results may be suggestive that, more generally, properly implemented bicycle boulevards can provide cyclists with a safer alternative to riding on arterials. PMID:22269506

  19. Integrated EPA Science for Decision-Making: Lawrence, MA Water Strategy

    Powerpoint presentation on the Lawrence MA Making a Visible Difference in Communities project’s comprehensive water quality strategy, demonstrating a systems approach applying integrated EPA science

  20. The Computation Directorate at Lawrence Livermore National Laboratory

    Cook, L

    2006-09-07

    The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

  1. Lawrence Livermore National Laboratory environmental report for 1990

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs

  2. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on the authors' experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA3 as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  3. The Lawrence Livermore National Laboratory Intelligent Actinide Analysis System

    The authors have developed an Intelligent Actinide Analysis System (IAAS) for Materials Management to use in the Plutonium Facility at the Lawrence Livermore National Laboratory. The IAAS will measure isotopic ratios for plutonium and other actinides non-destructively by high-resolution gamma-ray spectrometry. This system will measure samples in a variety of matrices and containers. It will provide automated control of many aspects of the instrument that previously required manual intervention and/or control. The IAAS is a second-generation instrument, based on experience in fielding gamma isotopic systems, that is intended to advance non-destructive actinide analysis for nuclear safeguards in performance, automation, ease of use, adaptability, systems integration and extensibility to robotics. It uses a client-server distributed monitoring and control architecture. The IAAS uses MGA as the isotopic analysis code. The design of the IAAS reduces the need for operator intervention, operator training, and operator exposure

  4. Lawrence Livermore National Laboratory (LLNL) Waste Minimization Program Plan

    This Program Plan document describes the background of the Waste Minimization field at Lawrence Livermore National Laboratory (LLNL) and refers to the significant studies that have impacted on legislative efforts, both at the federal and state levels. A short history of formal LLNL waste minimization efforts is provided. Also included are general findings from analysis of work to date, with emphasis on source reduction findings. A short summary is provided on current regulations and probable future legislation which may impact on waste minimization methodology. The LLN Waste Minimization Program Plan is designed to be dynamic and flexible so as to meet current regulations, and yet is able to respond to an everchanging regulatory environment. 19 refs., 12 figs., 8 tabs

  5. Environmental restoration at the Lawrence Livermore National Laboratory Livermore Site

    Ground water beneath Lawrence Livermore National Laboratory (LLNL) near Livermore California, contains 19 compounds in concentrations exceeding regulatory standards. These include volatile organic compounds (VOCs), dissolved fuel hydrocarbons, free product gasoline, cadmium, chromium, lead, and tritium. VOCs are the most widespread hazardous materials in the ground water, covering an area of about 1.4 square miles. The other compounds occur sporadically around the site. The LLNL site was added to the National Priorities (Superfund) List in 1987. This paper describes the technology developed at LLNL to remediate soil and ground water contamination. Included in this paper are methods in which site characterization has been aided by using a drilling technique developed at LLNL to evaluate the vertical distribution of VOCs in multiple water-bearing zones in single borehole. The paper also describes the development and implementation of a comprehensive three-step program to investigate and evaluate potential sources of hazardous materials in soil and ground water

  6. Lawrence Livermore National Laboratory laser-fusion program

    The goals of the Laser-Fusion Program at Lawrence Livermore National Laboratory are to produce well-diagnosed, high-gain, laser-driven fusion explosions in the laboratory and to exploit this capability for both military applications and for civilian energy production. In the past year we have made significant progress both theoretically and experimentally in our understanding of the laser interaction with both directly coupled and radiation-driven implosion targets and their implosion dynamics. We have made significant developments in fabricating the target structures. Data from the target experiments are producing important near-term physics results. We have also continued to develop attractive reactor concepts which illustrate ICF's potential as an energy producer

  7. Image enhancement applications at the Lawrence Livermore National Laboratory

    The Lawrence Livermore National Laboratory is a national center for energy and weapons research operated by the Department of Energy. Major programs at the Laboratory are related to laser fusion, magnetic fusion, nonnuclear ordnance, nuclear weapons technology, and laser isotope separation. In connection with the conducted studies, a large amount of data is collected, and both signal and image processing play an important part. A description is given of the image processing system, taking into account a host processor, an array processor, two image display systems, and two 300-Mbyte and two 80-Mbyte disks. Magnetic tapes are primarily used for archival storage. The application of image processing techniques to numerous problems is also discussed, giving attention to radiography, time-motion studies, the extraction of waveforms from their pictures, laser fusion diagnostics, satellite measurements of ozone thickness, and the construction of topographic images from land elevation data

  8. Estonia's defence dollars spent wisely? / Tony Lawrence, Kaarel Kaas ; interv. Joel Alas

    Lawrence, Tony

    2007-01-01

    Rahvusvahelise Kaitseuuringute Keskuse teadurid Tony Lawrence ja Kaarel Kaas kommenteerivad Eestis Suurbritannia kaitseatasheena töötanud kolonelleitnant Glen Granti kriitikat kaitsejõudude efektiivsuse osas, Eesti kaitsepoliitikat, küberrünnakut Eestile, kahe Eesti rahukaitseväelase surma missioonil Afganistanis ning üldsuse suhtumist Eesti osalemisele rahvusvahelistel missioonidel. Lisa: Tony Lawrence; Kaarel Kaas

  9. Panofsky Agonisters: 1950 Loyalty Oath at Berkeley; Pief navigates the crisis

    Jackson, John David

    2008-08-14

    In 1949-1951 the University of California was traumatized and seriously damaged by a Loyalty Oath controversy. Wolfgang K. H. Panofsky, a young and promising physics professor and researcher at Lawrence's Radiation Laboratory, was caught up in the turmoil.

  10. Latest results from the SEMATECH Berkeley extreme ultraviolet microfield exposure tool

    Naulleau, Patrick; Anderson, Christopher N.; Chiu, Jerrin; Dean, Kim; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Hoef, Brian; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; Ma, Andy; Montgomery, Warren; Niakoula, Dimitra; Park, Joo-On; Wallow, Tom; Wurm, Stefan

    2008-09-02

    Microfield exposure tools (METs) continue to play a dominant role in the development of extreme ultraviolet (EUV) resists. One of these tools is the 0.3 numerical aperture SEMATECH Berkeley MET operating as a resist and mask test center. Here they present an update on the tool summarizing some of the latest test and characterization results. they provide an update on the long-term aberration stability of the tool and present line-space imaging in chemically amplified photoresist down to the 20-nm half-pitch level. Although resist development has shown substantial progress in the area of resolution, line-edge-roughness (LER) remains a significant concern. Here we present a summary of recent LER performance results and consider the effect of mask contributors to the LER observed from the SEMATECH Berkeley microfield tool.

  11. Tibet in the 1930s: Theos Bernard's Legacy at UC Berkeley

    Julia M. White

    2014-12-01

    Full Text Available This essay accompanies an online photo essay titled, "Tibet in the 1930s: The Legacy of Theos Bernard at UC Berkeley" (https://cross-currents.berkeley.edu/e-journal/photo-essay/810?page=0. In 1936–1937, Theos Casimir Bernard made an extraordinary pilgrimage to Tibet in search of adventure and spiritual enlightenment. Bernard was already an ardent practitioner of hatha yoga but was eager to gain knowledge of the esoteric teachings within yoga. His journey was well documented in photographs and moving images, as well as by his own descriptions, which he published in 1939 in the book Penthouse of the Gods: A Pilgrimage into the Heart of Tibet and the Sacred City of Lhasa. During his journey, he collected manuscripts, paintings, prints, and sculptures that he intended to be used in teaching esoteric Buddhist studies in America....

  12. Leibniz's Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond

    Katz, Mikhail G; 10.1007/s10670-012-9370-y

    2012-01-01

    Many historians of the calculus deny significant continuity between infinitesimal calculus of the 17th century and 20th century developments such as Robinson's theory. Robinson's hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, Robinson regards Berkeley's criticisms of the infinitesimal calculus as aptly demonstrating the inconsistency of reasoning with historical infinitesimal magnitudes. We argue that Robinson, among others, overestimates the force of Berkeley's criticisms, by underestimating the mathematical and philosophical resources available to Leibniz. Leibniz's infinitesimals are fictions, not logical fictions, as Ishiguro proposed, but ...

  13. A Community of Scientists and Educators: The Compass Project at UC Berkeley

    Roth, Nathaniel; Schwab, Josiah

    2016-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.

  14. The design and implementation of Berkeley Lab's linuxcheckpoint/restart

    Duell, Jason

    2005-04-30

    This paper describes Berkeley Linux Checkpoint/Restart (BLCR), a linux kernel module that allows system-level checkpoints on a variety of Linux systems. BLCR can be used either as a stand alone system for checkpointing applications on a single machine, or as a component by a scheduling system or parallel communication library for checkpointing and restoring parallel jobs running on multiple machines. Integration with Message Passing Interface (MPI) and other parallel systems is described.

  15. An Introduction to the 2001 Issue of the Berkeley Planning Journa

    Dowall, David

    2001-01-01

    Planners have always been deeply interested in and concerned about the effects of technology on human settlements. There is a rich and var­ ied literature on technics and civilization, to borrow from Mumford's brilliant account ( 193 4). Whether looking at machines, autos, comput­ ers or the Internet, this literature provides a rich treasure-trove of social and historical analysis. This issue of the Berkeley Planningjournal makes a contribution to this topic by examining the effects of techno...

  16. Status of the Berkeley small cyclotron AMS [accelerator mass spectrometry] project

    A small, low-energy cyclotron has been designed and built at Berkeley for direct detection dating of 14C. The system combines the use of a negative ion source to reject 14N with the high resolution of a cyclotron to reject other background ions. In order to allow the dating of old and small samples, the present system incorporates a high-current external ion source and injection beamline. The system is expected to be operational by mid-1987

  17. La critique du réalisme leibnizien dans le De Motu de Berkeley.

    Luc Peterschmitt

    2005-04-01

    Full Text Available L’objet de Berkeley dans le De Motu est de marquer l’autonomie de la mécanique (ou dynamique et de la métaphysique, en montrant que le concept de force tel qu’on l’utilise en mécanique ne peut servir à déterminer ce qu’il en est de la nature des choses. Pour établir cette distinction entre ces deux domaines du savoir, Berkeley à la fois s’appuie sur et critique la notion leibnizienne de force : Leibniz assure la réalité de la force dérivative (concept mécanique en la fondant sur la forme substantielle des corps, ou force primitive (concept métaphysique, qui permet d’attribuer aux corps une efficace causale. En récusant la forme substantielle comme inconcevable, Berkeley ruine alors le réalisme leibnizien, en vertu du lien posé par Leibniz lui-même entre sa métaphysique et sa dynamique. Mais du coup, cela permet à Berkeley d’instaurer un nouveau rôle à la métaphysique face à la mécanique : non plus un rôle fondateur comme celui que lui assigne Leibniz, mais un rôle critique, celui d’une instance qui dit les conditions sous lesquelles l’usage des concept est valide en science.

  18. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed.

  19. Strategic Plan for Loss Reduction and Risk Management: University of California, Berkeley

    Office of the Vice Provost, University of California, Berkeley; Disaster-Resistant University Steering Committee, University of California, Berkeley

    2000-01-01

    In the nearly three years since Chancellor Berdahl announced the creation of the Seismic Action plan for Facilities Enhancement and Renewal (SAFER), the UC Berkeley campus has intensified its attention to seismic safety issues. SAFER Program initiatives have changed the organizational structure, altered the landscape, and increased our understanding of the complex operational needs of the campus. This Strategic Risk Management Plan grows out of the SAFER Program, and advances its twin goals o...

  20. Progress Report on the Berkeley/Anglo-Australian Observatory High-redshift Supernova Search

    Goldhaber, G.; Perlmutter, S.; Pennypacker, C.; Marvin, H.; Muller, R. A.; Couch, W.; Boyle, B.

    1990-11-01

    There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring {Omega}. It is the latter that I want to discuss in this paper.

  1. Progress report on the Berkeley/Anglo-Australian Observatory high-redshift supernova search

    There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring Ω. It is the latter that I want to discuss in this paper. 3 refs., 18 figs

  2. Jornalero: the life and work of Latin American Day Laborers in Berkeley, California

    Ordonez, Juan Thomas

    2010-01-01

    This dissertation is an ethnographic exploration of the everyday life of Latin American day laborers -jornaleros- in Berkeley, California. Based on more than two years of fieldwork consisting of participant observation on the streets and neighborhoods these men inhabit, my research follows the daily experience of marginalization of two-dozen immigrants. Working informally on street hiring sites day laborers actively participate in the US economy while they are marginalized through the very na...

  3. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed

  4. Hayward Fault rate constraints at Berkeley: Evaluation of the 335-meter Strawberry Creek offset

    Williams, P. L.

    2007-12-01

    At UC Berkeley the active channel of Strawberry Creek is offset 335 meters by the Hayward fault and two abandoned channels of Strawberry Creek are laterally offset 580 and 730 meters. These relationships record the displacement of the northern Hayward fault at Berkeley over a period of tens of millennia. The Strawberry Creek site has a similar geometry to the central San Andreas fault's Wallace Creek site, which arguably provides the best geological evidence of "millennial" fault kinematics in California (Sieh and Jahns, 1984). Slip rate determinations are an essential component of overall hazard evaluation for the Hayward fault, and this site is ripe to disclose a long-term form of this parameter, to contrast with geodetic and other geological rate evidence. Large offsets at the site may lower uncertainty in the rate equation relative to younger sites, as the affect of stream abandonment age, generally the greatest source of rate uncertainty, is greatly reduced. This is helpful here because it more-than-offsets uncertainties resulting from piercing projections to the fault. Strawberry Creek and its ancestral channels suggest west-side-up vertical deformation across the Hayward fault at this location. The development of the vertical deformation parameter will complement ongoing geodetic measurements, particularly InSAR, and motivate testing of other geological constraints. Up-to-the-west motion across the Hayward fault at Berkeley has important implications for the partitioning of strain and kinematics of the northern Hayward fault, and may explain anomalous up-on-the-west landforms elsewhere along the fault. For example, geological features of the western Berkeley Hills are consistent with rapid and recent uplift to the west of the fault. On the basis of a preliminary analysis of the offset channels of Strawberry Creek, up-to-the-west uplift is about 0.5mm/yr across the Hayward fault at Berkeley. If this is in fact the long-term rate, the 150 m height of the Hills

  5. Costs, Culture, and Complexity: An Analysis of Technology Enhancements in a Large Lecture Course at UC Berkeley

    Harley, Diane; Henke, Jonathan; Lawrence, Shannon; McMartin, Flora; Maher, Michael; Gawlik, Marytza; Muller, Parisa

    2003-01-01

    As colleges and universities nationwide anticipate enrolling more than two million new students over the next decade, UC Berkeley is exploring options for serving more students, more cost effectively, in large lecture courses. This research project analyzes economic and pedagogical questions related to the use of on-line lecture and laboratory material in a large introductory chemistry course at UC Berkeley. We undertook a quasi-experimental two-year study to determine if the utilization of o...

  6. How Many Democrats per Republican at UC-Berkeley and Stanford? Voter Registration Data Across 23 Academic Departments

    Klein, Daniel B.; Western, Andrew

    2004-01-01

    Using the records of the seven San Francisco Bay Area counties that surround University of California, Berkeley and Stanford University, we conducted a systematic and thorough study of the party registration of the Berkeley and Stanford faculty in 23 academic departments. The departments span the social sciences, humanities, hard sciences, math, law, journalism, engineering, medicine, and the business school. Of the total of 1497 individual names on the cumulative list, we obtained readings o...

  7. Lawrence Livermore National Laboratory environmental report for 1990

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R. (eds.)

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  8. Status of VibroIR at Lawrence Livermore National Laboratory

    Burke, Michael W.; Miller, Wayne O.

    2004-04-01

    Current efforts at Lawrence Livermore National Laboratory in the area of vibrothermography (VibroIR or SonicIR) are presented. The primary goals of the efforts of the NDE group at LLNL have been to demonstrate the applicability of vibrothermography to new areas, to examine the degree to which VibroIR may replace existing NDE inspection procedures, and to conduct research on the underlying processes and optimal parameters in its implementation. We report three new applications of VibroIR, in the areas of brazed tube joint inspection, evaluationtion of thick multilayer carbon/carbon composites as used in the NASA Shuttle, and the inspection of soft composite materials. The goal of the brazed joint inspection process is ultimately the replacement of a current dye penetrant inspection procedure. Therefore a direct comparison between VibroIR and dye penetrant inspection is made. Preliminary results of the analysis of a leading edge panel from a NASA Shuttle is also reported as an example of the application of VibroIR to thick composites. Finally, a comparison betweeen the effectiveness of VibroIR versus a spectrum of other NDE techniques (ultrasonic imaging, radiographic tomography) for the imaging of known ceramic defects is briefly discussed.

  9. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstrate LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.

  10. STS-114 Crew Interviews: 1. Eileen Collins 2. Wendy Lawrence

    2005-01-01

    1) STS-114 Commander Eileen Collins emphasized her love for teaching, respect for teachers, and her plan to go back to teaching again someday. Her solid background in Math and Science, focus on her interests, with great support from her family, and great training and support during her career with the Air Force gave her confidence in pursuing her dream to become an astronaut. Commander Collins shares her thoughts on the Columbia, details the various flight operations and crew tasks that will take place during the mission and the importance of Shuttle missions to the International Space Station and space exploration. 2) STS-114 Mission Specialist Wendy Lawrence first dreamed of becoming an astronaut when she watched Neil Armstrong walk on the moon from their black and white TV set. She majored in Engineering and became a Navy pilot. She shares her thoughts on the Columbia, details her major role as the crew in charge of all the transfer operations; getting the MPLM unpacked and repacked; and the importance of Shuttle missions to the International Space Station and space exploration.

  11. LLNL (Lawrence Livermore National Laboratory) research on cold fusion

    Thomassen, K I; Holzrichter, J F [eds.

    1989-09-14

    With the appearance of reports on Cold Fusion,'' scientists at the Lawrence Livermore National Laboratory (LLNL) began a series of increasingly sophisticated experiments and calculations to explain these phenomena. These experiments can be categorized as follows: (a) simple experiments to replicate the Utah results, (b) more sophisticated experiments to place lower bounds on the generation of heat and production of nuclear products, (c) a collaboration with Texas A M University to analyze electrodes and electrolytes for fusion by-products in a cell producing 10% excess heat (we found no by-products), and (d) attempts to replicate the Frascati experiment that first found neutron bursts when high-pressure deuterium gas in a cylinder with Ti chips was temperature-cycled. We failed in categories (a) and (b) to replicate either the Pons/Fleischmann or the Jones phenomena. We have seen phenomena similar to the Frascati results, (d) but these low-level burst signals may not be coming from neutrons generated in the Ti chips. Summaries of our experiments are described in Section II, as is a theoretical effort based on cosmic ray muons to describe low-level neutron production. Details of the experimental groups' work are contained in the six appendices. At LLNL, independent teams were spontaneously formed in response to the early announcements on cold fusion. This report's format follows this organization.

  12. Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California

    1987-12-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

  13. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    Wong, Amy; Thronas, Denise; Marshall, Robert

    1998-11-04

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  14. Earthquake safety program at Lawrence Livermore National Laboratory

    Within three minutes on the morning of January 24, 1980, an earthquake and three aftershocks, with Richter magnitudes of 5.8, 5.1, 4.0, and 4.2, respectively, struck the Livermore Valley. Two days later, a Richter magnitude 5.4 earthquake occurred, which had its epicenter about 4 miles northwest of the Lawrence Livermore National Laboratory (LLNL). Although no one at the Lab was seriously injured, these earthquakes caused considerable damage and disruption. Masonry and concrete structures cracked and broke, trailers shifted and fell off their pedestals, office ceilings and overhead lighting fell, and bookcases overturned. The Laboratory was suddenly immersed in a site-wide program of repairing earthquake-damaged facilities, and protecting our many employees and the surrounding community from future earthquakes. Over the past five years, LLNL has spent approximately $10 million on its earthquake restoration effort for repairs and upgrades. The discussion in this paper centers upon the earthquake damage that occurred, the clean-up and restoration efforts, the seismic review of LLNL facilities, our site-specific seismic design criteria, computer-floor upgrades, ceiling-system upgrades, unique building seismic upgrades, geologic and seismologic studies, and seismic instrumentation. 10 references

  15. 78 FR 40260 - International Joint Commission: Public Comment on a Proposal for Lake Ontario and St. Lawrence...

    2013-07-03

    ... International Joint Commission: Public Comment on a Proposal for Lake Ontario and St. Lawrence River Regulation... the water levels and flows in Lake Ontario and the St. Lawrence River that will continue to contribute... health of Lake Ontario and the upper St. Lawrence River. Since 1960, the IJC has managed the flow...

  16. THE CONTRIBUTION MADE BY T.E. LAWRENCE TO THE THEORY OF REVOLUTIONARY WARFARE

    G.K.B. Barron

    2012-02-01

    Full Text Available Lawrence was basically an academic thrown into the hurly-burly of leading an Arab revolt against Turkish domination. It could be said that the war in the Middle East was a sideshow of the First World War and Lawrence's part was a ' ... sideshow to the sideshow'l Why then has Lawrence been remembered when greater military men have been forgotten? The romanticism of his exploits are surely the reason, and yet the fact that he is the first modern theorist and possibly the "father" of modern revolutionary warfare, tends to be forgotten.

  17. THE CONTRIBUTION MADE BY T.E. LAWRENCE TO THE THEORY OF REVOLUTIONARY WARFARE

    G.K.B. Barron

    2012-01-01

    Lawrence was basically an academic thrown into the hurly-burly of leading an Arab revolt against Turkish domination. It could be said that the war in the Middle East was a sideshow of the First World War and Lawrence's part was a ' ... sideshow to the sideshow'l) Why then has Lawrence been remembered when greater military men have been forgotten? The romanticism of his exploits are surely the reason, and yet the fact that he is the first modern theorist and possibly the "father" of modern rev...

  18. Lawrence Livermore National Laboratory Probabilistic Seismic Hazard Codes Validation

    Savy, J B

    2003-02-08

    Probabilistic Seismic Hazard Analysis (PSHA) is a methodology that estimates the likelihood that various levels of earthquake-caused ground motion will be exceeded at a given location in a given future time-period. LLNL has been developing the methodology and codes in support of the Nuclear Regulatory Commission (NRC) needs for reviews of site licensing of nuclear power plants, since 1978. A number of existing computer codes have been validated and still can lead to ranges of hazard estimates in some cases. Until now, the seismic hazard community had not agreed on any specific method for evaluation of these codes. The Earthquake Engineering Research Institute (EERI) and the Pacific Engineering Earthquake Research (PEER) center organized an exercise in testing of existing codes with the aim of developing a series of standard tests that future developers could use to evaluate and calibrate their own codes. Seven code developers participated in the exercise, on a voluntary basis. Lawrence Livermore National laboratory participated with some support from the NRC. The final product of the study will include a series of criteria for judging of the validity of the results provided by a computer code. This EERI/PEER project was first planned to be completed by June of 2003. As the group neared completion of the tests, the managing team decided that new tests were necessary. As a result, the present report documents only the work performed to this point. It demonstrates that the computer codes developed by LLNL perform all calculations correctly and as intended. Differences exist between the results of the codes tested, that are attributed to a series of assumptions, on the parameters and models, that the developers had to make. The managing team is planning a new series of tests to help in reaching a consensus on these assumptions.

  19. Status of the belugas of the St Lawrence estuary, Canada

    Michael CS Kingsley

    2014-01-01

    Full Text Available A population of belugas (Delphinapterus leucas inhabiting the estuary of the St Lawrence river in Quebec, Canada, was depleted by unregulated hunting, not closed until 1979. Surveys in 1977 showed only a few hundred in the population. Surveys since then have produced increasing estimates of population indices. An estimate of the population, fully corrected for diving animals, was 1,238 (SE 119 in September 1997. The population was estimated to have increased from 1988 through 1997 by 31.4 belugas/yr (SE 13.1. Observations of population age structure, as well as data on age at death obtained from beach-cast carcasses, do not indicate serious problems at the population level, although there are indications that mortality of the oldest animals may be elevated. Few animals appear to live much over 30 years. From examination of beach-cast carcasses, it appears that most deaths are due to old age and disease; hunting is illegal, ship strikes and entrapments in fishing gear are rare, ice entrapments and predation are unknown. Among beach-cast carcasses recovered and necropsied, about 23% of the adults have malignant cancers, while most of the juveniles have pneumonia; other pathological conditions are diverse. No factors are known to be limiting numbers of this population. Habitat quality factors, including persistent contaminants, boat traffic and harassment, may affect the population’s rate of increase, but these effects have not been quantitatively evaluated. Comprehensive legislation exists with powers to protect the population and the environment of which it is a component, but application and enforcement of the laws is not without problems.

  20. Laser materials processing applications at Lawrence Livermore National Laboratory

    High power and high radiance laser technologies developed at Lawrence Livermore National Laboratory (LLNL) such as copper-vapor lasers, solid-state slab lasers, dye lasers, harmonic wavelength conversion of these lasers, and fiber optic delivery systems show great promise for material processing tasks. Evaluation of models suggests significant potential for tenfold increases in welding, cutting, and drilling performance, as well as capability for applications in emerging technologies such as micromachining, surface treatment, and stereolithography. The goals of this program are to develop low-cost, reliable and maintainable industrial laser systems. Chains of copper lasers currently operate at more than 1.5 kW output and achieve mean time between failures of more than 1,000 hours. The beam quality of copper vapor lasers is approximately three times the diffraction limit. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. diode laser pumped, Nd:YAG slab lasers are also being developed at LLNL. Current designs achieve powers of greater than 1.0 kW and projected beam quality is in the two to five times diffraction limited range. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratio holes in drilling tests (> 60:1) and features with micron scale (5-50 μm) sizes. Other, traditionally more difficult, materials such as copper, aluminum and ceramics will soon be studied in detail

  1. Laser materials processing applications at Lawrence Livermore National Laboratory

    High power and high radiance laser technologies developed at Lawrence Livermore National Laboratory (LLNL) such as copper-vapor lasers, solid-state slab lasers, dye lasers, harmonic wavelength conversion of these lasers, and fiber optic delivery systems show great promise for material processing tasks. Evaluation of models suggests significant potential for tenfold increases in welding, cutting, and drilling performance, as well as capability for applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper and dye laser systems are currently being developed at LLNL for uranium enrichment production facilities. The goals of this program are to develop low-cost, reliable and maintainable industrial laser systems. Chains of copper lasers currently operate at more than 1.5 kW output and achieve mean time between failures of more than 1,000 hours. The beam quality of copper vapor lasers is approximately three times the diffraction limit. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Diode laser pumped, Nd:YAG slab lasers are also being developed at LLNL. Current designs achieve powers of greater than 1.0 kW and projected beam quality is in the two to five times diffraction limited range. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratio holes in drilling tests (> 60: 1) and features with micron scale (5-50 μm) sizes. Other, traditionally more difficult, materials such as copper, aluminum and ceramics will soon be studied in detail

  2. High energy nucleus--nucleus studies at the Berkeley Bevalac. [Survey

    Schroeder, L.S.

    1976-09-01

    A survey of high-energy nucleus--nucleus experiments performed at the Berkeley Bevalac Facility is presented. Experimental results are divided into the general areas of peripheral and central collisions. Results on projectile and target fragmentation, total cross-section measurements, pion and photon production, and charged-particle multiplicities are stressed. Recently, there have been theoretical predictions concerning the possibility of observing new phenomena such as shock waves, pion condensates, or collapsed nuclear matter. Existing data relevant to some of these speculations are discussed. A brief discussion of future developments with high-energy nuclear beams is also presented. 27 figures, 1 table.

  3. Polygons Representing Sensitivity of Ground Water to Contamination in Lawrence County, SD

    U.S. Geological Survey, Department of the Interior — This data set includes 956 polygons labeled with a sensitivity-unit code that represents the sensitivity of ground water to contamination in Lawrence County, SD....

  4. Proposals for ORNL [Oak Ridge National Laboratory] support to Tiber LLNL [Lawrence Livermore National Laboratory

    This document describes the interests and capabilities of Oak Ridge National Laboratory in their proposals to support the Lawrence Livermore National Laboratory (LLNL) Engineering Test Reactor (ETR) project. Five individual proposals are cataloged separately. (FI)

  5. Poetic element: A study of D. H. Lawrence's Sons and Lovers

    Ankita; Surender Singh

    2013-01-01

    No writer can remain unaffected by the social, cultural, political and intellectual environment of his age.Every writer depicts the characteristics of his age as he generally transcribes from life. Lawrence's life and workrepresent a revolt against the values and ideas of the nineteenth century. He appears to be a novelist of the abnormalsimply because normality has become something abnormal during present age. D. H. Lawrence was a prolificwriter. He has written poems, novels and short storie...

  6. A New Center for Science Education at UC Berkeley's Space Sciences Laboratory

    Hawkins, I.

    1998-01-01

    The Space Sciences Laboratory at UC Berkeley has established a new Center for Science Education through the Laboratory's Senior Fellow program. The Center has a two-fold mission: (1) science education research through collaborations with UCB Graduate School of Education faculty, and (2) education and outreach projects that bring NASA research to the K-14 and general public communities. The Center is the host of two major education and outreach programs funded by NASA - The Sun-Earth Connection Education Forum (SECEF) and the Science Education Gateway (SEGway) Project. The SECEF - a collaborative between UC Berkeley and NASA's Goddard Space Flight Center - is one of four Forums that have been funded through the Office of Space Science as part of their Education Ecosystem. SEGway is a partnership between science research centers, science museums, and teachers, for the purpose of developing Internet-based, inquiry activities for the K-12 classroom that tap NASA remote sensing data. We will describe the Center for Science Education's history and vision, as well as summarize our core programs.

  7. Searching for multiple stellar populations in the massive, old open cluster Berkeley 39

    Bragaglia, A; Carretta, E; D'Orazi, V; Sneden, C; Lucatello, S

    2012-01-01

    The most massive star clusters include several generations of stars with a different chemical composition (mainly revealed by an Na-O anti-correlation) while low-mass star clusters appear to be chemically homogeneous. We are investigating the chemical composition of several clusters with masses of a few 10^4 Msun to establish the lower mass limit for the multiple stellar population phenomenon. Using FLAMES@VLT spectra we determine abundances of Fe, O, Na, and several other elements (alpha, Fe-peak, and neutron-capture elements) in the old open cluster Berkeley 39. This is a massive open cluster: M~10^4 Msun, approximately at the border between small globular clusters and large open clusters. Our sample size of about 30 stars is one of the largest studied for abundances in any open cluster to date, and will be useful to determine improved cluster parameters, such as age, distance, and reddening when coupled with precise, well-calibrated photometry. We find that Berkeley 39 is slightly metal-poor, =-0.20, in ag...

  8. NGC 1817, NGC 2141, and Berkeley 81: three BOCCE clusters of intermediate age

    Donati, P; Bragaglia, A; Cignoni, M; Tosi, M

    2013-01-01

    In this paper we analyse the evolutionary status of three open clusters: NGC 1817, NGC 2141, and Berkeley 81. They are all of intermediate age, two are located in the Galactic anti-centre direction while the third one is located in the Galactic centre direction. All of them were observed with LBC@LBT using the Bessel B, V, and I filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, i.e. the direct comparison of the observational CMDs with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC, and FST). This analysis shows that NGC 1817 has subsolar metallicity, age between 0.8 and 1.2 Gyr, reddening E(B-V) in the range 0.21 and 0.34, and distance modulus (m-M)_0 of about 10.9; NGC 2141 is older, with age in the range 1.25 and 1.9 Gyr, E(B-V) between 0.36 and 0.45, (m-M)_0 between 11.95 and 12.21, and subsolar metallicity; Berkeley~81 has metallicity about solar, with age between 0.75 and 1.0 Gyr, has reddening E(B-V)~0.90...

  9. DHS-STEM Internship at Lawrence Livermore National Laboratory

    Feldman, B

    2008-08-18

    This summer I had the fortunate opportunity through the DHS-STEM program to attend Lawrence Livermore National Laboratories (LLNL) to work with Tom Slezak on the bioinformatics team. The bioinformatics team, among other things, helps to develop TaqMan and microarray probes for the identification of pathogens. My main project at the laboratory was to test such probe identification capabilities against metagenomic (unsequenced) data from around the world. Using various sequence analysis tools (Vmatch and Blastall) and several we developed ourselves, about 120 metagenomic sequencing projects were compared against a collection of all completely sequenced genomes and Lawrence Livermore National Laboratory's (LLNL) current probe database. For the probes, the Blastall algorithms compared each individual metagenomic project using various parameters allowing for the natural ambiguities of in vitro hybridization (mismatches, deletions, insertions, hairpinning, etc.). A low level cutoff was used to eliminate poor sequence matches, and to leave a large variety of higher quality matches for future research into the hybridization of sequences with mutations and variations. Any hits with at least 80% base pair conservation over 80% of the length of the match. Because of the size of our whole genome database, we utilized the exact match algorithm of Vmatch to quickly search and compare genomes for exact matches with varying lower level limits on sequence length. I also provided preliminary feasibility analyses to support a potential industry-funded project to develop a multiplex assay on several genera and species. Each genus and species was evaluated based on the amount of sequenced genomes, amount of near neighbor sequenced genomes, presence of identifying genes--metabolistic or antibiotic resistant genes--and the availability of research on the identification of the specific genera or species. Utilizing the bioinformatic team's software, I was able to develop and

  10. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site