WorldWideScience

Sample records for 19-iodo cholesterol-125i 3-acetate

  1. A comparative study of 19-iodo cholesterol-125I 3-acetate and Na 125I in liquid scintillation measurements

    A comparative study of performance of 19-iodo cholesterol 125I 3-acetate and sodium iodide samples labeled with 125I is presented for liquid scintillation counting measurements. Quench effect, count rate stability and spectral evolution of samples have been followed for several weeks in Toluene, Hisafe II, Instagel, Dioxane-naphthalene and Toluene-alcohol scintillators. Organic samples have negligible quench effect in the interval of I concentration of 0-90 μg and inorganic samples only show a very small variation, lower than 12%, for Dioxane-naphthalene, in the same range of concentration. Satisfactory stability is obtained in general for both, organic and inorganic samples, but small counting losses, 0.03% for 19-iodocholesterol 1 I 3-acetate samples in Tolue ne-alcohol and 0 .04% for Na 125I samples in Dioxane-naphthalene and Toluene-alcohol, have been reported. (Author) 8 refs

  2. Preparation of 19-iodo cholesterol labelled with 125 I; Preparacion del 19-yodocolesterol marcado con 125 I

    Rodriguez, L.; Rebollo, D. V.; Ruiz, J. M.

    1986-07-01

    In this paper a new method of synthesis of 19-iodo cholesterol labelled with ''125 I, from commercial cholesterol, is described. Its high chemical (96%) and radiochemical (99.9%) purities high yield and short time of preparation permit us to dispose or a more accessible labelled compound, which results appropriates for clinical investigations and in the diagnosis of disturbances of the suprarenal glands. (Author) 9 refs.

  3. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  4. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  5. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid.

    Tivendale, Nathan D; Davidson, Sandra E; Davies, Noel W; Smith, Jason A; Dalmais, Marion; Bendahmane, Abdelhafid I; Quittenden, Laura J; Sutton, Lily; Bala, Raj K; Le Signor, Christine; Thompson, Richard; Horne, James; Reid, James B; Ross, John J

    2012-07-01

    Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea. PMID:22573801

  6. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  7. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum

    Jensen, J B; Egsgaard, H; Van Onckelen, H;

    1995-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid. Indoleacetic acid (IAA), 4-chloro-IAA (4-Cl-IAA), and 5-Cl-IAA were metabolized to different extents by strains 61A24 and 110. Metabolites were isolated and analyzed by high-performance liquid...... chromatography and conventional mass spectrometry (MS) methods, including MS-mass spectroscopy, UV spectroscopy, and high-performance liquid chromatography-MS. The identified products indicate a novel metabolic pathway in which IAA is metabolized via dioxindole-3-acetic acid, dioxindole, isatin, and 2......-aminophenyl glyoxylic acid (isatinic acid) to anthranilic acid, which is further metabolized. Degradation of 4-Cl-IAA apparently stops at the 4-Cl-dioxindole step in contrast to 5-Cl-IAA which is metabolized to 5-Cl-anthranilic acid. Udgivelsesdato: 1995-Oct...

  8. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  9. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O2, and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with 14C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA

  10. Metabolic regulation of the plant hormone indole-3-acetic acid

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  11. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid

    Pěnčík, A.; Simonovik, B.; Petersson, S.V.; Hényková, Eva; Simon, Sibu; Greenham, K.; Zhang, Y.; Kowalczyk, M.; Estelle, M.; Zažímalová, Eva; Novák, Ondřej; Sandberg, G.; Ljung, K.

    2013-01-01

    Roč. 25, č. 10 (2013), s. 3858-3870. ISSN 1040-4651 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : BOX PROTEIN TIR1 * PLANT DEVELOPMENT * OXINDOLE-3-ACETIC ACID Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.575, year: 2013

  12. Indole-3-Acetic Acid Biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene

    M Robinson; Riov, J.; Sharon, A.

    1998-01-01

    We characterized the biosynthesis of indole-3-acetic acid by the mycoherbicide Colletotrichum gloeosporioides f. sp. aeschynomene. Auxin production was tryptophan dependent. Compounds from the indole-3-acetamide and indole-3-pyruvic acid pathways were detected in culture filtrates. Feeding experiments and in vitro assay confirmed the presence of both pathways. Indole-3-acetamide was the major pathway utilized by the fungus to produce indole-3-acetic acid in culture.

  13. Anti-inflammatory effects of alpinone 3-acetate from Alpinia japonica seeds.

    Kakegawa, Tomohito; Miyazaki, Aya; Yasukawa, Ken

    2016-07-01

    We aimed to investigate the bioactive components of Alpinia japonica as anti-inflammatory compounds using searches of the Alpinia genus, and subsequently demonstrated that alpinone 3-acetate markedly inhibits 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation in a mouse model of ear edema. To assess other bioactivities of alpinone 3-acetate, we performed translatome analyses and compared them with those of hydrocortisone. Polysome-associated mRNAs were prepared from alpinone 3-acetate- or hydrocortisone-treated and control cells from 12-O-tetradecanoyiphorbol 13-acetate-induced THP-1-derived macrophages cultured in the presence of Escherichia coli O-111 lipopolysaccharide. Subsequent microarray analysis revealed that alpinone 3-acetate and hydrocortisone upregulated and downregulated the same 155 and 41 genes, respectively. Moreover, direct comparisons of translationally regulated genes indicated 5 and 10 gene probes that were upregulated and downregulated by alpinone 3-acetate and hydrocortisone, respectively. In conclusion, assays of 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation ear edema in mice and polysome profiling of alpinone 3-acetate bioactivities indicated similar medicinal possibilities to those of hydrocortisone. PMID:27137785

  14. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    Egebo, L A; Nielsen, S V; Jochimsen, B U

    1991-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires...... oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  15. Molecular Cloning and Biochemical Characterization of Indole-3-acetic Acid Methyltransferase from Poplar (Populus trichocarpa)

    Indole-3-acetic acid (IAA) is the most active endogenous auxin involved in various physiological processes in higher plants. Concentrations of IAA in plant tissues are regulated at multiple levels including de novo biosynthesis, degradation, and conjugation/deconjugation. In this paper, we report id...

  16. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  17. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  18. Effects of acetlysalicylic acid with indole-3-acetic acid on rooting and pigmentation in Amygdalus L.

    Yiğit, Emel; Beker Akbulut, Gülçin

    2014-01-01

    Vegetative propagation is a key step, playing an important role in the succesful production of elite clones. The use of plant hormanes can increase the rroting capacity of cuttings. In this experiment, we investigated whether exogenously applied acetylsalicylic acid (ASA) with indole-3-acetic acit (IAA) (50, 100 mg/L) through the rooting medium could increase effects on Amygdalus spp or not. In the experiment, one year old semihardwood shootcuttings were used. The highest callus formation was...

  19. In Planta Production of Indole-3-Acetic Acid by Colletotrichum gloeosporioides f. sp. aeschynomene

    Maor, Rudy; Haskin, Sefi; Levi-Kedmi, Hagit; Sharon, Amir

    2004-01-01

    The plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene utilizes external tryptophan to produce indole-3-acetic acid (IAA) through the intermediate indole-3-acetamide (IAM). We studied the effects of tryptophan, IAA, and IAM on IAA biosynthesis in fungal axenic cultures and on in planta IAA production by the fungus. IAA biosynthesis was strictly dependent on external tryptophan and was enhanced by tryptophan and IAM. The fungus produced IAM and IAA in planta during the ...

  20. Electrochemical and electrochromic response of poly(thiophene-3-acetic acid) films

    Giglioti, M.; Trivinho-Strixino, F.; Matsushima, J.T.; Bulhoes, L.O.S.; Pereira, E.C. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos SP 13565-905 (Brazil)

    2004-05-15

    Thiophene-3-acetic acid has been polymerized in chloroform by a chemical method using FeCl{sub 3} as oxidant. The films were prepared casting the solubilized polymer on ITO electrodes and studied using cyclic voltammetry, chronoamperometry and spectroelectrochemistry. During the potential sweep, an electrochromic process is observed in which the film color changes from red to black. High electrochromic efficiency was observed for more than 600 cycles, although it decreases to 73% of the initial value. Until 264 cycles, the electrochromic efficiency at 750nm is stable and the value is 242cm{sup 2}C{sup -1}.

  1. Contribution of Indole-3-Acetic Acid Production to the Epiphytic Fitness of Erwinia herbicola

    Brandl, M. T.; Lindow, S E

    1998-01-01

    Erwinia herbicola 299R produces large quantities of indole-3-acetic acid (IAA) in culture media supplemented with l-tryptophan. To assess the contribution of IAA production to epiphytic fitness, the population dynamics of the wild-type strain and an IAA-deficient mutant of this strain on leaves were studied. Strain 299XYLE, an isogenic IAA-deficient mutant of strain 299R, was constructed by insertional interruption of the indolepyruvate decarboxylase gene of strain 299R with the xylE gene, wh...

  2. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid.

    Normanly, J; Cohen, J D; Fink, G. R.

    1993-01-01

    We used tryptophan auxotrophs of the dicot Arabidopsis thaliana (wall cress) to determine whether tryptophan has the capacity to serve as a precursor to the auxin, indole-3-acetic acid (IAA). Quantitative gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS) revealed that the trp2-1 mutant, which is defective in the conversion of indole to tryptophan, accumulated amide- and ester-linked IAA at levels 38-fold and 19-fold, respectively, above those of the wild type. Tryptopha...

  3. A mutation affecting the synthesis of 4-chloroindole-3-acetic acid.

    Ross, John J; Tivendale, Nathan D; Davidson, Sandra E; Reid, James B; Davies, Noel W; Quittenden, Laura J; Smith, Jason A

    2012-12-01

    Traditionally, schemes depicting auxin biosynthesis in plants have been notoriously complex. They have involved up to four possible pathways by which the amino acid tryptophan might be converted to the main active auxin, indole-3-acetic acid (IAA), while another pathway was suggested to bypass tryptophan altogether. It was also postulated that different plants use different pathways, further adding to the complexity. In 2011, however, it was suggested that one of the four tryptophan-dependent pathways, via indole-3-pyruvic acid (IPyA), is the main pathway in Arabidopsis thaliana, although concurrent operation of one or more other pathways has not been excluded. We recently showed that, for seeds of Pisum sativum (pea), it is possible to go one step further. Our new evidence indicates that the IPyA pathway is the only tryptophan-dependent IAA synthesis pathway operating in pea seeds. We also demonstrated that the main auxin in developing pea seeds, 4-chloroindole-3-acetic acid (4-Cl-IAA), which accumulates to levels far exceeding those of IAA, is synthesized via a chlorinated version of the IPyA pathway. PMID:23073010

  4. Preparation of a novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid.

    Liu, Yan; Dong, Haitao; Zhang, Wenzhu; Ye, Zhiqiang; Wang, Guilan; Yuan, Jingli

    2010-06-15

    A novel colorimetric luminescence sensor strip for the detection of indole-3-acetic acid (IAA) has been fabricated by using green emissive quantum dots of cadmium telluride (CdTe QDs) as a background layer and a red emissive europium chelate, [4'-(9-anthryl)-2,2':6',2''-terpyridine-6,6''-diyl]bis(methylenenitrilo) tetrakis(acetate)-Eu(3+) (ATTA-Eu(3+)), as a specific sensing layer coated on the surface of glass slide, respectively. The luminescence response of the sensor strip is given by the dramatic changes in emission colors from green to red at different IAA concentrations. This approach provides a simple, rapid, sensitive and accurate method for the detection of IAA without using any special scientific instruments. PMID:20353890

  5. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-01

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis. PMID:11042207

  6. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?

    Cook, Sam D; Nichols, David S; Smith, Jason; Chourey, Prem S; McAdam, Erin L; Quittenden, Laura; Ross, John J

    2016-06-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  7. Toward targeted 'oxidation therapy' of cancer: peroxidase-catalysed cytotoxicity of indole-3-acetic acids

    Purpose: The study aimed to identify suitable prodrugs that could be used to test the hypothesis that peroxidase activity in cells, either endogenous or enhanced by immunological targeting, can activate prodrugs to cytotoxins. We hypothesized that prototype prodrugs based on derivatives of indole-3-acetic acid (IAA), when activated by peroxidase enzymes (e.g., from horseradish, HRP) should produce peroxyl radicals, with deleterious biological consequences. Methods and Materials: V79 hamster cells were incubated with IAA or derivatives ± HRP and cytotoxicity assessed by a clonogenic assay. To assess the toxicity of stable oxidation products, prodrugs were also oxidized by HRP without cells, and the products then added to cells. Results: The combination of prodrug and enzyme resulted in cytotoxicity, but neither indole nor enzyme in isolation was toxic under the conditions used. Although lipid peroxidation was stimulated in liposomes by the prodrug/enzyme treatment, it could not be measured in mammalian cells. Adding oxidized prodrugs to cells resulted in cytotoxicity. Conclusions: Although the hypothesis that prodrugs of this type could enhance oxidative stress via lipid peroxidation was not established, the results nonetheless demonstrated oxidatively-activated cytotoxicity via indole acetic acid prodrugs, and suggested these as a new type of substrate for antibody-directed enzyme-prodrug therapy (ADEPT). The hypothesized free-radical fragmentation intermediates were demonstrated, but lipid peroxidation associated with peroxyl radical formation was unlikely to be the major route to cytotoxicity

  8. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects.

    Luo, Kun; Rocheleau, Hélène; Qi, Peng-Fei; Zheng, You-Liang; Zhao, Hui-Yan; Ouellet, Thérèse

    2016-09-01

    Fusarium graminearum is a devastating pathogenic fungus causing fusarium head blight (FHB) of wheat. This fungus can produce indole-3-acetic acid (IAA) and a very large amount of IAA accumulates in wheat head tissues during the first few days of infection by F. graminearum. Using liquid culture conditions, we have determined that F. graminearum can use tryptamine (TAM) and indole-3-acetonitrile (IAN) as biosynthetic intermediates to produce IAA. It is the first time that F. graminearum is shown to use the l-tryptophan-dependent TAM and IAN pathways rather than the indole-3-acetamide or indole-3-pyruvic acid pathways to produce IAA. Our experiments also showed that exogenous IAA was metabolized by F. graminearum. Exogenous IAA, TAM, and IAN inhibited mycelial growth; IAA and IAN also affected the hyphae branching pattern and delayed macroconidium germination. IAA and TAM had a small positive effect on the production of the mycotoxin 15-ADON while IAN inhibited its production. Our results showed that IAA and biosynthetic intermediates had a significant effect on F. graminearum physiology and suggested a new area of exploration for fungicidal compounds. PMID:27567719

  9. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  10. Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937.

    Yang, Shihui; Zhang, Qiu; Guo, Jianhua; Charkowski, Amy O; Glick, Bernard R; Ibekwe, A Mark; Cooksey, Donald A; Yang, Ching-Hong

    2007-02-01

    Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138 was reduced in M9 minimal medium supplemented with l-tryptophan. Compared with wild-type Ech3937, Ech138 exhibited reduced ability to produce local maceration, but its multiplication in Saintpaulia ionantha was unaffected. The pectate lyase production of Ech138 was diminished. Compared with wild-type Ech3937, the expression levels of an oligogalacturonate lyase gene, ogl, and three endopectate lyase genes, pelD, pelI, and pelL, were reduced in Ech138 as determined by a green fluorescent protein-based fluorescence-activated cell sorting promoter activity assay. In addition, the transcription of type III secretion system (T3SS) genes, dspE (a putative T3SS effector) and hrpN (T3SS harpin), was found to be diminished in the iaaM mutant Ech138. Compared with Ech3937, reduced expression of hrpL (a T3SS alternative sigma factor) and gacA but increased expression of rsmA in Ech138 was also observed, suggesting that the regulation of T3SS and pectate lyase genes by IAA biosynthesis might be partially due to the posttranscriptional regulation of the Gac-Rsm regulatory pathway. PMID:17189441

  11. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria.

    Ahmed, Mehboob; Stal, Lucas J; Hasnain, Shahida

    2014-08-01

    Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants. PMID:24705871

  12. Effects of indole-3-acetic acid on Botrytis cinerea isolates obtained from potted plants.

    Martínez, J A; Valdés, R; Gómez-Bellot, M J; Bañón, S

    2011-01-01

    We study the growth of different isolates of Botrytis cinerea collected from potted plants which were affected by Botrytis blight in southern Spain during recent years. These isolates, which show widely phenotypic differences when grown in vitro, are differentially affected by growth temperature, gibberellic acid applications and paclobutrazol, an efficient plant growth retardant and fungicide at the same time. In this work, we have evaluated the effect of the auxin indole-3-acetic acid (IAA) dose (0, 1, 10, and 100 mg/plate) on the growth of the collection of B. cinerea isolates obtained from the following potted plants: Cyclamen persicum, Hydrangea macrophylla, Lantona camara, and Lonicera japonica. B. cinerea produces indolacetic acid, but so far the precise biosynthetic pathway and some effects on this fungal species are still unclear, although recent studies have revealed an antifungal activity of IAA on several fungi, including B. cinerea isolated from harvested fruits. Mycelial growth curves and growth rates assessed from difference in colony areas during the both linear and deceleration phase, conidiation (measured as time of appearance), conidia length (microm), and sclerotia production (number/plate) were evaluated in the isolates, which were grown at 26 degrees C on Petri dishes containing potato dextrose agar for up to 35 days. Mycelial growth curves fitted a typical kinetic equation of fungi grown on solid media. B. cinerea isolates showed a high degree of variability in their growth kinetics, depending on the isolate and auxin dose. This plant growth substance delayed mycelial growth during the linear phase in an isolate-dependent manner, thus isolates from C. persicum, H. macrophylla and L. camara were more affected by IAA than L. japonica. On the other hand, 100 mg of IAA was the critical dose to significantly reduce the growth rate in all isolates and to promote brown-striped hyphae development, especially in isolate from C. persicum. 10 and 100 mg

  13. A comparative study of 19-iodocholesterol-''125I 3-acetate and Na''125I in liquid scintillation measurements

    A comparative study of performance of 19-iodocholesterol-''125I 3-acetate and sodium iodine samples labelled with ''125 I is presented for liquid scintillation counting measurements. Quench effect, count rate stability and spectral evolution of samples have been followed for several weeks in Toluene, Hisafe II, Instagel, Dioxane-naphthalene and Toluene-alcohol scintillators. Organic samples have negligible quench effect in the interval of I''-concentration of 0-90 ug and inorganic samples only show a very small variation, lower than 12%, for Dioxane-naphthalene, in the same range of concentration. Satisfactory stability is obtained in general for both, organic and inorganic samples, but small counting losses, 0.03% for 19-iodocholesterol-''125I 3-acetate samples in Toluene-alcohol and 0.04% for Na''125I samples in Dioxane-naphthalene and Toluene-alcohol, have been reported. (Author) 8 refs

  14. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  15. Anti-tumor Activities of Novel Estrogen Compound 17aα-D-Homo-Ethynylestradiol-3-Acetate

    ZHOU Ze-wei; TANG Wei-sheng; SHEN Xiu; HAN Ying; WANG Xiao-xue; ZHANG Liang-an

    2008-01-01

    Objective:To study the anti-tumor activities of novel estrogen compound 17a α-D-homo-ethvnvlestradiol-3-acetate in vitro and in vivo. Methods:In vitro anti-tumor activity was assayed in adenoma cells A549 and human liver cancer cells Bel-7402 using MTT method,and half-inhibitory concentration (IC50)were observed. In vivo the pulmonary adenoma LA795 cells was selected and the conventional assay method of anti-tumor activity was employed.5,7.5,10 mg/kg of 17a α-D-homo-ethynylestradiol-3-acetate was administered by i.P., and tumor-inhibitory rate, thymus and spleen indexes,bone marrow cells(BMC)were observed. Results:IC50 of 17a α-D-homo-ethynylestradiol-3-acetate in vitro for A549 and Bel-7402 cells were 12.28 μg/ml and 17.79 μg/ml, respectively.In vivo the highest tumor-inhibitory rates for LA795 was 60.0%(P<0.01).The drug had hardly any side-effect in spleen indexes,thymus indexes,and BMC compared with control mice. Nevertheless,compared with the positive control drug cyclophosphamide(CY),thymus and spleen indexes,BMC showed obvious diffefences(P<0.01). Conclusion:17a α-D-homo-ethynylestradiol-3-acetate has obvious anti-tumor activities in vitro and in vivo with low side-effect, thus worth further investigation.

  16. Biosynthesis and Secretion of Indole-3-Acetic Acid and Its Morphological Effects on Tricholoma vaccinum-Spruce Ectomycorrhiza

    Krause, Katrin; Henke, Catarina; Asiimwe, Theodore; Ulbricht, Andrea; Klemmer, Sandra; Schachtschabel, Doreen; Boland, Wilhelm; Kothe, Erika

    2015-01-01

    Fungus-derived indole-3-acetic acid (IAA), which is involved in development of ectomycorrhiza, affects both partners, i.e., the tree and the fungus. The biosynthesis pathway, excretion from fungal hyphae, the induction of branching in fungal cultures, and enhanced Hartig net formation in mycorrhiza were shown. Gene expression studies, incorporation of labeled compounds into IAA, heterologous expression of a transporter, and bioinformatics were applied to study the effect of IAA on fungal morp...

  17. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola.

    Brandl, M. T.; Lindow, S E

    1996-01-01

    Erwinia herbicola 299R synthesizes indole-3-acetic acid (IAA) primarily by the indole-3-pyruvic acid pathway. A gene involved in the biosynthesis of IAA was cloned from strain 299R. This gene (ipdC) conferred the synthesis of indole-3-acetaldehyde and tryptophol upon Escherichia coli DH5 alpha in cultures supplemented with L-tryptophan. The deduced amino acid sequence of the gene product has high similarity to that of the indolepyruvate decarboxylase of Enterobacter cloacae. Regions within py...

  18. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Waraporn Chouychai; Thidarat Paemsom; Chittra Pobsuwan; Khanitta Somtrakoon; Hung Lee

    2016-01-01

    The use of indole-3-acetic acid (IAA)-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae) and Chromolaena odorata (Asteraceae). The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, t...

  19. Performance variation from triphenylamine- to carbazole-triphenylamine-rhodaniline-3-acetic acid dyes in dye-sensitized solar cells

    Highlights: → We synthesized an organic dye of carbazole-rhodaniline-3-acetic acid-triphenylamine. → A dye-sensitized solar cell is fabricated using this dye with efficiency of 4.64%. → Carbazole donor in the dye molecule provides electron in increasing efficiency. → Two rhodaniline-3-acetic acids play a key role in increasing efficiency. → AC impedance proves this dye's effect on enhancing charge transfer in TiO2. - Abstract: Organic dyes have been synthesized which contain an extra-electron donor (carbazole) and electron acceptors (rhodaniline-3-acetic acid) on triphenylamines (TPA). Photophysical, electrochemical, and theoretical computational methods have categorized these compounds. Nanocrystalline TiO2-based dye-sensitized solar cells (DSSCs) are fabricated using these dye molecules as light-harvesting sensitizers. The overall efficiency of sensitized cells has 4.64% relative to a cis-di(thiocyanato)-bis(2,2'-bipyridyl)-4,4'-dicarboxylate ruthenium (II) (N3 dye)-sensitized device (7.83%) fabricated and measured under the same conditions. Carbazole-electron donation in the dye molecules plays a key role in the increased efficiency. Two rhodaniline-3-acetic acid groups appear to help convey the charge transfer from the excited dye molecules to the conduction band of TiO2, leading to a higher efficiency of devices using such a dye. Electrochemical impedance supports this dye's effect on enhancing charge transfer in TiO2 (e-). Computations on this dye compound also indicate the larger charge transfer efficiency in the electronically excited state.

  20. Analysis of Indole-3-Acetic Acid and Related Indoles in Culture Medium from Azospirillum lipoferum and Azospirillum brasilense

    Crozier, Alan; Arruda, Paulo; Janie M Jasmim; Monteiro, Ana Maria; Sandberg, Göran

    1988-01-01

    Analysis of neutral and acidic ethyl acetate extracts from culture medium of Azospirillum brasilense 703Ebc by high-performance liquid chromatography (HPLC) and combined gas chromatography-mass spectrometry demonstrated the presence of indole-3-acetic acid (IAA), indole-3-ethanol, indole-3-methanol, and indole-3-lactic acid. IAA in media of 20 strains of A. brasilense and Azospirillum lipoferum was analyzed quantitatively by both the colorimetric Salkowski assay and HPLC-based isotopic diluti...

  1. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy

    Liu, Xiangxiang; Wan, Yiqun

    2013-07-01

    A simple, rapid, sensitive and selective method for simultaneously determining 2-naphthoxyacetic acid (BNOA) and Indole-3-Acetic Acid (IAA) in mixtures has been developed using derivation synchronous fluorescence spectroscopy based on their synchronous fluorescence. The synchronous fluorescence spectra were obtained with Δλ = 100 nm in a pH 8.5 NaH2PO4-NaOH buffer solution, and the detected wavelengths of quantitative analysis were set at 239 nm for BNOA and 293 nm for IAA respectively. The over lapped fluorescence spectra were well separated by the synchronous derivative method. Under optimized conditions, the limits of detection (LOD) were 0.003 μg/mL for BNOA and 0.012 μg/mL for IAA. This method is simple and expeditious, and it has been successfully applied to the determination of 2-naphthoxyacetic acid and indole-3-acetic acid in fruit juice samples with satisfactory results. The samples were only filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. The obtaining recoveries were in the range of 83.88-87.43% for BNOA and 80.76-86.68% for IAA, and the relative standard deviations were all less than 5.0%. Statistical comparison of the results with high performance liquid chromatography Mass Spectrometry (HPLC-MS) method revealed good agreement and proved that there were no significant difference in the accuracy and precision between these two methods.

  2. Composite ferric oxyhydroxide-containing phases formed in neutral aqueous solutions of tryptophan and indole-3-acetic acid

    Moessbauer, FTIR and XRD analyses showed that in aqueous medium in air in the presence of L-tryptophan (Trp) or indole-3-acetic acid (IAA) the ambient-temperature ageing of the precipitates formed from ferrous sulphate at pH ∼ 7 gave composite phases with varying proportions of γ-FeOOH (a dominating crystalline phase), α-FeOOH (both fine-grained, showing superparamagnetic behaviour at 298 K, and relatively better crystallized) and amorphous ferric hydroxide. The experimental data suggested a competition for adsorption sites at the oxyhydroxide surface in the suspension during phase transformations, as well as the transformation of γ-FeOOH (and/or amorphous ferric hydroxide) to α-FeOOH via the dissolution-reprecipitation mechanism. The formation of certain ferric oxyhydroxide phases in the presence of Trp and IAA - released e.g., in the course of bacterial and plant metabolism - can contribute to the regulation of soil mineral composition. (author)

  3. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?1[OPEN

    Nichols, David S.; Smith, Jason; Chourey, Prem S.; McAdam, Erin L.; Quittenden, Laura

    2016-01-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA. However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  4. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea.

    Ostrowski, Maciej; Mierek-Adamska, Agnieszka; Porowińska, Dorota; Goc, Anna; Jakubowska, Anna

    2016-10-01

    Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds. PMID:27235647

  5. Effect of Gibberellic Acid, Kinetin and Indole 3-Acetic Acid on Seed Germination Performance of Dianthus caryophyllus (Carnation

    Rajib Roychowdhury

    2014-02-01

    Full Text Available The experiment was undertaken with an objective to investigate the effect of various concentrations of plant growth regulators, i.e., Gibberellic acid (GA3, Kinetin and Indole 3-acetic acid (IAA on seed germination of Dianthus caryophyllus. Dianthus seeds were soaked in different concentrations (0 ppm or control, 10 ppm, 20 ppm, 30 ppm and 40 ppm of each of GA3, Kinetin and IAA for 24 h at room temperature (25±2oC. Three replicates of each treatment with ten seeds per replicate were arranged for precise physiological analysis. Significant variation was found in all aspects after analysis of variance (ANOVA of each mean value. After two weeks of seed soaking, it was noted that germination percentages were significantly accelerated by lower concentrations (10 and 20 ppm of used hormones. Amongst the three potential growth regulators, 20 ppm was found most effective because it showed highest germination percentage for GA3 (87.46%, Kinetin (78.92% and IAA (75.35%. A great deal of information relating to seed germination practices shows that these plant growth regulators were efficient in overcoming dormancy leading to rapid seed germination. GA3 was selected as best hormone in this study, which showed highest seed germination (87.46%. These results could be useful in large scale cultivation of Dianthus caryophyllus plants to improve its floricultural impact worldwide.

  6. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    Sun, Pei-Feng; Fang, Wei-Ta; Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  7. Biosynthesis and Secretion of Indole-3-Acetic Acid and Its Morphological Effects on Tricholoma vaccinum-Spruce Ectomycorrhiza

    Krause, Katrin; Henke, Catarina; Asiimwe, Theodore; Ulbricht, Andrea; Klemmer, Sandra; Schachtschabel, Doreen; Boland, Wilhelm

    2015-01-01

    Fungus-derived indole-3-acetic acid (IAA), which is involved in development of ectomycorrhiza, affects both partners, i.e., the tree and the fungus. The biosynthesis pathway, excretion from fungal hyphae, the induction of branching in fungal cultures, and enhanced Hartig net formation in mycorrhiza were shown. Gene expression studies, incorporation of labeled compounds into IAA, heterologous expression of a transporter, and bioinformatics were applied to study the effect of IAA on fungal morphogenesis and on ectomycorrhiza. Tricholoma vaccinum produces IAA from tryptophan via indole-3-pyruvate, with the last step of this biosynthetic pathway being catalyzed by an aldehyde dehydrogenase. The gene ald1 was found to be highly expressed in ectomycorrhiza and induced by indole-3-acetaldehyde. The export of IAA from fungal cells is supported by the multidrug and toxic extrusion (MATE) transporter Mte1 found in T. vaccinum. The addition of IAA and its precursors induced elongated cells and hyphal ramification of mycorrhizal fungi; in contrast, in saprobic fungi such as Schizophyllum commune, IAA did not induce morphogenetic changes. Mycorrhiza responded by increasing its Hartig net formation. The IAA of fungal origin acts as a diffusible signal, influencing root colonization and increasing Hartig net formation in ectomycorrhiza. PMID:26231639

  8. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    Pei-Feng Sun

    Full Text Available Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.

  9. Indole-3-acetic acid-induced oxidative burst and an increase in cytosolic calcium ion concentration in rice suspension culture.

    Nguyen, Hieu T H; Umemura, Kenji; Kawano, Tomonori

    2016-08-01

    Indole-3-acetic acid (IAA) is the major natural auxin involved in the regulation of a variety of growth and developmental processes such as division, elongation, and polarity determination in growing plant cells. It has been shown that dividing and/or elongating plant cells accompanies the generation of reactive oxygen species (ROS) and a number of reports have suggested that hormonal actions can be mediated by ROS through ROS-mediated opening of ion channels. Here, we surveyed the link between the action of IAA, oxidative burst, and calcium channel activation in a transgenic cells of rice expressing aequorin in the cytosol. Application of IAA to the cells induced a rapid and transient generation of superoxide which was followed by a transient increase in cytosolic Ca(2+) concentration ([Ca(2+)]c). The IAA-induced [Ca(2+)]c elevation was inhibited by Ca(2+) channel blockers and a Ca(2+) chelator. Furthermore, ROS scavengers effectively blocked the action of IAA on [Ca(2+)]c elevation. PMID:27149194

  10. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings.

    Legault, Geneviève S; Lerat, Sylvain; Nicolas, Philippe; Beaulieu, Carole

    2011-09-01

    The virulence of Streptomyces scabiei, the causal agent of common scab, depends mainly on the production of the toxin thaxtomin A. S. scabiei also produces indole-3-acetic acid (IAA) but the role of this hormone in the interaction between pathogenic streptomycetes and plants has not yet been elucidated. Tryptophan is a biosynthetic precursor of both IAA and thaxtomin A. In this study, the effect of tryptophan on thaxtomin A and IAA production as well as its effect on the transcription of the corresponding biosynthetic genes in S. scabiei has been analyzed. In vitro IAA production depended on the availability of tryptophan. However, addition of this amino acid to the culture medium inhibited the biosynthesis of thaxtomin A. Expression of thaxtomin A biosynthetic genes nos and txtA were strongly repressed in the presence of tryptophan; however, modulation of the expression was not observed for the IAA biosynthetic genes iaaM and iaaH. The effects of an exogenous tryptophan supply on S. scabiei virulence were assessed on radish seedlings. Addition of tryptophan reduced symptoms on inoculated radish roots compared with seedlings grown in the absence of the bacterium, by way of inhibition of thaxtomin A production and increase of IAA biosynthesis. PMID:21521002

  11. Biosynthesis and Secretion of Indole-3-Acetic Acid and Its Morphological Effects on Tricholoma vaccinum-Spruce Ectomycorrhiza.

    Krause, Katrin; Henke, Catarina; Asiimwe, Theodore; Ulbricht, Andrea; Klemmer, Sandra; Schachtschabel, Doreen; Boland, Wilhelm; Kothe, Erika

    2015-10-01

    Fungus-derived indole-3-acetic acid (IAA), which is involved in development of ectomycorrhiza, affects both partners, i.e., the tree and the fungus. The biosynthesis pathway, excretion from fungal hyphae, the induction of branching in fungal cultures, and enhanced Hartig net formation in mycorrhiza were shown. Gene expression studies, incorporation of labeled compounds into IAA, heterologous expression of a transporter, and bioinformatics were applied to study the effect of IAA on fungal morphogenesis and on ectomycorrhiza. Tricholoma vaccinum produces IAA from tryptophan via indole-3-pyruvate, with the last step of this biosynthetic pathway being catalyzed by an aldehyde dehydrogenase. The gene ald1 was found to be highly expressed in ectomycorrhiza and induced by indole-3-acetaldehyde. The export of IAA from fungal cells is supported by the multidrug and toxic extrusion (MATE) transporter Mte1 found in T. vaccinum. The addition of IAA and its precursors induced elongated cells and hyphal ramification of mycorrhizal fungi; in contrast, in saprobic fungi such as Schizophyllum commune, IAA did not induce morphogenetic changes. Mycorrhiza responded by increasing its Hartig net formation. The IAA of fungal origin acts as a diffusible signal, influencing root colonization and increasing Hartig net formation in ectomycorrhiza. PMID:26231639

  12. Gravity induced, asymmetric unloading of indole-3-acetic acid from the stele of Zea mays into the mesocotyl cortex

    Previous studies from this laboratory have demonstrated an increase within 3 min in both free and ester indole-3-acetic acid (IAA) on the lower side of the mesocotyl cortex of a gravity stimulated Zea mays seedling. Since both free and ester IAA are being transported from endosperm to shoot through the stele these results suggest that the gravity stimulus affects movement of IAA and/or its esters from stele to cortex. To test this postulate they injected 5-(3H)-IAA into the endosperm and, after a 30 min period with the plants held vertically, severed the kernel from the shoot and placed the plants in a horizontal position. After 60 min the distribution of radioactivity in the mesocotyl cortex was 55 + 3% in the lower half and 45 + 3% in the upper half. These results support the working theory that a target for the gravity stimulus is the gating mechanism for the movement of hormone from stele to cortex

  13. Effects of gamma-irradiation on elongation and indole-3-acetic acid level of maize (Zea mays) coleoptiles

    The effects of gamma-irradiation on elongation and the level of indole-3-acetic acid (IAA) of maize (Zea mays) coleoptiles were investigated. When 3-day-old seedlings of maize were exposed to gamma-radiation lower than 1 kGy, a temporal retardation of coleoptile elongation was induced. This retardation was at least partly ascribed to a temporal decrease in the amount of free IAA in coleoptile tips on the basis of the following facts: (1) the reactivity to IAA of the elongating coleoptile cells was not altered by irradiation; (2) endogenous IAA level in the tip of irradiated coleoptiles was at first unchanged, but then declined before returning to nearly the same level as that of the non-irradiated control; and (3) the amount of IAA that diffused from coleoptile tip sections showed a similar pattern to that of endogenous IAA. The rate of conversion between free and conjugated IAA was not significantly affected by irradiation. These results suggest that a temporal inhibition of maize coleoptile elongation induced by gamma-irradiation can be ascribed to the reduction of endogenous IAA level in the coleoptile tip, and this may originate from the modulation in the rate of IAA biosynthesis or catabolism. (author)

  14. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  15. Effect of Indole-3-Acetic Acid-Producing Bacteria on Phytoremediation of Soil Contaminated with Phenanthrene and Anthracene by Mungbean

    Waraporn Chouychai

    2016-07-01

    Full Text Available The use of indole-3-acetic acid (IAA-producing bacteria isolated from non-contaminated weed rhizosphere to enhance plant growth and PAH phytoremediation capacity was investigated. IAA-producing bacterial isolates, designated NSRU1, NSRU2, and NSRU3, were isolated from the rhizosphere of Eleusine indica (Poaceae and Chromolaena odorata (Asteraceae. The isolates were able to produce IAA in nutrient broth. However, when grown in the presence of 100 mg/l of either phenanthrene or anthracene, the amount of IAA produced by each isolate was reduced significantly. Mungbean seedlings were planted in 100 mg/kg phenanthrene- or anthracene-contaminated soil without or with inoculation of ≈106 CFU/g dry soil with one of the bacterial isolates. Inoculation with either NSRU1 or NSRU2 was effective at enhancing shoot length of mungbean in phenanthrene-contaminated soil on day 16. Also, inoculation with isolate NSRU1 led to increased root dry weight of mungbean in phenanthrene-contaminated soil on day 30. Phenanthrene and anthracene degradation on day 16 and 30 in planted and inoculated soil ranged between 92 - 93.8% and 92.2 - 94.1%, respectively, which were not significantly different from planted and uninoculated soil (93.9 and 94.9%. These data showed that IAA-producing bacteria could enhance plant growth, but was unable to increase PAH biodegradation under the conditions tested.

  16. Dynamics and control of phloem loading of indole-3-acetic acid in seedling cotyledons of Ricinus communis.

    Tamas, Imre A; Davies, Peter J

    2016-08-01

    During seed germination, sugars and auxin are produced from stored precursors or conjugates respectively, and transported to the seedling axis. To elucidate the mode of travel of indole-3-acetic acid (IAA) into the phloem, a solution of [(3)H]IAA, together with [(14)C]sucrose, was injected into the endosperm cavity harboring the cotyledons of germinating seedlings of Ricinus communis Phloem exudate from the cut hypocotyl was collected and the radioactivity recorded. Sucrose loading into the phloem was inhibited at higher IAA levels, and the rate of filling of the transient pool(s) was reduced by IAA. IAA was detected within 10min, with the concentration increasing over 30min and reaching a steady-state by 60min. The kinetics indicated that phloem loading of IAA involving both an active, carrier-based, and a passive, diffusion-based component, with IAA traveling along a pathway containing an intermediary pool, possibly the protoplasts of mesophyll cells. Phloem loading of IAA was altered by sucrose, K(+), and a range of non-specific and IAA-specific analogs and inhibitors in a manner that showed that IAA moves into the phloem from the extra cotyledonary solution by multiple pathways, with a carrier-mediated pathway playing a principal role. PMID:27371947

  17. Antibody-targeted horseradish peroxidase associated with indole-3-acetic acid induces apoptosis in vitro in hematological malignancies.

    Dalmazzo, Leandro F F; Santana-Lemos, Bárbara A; Jácomo, Rafael H; Garcia, Aglair B; Rego, Eduardo M; da Fonseca, Luiz M; Falcão, Roberto P

    2011-05-01

    Indole-3-acetic acid (IAA), when oxidized by horseradish peroxidase (HRP), is transformed into cytotoxic molecules capable of inducing cell injury. The aim of this study was to test if, by targeting hematopoietic tumors with HRP-conjugated antibodies in association with IAA treatment, there is induction of apoptosis. We used two lineages of hematologic tumors: NB4, derived from acute promyelocytic leukemia (APL) and Granta-519 from mantle cell lymphoma (MCL). We also tested cells from 12 patients with acute myeloid leukemia (AML) and from 10 patients with chronic lymphocytic leukemia (CLL). HRP targeting was performed with anti-CD33 or anti-CD19 antibodies (depending on the origin of the cell), followed by incubation with goat anti-mouse antibody conjugated with HRP. Eight experimental groups were analyzed: control, HRP targeted, HRP targeted and incubated with 1, 5 and 10mM IAA, and cells not HRP targeted but incubated with 1, 5 and 10mM IAA. Apoptosis was analyzed by flow cytometry using annexin V-FITC and propidium iodide labeling. Results showed that apoptosis was dependent on the dose of IAA utilized, the duration of exposure to the prodrug and the origin of the neoplasia. Targeting HRP with antibodies was efficient in activating IAA and inducing apoptosis. PMID:21168913

  18. A new titanium biofunctionalized interface based on poly(pyrrole-3-acetic acid) coating: proliferation of osteoblast-like cells and future perspectives.

    De Giglio, Elvira; Cometa, Stefania; Calvano, Cosima-Damiana; Sabbatini, Luigia; Zambonin, Pier Giorgio; Colucci, Silvia; Benedetto, Adriana Di; Colaianni, Graziana

    2007-09-01

    In recent years, many procedures based on surface modification have been suggested to improve the biocompatibility and biofunctionality of orthopedic titanium-based implants. In this contest, the development of a new titanium-based biomaterial that could be covalently modified with biologically active molecules (i.e., RGD-peptides, growth factors, etc.) able to improve osteoblasts response was investigated. The strategy followed was based on a preliminary coating of the implant material by an adherent thin polymer film to which bioactive molecules could be grafted exploiting the polymer surface chemical reactivity. In this work, we focused our attention on pyrrole-3-acetic acid (Py-3-acetic), a pyrrole with carboxylic acid substituent, whose electrosynthesis and characterization on titanium substrates were already accomplished and whose potentialities in the design of new biocompatible surfaces are well evident. As first step, the biocompatibility of the electrochemically grown PPy-3-acetic films was investigated performing in vitro tests (adhesion and proliferation) with mouse bone marrow cells. Successively, the availability and reactivity of surface carboxylic groups were tested through the grafting of an aminoacidic residue to PPy-3-acetic films. PMID:17483896

  19. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae.

    Manulis, S; Haviv-Chesner, A; Brandl, M T; Lindow, S E; Barash, I

    1998-07-01

    Erwinia herbicola pv. gypsophilae (Ehg), which induces galls on Gypsophila paniculata, harbors two major pathways for indole-3-acetic acid (IAA) synthesis, the indole-3-acetamide (IAM) and indole-3-pyruvate (IPyA) routes, as well as cytokinin biosynthetic genes. Mutants were generated in which the various biosynthetic routes were disrupted separately or jointly in order to assess the contribution of IAA of various origins and cytokinins to pathogenicity and epiphytic fitness. Inactivation of the IAM pathway or cytokinin biosynthesis caused the largest reduction in gall size. Inactivation of the IPyA pathway caused a minor, nonsignificant decrease in pathogenicity. No further reduction in gall size was observed by the simultaneous inactivation of both IAA pathways only or in combination with that of cytokinin production. However, inactivation of the IPyA pathway caused a 14-fold reduction in the population of Ehg on bean plants. Inactivation of the IAM pathway or cytokinin production did not affect epiphytic fitness. While the apparent transcriptional activity of iaaM-inaZ fusion increased slightly in cells of Ehg on bean and gypsophila leaves, compared with that in culture, very high levels of induction were observed in cells injected into gypsophila stems. In contrast, moderate levels of induction of ipdC-inaZ in Ehg were observed on leaves of these plants and in gypsophila stems, when compared with that in culture. These results suggest that the IAM pathway is involved primarily in gall formation and support the main contribution of the IpyA pathway to the epiphytic fitness of this bacterial species. PMID:9650296

  20. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth. PMID:25907061

  1. Global Effect of Indole-3-Acetic Acid Biosynthesis on Multiple Virulence Factors of Erwinia chrysanthemi 3937▿

    Yang, Shihui; Zhang, Qiu; Guo, Jianhua; Charkowski, Amy O.; Glick, Bernard R.; Ibekwe, A. Mark; Cooksey, Donald A.; Yang, Ching-Hong

    2007-01-01

    Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138 was reduced in M9 minimal medium supplemented with l-tryptophan. Compared with wild-type Ech3937, Ech138 exhibited reduced ability to produce local maceration, but its multiplication in Saintpaulia ionantha was unaffected. The pectate lyase production of Ech138 was diminished. Compared with wild-type Ech3937, the expression levels of an oligogalacturonate lyase gene, ogl, and three endopectate lyase genes, pelD, pelI, and pelL, were reduced in Ech138 as determined by a green fluorescent protein-based fluorescence-activated cell sorting promoter activity assay. In addition, the transcription of type III secretion system (T3SS) genes, dspE (a putative T3SS effector) and hrpN (T3SS harpin), was found to be diminished in the iaaM mutant Ech138. Compared with Ech3937, reduced expression of hrpL (a T3SS alternative sigma factor) and gacA but increased expression of rsmA in Ech138 was also observed, suggesting that the regulation of T3SS and pectate lyase genes by IAA biosynthesis might be partially due to the posttranscriptional regulation of the Gac-Rsm regulatory pathway. PMID:17189441

  2. Location of transported auxin in etiolated maize shoots using 5-azidoindole-3-acetic acid. [Zea mays L

    Jones, A.M. (Univ. of North Carolina, Chapel Hill (USA))

    1990-07-01

    A study was undertaken using the photoaffinity labeling agent, tritiated 5-azidoindole-3-acetic acid (({sup 3}H),5-N{sub 3}IAA), to identify cells in the etiolated maize (Zea mays L.) shoot which transport auxin. Transport of ({sup 3}H),5-N{sub 3}IAA was shown to be polar, inhibited by 2,3,5-triiodobenzoic acid (TIBA) and essentially freely mobile. There was no detectable radiodecomposition of ({sup 3}H),5-N{sub 3}IAA within tissue kept in darkness for 4 hours. Shoot tissue which had taken up ({sup 3}H),5-N{sub 3}IAA was irradiated with ultraviolet light to covalently fix the photoaffinity labeling agent within cells that contained it at the time of photolysis. Subsequent microautoradiography showed that all cells contained radioactivity; however, the amount of radioactivity varied among different cell types. Epidermal cells contained the most radioactivity per area, approximately twofold more than other cells. Parenchyma cells in the mature stelar region contained the next largest amount and cortical cells, sieve tube cells, tracheary cells, and all cells in the leaf base contained the least amount of the radioactive label. Two observations suggest that the auxin within the epidermal cells is transported in a polar manner: (a) the amount of auxin in the epidermal cells is greatly reduced in the presence of TIBA, and (b) auxin accumulates on the apical side of a wound in the epidermis and is absent on the basal side. While these results indicate that auxin in the epidermis is polarly transported, this tissue cannot be the only pathway since the epidermis is only a small fraction of the shoot volume.

  3. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. PMID:27090758

  4. An ultrasensitive electrochemical immunosensor platform with double signal amplification for indole-3-acetic acid determinations in plant seeds.

    Yin, Huanshun; Xu, Zhenning; Zhou, Yunlei; Wang, Mo; Ai, Shiyun

    2013-03-21

    A label-free electrochemical immunosensor for ultra-sensitive detection of indole-3-acetic acid (IAA), a very important phytohormone, has been developed in this work. The detection strategy was mainly based on 4-aminophenylboronic acid, magnetic nanoparticles functionalized with horseradish peroxidase-conjugated goat anti-rat immunoglobulin G (HRP-IgG-Fe(3)O(4)) and rat monoclonal antibody against IAA-modified gold nanoparticles (anti-IAA-AuNPs). HRP-IgG-AuNPs was covalently assembled on the electrode surface through the specific chemical reaction between boronic acid and the vicinal diol in HRP-IgG. Then, anti-IAA-AuNPs was further assembled on the electrode via the interaction between IgG and antibody. Through the dual amplification of HRP-IgG-Fe(3)O(4) and anti-IAA-AuNPs, the trapping capacity of the immunosensor for IAA was significantly enhanced based on the promotion of the immunoreaction between antibody and antigen, which resulted in a large decrease of the electrochemical response of the redox probe, Fe(CN)(6)(3-), and an increase in sensitivity. The developed electrochemical immunosensor exhibited a wide linear range from 0.02 to 500 ng mL(-1) with a low detection limit of 0.018 ng mL(-1) (S/N = 3). Moreover, the proposed immunosensor showed acceptable selectivity, reproducibility, accuracy and stability. The IAA extracted from various seeds was successfully detected using the developed immunosensor. This assay method might provide an alternative strategy for the detection of various phytohormones. PMID:23377501

  5. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. PMID:25554489

  6. Radiobiology effects of radiation-induced horseradish peroxidase/indole-3-acetic suicide gene expression in lung cancer cells

    Objective: To detect specific cell killing effect of radiation combined with horseradish peroxidase (HRP)/indole-3-acetic (IAA) suicide gene therapy controlled by a novel radio-inducible and cancer-specific chimeric gene promoter in lung cancer. Methods: We constructed a plasmid expressing HRP enzyme under the control of chimeric human telomerase reverse transcriptase (hTERT) promoter carrying 6 CArG elements, a plasmid expressing HRP enzyme under the control of hTERT promoter carrying single CArG element, and two control plasmids, which named pE6-hTERT-HRP, phTERT-HRP, pControl-HRP, and pControlluc, respectively. After radiation, the proliferation inhibition and apoptosis induction effect of each type of plasmid in lung cancer cells (A549, SPC-A1) and normal lung cells (hEL) was detected by cell counting and Annexin V-FITC staining. The change of radiosensitivity of lung cancer cells with plasmid system was also detected by clonogenic assays. Results: After a single dose radiation of 6 Gy,the average proliferation inhibition rates of pE6-hTERT-HRP, phTERT-HRP, pControl-HRP, and pControlluc systems were 72.92% ,40.60% , 51.00% and 25.19% (F= 67.31, P< 0.01) in A549 cells, 64.63%, 30.02%, 48.23% and 23.16% (F=64.94, P< 0.01) in SPC-A1 cells, and 20.81%, 18.05%, 44.20% and 18.32% (F=52.19, P<0.01) in normal hEL cells, respectively. The average early apoptosis rates of these four plasmid systems were 36.63%, 22.30%, 24.33% and 12.53% (F =50.99, P <0.01) in A549 cells, 33.73%, 17.37%, 22.43% and 11.20% (F = 20. 76, P < 0.01) in SPC-A1 cells, and 13.53 %, 12.5%, 21.93% and 12.16% (F = 15.08, P < 0.01) in normal hEL cells,respectively. The sensitizing enhancement ratios of the four plasmid systems were 3.45, 2.29, 3.05 and 1.21 in A549 cells, while 2.68, 2.15, 3.05 and 1.21 in SPC-A1 cells, respectively. Conclusions: The new suicide gene system controlled by chimeric promoter may provide a novel therapeutic modality for lung cancer. (authors)

  7. Enzymatic synthesis of 5-3H-indole-3-acetic acid and 5-3H-indole-3-acetyl-myo-inositol from 5-3H-L-trytophan

    Labeled 1-tryptophan is converted to indole-3-acetamide and then to indole-3-acetic acid by enzymes from Pseudomonas savastanoi. Labeled indole-3-acetic acid can be converted to indole-3-acetyl-1-O-β-D-glucose and to indole-3-acetyl-myo-inositol by enzymes from kernels of Zea mays sweet corn. (author)

  8. Effects of Indole-3-Acetic Acid on Germination in Lead Polluted Petri Dish of Citrullus lanatus (Thunberg) Matsumura and Nakai, Cucurbitaceae

    Matthew Chidozie Ogwu; Aiwansoba Raymond Osas; Osawaru Moses Edwin

    2015-01-01

    Watermelon, Citrullus lanatus (Thunberg) Matsumura and Nakai is a tropical fruit vegetable. Indole-3-acetic acid (IAA) is a popular phytohormone while lead (Pb) is a common environmental pollutant in urban and sub-urban centers. C. lanatus were obtained from Benin City with a view to study the effects of IAA on their germination in Pb polluted environment.  Germination percentage without IAA and Pb treatment in petri dish was significant after ten days. Hastened germination was observed when ...

  9. Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa

    Aswathy, Agnes Joseph; Jasim, B.; Jyothis, Mathew; Radhakrishnan, E. K.

    2012-01-01

    Curcuma longa is well known for its use as spice and medicine. The remarkable feature of the plant is the presence of rhizome, which provides an interesting habitat for association by various groups of bacteria. Some of these associated endophytic bacteria can have growth-promoting effects. In the current study, two species of endophytic Paenibacillus has been identified from the rhizome as indole 3 acetic acid producers. These isolates can thus have potential growth-regulating effect in rhiz...

  10. Bacterial indole-3-acetic acid production: a key mediator of plant-microbe interactions between Phaseolus vulgaris and the foliar epiphyte Pantoea agglomerans 299R

    Powell, Tracy Kathleen

    2011-01-01

    The phyllosphere epiphyte Pantoea agglomerans 299R synthesizes indole-3-acetic acid (IAA), an important plant hormone. IAA production was previously shown to confer a small but significant fitness advantage to Pa299R cells inoculated onto bean (Phaseolus vulgaris) leaves, but the mechanism by which bacterial IAA exerts this effect is unknown. In this work, we investigated several hypotheses regarding how bacterial IAA enhances the growth and survival of leaf epiphytic microbes such as Pa299R....

  11. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana

    Suzuki, Hiromi; Matano, Naoyuki; Nishimura, Takeshi; Koshiba, Tomokazu

    2014-01-01

    Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1. However, 1-NOA also shows auxin activity because of its structural similarity to NAA. In this study, we have identified another candidate inhibitor of the IAA influx carrier. The compound, “7-B3; ethyl ...

  12. ELECTROSYNTHESES OF FREE-STANDING POLY(THIOPHENE-3-ACETIC ACID) FILM IN MIXED ELECTROLYTES OF BORON TRIFLUORIDE DIETHYL ETHERATE AND TRIFLUOROACETIC ACID

    Yu He; Wen-juan Guo; Mei-shan Pei; Guang-you Zhang

    2012-01-01

    High quality free-standing poly(thiophene-3-acetic acid) (PTAA),a water-soluble polythiophene derivative,was successfully electrosynthesized in boron trifluoride diethyl etherate (BFEE) + 25% (by volume) trifluoroacetic acid (TFA) at lower potential (0.38 V versus Pt).The carboxyl group makes PTAA highly soluble in water,facilitating its potential application as a blue-light-emitting material.PTAA films with conductivity of 7 S cm-1 obtained from this medium showed better redox activity and thermal stability.The structure and morphology of the polymer were studied by UV-Vis,FT-IR,1H-NMR spectra and scanning electron microscopy,respectively.

  13. Ultrasensitive photoelectrochemical immunoassay of indole-3-acetic acid based on the MPA modified CdS/RGO nanocomposites decorated ITO electrode.

    Sun, Bing; Chen, Lijian; Xu, Yan; Liu, Min; Yin, Huanshun; Ai, Shiyun

    2014-01-15

    A novel ultrasensitive photoelectrochemical immunosensor was fabricated based on 3-mercaptopropionic acid stabilized CdS/reduced graphene oxide (MPA-CdS/RGO) nanocomposites for indole-3-acetic acid (IAA) detection. The MPA-CdS/RGO nanocomposites were synthesized by in situ solvothermal growth of triangulated pyramidal CdS nanoparticles on the RGO sheet. 3-Mercaptopropionic acid (MPA) was employed as the modifier and bridge to immobilize the antibody. The nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and UV/vis spectra. The results showed that the MPA-CdS/RGO nanocomposites revealed enhanced photocurrent response due to excellent electron transport properties of RGO and the improved assembly of CdS nanoparticles onto RGO sheet with the introduction of MPA. Based on the dependence of the photocurrent decline on the concentration of IAA, the proposed photoelectrochemical immunosensor for IAA depicted a linear range from 0.1 to 1000 ng/mL with a lower detection limit (0.05 ng/mL). The high sensitivity, reproducibility and specificity of the method permitted the method suitable to be used in real samples. PMID:23954674

  14. Both Free Indole-3-Acetic Acid and Photosynthetic Performance are Important Players in the Response of Medicago truncatula to Urea and Ammonium Nutrition Under Axenic Conditions.

    Esteban, Raquel; Royo, Beatriz; Urarte, Estibaliz; Zamarreño, Ángel M; Garcia-Mina, José M; Moran, Jose F

    2016-01-01

    We aimed to identify the early stress response and plant performance of Medicago truncatula growing in axenic medium with ammonium or urea as the sole source of nitrogen, with respect to nitrate-based nutrition. Biomass measurements, auxin content analyses, root system architecture (RSA) response analyses, and physiological parameters were determined. Both ammonium and ureic nutrition severely affected the RSA, resulting in changes in the main elongation rate, lateral root development, and insert position from the root base. The auxin content decreased in both urea- and ammonium-treated roots; however, only the ammonium-treated plants were affected at the shoot level. The analysis of chlorophyll a fluorescence transients showed that ammonium affected photosystem II, but urea did not impair photosynthetic activity. Superoxide dismutase isoenzymes in the plastids were moderately affected by urea and ammonium in the roots. Overall, our results showed that low N doses from different sources had no remarkable effects on M. truncatula, with the exception of the differential phenotypic root response. High doses of both ammonium and urea caused great changes in plant length, auxin contents and physiological measurements. Interesting correlations were found between the shoot auxin pool and both plant length and the "performance index" parameter, which is obtained from measurements of the kinetics of chlorophyll a fluorescence. Taken together, these data demonstrate that both the indole-3-acetic acid pool and performance index are important components of the response of M. truncatula under ammonium or urea as the sole N source. PMID:26909089

  15. AN AMPEROMETRIC BIOSENSOR BASED ON COVALENT IMMOBILIZATION OF ASCORBATE OXIDASE ON BIOCOMPATIABLE AND LOW-TOXIC POLY(THIOPHENE-3-ACETIC ACID) MATRIX

    Dong Li; Yang-ping Wen; Jing-kun Xu; Hao-hua He; Ming Liu

    2012-01-01

    The biocompatiable and low-toxic poly(thiophene-3-acetic acid) (PTAA) matrix was successfully electrosynthesized in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) in comparison with the electrosynthesis of PTAA matrix in acetonitrile (ACN).Ascorbate oxidase (AO) was used as a model for the development and application of biosensor.Vitamin C (VC) biosensors were facilely fabricated by the covalent immobilization of AO molecules on PTAA matrices electrosynthesized in ACN containing tetrabutylammonium tetrafluoroborate and BmimPF6,respectively.Electrochemical impedance spectroscopy,scanning electron microscopy and FTIR spectroscopy indicated that AO molecules were covalently immobilized on PTAA matrices.Parameters of the as-obtained biosensors such as working potential,pH and temperature have been optimized.The amperometric biosensor based on PTAA matrix electrosynthesized in BmimPF6 exhibited wider linear range,lower detection limit,higher sensitivity and bioaffinity,and better operational and storage stability than that electrosynthesized in ACN under optimal conditions.The as-obtained biosensor based on PTAA matrix electrosynthesized in BmimPF6 was employed for the detection of VC content in commercial juices,and the result was close to the data given by manufacturers.Excellent results indicate that the PTAA matrix electrosynthesized in ionic liquid is a promising platform for the covalent immobilization of biologically-active species and the development of biosensors.

  16. Indole-3-Acetic Acid Produced by Burkholderia heleia Acts as a Phenylacetic Acid Antagonist to Disrupt Tropolone Biosynthesis in Burkholderia plantarii

    Wang, Mengcen; Tachibana, Seiji; Murai, Yuta; Li, Li; Lau, Sharon Yu Ling; Cao, Mengchao; Zhu, Guonian; Hashimoto, Makoto; Hashidoko, Yasuyuki

    2016-01-01

    Burkholderia heleia PAK1-2 is a potent biocontrol agent isolated from rice rhizosphere, as it prevents bacterial rice seedling blight disease caused by Burkholderia plantarii. Here, we isolated a non-antibacterial metabolite from the culture fluid of B. heleia PAK1-2 that was able to suppress B. plantarii virulence and subsequently identified as indole-3-acetic acid (IAA). IAA suppressed the production of tropolone in B. plantarii in a dose-dependent manner without any antibacterial and quorum quenching activity, suggesting that IAA inhibited steps of tropolone biosynthesis. Consistent with this, supplementing cultures of B. plantarii with either L-[ring-2H5]phenylalanine or [ring-2H2~5]phenylacetic acid revealed that phenylacetic acid (PAA), which is the dominant metabolite during the early growth stage, is a direct precursor of tropolone. Exposure of B. plantarii to IAA suppressed production of both PAA and tropolone. These data particularly showed that IAA produced by B. heleia PAK1-2 disrupts tropolone production during bioconversion of PAA to tropolone via the ring-rearrangement on the phenyl group of the precursor to attenuate the virulence of B. plantarii. B. heleia PAK1-2 is thus likely a microbial community coordinating bacterium in rhizosphere ecosystems, which never eliminates phytopathogens but only represses production of phytotoxins or bacteriocidal substances. PMID:26935539

  17. Attempting to monitor the incorporation of deuterium into indole-3-acetic acid and tryptophan in Zea mays grown on deuterium oxide labeled water

    We are attempting to determine when seedlings of Zea mays sweet corn, var. Silver Queen begin de novo biosynthesis of tryptophan and indole-3-acetic acid (IAA). We wish to use the general precursor, deuterium labeled water, to minimize assumptions as to the biosynthetic route. Protium in positions 2, 4, 5, 6 ampersand 7 of the indole ring are non-exchangeable. IAA and tryptophan synthesized via the shikimic acid pathway would contain deuterium in one or more of these positions . The protium on the indene nitrogen, the carboxyl, the amino group, or the protium alpha to the carboxyl exchange readily and so are removed prior to analysis by base catalyzed exchange. The IAA, or trypotophan, is then purified by DEAE, Dowex 50, and two HPLC steps. IAA is methylated with diazomethane and analyzed by GC/MS. Trytophan is acetylated with triethylamine-acetic anhydride and then methylated with diazomethane and analyzed by GC/MS. Results of these studies on plants grown for varying lengths of time and under various light and nutrient conditions will be reported

  18. Effects of Indole-3-Acetic Acid (IAA), a Plant Hormone, on the Ryegrass Yield and the Removal of Fluoranthene from Soil.

    Li, Weiming; Xu, Li; Wu, Jun; Ma, Lili; Liu, Manqiang; Jiao, Jiaguo; Li, Huixin; Hu, Feng

    2015-01-01

    A soil culture experiment was conducted to determine whether a plant hormone, indole-3-acetic acid (IAA), could influence fluoranthene (Flu) removal from soil. Four treatments were utilized: (i) unplanted soil (CK), (ii) soil planted with ryegrass (P), (iii) soil planted with ryegrass and treated with 0.24 mg kg(-1) IAA (P+0.24), (iv) soil planted with ryegrass and treated with 2.4 mg kg(-1) IAA (P+2.4). The Flu initial concentration was 200 mg kg(-1). After 3 months, the percentage of Flu removal and plant root biomass were significantly increased under the P+2.4 and the removal rate was 35.68%. The total Flu content in plants was higher than that in the other treatments. The Flu concentration was significantly increased in the shoots, but not significantly altered in the roots. The highest translocation factor was observed in the P+2.4. Increase in number of bacteria, actinomycetes and fungi were observed in the planted treatments, and the amount of fungi was significantly increased in P+2.4. Flu removal was related to the Flu in ryegrass, and was insignificantly correlated with the stimulation of soil microflora, which suggesting that IAA may work mainly on improving plant growth, the Flu uptake, and eventually leading to enhanced remediation of Flu polluted soil. PMID:25495932

  19. Synthesis of 4,5,6,7 and 2,4,5,6,7 deuterium-labeled indole-3-acetic acid for use in mass spectrometric assays

    Syntheses are described for tetra and pentadeutero indole-3-acetic acid (IAA) labeled in positions 4,5,6,7 or 2,4,5,6,7 of the indole moiety. Polydeuterated IAA is proposed as an internal standard for gas chromatographic-mass spectrometric analysis of IAA by selected ion monitoring. Nanogram amounts of IAA may be assayed by monitoring the base peak of IAA at m/z = 130 (134 for d4-IAA) and the molecular ion of the methyl ester of IAA at 189 (193 for d4-IAA). Deuterium in positions 4,5,6, and 7 and, to only a slightly lesser extent, that in position 2 of IAA is retained during alkali treatment, thus permitting use of these compounds as internal standards for assay of IAA released by alkaline hydrolysis of ester and amide conjugates. The use of polydeutero internal standards separates the standards from the isotope cluster caused by the normal abundance of heavy isotopes and also permits use of reduced mass resolution, thus leading to a 10-fold increase in sensitivity. Tetradeutero IAA was used as an internal standard for determining free plus ester IAA in alkaline hydrolysates of Zea mays, and showed exact agreement between estimates based on the molecular ion of the methyl ester and those based upon base peak. Application of the method to measuring free IAA in the upper and lower halves of geotropically stimulated Zea shoots showed 61 +- 4% of the free IAA to be on the lower side

  20. Isolation, Crystal Structure and Inhibitory Activity against Magnaporthe Grisea of (2R,3R)-3,5,7-trihydroxyflavanone 3-Acetate from Myoporum Bontioides A. Gray

    HUANG Li-Lan; LI Jie-Wen; NI Chun-Lin; GU Wen-Xiang; LI Chun-Yuan

    2011-01-01

    The title compound, (2R,3R)-3,5,7-trihydroxyflavanone 3-acetate, is a flavanonol derivative which was first isolated from Myoporum bontioides A. Gray and characterized by MS, NMR and CD spectra. In addition, the structure was determined by X-ray single-crystal diffraction analysis. It crystallizes in the triclinic lattice, space group P21 with a = 10.686(3), b = 6.862(2), c = 11.267(3) , β = 107.46(1), V = 788.3(4) 3, Z = 2, C17H16O7, Mr = 332.30, Dc = 1.400 g/cm3, μ(MoKα) = 0.110 mm-1, F(000) = 348, the final R = 0.0283 and wR = 0.0826 for 3428 independent reflections (Rint = 0.017) and 1500 observed ones (I 2σ(I)). The structure consists of one flavone and one water molecule. The flavone molecules form a 1D column by the p…π stacking interactions and C–H…O hydrogen bonds. The weak intermolecular/intermolecular O–H…O hydrogen bonds observed in the crystal give further rise to a complicated network structure. Primary bioassay showed that the title compound has high inhibitory activity against Magnaporthe grisea with the EC50 values of 199.41 μg/mL.

  1. Indole-3-acetic acid (IAA producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.

    Samira Tabatabaei

    2016-03-01

    Full Text Available The role of plant-associated bacteria in plant physiology and metabolism is well documented, but little has been known about the roles played by Pseudomonas in durum wheat (Triticum turgidum L. var durum growth and development. An in vitro experiment was conducted to observe the effect of the inoculation of four indole-3-acetic acid (IAA -producing Pseudomonas isolatesand exogenous IAA on seed germination traits and α-amylase activity of durum wheat. The results showed inoculation with all bacterial isolates led to a decrease in the germination percent, although the extent of the depression varied with the isolate. A significant relationship between concentrations of bacterial IAA and the germination inhibition percent in durum wheat seeds by different bacteria strains was observed. The results of this assay showed the effect of bacterial isolates on α-amylase activity after six and 8 days of inoculation was significant, while effect of these isolates on α-amylase activity after two and 4 days of inoculation was not meaningful. In addition, the exogenously applied IAA displayed a concentration-dependent effect on seed germination attributes and α-amylase activity, consistent with the possibility that the inhibitory effect of bacterial inoculation on seed germination was in consequence of bacteria-produced IAA. Therefore, it may suggested that the inhibitory role of IAA in seed germination and α-amylase activity should be taken into account during the screening of IAA-producing Pseudomonas isolates for durum wheat growth promoting agents.

  2. The involvement of indole-3-acetic acid in the control of stem elongation in dark- and light-grown pea (Pisum sativum) seedlings.

    Sorce, Carlo; Picciarelli, Piero; Calistri, Gianni; Lercari, Bartolomeo; Ceccarelli, Nello

    2008-01-01

    We investigated the role of auxin on stem elongation in pea (Pisum sativum L.) grown for 10d in continuous darkness or under low-irradiance blue, red, far red and white light. The third internode of treated seedlings was peeled and the tissues (epidermis and cortex+central cylinder) were separately analyzed for the concentration of free and conjugated indole-3-acetic acid (IAA). Under red, far red and white light internode elongation was linearly related with the free IAA content of all internode tissues, suggesting that phytochrome-dependent inhibition of stem growth may be mediated by a decrease of free IAA levels in pea seedlings. The correlation between IAA and internode elongation, however, did not hold for blue light-grown seedlings. The hypothesis that the growth response under low-irradiance blue light might be correlated with the lack of phytochrome B signalling and changes in gibberellin metabolism is discussed in view of current knowledge on hormonal control of stem growth. PMID:17706834

  3. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in lemna gibba and the low incorporation of label into indole-3-acetic acid

    The authors present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of [15N-indole]-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of L-[15N]tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled L-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into D-tryptophan. D-[15N]trytophan supplied to Lemna at rates of approximately 400 times excess of endogenous D-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of L-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that L-tryptophan is a more direct precursor to IAA than the D isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that L-tryptophan also may not be a primary precursor to IAA in plants

  4. Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells

    Labeeuw, Leen; Khey, Joleen; Bramucci, Anna R.; Atwal, Harjot; de la Mata, A. Paulina; Harynuk, James; Case, Rebecca J.

    2016-01-01

    Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.

  5. Effects of Indole-3-Acetic Acid on Germination in Lead Polluted Petri Dish of Citrullus lanatus (Thunberg Matsumura and Nakai, Cucurbitaceae

    Matthew Chidozie Ogwu

    2015-12-01

    Full Text Available Watermelon, Citrullus lanatus (Thunberg Matsumura and Nakai is a tropical fruit vegetable. Indole-3-acetic acid (IAA is a popular phytohormone while lead (Pb is a common environmental pollutant in urban and sub-urban centers. C. lanatus were obtained from Benin City with a view to study the effects of IAA on their germination in Pb polluted environment.  Germination percentage without IAA and Pb treatment in petri dish was significant after ten days. Hastened germination was observed when IAA and lead were used. About 100 % germination was recorded after seven days. This suggests that water melon seeds can initiate growth even in lead polluted environment. Optimum level of 5 ppm IAA with the different levels of lead treatments may be recommended. Most important was that higher concentrations of Pb in the control (without IAA did not inhibit seedling shoot nor root growth. Longest seedling shoot length (cm was 10.33 ± 1.24 and 12.13 ± 2.06 on the seventh and eighth day respectively with the combined treatment levels of 1 ppm IAA and 15 ppm Pb. On the ninth day, 15.27 ± 0.96 was obtained from 1 ppm IAA and 20 ppm Pb. Longest seedling root length (cm values were recorded from the combined treatment levels of 0 ppm IAA and 10 ppm Pb for the seventh (9.10 ± 0.47 and ninth (10.37 ± 1.81 day respectively and 0 ppm and 15 ppm Pb on the eighth (9.37 ± 0.84 day. Significant means were also obtained with the treatment level of 0 and 20 ppm IAA. This present study suggest the germination of C. lanatus under Pb polluted environment may be rescued with optimum IAA.

  6. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue.

    Christine Böttcher

    Full Text Available An important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy. To overcome these difficulties a chemical approach based on the reaction mechanism of GH3 proteins was employed to design a small molecule inhibitor of IAA-amido synthetase activity. Adenosine-5'-[2-(1H-indol-3-ylethyl]phosphate (AIEP mimics the adenylated intermediate of the IAA-conjugation reaction and was therefore proposed to compete with the binding of MgATP and IAA in the initial stages of catalysis. Two grapevine IAA-amido synthetases with different catalytic properties were chosen to test the inhibitory effects of AIEP in vitro. GH3-1 has previously been implicated in the grape berry ripening process and is restricted to two amino acid substrates, whereas GH3-6 conjugated IAA to 13 amino acids. AIEP is the most potent inhibitor of GH3 enzymes so far described and was shown to be competitive against MgATP and IAA binding to both enzymes with K(i-values 17-68-fold lower than the respective K(m-values. AIEP also exhibited in vivo activity in an ex planta test system using young grape berries. Exposure to 5-20 µM of the inhibitor led to decreased levels of the common conjugate IAA-Asp and reduced the accumulation of the corresponding Asp-conjugate upon treatment with a synthetic auxin. AIEP therefore represents a novel chemical probe with which to study IAA-amido synthetase function.

  7. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense.

    Jijón-Moreno, Saúl; Marcos-Jiménez, Cynthia; Pedraza, Raúl O; Ramírez-Mata, Alberto; de Salamone, I García; Fernández-Scavino, Ana; Vásquez-Hernández, Claudia A; Soto-Urzúa, Lucia; Baca, Beatriz E

    2015-06-01

    Plant growth-promoting bacteria of the genus Azospirillum are present in the rhizosphere and as endophytes of many crops. In this research we studied 40 Azospirillum strains isolated from different plants and geographic regions. They were first characterized by 16S rDNA restriction analysis, and their phylogenetic position was established by sequencing the genes 16S rDNA, ipdC, hisC1, and hisC2. The latter three genes are involved in the indole-3-pyruvic acid (IPyA) biosynthesis pathway of indole-3-acetic acid (IAA). Furthermore, the suitability of the 16S-23S rDNA intergenic spacer sequence (IGS) for the differentiation of closely related Azospirillum taxa and development of PCR protocols allows for specific detection of strains. The IGS-RFLP analysis enabled intraspecies differentiation, particularly of Azospirillum brasilense and Azospirillum lipoferum strains. Results demonstrated that the ipdC, hisC1, and hisC2 genes are highly conserved in all the assessed A. brasilense isolates, suggesting that these genes can be used as an alternative phylogenetic marker. In addition, IAA production determined by HPLC ranged from 0.17 to 98.2 μg mg(-1) protein. Southern hybridization with the A. brasilense ipdC gene probe did not show, a hybridization signal with A. lipoferum, Azospirillum amazonense, Azospirillum halopreferans and Azospirillum irakense genomic DNA. This suggests that these species produce IAA by other pathways. Because IAA is mainly synthesized via the IPyA pathway in A. brasilense strains, a species that is used worldwide in agriculture, the identification of ipdC, hisC1, and hisC2 genes by PCR may be suitable for selecting exploitable strains. PMID:25842039

  8. Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family

    Zhao,N.; Ferrer, J.; Ross, J.; Guan, J.; Yang, Y.; Pichersky, E.; Noel, J.; Chen, F.

    2008-01-01

    The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 Angstroms resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical

  9. Inhibitory effects of 17a α-D-homo ethynylestrdiol-3-acetate combined with γ-ray irradiation on adenocarcinoma of the lung in different mice strains

    Objective: To study the inhibitory effects of 17a α-D-homo ethynylestradiol-3-acetate (DHEA) combined with 137Cs γ-ray irradiation on adenocarcinoma of the lung in different mice strains. Methods: The LA795 tumor were diluted by saline to the cell suspension at the concentration of 3.5×107/ml. Each IRM-1 and IRM-2 mice was transplanted by armpit injection of 0.2 ml cell suspension. After 24 h, the mice were randomly divided into control group, radiation alone group, DHEA treated groups (high, middle and low dose respectively) and DHEA combined with irradiation groups. Mice in DHEA treated groups and combination groups were intraperitoneally injected with DHEA daily for 7 days. Mice in the combination groups were irradiated with 1 Gy per day for 5 days after injected with DHEA for 4 days. The anti-tumor effects of DHEA combined with irradiation on different group were measured. Results: The tumor inhibitory ratios of IRM-1 mice in DHEA treated groups were 38.05% (low does), 49.33% (middle dose) and 48.18% (high does) respectively,while in combination groups were 56.98% (low does), 64.44% (middle dose) and 62.72% (high dose). Compared with control group, the tumor inhibitory ratios in DHEA treated groups (t =3.417, 4.929 and 4.889, all P<0.01) and combination groups (t=5.475, 5.770 and 6.165, all P<0.01) were elevated. The tumor inhibitory ratios of IRM-2 mice in DHEA treated groups were 42.73% (low dose), 70.91% (middle dose) and 67.73% (high dose) respectively, while in combination groups were 63.63% (low dose), 75.00% (middle dose) and 68.64% (high dose). Compared with control group,the tumor inhibitory ratios in DHEA treated groups (middle and high dose) (t=3.239 and 3.062, both P<0.01) and combination groups (t=2.834, 3.426 and 3.156, P<0.05, <0.01 and <0.01) were elevated. Conclusions: DHEA showed tumor inhibitory effects on different mice strain transplanted with tumor. The synergistic anti-tumor effects of DHEA and γ-ray irradiation were more effective

  10. Separation of Abscisic Acid, Indole-3-Acetic Acid, Gibberellic Acid in 99 R (Vitis berlandieri x Vitis rupestris) and Rose Oil (Rosa damascena Mill.) by Reversed Phase Liquid Chromatography

    KELEN, Mustafa

    2004-01-01

    Plant hormones, specialized chemical substances produced by plants, are the main internal factors controlling growth and development. In this study the pH and polarity of the mobile phase were taken into consideration to optimize the mobile phase for the chromatographic separation of 3 important plant hormones: abscisic acid (ABA), indole-3-acetic acid (IAA) and gibberellic acid (GA3). pKa values of ABA, IAA and GA3 were determined using retention factors. These 3 hormones were extr...

  11. Effect of indole-3-acetic acid (plant auxin) on the preservation at 15 degrees C of boar semen for artificial insemination.

    Toniolli, R; Bussière, J; Courot, M; Magistrini, M; Combarnous, Y

    1996-01-01

    In order to extend the duration of boar sperm survival at 15 degrees C for artificial insemination, we tested the effect of indole-3-acetic acid (IAA), which appeared to be the main sperm protective substance present in the Coco nucifera endosperm (coconut water). Two IAA concentrations (10 and 100 ng/mL) in Beltsville extender (BTS) were studied for their in vitro effects. The motility, the percentage of motile spermatozoa and the acrosome morphology of sperm were recorded each day over 13 days of storage at 15 degrees C, after 5 min and 3 h of incubation at 39 degrees C. The IAA effect on sperm preservation was also studied in vivo at a concentration of 10 ng/mL in BTS by inseminating groups of females twice at 24 h intervals either at D0 (day of sperm collection) and D1 (D0/1) or at D5 and D6 (D5/6). At D0/1, the two groups of females (control and IAA) were inseminated with a total of 6.3 x 10(9) spermatozoa (3.15 x 10(9) at D0 and the same dose at D1) whereas at D5/6, on IAA group was inseminated with a total of 6.3 x 10(9) spermatozoa and another one with 12.6 x 10(9) spermatozoa. The animals in the D5/6 control group were inseminated each with a total of 12.6 x 10(9) spermatozoa. For each group of females (n = 106-140), fertility rate (% farrowing) and prolificacy rate (litter size) were recorded. No effect of IAA in vitro on the motility rate and on the percentage of motile spermatozoa was observed over a 13 day storage. However, IAA (10 ng/mL) had a significant positive effect on the percentage of living spermatozoa with intact acrosomes after 13 days (66 vs 54%, P extender alone did not differ significantly between D5/6 and D0/1 but the total number of inseminated spermatozoa was 12.6 x 10(9) at D5/6 instead of 6.3 x 10(9) at D0/1. When the spermatozoa were stored in the presence of 10 ng/mL IAA for 5-6 days at 15 degrees C, the fertility and prolificacy of the females inseminated with only 6.3 x 10(9) spermatozoa were identical to those of the females

  12. Production of Indole-3-Acetic Acid via the Indole-3-Acetamide Pathway in the Plant-Beneficial Bacterium Pseudomonas chlororaphis O6 Is Inhibited by ZnO Nanoparticles but Enhanced by CuO Nanoparticles

    Dimkpa, Christian O.; Zeng, Jia; McLean, Joan E; Britt, David W.; Zhan, Jixun; Anderson, Anne J.

    2012-01-01

    The beneficial bacterium Pseudomonas chlororaphis O6 produces indole-3-acetic acid (IAA), a plant growth regulator. However, the pathway involved in IAA production in this bacterium has not been reported. In this paper we describe the involvement of the indole-3-acetamide (IAM) pathway in IAA production in P. chlororaphis O6 and the effects of CuO and ZnO nanoparticles (NPs). Sublethal levels of CuO and ZnO NPs differentially affected the levels of IAA secreted in medium containing tryptophan...

  13. Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues.

    Zhang, Yi; Li, Yuanwen; Hu, Yuling; Li, Gongke; Chen, Yueqin

    2010-11-19

    Auxin is a crucial phytohormone for precise control of growth and development of plants. Due to its low concentration in plant tissues which are rich in interfering substances, the accurate determination of auxins remains a challenge. In this paper, a new strategy for isolation and enrichment of auxins from plant tissues was obtained by the magnetic molecularly imprinted polymer (mag-MIP) beads, which were prepared by microwave heating initiated suspension polymerization using indole-3-acetic acid (IAA) as template. In order to obtain higher selective recognition cavities, an enhanced imprinting method based on binary functional monomers, 4-vinylpyridine (4-VP) and β-cyclodextrin (β-CD), was adopted for IAA imprinting. The morphological and magnetic characteristics of the mag-MIP beads were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry. A majority of resultant beads were within the size range of 80-150μm. Porous surface morphology and good magnetic property were observed. Furthermore, the mag-MIP beads fabricated with 4-VP and β-CD as binary functional monomers exhibited improved recognition ability to IAA, as compared with the mag-MIP beads prepared with the individual monomer separately. Competitive rebinding experiment results revealed that the mag-MIP beads exhibited a higher specific recognition for the template than the non-imprinted polymer (mag-NIP) beads. An extraction method by mag-MIP beads coupled with high performance liquid chromatography (HPLC) was developed for determination of IAA and indole-3-butyric acid (IBA) in plant tissues. Linear ranges for IAA and IBA were in the range of 7.00-100.0μgL(-1) and 10.0-100.0μgL(-1), and the detection limits were 3.9 and 7.4μgL(-1), respectively. The analytical performance was also estimated by seedlings or immature embryos samples from three different plant tissues, pea, rice and wheat. Recoveries were in the range of 70

  14. Electrochemical Sensor for Indole-3-Acetic Acid Based on Molecularly Imprinted Polymers%吲哚-3-乙酸分子印迹聚合物膜电化学传感器的研制

    宫倩倩; 曹玉华; 王阳; 朱丽丽

    2011-01-01

    利用分子印迹技术,以吲哚-3-乙酸(IAA)为模板分子,甲基丙烯酸为单体,在玻碳电极表面采用原位聚合制备分子印迹敏感膜.采用方波伏安法对吲哚乙酸在该印迹电极上的电化学行为进行了研究.结果表明,0.62 V(vs.SCE)处的峰电流与吲哚乙酸的浓度在5.0×10-6~2.0×10-4mol/L范围内呈线性关系,检出限(S/N=3)为5.0×10-6 mol/L,响应时间为3 min.同一支印迹电极对吲哚乙酸响应值的相对标准偏差为1.1%(n=10).该印迹电极对吲哚乙酸具有较好的选择性,50倍的色氨酸和多巴胺以及20倍的组氨酸和抗坏血酸均对IAA的测定不产生干扰.采用该印迹电极对绿豆芽和黄豆芽进行分析,IAA的含量分别为57.1 μg/g和133.5 μg/g.对黄豆芽样品进行回收率测定,回收率在97%~100%之间.%In the present work,molecularly imprinted polymers(MIPs) membrane on the surface of a glassy carbon electrode with indole-3-acetic acid (IAA) as templet and methacrylic acid as functional monomer was prepared to construct an electrochemical sensor for IAA. Electrochemical oxidation behaviors of IAA on the MIPs modified electrode have been investigated with square wave voltammetry. At oxidation potential of 0. 62 V (vs. SCE) ,the peak currents were proportional to the concentration of IAA in the range of 5. 0× 10-6~2. 0× 10-4 mol/L with the detection limit of 5. 0× 10-6mol/L (S/N = 3),and the relative standard deviation of peak current was 1.1% (n=10). The MIPs sensor displayed good selectivity. Tryptophan,dopamine,ascorbic acid and histidine,50,50,20 and 20 times the amount of IAA, respectively, did not interfere with determination of IAA. The MIPs sensor has been applied to analysis of IAA in soybean sprout and mungbean sprout samples, the average recoveries were between 97% and 100%.

  15. Comparative study of visual inspection of the cervix by 3% acetic acid (VIA versus Pap smear by Bethesda method in sexually active women aged 25-50 years as an equally or more effective cervical cancer screening method in a low resource setup

    Mohit Rajendra Saraogi

    2014-06-01

    Full Text Available Background: Cervical cancer is the most common cancer in Indian women and is a preventable cancer. Pap smear being an expensive screening test, increased emphasis is being laid on the development of a reliable and cost effective screening method for cervical cancer. This study aims at early detection of cervical dysplastic lesions using a simple and cost-effective screening test like visual inspection of cervix with 3% acetic acid (VIA and comparing its diagnostic efficacy with the more expensive Pap screening by Bethesda method. Methods: Ours was a prospective study carried out on a 100 sexually active women aged 25-50 years, coming to our OPD. The women were subjected to both a VIA and Pap smear. All Pap and VIA positive women were subjected to a cervical biopsy, whose histopathological report was taken as the gold standard. Results: In our study the sensitivity of VIA was more than that of cytology (100% versus 66.67% but the specificity was significantly lesser (47.83% compared to the 73.91%. The negative predictive value of VIA was comparable with Pap smear (100% and 85% respectively as was the positive predictive value (42.86% and 50%. However the diagnostic accuracy of VIA was lower than that of Pap smear (66.67% and 81.25% in our study. Conclusions: In this study VIA was found to have efficacy comparable to Pap smear in screening cervical cancer. Thus we recommend that VIA could be used as an alternative screening tool to detect early cervical dysplasia - especially in poor resource settings. [Int J Reprod Contracept Obstet Gynecol 2014; 3(3.000: 688-691

  16. Effects of temperature and gamma radiation on the stability of 125{sub -}19-Iodo cholesterol; Efectos de la temperatura y la radiacion gamma sobre la estabilidad dle 19-Yodocolestero. 125 I

    Rodriguez, L.; Rebollo, D. V.; Ruiz, J. M.

    1986-07-01

    He have studied the effect of the temperature and the gamma radiations on the I25I-19-iodocholesterol synthesized in our laboratory; the time of caducity (t 90) have been fixed from the rate constants of decomposition (k) (20,9) 32,1 y 144 . 10-3 h''-1) for different temperatures (35, 50 y 75degree centigree), and the value of Go(-M) (1,52) by radiation of samples of 19-Iodocholesterol-I25 I (0,94 mg/ml) with 60co (0,177 Hrad/h) . (Author) 8 refs.

  17. Migração de β-caprolactama de embalagens contendo poliamida 6 para simulante ácido acético 3% e validação do método analítico β-Caprolactam migration from polyamide 6 packaging into 3% acetic acid food simulant and validation of the analytical method

    Juliana Silva Félix

    2007-08-01

    Full Text Available Este trabalho teve como objetivo desenvolver e validar método analítico para determinar ε-caprolactama no simulante de alimentos solução de ácido acético 3% e estudar sua migração de embalagens contendo poliamida 6 para o simulante em contato. Foi empregada a cromatografia gasosa usando ε-caprolactama como padrão analítico e 2-azociclononanona como padrão interno. A linearidade esteve entre 1,60 e 640,00 µg de ε-caprolactama.mL-1 de simulante, com coeficiente de correlação 0,9999. Os limites de detecção e de quantificação do método foram 0,24 e 1,60 ng, respectivamente. A precisão do método revelou valores de coeficiente de variação menores que 4,3% e a avaliação da exatidão mostrou recuperação de 100 a 106%. O método demonstrou ser eficaz para quantificar ε-caprolactama no simulante, apresentando ampla linearidade, boa precisão e exatidão. No ensaio de migração, embalagens contendo poliamida 6 foram colocadas em tubos de vidro com 10 mL do simulante, que foram hermeticamente fechados e acondicionados a 40 ± 1 °C durante 10 dias. O ensaio de migração foi realizado por imersão total. A quantidade de ε-caprolactama migrada variou de 7,8 a 10,5 e de 6,9 a 7,6 mg.kg-1 de simulante para as embalagens destinadas aos produtos cárneos e queijos, respectivamente. Todas as embalagens atenderam às exigências da Legislação Brasileira para migração de ε-caprolactama.The aim of this work was to develop and validate an analytical method to determine ε-caprolactam in 3% acetic acid solution and to study its migration from polyamide 6 into food simulant. Gas chromatography was used with ε-caprolactam as an analytical standard and 2-azacyclononanone as an internal standard. The linearity was obtained by the concentration range of 1.60 to 640.00 µg.mL-1, with a correlation coefficient of 0.9999. Detection and quantification limits of the method were 0.24 ng and 1.60 ng, respectively. Relative standard

  18. 砷胁迫下吲哚乙酸对不同砷富集能力植物根系形态和生理的影响%Effects of indole-3-acetic acid on morphologic and physiological characteristics of root systems of plants with different arsenic-accumulating abilities under As stress

    和淑娟; 王宏镔; 王海娟; 赵宾; 李勤椿

    2016-01-01

    A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid(IAA)on growth, root morphology, root activity, root ATPase activity in cytoplasmic membrane, root antioxidative enzymes(superoxide dismutase SOD, catalase CAT and proxidase POD), malondialdehyde(MDA, a peroxidation product of membrane lipids)content, and As accumulation in plants with different As-accu-mulating abilities. Arsenic hyperaccumulator(Pteris cretica var. nervosa)and non-hyperaccumulator(Pteris ensiformis)were exposed to 2 mg·L-1 As(V)and different concentrations of IAA(0,10,20,40,and 60 mg·L-1)for 14 d. Results showed that biomass of two plants signif-icantly increased in the presence of 20 mg·L-1 IAA, compared with the control. At the 20 mg·L-1 IAA treatment, As concentrations in fronds and petioles, root activity, and root ATPase activity in cytoplasmic membrane of P. cretica var. nervosa increased significantly, and were sig-nificantly higher than those in P. ensiformis. At 20~60 mg·L-1 IAA treatments, the activities of three antioxidative enzymes(CAT, SOD and POD)in roots of P. cretica var. nervosa increased significantly, but the CAT activity decreased and SOD activities increased significantly in roots of P. ensiformis, in comparison with no IAA treatment. The POD activity showed no significant changes in the roots of P. ensiformis. The content of MDA in roots of both plants were significantly decreased by 20~40 mg·L-1 IAA treatments. However, MDA content in the roots of P. cretica var. nervosa was significantly lower than that of P. ensiformis. Correlation analysis showed that As concentrations in roots of P. cretica var. nervosa were positively related with root activity, whereas no correlation was found between root As concentrations and root parameters in P. ensiformis. Therefore, As hyperaccumulation of P. cretica var. nervosa was attributed to its high root activities.%采用室内水培法,研究了2 mg·L-1五价砷胁迫下

  19. Dynamics of indole-3-acetic acid oxidase activity in suspension culture of sunflower crown-gall

    Zofia Chirek

    2014-02-01

    Full Text Available IAA oxidase activity was determined in several growth phases of a suspension culture of sunflower crown-gall. During the short phase of intensive growth (zero passage - PO a negative correlation was noted between enzymatic activity and the rate of growth. IAA oxidase activity increased to a certain level is not a factor limiting cell division. For protraction of the phase of intensive growth (first passage - P1, however, a decrease in the activity of this enzyme seems indispensable. IAA oxidase activity in the tested culture is under the control of inhibitors present in the cells and medium. High enzyme inhibition was observed in PO cells during the phase, of intensive growth and in P1 at the beginning and in the middle part of this phase. These results suggest' that the -auxin level determined in earlier studies in sunflower crown-gall culture is controlled by the IAA oxidase set. During the long phase of intensive growth (P1 this control is of negative feedback type.

  20. Determination of Plant Hormone Indole-3-Acetic Acid in Aqueous Solution

    Kocábová, Jana; Sokolová, Romana; Giannarelli, S.; Muscatello, B.

    2013-01-01

    Roč. 12, č. 1 (2013), s. 303-307. ISSN 1040-0397 R&D Projects: GA ČR GA203/09/1607 Institutional support: RVO:61388955 Keywords : phytohormones * differential pulse voltammetry * glassy-carbon electrode Subject RIV: CG - Electrochemistry Impact factor: 2.502, year: 2013

  1. Interaction indole-3-acetic acid IAA with lectin Canavalia maritima seeds reveal new function of lectins in plant physiology

    Silva Filho, J.C.; Santi-Gadelha, T.; Gadelha, C.A.A.; Delatorre, P. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Teixeira, C.S.; Rocha, B.A.M.; Nobrega, R.B.; Alencar, K.L.L.; Cavada, B.S. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2012-07-01

    Full text: Lectins are a class of proteins of non-immune origin characterized by its capability in interacts specifically and reversibly to mono and oligosaccharides. In plant several possible roles have been suggested including their function in seed maturation, cell wall assembly, defense mechanisms, or rhizobial nodulation of legume roots. Nearly all application and proposed of the plant lectins are based on their specific carbohydrate binding. However, it has been reported that lectins from legumes, might interact with other molecules, such as non proteic amino acids and hydrophobic compounds. This study show the first the crystal structure based on molecular replacement of the Canavalia maritima (CML) complexed with IAA correlated with possible role in plant development. Purified CML was dissolved in 20 mMTrisHCl pH 7.6 containing 5 mM IAA, the suitable co-crystals from CML-IAA complex grew in condition 4 of screen I (0.1 M TrisHCl pH 8.5 and 2.0 M ammonium sulfate). This crystal belong to the orthorhombic space group I222 with unit-cell parameters a = 67.1 ; b = 70.7 , c = 97.7 , The structure was refined at 2.1 of resolution to a final R factor of 20.63 % and an R free of 22.54 %. To check the relative position of the IAA molecule in relation to the biological assemble of the CML, the tetrameric structure was generate by crystallographic symmetry. IAA molecules are positioned in the central cavity. The IAA is stabilized by interacting through hydrogen bounds and Van der Waals forces with the amino acids residues Ser 108 and Asn131, and two water molecules. The hydrophilic interactions occur between IAA and side chains of Ser 108, Asn131 and water molecules 26 and 31 by H-bonds. The OG oxygen from Ser108 display H-bonds with O2 and O3 oxygen atoms from IAA, 3.1 and 2.8 respectively. The tetrameric structure of CML complexed with IAA revels which this protein can act during the seedling in plant development. (author)

  2. Sulfur nutrient availability regulates root elongation by affecting root indole-3-acetic acid levels and the stem cell niche

    Qing Zhao; Yu Wu; Lei Gao; Jun Ma; Chuan-You Li; Cheng-Bin Xiang

    2014-01-01

    Sulfur is an essential macronutrient for plants with numerous biological functions. However, the influence of sulfur nutrient availability on the regulation of root development remains largely unknown. Here, we report the response of Arabidopsis thaliana L. root development and growth to different levels of sulfate, demonstrating that low sulfate levels promote the primary root elongation. By using various reporter lines, we examined in vivo IAA level and distribution, cel division, and root meristem in response to different sulfate levels. Meanwhile the dynamic changes of in vivo cysteine, glutathione, and IAA levels were measured. Root cysteine, glutathione, and IAA levels are positively correlated with external sulfate levels in the physiological range, which eventual y affect root system architecture. Low sulfate levels also downregulate the genes involved in auxin biosynthesis and transport, and elevate the accumulation of PLT1 and PLT2. This study suggests that sulfate level affects the primary root elongation by regulating the endogenous auxin level and root stem cel niche maintenance.

  3. Changes in the Content of Indole-3-Acetic Acid and Cytokinins in Spruce, Fir and Oak Trees after Herbicide Treatment

    Matschke, J.; Macháčková, Ivana

    2002-01-01

    Roč. 45, č. 3 (2002), s. 375-382. ISSN 0006-3134 R&D Projects: GA ČR GA206/00/1354; GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z5038910 Keywords : Abies nordmanniana * anatomical changes * forest decline Subject RIV: EF - Botanics Impact factor: 0.583, year: 2002

  4. Interaction indole-3-acetic acid IAA with lectin Canavalia maritima seeds reveal new function of lectins in plant physiology

    Full text: Lectins are a class of proteins of non-immune origin characterized by its capability in interacts specifically and reversibly to mono and oligosaccharides. In plant several possible roles have been suggested including their function in seed maturation, cell wall assembly, defense mechanisms, or rhizobial nodulation of legume roots. Nearly all application and proposed of the plant lectins are based on their specific carbohydrate binding. However, it has been reported that lectins from legumes, might interact with other molecules, such as non proteic amino acids and hydrophobic compounds. This study show the first the crystal structure based on molecular replacement of the Canavalia maritima (CML) complexed with IAA correlated with possible role in plant development. Purified CML was dissolved in 20 mMTrisHCl pH 7.6 containing 5 mM IAA, the suitable co-crystals from CML-IAA complex grew in condition 4 of screen I (0.1 M TrisHCl pH 8.5 and 2.0 M ammonium sulfate). This crystal belong to the orthorhombic space group I222 with unit-cell parameters a = 67.1 ; b = 70.7 , c = 97.7 , The structure was refined at 2.1 of resolution to a final R factor of 20.63 % and an R free of 22.54 %. To check the relative position of the IAA molecule in relation to the biological assemble of the CML, the tetrameric structure was generate by crystallographic symmetry. IAA molecules are positioned in the central cavity. The IAA is stabilized by interacting through hydrogen bounds and Van der Waals forces with the amino acids residues Ser 108 and Asn131, and two water molecules. The hydrophilic interactions occur between IAA and side chains of Ser 108, Asn131 and water molecules 26 and 31 by H-bonds. The OG oxygen from Ser108 display H-bonds with O2 and O3 oxygen atoms from IAA, 3.1 and 2.8 respectively. The tetrameric structure of CML complexed with IAA revels which this protein can act during the seedling in plant development. (author)

  5. On the role of calcium in indole-3-acetic acid movement and graviresponse in etiolated pea epicotyls

    Migliaccio, F.; Galston, A. W.

    1989-01-01

    To determine whether Ca2+ plays a special role in the early graviresponse of shoots, as has been reported for roots, we treated etiolated pea epicotyls with substances known to antagonize Ca2+ (La3+), to remove Ca2+ from the wall (spermidine, EGTA), to inhibit calmodulin mediated reactions (chlorpromazine), or to inhibit IAA transport (TIBA). We studied the effect of these substances on IAA and Ca2+ uptake into 7 mm long subapical 3rd internode etiolated pea epicotyl sections and pea leaf protoplasts, on pea epicotyl growth, and graviresponse and on lateral IAA redistribution during gravistimulation. Our results support the view that adequate Ca2+ in the apoplast is required for normal IAA uptake, transport and graviresponse. Experiments with protoplasts indicate that Ca2+ may be controlling a labile membrane porter, possibly located on the external surface of cell membrane, while inhibitor experiments suggest that calmodulin is also implicated in both the movement of IAA and graviresponse. Since a major transfer of Ca2+ through free space during graviresponse has not yet been demonstrated, and since inhibition of calcium channels does not affect IAA redistribution (Migliaccio and Galston, 1987, Plant Physiology 85:542), we conclude that no clear evidence links prior Ca2+ movement with IAA redistribution during graviresponse in stems.

  6. Changes in Growth, Auxin- and Ribonucleic Acid Metabolism in Wheat Coleoptile Sections Following Pulse Treatment with Indole-3-Acetic Acid

    Truelsen, T.A.; Galston, A.W.

    1966-01-01

    after the pretreatment showed that the attered growth patterns could be ascribed to declining auxin content with time, but not to thc actual concentration in the sections. The results indicate that the metabolic activation brought about by IAA leads to its own disappearance. Such a phenomenon...

  7. Indole-3-acetic acid UDP-glucosyltransferase from immature seeds of pea is involved in modification of glycoproteins.

    Ostrowski, Maciej; Hetmann, Anna; Jakubowska, Anna

    2015-09-01

    The glycosylation of auxin is one of mechanisms contributing to hormonal homeostasis. The enzyme UDPG: indole-3-ylacetyl-β-D-glucosyltransferase (IAA glucosyltransferase, IAGlc synthase) catalyzes the reversible reaction: IAA+UDPG↔1-O-IA-glucose+UDP, which is the first step in the biosynthesis of IAA-ester conjugates in monocotyledonous plants. In this study, we report IAA-glucosyltransferase isolated using a biochemical approach from immature seed of pea (Pisum sativum). The enzyme was purified by PEG fractionation, DEAE-Sephacel anion-exchange chromatography and preparative PAGE. LC-MS/MS analysis of tryptic peptides of the enzyme revealed the high identity with maize IAGlc synthase, but lack of homology with other IAA-glucosyltransferases from dicots. Biochemical characterization showed that of several acyl acceptors tested, the enzyme had the highest activity on IAA as the glucosyl acceptor (Km=0.52 mM, Vmax=161 nmol min(-1), kcat/Km=4.36 mM s(-1)) and lower activity on indole-3-propionic acid and 1-naphthalene acetic acid. Whereas indole-3-butyric acid and indole-3-propionic acid were competitive inhibitors of IAGlc synthase, D-gluconic acid lactone, an inhibitor of β-glucosidase activity, potentiated the enzyme activity at the optimal concentration of 0.3mM. Moreover, we demonstrated that the 1-O-IA-glucose synthesized by IAGlc synthase is the substrate for IAA labeling of glycoproteins from pea seeds indicating a possible role of this enzyme in the covalent modification of a class of proteins by a plant hormone. PMID:26057226

  8. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    Sun, Pei-Feng; Fang, Wei-Ta; Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2...

  9. Activity of indolyl-3-acetic acid oxidase and peroxidase in roots of carrot infested with Meloidogyne hapla Chiuu.

    Krystyna M. Janas

    2015-06-01

    Full Text Available IAA-oxidase and peroxidase activity was measured in storage and side roots of healthy and M. hapla infested carrots of two sultivars. Cultivar 'Perfekcja' is sensitive whereas cv. 'Slendero' is tolerant to the northern root-knot ne-matode. 3-, 4-, and 5-month-old plants were subjected to analyses. In M. hapla infested plants of both cultivars IAA-oxidase inhibitors accumulated. Kinetics of IAA oxidation in vivo were the same in healthy and infested plants. IAA-oxidase activity in vitro was inhibited in crude extracts of the infested tissues, the inhibition being prevented by PVP. Peroxidase activity increased in secondary phloem and decreased in galled side roots of both cultivars when compared with healthy controls. In galled side roots of the youngest 3-month-old plants peroxidase activity was not decreased. IAA-oxidase inhibitors accumulated in the infested roots.It is concluded that M. hapla has no direct effect on IAA-oxidase. Degree of tolerance to nematodes is correlated with the ratio of IAA-oxidase inhibitors to IAA-oxidase rather than with the absolute activity of IAA-oxidase.

  10. Both free indole-3-acetic acid and the photosynthetic performance are important players in the response of Medicago truncatula to urea and ammonium nutrition under axenic conditions

    RAQUEL eEsteban

    2016-02-01

    Full Text Available We aimed to identify the early stress response and plant performance of Medicago truncatula growing in axenic medium with ammonium or urea as the sole source of nitrogen with respect to nitrate based nutrition through biomass measurements, auxin contents analyses, root system architecture response analyses, and physiological determinations. Both ammonium and ureic nutrition severely affected the root system architecture, resulting in changes in the main elongation rate, lateral root development and insert position from the base. The auxin content decreased in both urea- and ammonium- treated roots; however, only the ammonium- treated plants were affected at the shoot level. The analysis of chlorophyll a fluorescence transients showed that ammonium affected photosystem II, but urea did not impair photosynthetic activity. Superoxide dismutase isoenzymes in the plastids were moderately affected by urea and ammonium in the roots. Overall, our results showed that low N doses from different sources had no remarkable effects on M. truncatula, with the exception of the differential phenotypic root response. High dose of both ammonium and urea caused great changes at plant length, auxin content and physiological determinations. The interesting correlations found between the shoot auxin pool, the plant length, and the parameter performance index, obtained from the chlorophyll a fluorescence rise kinetics measurements, indicated that both IAA pool and performance index are an important part of the response of M. truncatula under ammonium or urea as a sole N source.

  11. Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid

    Pollmann, Stephan; Neu, Daniel; Weiler, Elmar W.

    2003-01-01

    Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial acylamidohydrolases, particularly those that exhibit indole-3-acetamide amidohydrolase activity. AtAMI1 polypeptide and mRNA are present in leaf tissues, as shown by immunoblotting and RT-PCR, respectively. AtAM...

  12. Role of non enzymatic synthesis of indole-3-acetic acid in the Ipomoea batatas L. Lam. (sweet potato) response to gamma radiation

    Lage, C.L.S.; Esquibel, M.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Biofisica. Lab. de Fisiologia Vegetal

    1995-12-01

    Indolacetic acid (IAA) production by tryptophan radiolysis was evaluated after irradiation of a tryptophan solution (1.0 mg/ml) with a 2000 Gy dose of gamma rays followed by High Performance Liquid Chromatography (HPLC) analysis. New absorbance peaks at 280 nm were detected in the irradiated solution, one of them having a migration time similar to that of IAA, indicating a0.14% yield for the conversion reaction. The low yield led us to abandon the hypothesis that non-enzymatic IAA synthesis may account for growth simulation. When the electrophoretic patterns of peroxidases from absorbent roots derived from storage roots treated with IAA (1.0 mg/l) or gamma radiation were compared with control, differences were detected only in the irradiated material. Thus the growth radiation-induced effects do not seem to result from a sudden endogenous IAA increment. (author)

  13. The acropetal effects of indole-3-acetic acid in isolated shoot segments of Acer pseudoplatanus L. II. Possible regulation by a vectorial fieid of auxin waves

    Jacek A. Adamczyk

    2014-02-01

    Full Text Available The acropetal effects of auxin on elongation of axillary buds and on modulation of the wave-like pattern of basipetal efflux of natural auxin to agar from Acer pseudoplatanus L. shoots were studied. When synthetic IAA was applied to cut surfaces of one of two branches the elongation growth of buds situated on the opposite branch was retarded, suggesting regulation independent of the direct action of the molecules of the applied IAA. Oscillations in basipetal transport of natural auxin along the stem segments were observed corroborating the results of other authors using different tree species. Apical application of synthetic IAA for 1 hour to the lateral branch caused a phase shift of the wave-like pattern of basipetal efflux of natural auxin, when the stem segment above the treated branch was sectioned. The same effect was observed evoked by the laterally growing branch which is interpreted as an effect of natural auxin produced by the actively growing shoot. These modulations could be propagated acropetally at a rate excluding direct action of auxin molecules at the sites of measurement. The results seem to corroborate the hypothesis suggesting that auxin is involved in acropetal regulation of shoot apex growth through its effect upon modulation of the vectorial field which arises when the auxin-waves translocate in cambium.

  14. No effect of plant growth retarding compounds and growth stimulators on indolo-3-acetic acid oxidase activity in greening cucumber cotyledons

    J. S. Knypl

    2015-05-01

    Full Text Available Cotyledons dissected from 5-day-old etiolated cucumber seedlings were incubated in solutions on AMO-1618, B-Nine, CCC and Phosfon D for 48 h in light. In some tests the retardants were applied in mixed solutions with GA3 or BAP. IAA oxidase was extracted and purified by means of molecular sieving through a bed of Sephadex G-25. The retardants inhibited chlorophyll synthesis by 50 % or more, and had essentially no effect on IAA oxidase activity per cotyledon basis. GA3 and BAP also had no effect on enzyme activity in spite of a fact that the compounds stimulated growth of the cotyledons. The crude enzyme extract from B-Nine treated cotyledons showed lower IAA oxidase activity in comparison with the water treated control, the effect being due to a longer lag-phase preceding the initiation of IAA oxidation. KNO3 strikingly stimulated expansional growth of the cotyledons, the effect being correlated with the accelerated chlorophyll accumulation. KNO3 had no effect on IAA oxidase activity per cotyledon and decreased it per gram fr wt. It is concluded that [1] the growth rate of cucumber cotyledons is not correlated with IAA oxidase activity, and ;[2] the growth retarding compounds do not affect IAA oxidase system is this tissue.

  15. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. PMID:25797155

  16. Preparation of 19-iodocholesterol labelled with 125 I

    In this paper a new method of synthesis of 19-iodo cholesterol labelled with ''125 I, from commercial cholesterol, is described. Its high chemical (96%) and radiochemical (99.9%) purities high yield and short time of preparation permit us to dispose or a more accessible labelled compound, which results appropriates for clinical investigations and in the diagnosis of disturbances of the suprarenal glands. (Author) 9 refs

  17. The effect of phytohormones on the dynamics of protein biosynthesis and enzyme activity in linted and naked cotton seed

    We determined the effect of exogenous indole-3-acetic acid, a-naphthylene-3-acetic acid and gibberellic acid (GA3) on the enzymatic activity of glucansynthase, peroxidase and cellulase in ovule development of naked L-70 and linted AN-Bayaut-2 cotton (Gossypium hirsutum L.) seeds. We isolated a prote...

  18. AcEST: DK962663 [AcEST

    Full Text Available : Swiss-Prot sp_hit_id O82333 Definition sp|O82333|GH31_ARATH Probable indole-3-acetic acid-amido synthetase GH3.1 OS=Arab...ic acid-amido synthetase GH3.2... 69 2e-11 sp|Q60EJ6|GH34_ORYSJ Probable indole-3-acet...|A6QGJ4|MUTS_STAAE DNA mismatch repair protein mutS OS=Staphyl... 31 7.3 >sp|O82333|GH31_ARATH Probable indole-3-acet...VTYEDLKPEIQRISNGDCSPILSSHPITE 104 >sp|Q60EJ6|GH34_ORYSJ Probable indole-3-acetic acid-amido synthetase GH3.4...ype prothallia with plantlets Developmental stage gametophytes with sporophytes C

  19. Response of pine hypocotyl sections to growth regulators and related substances

    Zakrzewski, J.

    2015-01-01

    Growth response of Pinus silvestris hypocotyl sections to some synthetic growth regulators and related substances was studied. Elongation of hypocotyl sections was stimulated by naphtaleneacetic acid, indole-3-acetic acid, in-dole-3-propionic acid, indole-3-butyric acid, 2,4-dichlorophenoxyacetic acid, indoleaoetic amide, indoleacetic nitrile and coumarin. Indole-3-acetic acid and naphtaleneacetic acid extended period of growth up to 16 and 24 hours, respectively. Growth was inhibited by kine...

  20. A terpenoid phytoalexin plays a role in basal defense of Nicotiana benthamiana against Potato virus X.

    Li, Ran; Tee, Chuan-Sia; Jiang, Yu-Lin; Jiang, Xi-Yuan; Venkatesh, Prasanna Nori; Sarojam, Rajani; Ye, Jian

    2015-01-01

    Terpenoid phytoalexins function as defense compound against a broad spectrum of pathogens and pests in the plant kingdom. However, the role of phytoalexin in antiviral defense is still elusive. In this study, we identified the biosynthesis pathway of a sesquiterpenoid phytoalexin, capsidiol 3-acetate as an antiviral response against RNA virus Potato Virus X (PVX) in Nicotiana benthamiana. NbTPS1 and NbEAH genes were found strongly induced by PVX-infection. Enzymatic activity and genetic evidence indicated that both genes were involved in the PVX-induced biosynthesis of capsidiol 3-acetate. NbTPS1- or NbEAH-silenced plant was more susceptible to PVX. The accumulation of capsidiol 3-acetate in PVX-infected plant was partially regulated by jasmonic acid signaling receptor COI1. These findings provide an insight into a novel mechanism of how plant uses the basal arsenal machinery to mount a fight against virus attack even in susceptible species. PMID:25993114

  1. Induction of caspase-8 and death receptors by a new dammarane skeleton from the dried fruits of Forsythia koreana.

    Hawas, Usama W; Gamal-Eldeen, Amira M; El-Desouky, Samy K; Kim, Young-Kyoon; Huefner, Antje; Saf, Robert

    2013-01-01

    A new naturally occurring compound based on the dammarane skeleton, i.e. cabralealactone 3-acetate-24-methyl ether, was isolated from the aqueous methanolic extract of Forsythia koreana fruits, along with eight known compounds: cabralealactone 3-acetate, ursolic acid, arctigenin, arctiin, phillyrin, rutin, caffeic acid, and rosmarinic acid. The identification of the isolated compounds was based on their spectral analysis including: HREI-MS, 1D and 2D NMR spectroscopy. The selected compounds and the aqueous methanolic extract were evaluated for their cytotoxic activity against human solid tumour cell lines. Cabralealactone 3-acetate-24-methyl ether and ursolic acid were found to be active against human breast cancer cells (MCF-7). The cytotoxicity was associated with the activation of caspase-8, the induction of the death receptors DR4 and DR5, as well as DNA fragmentation, and was thus due to apoptosis rather than necrosis. PMID:23659170

  2. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic

    Lund, K.H.; Petersen, J.H.

    2006-01-01

    mg kg(-1)) and formaldehyde (15 mg kg(-1)) was found after three successive exposures to the food stimulant 3% acetic acid after 2 h at 70 degrees C. To investigate the effects of long-term use, migration tests were performed with two types of cups from a day nursery. Furthermore, medium-term use was...... studied by ten successive exposures of a plate to 3% acetic acid for 30 min at 95 degrees C. The results indicate that continuous migration of formaldehyde and melamine takes place during the lifetime of these articles. The molar ratio of released formaldehyde to melamine was seen to decrease from 12 to...

  3. Response of pine hypocotyl sections to growth regulators and related substances

    J. Zakrzewski

    2015-05-01

    Full Text Available Growth response of Pinus silvestris hypocotyl sections to some synthetic growth regulators and related substances was studied. Elongation of hypocotyl sections was stimulated by naphtaleneacetic acid, indole-3-acetic acid, in-dole-3-propionic acid, indole-3-butyric acid, 2,4-dichlorophenoxyacetic acid, indoleaoetic amide, indoleacetic nitrile and coumarin. Indole-3-acetic acid and naphtaleneacetic acid extended period of growth up to 16 and 24 hours, respectively. Growth was inhibited by kinetin, trans-cinnamic acid and 2,3,5-tri-iodobenzoic acid. No effect of gibberellic acid, tryptophan and biotin was observed.

  4. The auxin concentration in sixteen Chinese marine algae

    HAN Lijun

    2006-01-01

    The author determined the occurrence of indole-3-acetic acid in sixteen Chinese marine algae collected from the east coast of China with fluorescence spectrophotometry (FS) and wheat coleoptile bioanalysis methods (WCB). The concentration of indole-3-acetic acid (IAA) presented was from 1.1-46.9 ng/g Fw (fresh weight) with FS and 5.3-110.2 ng/g Fw with WCB. The results by the two methods were in the orders of 10-3-103 ng/g Fw reported previously from multiple references.

  5. Sardisterol, A New Polyhydroxylated Sterol from the Soft Coral Sarcophyton digitatum Moser

    SU, Jing-Yu; YANG, Ruo-Lin

    2001-01-01

    A new polyhydroxylated sterol, named sardisterol, was isolated from the soft coral Sarcophyton digitatum Moser. Its structure was determined as (22R, 24ξ)-methyicholest-5-en-3β,22, 25, 28-tetraol-3-acetate on the basis of spectroscopic methods.

  6. Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid

    Pěnčík, Aleš; Turečková, Veronika; Paulisić, S.; Rolčík, Jakub; Strnad, Miroslav; Mihaljević, S.

    2015-01-01

    Roč. 122, č. 1 (2015), s. 89-100. ISSN 0167-6857 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : Abscisic acid * Ammonium * Indole-3-acetic acid Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.125, year: 2014

  7. Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2

    Mikkelsen, M.D.; Fuller, V.L.; Hansen, Bjarne Gram;

    2009-01-01

    Indole-3-acetaldoxime (IAOx) is a key branching point between primary and secondary metabolism. IAOx serves as an intermediate in the biosynthesis of indole glucosinolates (I-GLSs), camalexin and the plant hormone indole-3-acetic acid (IAA). The cytochrome P450s CYP79B2 and CYP79B3 catalyze the...

  8. VvMJE1 of the grapevine (Vitis vinifera) VvMES Methylesterase family encodes for Methyl Jasmonate Esterase and has a role in stress response

    The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...

  9. Olsenella scatoligenes sp. nov., a 3-methylindole- (skatole) and 4-methylphenol- (p-cresol) producing bacterium isolated from pig faeces

    Li, Xiaoqiong; Jensen, Rikke Lassen; Højberg, Ole;

    2015-01-01

    Strain SK9K4T, which is a strictly anaerobic, non-motile, non-sporulating, Gram-stain-positive, saccharolytic coccobacillus, was isolated from pig faeces. SK9K4T metabolized indol-3-acetic acid to 3-methylindole (skatole), which is the main contributor to boar taint; it also produced 4-methylphen...

  10. Synthesis of Benzofuran Analogue of Go6976, an Isoform Selective Protein Kinase C Inhibitor

    MA, Da-Wei; ZHANG, Xin-Rong; WU, Shi-Hui; TAO, Feng-Gang

    2001-01-01

    Based on the structure of Go6976, a known isoform-selective protein kinase C inhibitor, a benzofuran analogue (1) was designed. This analogue was synthesized by coupling of benzofuran 3-acetic acid and 8-oxo-tryptamine and subsequent intramolecular Dieckmann condensation, alkylation, oxidative photocyclization and cyanation reaction of mesylate.

  11. Biofilm-associated indole acetic acid producing bacteria and their impact in the proliferation of biofilm mats in solar salterns

    Kerkar, S.; Raiker, L.; Tiwari, A.; Mayilraj, S.; Dastager, S.

    viz. Nerul and Curca to find a possible reason for the rapid proliferation of these solar biofilms. Out of the 125 bacteria isolated from these biofilms, 16 produced indole-3-acetic acid (IAA). Rapid in-situ assay with Salkowski reagent and HPLC...

  12. Chloramphenicol acetyltransferase should not provide methanogens with resistance to chloramphenicol.

    Beckler, G S; Hook, L A; Reeve, J N

    1984-01-01

    Growth of the four methanogens investigated was inhibited by chloramphenicol-3-acetate; therefore, introduction of chloramphenicol acetyltransferase-encoding genes should not confer chloramphenicol resistance on these methanogens. Reduction of the aryl nitro group of chloramphenicol produced a compound which did not inhibit the growth of these methanogens.

  13. Strawberry Fruit Protein With a Novel Post-Translational Indole-acyl Modification

    Fruit of the diploid strawberry, Fragaria vesca, L. ‘Yellow Wonder’ contain indole-3-acetic acid (IAA) covalently attached to specific strawberry proteins. Protein-conjugated IAA accounts for between 0.4 and 4 ng of IAA per gram fresh weight of tissue in achenes, and in receptacle tissue. Immunob...

  14. New analogues of ACPD with selective activity for group II metabotropic glutamate receptors

    Bräuner-Osborne, Hans; Madsen, U; Mikiciuk-Olasik, E; Curry, K

    1997-01-01

    In this study we have determined the pharmacology of a series of 1-aminocyclopentane-1,3-dicarboxylic acid (1,3-ACPD) analogues at cloned metabotropic glutamic acid (mGlu) receptors. The new analogues comprise the four possible stereoisomers of 1-amino-1-carboxycyclopentane-3-acetic acid (1,3-hom...

  15. Vliv brassinosteroidů na změny hladin ethylenu, kyseliny abscisové a kyseliny indolyl-3-octové

    Vlašánková, E.; Kohout, Ladislav; Klemeš, M.; Eder, Josef; Hradilík, J.

    Praha: ÚOCHB AV ČR, 2004 - (Kohout, L.), s. 11-14 ISBN 80-86241-23-8 R&D Projects: GA AV ČR IBS4055304 Institutional research plan: CEZ:AV0Z4055905 Keywords : brassinosteroids * ethylene * indolyl-3-acetic acid levels Subject RIV: CC - Organic Chemistry

  16. Substituted Indoleacetic Acids Tested in Tissue Cultures

    Engvild, Kjeld Christensen

    1978-01-01

    Monochloro substituted IAA inhibited shoot induction in tobacco tissue cultures about as much as IAA. Dichloro substituted IAA inhibited shoot formation less. Other substituted IAA except 5-fluoro- and 5-bromoindole-3-acetic acid were less active than IAA. Callus growth was quite variable and not...... and not correlated with auxin strength measured in the Avena coleoptile test....

  17. Endogenous Auxin Profile in the Christmas Rose (Helleborus niger L.) Flower and Fruit: Free and Amide Conjugated IAA

    Brcko, A.; Pěnčík, Aleš; Magnus, V.; Prebeg, T.; Mlinaric, S.; Antunovic, J.; Lepeduš, H.; Cesar, V.; Strnad, Miroslav; Rolčík, Jakub; Salopek-Sondi, B.

    2012-01-01

    Roč. 31, č. 1 (2012), s. 63-78. ISSN 0721-7595 R&D Projects: GA AV ČR KAN200380801 Keywords : Auxin * Indole-3-acetic acid * Amide conjugates * Christmas rose * Helleborus niger L. * Flower and fruit development * Perianth greening * Peduncle elongation * Vascular system Subject RIV: EF - Botanics Impact factor: 1.990, year: 2012

  18. Final Report

    Normanly, J.

    1999-11-29

    The primary goal was the characterization of tryptophan (Trp)-independent biosynthesis of the auxin indole-3-acetic acid (IAA). Our work and that of others indicates that indole is a precursor to IAA in a Trp-independent pathway and the objectives of this grant have been the isolation of indole-metabolizing genes from Arabidopsis.

  19. Microbial Degradation of Indole and Its Derivatives

    Pankaj Kumar Arora

    2015-01-01

    Full Text Available Indole and its derivatives, including 3-methylindole and 4-chloroindole, are environmental pollutants that are present worldwide. Microbial degradation of indole and its derivatives can occur in several aerobic and anaerobic pathways; these pathways involve different known and characterized genes. In this minireview, we summarize and explain the microbial degradation of indole, indole-3-acetic acid, 4-chloroindole, and methylindole.

  20. Simple Identification of the Neutral Chlorinated Auxin in Pea by Thin Layer Chromatography

    Engvild, Kjeld Christensen

    1980-01-01

    One of the neutral chlorinated auxins of immature pea seeds was readily identified by thin layer procedures simple enough to serve in student's laboratory courses. 4-Chloroindole-3-acetic acid methyl ester was extracted from 50 g of commercial, frozen peas by either water or acetone, concentrated...

  1. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.

  2. [Physiological and biochemical activity of bacteria during germination of cucumber seeds and impact of ciliates Colpoda steinii on this process].

    Chobotarova, V V; Bega, Z T; Kurdish, I K

    2015-01-01

    It is shown that the bacteria Bacillus subtilis B-7023 IMV produce indole-3-acetic acid and amino acids in the liquid medium Knoop. Processing cucumber seed suspension containing 10(7) cfu/ml as bacilli, and Azotobacter vinelandii IMV V-7076, resulted in a decrease in the length of the roots of plants. Reduction of bacterial load bacilli to 10(6) cfu/ml followed by reduction of indole-3-acetic acid in the medium, and to an increase in the length of roots, shoots and total plant mass. During the cultivation of Bacillus subtilis IMV V-7023 with ciliates Colpoda steinii reduced the amount of free forms of auxin in the medium to 5.5 times, and the related--to trace amounts. The content of histidine, phenylalanine, tyrosine, methionine and lysine significantly reduced. PMID:26036028

  3. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic

    Lund, K.H.; Petersen, J.H.

    2006-01-01

    Migration of one or both formaldehyde and/or melamine monomers was found in seven of ten tested melamine samples bought on the Danish market. The samples were a bowl, a jug, a mug, a ladle, and different cups and plates. No violation of the European Union-specific migration limits for melamine (30...... mg kg(-1)) and formaldehyde (15 mg kg(-1)) was found after three successive exposures to the food stimulant 3% acetic acid after 2 h at 70 degrees C. To investigate the effects of long-term use, migration tests were performed with two types of cups from a day nursery. Furthermore, medium-term use was...... studied by ten successive exposures of a plate to 3% acetic acid for 30 min at 95 degrees C. The results indicate that continuous migration of formaldehyde and melamine takes place during the lifetime of these articles. The molar ratio of released formaldehyde to melamine was seen to decrease from 12 to...

  4. Gravity-induced asymmetric distribution of a plant growth hormone

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  5. The chloroindole auxins of pea, strong plant growth hormones or endogenous herbicides

    In this work the three theses below are discussed: 1) Identification and quantitative determination of the very strong plant hormone, the auxin 4-chloroindole-3-acetic acid methyl ester, in immature seeds of Pisum, Vicia, Lathyrus, and Lens spp. by incorporation of radioactive 36Cl, thin layer chromatography, autoradiography, colour reactions, and gas chromatography/mass spectrometry. 2) The strong biological activity of 4-chloroindole-3-acetic acid and its analogues and its ability to induce strong, almost irreversible, ethylene evolution. 3) The possible role of chloroindole auxin in plants, particularly if it might be the hypothetical death hormone, secreted from developing seeds, which induces senescence and kills the mother plant at maturity; if plants generally have several auxin types, growth promoters and endogenous herbicides; and if other chlorine-containing plant hormones occur in developing seeds of other crop species. (au) (7 tabs., 8 ills., 144 refs.)

  6. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae.

    Lam, Hong Kiat; McAdam, Scott A M; McAdam, Erin L; Ross, John J

    2015-07-01

    Auxin is a pivotal plant hormone, usually occurring in the form of indole-3-acetic acid (IAA). However, in maturing pea (Pisum sativum) seeds, the level of the chlorinated auxin, 4-chloroindole-3-acetic acid (4-Cl-IAA), greatly exceeds that of IAA. A key issue is how plants produce halogenated compounds such as 4-Cl-IAA. To better understand this topic, we investigated the distribution of the chlorinated auxin. We show for the first time, to our knowledge, that 4-Cl-IAA is found in the seeds of Medicago truncatula, Melilotus indicus, and three species of Trifolium. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The evidence indicates a single evolutionary origin of 4-Cl-IAA synthesis in the Fabaceae, which may provide an ideal model system to further investigate the action and activity of halogenating enzymes in plants. PMID:25971549

  7. The chloroindole auxins of pea, strong plant growth hormones or endogenous herbicides

    Engvild, K.C.

    1994-02-01

    In this work the three theses below are discussed: (1) Identification and quantitative determination of the very strong plant hormone, the auxin 4-chloroindole-3-acetic acid methyl ester, in immature seeds of Pisum, Vicia, Lathyrus, and Lens spp. by incorporation of radioactive {sup 36}Cl, thin layer chromatography, autoradiography, colour reactions, and gas chromatography/mass spectrometry. (2) The strong biological activity of 4-chloroindole-3-acetic acid and its analogues and its ability to induce strong, almost irreversible, ethylene evolution. (3) The possible role of chloroindole auxin in plants, particularly if it might be the hypothetical death hormone, secreted from developing seeds, which induces senescence and kills the mother plant at maturity; if plants generally have several auxin types, growth promoters and endogenous herbicides; and if other chlorine-containing plant hormones occur in developing seeds of other crop species. (au) (7 tabs., 8 ills., 144 refs.).

  8. Isolasi dan karakterisasi senyawa metabolit sekunder dari bakteri laut Streptomyces sp.

    Muhammad bahi

    2012-12-01

    Full Text Available Streptomyces is one of bacterial genus which has been considered as a potential source of many novel antibiotics from both terrestrial and marinemicroorganism. In this paper, four secondary metabolites have been isolated and characterized from a marine Streptomyces sp. B5798, namely phydroxyphenylaceticacid (2, indole-3-carboxylic acid (3, indole-3-acetic acid (4, and Macrolactin A (5, respectively. Two of them are commoncompounds, namely indole-3-carboxylic acid (3 and indole-3-acetic acid (4. The 3,4-dihydroxybenzaldehyde is a degradation product of phydroxyphenylacetic(2 in microorganism. Macrolactin A (5 showed cytotoxicity against brine shrimps test (A. salina. All structures of the isolatedcompounds were elucidated based on spectroscopic and mass spectrometry data.

  9. Biotransformation of Indole to 3-Methylindole by Lysinibacillus xylanilyticus Strain MA

    Pankaj Kumar Arora

    2015-01-01

    Full Text Available An indole-biotransforming strain MA was identified as Lysinibacillus xylanilyticus on the basis of the 16S rRNA gene sequencing. It transforms indole completely from the broth culture in the presence of an additional carbon source (i.e., sodium succinate. Gas-chromatography-mass spectrometry identified indole-3-acetamide, indole-3-acetic acid, and 3-methylindole as transformation products. Tryptophan-2-monooxygenase activity was detected in the crude extracts of indole-induced cells of strain MA, which confirms the formation of indole-3-acetamide from tryptophan in the degradation pathway of indole. On the basis of identified metabolites and enzyme assay, we have proposed a new transformation pathway for indole degradation. Indole was first transformed to indole-3-acetamide via tryptophan. Indole-3-acetamide was then transformed to indole-3-acetic acid that was decarboxylated to 3-methylindole. This is the first report of a 3-methylindole synthesis via the degradation pathway of indole.

  10. A terpenoid phytoalexin plays a role in basal defense of Nicotiana benthamiana against Potato virus X

    Ran Li; Chuan-Sia Tee; Yu-Lin Jiang; Xi-Yuan Jiang; Prasanna Nori Venkatesh; Rajani Sarojam; Jian Ye

    2015-01-01

    Terpenoid phytoalexins function as defense compound against a broad spectrum of pathogens and pests in the plant kingdom. However, the role of phytoalexin in antiviral defense is still elusive. In this study, we identified the biosynthesis pathway of a sesquiterpenoid phytoalexin, capsidiol 3-acetate as an antiviral response against RNA virus Potato Virus X (PVX) in Nicotiana benthamiana. NbTPS1 and NbEAH genes were found strongly induced by PVX-infection. Enzymatic activity and genetic evide...

  11. Healing Acceleration of Acetic Acid-induced Colitis by Marigold (Calendula officinalis) in Male Rats

    Nader Tanideh; Akram Jamshidzadeh; Masood Sepehrimanesh; Masood Hosseinzadeh; Omid Koohi-Hosseinabadi; Asma Najibi; Mozhdeh Raam; Sajad Daneshi; Seyedeh-Leili Asadi-Yousefabad

    2016-01-01

    Background/Aim: Ulcerative colitis (UC) is a type of chronic inflammatory bowel disease with unknown etiology. Several therapeutic strategies such as consumption of medicinal plants have been used for its treatment. The aim of this study was to evaluate healing effects of Calendula officinalis hydroalcoholic extract in experimentally induced UC in rat. Materials and Methods: Ninety-six rats, weighing 200 ± 20 g, were randomly divided into eight equal groups. UC induced by 3% acetic acid and o...

  12. Multiple shoot regeneration and alkaloid cerpegin accumulation in callus culture of Ceropegia juncea Roxb.

    Nikam, T. D.; Savant, R. S.

    2009-01-01

    This is the first report of in vitro propagation and alkaloid accumulation in callus cultures of Ceropegia juncea Roxb. a source of “Soma” drug in Ayurvedic medicine. Multiple shoots and callus induction was optimized by studying the influence of auxins [IAA (Indole-3-acetic acid), NAA (2-Naphthalene acetic acid) and 2,4-D (2,4-Dichlorophenoxyacetic acid.)] and cytokinins [BA (6-benzyladenine) and Kin (Kinetin)] alone and in combinations. The best response for multiple shoot induction was obt...

  13. An efficient in vitro regeneration of Ceropegia noorjahaniae: an endemic and critically endangered medicinal herb of the Western Ghats

    Chavan, J. J.; Nalawade, A. S.; Gaikwad, N. B.; Gurav, R. V.; Dixit, G. B.; Yadav, S. R.

    2014-01-01

    An efficient protocol was developed for the rapid in vitro multiplication of an endemic and critically endangered medicinal herb, Ceropegia noorjahaniae Ans., via enhanced axillary bud proliferation from nodal explants. The effects of phytohormones [6-benzylaminopurine (BAP), kinetin (Kin) thidiazuron (TDZ), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA)] on in vitro regeneration were investigated. The highest number of shoots (18.3 ± 1.3), maximum ...

  14. Role of Cytokinin and Auxin in Shaping Root Architecture: Regulating Vascular Differentiation, Lateral Root Initiation, Root Apical Dominance and Root Gravitropism

    Aloni, R; ALONI, E.; Langhans, M.; ULLRICH, C. I.

    2006-01-01

    • Background and Aims Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce ...

  15. Standardized production of Phyllanthus tenellus Roxb. by plant tissue culture Produção padronizada de Phyllanthus tenellus Roxb. por cultura de tecidos vegetais

    Cristiane Pimentel Victório; Anaize Borges Henriques; Eliana Schwartz Tavares; Maria Apparecida Esquibel; Celso Luiz Salgueiro Lage

    2010-01-01

    Exigencies as ethic plant raw material are part of the needs of modern phytotherapy. Micropropagation offers opportunities to obtain mass propagation of superior genotypes in short time. This study aimed to develop a protocol of direct and indirect organogenesis of Phyllanthus tenellus Roxb. Nodal segments from plantlets obtained by in vitro germination were subcultured in modified Murashige and Skoog medium added with different plant growth regulators: IAA (indole-3-acetic acid), IBA (indole...

  16. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues

    Dobrev, P.; Vaňková, R. (Radomíra)

    2012-01-01

    Plant hormones cytokinins, auxin (indole-3-acetic acid), and abscisic acid are central to regulation of plant growth and defence to abiotic stresses such as salinity. Quantification of the hormone levels and determination of their ratios can reveal different plant strategies to cope with the stress, e.g., suppression of growth or mobilization of plant metabolism. This chapter describes a procedure enabling such quantification. Due to the high variability of these hormones in plant tissues, it...

  17. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening

    Pan, Lei; Zeng, Wenfang; Niu, Liang; Lu, Zhenhua; Liu, Hui; Cui, Guochao; Zhu, Yunqin; Chu, Jinfang; Li, Weiping; Fang, Weichao; Cai, Zuguo; Li, Guohuai; Wang, Zhiqiang

    2015-01-01

    High concentrations of indole-3-acetic acid (IAA) are required for climacteric ethylene biosynthesis to cause fruit softening in melting flesh peaches at the late ripening stage. By contrast, the fruits of stony hard peach cultivars do not soften and produce little ethylene due to the low IAA concentrations. To investigate the regulation of IAA accumulation during peach ripening [the transition from stage S3 to stage S4 III (climacteric)], a digital gene expression (DGE) analysis was performe...

  18. Establishment of an Efficient In Vitro Regeneration Protocol for Rapid and Mass Propagation of Dendrobium chrysotoxum Lindl. Using Seed Culture

    Potshangbam Nongdam; Leimapokpam Tikendra

    2014-01-01

    An efficient in vitro regeneration protocol from seed culture has been established successfully for Dendrobium chrysotoxum, an epiphytic orchid having tremendous ornamental and medicinal values. Seed germination response was encouraging in Mitra (M) medium enriched with different combinations of auxins and cytokinins. Medium supplemented with 0.4% activated charcoal (AC), 2 mg/L 6-benzyl amino purine (BAP), and 2 mg/L indole-3-acetic acid (IAA) produced best seed germination percentage in 2 w...

  19. Analyses of Phytohormones in Coconut (Cocos Nucifera L.) Water Using Capillary Electrophoresis-Tandem Mass Spectrometry

    Swee Ngin Tan; Jean Wan Hong Yong; Liya Ge

    2014-01-01

    Capillary electrophoresis (CE) coupled with mass spectrometry (MS) or tandem mass spectrometry (MS/MS) is reported as an alternative and potentially useful method for the simultaneous analysis of various classes of phytohormones with diversified structures, including indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), abscisic acid (ABA), gibberellic acid (GA), zeatin (Z), N6-benzyladenine (BA), α-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). The key to the CE-...

  20. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants

    Schmelz, Eric A.; Engelberth, Juergen; Alborn, Hans T; O'Donnell, Phillip; Sammons, Matt; Toshima, Hiroaki; Tumlinson, James H.

    2003-01-01

    Phytohormones regulate the protective responses of plants against both biotic and abiotic stresses by means of synergistic or antagonistic actions referred to as signaling crosstalk. A bottleneck in crosstalk research is the quantification of numerous interacting phytohormones and regulators. The chemical analysis of salicylic acid, jasmonic acid, indole-3-acetic acid, and abscisic acid is typically achieved by using separate and complex methodologies. Moreover, pathog...

  1. Effect of phytohormones on the growth of Scenedesmus quadricauda (Turp.) Bréh

    Ewa Tatkowska; Józef Buczek

    2014-01-01

    Studies were made an the effect of indole-3-acetic acid (IAA), gibberellic acid (GA), kinetin (Kin), and various combinations of these substances upon dry matter increments, soluble protein content, and chlorophyll levels in the cultures of Scenedesmus quadricauda (Turp.) Bréb. It was found that all these phytohormones, added separately to the medium, stimulated dry matter increment and protein content, although their effect depended on the concentration and the duration of culture. Addition ...

  2. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction

    Liu Hongbo; Li Xianghua; Xiao Jinghua; Wang Shiping

    2012-01-01

    Abstract Background Simultaneous analysis of multiple functional-related phytohormones and their metabolites will improve our understanding of interactions among different hormones in the same biologic process. Results A method was developed for simultaneous quantification of multiple phytohormones, abscisic acid, indole-3-acetic acid (IAA), jasmonic acid (JA), and salicylic acid, hormone conjugates, IAA-aspartic acid, JA-isoleucine, and methyl JA, and phytoalexins, momilactone A, naringenin,...

  3. UHPLC-MS/MS based target profiling of stress-induced phytohormones

    Floková, K. (Kristýna); Tarkowská, D. (Danuše); Miersch, O.; Strnad, M; Wasternack, C.; Novák, O. (Ondřej)

    2014-01-01

    Stress-induced changes in phytohormone metabolite profiles have rapid effects on plant metabolic activity and growth. The jasmonates (JAs) are a group of fatty acid-derived stress response regulators with roles in numerous developmental processes. To elucidate their dual regulatory effects, which overlap with those of other important defence-signalling plant hormones such as salicylic acid (SA), abscisic acid (ABA) and indole-3-acetic acid (IAA), we have developed a highly efficient single-st...

  4. Losses of bioactive polyacetylenes during minimal processing of carrots

    Koidis, Anastasios; Rawson, Ashish; Osorio, Teresa; Brunton, Nigel

    2011-01-01

    Vegetables of the Apiaceae plant family such as carrots, parsnip, celery and parsley,contain in minor quantities, a group of bioactive aliphatic C17-polyacetylenes (falcarinol,falcarindiol, falcarindiol-3- acetate). Recent studies have highlighted important biologicalfunctions in vitro and in vivo (animal studies) although the beneficial effect in humannutrition attributable to an increased in polyacetylenes diet are yet to be confirmed(Lund, 1990).Carrots not only contain relatively high pol...

  5. Auxin gradient is crucial for the maintenance of root distal stem cell identity in Arabidopsis

    Tian, Huiyu; Niu, Tiantian; Yu, Qianqian; Quan, Taiyong; Ding, Zhaojun

    2013-01-01

    The plant hormone auxin plays a critical role in the maintenance of root stem cell niches in Arabidopsis. We have recently reported that WUSCHEL-RELATED HOMEOBOX 5 (WOX5) transcription factor modulates free auxin production in the quiescent center (QC) of the root and its expression is inhibited in a feedback-dependent manner by canonical auxin signaling that involves indole-3-acetic acid 17 (IAA17) auxin response repressor. WOX5-IAA17 feedback circuit assures the maintenance of auxin respons...

  6. Determination of Antimicrobial Activity and Resistance to Oxidation of Moringa peregrina Seed Oil

    Ioanna Chinou; John Tsaknis; Vasilios Athanasiadis; Olga Gortzi; Stavros Lalas

    2012-01-01

    The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid) were used for comparison. The r...

  7. Determination of antimicrobial activity and resistance to oxidation of moringa peregrina seed oil.

    Lalas, Stavros; Gortzi, Olga; Athanasiadis, Vasilios; Tsaknis, John; Chinou, Ioanna

    2012-01-01

    The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid) were used for comparison. The resistance to oxidation of the extracted seed oil was also determined. PMID:22367027

  8. Clonal propagation and synthetic seed production from nodal segments ofCape gooseberry (Physalis peruviana L.), a tropical fruit plant

    YÜCESAN, BAHTİYAR BUHARA; MOHAMMED, ALİYU; Arslan, Merve; Gürel, Ekrem

    2015-01-01

    Physalis peruviana L. contains polyphenols and carotenoids with antiinflammatory and antioxidant activities used against diabetes. To establish an efficient regeneration system using nodal segments excised from 4-week-old germinated seedlings, direct plant regeneration, without additional rooting stage, was achieved on LS medium containing 0.5 mg/L 6-benzylaminopurine (BAP), kinetin (KIN), thidiazuron (TDZ), or gibberellic acid (GA3), alone or in combination with 0.25 mg/L indole-3-acetic aci...

  9. 1,10-phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M.; FAN, YUHUA; Dong, Lili; Zuo, Jian; Dou, Q. Ping

    2012-01-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, l-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear compl...

  10. Migration of melamine from can coatings cross-linked with melamine-based resins, into food simulants and foods

    Castle, Laurence; Bradley, Emma; Day, Joanna; Leak, Jennifer

    2010-01-01

    Abstract Resins based on melamine-formaldehyde and related analogues such as methylolated melamine are used to cross-link coatings used inside food cans and on the metal closures of glass jars. Thirteen commercially coated cans and closures representing 80% of the European market, were tested using simulants under realistic industrial heat-processing conditions for canned and jarred foods. The food simulants and the retort conditions used were 3% acetic acid for 1 hr at 100?C an...

  11. Effect of Vermicompost Tea on the Growth and Yield of Tomato Plants and Suppression of Root Knot Nematode in the Soil

    Selvaraj, Abira

    2011-01-01

    Vermicompost teas (VCT) are documented to increase plant growth and yield and reduce plant fungal and bacterial diseases and nematode infestation in the soil. However, the underlying mechanisms for these results remain obscure. Radioimmnoassay was used to identify and quantify phytohormones present in commercially prepared "growth-promoting" VCT. Isopentenyladenine (IPA) and indole-3-acetic acid (IAA) were detected in VCT, along with a low amount of abscisic acid (ABA). Comparison of effects ...

  12. Leaf and root volatiles produced by tissue cultures of Alpinia zerumbet (pers.) Burtt & Smith under the influence of different plant growth regulators

    Cristiane Pimentel Victório; Ricardo Machado Kuster; Celso Luiz Salgueiro Lage

    2011-01-01

    Volatiles produced by plantlets of Alpinia zerumbet were obtained by means of simultaneous distillation-extraction (SDE). The effects of indole-3-acetic acid, kinetin, thidiazuron and 6-benzylaminopurine on leaf and root volatile composition obtained by tissue cultures were investigated. A higher content of b-pinene and a lower content of sabinene were observed in leaf volatile of plantlets cultured in control, IAA and IAA+ TDZ media, as compared with those of donor plants. In vitro condition...

  13. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice

    Du, Hao; Wu, Nai; Fu, Jing; Wang, Shiping; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2012-01-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental processes. Indole-3-acetic acid (IAA) and abscisic acid (ABA) play critical roles in developmental programmes and environmental responses, respectively, through complex signalling and metabolism networks. However, crosstalk between the two phytohormones in the stress responses remains largely unknown. Here, it is reported that a GH3 family gene, OsGH3-2, encoding an enzyme catalysing IAA conjugation to a...

  14. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    Victor Hugo Salvador; Rogério Barbosa Lima; Wanderley Dantas dos Santos; Anderson Ricardo Soares; Paulo Alfredo Feitoza Böhm; Rogério Marchiosi; Maria de Lourdes Lucio Ferrarese; Osvaldo Ferrarese-Filho

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean ( Glycine max ) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical in...

  15. Interactions in the rhizosphere: Plant responses to bacterivorous soil protozoa

    Krome, Kristin

    2008-01-01

    Plant growth promotion by bacterivorous soil protozoa is generally assigned to an improved nitrogen supply due to the mobilisation of nitrogen fixed in bacterial biomass. However, there is evidence that protozoa may also stimulate plant growth by non-nutrient effects with the phytohormone auxin (indole-3-acetic acid; IAA) being likely involved. This PhD Thesis was performed to investigate morphological, physiological and transcriptional responses of plants to soil protozoa and to assess the i...

  16. Effects of Interactions of Auxin-Producing Bacteria and Bacterial-Feeding Nematodes on Regulation of Peanut Growths

    Li Xu; Wensi Xu; Ying Jiang; Feng Hu; Huixin Li

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and so...

  17. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots

    Enrico Baldan; Sebastiano Nigris; Chiara Romualdi; Stefano D'Alessandro; Anna Clocchiatti; Michela Zottini; Piergiorgio Stevanato; Andrea Squartini; Barbara Baldan

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammoniu...

  18. Isolation of rhizobacteria from salt tolerant plant species and evaluation of their plant growth-promotion

    Suarez Franco, Christian

    2015-01-01

    Bacteria from rhizosphere samples of Hordeum secalinum and Plantago winteri from a natural salt meadow in Hessen, Germany, a natural undisturbed ecosystem, were isolated with emphasis on diazotrophs (NFB & LG agar), phosphate- and phytate-mobilising bacteria (CP & IHP agar), ACC (1-aminocyclopropane-1-carboxylate, a precursor of ethylene) deaminase-active bacteria (DF agar) as well as IAA (indole-3-acetic-acid)-producing bacteria (LBT agar) as source of potential halotolerant potential growth...

  19. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity

    Maor Rudy; Chagué Véronique; Sharon Amir

    2009-01-01

    Abstract Background The fungus Colletotrichum gloeosporioides f. sp. aeschynomene produces high levels of indole-3-acetic acid (IAA) in axenic cultures and during plant infection. We generated a suppression subtractive hybridization library enriched for IAA-induced genes and identified a clone, which was highly expressed in IAA-containing medium. Results The corresponding gene showed similarity to oligopeptide transporters of the OPT family and was therefore named CgOPT1. Expression of CgOPT1...

  20. Auxin Biosynthesis

    Zhao, Yunde

    2014-01-01

    lndole-3-acetic acid (IAA), the most important natural auxin in plants, is mainly synthesized from the amino acid tryptophan (Trp). Recent genetic and biochemical studies in Arabidopsis have unambiguously established the first complete Trp-dependent auxin biosynthesis pathway. The first chemical step of auxin biosynthesis is the removal of the amino group from Trp by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family of transaminases to generate indole-3-pyruvate (IPA). IPA then unde...

  1. Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

    Xu, Sheng Jun; Kim, Byung Sup

    2014-01-01

    In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited th...

  2. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity

    Gulati, Arvind; Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response.

  3. Draft Genome Sequence of a Plant Growth-Promoting Rhizobacterium, Serratia fonticola Strain AU-P3(3)

    Devi, Usha; Khatri, Indu; Kumar, Navinder; Kumar, Lalit; Sharma, Deepak; Subramanian, Srikrishna; Saini, Adesh K.

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR), found in the rhizospheric region of plants, not only suppress plant disease, but also directly improve plant health by improving the availability of nutrients and by providing phytostimulants. Herein, we report the high-quality genome sequence of Serratia fonticola strain AU-P3(3), a PGPR of the pea plant, which confers phosphate solubilization, indole-3-acetic acid production, ammonia production, hydrogen cyanide (HCN) production, and siderophore ...

  4. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity.

    Gulati, Arvind; Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. PMID:26337878

  5. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation.

    Lichter, A; Barash, I; Valinsky, L.; Manulis, S

    1995-01-01

    A locus conferring cytokinin production was previously isolated from the gall-forming bacterium Erwinia herbicola pv. gypsophilae. This locus resided in a cluster with the genes specifying indole-3-acetic acid production on the pathogenicity-associated plasmid pPATH (A. Lichter, S. Manulis, O. Sagee, Y. Gafni, J. Gray, R. Meilen, R. O. Morris, and I. Barash, Mol. Plant Microbe Interact., 8:114-121, 1995). Sequence analysis of this locus indicated the presence of a cytokinin biosynthesis gene ...

  6. Auxin acts independently of DELLA proteins in regulating gibberellin levels

    Reid, James B; Davidson, Sandra E.; Ross, John J.

    2011-01-01

    Shoot elongation is a vital process for plant development and productivity, in both ecological and economic contexts. Auxin and bioactive gibberellins (GAs), such as GA1, play critical roles in the control of elongation,1–3 along with environmental and endogenous factors, including other hormones such as the brassinosteroids.4,5 The effect of auxins, such as indole-3-acetic acid (IAA), is at least in part mediated by its effect on GA metabolism,6 since auxin upregulates biosynthesis genes suc...

  7. Determination of Antimicrobial Activity and Resistance to Oxidation of Moringa peregrina Seed Oil

    Ioanna Chinou

    2012-02-01

    Full Text Available The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid were used for comparison. The resistance to oxidation of the extracted seed oil was also determined.

  8. The choice of auxin analogue for in vitro root induction influences post-induction root development in Eucalyptus grandis

    NAKHOODA, Muhammad; WATT, Maria Paula; MYCOCK, David

    2014-01-01

    Previous studies on in vitro rooting for improved micropropagation of eucalypts indicated that root graviperception and post-acclimatisation architecture are determined by the relative exogenous auxin analogue and its stability, supplied during the pre-rooting culture stages. The specific roles of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) in the rooting medium on the in vitro root morphological processes were explored using a good-rooting clone. In vitro rooting percentage wa...

  9. Micropropagation of Catalpa bignonioides Walt. through tissue cultures

    Halina Wysokińska; Lucjan Świątek

    2014-01-01

    The conditions used in the micropropagation of Catalpa bignonioides Walt. (Bignoniaceae) from callus tissue are described. The multiplication of shoots was best on Schenk and Hildebrandt (SH) solid medium supplemented with 0.5mg dm-3 indolil-3-acetic acid (IAA) and 2.0 mg dm-3 benzylaminopurine (BAP). Under these conditions, 11 shoots per culture could be developed within 4 weeks. To develop roots, the shoots were then transferred to basal SH medium without growth regulators. Rooted plantlets...

  10. Effects of different priming applications on seed germination and some agromorphological characteristics of bread wheat (Triticum aestivum L.)

    Toklu, Faruk; BALOCH, FAHEEM SHAHZAD; Karaköy, Tolga; Özkan, Hakan

    2015-01-01

    Abstract: This study was conducted to determine the effects of some priming treatments on seed germination properties, grain yield, and several agromorphological characteristics of bread wheat. Two commonly grown bread wheat varieties, namely Adana-99 and Pandas, were selected for experimentation conducted during the 2007-08 and 2008-09 growing periods. The seeds of the Adana-99 and Pandas wheat varieties were primed with the following: (1) distilled water, (2) 100 ppm indole-3-acetic acid (I...

  11. Increasing of Food and Bioenergy Potato Resources by Microbial Influence on Tubers Phytohormonal Status

    Kiprushkina Elena I.; Baranenko Denis A.

    2014-01-01

    Potato and its by-products became a promising both food and bioenergy resource. The determination of the bacteriaantagonists influence on phytohormone status and productivity of potato tubers was studied. The indole-3-acetic acid content during the dormancy end and germinating in the tubers treated with Bacillus subtilis Ch-13 was fewer than in the control samples. L-tryptophan significant quantity compared to the control was found in the treated tubers in a state of physiological dormancy (m...

  12. Lignification response for rolled leaves of Ctenanthe setosa under long-term drought stress

    TERZİ, Rabiye; GÜLER, Neslihan SARUHAN; ÇALIŞKAN, Nihal KUTLU; KADIOĞLU, Asım

    2013-01-01

    Leaf rolling is a dehydration avoidance mechanism for plants under drought stress. To understand how it affects the lignification process in response to long-term drought stress in Ctenanthe setosa plants that have the leaf-rolling mechanism, the enzymes in lignification were studied in unrolled leaves as a control and at 2 different leaf rolling indices at days 35 and 47 of the drought period. The results indicated that the activities of phenylalanine ammonia lyase, indole-3-acetic acid oxid...

  13. Tissue culture and generation of autotetraploid plants of Sophora flavescens Aiton

    Kun-Hua, Wei; Shan-Lin, Gao; He-Ping, Huang

    2010-01-01

    Background: Sophora flavescens Aiton is an important medicinal plant in China. Early in vitro researches of S. flavescens were focused on callus induction and cell suspension culture, only a few were concerned with in vitro multiplication. Objective: To establish and optimize the rapid propagation technology of S. flavescens and to generate and characterize polyploid plants of S. flavescens. Materials and Methods: The different concentrations of 6-benzylaminopurine (BAP), indole-3-acetic acid (IA...

  14. Novel Polythiophenes for Biosensor Applications

    Clayton, Kate

    2011-01-01

    The development of an enzyme biosensor employing a novel functionalised polythiophene matrix is presented. The research upon conducting polymer platforms for biological immobilisation is extensive but by no means exhaustive and therefore this investigation contributes to the field of glucose detection with covalently immobilised glucose oxidase upon novel copolymers of N-succinimido thiophene-3- acetate/3-methylthiophene (STA-MT), trans-3-(3-thienyl) acetic acid/3- methylthiophene (TTA-MT)...

  15. Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway.

    Smolen, Gromoslaw; Bender, Judith

    2002-01-01

    In plants, the tryptophan biosynthetic pathway provides a number of important secondary metabolites including the growth regulator indole-3-acetic acid (IAA) and indole glucosinolate defense compounds. Genes encoding tryptophan pathway enzymes are transcriptionally induced by a variety of stress signals, presumably to increase the production of both tryptophan and secondary metabolites during defense responses. To understand the mechanism of transcriptional induction, we isolated altered tryp...

  16. Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings

    Desrosiers, M. F.; Bandurski, R. S.

    1988-01-01

    The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.

  17. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production

    Zahra Safaei; Keikhosro Karimi; Poorandokht Golkar; Akram Zamani

    2015-01-01

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0–5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the ...

  18. Azetidinic amino acids

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie;

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...

  19. In Vitro Propagation, Phytochemical Analysis, and Evaluation of Free Radical Scavenging Property of Scrophularia kakudensis Franch Tissue Extracts

    Abinaya Manivannan; Prabhakaran Soundararajan; Yoo Gyeong Park; Byoung Ryong Jeong

    2015-01-01

    The current study deals with in vitro propagation, antioxidant property estimation, and assessment of acacetin content in Scrophularia kakudensis Franch. Adventitious shoot induction was achieved from the nodal explant with the highest number of adventitious shoots per explant (17.4) on Murashige and Skoog’s (MS) medium fortified with 2.0 mg·L−1 6-benzyladenine (BA) and 0.5 mg L−1 indole-3-acetic acid (IAA). Maximum number of roots per plant (16.5) was noted in half strength MS medium supple...

  20. Identification and Characterization of Arabidopsis Indole-3-Butyric Acid Response Mutants Defective in Novel Peroxisomal Enzymes

    Zolman, Bethany K.; Martinez, Naxhiely; Millius, Arthur; Adham, A. Raquel; Bartel, Bonnie

    2008-01-01

    Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid β-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified. Here, we describe two IBA-response mutants, ibr1 and ibr10. Like the previously described ibr3 mutant, which disrupts a putative peroxisomal ...

  1. EFFECTIVENESS OF AUXIN INDUCED IN VITRO ROOT CULTURE IN CHICORY

    Nandagopal, S.; B Ranjitha Kumari

    2007-01-01

    An efficient protocol has been developed for the root culture of (Cichorium intybus L. cv. Focus), the leaf and hypocotyl explants from 25 days old in vitro raised seedlings were cultured on half-strength Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of Indole-3-acetic acid (IAA), Indole-3-butyric acid (IBA), α-Napthalenacetic acid (NAA). 0.5 mg/l NAA and 0.1 mg/l IBA induced highest percentage of rooting from matured leaf explants, under total da...

  2. Mikropropagasi Tunas Anggrek Hitam (Coelogyne pandurata Lindl) Dengan Pemberian Benzil Amino Purin dan Naftalen Asam Asetat

    Lubis, Nanda Nurlela

    2010-01-01

    The aim of the research is to know the influence of Benzylamino purine (BAP) and Naphtalen-3-acetic acid (NAA) concentration on micropropagation black orchid buds. The research was carried out in the Tissue Culture laboratory, Department of Agronomy, Faculty at Agriculture North Sumatera University, Medan from January to March 2010. This research used Randomized Block Design with two factor. First factor was BAP concentration consist of four levels: 0 mg/l ; 1 mg/l; 2 mg/l dan 3 mg/l. The se...

  3. Anti-tumor promoting activity of bufadienolides from Kalanchoe pinnata and K. daigremontiana x tubiflora.

    Supratman, U; Fujita, T; Akiyama, K; Hayashi, H; Murakami, A; Sakai, H; Koshimizu, K; Ohigashi, H

    2001-04-01

    Five bufadienolides (1-5) isolated from the leaves of Kalanchoe pinnata and K. daigremontiana x tubiflora (Crassulaceae) were examined for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation in Raji cells induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate. All bufadienolides showed inhibitory activity, and bryophyllin A (1) exhibited the most marked inhibition (IC50 = 0.4 microM) among the tested compounds. Bryophyllin C (2), a reduction analogue of 1, and bersaldegenin-3-acetate (3) lacking the orthoacetate moiety were less active. These results strongly suggest that bufadienolides are potential cancer chemopreventive agents. PMID:11388478

  4. Increased glutamine in leaves of poplar transgenic with pine GS1a caused greater anthranilate synthetase α-subunit (ASA1) transcript and protein abundances: an auxin-related mechanism for enhanced growth in GS transgenics?

    Man, Huimin; Pollmann, Stephan; Weiler, Elmar W.; Kirby, Edward G.

    2011-01-01

    The initial reaction in the pathway leading to the production of indole-3-acetic acid (IAA) in plants is the reaction between chorismate and glutamine to produce anthranilate, catalysed by the enzyme anthranilate synthase (ASA; EC 4.1.3.27). Compared with non-transgenic controls, leaves of transgenic poplar with ectopic expression of the pine cytosolic glutamine synthetase (GS1a; EC 6.3.1.2) produced significantly greater glutamine and significantly enhanced ASA α-subunit (ASA1) transcript an...

  5. A hybrid FIA/HPLC system incorporating monolithic column chromatography

    Adcock, Jacqui L. [School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217 (Australia); Francis, Paul S. [School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217 (Australia)], E-mail: psf@deakin.edu.au; Agg, Kent M. [School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217 (Australia); Marshall, Graham D. [GlobalFIA, Fox Island, WA 98333 (United States); Barnett, Neil W. [School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217 (Australia)

    2007-09-26

    We have combined the generation of solvent gradients using milliGAT pumps, chromatographic separations with monolithic columns and chemiluminescence detection in an instrument manifold that approaches the automation and separation efficiency of HPLC, whilst maintaining the positive attributes of flow injection analysis (FIA), such as manifold versatility, speed of analysis and portability. As preliminary demonstrations of this hybrid FIA/HPLC system, we have determined six opiate alkaloids (morphine, pseudomorphine, codeine, oripavine, ethylmorphine and thebaine) and four biogenic amines (vanilmandelic acid, serotonin, 5-hydroxyindole-3-acetic acid and homovanillic acid) in human urine, using tris(2,2'-bipyridyl)ruthenium(III) and acidic potassium permanganate chemiluminescence detection.

  6. A hybrid FIA/HPLC system incorporating monolithic column chromatography

    We have combined the generation of solvent gradients using milliGAT pumps, chromatographic separations with monolithic columns and chemiluminescence detection in an instrument manifold that approaches the automation and separation efficiency of HPLC, whilst maintaining the positive attributes of flow injection analysis (FIA), such as manifold versatility, speed of analysis and portability. As preliminary demonstrations of this hybrid FIA/HPLC system, we have determined six opiate alkaloids (morphine, pseudomorphine, codeine, oripavine, ethylmorphine and thebaine) and four biogenic amines (vanilmandelic acid, serotonin, 5-hydroxyindole-3-acetic acid and homovanillic acid) in human urine, using tris(2,2'-bipyridyl)ruthenium(III) and acidic potassium permanganate chemiluminescence detection

  7. Improvement of buccal delivery of morphine using the prodrug approach

    Christrup, Lona Louring; Jørgensen, A.; Christensen, C.B.;

    1997-01-01

    The feasibility of achieving buccal delivery of morphine using the prodrug approach was assessed by studies of bioactivation, in vitro permeation and in vivo absorption. The bioactivation of various morphine-3-esters was studied in human plasma and saliva. The in vitro permeation of morphine...... of 0.2. This discrepancy could however be explained by the enzymatic stability of the two esters in saliva, since it was found that morphine-3-propionate was more rapidly hydrolysed in saliva than was morphine-3-acetate. The study demonstrates that the buccal delivery of morphine can be markedly...

  8. Micropropagation of Madhuca longifolia (Koenig) MacBride var. latifolia Roxb.

    Rout, G R; Das, P

    1993-07-01

    Bud break and multiple shoots were induced in apical and axillary meristems derived from 10-d old seedlings of Madhuca longifolia var. latifolia on Murashige and Skoog (MS) medium supplemented with 1.0 mg/l N(6)-benzyladenine (BA) singly or in combinatiobn with 1-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Excised shoots were rooted on half-strength MS with IBA (1.0 mg/l) after 18d of culture. Regenerated plantlets were acclimatized and successfully transferred to soil. PMID:24196112

  9. The response of radish phytohormone system to ozone stress

    Urbonavičiūtė, Akvilė; Ulinskairė, Raimonda; Samuolienė, Giedrė; Sakalauskaitė, Jurga; Duchovskis, Pavelas; Brazaitytė, Aušra; Šikšnianienė, Jūratė; Šabajevienė, Gintarė; Baranauskis, Kęstutis

    2006-01-01

    Experiments were performed at the Lithuanian Institute of Horticulture, Phytotron complex in 2005. The object of this study was to evaluate the effect of different ozone concentrations on phytohormone system in radish (Raphanus sativus L., cv. Žara) leaves. The exposure of 80, 160, and 240 µg m-3 ozone concentrations was maintained for seven days. Day/night temperature was 21°C/17°C, photoperiod – 16 h. Phytohormones (gibberellic acid, zeatin, indolyl-3-acetic acid and abscisic acid) content ...

  10. Trypanocidal activity of Lychnophora staavioides Mart. (Vernonieae, Asteraceae).

    Takeara, R; Albuquerque, S; Lopes, N P; Lopes, J L C

    2003-01-01

    In the continuing search for new compounds with trypanocidal activity for use in blood banks to prevent the transmission of Chagas' disease, a trypanocidal extract of Lychnophora staavioides Mart. (Vernonieae, Asteraceae) was fractionated using several chromatographic techniques and afforded the following flavonoids: tectochrysin, pinostrobin, pinobanksin, pinobanksin 3-acetate, pinocembrin, chrysin, galangin 3-methyl ether, quercetin 3-methyl ether, chrysoeriol and vicenin-2. The most active compound was quercetin 3-methyl ether, which showed no blood lysis activity and which represents a promising compound for use against T. cruzi in blood banks. PMID:13678232

  11. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats

    Ramadoss, Dhanushkodi; Lakkineni, Vithal K; Bose, Pranita; Ali, Sajad; Annapurna, Kannepalli

    2013-01-01

    Eighty four halotolerant bacterial strains were isolated from the saline habitats and screened for growth at different NaCl concentrations. All grew well at 5% NaCl, but only 25% isolates showed growth at 20% NaCl concentration. Five strains SL3, SL32, SL35, J8W and PU62 growing well in 20% NaCl concentrations were further characterized for multiple plant growth promoting traits such as indole −3- acetic acid (IAA) production, HCN and siderophore production, ACC deaminase activity and P-solub...

  12. Leaf and root volatiles produced by tissue cultures of Alpinia zerumbet (pers. Burtt & Smith under the influence of different plant growth regulators

    Cristiane Pimentel Victório

    2011-01-01

    Full Text Available Volatiles produced by plantlets of Alpinia zerumbet were obtained by means of simultaneous distillation-extraction (SDE. The effects of indole-3-acetic acid, kinetin, thidiazuron and 6-benzylaminopurine on leaf and root volatile composition obtained by tissue cultures were investigated. A higher content of b-pinene and a lower content of sabinene were observed in leaf volatile of plantlets cultured in control, IAA and IAA+ TDZ media, as compared with those of donor plants. In vitro conditions were favorable to increase caryophyllene content. Volatile compounds from the root were characterized mainly by camphene, fenchyl-acetate and bornyl acetate; which constitute about 60% of total volatile.

  13. Effects of Gibberellic Acid Treatment for Pollen Sterility Induction on the Physiological Activity and Endogenous Hormone Levels of the Seed in Safflower

    Hasan BAYDAR

    2002-01-01

    In this research, our aim was to determine the effects of gibberellic acid, which was applied to safflower plants (Carthamus tinctorius L. cv. Dinçer 5-118) for pollen sterility induction, on some physiological activity and endogenous hormone levels of the seeds. Exogenously applied gibberellic acid (GA3) strongly influenced the endogenous hormone levels of the seeds by decreasing the levels of GA3 and zeatin, and increasing the levels of indole-3-acetic acid (IAA) and abscisic acid (ABA). Th...

  14. Organogenesis and plant formation from cotyledon and callus culture of rape

    Janina H. Rogozińska; Lucyna Drozdowska

    2014-01-01

    Cotyledon explants of rape were excised from aseptically germinated seedlings and cultured during 2 weeks on M u r a s h i g e and S k o o g medium supplemented with auxins, cytokinins, auxin-cytokinin combinations and abscisic acid. Callus formation occurred on medium with 2,4-dichlorophenoxyacetic acid (2,4-D), naphthalene-l-acetic acid (NAA), indole-3-acetic acid (IAA) and on their combinations with kinetin (K) or 6-benzylaminopurine (BAP). Regeneration of roots was achieved on media with ...

  15. In vitro plant regeneration of 4 Capsicum spp. genotypes using different explant types

    ORLINSKA, Marta; NOWACZYK, Pawel

    2015-01-01

    This study evaluates the effectiveness of in vitro regeneration of 4 genotypes of pepper (Capsicum spp.) that differ in origin and functional properties: California Wonder, (ATZ × Sono)F1, Jalapeno, and SF-9. In order to investigate the effect of the initial explant type, photoperiod, and presence of 2.0 mg L-1 of glycine in the medium, organogenesis was induced on the MS medium with 2.0 g L-1 2-(N-morpholine) ethanesulfonic acid, 1.7 mg L-1 AgNO3, 0.4 mg L-1 indole-3-acetic acid (IAA), and 6...

  16. Migration of 2-butoxyethyl acetate from polycarbonate infant feeding bottles

    Petersen, Jens Højslev; Lund, K.H.

    2003-01-01

    An enforcement campaign was carried out to assess the migration of 2-butoxyethyl acetate (2-BEA) from polycarbonate infant feeding bottles intended for repeated use. Migration was measured by three successive migration tests into two of the European Union official food simulants: distilled water...... and 3% acetic acid testing at 40degrees C for 10 days. The Danish Veterinary and Food Administration (DVFA) has assessed that a migration above 0.33 mg for 2-BEA and a group of eight related substances kg(-1) foodstuff from plastics articles used exclusively for infants is unacceptable. Migration of 2...

  17. Simple Identification of the Neutral Chlorinated Auxin in Pea by Thin Layer Chromatography

    Engvild, Kjeld Christensen

    1980-01-01

    One of the neutral chlorinated auxins of immature pea seeds was readily identified by thin layer procedures simple enough to serve in student's laboratory courses. 4-Chloroindole-3-acetic acid methyl ester was extracted from 50 g of commercial, frozen peas by either water or acetone, concentrated...... to small volumes and chromatographed in CHCl3 or CCl4 solvent systems separating the chlorinated auxin from indoleacetonitrile and the methyl or ethyl esters of indoleacetic acid. Colour reaction was carried out with some of the Salkowski FeCl3 sprays of which Ehmann's FeCl3/dimethylaminobenzaldehyde...

  18. Enhanced Cadmium (Cd) Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Kunchaya Setkit; Acharaporn Kumsopa; Jaruwan Wongthanate; Benjaphorn Prapagdee

    2014-01-01

    A cadmium (Cd)-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also signifi...

  19. Increasing of Food and Bioenergy Potato Resources by Microbial Influence on Tubers Phytohormonal Status

    Kiprushkina, Elena I.; Baranenko, Denis A.

    2014-12-01

    Potato and its by-products became a promising both food and bioenergy resource. The determination of the bacteriaantagonists influence on phytohormone status and productivity of potato tubers was studied. The indole-3-acetic acid content during the dormancy end and germinating in the tubers treated with Bacillus subtilis Ch-13 was fewer than in the control samples. L-tryptophan significant quantity compared to the control was found in the treated tubers in a state of physiological dormancy (more than 2-fold) and especially during active germination (43 times greater). Average potato yield increase at treated fields was of 18.8 %.

  20. Comparison of dynamic changes in endogenous hormones and sugars between abnormal and normal Castanea mollissima

    Tao Liu; Yunqian Hu; Xiaoxian Li

    2008-01-01

    To elucidate the possible functions of endogenous hormones in the flowering of chestnut, concentrations of four endogenous hormones [indole-3-acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA), zeatin riboside (ZR)) and the soluble sugars content were measured in both normal and developmentally abnormal Chinese chestnut (Castanea mollissima) during flowering and fruiting stages. Our results showed that the contents of ZR, ABA, and GA exhibited a significant different pattern in normal trees from that in abnormal trees, while the contents of IAA and soluble sugars showed a similar change pattern between them. These results suggest that quantitative changes in endogenous hormones may correspond to different flowering and fruiting mechanisms.

  1. Morphogenetic Potential of Tomato (Lycopersicon esculentum cv. ‘Arka Ahuti’ to Plant Growth Regulators

    Kanakapura K. NAMITHA

    2013-05-01

    Full Text Available A highly reproducible in vitro regeneration method for tomato (Lycopersicon esculentum Mill. cultivar ‘Arka Ahuti’ was established by using hypocotyl, leaf and cotyledon explants from in vitro raised seedlings on Murashige and Skoog medium supplemented with different concentrations and combinations of hormones 6-Benzylamino purine (2 to 4 mg/L and Indole-3-acetic acid (0.1 to 1 mg/L. The medium supplemented with 2 mg/L 6-benzylamino purine and 0.1 mg/L indole-3-acetic acid was found to be the best for inducing direct shoot regeneration and multiple shoots per explant from hypocotyl explants. Callus induction was observed in all the explants and regeneration of shoots was also promoted by all these combinations. Shoots were transferred to the elongation medium which also induced 100% rooting. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established for ‘Arka Ahuti’ cultivar of tomato for obtaining direct regeneration using hypocotyl, leaf and cotyledon as explants.

  2. A carotenoid-deficient mutant in Pantoea sp. YR343, a bacteria isolated from the rhizosphere of Populus deltoides, is defective in root colonization

    Amber N Bible

    2016-04-01

    Full Text Available The complex interactions between plants and their microbiome can have a profound effect on the health and productivity of the plant host. A better understanding of the microbial mechanisms that promote plant health and stress tolerance will enable strategies for improving the productivity of economically-important plants. Pantoea sp. YR343 is a motile, rod-shaped bacterium isolated from the roots of Populus deltoides that possesses the ability to solubilize phosphate and produce the phytohormone indole-3-acetic acid. Pantoea sp. YR343 readily colonizes plant roots and does not appear to be pathogenic when applied to the leaves or roots of selected plant hosts. To better understand the molecular mechanisms involved in plant association and rhizosphere survival by Pantoea sp. YR343, we constructed a mutant in which the crtB gene encoding phytoene synthase was deleted. Phytoene synthase is responsible for converting geranylgeranyl pyrophosphate to phytoene, an important precursor to the production of carotenoids. As predicted, the ΔcrtB mutant is defective in carotenoid production, and shows increased sensitivity to oxidative stress. Moreover, we find that the ΔcrtB mutant is impaired in biofilm formation and production of indole-3-acetic acid. Finally we demonstrate that the ΔcrtB mutant shows reduced colonization of plant roots. Taken together, these data suggest that carotenoids are important for plant association and/or rhizosphere survival in Pantoea sp. YR343.

  3. Tissue culture and generation of autotetraploid plants of Sophora flavescens Aiton

    Wei Kun-Hua

    2010-01-01

    Full Text Available Background: Sophora flavescens Aiton is an important medicinal plant in China. Early in vitro researches of S. flavescens were focused on callus induction and cell suspension culture, only a few were concerned with in vitro multiplication. Objective: To establish and optimize the rapid propagation technology of S. flavescens and to generate and characterize polyploid plants of S. flavescens. Materials and Methods: The different concentrations of 6-benzylaminopurine (BAP, indole-3-acetic acid (IAA and kinetin (KT were used to establish and screen the optimal rapid propagation technology of S. flavescens by orthogonal test; 0.2% colchicine solution was used to induce polyploid plants and the induced buds were identified by root-tip chromosome determination and stomatal apparatus observation. Results: A large number of buds could be induced directly from epicotyl and hypocotyl explants on the Murashige and Skoog medium (MS; 1962 supplemented with 1.4-1.6 mg/l 6-benzylaminopurine (BAP and 0.3 mg/l indole-3-acetic acid (IAA. More than 50 lines of autotetraploid plants were obtained. The chromosome number of the autotetraploid plantlet was 2n = 4x = 36. All tetraploid plants showed typical polyploid characteristics. Conclusion: Obtained autotetraploid lines will be of important genetic and breeding value and can be used for further selection and plant breeding.

  4. A proteomics study of auxin effects in Arabidopsis thaliana

    Meiqing Xing; Hongwei Xue

    2012-01-01

    Many phytohormones regulate plant growth and development through modulating protein degradation.In this study,a proteome study based on multidimensional non-gel shotgun approach was performed to analyze the auxin-induced protein degradation via ubiquitinproteasome pathway of Arabidopsis thaliana,with the emphasis to study the overall protein changes after auxin treatment (1 nM or 1 μM indole-3-acetic acid for 6,12,or 24 h).More than a thousand proteins were detected by using label-free shotgun method,and 386 increased proteins and 370 decreased ones were identified after indole-3-acetic acid treatment.By using the auxin receptor-deficient mutant,tir1-1,as control,comparative analysis revealed that 69 and 79 proteins were significantly decreased and increased,respectively.Detailed analysis showed that among the altered proteins,some were previously reported to be associated with auxin regulation and others are potentially involved in mediating the auxin effects on specific cellular and physiological processes by regulating photosynthesis,chloroplast development,cytoskeleton,and intracellular signaling.Our results demonstrated that label-free shotgun proteomics is a powerful tool for large-scale protein identification and the analysis of the proteomic profiling of auxin-regulated biological processes will provide informative clues of underlying mechanisms of auxin effects.These results will help to expand the understanding of how auxin regulates plant growth and development via protein degradation.

  5. Efficient plant regeneration of bittersweet (Solanum dulcamara L., a medicinal plant

    Arzu Ucar Turker

    2011-04-01

    Full Text Available Solanum dulcamara L. (bittersweet is a medicinal plant that has been used to treat skin diseases, warts, tumors, felons, arthritis, rheumatism, bronchial congestion, heart ailments, ulcerative colitis, eye inflammations, jaundice and pneumonia. A reliable in vitro culture protocol for bittersweet was established. Explants (leaf and petiole segments were cultured on Murashige and Skoog minimal organics (MSMO medium with various plant growth regulator combinations. Leaf explants formed more shoots than petiole explants. Plant regeneration was observed through indirect organogenesis with both explants. Best shoot proliferation was obtained from leaf explants with 3 mg/l BA (benzyladenine and 0.5 mg/l IAA (indole-3-acetic acid. Regenerated shoots were transferred to rooting media containing different levels of IAA (indole-3-acetic acid, IBA (indole-3-butyric acid, NAA (naphthalene acetic acid or 2,4-D (2,4 dichlorophenoxyacetic acid. Most shoots developed roots on medium with 0.5 mg/l IBA. Rooted explants were transferred to vermiculate in Magenta containers for acclimatization and after 2 weeks, they were planted in plastic pots containing potting soil and maintained in the plant growth room.

  6. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  7. Micropropagation of Genista aetnensis [(Raf. ex Biv.DC

    Giovanni IAPICHINO

    2015-12-01

    Full Text Available Genista aetnensis [(Raf. ex Biv.DC] is a large deciduous shrub or small tree native to the Italian islands of Sardinia and Sicily. Being winter hardy and characterized by high plasticity in altitude and ecology, the species is grown in gardens and landscaping, both for flower and for its attractive shape. Genista species are generally propagate by seed or semi-hardwood cuttings. In this report an efficient in vitro technique for propagation of G. aetnensis was investigated. Multiple shoots were induced on nodal segments of a mature plant of Genista aetnensis. The Murashige and Skoog medium, augmented with different concentrations of N-6-benzyladenine either singly or in combination with indole-3-acetic acid, as potential medium for shoot multiplication by nodal segments was tested. In the following experiment equal molar concentrations of four cytokinins (2-isopenthenyladenine, kinetin, zeatin and N-6-benzyladenine were tested for ability to induce axillary shoot development from single node stem segments. The highest rate of axillary shoot proliferation was induced on the medium supplemented with 0.44 μM BA. Growth regulator requirements for shoot proliferation in G. aetnensis were satisfied by BA alone. Explants were divided, subcultured and continued to proliferate shoots. A proliferation rate of 3.5 shoots per single node explants every four weeks occurred. Seven indole-3-acetic acid concentrations (0, 0.23, 0.45, 0.91, 1.82, 3.64 or 7.29 µM were tested to determine the optimum conditions for in vitro rooting of microshoots. The highest rooting percentage was obtained with indole-3-acetic acid at 3.64 mM (57%. Eighty percent of the in vitro rooted plantlets were successfully established in soil. This micropropagation system of G. aetnensis based on axillary shoot development from nodal segments followed by in vitro rooting should be preferred for rapid and efficient mass propagation of selected clones and could represent an alternative

  8. Improvement of pineapple (Ananas comosus (L.) Merr.) using biotechnology and mutation breeding techniques

    Micropropagation and in vitro mutagenesis are reported in two local pineapple (Ananas comosus (L.) Merr.) varietie, 'Smooth Cayenne' and 'Sugar Loaf'. Multiple shoots developed on Murashige and Skoog medium containing 3.5% sucrose, 3μM/L thiamine HCl, 3μM/l naphthaline acetic acid (NAA) and varying concentrations of 6-benzylaminopurine (BAP). Shoot proliferation was best with 20 μM/l BAP. Shoots were rooted on MS medium supplemented with 1.5 μM/l indole-3-butyric acid (IBA) and 0.75 μM/l indole-3-acetic acid (IAA). Radiosensitivity was determined by irradiating in vitro shoot tips with 15 to 120 Gy gamma rays. The LD50 was found to be 45 Gy, and doses above 80 Gy were lethal to explants. Projected methods are discussed to carry out mutation breeding for tolerance to drought and heat. (author). 12 refs, 2 figs

  9. Improved mass multiplication of Rhodiola crenulata shoots using temporary immersion bioreactor with forced ventilation.

    Zhao, Yan; Sun, Wei; Wang, Ying; Saxena, Praveen K; Liu, Chun-Zhao

    2012-03-01

    A temporary immersion bioreactor system was found to be suitable for mass shoot proliferation of Rhodiola crenulata. The shoot multiplication ratio and hyperhydration rate reached 46.8 and 35.4%, respectively, at a temporary immersion cycle of 3-min immersion every 300 min. Forced ventilation was employed in the temporary immersion bioreactor culture in order to decrease the hyperhydration rate, improve shoot quality and enhance the multiplication ratio. The highest multiplication ratio of 55.7 was obtained under a temporary immersion cycle of 3-min immersion every 180 min with the forced ventilation at an air flow rate of 40 l/h, and the hyperhydration rate was reduced to 26.1%. Forced ventilation also improved the subsequent elongation and rooting rate of these proliferated shoots, and the shoot cultures from the temporary immersion bioreactor formed complete plantlets when subcultured onto a rooting medium containing 5 μmol/l indole-3-acetic acid. PMID:22238017

  10. Metabolism of Tryptophol in Higher and Lower Plants 1

    Laćan, Goran; Magnus, Volker; Šimaga, Šumski; Iskrić, Sonja; Hall, Prudence J.

    1985-01-01

    Bacteria, thallophytes, and seed plants (107 species), supplied with exogenous indole-3-ethanol (tryptophol), formed one or more of the following metabolites: O-acetyl tryptophol, an unknown tryptophol ester (or a set of structurally closely related esters), tryptophol glucoside, tryptophol galactoside, indole-3-acetic acid (IAA), and indole-3-carboxylic acid. The unknown ester was formed by all species examined; O-acetyl tryptophol appeared sporadically in representatives of most major taxonomic groups. Tryptophol galactoside was found in the algae Chlorella, Euglena, and Ochromonas. The glucoside was formed by many eucaryotic plants, but not by bacteria; it was a significant tryptophol metabolite in vascular plants. IAA, if detectable at all, was usually a minor metabolite, as should be expected, if tryptophol oxidase responds to feedback inhibition by IAA. Indole-3-carboxylic acid, formed by a few fungi and mosses, was the only tryptophol metabolite detected which is likely to be formed via IAA. PMID:16664264

  11. Metabolism of tryptophol in higher and lower plants.

    Laćan, G; Magnus, V; Simaga, S; Iskrić, S; Hall, P J

    1985-07-01

    Bacteria, thallophytes, and seed plants (107 species), supplied with exogenous indole-3-ethanol (tryptophol), formed one or more of the following metabolites: O-acetyl tryptophol, an unknown tryptophol ester (or a set of structurally closely related esters), tryptophol glucoside, tryptophol galactoside, indole-3-acetic acid (IAA), and indole-3-carboxylic acid. The unknown ester was formed by all species examined; O-acetyl tryptophol appeared sporadically in representatives of most major taxonomic groups. Tryptophol galactoside was found in the algae Chlorella, Euglena, and Ochromonas. The glucoside was formed by many eucaryotic plants, but not by bacteria; it was a significant tryptophol metabolite in vascular plants. IAA, if detectable at all, was usually a minor metabolite, as should be expected, if tryptophol oxidase responds to feedback inhibition by IAA. Indole-3-carboxylic acid, formed by a few fungi and mosses, was the only tryptophol metabolite detected which is likely to be formed via IAA. PMID:16664264

  12. Effects of microgravity on growth hormone concentration and distribution in plants

    Schulze, Aga; Jensen, Philip; Desrosiers, Mark; Bandurski, Robert S.

    1989-01-01

    On earth, gravity affects the distribution of the plant growth hormone, indole-3-acetic acid (IAA), in a manner such that the plant grows into a normal vertical orientation (shoots up, roots down). How the plant controls the amount and distribution of IAA is only partially understood and is currently under investigation in this laboratory. The question to be answered in the flight experiment concerns the effect of gravity on the concentration, turn over, and distribution of the growth hormone. The answer to this question will aid in understanding the mechanism by which plants control the amount and distribution of growth hormone. Such knowledge of a plant's hormonal metabolism may aid in the growth of plants in space and will lead to agronomic advances.

  13. Transport and Metabolism of the Endogenous Auxin Precursor lndole-3-Butyric Acid

    Lucia C. Strader; Bonnie Bartel

    2011-01-01

    T Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.

  14. Gravitational effects on plant growth hormone concentration

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  15. Effects of 2,4-D and 4-CPA on yield and quality of the tomato, Lycopersicon esculentum Miller (Solanaceae)

    Gemici, Meliha; Türkyilmaz, B.; Tan, Kit

    2007-01-01

    Synthetic plant growth substances augment plant growth when applied at specific concentrations; they are also reported as without causing significant increases in the amount of internal plant hormones. Exceeding recommended dosages, however, affects yield and quality adversely. An experiment, to...... economy. Our tests confirm that application of concentrations in excess of the recommended dosage produces deformed and inferior fruit, increases fruit number and incidence of parthenocarpy. The use of growth regulators led to an increase in the levels of the internal plant hormone indol-3 acetic acid...... test the effects of high concentrations of two growth regulators 2,4- dichlorophenoxy acetic acid (2,4-D) and 4-chlorophenoxy acetic acid (4-CPA) on fruit development in the tomato plant, was carried out. This plant is grown on a large scale in Turkey, contributing to and supporting the national...

  16. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste.

    Ravindran, Balasubramani; Wong, Jonathan W C; Selvam, Ammaiyappan; Sekaran, Ganesan

    2016-10-01

    This study focuses on the effect of the epigeic earthworm Eudrilus eugeniae (with and without addition) to transform solid state fermented (SSF) and submerged (SmF) state fermented TFL mixed with cow dung and leaf litter into value added products in compost and vermicompost bioreactors respectively. The significant role of microbes was identified during compost and vermicompost process. In addition, three important phytohormones (Indole 3-acetic acid, Gibberellic acid, Kinetin) were also detected in the compost and vermicompost products. The results revealed that the maximum amount of plant hormones were available in the vermicompost products which may be due to the joint action of earthworm and microorganisms. The overall results confirmed that the vermicomposting process produced a greater value added product. PMID:27013190

  17. Effect of phytohormones on the growth of Scenedesmus quadricauda (Turp. Bréh

    Ewa Tatkowska

    2014-02-01

    Full Text Available Studies were made an the effect of indole-3-acetic acid (IAA, gibberellic acid (GA, kinetin (Kin, and various combinations of these substances upon dry matter increments, soluble protein content, and chlorophyll levels in the cultures of Scenedesmus quadricauda (Turp. Bréb. It was found that all these phytohormones, added separately to the medium, stimulated dry matter increment and protein content, although their effect depended on the concentration and the duration of culture. Addition of various combinations of the substances under study into the medium resulted in a less pronounced increment of dry matter, whereas the content of soluble protein significantly increased. The results reflect positive reaction of Scenedesmus quadricauda to the addition of phytohormones into the medium. They also suggest some differences in the action of particular hormones.

  18. Identification and characterization of an Ipomoea nil glucosyltransferase which metabolizes some phytohormones

    A glucosyltransferase gene InGTase1 was identified from the immature seeds of morning glory (Ipomoea nil), whose product shows a broad substrate-preference, including that of some phytohormones. When 2-trans-abscisic acid, indole-3-acetic acid, salicylic acid (SA) or (±)-jasmonic acid was reacted with InGTase1 and UDP-[14C]-glucose, each 14C-labeled compound with high polarity was detected after thin layer chromatography. SA metabolites were identified as SA glucosyl ester by using 1H NMR and GC/MS. Detailed substrate-preferences of InGTase1 were examined with some analogous compounds, which elucidated that the arm length and/or orientation of a carboxyl group of the compounds or its surrounding electron density severely affected the enzymatic activity. The broad substrate-preference will greatly contribute to the synthesis of various glucoconjugates

  19. Heterocarboxylates of molybdenum and tungsten nitrosyl halides

    Reactions of molybdenum nitrosyl chloride [{MoCl2(NO)2}n] and tungsten nitrosyl bromide [{WBr2(NO)2}n] with picolinic acid (PAH), nicotinic acid (NAH), isonicotinic acid (INAH), dipicolinic acid (DPAH), and of molybdenum nitrosyl chloride with indole-3-acetic acid (IAH), indole-3-propionic acid (IPH), indole-3-butyric acid (IBH) and L-tryptophan (TRH) in tetrahydrofuran have been studied. Complexes of the type [{MX2(NO)2.2(HL)}n] (where M=Mo/W, X=Cl/Br, HA=heterocarboxylic acid) have been isolated and characterized on the basis of elemental analysis and spectral studies. The magnetic susceptibility data suggest that these complexes are diamagnetic. (author). 12 refs., 1 tab

  20. Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis f. sp. tritici involved in auxin biosynthesis and rust pathogenicity.

    Yin, Chuntao; Park, Jeong-Jin; Gang, David R; Hulbert, Scot H

    2014-03-01

    The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. PMID:24350783

  1. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    De La Torre-Ruiz, Neyser; Ruiz-Valdiviezo, Víctor Manuel; Rincón-Molina, Clara Ivette; Rodríguez-Mendiola, Martha; Arias-Castro, Carlos; Gutiérrez-Miceli, Federico Antonio; Palomeque-Dominguez, Héctor; Rincón-Rosales, Reiner

    2016-01-01

    The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA), solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (pagave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species. PMID:27268113

  2. Synthesis of poly(acrylic acid-maleic acid)SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions

    A novel composite material of SiO2-Al2O3 based on poly(acrylic acid-maleic acid) was synthesized by irradiated with 60Co γ-rays at a dose of 25 KGy. The composite material was characterized using FTIR, TGA and BET surface area. Adsorption of 134Cs from HNO3 was studied as a function of contact time, temperature and concentration of Cs. Sorption behavior of 134Cs in different concentration of HCl, HNO3, acetic acid, ascorbic acid, citric acid, NaCl and NaNO3 solutions has been investigated. It can be concluded that the P(AA-MA)/SiO2/Al2O3 is promising adsorbent for Cs removal from acidic liquid radioactive waste. (author)

  3. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity.

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Gavalas, Antonios; Rekka, Eleni A

    2016-02-01

    Novel amides of non steroidal anti-inflammatory drugs (NSAIDs), α-lipoic acid and indole-3-acetic acid with thiomorpholine were synthesised by a simple method and at high yields (60-92%). All the NSAID derivatives highly decreased lipidemic indices in the plasma of Triton treated hyperlipidemic rats. The most potent compound was the indomethacin derivative, which decreased total cholesterol, triglycerides and LDL cholesterol by 73%, 80% and 83%, respectively. They reduced acute inflammation equally or more than most parent acids. Hence, it could be concluded that amides of common NSAIDs with thiomorpholine acquire considerable hypolipidemic potency, while they preserve or augment their anti-inflammatory activity, thus addressing significant risk factors for atherogenesis. PMID:26750253

  4. Physicochemical inactivation of Lassa, Ebola, and Marburg viruses and effect on clinical laboratory analyses

    Clinical specimens from patients infected with Lassa, Ebola, or Marburg virus may present a serious biohazard to laboratory workers. The authors have examined the effects of heat, alteration of pH, and gamma radiation on these viruses in human blood and on the electrolytes, enzymes, and coagulation factors measured in laboratory tests that are important in the care of an infected patient. Heating serum at 60 degrees C for 1 h reduced high titers of these viruses to noninfectious levels without altering the serum levels of glucose, blood urea nitrogen, and electrolytes. Dilution of blood in 3% acetic acid, diluent for a leukocyte count, inactivated all of these viruses. All of the methods tested for viral inactivation markedly altered certain serum proteins, making these methods unsuitable for samples that are to be tested for certain enzyme levels and coagulation factors

  5. Micropropagation of an elite F1 watermelon (Citrullus lanatus hybrid from the shoot tip of field grown plants

    Mohammad Khalekuzzaman

    2012-06-01

    Full Text Available The aim of this work was to develop a protocol for rapid micropropagation of an elite F1 hybrid watermelon cultivar using shoot tip of field-grown plants. Maximum frequency (73% of shoot tip showed growth response in MS medium supplemented with 5 mg l-1 benzyl adenine (BA and 0.1 mg l-1 indole-3 acetic acid (IAA. Upon transfer to cytokinin-enriched medium, the cultures produced multiple shoots and 2.0 mg l-1 BA was optimum in this respect. Addition of gibberellic acid (GA3 in the multiplication medium resulted in better growth of shoots. Rooting rate was 100% when shoots were obtained from second subculture were cultured in medium with 1.0 mg l-1 indole-3 butyric acid (IBA. The shoots produced more roots with increasing number of subcultures. About 72% of the regenerated plantlets acclimatized successfully and survived in the soil condition.

  6. In vitro micropropagation of Stevia rebaudiana Bertoni in Malaysia

    Ummi Nur Ain Abdul Razak

    2014-02-01

    Full Text Available Stevia rebaudiana Bertoni is a medicinal plants and commercially use as non-caloric sweetener for diabetic patient. In the present study, a protocol was developed for in vitro micropropagation using 6-benzylamino purine (BAP and Kinetin (Kn for the formation of multiple shoot proliferation and Indole-3-acetic acid (IAA, Indole-3-butyric acid (IBA and 1-Naphthaleneacetic acid (NAA for the induction of roots. Maximum shoot formation (7.82 ± 0.7 shoots per explants was observed on a Murashige and Skoog (MS medium supplemented with 0.5 mg L-1 BAP and 0.25 mg L-1 Kn. The maximum number of roots (30.12 ± 2.1 roots per explants was obtained on a MS medium containing 1.0 mg L-1 IBA. The well rooted plantlets were successfully weaned and acclimatized in plant soil with survival rate of 83.3 %.

  7. Study on Migration of Melamine from Food Packaging Materials on Markets

    JIE LU; JING XIAO; DA-JIN YANG; ZHU-TIAN WANG; DING-GUO JIANG; CONG-RONG FANG; JIE YANG

    2009-01-01

    Objectives To study the migration of melamine into foods from plastic food packaging materials and dairy product containers commonly used in China. Methods 37 samples were collected from the market. The EU migration testing conditions were adopted with distilled water, 3% acetic acid, n-hexane and 15% ethanol being chosen as the simulating solutions. The HPLC method was used to detect melamine. Results No melamine was detected in 15 dairy product containers. Among the 22 plastic samples, 16 of polypropylene, and polycarbonate types had no delectable amount melamine while a low level of melamine was found in 3 of the 6 melamine resin containers. Conclusion Migration of melamine from food packaging materials in China market is in line with the requirements of EU.

  8. α-Glucosidase Inhibitory Constituents from Acanthopanax senticosus Harm Leaves

    Hai-Xue Kuang

    2012-05-01

    Full Text Available A new triterpene glycoside, 3-O-[(α-L-rhamnopyranosyl(1→2]-[β-D-glucuronopyranosyl-6-O-methyl ester]-olean-12-ene-28-olic acid (1 and a new indole alkaloid, 5-methoxy-2-oxoindolin-3-acetic acid methyl ester (5 were isolated from the leaves of Acanthopanax senticosus Harms along with six known compounds. The structures of the new compounds were determined by means of 2D-NMR experiments and chemical methods. All the isolated compounds were evaluated for their glycosidase inhibition activities and compound 6 showed significant α-glucosidase inhibition activity.

  9. Short-term aluminium-induced changes in barley root tips.

    Zelinová, Veronika; Halušková, Lubica; Huttová, Jana; Illéš, Peter; Mistrík, Igor; Valentovičová, Katarína; Tamás, Ladislav

    2011-07-01

    The short-term exposure of barley roots to low Al concentration caused significant root growth inhibition and radial swelling of roots. During Al treatment, the radial expansion of root cells occurred in root tissues representing elongation zone and meristem. Both low pH and Al treatments caused significant disruption of cell membranes in swollen roots. In contrast to Evans blue uptake callose formation was observed only at higher Al concentrations and was detected in both swollen and adjacent root areas. Similarly to Al, exogenous short-term application of indole-3-acetic acid, polar transport inhibitor triiodobenzoic acid, ethylene precursor 1-aminocyclopropane-1-carboxylic acid or H(2)O(2) evoked root growth inhibition and radial cell expansion in barley root tip too. PMID:20734093

  10. Auxin and plant-microbe interactions.

    Spaepen, Stijn; Vanderleyden, Jos

    2011-04-01

    Microbial synthesis of the phytohormone auxin has been known for a long time. This property is best documented for bacteria that interact with plants because bacterial auxin can cause interference with the many plant developmental processes regulated by auxin. Auxin biosynthesis in bacteria can occur via multiple pathways as has been observed in plants. There is also increasing evidence that indole-3-acetic acid (IAA), the major naturally occurring auxin, is a signaling molecule in microorganisms because IAA affects gene expression in some microorganisms. Therefore, IAA can act as a reciprocal signaling molecule in microbe-plant interactions. Interest in microbial synthesis of auxin is also increasing in yet another recently discovered property of auxin in Arabidopsis. Down-regulation of auxin signaling is part of the plant defense system against phytopathogenic bacteria. Exogenous application of auxin, e.g., produced by the pathogen, enhances susceptibility to the bacterial pathogen. PMID:21084388

  11. Plant polar growth in tobacco disturbed by y-tubulin gene silencing

    Shuang Zhao; Kun Yang; Qian Ma; Qi Wang; Xiaodan Wang; Yanhong Li

    2009-01-01

    To further understand the functions of y-tubulin in plant cells, we conducted a study in which the y-tubulin gene was down-regulated in tobacco plants (obtained by the Agrobacterium-mediated method). This involved transforming the target fragments, in which the sense and antisense partial y-tubulin cDNA fragments were ligated together, into Nicotiana tabacum var. Samsun NN. The y-tubulin down-regulated transformants developed multiple meristems or branches with trumpet-shaped leaves; their root generation also appeared abnormal, with the taproots undeveloped, whereas lateral roots were developed. In addition, the content of indole-3-acetic acid (IAA) and expression of polarity transportation vector PGPI were aberrant. These results suggest that y-tubulin gene silencing disturbed the polar growth of tobacco plants, and that this phenomenon was probably correlated with the IAA content and the polar transpor-tation process.

  12. Effect of medium modification and selected precursors on sterol production by short-term callus cultures of Euphorbia tirucalli

    Biesboer, D.D.; Mahlberg, P.G.

    1979-01-01

    Latex from E. Tirucalli, a potential rubber source, contains steroidal alcohols that are high in energy and thus of value in biomass conversion to fuels. Euphol was present in large amounts in the latex, but tirucallol predominated in greater quantities in explants and callus indicating synthesis and/or accumulation of tirucallol by cells other than the laticifer cell. Sterol production was significantly enhanced by certain nutrient media, as well as indole-3-acetic acid, and depressed by benzyladenine. Precursor stimulation of product synthesis was successful only with squalene, which promoted sterol production at 1.0 mg/liter but inhibited cell growth at higher concentrations. DL-mevalonic acid and lanosterol promoted neither growth nor sterol production. DL-(214C) mevalonate was used to confirm the biosynthesis of sterols in both latex and callus cultures.

  13. Voltammetric analysis of N-containing drugs using the hanging galinstan drop electrode (HGDE).

    Channaa, H; Surmann, P

    2009-03-01

    The electrochemical behaviour of several N-containing voltammetric active drugs such as 1,4-benzodiazepines (chlordiazepoxide, nitrazepam and diazepam) as well as one nitro-compound (nitrofurantoin) and one azo-compound (phenazopyridine) is described using a new kind of liquid electrode, the hanging galinstan drop electrode. Concentrations of 10(-5) - 10(-8) mol L(-1) are generally measurable. Differential pulse and adsorptive stripping voltammograms are recorded in different supporting electrolytes, like 0.1 M KNO3, acetate buffer solution pH = 4.6 and phosphate buffer solution pH = 7.0. The effects of varying the starting potentials, U(start) for DPV and accumulation times, t(acc) for AdSV are considered. Briefly, it is shown that the novel galinstan electrode is suitable for reducing several functional groups in organic substances, here presented for N-oxide-, azomethine-, nitro- and azo-groups. PMID:19348337

  14. Ultrahigh-Performance Liquid Chromatography (UHPLC)-Tandem Mass Spectrometry (MS/MS) Quantification of Nine Target Indoles in Sparkling Wines.

    Tudela, Rebeca; Ribas-Agustí, Albert; Buxaderas, Susana; Riu-Aumatell, Montserrat; Castellari, Massimo; López-Tamames, Elvira

    2016-06-15

    An ultrahigh-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS) method was developed for the simultaneous determination of nine target indoles in sparkling wines. The proposed method requires minimal sample pretreatment, and its performance parameters (accuracy, repeatability, LOD, and matrix effect) indicate that it is suitable for routine analysis. Four indoles were found at detectable levels in commercial Cava samples: 5-methoxytryptophol (5MTL), tryptophan (TRP), tryptophan ethyl ester (TEE), and N-acetylserotonin (NSER). Two of them, NSER and 5MTL, are reported here for the first time in sparkling wines, with values of 0.3-2 and 0.29-29.2 μg/L, respectively. In the same samples, the contents of melatonin (MEL), serotonin (SER), 5-hydroxytryptophan (5-OHTRP), 5-hydroxyindole-3-acetic acid (5OHIA), and 5-methoxy-3-indoleacetic acid (5MIA) were all below the corresponding limits of detection. PMID:27148823

  15. Stimulation of auxin-induced elongation of cucumber hypocotyl sections by dihydroconiferyl alcohol

    The mechanism by which dihydroconiferyl alcohol (DCA) stimulates indole-3-acetic acid (IAA)-induced elongation of cucumber hypocotyl sections was studied. Although DCA did not affect the uptake of IAA-5-3H by hypocotyl sections, the endogenous level of IAA-5-3H in DCA-treated sections was much higher than in DCA-untreated ones. IAA-5-3H in the incubation medium was degraded in the presence of hypocotyl sections, and this degradation of IAA was inhibited by DCA. An in vitro experiment with horseradish peroxidase revealed that DCA inhibited the IAA-degrading activity of the oxidase, as did caffeic acid and ferulic acid. These results suggested that DCA enhances IAA-induced cucumber hypocotyl elongation by acting as an antioxidant of IAA. (auth.)

  16. Phytotoxical effect of Lepidium draba L. extracts on the germination and growth of monocot (Zea mays L.) and dicot (Amaranthus retroflexus L.) seeds.

    Kaya, Yusuf; Aksakal, Ozkan; Sunar, Serap; Erturk, Filiz Aygun; Bozari, Sedat; Agar, Guleray; Erez, Mehmet Emre; Battal, Peyami

    2015-03-01

    Laboratory experiments were performed to determine phytotoxic potentials of white top (Lepidium draba) methanol extracts (root, stem and leaf) on germination and early growth of corn (Zea mays) and redroot pigweed (Amaranthus retroflexus). Furthermore, the effects of different methanol extracts of L. draba on the phytohormone (indole-3-acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA) and zeatin) levels of corn and redroot pigweed were investigated. It was observed that all concentrations of methanol extracts of root, stem and leaf of L. draba inhibited germination, radicle and plumule elongation when compared with the respective controls. Besides this, the degree of inhibition was increased in concert with increasing concentrations of extracts used. On the other hand, phytohormone levels changed with the application of different extract concentrations. Comparing with the control, the GA levels significantly decreased while the ABA levels increased in all the application groups. Zeatin and IAA levels showed changes depending upon the applied extracts and concentrations. PMID:23293131

  17. Effects of P-Glycoprotein Inhibitor and Elicitor on the Salt Tolerance of Rice Seedlings

    Liang-Jun Fang; Xiao-Qin Fu; Qun-Shan Ye; Tian Wu; Zheng-Chao Wang; Xiao Chen; Zhi-Kai Zhu; Xing-Fu Zhang; Chui-Kang Fu

    2007-01-01

    Hymexazol (3-Hydroxy-5-methylisoxazole) as the main ingredients of HI (elicitor) was used to screen salt-tolerant species from 122 salt-tolerant rice (Oryza sativa L.) cultivars under specific inducement. The results showed that the local species R6 is highly induce-sensitive. R6 showed salt tolerance during the whole growth period by using 1.0% NaCl solution after HI treatment.Cyclosporin A (CsA) and verapamil (VP) as P-glycoprotein (PGP) inhibitors and rifampin (RFP) as a PGP elicitor were used to treat R6. The morphological traits, structure of the root, physiological characteristics of leaf and root systems, the content of endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) etc. show that CsA, VP and RFP had remarkable effects on the rice's salt tolerance. Hymexazol inducement (HI) can improve the rice's salt tolerance greatly and make it more salt-resistant.

  18. Three New Triterpene Esters from Pumpkin (Cucurbita maxima Seeds

    Takashi Kikuchi

    2014-04-01

    Full Text Available Three new multiflorane-type triterpene esters, i.e. 7α-hydroxymultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (1, 7α-methoxymultiflor-8-ene-3α,29-diol 3,29-dibenzoate (2, and 7β-methoxymultiflor-8-ene-3α,29-diol 3,29-dibenzoate (3, were isolated from seeds of Cucurbita maxima, along with the known compound, multiflora-7,9(11-diene-3α,29-diol 3,29-dibenzoate (4. Compound 1 exhibited melanogenesis inhibitory activities comparable with those of arbutin. In cytotoxicity assays, compounds 1 and 3 exhibited weak cytotoxicity, with IC50 values of 34.5–93.7 μM against HL-60 and P388 cells.

  19. Three new triterpene esters from pumpkin (Cucurbita maxima) seeds.

    Kikuchi, Takashi; Ueda, Shinsuke; Kanazawa, Jokaku; Naoe, Hiroki; Yamada, Takeshi; Tanaka, Reiko

    2014-01-01

    Three new multiflorane-type triterpene esters, i.e. 7α-hydroxymultiflor-8-ene-3α,29-diol 3-acetate-29-benzoate (1), 7α-methoxymultiflor-8-ene-3α,29-diol 3,29-dibenzoate (2), and 7β-methoxymultiflor-8-ene-3α,29-diol 3,29-dibenzoate (3), were isolated from seeds of Cucurbita maxima, along with the known compound, multiflora-7,9(11)-diene-3α,29-diol 3,29-dibenzoate (4). Compound 1 exhibited melanogenesis inhibitory activities comparable with those of arbutin. In cytotoxicity assays, compounds 1 and 3 exhibited weak cytotoxicity, with IC50 values of 34.5-93.7 μM against HL-60 and P388 cells. PMID:24743937

  20. Unsupervised Meta-Analysis on Diverse Gene Expression Datasets Allows Insight into Gene Function and Regulation

    Julia C. Engelmann

    2008-01-01

    Full Text Available Over the past years, microarray databases have increased rapidly in size. While they offer a wealth of data, it remains challenging to integrate data arising from different studies. Here we propose an unsupervised approach of a large-scale meta-analysis on Arabidopsis thaliana whole genome expression datasets to gain additional insights into the function and regulation of genes. Applying kernel principal component analysis and hierarchical clustering, we found three major groups of experimental contrasts sharing a common biological trait. Genes associated to two of these clusters are known to play an important role in indole-3-acetic acid (IAA mediated plant growth and development or pathogen defense. Novel functions could be assigned to genes including a cluster of serine/threonine kinases that carry two uncharacterized domains (DUF26 in their receptor part implicated in host defense. With the approach shown here, hidden interrelations between genes regulated under different conditions can be unraveled.

  1. Phylogeny and functions of bacterial communities associated with field-grown rice shoots.

    Okubo, Takashi; Ikeda, Seishi; Sasaki, Kazuhiro; Ohshima, Kenshiro; Hattori, Masahira; Sato, Tadashi; Minamisawa, Kiwamu

    2014-09-17

    Metagenomic analysis was applied to bacterial communities associated with the shoots of two field-grown rice cultivars, Nipponbare and Kasalath. In both cultivars, shoot microbiomes were dominated by Alphaproteobacteria (51-52%), Actinobacteria (11-15%), Gammaproteobacteria (9-10%), and Betaproteobacteria (4-10%). Compared with other rice microbiomes (root, rhizosphere, and phyllosphere) in public databases, the shoot microbiomes harbored abundant genes for C1 compound metabolism and 1-aminocyclopropane-1-carboxylate catabolism, but fewer genes for indole-3-acetic acid production and nitrogen fixation. Salicylate hydroxylase was detected in all microbiomes, except the rhizosphere. These genomic features facilitate understanding of plant-microbe interactions and biogeochemical metabolism in rice shoots. PMID:25130883

  2. The diageotropica mutant of tomato lacks high specific activity auxin sites

    Hicks, G.R.; Lomax, T.L. (Oregon State Univ., Corvallis (USA)); Rayle, D.L. (San Diego State Univ., CA (USA))

    1989-04-01

    Tomato (Lycopersicum esculentum, Mill) plants homozygous for the single gene diageotropica (dgt) mutation have reduced shoot growth, abnormal vascular tissue, altered leaf morphology, and lack of lateral root branching. These and other morphological and physiological abnormalities suggest that dgt plants are unable to respond to the plant growth hormone auxin (indole-3-acetic acid, IAA). The photoaffinity auxin analogue {sup 3}H-5N{sub 3}-IAA specifically labels a polypeptide doublet of 40 ad 42 kD in membrane preparations from stems of the parental variety VFN8, but not from stems of dgt. In elongation tests, excised dgt roots respond in the same manner to IAA an VFN8 roots. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system which is altered in a tissue-specific manner in the mutant.

  3. Influence of lead on auxin-induced cell elongation

    Marek Burzyński

    2014-02-01

    Full Text Available The influence of lead chloride on plant tissue growth is described. Lead reduced elongation of etiolated wheat coleoptile segments, green pea epicotyl fragments and etiolated and green sunflower hypocotyls. Green tissues were more susceptible to lead than etiolated ones. PbCl2 in a 10-4 M concentration significantly reduced plastic and elastic extensibility of the wheat coleoptile cell walls and diminished the hydration of sunflower hypocotyl segments. Auxin (indolyl-3-acetic acid - IAA applied in concentration optimal for growth of the particular tissues partly attenuated the inhibitory action of lead on elongation, plastic and elastic extensibility and water absorption. Auxin applied in supraoptimal concentrations did not abolish the inhibitory action of lead on tissue growth.

  4. Identification of the cells involved in auxin transport in maize mesocotyl

    Jones, A.M. (Univ. of North Carolina, Chapel Hill (USA))

    1989-04-01

    A study was undertaken to identify by a direct method the cells involved in auxin transport through maize mesocotyl tissue. The auxin photoaffinity labeling agent, 7-({sup 3}H), 5-azidoindole 3-acetic acid (N{sub 3}IAA), was loaded into excised stem tissue from a cut end. Polar transport of this analog was demonstrated over 4 hours by comparing uptake into tissue loaded with N{sub 3}IAA from the apical vs. the basal end. Triiodobenzoic acid, an auxin transport inhibitor, inhibited N{sub 3}IAA uptake into tissue. Tissue which had taken up the photoaffinity labeling agent was photolyzed to covalently fix the radioisotope within cells. This tissue was sectioned and subjected to in situ autoradiography. The outermost cell of epidermal tissue and certain files of cells in vascular tissue were densely labeled indicating that on a per cell basis these two cell types are most actively transporting auxin.

  5. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations

    Lomax, T.L.; Mehlhorn, R.J.; Briggs, W.R.

    1985-10-01

    Closed and pH-tight membrane vesicles prepared from hypocotyls of 5-day-old dark-grown seedlings of Cucurbita pepo accumulate the plant growth hormone indole-3-acetic acid along an imposed proton gradient (pH low outside, high inside). The use of electron paramagnetic spin probes permitted quantitation both of apparent vesicle volume and magnitude of the pH gradient. Under the experimental conditions used, hormone accumulation was at minimum 20-fold, a value 4 times larger than what one would predict if accumulation reflected only diffusional equilibrium at the measured pH gradient. It is concluded that hormone uptake is an active process, with each protonated molecule of hormone accompanied by an additional proton. Experiments with ionophores confirm that it is the pH gradient itself which drives the uptake.

  6. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab.

    Fu, Shih-Feng; Sun, Pei-Feng; Lu, Hsueh-Yu; Wei, Jyuan-Yu; Xiao, Hong-Su; Fang, Wei-Ta; Cheng, Bai-You; Chou, Jui-Yu

    2016-03-01

    Microorganisms can promote plant growth through direct and indirect mechanisms. Compared with the use of bacteria and mycorrhizal fungi, the use of yeasts as plant growth-promoting (PGP) agents has not been extensively investigated. In this study, yeast isolates from the phyllosphere and rhizosphere of the medicinally important plant Drosera spatulata Lab. were assessed for their PGP traits. All isolates were tested for indole-3-acetic acid-, ammonia-, and polyamine-producing abilities, calcium phosphate and zinc oxide solubilizing ability, and catalase activity. Furthermore, the activities of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and fungal cell wall-degrading enzymes were assessed. The antagonistic action of yeasts against pathogenic Glomerella cingulata was evaluated. The cocultivation of Nicotiana benthamiana with yeast isolates enhanced plant growth, indicating a potential yeast-plant interaction. Our study results highlight the potential use of yeasts as plant biofertilizers under controlled and field conditions. PMID:26895872

  7. Simple Metal-Free Dyes Derived from Triphenylamine for DSSC: A Comparative Study of Two Different Anchoring Group

    Graphical abstract: Display Omitted -- Abstract: We synthesized two new organic dyes (KNS1 and KNS2) based on the triphenylamine (TPA) core structure. Both of the dyes contain triphenylamine and thiophene moieties as an electron donor and cyanoacrylic acid and rhodanine-3-acetic acid units as electron acceptors. Nanocrystalline TiO2 based dye-sensitized solar cells (DSSCs) were fabricated using these dyes to investigate the effect of two different anchoring groups on their photovoltaic performance. The DSSCs based on KNS1 and KNS2 showed power conversion efficiency (PCE) of about 2.01% and 2.95%, respectively. The PCE has been significantly improved upto 3.53% and 3.00%, upon addition of chenodeoxycholic acid (CDCA) to the dye solution

  8. Fluorescent image classification by major color histograms and a neural network

    Soriano, M.; Garcia, L.; Saloma, Caesar A.

    2001-02-01

    Efficient image classification of microscopic fluorescent spheres is demonstrated with a supervised backpropagation neural network (NN) that uses as inputs the major color histogram representation of the fluorescent image to be classified. Two techniques are tested for the major color search: (1) cluster mean (CM) and (2) Kohonen's self-organizing feature map (SOFM). The method is shown to have higher recognition rates than Swain and Ballard's Color Indexing by histogram intersection. Classification with SOFM-generated histograms as inputs to the classifier NN achieved the best recognition rate (90%) for cases of normal, scaled, defocused, photobleached, and combined images of AMCA (7-Amino-4-Methylcoumarin- 3-Acetic Acid) and FITC (Fluorescein Isothiocynate)-stained microspheres.

  9. Effects of UV-C radiation on membrane potential and electric conductance in internodal cells of Nitellopsis obtusa [Chara corallina

    Effects of 253.7 nm ultraviolet radiation on membrane potential and conductance in internodal cells of Nitellopsis obtusa were studied. The radiation caused transient depolarization of plasmalemma and tonoplast and simultaneous increase in electric conductance. These effects were partly reversible and the degree of the recovery depended on the duration of the exposure. In cells with potential difference (between vacuole and external medium) more negative than – 140 mV, the radiation induced an action potential. The hyperpolarized state created by visible light and indole-3-acetic acid was fully suppressed by the radiation. The results are discussed taking into account the data for Chara corallina obtained by C. J. Doughty and A. B. Hope. It is suggested that 253.7 nm radiation inhibits electrogenic proton pumps in the plasmalemma and activates the Cl− channels

  10. Effect of PGR producing bacterial strains isolated from vermisources on germination and growth of Vigna unguiculata (L. Walp.

    Anandharaj Marimuthu

    2014-12-01

    Full Text Available Nineteen bacterial strains were isolated from vermisources andscreened for Indole-3-acetic acid (IAA production among themonly nine strains produce IAA and they were identified asStreptococcus spp., Micrococcus spp., Klebsiella spp., Bacillus spp., Enterobacter spp., Escherichia spp., Alcaligenes spp., Erwinia spp., and Pseudomonas spp. Among all other strains Bacillus sp. showed the higher IAA production hence selected for further molecular analysis and confirmed as Bacillus cereus. The B. cereus was grown in nutrient broth supplemented with different concentrations (1, 2, 3, 4 and 5mg/ml of tryptophan for seven days at pH 7 and at 37ºC. Crude IAA was used for in vitro phytostimulatory studies using Vigna unguiculata (L. Walp. The plant growth parameters were analyzed at different day intervals (5, 10 and 15 days. Supplementation of 5 ml crude IAA (2mg/ml of tryptophan dynamically enhances the plant growth parameters after 15 days.

  11. Micropropagation of Catalpa bignonioides Walt. through tissue cultures

    Halina Wysokińska

    2014-02-01

    Full Text Available The conditions used in the micropropagation of Catalpa bignonioides Walt. (Bignoniaceae from callus tissue are described. The multiplication of shoots was best on Schenk and Hildebrandt (SH solid medium supplemented with 0.5mg dm-3 indolil-3-acetic acid (IAA and 2.0 mg dm-3 benzylaminopurine (BAP. Under these conditions, 11 shoots per culture could be developed within 4 weeks. To develop roots, the shoots were then transferred to basal SH medium without growth regulators. Rooted plantlets were obtained within 2-8 weeks. Regenerated plants were fully capable of further development in soil. Generally, ca 10 plants could be obtained from a fragment of callus within 10-12 weeks.

  12. Indirect organogenesis from various explants of Hildegardia populifolia (Roxb. Schott & Endl. – A threatened tree species from Eastern Ghats of Tamil Nadu, India

    A.R. Lavanya

    2014-12-01

    Full Text Available Hildegardia species are an important resource for fiber industry. This investigation was conducted to develop a plant regeneration protocol for Hildegardia populifolia (Roxb. Schott & Endl. via indirect organogenesis Callus was obtained from leaf, internode and petiole explants, among these explants internode explant gave best result on MS medium supplemented with different concentrations of 2,4-Dichlorophenoxy acetic acid (2,4-D. The highest percentage (100% of regeneration was obtained with benzyladenine (BA (2.0 mg/l + indole-3-acetic acid (IAA (0.1 mg/l + glutamine (25 mg/l + thidiazuron (TDZ (0.5 mg/l from internode explants. Shootlets were highly rooted on MS medium supplemented with 3.0 mg/l indole-3-butyric acid (IBA. In vitro rooted seedlings were successfully acclimatized. This in vitro regeneration system will facilitate further development of reliable procedures for this genus.

  13. Response to gravity by Zea mays seedlings. I. Time course of the response

    Bandurski, R. S.; Schulze, A.; Dayanandan, P.; Kaufman, P. B.

    1984-01-01

    Gravistimulation induces an asymmetric distribution of free indole-3-acetic acid (IAA) in the cortex-epidermis of the Zea mays L. cv 'Stowells Evergreen' mesocotyl within 15 minutes, the shortest time tested. IAA was measured by an isotope dilution method as the pentaflurobenzyl ester. The per cent IAA in the lower half of the mescotyl cortex was 56 to 57% at 15, 30, and 90 minutes after stimulus initiation. Curvature is detectable in the mescotyl within 3 minutes after beginning gravitropic stimulation. The rate of curvature of the mesocotyl increases during the first 60 minutes to maximum of about 30 degrees per hour. Thus, the growth asymmetry continues to increase for 45 minutes after hormone asymmetry is established. Free IAA occurs predominantly in the stele of the mesocotyl whereas esterified IAA is mainly in the mesocotyl cortex-epidermis. This compartmentation may permit determining in which tissue the hormone asymmetry arises. Current data suggest the asymmetry originated in the stele.

  14. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  15. Dynamic changes in enzyme activities and phenolic content during in vitro rooting of tree peony (Paeonia suffruticosa Andr. plantlets

    Songlin He

    2011-07-01

    Full Text Available The dynamic changes of phenolic content and peroxidase (POD, polyphenol oxidase (PPO, indole-3-acetic acid oxidase (IAAO and phenylalanine ammonia lyase (PAL activities were assessed during the in vitro rooting process of three cultivars of tree peony (Paeonia suffruticosa Andr.. These changes in enzyme-related activity and phenolic content__observed at the level of the whole plant__differed during the first 20 days of the rooting process in easy-to-root ‘Feng Dan Bai’ cultivar and difficult-to-root ‘Wu Long Peng Sheng’ and ‘Tai Ping Hong’ cultivars, and in most cases they were actually opposite. The ease with which ‘Feng Dan Bai’ was able to root was closely related to the activity of all four enzymes (POD, PPO, IAAO, PAL as well as to the phenolic content.

  16. NMR Spectroscopy Identifies Metabolites Translocated from Powdery Mildew Resistant Rootstocks to Susceptible Watermelon Scions.

    Mahmud, Iqbal; Kousik, Chandrasekar; Hassell, Richard; Chowdhury, Kamal; Boroujerdi, Arezue F

    2015-09-16

    Powdery mildew (PM) disease causes significant loss in watermelon. Due to the unavailability of a commercial watermelon variety that is resistant to PM, grafting susceptible cultivars on wild resistant rootstocks is being explored as a short-term management strategy to combat this disease. Nuclear magnetic resonance-based metabolic profiles of susceptible and resistant rootstocks of watermelon and their corresponding susceptible scions (Mickey Lee) were compared to screen for potential metabolites related to PM resistance using multivariate principal component analysis. Significant score plot differences between the susceptible and resistant groups were revealed through Mahalanobis distance analysis. Significantly different spectral buckets and their corresponding metabolites (including choline, fumarate, 5-hydroxyindole-3-acetate, and melatonin) have been identified quantitatively using multivariate loading plots and verified by volcano plot analyses. The data suggest that these metabolites were translocated from the powdery mildew resistant rootstocks to their corresponding powdery mildew susceptible scions and can be related to PM disease resistance. PMID:26302171

  17. AcEST: DK955693 [AcEST

    Full Text Available zed protein OS=Picea... 61 3e-08 tr|A6XNC4|A6XNC4_MEDTR (Iso)flavonoid glycosyltransferase OS=Med... 60 4e-0...I +F GL L+ + Sbjct: 130 WVPEVAKKFKIPVAFFWTQSCAVYSIYY-----NFNRGLANLRDE 169 >tr|A6XNC4|A6XNC4_MEDTR (Iso)flavonoid...46|ANG1_EMENI Antigen 1 OS=Emericella nidulans GN=aspnd1 ... 30 6.1 sp|A6XNC6|UGFGT_MEDTR Flavonoid 3-O-gluc...e-3-acetate beta-glucosyltransferase ... 56 1e-07 sp|Q9MB73|LGT_CITUN Limonoid UDP-glucosyltransferase OS=Ci...LWASPAFIYSI 436 W VAR F++P V LW PAF + I Sbjct: 118 WVPKVARRFHLPSVHLWIQPAFAFDI 143 >sp|Q9MB73|LGT_CITUN Limonoid

  18. AcEST: DK951081 [AcEST

    Full Text Available ICSI Putative uncharacterized protein OS=Picea... 169 2e-40 tr|A6XNC3|A6XNC3_MEDTR (Iso)flavonoid...AGVPMISWPFLAEQPTN 398 >tr|A6XNC3|A6XNC3_MEDTR (Iso)flavonoid glycosyltransferase OS=Medicago truncatula PE=2...sferase 1 OS=Arabi... 126 9e-29 sp|A6XNC6|UGFGT_MEDTR Flavonoid 3-O-glucosyltransferase OS=Medic... 125 2e-2...e-7-O-glucosyltransfe... 125 3e-28 sp|Q9LFJ8|UGFGT_ARATH Flavonoid 3-O-glucosyltransferase OS=Ar...-3-acetate beta-glucosyltransferase ... 125 3e-28 sp|Q9ZQ95|FOGT1_ARATH Flavonol-3-O-glycosid

  19. AcEST: DK954602 [AcEST

    Full Text Available Picea... 55 3e-06 tr|B2XBQ5|B2XBQ5_PRUDU Mandelonitrile glucosyltransferase UGT85A... 54 1e-05 tr|A6XNC1|A6XNC1_MEDTR (Iso)flavonoid...nificant alignments: (bits) Value sp|Q9ZQ95|FOGT1_ARATH Flavonol-3-O-glycoside-7-..... 31 6.6 >sp|Q9ZQ95|FOGT1_ARATH Flavonol-3-O-glycoside-7-O-glucosyltransferase 1 OS=Arabidopsis thaliana GN...erase At... 35 0.35 sp|Q9ZVY5|IABG2_ARATH Indole-3-acetate beta-glucosyltransferase ... 35 0.35 sp|Q9MB73|LGT_CITUN Limonoid...earch results ■■ - Swiss-Prot (release 56.9) Link to BlastX Result : Swiss-Prot sp_hit_id Q9ZQ95 Definition

  20. Morphology Investigation of Electrolessly Deposited Ag Film on Ag-Activated p-Type Silicon(111) Wafer

    TONG, Hao; WANG, Chun-Ming

    2006-01-01

    A method of electroless silver deposition on silver activated p-type silicon(111) wafer was proposed. The silver seed layer was deposited firstly on the wafer in the solution of 0.005 mol/L AgNO3 + 0.06 mol/L HF. Then the silver film was electrolessly deposited on the seed layer in the electroless bath of AgNO3+NH3+acetic acid+NH2NH2(pH 10.2). The morphology of the seed layer and the silver films prepared under the condition of the different bath composition was compared by atomic force microscopy. The reflectance of the silver films with different thickness was characterized by Fourier transform infrared spectrometry. The experimental results indicate that the seed layer possesses excellent catalytic activity toward electroless silver deposition and rotating of the silicon wafer during the electroless silver deposition could lead to formation of the smoother silver film.

  1. Plant regeneration from protoplasts of hydroxyproline resistant cell line in Onobrychis viciaefolia

    XUZIQIN; JINGFENJIA

    1995-01-01

    An efficient protocol for plant regeneration from protoplasts of hydroxyproline(HYP)resistant cell line of Onobrychis viciaefolia was established.In SH medium supplemented with 1mg/L2,4-dichlorophenoxy-acetic acid(2,4-D),0.5mg/L kinetin(KT)and 0.2mg/L naphthalene acetic acid(NAA),the division frequency of protoplastderived cells reached up to over 60%,and microcalli were obtained in 5-6wk.Upon transferring them on agar solidified MS medium plus 2mg/L indole-3-acetic acid (IAA),shoots were induced.After cultivating them on MS medium with or without IAA,roots were regenerated.Chromosome number of all protoplast-regenerated plants examined were normal(2n=28).The protoplast-derived calli and plants grew vigorously on the medium containing 10 mmol/L HYP.

  2. Agrobacterium tumefaciens – Mediated transformation of Woodfordia fruticosa (L. Kurz

    Mallesham Bulle

    2015-12-01

    Full Text Available In the present study, a protocol for Agrobacterium tumefaciens-mediated transformation has been optimized for Woodfordia fruticosa (L. Kurz. Precultured axenic leaf segments were co-cultivated with A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301 with β-glucuronidase (uidA containing intron as the reporter gene and hygromycin phosphotransferase (hpt as a selectable marker gene. After 3 days of co-cultivation, leaf segments were cultured on MS medium containing Thidiazuron (TDZ 4.54 μM and Indole-3-acetic acid IAA (1.14 μM + 20 mg/l hygromycin + 200 mg/l cefotaxime (PTSM1 for 4 weeks (includes a single subculture onto the same medium at a 2 week interval. They were subsequently cultured for 3 weeks on MS medium containing Thidiazuron (TDZ 4.54 μM and Indole-3-acetic acid IAA (1.14 μM + 25 mg/l hygromycin + 100 mg/l cefotaxime (PTSM2 medium for further development and shoot elongation. The hygromycin resistant shoots were rooted on a rooting medium (PTRM containing half strength MS medium + 4.90 μM IBA + 25 mg/l hygromycin. A highest transformation efficiency of 44.5% with a mean number of 2.6 transgenic shoots per explant was achieved. Successful transformation was confirmed by the histochemical GUS activity of the regenerated shoots, PCR and RT-PCR analysis using respective primers. Southern blot analysis revealed that the hpt gene integrated into the genome of transgenic W. fruticosa. Establishment of genetic transformation protocol may facilitate the improvement of this medicinal plant in terms of enhancement of secondary metabolites.

  3. Disposition and pharmacokinetics of the antimigraine drug, rizatriptan, in humans.

    Vyas, K P; Halpin, R A; Geer, L A; Ellis, J D; Liu, L; Cheng, H; Chavez-Eng, C; Matuszewski, B K; Varga, S L; Guiblin, A R; Rogers, J D

    2000-01-01

    The absorption and disposition of rizatriptan (MK-0462, Maxalt(TM)), a selective 5-HT(1B/1D) receptor agonist used in the treatment of migraine headaches, was investigated in humans. In a two-period, single i.v. (3 mg, 30-min infusion), and single oral (10 mg) dose study with [(14)C]rizatriptan in six healthy human males, total recovery of radioactivity was approximately 94%, with unchanged rizatriptan and its metabolites being excreted mainly in the urine (89% i.v. dose, 82% p.o. dose). Approximately 26 and 14% of i.v. and oral rizatriptan doses, respectively, were excreted in urine as intact parent drug. In a second, high-dose study (60 mg p.o.), five metabolites excreted into urine were identified using liquid chromatography-tandem mass spectrometry and NMR methods. They were triazolomethyl-indole-3-acetic acid, rizatriptan-N(10)-oxide, 6-hydroxy-rizatriptan, 6-hydroxy-rizatriptan sulfate, and N(10)-monodesmethyl-rizatriptan. Urinary excretion of triazolomethyl-indole-3-acetic acid after i.v. and oral administrations of rizatriptan accounted for 35 and 51% of the dose, respectively, whereas the corresponding values for rizatriptan-N(10)-oxide were 4 and 2% of the dose. Plasma clearance (CL) and renal clearance (CL(r)) were 1325 and 349 ml/min, respectively, after i.v. administration. A similar CL(r) value was obtained after oral administration (396 ml/min). The primary route of rizatriptan elimination occurred via nonrenal route(s) (i.e., metabolism) because the CL(r) of rizatriptan accounted for 25% of total CL. Furthermore, the CL(r) was higher than normal glomerular filtration rate ( approximately 130 ml/min), indicating that this compound was actively secreted by renal tubules. The absorption of rizatriptan was approximately 90%, but it experienced a moderate first-pass effect, resulting in a bioavailability estimate of 47%. PMID:10611145

  4. Exogenous IAA treatment enhances phytoremediation of soil contaminated with phenanthrene by promoting soil enzyme activity and increasing microbial biomass.

    Li, Weiming; Wang, Dongsheng; Hu, Feng; Li, Huixin; Ma, Lili; Xu, Li

    2016-06-01

    In this study, we aimed to confirm that indole-3-acetic acid promotes plant uptake of phenanthrene (PHE), stimulates the activity of soil enzymes or microflora, and thereby accelerates the dissipation of PHE in soil. Four treatments were evaluated: PHE-contaminated soil planted with (1) ryegrass (T0), (2) ryegrass and supplemented with 1 mg kg(-1) indole-3-acetic acid (IAA) (T1), (3) ryegrass and supplemented with 5 mg kg(-1) IAA (T5), and (4) ryegrass and supplemented with 10 mg kg(-1) IAA (T10). After 30 days, PHE concentrations were lower for all treatments and the removal rate was 70.19, 89.17, 91.26, and 97.07 % for T0, T1, T5, and T10, respectively. PHE was only detected in the roots and not in the shoots. IAA facilitated the accumulation of PHE in the roots, and plants subjected to the T10 treatment had the highest levels. Exogenous IAA stimulated soil peroxidase activity in a dose-dependent manner, whereas soil polyphenoloxidase activity was not significantly increased, except in T10. Soil microbial biomass also increased in response to IAA treatment, particularly in T10. Furthermore, phospholipid fatty acid analysis showed that IAA treatment increased microbial biomass and alleviated environmental stress. Gram-positive bacteria are largely responsible for polycyclic aromatic hydrocarbon degradation, and we found that the ratio of gram-positive to gram-negative bacteria in the soil significantly increased as the IAA concentrations increased (P < 0.05). Correlation analysis indicated that the increase in soil microbial biomass, enzyme activity, and plant uptake of PHE promotes removal of PHE from the soil. PMID:26884240

  5. High-frequency in vitro plantlet regeneration from apical bud as a novel explant of Carum copticum L.

    Mansoureh Salehi; Bahman Hosseini; Zohreh Jabbarzadeh

    2014-01-01

    Objective: To develop an in vitro regeneration system to increase the recovery of Carum copticum L. plantlets as a part of developing a metabolic engineering program.Methods:3-acetic acid and indole butyric acid on direct shoot regeneration and rooting of ajowan from apical bud explants were assessed. All explants were cultured on Murashige and Skoog (MS) medium supplemented with different combinations of 6-benzyl amino purine (BAP) (0, 2.2, 4.4, 8.8µ The efficacy of different concentrations and combinations of 6-benzyladenine, indole-Results: The maximum shoot regeneration frequency (97.5%) and the highest number of shoots produced from apical buds (34 shoots per explant) were obtained on MS medium fortified with BAP (4.4 µmol/L) and IAA (0.5 µmol/L). Low shoot regeneration frequency was observed in BAP free treatments. The effects of different strengths of MS medium and various concentrations of IAA and indole-3- butyric acid on rooting rate, length and average number of roots were also investigated. Application of indole-3- butyric acid (6 µmol/L) in full-strength MS medium, was more effective than IAA and resulted in highest shoot regeneration frequency with the rooting rate of 100% and highest mean number of roots per shoot (41.8). The rooted plantlets were acclimatized successfully in greenhouse conditions with a survival rate of 90%. mol/L) and indole-3-acetic acid (IAA) (0, 0.5, 1.1, 2.2 µmol/L). Conclusion: In this study, a simple and reliable regeneration and acclimatization protocol for Carum copticum has been presented. This protocol can be found very advantageous for a variety of purposes, including mass multiplication of Carum species, medicinal plant breeding studies and transgenic plant production.

  6. Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach

    María A. Morel

    2016-04-01

    Full Text Available Delftia sp. JD2 is a chromium-resistant bacterium that reduces Cr(VI to Cr(III, accumulates Pb(II, produces the phytohormone indole-3-acetic acid and siderophores, and increases the plant growth performance of rhizobia in co-inoculation experiments. We aimed to analyze the biotechnological potential of JD2 using a genomic approach. JD2 has a genome of 6.76Mb, with 6,051 predicted protein coding sequences and 93 RNA genes (tRNA and rRNA. The indole-acetamide pathway was identified as responsible for the synthesis of indole-3-acetic acid. The genetic information involved in chromium resistance (the gene cluster, chrBACF, was found. At least 40 putative genes encoding for TonB-dependent receptors, probably involved in the utilization of siderophores and biopolymers, and genes for the synthesis, maturation, exportation and uptake of pyoverdine, and acquisition of Fe-pyochelin and Fe-enterobactin were also identified. The information also suggests that JD2 produce polyhydroxybutyrate, a carbon reserve polymer commonly used for manufacturing petrochemical free bioplastics. In addition, JD2 may degrade lignin-derived aromatic compounds to 2-pyrone-4,6-dicarboxylate, a molecule used in the bio-based polymer industry. Finally, a comparative genomic analysis of JD2, Delftia sp. Cs1-4 and Delftia acidovorans SPH-1 is also discussed. The present work provides insights into the physiology and genetics of a microorganism with many potential uses in biotechnology.

  7. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum?

    Kollmeier, M; Felle, H H; Horst, W J

    2000-03-01

    Short-term Al treatment (90 microM Al at pH 4.5 for 1 h) of the distal transition zone (DTZ; 1-2 mm from the root tip), which does not contribute significantly to root elongation, inhibited root elongation in the main elongation zone (EZ; 2.5-5 mm from the root tip) to the same extent as treatment of the entire maize (Zea mays) root apex. Application of Al to the EZ had no effect on root elongation. Higher genotypical resistance to Al applied to the entire root apex, and specifically to the DTZ, was expressed by less inhibition of root elongation, Al accumulation, and Al-induced callose formation, primarily in the DTZ. A characteristic pH profile along the surface of the root apex with a maximum of pH 5.3 in the DTZ was demonstrated. Al application induced a substantial flattening of the pH profile moreso in the Al-sensitive than in the Al-resistant cultivar. Application of indole-3-acetic acid to the EZ but not to the meristematic zone significantly alleviated the inhibition of root elongation induced by the application of Al to the DTZ. Basipetal transport of exogenously applied [(3)H]indole-3-acetic acid to the meristematic zone was significantly inhibited by Al application to the DTZ in the Al-sensitive maize cv Lixis. Our results provide evidence that the primary mechanisms of genotypical differences in Al resistance are located within the DTZ, and suggest a signaling pathway in the root apex mediating the Al signal between the DTZ and the EZ through basipetal auxin transport. PMID:10712559

  8. Uremic toxins inhibit transport by breast cancer resistance protein and multidrug resistance protein 4 at clinically relevant concentrations.

    Henricus A M Mutsaers

    Full Text Available During chronic kidney disease (CKD, there is a progressive accumulation of toxic solutes due to inadequate renal clearance. Here, the interaction between uremic toxins and two important efflux pumps, viz. multidrug resistance protein 4 (MRP4 and breast cancer resistance protein (BCRP was investigated. Membrane vesicles isolated from MRP4- or BCRP-overexpressing human embryonic kidney cells were used to study the impact of uremic toxins on substrate specific uptake. Furthermore, the concentrations of various uremic toxins were determined in plasma of CKD patients using high performance liquid chromatography and liquid chromatography/tandem mass spectrometry. Our results show that hippuric acid, indoxyl sulfate and kynurenic acid inhibit MRP4-mediated [(3H]-methotrexate ([(3H]-MTX uptake (calculated Ki values: 2.5 mM, 1 mM, 25 µM, respectively and BCRP-mediated [(3H]-estrone sulfate ([(3H]-E1S uptake (Ki values: 4 mM, 500 µM and 50 µM, respectively, whereas indole-3-acetic acid and phenylacetic acid reduce [(3H]-MTX uptake by MRP4 only (Ki value: 2 mM and IC(50 value: 7 mM, respectively. In contrast, p-cresol, p-toluenesulfonic acid, putrescine, oxalate and quinolinic acid did not alter transport mediated by MRP4 or BCRP. In addition, our results show that hippuric acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid and phenylacetic acid accumulate in plasma of end-stage CKD patients with mean concentrations of 160 µM, 4 µM, 129 µM, 1 µM and 18 µM, respectively. Moreover, calculated Ki values are below the maximal plasma concentrations of the tested toxins. In conclusion, this study shows that several uremic toxins inhibit active transport by MRP4 and BCRP at clinically relevant concentrations.

  9. 生长素对吊兰根负向光性的影响%Effects of IAA on the Negative Phototropism of Chlorophytum comosum Root

    陈艳; 黄朝朝; 陈娟; 杨谷良

    2011-01-01

    To explore the effects of IAA (Indole-3-acetic acid) on the negative phototropism of Chlorophytum comosum (Thunb.) Baker root, C. comosum was cultivated in different concentration of IAA solution with unilateral light illumination.The root growth rate and negative inclination of C. comosum were measured. The results showed that low concentration of IAA promoted root growth, but high IAA concentration inhibited root growth. When IAA concentration was 0.001 mg/L, the C. comosum showed the most obviously growth and bend. When the concentration of IAA solution was 10.000 mg/L, the phenomenon of negative phototropism disappeared. It was concluded that the root negative phototropism was affected by the comprehensive effect of the endogenous and exogenous IAA.%为了研究生长素对吊兰[Chlorophytum comosum(Thunb.)Baker] 系负向光性的影响,试验对处于不同浓度吲哚乙酸(Indole-3-acetic acid,IAA)溶液中受单侧光照射的吊兰根生长情况进行了研究.通过观察恒温条件下吊兰根的生长速率及负倾斜度,发现水培液中的IAA对吊兰根的生长和向光性反应有显著影响.低浓度的IAA促进根的生长,高浓度的IAA抑制根的生长;当IAA浓度为0.001 mg/L时,吊兰根的生长和弯曲最显著;当IAA的浓度达到10.000 mg/L时,吊兰根的生长和负向光性反应消失.由此证实根的负向光性受到内源与外源IAA的综合影响.

  10. Cerebral Metabolic Profiling of Hypothermic Circulatory Arrest with and Without Antegrade Selective Cerebral Perfusion: Evidence from Nontargeted Tissue Metabolomics in a Rabbit Model

    Zou, Li-Hua; Liu, Jin-Ping; Zhang, Hao; Wu, Shu-Bin; Ji, Bing-Yang

    2016-01-01

    Background: Antegrade selective cerebral perfusion (ASCP) is regarded to perform cerebral protection during the thoracic aorta surgery as an adjunctive technique to deep hypothermic circulatory arrest (DHCA). However, brain metabolism profile after ASCP has not been systematically investigated by metabolomics technology. Methods: To clarify the metabolomics profiling of ASCP, 12 New Zealand white rabbits were randomly assigned into 60 min DHCA with (DHCA+ASCP [DA] group, n = 6) and without (DHCA [D] group, n = 6) ASCP according to the random number table. ASCP was conducted by cannulation on the right subclavian artery and cross-clamping of the innominate artery. Rabbits were sacrificed 60 min after weaning off cardiopulmonary bypass. The metabolic features of the cerebral cortex were analyzed by a nontargeted metabolic profiling strategy based on gas chromatography-mass spectrometry. Variable importance projection values exceeding 1.0 were selected as potentially changed metabolites, and then Student's t-test was applied to test for statistical significance between the two groups. Results: Metabolic profiling of brain was distinctive significantly between the two groups (Q2Y = 0.88 for partial least squares-DA model). In comparing to group D, 62 definable metabolites were varied significantly after ASCP, which were mainly related to amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Kyoto Encyclopedia of Genes and Genomes analysis revealed that metabolic pathways after DHCA with ASCP were mainly involved in the activated glycolytic pathway, subdued anaerobic metabolism, and oxidative stress. In addition, L-kynurenine (P = 0.0019), 5-methoxyindole-3-acetic acid (P = 0.0499), and 5-hydroxyindole-3-acetic acid (P = 0.0495) in tryptophan metabolism pathways were decreased, and citrulline (P = 0.0158) in urea cycle was increased in group DA comparing to group D. Conclusions: The present study applied metabolomics analysis to identify the cerebral

  11. In vitro host-free seed culture, callus development and organogenesis of an obligatory root-parasite Striga hermonthica (Del. Benth: the witch-weed and medicinal plant

    Faisal Hammad Mekky Koua

    2011-07-01

    Full Text Available Striga hermonthica (Del. Benth a well-known hemi-parasitic weed, it also has been used widely in African folk medicine to remedy broad spectra of diseases. The current contribution is an attempt to establish reproducible in vitro callusing system. In vitro seedling’s stem segments were used as an explant for callus induction, in 1.5% or 3.0% sucrose added into Murashig and Skoog medium (MS and supplemented with different auxins, α-Naphthalene-3-acetic acid (NAA, 2,4-dichlorophenoxy acetic acid (2,4-D, Indole-3-acetic acid (IAA, or Indole-3-butryic acid (IBA at different concentrations each alone or in combination with cytokinin 0.5 mgl-1 6-benzyl aminopurine. The most effective auxin was NAA with maximum 79% callus induction rate. All auxin treatments induced callus in all concentration when used alone or combined with BAP, except 2,4-D, which induced the callus only when combined with BAP. A high sucrose concentration was required for high callus induction rate by all auxin treatments. IAA and IBA auxins induced direct shoot regeneration and had low callus induction rates. NAA, IAA and IBA induced organogenic calli, whereas 2,4-D in combination with BAP induced non-organogenic callus. We further screened preliminarily the phytochemical contents of the callus and intact plant, which was revealed the presence of flavonoids, terpenes, saponins, cardiac glycosides, alkaloids, tannins and coumarins. Experimental data of both seed culture and callus induction could provide a route to further enhance the efficiency of callus initiation of S. hermonthica for medicinal purposes and understanding the infection mechanism of the witch-weed plant.

  12. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Qmax) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Qmax of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation

  13. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  14. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-03-15

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q{sub max}) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q{sub max} of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  15. ANALYSIS OF LEACHABLE PERFLUOROOCTANIC ACID AND PERFLUOROOCTANIC SULFONIC IN DISPOSABLE LUNCH BOXES%一次性餐盒材料中全氟辛酸和全氟辛烷磺酸沥出性研究

    潘媛媛; 史亚利; 王亚(韦/华); 蔡亚岐

    2009-01-01

    The leachability of perfluorooctanie acid (PFOA) and perfluorooctanic sulfonic (PFOS) from disposable luneh boxes materials under 4 food stimulant conditions was investigated with the HPLC/MS/MS method, using MPFOA and MPFOS as the internal standard, respectively. Four kinds of solvents were selected to simulate the exposure of food to the plastic materials, which were distilled water, 3% acetic acid (W/W), 15% ethanol (V/V) and n-hexane. The two compounds in the stimulant solvents were extracted using the Supelclean LC-18 SPE (3ec) cartridges. It was indieated that foodstuff can be very likely contaminated by perfluorinated compounds during the usage of disposable lunch boxes, and that mueh higher level of PFOA (about2296 ng· m~(-2))was deteeted in the stimulant solvent of 3% acetic acid after contact with the disposable lunch box for 4 h. Generally, PFOS can hardly be leached out under the four conditions.%利用高效液相色谱-串联质谱检测方法对一次性餐盒材料中可沥出性全氟辛酸(PFOA)和全氟辛烷磺酸(PFPS)进行了研究.分别选取水、3%乙酸(W/W)、15%乙醇(V/V)和正己烷4种浸取液模拟餐盒材料在使用过程中可能接触到的水性、酸性、酒精类和油脂类条件.材料经4种溶液浸提后,浸取液用固相萃取净化和浓缩,目标分析物PFOA和PFOS采用内标法进行定量.研究表明,一次性餐盒材料在模拟条件下中有以PFOA为主的伞氟类化合物从材料中沥出,其中酸性环境对PFOA的浸取率最高(2296 ng·m~(-2)), 为其它3种方法的82.8倍;4种浸提条件下PFPS的沥出率都比较低,浓度仪为0.7 ng·m~(-2)-5.4 ng·m~(-2).

  16. Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp..

    Alexandre Crépin

    Full Text Available BACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also

  17. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    Ajit Kumar Passari

    Full Text Available Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM and chitinase (chiC were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34 and Leifsonia xyli (BPSAC24 were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L. under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from

  18. Oviposition by mutualistic seed-consuming pollinators reduces fruit abortion in a recently discovered pollination mutualism.

    Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Song, Min-Shu; Sun, Hang

    2016-01-01

    A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels. PMID:27418228

  19. An efficient system for in vitro propagation of Bouchea fluminensis (Vell. Mold. (Verbenaceae

    Cristiano Ferrara de Resende

    2014-06-01

    Full Text Available This study aimed to establish and propagate in vitro plants of Bouchea fluminensis, a medicinal species known in Brazil as gervão-falso ("false verbena", evaluating the influences of different growth regulators on in vitro multiplication and rooting stages, as well as examining ex vitro acclimatization of rooted plants. Explants were established on Murashige and Skoog medium at half strength of salts and vitamins without growth regulators. For multiplication, the explants were subjected to combinations of 6-benzyladenine (BA; 0, 2.5, 5.0 and 7.5 µM and α-naphthalene-acetic acid (NAA; 0, 0.2, 0.4 and 0.6 µM. The medium found to induce the greatest number of shoot was that containing 5 µM of BA (NAA-free. For rooting, we evaluated three auxins (NAA, indole-3-acetic acid and indole-3-butyric acid; 0.1, 0.2, 0.3 and 0.4 µM, as well as a control. No differences were observed between the control and the other treatments. The auxin-free medium was deemed the most suitable, because it ensures the lowest cost in the micropropagation procedures. We obtained 100% survival of the acclimatized seedlings, and the plants showed normal vegetative and reproductive development, suggesting that the micropropagation did not alter the biological cycle of this species. The results show the importance and potential of micropropagation for biodiversity conservation of Bouchea fluminensis.

  20. Analyses of Phytohormones in Coconut (Cocos Nucifera L. Water Using Capillary Electrophoresis-Tandem Mass Spectrometry

    Swee Ngin Tan

    2014-12-01

    Full Text Available Capillary electrophoresis (CE coupled with mass spectrometry (MS or tandem mass spectrometry (MS/MS is reported as an alternative and potentially useful method for the simultaneous analysis of various classes of phytohormones with diversified structures, including indole-3-acetic acid (IAA, indole-3-butyric acid (IBA, abscisic acid (ABA, gibberellic acid (GA, zeatin (Z, N6-benzyladenine (BA, α-naphthaleneacetic acid (NAA and 2,4-dichlorophenoxyacetic acid (2,4-D. The key to the CE-MS/MS analysis was based on electroosmotic flow reversal using a cationic polymer-coated capillary. Under optimum conditions, a baseline separation of eight phytohormones was accomplished within 30 min using 60 mM ammonium formate/formic acid buffer of pH 3.8 with −20 kV as the separation voltage. The accessibility of MS/MS together with the characterization by migration properties obtained by CE allows for the development of CE-MS/MS as an emerging potential method for the analysis of different classes of phytohormones in a single run. The utility of the CE-MS/MS method was demonstrated by the comprehensive screening of phytohormones in coconut (Cocos nucifera L. water after pre-concentration and purification through solid-phase extraction (SPE cartridge. IAA, ABA, GA and Z were detected and quantified in the purified coconut water extract sample.

  1. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe₂O₃).

    Gui, Xin; Deng, Yingqing; Rui, Yukui; Gao, Binbin; Luo, Wenhe; Chen, Shili; Nhan, Le Van; Li, Xuguang; Liu, Shutong; Han, Yaning; Liu, Liming; Xing, Baoshan

    2015-11-01

    Nanoparticles (NPs) are an increasingly common contaminant in agro-environments, and their potential effect on genetically modified (GM) crops has been largely unexplored. GM crop exposure to NPs is likely to increase as both technologies develop. To better understand the implications of nanoparticles on GM plants in agriculture, we performed a glasshouse study to quantify the uptake of Fe2O3 NPs on transgenic and non-transgenic rice plants. We measured nutrient concentrations, biomass, enzyme activity, and the concentration of two phytohormones, abscisic acid (ABA) and indole-3-acetic acid (IAA), and malondialdehyde (MDA). Root phytohormone inhibition was positively correlated with Fe2O3 NP concentrations, indicating that Fe2O3 had a significant influence on the production of these hormones. The activities of antioxidant enzymes were significantly higher as a factor of low Fe2O3 NP treatment concentration and significantly lower at high NP concentrations, but only among transgenic plants. There was also a positive correlation between the treatment concentration of Fe2O3 and iron accumulation, and the magnitude of this effect was greatest among non-transgenic plants. The differences in root phytohormone production and antioxidant enzyme activity between transgenic and non-transgenic rice plants in vivo suggests that GM crops may react to NP exposure differently than conventional crops. It is the first study of NPs that may have an impact on GM crops, and a realistic significance for food security and food safety. PMID:26154040

  2. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  3. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency.

    Scagliola, M; Pii, Y; Mimmo, T; Cesco, S; Ricciuti, P; Crecchio, C

    2016-10-01

    Plant Growth Promoting Bacteria (PGPB) are considered a promising approach to replace the conventional agricultural practices, since they have been shown to affect plant nutrient-acquisition processes by influencing nutrient availability in the rhizosphere and/or those biochemical processes determining the uptake at root level of nitrogen (N), phosphorus (P), and iron (Fe), that represent the major constraints for crop productivity worldwide. We have isolated novel bacterial strains from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) plants, previously grown in hydroponic solution (either Fe deficient or Fe sufficient) and subsequently transferred onto an agricultural calcareous soil. PGPB have been identified by molecular tools and characterized for their capacity to produce siderophores and indole-3-acetic acid (IAA), and to solubilize phosphate. Selected bacterial isolates, showing contemporarily high levels of the three activities investigated, were finally tested for their capacity to induce Fe reduction in cucumber roots two isolates, from barley and tomato plants under Fe deficiency, significantly increased the root Fe-chelate reductase activity; interestingly, another isolate enhanced the reduction of Fe-chelate reductase activity in cucumber plant roots, although grown under Fe sufficiency. PMID:27295343

  4. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J; Glick, Bernard R

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  5. citohistochemistry, Biocatalytic Effectors (EBc©, source of infection, biological control, agrosystems

    Marcia M. Rojas

    2015-11-01

    Full Text Available Among the efforts done in Cuba to the sustainability in the agricultural system, one of them is the use of bioproducts, which have a relevant economic, ecological and social impact. The sugarcane is one of main crops in our country and it has a great importance at world level. In the present work is demonstrated the effect of different carbon and nitrogen sources in the growth of 5 entophytic bacteria (three of Gluconacetobacter diazotrophicus, one of Bacillus licheniformis and one of Enterobacter agglomerans were demonstrated. As the same form are studied the influence of juices from five varieties, as well as, different concentrations of fitohormones indole3acetic acid and giberelic acid on the growth. Was demonstrated that asparagine and ammonium sulfate as nitrogen sources added to LGI medium enhance the growth a major growth of the studied endophytic bacteria. The LGI medium supplied with juices of sugarcane enhance the growth of microorganisms (p≤0,05 and don't exist any relationships among the origin of the juice and the strains. On the other hand, the fitohormones at low concentrations don't affect the growth but at high levels of these hormones inhibit the growth. It's necessary to study the factors that have influence on the interaction between the plant and endophytes to use their potentialities as plant growth promoters.

  6. Soluble species in aerosols collected on the route of the Second Chinese National Arctic Research Expedition

    Xu Jianzhong; Sun Junying; Ren Jiawen; Qin Dahe

    2005-01-01

    Aerosol samples are collected on the route of the Second Chinese National Arctic Research Expedition from July 15 to September 28, 2003. The concentration of water soluble ions (Na+, NH4+, Ca2+, CI-, MSA , SO42- and so on) are analyzed. By correlation analysis, the ions can be divided into three groups: ( 1 ) Na + ,Mg2+ , K + , Ca2 + , Cl- , SO42 - , mainly from sea salt; (2) NH4+ , NO3- , markedly from coastal regions of the continents ; (3) Acetate, MSA, C2042-, from other sources. Marine aerosols are the dominant origin, Cl- and Na + are the most dominant anion and cation, respectively and these two ions ( Na + + Cl - ) account for 55.6% of the total aerosol loading. The mean equivalence ratio of NH4+/SO42 - is 0.45,we suggest that ammonium and sulfate exist mainly as NH4HSO4. The concentration of NO3- shows three different patterns on the route of expedition: Japan Sea with meparison of the concentration of main water soluble ions between the First and Second Chinese National Arctic Research Expedition, the variation matches each other.

  7. Inoculation of phosphate solubilizing bacteria for the improvement of lead accumulation by Brassica juncea.

    Ren, Y X; Zhu, X L; Fan, D D; Ma, P; Liang, L H

    2013-01-01

    Two phosphate-solubilizing bacterial strains were isolated and identified as Acinetobacter calcoaceticus YC-5a and Enterobacter agglomerans KMC-7 based on the 16S rRNA gene sequence analysis. A. calcoaceticus YC-5a is less well known as a phosphate-solubilizing plant-associated bacterium. The plant growth-promoting properties of the phosphate-solubilizing bacteria (PSB) were characterized in vitro, including their phosphate-solubilizing activities and their capabilities for producing indole-3-acetic acid and siderophores. A pot experiment was conducted to elucidate the effects of inoculating both strains on the growth and Pb uptake of Brassica juncea grown in different concentrations of Pb-contaminated soils. Inoculation with both PSB not only stimulated the growth of B. juncea, but it also influenced the accumulation of Pb in the shoots and roots of the host plant. The present study demonstrates that PSB are a valuable microbial resource that can be exploited to improve the efficiency of phytoextraction. PMID:23530360

  8. Maturation in Corymbia torelliana × C. citriodora Stock Plants: Effects of Pruning Height on Shoot Production, Adventitious Rooting Capacity, Stem Anatomy, and Auxin and Abscisic Acid Concentrations

    Ivar Wendling

    2015-10-01

    Full Text Available Repeated pruning of stock plants is a common approach to delaying maturation and maintaining the propagation ability of cuttings, but little is known about the hormonal or anatomical basis for this phenomenon. We tested the effect of two different stock-plant pruning heights (15 cm and 30 cm on shoot production, rooting capacity and rooted cutting vigour of six clones of the eucalypt Corymbia torelliana × C. citriodora. We determined whether differences in rooting potential were related to indole-3-acetic (IAA and abscisic acid (ABA concentrations, or the degree of lignification or sclerification, of the cuttings. Maintaining stock plants at 15 cm height sometimes reduced the production of stem cuttings. However, it often increased the ensuing percentage of cuttings that formed roots, with mean rooting across all clones increasing from 30%–53%. Therefore, the number of rooted cuttings produced by short stock plants was similar to, or higher than, the number produced by tall stock plants. Cuttings from shorter stock plants had faster root elongation and occasionally greater root dry mass, shoot dry mass or shoot height than cuttings from tall stock plants. These differences in rooting potential were generally not related to differences in IAA or ABA concentrations of the cuttings or to differences in their stem anatomy. Pruning at the lower height was more effective in maintaining clonal juvenility, supporting previous findings that stock plant maturation is a limiting factor in clonal propagation of Corymbia torelliana × C. citriodora.

  9. Ginsenoside rb1 modulates level of monoamine neurotransmitters in mice frontal cortex and cerebellum in response to immobilization stress.

    Lee, Sang Hee; Hur, Jinyoung; Lee, Eunjoo H; Kim, Sun Yeou

    2012-09-01

    Cerebral monoamines play important roles as neurotransmitters that are associated with various stressful stimuli. Some components such as ginsenosides (triterpenoidal glycosides derived from the Ginseng Radix) may interact with monoamine systems. The aim of this study was to determine whether ginsenoside Rb1 can modulate levels of the monoamines such as dihydroxyphenylalanine (DOPA), dopamine (DA), norepinephrine (NE), epinephrine (EP), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydorxytryptamine (5-HT), 5-hydroxindole-3-acetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP) in mice frontal cortex and cerebellum in response to immobilization stress. Mice were treated with ginsenoside Rb1 (10 mg/kg, oral) before a single 30 min immobilization stress. Acute immobilization stress resulted in elevation of monoamine levels in frontal cortex and cerebellum. Pretreatment with ginsenoside Rb1 attenuated the stress-induced changes in the levels of monoamines in each region. The present findings showed the anti-stress potential of ginsenoside Rb1 in relation to regulation effects on the cerebral monoaminergic systems. Therefore, the ginsenoside Rb1 may be a useful candidate for treating several brain symptoms related with stress. PMID:24009838

  10. Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica

    Hu, P; Rismani-Yazdi, H; Stephanopoulos, G

    2013-05-16

    Anaerobic bacteria such as Moorella thermoacetica have the capacity of fixing carbon dioxide with carbon monoxide and hydrogen for the production of ethanol, acetic acid, and other useful chemicals. In this study, we evaluated the fixation of CO2 for the production of acetic acid, as a product in its own right but also as precursor for lipid synthesis by oleaginous organisms. We achieved maximum cell optical density of 11.3, acetic acid titer of 31 g/L, and productivity of 0.55 g/L-h at CO mass-transfer rate of 83 mM/h. We also showed electron availability by CO mass transfer limited the process at CO mass transfer rates lower than 30 mM/h. Further enhancement of mass-transfer rate removed such limitations in favor of biological kinetics as main limitation. This work underlines the potential of microbial processes for converting syngas to fuel and chemical products in processes suitable for distributed feedstock utilization. (c) 2013 American Institute of Chemical Engineers AIChE J, 59: 3176-3183, 2013

  11. In Vitro Callus Induction and Plant Regeneration from Stem Explants of Ceropegia noorjahaniae, a Critically Endangered Medicinal Herb.

    Chavan, Jaykumar J; Ahire, Mahendra L

    2016-01-01

    An efficient protocol has been developed for in vitro regeneration of a large number of plantlets of Ceropegia noorjahaniae Ansari via indirect organogenesis from stem explants excised from in vitro-germinated seedlings. The callus was efficiently induced from the stem explants using Murashige and Skoog (MS) medium supplemented with auxins and their combinations. The highest number of shoots (16.0 ± 0.2) and shoot length (5.5 ± 0.1 cm) was achieved when the callus was subcultured to MS medium supplemented with 6-benzylaminopurine, BAP (2.0 mg/l) and indole-3-acetic acid, IAA (0.2 mg/l). The in vitro-developed shoots were rooted well in half-strength MS medium supplemented with 1.0 mg/l of indole-3-butyric acid (IBA) and 0.3 mg/l of α-naphthalene acetic acid (NAA). The plantlets were successfully hardened with 82 % survival rate. This is the first report on the regeneration of plants through indirect shoot organogenesis from stem derived calli of C. noorjahaniae. PMID:27108329

  12. An efficient in vitro regeneration of Ceropegia noorjahaniae: an endemic and critically endangered medicinal herb of the Western Ghats.

    Chavan, J J; Nalawade, A S; Gaikwad, N B; Gurav, R V; Dixit, G B; Yadav, S R

    2014-07-01

    An efficient protocol was developed for the rapid in vitro multiplication of an endemic and critically endangered medicinal herb, Ceropegia noorjahaniae Ans., via enhanced axillary bud proliferation from nodal explants. The effects of phytohormones [6-benzylaminopurine (BAP), kinetin (Kin) thidiazuron (TDZ), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA)] on in vitro regeneration were investigated. The highest number of shoots (18.3 ± 1.3), maximum shoot length (10.1 ± 0.8 cm) and the highest response of shoot induction (95 %) were recorded on MS medium supplemented with 2.0 mg/l BAP. Rooting was best achieved on half-strength MS medium augmented with IBA (1.0 mg/l). Half-strength MS medium supplemented with BAP (4 mg/l) and sucrose (5 %, w/v) produced an average of 5.6 flower buds per microshoots with highest (90 %) flower bud induction response. The plantlets regenerated in vitro with well-developed shoot and roots were successfully established in pots containing sterile sand and coco peat (1:1) and grown in a greenhouse with 85 % survival rate. The regenerated plants did not show any detectable morphological variation. The developed method can be successfully employed for large-scale multiplication and conservation of C. noorjahaniae. PMID:25049469

  13. Expression Analysis of PIN Genes in Root Tips and Nodules of Medicago truncatula

    Sańko-Sawczenko, Izabela; Łotocka, Barbara; Czarnocka, Weronika

    2016-01-01

    Polar auxin transport is dependent on the family of PIN-formed proteins (PINs), which are membrane transporters of anionic indole-3-acetic acid (IAA−). It is assumed that polar auxin transport may be essential in the development and meristematic activity maintenance of Medicago truncatula (M. truncatula) root nodules. However, little is known about the involvement of specific PIN proteins in M. truncatula nodulation. Using real-time quantitative PCR, we analyzed the expression patterns of all previously identified MtPIN genes and compared them between root nodules and root tips of M. truncatula. Our results demonstrated significant differences in the expression level of all 11 genes (MtPIN1–MtPIN11) between examined organs. Interestingly, MtPIN9 was the only PIN gene with higher expression level in root nodules compared to root tips. This result is the first indication of PIN9 transporter potential involvement in M. truncatula nodulation. Moreover, relatively high expression level in root nodules was attributed to MtPINs encoding orthologs of Arabidopsis thaliana PIN5 subclade. PIN proteins from this subclade have been found to localize in the endoplasmic reticulum, which may indicate that the development and meristematic activity maintenance of M. truncatula root nodules is associated with intracellular homeostasis of auxins level and their metabolism in the endoplasmic reticulum. PMID:27463709

  14. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control.

    Andreolli, Marco; Lampis, Silvia; Zapparoli, Giacomo; Angelini, Elisa; Vallini, Giovanni

    2016-02-01

    This study represents the first investigation on ecology of endophytic bacteria isolated from 3 and 15 year-old vine stems of Vitis vinifera cv. Corvina. The analysis was performed by means of culture-dependent techniques. The obtained results showed that new grapevine endophytic genera are being discovered. Moreover, Bacilli and Actinobacteria are frequently isolated from 3 year-old plants, whereas Alpha- and Gamma- Proteobacteria classes are more prevalent in the 15 year-old plants. Shannon-Wiener (H) index and analysis of rarefaction curves revealed greater genus richness in young grapevine plants. Furthermore, results evidenced an increase of genotypic group number within specific genera (e.g., Rhizobium and Pantoea). Among isolated strains from 3 and 15 year-old stems, respectively, 34 and 39% produce siderophores; 22 and 15% secrete ammonia; 22 and 21% produce indole-3-acetic acid; 8.7 and 41% solubilize phosphate. Besides, two strains isolated from 15 year-old grapevines showed 1-aminocyclopropane-1-carboxylate deaminase activity. Antifungal activity analysis evidenced that two Bacillus strains possess growth antagonistic effect toward all the tested fungal strains. Therefore, the present study extends our knowledge of the diversity of the endophytic bacteria by providing new insights into the complexity of the grapevine microbiome. PMID:26805617

  15. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  16. The role of stamens in ethylene production in Ipomoea nil

    Ethylene production inhibits filament and corolla growth during young stages in flower development, and it promotes corolla unfolding and senescence in Ipomoea nil. Initial studies with the in vitro application of gibberellic acid (GA3), demonstrated that decreased filament growth occurred when the anthers remained attached to the filaments during the young stages in development. The removal of the anthers from intact plants did not enhance filament growth until the synthesis of wound ethylene was inhibited by applied aminoethoxyvinylglycine (AVG) or cobalt chloride. It was hypothesized that the anthers were source tissues and that the filaments were transport vectors for the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and indole-3-acetic acid (IAA) to regulate growth events in the various floral organs. To test this hypothesis, endogenous IAA and ACC and ethylene production were measured by enzyme linked immunosorbent assay (ELISA) or gas chromatography. The transport of 14C-IAA and 14C-ACC through filament segments and filaments within intact flower buds also was examined during flower development

  17. 一株促生拮抗木霉菌的鉴定%Identification of an Antagonistic Trichoderma spp.Strain with Plant Growth-Promoting Activity

    赵姣; 赵蕾

    2013-01-01

    A strain of Trichoderma spp. LT19 was isolated from soil in Shandong Province, which showed a broad inhibition spectrum against various soil - borne plant phytopathogenic fungi. It also exhibited some plant growth - promoting attributes such as phosphate solubilization, indol - 3 - acetic (IAA) productivity, 1 - aminocyclopropane - 1 -carboxylate (ACC) deaminase activity and siderophore (S) synthesis ability. The pot experiments showed that inoculation with the strain could increase the biomass of cucumber seedlings. Based on its morphology and ITS gene sequences, the strain LT19 was identified as Trichoderma asperellum.%从采集的植物根际土壤中分离到一株对黄瓜具有拮抗作用的木霉菌LT19,该菌能够促进黄瓜幼苗的生长,并具有溶磷、产嗜铁素、IAA及ACC脱氨酶的能力,显示了该菌在防治作物病害以及促进作物生长方面潜在的应用价值.根据形态特征与ITS序列分析,将其鉴定为棘孢木霉(Trichoderma asperellum).

  18. Phytohormone Profiling across the Bryophytes.

    Lenka Záveská Drábková

    Full Text Available Bryophytes represent a very diverse group of non-vascular plants such as mosses, liverworts and hornworts and the oldest extant lineage of land plants. Determination of endogenous phytohormone profiles in bryophytes can provide substantial information about early land plant evolution. In this study, we screened thirty bryophyte species including six liverworts and twenty-four mosses for their phytohormone profiles in order to relate the hormonome with phylogeny in the plant kingdom.Samples belonging to nine orders (Pelliales, Jungermanniales, Porellales, Sphagnales, Tetraphidales, Polytrichales, Dicranales, Bryales, Hypnales were collected in Central and Northern Bohemia. The phytohormone content was analysed with a high performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS.As revealed for growth hormones, some common traits such as weak conjugation of both cytokinins and auxins, intensive production of cisZ-type cytokinins and strong oxidative degradation of auxins with abundance of a major primary catabolite 2-oxindole-3-acetic acid were pronounced in all bryophytes. Whereas apparent dissimilarities in growth hormones profiles between liverworts and mosses were evident, no obvious trends in stress hormone levels (abscisic acid, jasmonic acid, salicylic acid were found with respect to the phylogeny.The apparent differences in conjugation and/or degradation strategies of growth hormones between liverworts and mosses might potentially show a hidden link between vascular plants and liverworts. On the other hand, the complement of stress hormones in bryophytes probably correlate rather with prevailing environmental conditions and plant survival strategy than with plant evolution.

  19. Ectopic expression of foxtail millet zip-like gene,SiPf40,in transgenic rice plants causes a pleiotropic phenotype affecting tillering,vascular distribution and root development

    2010-01-01

    Plant architecture determines grain production in rice(Oryza sativa) and is affected by important agronomic traits such as tillering,plant height,and panicle morphology.Many key genes involved in controlling the initiation and outgrowth of axillary buds,the elongation of stems,and the architecture of inflorescences have been isolated and analyzed.Previous studies have shown that SiPf40,which was identified from a foxtail millet(Setaria italica) immature seed cDNA library,causes extra branches and tillers in SiPf40-transgenic tobacco and foxtail millet,respectively.To reconfirm its function,we generated transgenic rice plants overexpressing SiPf40 under the control of the ubiquitin promoter.SiPf40-overexpressing transgenic plants have a greater tillering number and a wider tiller angle than wild-type plants.Their root architecture is modified by the promotion of lateral root development,and the distribution of xylem and phloem in the vascular bundle is affected.Analysis of hormone levels showed that the ratios of indole-3-acetic acid/zeatin(IAA/ZR) and IAA/gibberellic acid(IAA/GA) decreased in SiPf40-transgenic plants compared with wild-type plants.These findings strongly suggest that SiPf40 plays an important role in plant architecture.

  20. Macroproliferation of Gentiana kurroo royle

    Anita Tomar

    2011-01-01

    Full Text Available Gentiana kurroo is a small perennial herb, with a stout rhizome bearing decumbent flowering stems, commonly found in North -Western Himalayas, at altitudes of 5,000−11,000 ft. Due to multiple uses, species is being over exploited in its natural habitats at the Garhwal Himalaya. The propagation by rhizome has emerged as an effective method of multiplication and conservation of plant species. In the present study, an attempt was made to evaluate the impact of different hormones, i.e., Indole -3 butyric acid (IBA and Indole-3 acetic acid (IAA for the root induction in G. kurroo. For this, the growing tip of rhizome was split into 2, 3 and 4 longitudinal parts. Each split contained ½,⅓ or ¼ of longitudinal section of mother rhizome and above ground part with growing buds. Two piece rhizome exhibited significantly higher survival percentage (97.5% under control conditions followed by three piece (90% and four pieces (22.5% cuttings. Two and three pieces IBA-treated cuttings showed better results than IAA treatments and enhanced the emergence percentage. Therefore, macroproliferation of G. kurroo rhizome is an easy and effective technique for multiplication and conservation of this endangered herb.

  1. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress

    Jalel Mahouachi

    2014-01-01

    Full Text Available The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain” subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA and indole-3-acetic acid (IAA levels, a transient increase in salicylic acid (SA concentration, and no changes in jasmonic acid (JA after each period of drought. Moreover, the levels of ferulic (FA and cinnamic acids (CA were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  2. Effect of CPPU on Carbohydrate and Endogenous Hormone Levels in Young Macadamia Fruit.

    Hui Zeng

    Full Text Available N-(2-Chloro-4-pyridyl-N'-phenylurea (CPPU is a highly active cytokinin-like plant growth regulator that promotes chlorophyll biosynthesis, cell division, and cell expansion. It also increases fruit set and accelerates fruit enlargement. However, there has been no report about the effect of CPPU on fruit development and its physiological mechanism in macadamia. In this study, we investigated the effect of CPPU treatment at early fruit development via foliar spray or raceme soaking at 20 mg·L-1 on fruit set and related physiology in macadamia. Changes in carbohydrate contents and endogenous hormones in leaves, bearing shoots and fruit were also examined. Results showed that CPPU significantly reduced young fruit drop and delayed the wave of fruit drop by 1-2 weeks. The treatment significantly decreased the contents of total soluble sugars and starch in the leaves, but increased them in the bearing shoots and total soluble sugars in the husk (pericarp and seeds. These findings suggested that CPPU promoted carbohydrate mobilization from the leaves to the fruit. In addition, CPPU increased the contents of indole-3-acetic acid (IAA, gibberellin acid (GA3, and zeatin riboside (ZR and decreased the abscisic acid (ABA in the husk. Therefore, CPPU treatment reduced the early fruit drop by increasing carbohydrate availability and by modifying the balance among endogenous hormones.

  3. Fatty Acid Biosynthesis IX

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles of...

  4. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in Ra was matched by a comparable decrease in glucose utilization (Rd), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level was comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on Ra is counterbalanced by equal inhibition of Rd; (2) basal Ra and Rd are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance

  5. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  6. Spatial organization of heterologous metabolic system in vivo based on TALE.

    Zhu, Ling-Yun; Qiu, Xin-Yuan; Zhu, Ling-Yun; Wu, Xiao-Min; Zhang, Yuan; Zhu, Qian-Hui; Fan, Dong-Yu; Zhu, Chu-Shu; Zhang, Dong-Yi

    2016-01-01

    For years, prokaryotic hosts have been widely applied in bio-engineering. However, the confined in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. We developed a new method to accelerate a heterologous metabolic system by integrating a transcription activator-like effector (TALE)-based scaffold system into an Escherichia coli chassis. The binding abilities of the TALEs to the artificial DNA scaffold were measured through ChIP-PCR. The effect of the system was determined through a split GFP study and validated through the heterologous production of indole-3-acetic acid (IAA) by incorporating TALE-fused IAA biosynthetic enzymes in E. coli. To the best of our knowledge, we are the first to use the TALE system as a scaffold for the spatial organization of bacterial metabolism. This technique might be used to establish multi-enzymatic reaction programs in a prokaryotic chassis for various applications. PMID:27184291

  7. Improvement of adventitious root formation in flax using hydrogen peroxide.

    Takáč, Tomáš; Obert, Bohuš; Rolčík, Jakub; Šamaj, Jozef

    2016-09-25

    Flax (Linum usitatissimum L.) is an important crop for the production of oil and fiber. In vitro manipulations of flax are used for genetic improvement and breeding while improvements in adventitious root formation are important for biotechnological programs focused on regeneration and vegetative propagation of genetically valuable plant material. Additionally, flax hypocotyl segments possess outstanding morphogenetic capacity, thus providing a useful model for the investigation of flax developmental processes. Here, we investigated the crosstalk between hydrogen peroxide and auxin with respect to reprogramming flax hypocotyl cells for root morphogenetic development. Exogenous auxin induced the robust formation of adventitious roots from flax hypocotyl segments while the addition of hydrogen peroxide further enhanced this process. The levels of endogenous auxin (indole-3-acetic acid; IAA) were positively correlated with increased root formation in response to exogenous auxin (1-Naphthaleneacetic acid; NAA). Histochemical staining of the hypocotyl segments revealed that hydrogen peroxide and peroxidase, but not superoxide, were positively correlated with root formation. Measurements of antioxidant enzyme activities showed that endogenous levels of hydrogen peroxide were controlled by peroxidases during root formation from hypocotyl segments. In conclusion, hydrogen peroxide positively affected flax adventitious root formation by regulating the endogenous auxin levels. Consequently, this agent can be applied to increase flax regeneration capacity for biotechnological purposes such as improved plant rooting. PMID:26921706

  8. Silver migration from nanosilver and a commercially available zeolite filler polyethylene composites to food simulants.

    Cushen, M; Kerry, J; Morris, M; Cruz-Romero, M; Cummins, E

    2014-01-01

    Polyethylene composites containing Agion(TM) commercial silver ion filler at three different percentage fill rates (0.5, 1.0 and 2% w/w) and polyethylene composites containing laboratory produced silver nanoparticles (Agnps) at two different percentage fill rates (0.1 and 0.5% w/w) underwent migration tests according to Commission Regulation (EU) No. 10/2011. Migrated silver in the two simulants (acidified water with 3% acetic acid and distilled water) was quantified using two techniques: inductively coupled atomic emission spectroscopy (ICPAES) and Hach Lange spectroscopy. The former had higher sensitivity with mean silver migration from Agion composites (n = 12) ranging from agglomeration) before and after migration. PE composites containing 0.5% Agion, simulating contact with non-acidic foods, was the only scenario that did not exceed the permitted migration level of non-authorised substances given in EU 10/2011. This study illustrates the need for careful engineering of the composite filler system to conform to limits with cognisance of food pH and percentage fill rate. PMID:24646448

  9. [Determination of 46 plasticizers in food contact polyvinyl chloride packaging materials and their migration into food simulants by gas chromatography-mass spectrometry].

    Guo, Chunhai; Bo, Haibo; Duan, Wenzhong; Jia, Haitao; Chen, Ruichun; Ma, Yusong; Ai, Lianfeng

    2011-01-01

    A gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of 46 plasticizers in food contact polyvinyl chloride (PVC) packaging materials and their migration into food simulants, i. e. water, 3% acetic acid, 10% ethanol and olive oil. Plasticizers in the PVC packaging materials, aqueous food simulants and olive oil food simulants were extracted by the dissolution-precipitation, liquid-liquid extraction and gel permeation chromatography (GPC) approaches, respectively. The extracts were analyzed by GC-MS in selective ion monitoring (SIM) mode and quantified using the external standard method. The cal-ibration curves were linear in the ranges of 0.1-2.0 mg/L with the correlation coefficients of 0.9910-0. 999 9. The limits of detection were from 0. 005 mg/kg to 0. 05 mg/kg ( S/N = 5 ). The recoveries at 3 spiked levels were 69.51%-107. 21% and the relative standard deviations (RSDs n = 6) ranged from 3.53% to 18.95%. These results show that this method is fast, sensitive and accurate for the qualitative and quantitative determination of plasticizers in food contact plastic products and 4 types of food simulants. PMID:21574398

  10. Changes of plant hormone levels in conifers subjected to immissions. Hormongehaltsaenderungen in Nadelbaeumen unter Immissionsbelastung

    Christmann, A.; Frenzel, B. (Hohenheim Univ., Stuttgart (Germany, F.R.). Inst. fuer Botanik)

    1991-01-01

    Effects caused by a reduction of immissions on the phytohormone balance in needles of conifers (ethylene, measured as ACC and MACC, abscisic acid and indole-3-acetic acid) were investigated at the sites 'Edelmannshof' in the Welzheimer Wald, some thirty kilometers to the east of Stuttgart (open-top chambers) and 'Stoeckerkopf' in the Northern Black Forest (under strong SO{sub 2}-impact until autumm 1987). At the 'Edelmannshof', the consequences of the reduced impact of immissions on the phytohormone balance of young spruce trees cannot be differentiated reliably from individual differences between the trees investigated, due to the fact that there the phytohormones mentioned were investigated during one year only. At the site 'Stoeckerkopf' the results point to a different behaviour of IAA-contents in needles of trees formerly subjected to SO{sub 2}-immissions and trees subjected to influences causing forest decline. This corroborates former results of AbA investigations. A method for determining of IAA-contents in needles from fir (Abies alba Mill.) and spruce (Picea abies Karst.) is presented. (orig.) With 13 figs., 22 refs.

  11. lAA and BAP affect protein phosphorylation-dependent processes during sucrose-mediated G1 to S and G2 to M transitions in root meristem cells of Vicia faba

    Justyna Teresa Polit

    2011-04-01

    Full Text Available In carbohydrate-starved root meristems of Vicia faba subsp. minor, the expression of two Principal Control Points located at the final stages of the G1 (PCP1 and G2 (PCP2 phases has been found to be correlated with a marked decrease of protein phosphorylation within cell nuclei, nucleoli and cytoplasm. Adopting the same experimental model in our present studies, monoclonal FITC conjugated antibodies that recognize phosphorylated form of threonine (αTPab-FITC were used to obtain an insight about how the indole-3-acetic acid (IAA, benzyl-6-aminopurine (BAP, and the mixture of both phytohormones influence the time-course changes in an overall protein phosphorylation during sucrose-mediated PCP1→S and PCP2→M transitions. Unsuspectedly, neither IAA, BAP, nor the mixture of both phytohormones supplied in combination with sucrose did up-regulate protein phosphorylation. However using the block-and-release method, it was shown that root meristems of Vicia provided with sucrose alone indicated higher levels of αTPab-FITC. Contrarily, phytohormones supplied in combination with sucrose induced apparent decline in phosphorylation of cell proteins, which - when compared with the influence of sucrose alone - became increasingly evident in time. Thus, it seems probable, that a general decline in the amount of αTPab-FITC labeled epitopes may overlay specific phosphorylations and dephosphorylations governed by the main cell cycle kinases and phosphatases.

  12. Simultaneous Detection and Quantification of Phytohormones by a Sensitive Method of Separation in Culture of Pseudomonas sp.

    Patel, Ravi R; Thakkar, Vasudev R; Subramanian, Ramalingam Bagavathi

    2016-06-01

    A high-performance thin-layer chromatography (HPTLC)-based sensitive, rapid and stringent protocol is designed for detection and quantification of five phytohormones simultaneously. Culture filtrate of Pseudomonas bacteria was acidified with 7 M HCl and extracted with an equal volume of ethyl acetate to separate abscisic acid (ABA), jasmonic acid (JA), gibberellic acid (GA3), and indole-3-acetic acid (IAA). Kinetin was extracted from the remaining water fraction of the same extract. Various extracts were loaded on silica gel 60 F254 foil using Linomat 5 spray on applicator. Standard phytohormones were also loaded adjacent to the sample, and the foils were developed with isopropanol-ammonia-water [10:1:1 (v/v)] as the mobile phase. A quantitative estimation of the separated ABA, kinetin, JA, GA3, and IAA was performed by measuring the absorbance at 260, 275, 295, 265, and 280 nm, respectively. HPTLC method was found to be cost effective, robust technique that can be routinely used for simultaneous phytohormone detection in plant or bacterial samples. The present work is not only useful for detection and quantification of phytohormones but also for screening of phytohormone producing microorganisms. PMID:26905268

  13. Effects of auxin transport inhibitors on gibberellins in pea

    The effects of the auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA), 9-hydroxyfluorene-9-carboxylic acid (HFCA), and 1-N-naphthylphthalamic acid (NPA) on gibberellins (GAs) in the garden pea (Pisum sativum L.) were studied. Application of these compounds to elongating internodes of intact wild type plants reduced markedly the endogenous level of the bioactive gibberellin A1. (GA1) below the application site. Indole-3-acetic acid (IAA) levels were also reduced, as was internode elongation. The auxin transport inhibitors did not affect the level of endogenous GA1 above the application site markedly, nor that of GA1 precursors above or below it. When plants were treated with [13C,3H]GA20, TIBA reduced dramatically the level of [13C,3H]GA1 recovered below the TIBA application site. The internodes treated with auxin transport inhibitors appeared to be still in the phase where endogenous GA1 affects elongation, as indicated by the strong response to applied GA1 by internodes of a GA1-deficient line at the same stage of expansion. On the basis of the present results it is suggested that caution be exercised when attributing the developmental effects of auxin transport inhibitors to changes in IAA level alone

  14. Stable isotope model for assessing production of short chain fatty acids from colon-derived sugar: application in pigs.

    Kien, C L; Murray, R D; Ailabouni, A; Powers, P; Kepner, J; Powers, L; Brunengraber, H

    1996-12-01

    Sugar reaching the colon because of intestinal maldigestion or malabsorption may be fermented to acetate and other short-chain fatty acids, resulting in stimulation of colonic water absorption and cell proliferation. To explore this phenomenon in more detail, we have developed a stable isotope model for estimating the fraction of colon-derived glucose or lactose that is fermented to acetate, propionate and butyrate. In an initial application of the model, [d3]-acetate and either [1-(13)C]-glucose or [D-1-(13)C]-lactose were infused into the cecum or colon of piglets, and plateau plasma acetate enrichment was monitored in the carotid artery. In acutely anesthetized piglets, the fractions of glucose and lactose fermented to acetate were 17.0 and 20.0%, respectively. In a chronically catheterized piglet, fermentation was higher (34.2%). When conducted in chronically catheterized animals or via a colostomy or ileostomy in infants, this model may be used to determine how age, previous surgery or antibiotic therapy affects the efficiency of colonic assimilation of carbohydrate. PMID:9001376

  15. Molecular characterization and identification of target protein of an important vesicle trafficking gene AlRab7 from a salt excreting halophyte Aeluropus lagopoides.

    Rajan, Navya; Agarwal, Parinita; Patel, Khantika; Sanadhya, Payal; Khedia, Jackson; Agarwal, Pradeep Kumar

    2015-02-01

    The endomembrane system plays an important role during cellular adaptation of the plants with the extracellular environment. The small GTP-binding protein Rab7 located at the vacuolar membrane regulates the vesicle fusion with the vacuole and thereby helps in recycling of the molecules. This is the first report on isolation and characterization of AlRab7 gene from the halophyte plant, Aeluropus that extrudes NaCl through salt glands and grows luxuriantly throughout the year at the Gujarat coast, India. The AlRab7 encodes a protein with 206 amino acids, and a highly conserved effector-binding domain and four nucleotide-binding domains. The in silico analysis predicts the presence of the prenylation site for Rab geranylgeranyltransferase 2 and the Rab escort protein site. The C-terminal two cysteine residues in -XCC sequence are present for membrane attachment. Transcript expression of the AlRab7 gene was differentially regulated by different environmental stimuli such as dehydration, salinity, and hormone abscisic acid (ABA). The recombinant Escherichia coli cells showed improved growth in Luria Bertani medium supplemented with NaCl, KCl, mannitol, ABA, and indole-3-acetic acid. A novel Rab7 interacting partner AlRabring7 was identified by yeast two-hybrid screening. PMID:25408252

  16. In vitro propagation of Vriesea reitzii, a native epiphyte bromeliad from the Atlantic rainforest

    Lírio Luiz Dal Vesco

    2014-05-01

    Full Text Available The induction of nodular culture (NC and the subsequent development of microshoots of V. reitzii are considered an in vitro propagation model-system with high regenerative performance. Current research analyzed the determinant factors of the in vitro morphogenesis control of bromeliads. Seeds excised from mature capsules were grown on medium MS basic (MSB, liquid or gelled, supplemented or not with α-naphthaleneacetic acid (NAA, 6-benzilaminopurine (BAP or thidiazuron (TDZ. The regeneration and elongation of microshoots were evaluated from NC sub-cultivated on MSB medium on liquid culture medium supplemented with different concentrations of indolyl-3-acetic acid (IAA and gibberellic acid (GA3. Plant growth regulators (PGR supplemented into the medium MSB inhibited the germination of the seeds and induced NC in the second week of growth. The induced NC on MSB medium with NAA (4 µM and sub-cultivated on MSB medium with NAA (2 µM plus N6(2-isopentenyl adenine (2-iP (2 µM showed granular texture and high rate of proliferation. NC sub-culture in MSB medium with IAA (4 µM provided a higher average number of microshoots (1,478 shoots g-1 of NC. Shoots over 3.0 cm resulted in more than 95% ex vitro survival.

  17. Application of solid-phase extraction for determination of phenolic compounds in barrique wines.

    Matejícek, D; Klejdus, B; Mikes, O; Sterbová, D; Kubán, V

    2003-09-01

    A fast, selective and sensitive chromatographic method has been developed for determination of gallic, protocatechuic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, benzoic, ferulic, sinapic, cinnamic, and ellagic acids and p-hydroxybenzaldehyde, vanillin, syringaldehyde, 2-furfural, 5-methylfurfural, and 5-methoxyfurfural. The compounds from untreated wine samples were pre-concentrated and cleaned using solid-phase extraction on RP-105 polymeric sorbent. The cartridge was conditioned with methanol and water. Co-extracted ballast substances were rinsed from the sorbent with 0.1 mol L(-1) hydrochloric acid-methanol, 1:4 (v/ v). Retained phenolic compounds were selectively eluted with diethyl ether. A linear mobile phase gradient containing 0.3% acetic acid and methanol was used for final baseline chromatographic separation on a Hypersil BDS C18 column. Limits of detection (LOD=3 s(bl)) in the range 5.2 to 181.2 microg L(-1), resolution (R) better than 1.7, and repeatability of 2.7-5.1% (RSD for real samples) were achieved. The method was applied for quantification of individual phenolic compounds in barrique wines. PMID:12923605

  18. Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.).

    Supena, E D J; Suharsono, S; Jacobsen, E; Custers, J B M

    2006-02-01

    Various systems of anther and microspore cultures were studied to establish an efficient doubled haploid production method for Indonesian hot pepper (Capsicum annuum L.). A shed-microspore culture protocol was developed which outperformed all the previously reported methods of haploid production in pepper. The critical factors of the protocol are: selection of flower buds with more than 50% late unicellular microspores, a 1 day 4 degrees C pretreatment of the buds, followed by culture of the anthers in double-layer medium system for 1 week at 9 degrees C and thereafter at 28 degrees C in continuous darkness. The medium contained Nitsch components and 2% maltose, with 1% activated charcoal in the solid under layer and 2.5 muM zeatin and 5 muM indole-3-acetic acid in the liquid upper layer. All the ten genotypes of hot pepper tested, responded to this protocol. The best genotypes produced four to seven plants per original flower bud. This protocol can be used as a potential tool for producing doubled haploid plants for hot pepper breeding. PMID:16172897

  19. EFFECTIVENESS OF AUXIN INDUCED IN VITRO ROOT CULTURE IN CHICORY

    S Nandagopal

    2007-11-01

    Full Text Available An efficient protocol has been developed for the root culture of (Cichorium intybus L. cv. Focus, the leaf and hypocotyl explants from 25 days old in vitro raised seedlings were cultured on half-strength Murashige and Skoog (MS medium supplemented with different concentrations and combinations of Indole-3-acetic acid (IAA, Indole-3-butyric acid (IBA, α-Napthalenacetic acid (NAA. 0.5 mg/l NAA and 0.1 mg/l IBA induced highest percentage of rooting from matured leaf explants, under total dark condition. After three weeks well established roots were separated. Fresh root tissue, in amount of 0.5 was subcultured in half-strength MS liquid medium supplemented with 0.2 mg/l NAA and 0.5 mg/l IBA, under continuous agitation at 110 rpm and total dark condition. The biomass of root culture was increased to 5.820 g after 6 weeks of culture. The root culture was maintained up to the 8 weeks.

  20. Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development

    Sarah Russell French

    2014-02-01

    Full Text Available Indole-3-acetic acid (IAA synthesis is required for grain-fill in maize and appears to be regulated by cell-wall invertase (CWIN activity. OsYUC12 is one of three IAA biosynthesis genes we previously reported as expressed during early rice grain development, correlating with a large increase in IAA content of the grain. This work aimed to investigate further the role of OsYUC12 and its relationship to CWIN activity and invertase inhibitors (INVINH. The analysis shows a brief peak of OsYUC12 expression early in endosperm development. Meta-analysis of microarray data, confirmed by quantitative expression analysis, revealed that OsYUC12 is coexpressed with OsIAA29, which encodes an unusual AUX/IAA transcription factor previously reported as poorly expressed. Maximum expression of OsYUC12 and OsIAA29 coincided with maximum CWIN activity, but also with a peak in INVINH expression. Unlike ZmYUC1, OsYUC12 expression is not reduced in the rice CWIN mutant, gif1. Several reports have investigated CWIN expression in rice grains but none has reported on expression of INVINH in this species. We show that rice has 54 genes encoding putative invertase/pectin methylesterase inhibitors, seven of which are expressed exclusively during grain development. Our results suggest a more complex relationship between IAA, CWIN, and INVINH than previously proposed.

  1. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs. PMID:23053530

  2. Phytotoxic Mechanism of Nanoparticles: Destruction of Chloroplasts and Vascular Bundles and Alteration of Nutrient Absorption.

    Nhan, Le Van; Ma, Chuanxin; Rui, Yukui; Liu, Shutong; Li, Xuguang; Xing, Baoshan; Liu, Liming

    2015-01-01

    This study focused on determining the phytotoxic mechanism of CeO2 nanoparticles (NPs): destroying chloroplasts and vascular bundles and altering absorption of nutrients on conventional and Bt-transgenic cottons. Experiments were designed with three concentrations of CeO2 NPs including: 0, 100 and 500 mg·L(-1), and each treatment was three replications. Results indicate that absorbed CeO2 nanoparticles significantly reduced the Zn, Mg, Fe, and P levels in xylem sap compared with the control group and decreased indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations in the roots of conventional cotton. Transmission electron microscopy (TEM) images revealed that CeO2 NPs were absorbed into the roots and subsequently transported to the stems and leaves of both conventional and Bt-transgenic cotton plants via xylem sap. In addition, the majority of aggregated CeO2 NPs were attached to the external surface of chloroplasts, which were swollen and ruptured, especially in Bt-transgenic cotton. The vascular bundles were destroyed by CeO2 nanoparticles, and more damage was observed in transgenic cotton than conventional cotton. PMID:26108166

  3. Auxin physiology of the tomato mutant diageotropica

    Daniel, S. G.; Rayle, D. L.; Cleland, R. E.

    1989-01-01

    The tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibits biochemical, physiological, and morphological abnormalities that suggest the mutation may have affected a primary site of auxin perception or action. We have compared two aspects of the auxin physiology of dgt and wild-type (VFN8) seedlings: auxin transport and cellular growth parameters. The rates of basipetal indole-3-acetic acid (IAA) polar transport are identical in hypocotyl sections of the two genotypes, but dgt sections have a slightly greater capacity for IAA transport. 2,3,5-Triiodobenzoic acid and ethylene reduce transport in both mutant and wild-type sections. The kinetics of auxin uptake into VFN8 and dgt sections are nearly identical. These results make it unlikely that an altered IAA efflux carrier or IAA uptake symport are responsible for the pleiotropic effects resulting from the dgt mutation. The lack of auxin-induced cell elongation in dgt plants is not due to insufficient turgor, as the osmotic potential of dgt cell sap is less (more negative) than that of VFN8. An auxin-induced increase in wall extensibility, as measured by the Instron technique, only occurs in the VFN8 plants. These data suggest dgt hypocotyls suffer a defect in the sequence of events culminating in auxin-induced cell wall loosening.

  4. Auxin production by the plant trypanosomatid Phytomonas serpens and auxin homoeostasis in infected tomato fruits.

    Ienne, Susan; Freschi, Luciano; Vidotto, Vanessa F; De Souza, Tiago A; Purgatto, Eduardo; Zingales, Bianca

    2014-09-01

    Previously we have characterized the complete gene encoding a pyruvate decarboxylase (PDC)/indolepyruvate decarboxylase (IPDC) of Phytomonas serpens, a trypanosomatid highly abundant in tomato fruits. Phylogenetic analyses indicated that the clade that contains the trypanosomatid protein behaves as a sister group of IPDCs of γ-proteobacteria. Since IPDCs are key enzymes in the biosynthesis of the plant hormone indole-3-acetic acid (IAA), the ability for IAA production by P. serpens was investigated. Similar to many microorganisms, the production of IAA and related indolic compounds, quantified by high performance liquid chromatography, increased in P. serpens media in response to amounts of tryptophan. The auxin functionality was confirmed in the hypocotyl elongation assay. In tomato fruits inoculated with P. serpens the concentration of free IAA had no significant variation, whereas increased levels of IAA-amide and IAA-ester conjugates were observed. The data suggest that the auxin produced by the flagellate is converted to IAA conjugates, keeping unaltered the concentration of free IAA. Ethanol also accumulated in P. serpens-conditioned media, as the result of a PDC activity. In the article we discuss the hypothesis of the bifunctionality of P. serpens PDC/IPDC and provide a three-dimensional model of the enzyme. PMID:24805281

  5. Migration of antimony from PET containers into regulated EU food simulants.

    Sánchez-Martínez, María; Pérez-Corona, Teresa; Cámara, Carmen; Madrid, Yolanda

    2013-11-15

    Antimony migration from polyethylene terephthalate (PET) containers into aqueous (distilled water, 3% acetic acid, 10% and 20% ethanol) and fatty food simulants (vegetable oil), as well as into vinegar, was studied. Test conditions were according to the recent European Regulation 10/2011 (EU, 2011). Sb migration was assayed by ICP-MS and HG-AFS. The results showed that Sb migration values ranged from 0.5 to 1.2μg Sb/l, which are far below the maximum permissible migration value for Sb, 40μg Sb/kg, (EU, Regulation 10/2011). Parameters as temperature and bottle re-use influence were studied. To assess toxicity, antimony speciation was performed by HPLC-ICP-MS and HG-AFS. While Sb(V) was the only species detected in aqueous simulants, an additional species (Sb-acetate complex) was measured in wine vinegar. Unlike most of the studies reported in the literature, migration tests were based on the application of the EU directive, which enables comparison and harmonisation of results. PMID:23790852

  6. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids.

    Weldegergis, Berhane T; Zhu, Feng; Poelman, Erik H; Dicke, Marcel

    2015-03-01

    One of the main abiotic stresses that strongly affects plant survival and the primary cause of crop loss around the world is drought. Drought stress leads to sequential morphological, physiological, biochemical and molecular changes that can have severe effects on plant growth, development and productivity. As a consequence of these changes, the interaction between plants and insects can be altered. Using cultivated Brassica oleracea plants, the parasitoid Microplitis mediator and its herbivorous host Mamestra brassicae, we studied the effect of drought stress on (1) the emission of plant volatile organic compounds (VOCs), (2) plant hormone titres, (3) preference and performance of the herbivore, and (4) preference of the parasitoid. Higher levels of jasmonic acid (JA) and abscisic acid (ABA) were recorded in response to herbivory, but no significant differences were observed for salicylic acid (SA) and indole-3-acetic acid (IAA). Drought significantly impacted SA level and showed a significant interactive effect with herbivory for IAA levels. A total of 55 VOCs were recorded and the difference among the treatments was influenced largely by herbivory, where the emission rate of fatty acid-derived volatiles, nitriles and (E)-4,8-dimethylnona-1,3,7-triene [(E)-DMNT] was enhanced. Mamestra brassicae moths preferred to lay eggs on drought-stressed over control plants; their offspring performed similarly on plants of both treatments. VOCs due to drought did not affect the choice of M. mediator parasitoids. Overall, our study reveals an influence of drought on plant chemistry and insect-plant interactions. PMID:25370387

  7. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A.

    Liu, Wuxing; Wang, Qingling; Hou, Jinyu; Tu, Chen; Luo, Yongming; Christie, Peter

    2016-01-01

    This research undertook the systematic analysis of the Klebsiella sp. D5A genome and identification of genes that contribute to plant growth-promoting (PGP) traits, especially genes related to salt tolerance and wide pH adaptability. The genome sequence of isolate D5A was obtained using an Illumina HiSeq 2000 sequencing system with average coverages of 174.7× and 200.1× using the paired-end and mate-pair sequencing, respectively. Predicted and annotated gene sequences were analyzed for similarity with the Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme database followed by assignment of each gene into the KEGG pathway charts. The results show that the Klebsiella sp. D5A genome has a total of 5,540,009 bp with 57.15% G + C content. PGP conferring genes such as indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, siderophore production, acetoin and 2,3-butanediol synthesis, and N2 fixation were determined. Moreover, genes putatively responsible for resistance to high salinity including glycine-betaine synthesis, trehalose synthesis and a number of osmoregulation receptors and transport systems were also observed in the D5A genome together with numerous genes that contribute to pH homeostasis. These genes reveal the genetic adaptation of D5A to versatile environmental conditions and the effectiveness of the isolate to serve as a plant growth stimulator. PMID:27216548

  8. Physiological Basis of Photosynthetic Function and Senescence of Rice Leaves as Regulated by Controlled-Release Nitrogen Fertilizer

    NIE Jun; ZHENG Sheng-xian; DAI Pin-gan; XIAO Jian; YI Guo-ying

    2005-01-01

    The physiological mechanism of photosynthetic function and senescence of rice leaves was studied by using early rice variety Baliangyou 100 and late rice variety Weiyou 46, treated with controlled-release nitrogen fertilizer (CRNF), urea and no nitrogen fertilizer. CRNF showed obvious effects on delaying the senescence and prolonging photosynthetic function duration of rice leaves. Compared with urea, CRNF could significantly increase the chlorophyll content of functional leaves in both early and late rice varieties, and this difference between the treatments became larger as rice growth progressed; CRNF increased the activities of active oxygen scavenging enzymes super oxide dismutase (SOD) and peroxidase (POD), and decreased the accumulation amount of malondialdehyde (MDA) in functional leaves during leaf aging; Photosynthetic rate of functional leaves in CRNF treatment was significantly higher than that in urea treatment. The result also indicated that CRNF could effectively regulate the contents of indole-3-acetic acid (IAA) and abscisic acid (ABA) in functional leaves; IAA content was higher and ABA content was lower in CRNF treatment than those in urea treatment. Therefore, application of CRNF could increase the rice yield significantly due to these physiological changes in the functional leaves.

  9. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata.

    Du, Rui-Jun; He, Er-Kai; Tang, Ye-Tao; Hu, Peng-Jie; Ying, Rong-Rong; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-01-01

    In this paper, the effects of indole-3-acetic acid (IAA) and/or ethylenediaminetetraacetic acid (EDTA) on lead uptake by a Zn/Cd hyperaccumulator Picris divaricata were studied. P. divaricata responded to Pb by better root system and increased biomass in presence of phytohormone IAA, which was able to reduce the inhibiting effects of Pb on transpiration without reducing the uptake of Pb The application of 100 microM IAA increased plant transpiration rate by about 20% and Pb concentration in leaves by about 37.3% as compared to treatment exposed to Pb alone. The enhanced phytoextraction efficiency could be attributed to the mechanisms played by IAA through alleviating Pb toxicity, creating better root system and plant biomass, promoting a higher transpiration rate as well as regulating the level of nutrient elements. On the contrary, inefficiency of phytoextraction was found with EDTA or the combination of IAA and EDTA probably because most Pb was in the form of Pb-EDTA complex which blocked the uptake by P. divaricata. The present study demonstrated that IAA was able to enhance the phytoextraction of Pb by Zn/Cd hyperaccumulator P. divaricata, providing a feasible method for the phytoremediation of polymetallic contaminated soils. PMID:21972569

  10. Utilization of Enzyme-Immobilized Mesoporous Silica Nanocontainers (IBN-4 in Prodrug-Activated Cancer Theranostics

    Bau-Yen Hung

    2015-12-01

    Full Text Available To develop a carrier for use in enzyme prodrug therapy, Horseradish peroxidase (HRP was immobilized onto mesoporous silica nanoparticles (IBN-4: Institute of Bioengineering and Nanotechnology, where the nanoparticle surfaces were functionalized with 3-aminopropyltrimethoxysilane and further conjugated with glutaraldehyde. Consequently, the enzymes could be stabilized in nanochannels through the formation of covalent imine bonds. This strategy was used to protect HRP from immune exclusion, degradation and denaturation under biological conditions. Furthermore, immobilization of HRP in the nanochannels of IBN-4 nanomaterials exhibited good functional stability upon repetitive use and long-term storage (60 days at 4 °C. The generation of functionalized and HRP-immobilized nanomaterials was further verified using various characterization techniques. The possibility of using HRP-encapsulated IBN-4 materials in prodrug cancer therapy was also demonstrated by evaluating their ability to convert a prodrug (indole-3- acetic acid (IAA into cytotoxic radicals, which triggered tumor cell apoptosis in human colon carcinoma (HT-29 cell line cells. A lactate dehydrogenase (LDH assay revealed that cells could be exposed to the IBN-4 nanocomposites without damaging their membranes, confirming apoptotic cell death. In summary, we demonstrated the potential of utilizing large porous mesoporous silica nanomaterials (IBN-4 as enzyme carriers for prodrug therapy.

  11. Effects of a rhizobacterium on the growth of and chromium remediation by Lemna minor.

    Tang, Jie; Zhang, Ying; Cui, Yan; Ma, Jiong

    2015-07-01

    Duckweed has shown great potential for both energy and environmental applications, particularly in wastewater treatment and fuel ethanol production. A rhizobacterium, Exiguobacterium sp. MH3, has been reported to associate with the duckweed Lemna minor for symbiotic growth. The aim of this work is to study the effects of rhizobacterium MH3 on L. minor growth and chromium (Cr) remediation. It appeared to have a synergism between the rhizobacterium MH3 and duckweed; the presence of strain MH3 promoted the growth of duckweeds by increasing both the frond number and dry weight of duckweed by more than 30%, while duckweed in turn provided essential carbon source and energy for the growth of rhizobacterium MH3. Under Cr(VI) exposure, particularly at higher Cr(VI) concentrations, Exiguobacterium sp. MH3 significantly alleviated the harmful effects of the stress on the duckweed by promoting duckweed growth and preventing duckweed from excessive uptake of Cr. Potential mechanisms were also discussed in light of the genome sequence of strain MH3, and it was speculated that siderophores and indole-3-acetic acid (IAA) secreted by strain MH3 might contribute to promoting duckweed growth. PMID:25631740

  12. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    Xu, Yu, E-mail: xuyu1001@gmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Liu, Zhengchun, E-mail: l135027@126.com [Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Kong, Haiyan, E-mail: suppleant@163.com [Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Sun, Wenjie, E-mail: wendy11240325@163.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Liao, Zhengkai, E-mail: fastbeta@gmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Zhou, Fuxiang, E-mail: happyzhoufx@sina.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); Xie, Conghua, E-mail: chxie_65@hotmail.com [Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071 (China); and others

    2011-09-09

    Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expression of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.

  13. Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils

    Francesca Mapelli

    2013-01-01

    Full Text Available Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.

  14. Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas.

    Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Saxena, Anil Kumar

    2016-02-01

    The plant growth promoting psychrotrophic Bacilli were investigated from different sites in north western Indian Himalayas. A total of 247 morphotypes were obtained from different soil and water samples and were grouped into 43 clusters based on 16S rDNA-RFLP analysis with three restriction endonucleases. Sequencing of representative isolates has revealed that these 43 Bacilli belonged to different species of 11 genera viz., Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus and Virgibacillus. With an aim to develop microbial inoculants that can perform efficiently at low temperatures, all representative isolates were screened for different plant growth promoting traits at low temperatures (5-15 degrees C). Among the strains, variations were observed for production (%) of indole-3-acetic acid (20), ammonia (19), siderophores (11), gibberellic acid (4) and hydrogen cyanide (2); solubilisation (%) of zinc (14), phosphate (13) and potassium (7); 1-aminocyclopropane-1-carboxylate deaminase activity (6%) and biocontrol activity (4%) against Rhizoctonia solani and Macrophomina phaseolina. Among all the strains, Bacillus licheniformis, Bacillus muralis, Desemzia incerta, Paenibacillus tylopili and Sporosarcina globispora were found to be potent candidates to be developed as inoculants as they exhibited multiple PGP traits at low temperature. PMID:26934782

  15. Auxin biosynthesis by the YUCCA6 flavin monooxygenase gene in woodland strawberry.

    Liu, Hong; Xie, Wei-Fa; Zhang, Ling; Valpuesta, Victoriano; Ye, Zheng-Wen; Gao, Qing-Hua; Duan, Ke

    2014-04-01

    Auxin has been regarded as the main signal molecule coordinating the growth and ripening of fruits in strawberry, the reference genomic system for Rosaceae. The mechanisms regulating auxin biosynthesis in strawberry are largely elusive. Recently, we demonstrated that two YUCCA genes are involved in flower and fruit development in cultivated strawberry. Here, we show that the woodland strawberry (Fragaria vesca L.) genome harbors nine loci for YUCCA genes and eight of them encode functional proteins. Transcription pattern in different plant organs was different for all eight FvYUCs. Functionality of the FvYUC6 gene was studied in transgenic strawberry overexpressing FvYUC6, which showed typical high-auxin phenotypes. Overexpression of FvYUC6 also delayed flowering and led to complete male sterility in F. vesca. Additionally, specific repression of FvYUC6 expression by RNA interference significantly inhibited vegetative growth and reduced plant fertility. The development of leaves, roots, flowers, and fruits was greatly affected in FvYUC6-repressed plants. Expression of a subset of auxin-responsive genes was well correlated with the changes of FvYUC6 transcript levels and free indole-3-acetic acid levels in transgenic strawberry. These observations are consistent with an important role of FvYUC6 in auxin synthesis, and support a main role of the gene product in vegetative and reproductive development in woodland strawberry. PMID:24373096

  16. Genotypic Characterization of Azotobacteria Isolated from Argentinean Soils and Plant-Growth-Promoting Traits of Selected Strains with Prospects for Biofertilizer Production

    Esteban Julián Rubio

    2013-01-01

    Full Text Available The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA, gibberellin (GA3 and zeatin (Z biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2–18.2 μg IAA mL−1, 0.3–0.7 μg GA3 mL−1, and 0.5–1.2 μg Z mL−1. Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.

  17. Characterization of plant growth promoting rhizobacteria isolated from root system of sunflower (helianthus annus l) grown under salt affected area of pakistan

    Plant growth promoting rhizobacteria (PGPR) directly promote plant growth by providing indole-3-acetic acid (IAA), solubilization of inorganic phosphates, nitrogen fixation and siderophores and other organic acid production, whereas indirectly support plant growth by suppressing plant pathogens. The objective of this study was isolation and characterization of bacterial strains from rhizosphere, endosphere and rhizoplane of sunflower. Thirty six bacterial strains were selected out of 44 from plant root samples along with rhizospheric soil, collected from different salt affected areas of Central Punjab (Pakistan). Selected bacterial strains were characterized morphologically as well as biochemically at National Agricultural Research Centre, Islamabad during 2011-13. It was observed that all isolates produced IAA, whereas 14 strains were declared as phosphate solubilizing bacteria (PSB), eight isolates exhibited antifungal characteristics, 30 were nitrogen fixer and all of them were gram -ve. During biochemical characterization of bacterial isolates KS 15 and KS 8 produced the highest indole acetic acid whereas KS 15 and KS 17 indicated maximum phosphate solubilization (PS) among all isolated strains. The bacterial strains KS 10 and KS 44 showed maximum bio-control activity (fungal growth inhibition) than other isolated strains. (author)

  18. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement. PMID:26808445

  19. Auxin synthesis-encoding transgene enhances grape fecundity.

    Costantini, Elisa; Landi, Lucia; Silvestroni, Oriana; Pandolfini, Tiziana; Spena, Angelo; Mezzetti, Bruno

    2007-04-01

    Grape (Vitis vinifera) yield is largely dependent on the fecundity of the cultivar. The average number of inflorescences per shoot (i.e. shoot fruitfulness) is a trait related to fecundity of each grapevine. Berry number and weight per bunch are other features affecting grape yield. An ovule-specific auxin-synthesizing (DefH9-iaaM) transgene that increases the indole-3-acetic acid content of grape transgenic berries was transformed into cultivars Silcora and Thompson Seedless, which differ in the average number of inflorescences per shoots. Thompson Seedless naturally has very low shoot fruitfulness, whereas Silcora has medium shoot fruitfulness. The average number of inflorescences per shoot in DefH9-iaaM Thompson Seedless was doubled compared to its wild-type control. Berry number per bunch was increased in both transgenic cultivars. The quality and nutritional value of transgenic berries were substantially equivalent to their control fruits. The data presented indicate that auxin enhances fecundity in grapes, thus enabling to increase yield with lower production costs. PMID:17337528

  20. Gene regulation in parthenocarpic tomato fruit.

    Martinelli, Federico; Uratsu, Sandra L; Reagan, Russell L; Chen, Ying; Tricoli, David; Fiehn, Oliver; Rocke, David M; Gasser, Charles S; Dandekar, Abhaya M

    2009-01-01

    Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlation could be made between the number of seeds, transgene, and fruit size. Expression of auxin synthesis or responsiveness genes by both of these promoters produced seedless parthenocarpic fruits. Eighty-three percent of the genes measured showed no significant differences in expression due to parthenocarpy. The remaining 17% with significant variation (P auxin in particular), and metabolism of sugars and lipids. Up-regulation of lipid transfer proteins and differential expression of several indole-3-acetic acid (IAA)- and ethylene-associated genes were observed in transgenic parthenocarpic fruits. Despite differences in several fatty acids, amino acids, and other metabolites, the fundamental metabolic profile remains unchanged. This work showed that parthenocarpy with ovule-specific alteration of auxin synthesis or response driven by the INO promoter could be effectively applied where such changes are commercially desirable. PMID:19700496

  1. Tissue culture and mutagenesis of rain lily (zephyranthes)

    There are three varieties of Zephyranthes used widely in landscaping due to their robust growth and attractive flowers in pink, yellow and white. Both in vivo and in vitro mutagenesis are an effective approach to increase the flower colour variations of Zephyranthes. In vitro propagation for the three varieties was attempted by using the induction medium developed by Sachar and Kapoor in 1959. The medium contains I ma of each indole 3-acetic acid (IAA), indole 3-butyric acid (IBA) and kinetin. Following surface sterilization of bulb scales, 17.8%, 10.5% and 10.7% of pink, white and yellow varieties respectively, were able to form small bulblets on the induction media. Further development of these bulblets into plantlets was also achieved on the same medium. Work is now being carried out to improve the efficiency of bulblet regeneration. Mutagenesis of Zephyranthes was initiated from bulbs of the pink varieties to develop new varieties with attractive combinations of flower colour and forms, shelf life and growth habits. These bulbs were irradiated using a gamma cell with a 60Co source. Three variants with different flower colour and morphology have been achieved so far and are now being propagated in the nursery. (Author)

  2. Isolation and Characterization of Salt Tolerant Endophytic and Rhizospheric Plant Growth-Promoting Bacteria (PGPB Associated with the Halophyte Plant (Sesuvium Verrucosum Grown in KSA

    Mohamed A.M. El-Awady

    2015-09-01

    Full Text Available This study was designed to isolate and characterize endophytic and rhizospheric bacteria associated with the halophyte plant Sesuvium verrucosum, grown under extreme salinity soil in Jeddah, Saudi Arabia. The plant growth promotion activities of isolated bacterial were evaluated in vitro. A total of 19 salt tolerant endophytic and rhizospheric bacterial isolates were obtained and grouped into six according to genetic similarity based on RAPD data. These six isolates were identified by amplification and partial sequences of 16S rDNA as Enterobacter cancerogenus,Vibrio cholerae, Bacillus subtilis, Escherichia coli and two Enterobacter sp. Isolates were then grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, and production of phytohormones such as indole-3-acetic acid, as well as 1-aminocyclopropane-1-carboxylate (ACC deaminase activity. While, All of the six strains were negative for ACC deaminaseactivity, two isolates showed Nitrogen fixation activity, three isolates produce the plant hormone (Indole acetic acid and two isolates have the activity of solubiliztion of organic phosphate. Among the six isolates, the isolate (R3 from the soil around the roots is able to perform the three previous growth promoting possibilities together and it is ideal for use in promoting the growth of plants under the high salinity conditions. This isolate is candidate to prepare a friendly biofertelizer that can be used for the improvement of the crops performance under salinity conditions.

  3. Comparison of the bacterial community and characterization of plant growth-promoting rhizobacteria from different genotypes of Chrysopogon zizanioides (L.) Roberty (vetiver) rhizospheres.

    Monteiro, Juliana Mendes; Vollú, Renata Estebanez; Coelho, Marcia Reed Rodrigues; Alviano, Celuta Sales; Blank, Arie Fitzgerald; Seldin, Lucy

    2009-08-01

    Molecular approaches [PCR-denaturing gradient gel electrophoresis (DGGE)] were used to determine whether three different vetiver (Chrysopogon zizanioides) genotypes, commercially used in Brazil and considered economically important over the world, select specific bacterial populations to coexist in their rhizospheres. DGGE profiles revealed that the predominant rhizospheric bacterial community hardly varies regarding the vetiver genotype. Moreover, using traditional cultivation methods, bacterial strains were isolated from the different rhizospheres. Colonies presenting different morphologies (83) were selected for determining their potential for plant growth promotion. More than half of the strains tested (57.8%) were amplified by PCR using nifH-based primers, specific for the enzyme nitrogenase reductase. The production of siderophores was observed in 88% of the strains, while the production of antimicrobial substances was detected in only 14.5% of the isolates when Micrococcus sp. was used as the indicator strain. Production of indole-3-acetic acid and the solubilization of phosphate were observed in 55.4% and 59% of the isolates, respectively. In total, 44 strains (53%) presented at least three characteristics of plant growth promotion and were submitted to amplified ribosomal DNA restriction analysis. Twenty-four genetic groups were formed at 100% similarity and one representative of each group was selected for their identification by partial 16S rRNA gene sequencing. They were affiliated with the genera Acinetobacter, Comamonas, Chryseobacterium, Klebsiella, Enterobacter, Pantoea, Dyella, Burkholderia, or Pseudomonas. These strains can be considered of great importance as possible biofertilizers in vetiver. PMID:19763409

  4. Effect of environmental conditions on the migration of DI (2-Ethylhexyl) Phthalate from PET bottles into yogurt drinks: Influence of time, temperature and food simulant

    Polyethylene terephthalate (PET) is one of the materials that are widely used for packaging of beverages and edible oils. In this study, the migration of di (2-ethylhexyl) phthalate (DEHP) from PET bottles into the Iranian yogurt drink was investigated. According to European Commission regulations, acetic acid (3% w/v) was chosen as stimulant. The acetic acid samples were stored at 4C, 25C and 45Cfor four months and analyzed periodically by gas chromatography. Differential Scanning Calorimetry (DSC) was used to investigate if contact with the food stimulant could affect the PET material. It was concluded that the storage temperature had a large effect on the migration of DEHP. Also, increasing storage time resulted in higher concentrations of migrating DEHP. The concentrations of migrating substance did not exceed its specific migration limit (Economic European Community (EEC) regulations). Determination of glass transition (Tg) and crystallinity percent of PET bottles using DSC method showed that the variations in the amount of migration at different storage condition did not induce any change in the PET material in contact with 3% acetic acid. (author)

  5. Effect of environmental conditions on the migration of di(2-ethylhexyl)phthalate from pet bottles into yogurt drinks: influence of time, temperature, and food simulant

    Polyethylene terephthalate (PET) is one of the materials that are widely used for packaging of beverages and edible oils. In this study, the migration of di(2-ethylhexyl)phthalate (DEHP) from PET bottles into the Iranian yogurt drink was investigated. According to European Commission regulations, acetic acid (3% w/v) was chosen as simulant. The acetic acid samples were stored at 4 degree C, 25 degree C, and 45 degree C for four months and analyzed periodically by gas chromatography. Differential Scanning Calorimetry (DSC) was used to investigate if contact with the food simulant could affect the PET material. It was concluded that the storage temperature had a large effect on the migration of DEHP. Also, increasing storage time resulted in higher concentrations of migrating DEHP. The concentrations of migrating substance did not exceed its specific migration limit (Economic European Community (EEC) regulations). Determination of glass transition (Tg) and crystallinity percent of PET bottles using DSC method showed that the variations in the amount of migration at different storage condition did not induce any change in the PET material in contact with 3% acetic acid. (author)

  6. A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization

    Bible, Amber N.; Fletcher, Sarah J.; Pelletier, Dale A.; Schadt, Christopher W.; Jawdy, Sara S.; Weston, David J.; Engle, Nancy L.; Tschaplinski, Timothy; Masyuko, Rachel; Polisetti, Sneha; Bohn, Paul W.; Coutinho, Teresa A.; Doktycz, Mitchel J.; Morrell-Falvey, Jennifer L.

    2016-01-01

    The complex interactions between plants and their microbiome can have a profound effect on the health and productivity of the plant host. A better understanding of the microbial mechanisms that promote plant health and stress tolerance will enable strategies for improving the productivity of economically important plants. Pantoea sp. YR343 is a motile, rod-shaped bacterium isolated from the roots of Populus deltoides that possesses the ability to solubilize phosphate and produce the phytohormone indole-3-acetic acid (IAA). Pantoea sp. YR343 readily colonizes plant roots and does not appear to be pathogenic when applied to the leaves or roots of selected plant hosts. To better understand the molecular mechanisms involved in plant association and rhizosphere survival by Pantoea sp. YR343, we constructed a mutant in which the crtB gene encoding phytoene synthase was deleted. Phytoene synthase is responsible for converting geranylgeranyl pyrophosphate to phytoene, an important precursor to the production of carotenoids. As predicted, the ΔcrtB mutant is defective in carotenoid production, and shows increased sensitivity to oxidative stress. Moreover, we find that the ΔcrtB mutant is impaired in biofilm formation and production of IAA. Finally we demonstrate that the ΔcrtB mutant shows reduced colonization of plant roots. Taken together, these data suggest that carotenoids are important for plant association and/or rhizosphere survival in Pantoea sp. YR343. PMID:27148182

  7. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza

    Xu, Zhichao; Ji, Aijia; Chen, Shilin

    2016-01-01

    ABSTRACT Auxin response factors (ARFs) can function as transcriptional activators or repressors to regulate the expression of auxin response genes by specifically binding to auxin response elements (AuxREs) during plant development. Based on a genome-wide strategy using the medicinal model plant Salvia miltiorrhiza, 25 S. miltiorrhiza ARF (SmARF) gene family members in four classes (class Ia, IIa, IIb and III) were comprehensively analyzed to identify characteristics including gene structures, conserved domains, phylogenetic relationships and expression patterns. In a hybrid analysis of the phylogenetic tree, microRNA targets, and expression patterns of SmARFs in different organs, root tissues, and methyl jasmonate or indole-3-acetic acid treatment conditions, we screened for candidate SmARFs involved in various developmental processes of S. miltiorrhiza. Based on this analysis, we predicted that SmARF25, SmARF7, SmARF16 and SmARF20 are involved in flower, leaf, stem and root development, respectively. With the further insight into the targets of miR160 and miR167, specific SmARF genes in S. miltiorrhiza might encode products that participate in biological processes as described for ARF genes in Arabidopsis. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of SmARFs in S. miltiorrhiza. PMID:27230647

  8. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study.

    Milan Šoškić

    Full Text Available Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor.

  9. Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives

    Lesyk R. B.

    2010-04-01

    Full Text Available The aim of present research was investigation of anticancer activity of 4-azolidinone-3-carboxylic acids derivatives, and studies of structure–activity relationships (SAR aspects. Methods. Organic synthesis; spectral methods; anticancer screening was performed according to the US NCI protocol (Developmental Therapeutic Program. Results. The data of new 4-thiazolidinone-3-alkanecarboxylic acids derivatives in vitro anticancer activity were described. The most active compounds which belong to 5-arylidene-2,4- thia(imidazolidinone-3-alkanecarboxylic acids; 5-aryl(heterylidenerhodanine-3-succinic acids derivatives were selected. Determination of some SAR aspects which allowed to determine directions in lead- compounds structure optimization, as well as desirable molecular fragments for design of potential anticancer agents based on 4-azolidinone scaffold were performed. 5-Arylidenehydantoin-3-acetic acids amides were identified as a new class of significant selective antileukemic agents. Possible pharmacophore scaffold of 5-ylidenerhodanine-3-succinic acids derivatives was suggested. Conclusions. The series of active compounds with high anticancer activity and/or selectivity levels were selected. Some SAR aspects were determined and structure design directions were proposed.

  10. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study.

    Šoškić, Milan; Porobić, Ivana

    2016-01-01

    Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734

  11. Scientific Opinion on the safety evaluation of the substance, 1,3,5-tris(2,2-dimethylpropanamidobenzene, CAS No. 745070-61-5, for use in food contact materials

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2013-07-01

    Full Text Available This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the additive 1,3,5-tris(2,2-dimethylpropanamidobenzene with the CAS No. 745070-61-5, the Ref. No 95420, the FCM Substance No 784, for use as a nucleating agent/clarifier at a maximum use level of 250 mg/kg in polyprolylene (PP. Final articles are intended to be used in contact with all type of foods for short term contact (1 hour at temperatures up to 100 ºC and/or for long term storage at ambient temperature or below. Specific migration of the substance into 3 % acetic acid, 10 % ethanol and olive oil, was measured to be up to 48 µg/kg, 79 µg/kg and 94 µg/kg, respectively. In vitro and in vivo genotoxicity tests showed no evidence for a genotoxic potential of the substance. A 90-day dietary toxicity study in Wistar rats showed no effects at any dose and the NOAEL was considered to be 961 mg/kg bw/day in males and 1104 mg/kg bw/day in females or higher. Therefore, the CEF Panel concluded that the substance 1,3,5-tris(2,2-dimethylpropanamidobenzene does not raise a safety concern for the consumer if it is used in polyolefins and the migration does not exceed 5 mg/kg food.

  12. Vegetative propagation of Garcinia lucida Vesque (Clusiaceae using leafy stem cuttings and grafting

    Alain Tsobeng

    2014-12-01

    Full Text Available Garcinia lucida Vesque (Clusiaceae is a tree species that is highly valued for its medicinal properties by rural households in the humid forest zone of Cameroon. However, the unsustainable exploitation of the species threatens its long-term regeneration. This study focuses on its vegetative propagation via stem cuttings in non-mist propagators and through grafting. The study tests the effects of three rooting media (sand, sawdust, sand + sawdust (1/1; three leaf sizes (0,25 and 50 cm2; and three types of hormone [indole butyric acid (IBA, indole-3-acetic acid (IAA and naphthalene acetic acid (NAA], applied as a single dose. Furthermore, three grafting techniques (cleft, side tongue and whip-and-tongue grafting were tested. All experiments were designed as completely randomized blocks with three replicates. Results showed that cuttings require a medium that has low water holding capacity and high porosity, and a leaf area of 50 cm2 and NAA treatment; grafting success was affected by the technique used, with top cleft grafting yielding a 100% success rate. From this preliminary study, it is concluded that G. lucida is amenable to vegetative propagation by cuttings and grafting.

  13. Indoor Air Quality Assessment of Elementary Schools in Curitiba, Brazil

    The promotion of good indoor air quality in schools is of particular public concern for two main reasons: (1) school-age children spend at least 30% of their time inside classrooms and (2) indoor air quality in urban areas is substantially influenced by the outdoor pollutants, exposing tenants to potentially toxic substances. Two schools in Curitiba, Brazil, were selected to characterize the gaseous compounds indoor and outdoor of the classrooms. The concentrations of benzene, toluene, ethylbenzene, and the isomers xylenes (BTEX); NO2; SO2; O3; acetic acid (HAc); and formic acid (HFor) were assessed using passive diffusion tubes. BTEX were analyzed by gas chromatography-ion trap mass spectrometry and other collected gasses by ion chromatography. The concentration of NO2 varied between 9.5 and 23 μg m-3, whereas SO2 showed an interval from 0.1 to 4.8 μg m-3. Within the schools, BTEX concentrations were predominant. Formic and acetic acids inside the classrooms revealed intermediate concentrations of 1.5 μg m-3 and 1.2 μg m-3, respectively.

  14. Evaluation of Long-Term Migration Testing from Can Coatings into Food Simulants: Polyester Coatings.

    Paseiro-Cerrato, Rafael; Noonan, Gregory O; Begley, Timothy H

    2016-03-23

    FDA guidance for food contact substances recommends that for food packaging intended for use at sterilized, high temperature processed, or retorted conditions, a migration test with a retort step at 121 °C for 2 h followed by a 10 day migration test at 40 °C should be performed. These conditions are in intended to simulate processing and long-term storage. However, can coatings may be in contact with food for years, and there are very few data evaluating if this short-term testing accurately simulates migration over extended time periods. A long-term migration test at 40 °C with retorted and non-retorted polyester cans using several food simulants (water, 3% acetic acid, 10% ethanol, 50% ethanol, and isooctane) was conducted to verify whether traditional migration testing protocols accurately predict migration from food contact materials used for extended time periods. Time points were from 1 day to 515 days. HPLC-MS/MS was used to analyze polyester monomers, and oligomer migration was monitored using HPLC-DAD/CAD and HPLC-MS. Concentrations of monomers and oligomers increased during the migration experiments, especially in ethanol food simulants. The data suggest that current FDA migration protocols may need to be modified to address changes in migrants as a result of long-term storage conditions. PMID:26917426

  15. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants. PMID:23541032

  16. Anion exchange pathways for Cl- transport in rabbit renal microvillus membranes

    The authors evaluated the mechanisms of chloride transport in microvillus membrane vesicles isolated from the rabbit renal cortex. The presence of Cl-formate exchange was confirmed. Outward gradients of oxaloacetate, HCO3, acetate, lactate, succinate, sulfate, and p-aminohippurate (PAH) stimulated the rate of Cl uptake minimally or not at all. However, an outward gradient of oxalate stimulated Cl uptake by 70%, and an outward Cl gradient induced uphill oxalate uptake, indicting Cl-oxalate exchange. Moreover, an outward formate gradient induced uphill oxalate uptake, indicating formate-oxalate exchange. Studies of inhibitor and substrate specificity indicated the probably operation of at least two separate anion exchangers in mediating Cl transport. The Cl-formate exchanger accepted Cl and formate as substrates, had little or no affinity for oxalate, was sensitive to inhibition by furosemide, and was less sensitive to inhibition by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The Cl (formate)-oxalate exchanger also accepted Cl and formate as substrates but had high affinity for oxalate, was highly sensitive to inhibition by DIDS, and was less sensitive to inhibition by furosemide. The Cl-formate exchanger was electroneutral, whereas the Cl (formate)-oxalate exchanger was electrogenic. They conclude that at least separate anion exchangers mediating Cl transport are present on the luminal membrane of the rabbit proximal tubule cell. These exchangers may play important roles in mediating transtubular Cl and oxalate transport in this nephron segment

  17. Micropropagation of poinsettia by organogenesis.

    Castellanos, Marcos; Power, J Brian; Davey, Michael R

    2010-01-01

    Poinsettia (Euphorbia pulcherrima) is one of the most popular ornamental pot plants. Conventional propagation is by cuttings, generally focused on a period prior to the most intensive time of sales. Rapid multiplication of elite clones, the production of pathogen-free plants and more rapid introduction of novel cultivars (cvs.) with desirable traits, represent important driving forces in the poinsettia industry. In recent years, different strategies have been adopted to micropropagate poinsettia, which could assist breeders to meet consumer demands. The development of reliable in vitro regeneration procedures is likely to play a crucial role in future production systems. Stem nodal explants cultured on semi-solid MS-based medium supplemented with benzylaminopurine (BAP) and naphthalene acetic acid (NAA) develop shoots from adventitious/axillary buds after 7 weeks of culture. Rooting of in vitro regenerated shoots is achieved in semi-solid MS-based medium containing the auxin indole-3-acetic acid (IAA). Four to six weeks after transfer to root-inducing medium, regenerated plants can be transferred to compost and acclimatized in the glasshouse. Direct shoot regeneration from cultured explants is important to minimize somaclonal variation in regenerated plants. PMID:20099091

  18. Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1.

    Fedorov, D N; Doronina, N V; Trotsenko, Yu A

    2010-12-01

    For the first time for methylotrophic bacteria an enzyme of phytohormone indole-3-acetic acid (IAA) biosynthesis, indole-3-pyruvate decarboxylase (EC 4.1.1.74), has been found. An open reading frame (ORF) was identified in the genome of facultative methylotroph Methylobacterium extorquens AM1 using BLAST. This ORF encodes thiamine diphosphate-dependent 2-keto acid decarboxylase and has similarity with indole-3-pyruvate decarboxylases, which are key enzymes of IAA biosynthesis. The ORF of the gene, named ipdC, was cloned into overexpression vector pET-22b(+). Recombinant enzyme IpdC was purified from Escherichia coli BL21(DE3) and characterized. The enzyme showed the highest k(cat) value for benzoylformate, albeit the indolepyruvate was decarboxylated with the highest catalytic efficiency (k(cat)/K(m)). The molecular mass of the holoenzyme determined using gel-permeation chromatography corresponds to a 245-kDa homotetramer. An ipdC-knockout mutant of M. extorquens grown in the presence of tryptophan had decreased IAA level (46% of wild type strain). Complementation of the mutation resulted in 6.3-fold increase of IAA concentration in the culture medium compared to that of the mutant strain. Thus involvement of IpdC in IAA biosynthesis in M. extorquens was shown. PMID:21314613

  19. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    Highlights: → A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. → The promoter was characterized with radiation-inducibility and tumor-specificity. → Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. → Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expression of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.

  20. Uremic Toxins Enhance Statin-Induced Cytotoxicity in Differentiated Human Rhabdomyosarcoma Cells

    Hitoshi Uchiyama

    2014-09-01

    Full Text Available The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF. Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins—hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate—on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated. In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated. However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated. These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.

  1. A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization.

    Bible, Amber N; Fletcher, Sarah J; Pelletier, Dale A; Schadt, Christopher W; Jawdy, Sara S; Weston, David J; Engle, Nancy L; Tschaplinski, Timothy; Masyuko, Rachel; Polisetti, Sneha; Bohn, Paul W; Coutinho, Teresa A; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2016-01-01

    The complex interactions between plants and their microbiome can have a profound effect on the health and productivity of the plant host. A better understanding of the microbial mechanisms that promote plant health and stress tolerance will enable strategies for improving the productivity of economically important plants. Pantoea sp. YR343 is a motile, rod-shaped bacterium isolated from the roots of Populus deltoides that possesses the ability to solubilize phosphate and produce the phytohormone indole-3-acetic acid (IAA). Pantoea sp. YR343 readily colonizes plant roots and does not appear to be pathogenic when applied to the leaves or roots of selected plant hosts. To better understand the molecular mechanisms involved in plant association and rhizosphere survival by Pantoea sp. YR343, we constructed a mutant in which the crtB gene encoding phytoene synthase was deleted. Phytoene synthase is responsible for converting geranylgeranyl pyrophosphate to phytoene, an important precursor to the production of carotenoids. As predicted, the ΔcrtB mutant is defective in carotenoid production, and shows increased sensitivity to oxidative stress. Moreover, we find that the ΔcrtB mutant is impaired in biofilm formation and production of IAA. Finally we demonstrate that the ΔcrtB mutant shows reduced colonization of plant roots. Taken together, these data suggest that carotenoids are important for plant association and/or rhizosphere survival in Pantoea sp. YR343. PMID:27148182

  2. Hormonal response and root architecture in Arabidopsis thaliana subjected to heavy metals

    Antonella Vitti

    2014-05-01

    Full Text Available In this work, specific concentrations of cadmium, copper and zinc in double combination, were supplied for 12 days to growing seedlings of the model species Arabidopsis thaliana. Metal accumulation was measured in roots and shoots. Microscopic analyses revealed that root morphology was affected by metals, and that the root and shoot levels of indole-3-acetic acid, trans-zeatin riboside and dihydrozeatin riboside varied accordingly. Minor modifications in gibberellic acid levels occurred in the Zinc treatments, whereas abscisic acid level did not change after the exposition to metals. Reverse transcription polymerase chain reaction analysis of some genes involved in auxin and cytokinin synthesis (AtAAO, AtNIT and AtIPT revealed that their expression were not affected by metal treatments. The root morphological alterations that resulted in an increased surface area, due to the formation of root hairs and lateral roots, could be signs of the response to metal stress in terms of a functionally-addressed reorientation of root growth. The root system plasticity observed could be important for better understanding the manner in which the root architecture is shaped by environmental and hormonal stimuli.

  3. Influence of Rhizobacterial Inoculation on Growth of the Sweetpotato Cultivar

    Y. Farzana

    2005-01-01

    Full Text Available Sweetpotato (Ipomoea batatas L. is the most important of local tuber crops in Malaysia. It is usually planted on marginal soils such as peat and sandy soils. Malaysian’s are consumed a lot of sweetpotatoes and its production requires high fertilizer input, which can lead to increased production cost and environment problems. The use of biofertilizer and bioenhancer such as N2 (nitrogen fixing bacteria and beneficial microorganism can reduce chemical fertilizer applications and consequently lower production cost. The pot experiment was conducted to determine the influence of rhizobacterial isolates on the response of sweetpotato plant growth. A total of five rhizobacterial isolates capable of producing indole-3-acetic acid (IAA were used. Four of the isolates were collected from sweetpotato rhizosphere and one isolate was imported. Cuttings of sweetpotato cultivars melaka and oren were planted in plastic pots containing alluvium soil. Cultures of the rhizobacterial isolates were inoculated at planting time, two and four weeks after planting. Plants were harvested 60 days after planting. The results showed that, three of isolates significantly increased the plant growth and the N, P, K, Ca and Mg uptake of sweetpotato cultivar.

  4. The Effect of Plant Growth Regulators on Callus Induction and Regeneration of Amygdalus communis

    Naimeh SHARIFMOGHADAM

    2011-08-01

    Full Text Available The Almond (Amygdalus communis is one of the most important and oldest commercial nut crops, belonging to the Rosaceae family. Almond has been used as base material in pharmaceutical, cosmetic, hygienically and food industry. Propagation by tissue culture technique is the most important one in woody plants. In the current research, in vitro optimization of tissue culture and mass production of almond was investigated. In this idea, explants of actively growing shoots were collected and sterilized, then transferred to MS medium with different concentrations and combinations of plant growth regulators. The experiment was done in completely randomized blocks design, with 7 treatment and 30 replications. After 4 weeks, calli induction, proliferation, shoot length and number of shoot per explants were measured. Results showed that the best medium for shoot initiation and proliferation was MS + 0.5 mg/l IAA (Indol-3-Acetic Acid + 1 mg/l BA (Benzyl Adenine. Autumn was the best season for collecting explants. The shoots were transferred to root induction medium with different concentrations of plant growth regulators. The best root induction medium was MS + 0.5 mg/l IBA (Indol Butyric Acid.

  5. Organ and plantlet regeneration of Menyanthes trifoliata through tissue culture

    Urszula Adamczyk-Rogozińska

    2014-02-01

    Full Text Available The conditions for the regeneration of plants through organogenesis from callus tissues of Menyanthes trifoliata are described. The shoot multiplication rate was affected by basal culture media, the type and concentration of cytokinin and subculture number. The best response was obtained when caulogenic calli were cultured on the modified Schenk and Hildebrandt medium (SH-M containing indole-3-acetic acid (IAA 0,5 mg/l and 6-benzyladenine (BA 1 mg/l or zeatin (2 mg/l. Under these conditions ca 7 shoots (mostly 1 cm or more in length per culture in the 5th and 6th passages could be developed. In older cultures (after 11-12 passages there was a trend for more numerous but shorter shoot formation. All regenerated shoots could be rooted on the SH-M medium supplemented with 0.5 mg/l IAA within 6 weeks; 80% of in vitro rooted plantlets survived their transfer to soil.

  6. Relationship between endogenous hormonal content and somatic organogenesis in callus of peach (Prunus persica L. Batsch) cultivars and Prunus persica×Prunus dulcis rootstocks.

    Pérez-Jiménez, Margarita; Cantero-Navarro, Elena; Pérez-Alfocea, Francisco; Le-Disquet, Isabel; Guivarc'h, Anne; Cos-Terrer, José

    2014-05-01

    The relationship between endogenous hormones content and the induction of somatic peach plant was studied. To induce multiple shoots from callus derived from the base of stem explants of the scion cultivars 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach×almond rootstocks 'Garnem' and 'GF677', propagated plants were cultured on Murashige and Skoog salts augmented with 0.1mgL(-1) of indolebutyric acid, 1mgL(-1) of 6-benzylaminopurine and 3% sucrose. The highest regeneration rate was obtained with the peach×almond rootstocks. Endogenous levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin (Z), zeatin riboside (ZR), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA) were analyzed in the organogenic callus. Lower levels of several hormones, namely Z, ZR, ABA, and ACC were found in the peach×almond rootstock compared to peach cultivars, while IAA and SA presented inconclusive returns. These results suggest that the difference in somatic organogenesis capacity observed in peach and peach×almond hybrids is markedly affected by the endogenous hormonal content of the studied genotypes. PMID:24709154

  7. Effects of biosurfactants on assays of PCB congeners in transgenic arabidopsis plants carrying a recombinant guinea pig AhR-mediated GUS reporter gene expression system.

    Shimazu, Sayuri; Ohta, Masaya; Inui, Hideyuki; Nanasato, Yoshihiko; Ashida, Hitoshi; Ohkawa, Hideo

    2010-11-01

    The transgenic Arabidopsis plants carrying a recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system were generated for assays of polychlorinated biphenyl (PCB) congeners. The selected transgenic Arabidopsis plant XgD2V11-6 exhibited a correlation between uptake of PCB126 and PCB126-induced GUS activity. Also, the plants showed induced GUS activity towards the supplemental indole 3-acetic acid (IAA). Thus, the GUS assay may reflect induction by both endogenous and exogenous AhR ligands. When biosurfactants, MEL-B, produced in the culture of yeast isolated from plants were used for assays of PCB congeners in the transgenic Arabidopsis plants, they showed marked PCB126 dose-dependent and toxic equivalency factor (TEF) dependent GUS activities. The effects of biosurfactants were clearer when the plants were cultivated on soils containing PCB congeners for 7 days as compared with on soils for 3 days as well as in the medium for 3 days. Therefore, it was estimated that biosurfactants form micellae with PCB congeners, which are easily uptaken by the plants in a mode of passive diffusion, transport into the aerial parts and then induce GUS activity. PMID:20936563

  8. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm3, acetic acid: about 30 mg/dm3 and oxalic acid: about 2 mg/dm3) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  9. Effect of ionizing radiation on physicochemical and mechanical properties of commercial multilayer coextruded flexible plastics packaging materials

    The effect of gamma radiation (doses: 5, 10 and 30 kGy) on mechanical properties, gas and water vapour permeability and overall migration values into distilled water, 3% aqueous acetic acid and iso-octane was studied for a series of commercial multilayer flexible packaging materials based on coextruded polypropylene (PP), ethylene vinyl alcohol (EVOH), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyamide (PA) and Ionomer. The results showed that radiation doses of 5 and 10 kGy induced no statistically significant differences (p>0.05) in all polymer properties examined. A dose of 30 kGy induced differences (p<0.05) in the mechanical properties of PA/LDPE, LDPE/EVOH/LDPE and LDPE/PA/Ionomer films. In addition, the same dose induced differences (p<0.05) in the overall migration from Ionomer/EVOH/LDPE and LDPE/PA/Ionomer films into 3% acetic acid and iso-octane and in the overall migration from PP/EVOH/LDPE-LLDPE into iso-octane. Differences recorded, are discussed in relation to food irradiation applications of respective packaging materials

  10. Gene expression and proteomic analysis of shoot apical meristem transition from dormancy to activation in Cunninghamia lanceolata (Lamb.) Hook.

    Xu, Huimin; Cao, Dechang; Chen, Yanmei; Wei, Dongmei; Wang, Yanwei; Stevenson, Rebecca Ann; Zhu, Yingfang; Lin, Jinxing

    2016-01-01

    In contrast to annual plants, in perennial plants, the shoot apical meristem (SAM) can undergo seasonal transitions between dormancy and activity; understanding this transition is crucial for understanding growth in perennial plants. However, little is known about the molecular mechanisms of SAM development in trees. Here, light and transmission electron microscopy revealed that evident changes in starch granules, lipid bodies, and cell walls thickness of the SAM in C. lanceolata during the transition from dormancy to activation. HPLC-ESI-MS/MS analysis showed that levels of indole-3-acetic acid (IAA) increased and levels of abscisic acid (ABA) decreased from dormant to active stage. Examination of 20 genes and 132 differentially expressed proteins revealed that the expression of genes and proteins potentially involved in cell division and expansion significantly increased in the active stage, whereas those related to the abscisic acid insensitive 3(ABI3), the cytoskeleton and energy metabolism decreased in the dormant stage. These findings provide new insights into the complex mechanism of gene and protein expression and their relation to cytological and physiological changes of SAM in this coniferous species. PMID:26832850

  11. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study

    Šoškić, Milan; Porobić, Ivana

    2016-01-01

    Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734

  12. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response.

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-09-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation. PMID:26084921

  13. Dehydrogenase genes in the ectomycorrhizal fungus Tricholoma vaccinum: A role for Ald1 in mycorrhizal symbiosis.

    Henke, Catarina; Jung, Elke-Martina; Voit, Annekatrin; Kothe, Erika; Krause, Katrin

    2016-02-01

    Ectomycorrhizal symbiosis is important for forest ecosystem functioning with tree-fungal cooperation increasing performance and countering stress conditions. Aldehyde dehydrogenases (ALDHs) are key enzymes for detoxification and thus may play a role in stress response of the symbiotic association. With this focus, eight dehydrogenases, Ald1 through Ald7 and TyrA, of the ectomycorrhizal basidiomycete Tricholoma vaccinum were characterized and phylogenetically investigated. Functional analysis was performed through differential expression analysis by feeding different, environmentally important substances. A strong effect of indole-3-acetic acid (IAA) was identified, linking mycorrhiza formation and auxin signaling between the symbiosis partners. We investigated ald1 overexpressing strains for performance in mycorrhiza with the host tree spruce (Picea abies) and observed an increased width of the apoplast, accommodating the Hartig' net hyphae of the T. vaccinum over-expressing transformants. The results support a role for Ald1 in ectomycorrhiza formation and underline functional differentiation within fungal aldehyde dehydrogenases in the family 1 of ALDHs. PMID:26344933

  14. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion.

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S; Kumar, Shailendra; Ansari, Mohammad W; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional. PMID:27555836

  15. Water stress, CO2 and photoperiod influence hormone levels in wheat

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  16. Rhodanineacetic Acid Derivatives as Potential Drugs: Preparation, Hydrophobic Properties and Antifungal Activity of (5-Arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-ylacetic Acids

    Josef Jampilek

    2009-10-01

    Full Text Available Some [(5Z-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]acetic acids were prepared as potential antifungal compounds. The general synthetic approach to all synthesized compounds is presented. Lipophilicity of all the discussed rhodanine-3-acetic acid derivatives was analyzed using a reversed phase high performance liquid chromatography (RP-HPLC method. The procedure was performed under isocratic conditions with methanol as an organic modifier in the mobile phase using an end-capped non-polar C18 stationary RP column. The RP-HPLC retention parameter log k (the logarithm of the capacity factor k is compared with log P values calculated in silico. All compounds were evaluated for antifungal effects against selected fungal species. Most compounds exhibited no interesting activity, and only {(5Z-[4-oxo-5-(pyridin-2- ylmethylidene-2-thioxo-1,3-thiazolidin-3-yl]}acetic acid strongly inhibited the growth of Candida tropicalis 156, Candida krusei E 28, Candida glabrata 20/I and Trichosporon asahii 1188.

  17. [Auxin production by Klebsiella planticola strain TSKhA-91 and Its Effect of development of cucumber (Cucumis sativus L.) Seeds].

    Blinkov, E A; Tsavkelova, E A; Selitskaia, O V

    2014-01-01

    Capacity of Klebsiella planticola strain TSJhA-91 for synthesis of indolyl-3-acetic acid (IAA) and other auxins was studied. The qualitative and quantitative composition of these compounds depends on the presence of exogeneous tryptophan and on the nitrogen source. The highest IAA yield was obtained at the stationary phase of growth. Addition of L-tryptophan to the medium resulted in a significant increase (up to 85.5 microg/mL) of auxin biosynthesis, especially in the presence of nitrates. Thin-layer chromatography revealed that the indole-3-acetamide pathway was not active in this strain. The biological activity of auxins was confirmed by plant assay with the kidney bean cuttings; the height of root formation and rdot number increased 16- and 6-fold, respectively. Under conditions of low-temperature stress, protective effect of K. planticola TSKhA-91 on development of cucumbers (Cucumissativus L.) seeds, including stimulation of germi- nation and root formation by its seeds were shown. PMID:25844466

  18. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil. PMID:25867954

  19. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Li Xu

    Full Text Available The influences of an IAA (indole-3-acetic acid-producing bacterium (Bacillus megaterium and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp. on the growth of peanut (Arachis hypogaea L. cv. Haihua 1 after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  20. Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function.

    Kakei, Yusuke; Yamazaki, Chiaki; Suzuki, Masashi; Nakamura, Ayako; Sato, Akiko; Ishida, Yosuke; Kikuchi, Rie; Higashi, Shouichi; Kokudo, Yumiko; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-11-01

    Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin-deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole-3-pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole-3-acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin-containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4-biphenylboronic acid (BBo) and 4-phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild-type Arabidopsis seedlings. Co-treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki ) of BBo and PPBo were 67 and 56 nm, respectively. In addition, PPBo did not interfere with the auxin response of auxin-marker genes when it was co-treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function. PMID:26402640

  1. Effect of N Fertilizers on Root Growth and Endogenous Hormones in Strawberry

    WANG Bo; LAI Tao; HUANG Qi-Wei; YANG Xing-Ming; SHEN Qi-Rong

    2009-01-01

    Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria ananassa Duchesne) and the endogenous enzymes of indole-3-acetic acid (IAA), abscisic acid (ABA), and isopentenyl adenosine (iPA) in its roots and leaves using enzyme-linked immunosorbent assay. Application of all types of N fertilizers significantly depressed (P ≤ 0.05) root growth at 20 d after transplanting. Application of organic-inorganic fertilizer (OIF) as basal fertilizer had a significant negative effect (P ≤ 0.05) on root growth. The application of OIF and urea lowered the lateral root frequency in strawberry plants at 60 d (P ≤ 0.05) compared with the application of two organic fertilizers (OFA and OFB) and the control (CK). With the fertilizer treatments, there were the same concentrations of IAA and ABA in both roots and leaves at the initial growth stage (20 d), lower levels of IAA and ABA at the later stage (60 d), and higher iPA levels at all seedling stages as compared to those of CK. Thus, changes in the concentrations of endogenous phytohormones in strawberry plants could be responsible for the morphological changes of roots due to fertilization.

  2. Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton.

    Van, Nhan Le; Ma, Chuanxin; Shang, Jianying; Rui, Yukui; Liu, Shutong; Xing, Baoshan

    2016-02-01

    Nanoparticles and transgenic plants are recent scientific developments that require systematic study to understand their potential risks to human health. The effects of CuO nanoparticles (NPs) on Bt-transgenic cotton and conventional cotton are reported here. CuO NPs inhibited the growth, development, nutrient content, and indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations of transgenic and conventional cotton. Transmission electron microscopy (TEM) images showed CuO NPs aggregated on the epidermis of conventional cotton leaves, whereas it had reached into the cells of transgenic cotton leaves by endocytosis. Most CuO NPs aggregates were found on the root outer epidermis and the rest were located in intercellular spaces of both conventional and Bt-transgenic cottons. CuO NPs enhanced the expression of the exogenous gene encoding of Bt toxin protein in leaves and roots, especially at low CuO NP concentrations, providing an important benefit for Bt cotton insect resistance. PMID:26408972

  3. Isolation and Screening of Rhizosphere Bacteria from Grasses in East Kavango Region of Namibia for Plant Growth Promoting Characteristics.

    Haiyambo, D H; Chimwamurombe, P M; Reinhold-Hurek, B

    2015-11-01

    A diverse group of soil bacteria known as plant growth promoting rhizobacteria (PGPR) is able to inhabit the area close to plant roots and exert beneficial effects on plant growth. Beneficial interactions between rhizospheric bacteria and plants provide prospects for isolating culturable PGPR that can be used as bio-fertilizers for sustainable crop production in communities that cannot easily afford chemical fertilizers. This study was conducted with the aim of isolating rhizospheric bacteria from grasses along the Kavango River and screening the bacterial isolates for plant growth promoting characteristics. The bacteria were isolated from rhizospheres of Phragmites australis, Sporobolus sp., Vetiveria nigritana, Pennisetum glaucum and Sorghum bicolor. The isolates were screened for inorganic phosphate solubilization, siderophore production and indole-3-acetic acid (IAA) production. The nitrogen-fixing capability of the bacteria was determined by screening for the presence of the nifH gene. Up to 21 isolates were obtained from P. australis, Sporobolus sp., S. bicolor, P. glaucum and V. nigritana. The genera Bacillus, Enterobacter, Kocuria, Pseudomonas and Stenotrophomonas, identified via 16S rDNA were represented in the 13 PGPR strains isolated. The isolates exhibited more than one plant growth promoting trait and they were profiled as follows: three phosphate solubilizers, four siderophore producers, eight IAA producing isolates and five nitrogen-fixers. These bacteria can be used to develop bio-fertilizer inoculants for improved soil fertility management and sustainable production of local cereals. PMID:26254764

  4. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study.

    Santoro, M V; Cappellari, L R; Giordano, W; Banchio, E

    2015-11-01

    Plant growth-promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth-promoting characteristics, such as indole-3-acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio-inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non-native strains. PMID:26012535

  5. Calcium elicited asymmetric auxin transport in gravity influenced root segments

    Edwards, K. L.

    1984-01-01

    Auxin is a prime candidate for regulating and modulating the differential growth response of primary corn roots to gravity. Auxin, indole-3-acetic acid (IAA), both promotes and inhibits root elongation rapidly within a narrow concentration range. Thus growth regulation would require only small changes in the short lag period for initiation of gravitropism. Since auxin is transported to/through the zone of elongation toward the meristem, it may serve as a direct communication link between the zone of elongation, site of gravitropic response, and the root cap (RC), site of gravity perception. When auxin transport is inhibited, gravitropism is also inhibited. Napthylpthalamic acid (NPA) is one such inhibitor. It inhibits gravitropism only when applied to the apical growing and dividing region of the root. Application at the basal end of the root does not influence gravitropic NPA causes upward curvature when applied to the upper surface of horizontal, two day-old, intact corn roots. This effect is countered by application of IAA to the opposite side.

  6. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress. PMID:24502519

  7. Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants.

    Wang, Shengman; Wang, Lihong; Hua, Weiqi; Zhou, Min; Wang, Qingqing; Zhou, Qing; Huang, Xiaohua

    2015-11-01

    Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical in the environment that exerts potential harm to plants. Phytohormones play important roles both in regulating multiple aspects of plant growth and in plants' responses to environmental stresses. But how BPA affects plant growth by regulating endogenous hormones remains poorly understood. Here, we found that treatment with 1.5 mg L(-1) BPA improved the growth of soybean seedlings, companied by increases in the contents of indole-3-acetic acid (IAA) and zeatin (ZT), and decreases in the ratios of abscisic acid (ABA)/IAA, ABA/gibberellic acid (GA), ABA/ZT, ethylene (ETH)/GA, ETH/IAA, and ETH/ZT. Treatment with higher concentrations of BPA (from 3 to 96 mg L(-1)) inhibited the growth of soybean seedlings, meanwhile, decreased the contents of IAA, GA, ZT, and ETH, and increased the content of ABA and the ratios of ABA/IAA, ABA/GA, ABA/ZT, ETH/GA, ETH/IAA, and ETH/ZT. The increases in the ratios of growth and stress hormones were correlated with the increase in the BPA content of the roots. Thus, BPA could affect plant growth through changing the levels of single endogenous hormone and the ratios of growth and stress hormones in the roots because of BPA absorption by the roots. PMID:26150296

  8. Cinnamic acid increases lignin production and inhibits soybean root growth.

    Victor Hugo Salvador

    Full Text Available Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA oxidase and cinnamate 4-hydroxylase (C4H activities and lignin monomer composition in soybean (Glycine max roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H, guaiacyl (G, and syringyl (S lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  9. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Baldan, Enrico; Nigris, Sebastiano; Romualdi, Chiara; D'Alessandro, Stefano; Clocchiatti, Anna; Zottini, Michela; Stevanato, Piergiorgio; Squartini, Andrea; Baldan, Barbara

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards. PMID:26473358

  10. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling.

    Zhang, Yunhong; Yin, Heng; Zhao, Xiaoming; Wang, Wenxia; Du, Yuguang; He, Ailing; Sun, Kegang

    2014-11-26

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg/L) induced the expression of auxin-related gene (OsYUCCA1, OsYUCCA5, OsIAA11 and OsPIN1) in rice (Oryza sativa L.) tissues to accelerate auxin biosynthesis and transport, and reduced indole-3-acetic acid (IAA) oxidase activity in rice roots. These changes resulted in the increase of 37.8% in IAA concentration in rice roots, thereby inducing the expression of root development-related genes, promoting root growth in a dose-dependent manner, which were inhibited by auxin transport inhibitor 2,3,5-triiodo benzoic acid (TIBA) and calcium-chelating agent ethylene glycol bis (2-aminoethyl) tetraacetic acid (EGTA). AOS also induced calcium signaling generation in rice roots. Those results indicated that auxin mediated AOS regulation of root development, and calcium signaling may act mainly in the upstream of auxin in the regulation of AOS on rice root development. PMID:25256506

  11. Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4

    Yamamoto, M.; Yamamoto, K. T.

    1999-01-01

    The partially agravitropic growth habit of roots of an auxin-resistant mutant of Arabidopsis thaliana, axr4, was restored by the addition of 30-300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole 3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axrl mutants is different from that of axr4.

  12. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Enrico Baldan

    Full Text Available We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%, release ammonium (39%, secrete siderophores (38% and a limited part of them synthetized IAA and IAA-like molecules (5%. Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  13. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases.

    Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

    2016-04-01

    This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth. PMID:26654914

  14. Changes in the germination process and growth of pea in effect of laser seed irradiation

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  15. Organogenesis and plant formation from cotyledon and callus culture of rape

    Janina H. Rogozińska

    2014-02-01

    Full Text Available Cotyledon explants of rape were excised from aseptically germinated seedlings and cultured during 2 weeks on M u r a s h i g e and S k o o g medium supplemented with auxins, cytokinins, auxin-cytokinin combinations and abscisic acid. Callus formation occurred on medium with 2,4-dichlorophenoxyacetic acid (2,4-D, naphthalene-l-acetic acid (NAA, indole-3-acetic acid (IAA and on their combinations with kinetin (K or 6-benzylaminopurine (BAP. Regeneration of roots was achieved on media with NAA, IAA and indole-3-butyric acid (IBA and on combinations of these auxins with cytokinins. The presence of 2,4-D in the medium, though it promoted compact callus growth, had an inhibitory effect on root formation. Callus derived from the cotyledons had somewhat different requirements for growth in subculture and the root formation ability diminished in the course of the culture. Lower ABA concentrations stimulated callus growth whereas higher concentrations inhibited it similary as in the case of cotyledons. Shoot buds regenerated from the cotyledons after ca. 3 weeks on media supplemented with NAA + BAP. The 9-week-old plantlets transferred to the soil developed into complete plants. The plants which underwent vernalization formed flowers and normal seeds.

  16. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  17. Production of Thermostable Organic Solvent Tolerant Keratinolytic Protease from Thermoactinomyces sp. RM4: IAA Production and Plant Growth Promotion

    Verma, Amit; Singh, Hukum; Anwar, Mohammad S.; Kumar, Shailendra; Ansari, Mohammad W.; Agrawal, Sanjeev

    2016-01-01

    There are several reports about the optimization of protease production, but only few have optimized the production of organic solvent tolerant keratinolytic proteases that show remarkable exploitation in the development of the non-polluting processes in biotechnological industries. The present study was carried with aim to optimize the production of a thermostable organic solvent tolerant keratinolytic protease Thermoactinomyces sp. RM4 utilizing chicken feathers. Thermoactinomyces sp. RM4 isolated from the soil sample collected from a rice mill wasteyard site near Kashipur, Uttrakhand was identified on the basis of 16S rDNA analysis. The production of organic solvent tolerant keratinolytic protease enzyme by Thermoactinomyces sp. RM4 was optimized by varying physical culture conditions such as pH (10.0), temperature (60°C), inoculum percentage (2%), feather concentration (2%) and agitation rate (2 g) for feather degradation. The result showed that Thermoactinomyces sp. RM4 potentially produces extra-cellular thermostable organic solvent tolerant keratinolytic protease in the culture medium. Further, the feather hydrolysate from keratinase production media showed plant growth promoting activity by producing indole-3-acetic acid itself. The present findings suggest that keratinolytic protease from Thermoactinomyces sp. RM4 offers enormous industrial applications due to its organic solvent tolerant property in peptide synthesis, practical role in feather degradation and potential function in plant growth promoting activity, which might be a superior candidate to keep ecosystem healthy and functional. PMID:27555836

  18. Influence of zygomycete-derived D'orenone on IAA signalling in Tricholoma-spruce ectomycorrhiza.

    Wagner, Katharina; Krause, Katrin; David, Anja; Kai, Marco; Jung, Elke-Martina; Sammer, Dominik; Kniemeyer, Olaf; Boland, Wilhelm; Kothe, Erika

    2016-09-01

    Despite the rising interest in microbial communication, only few studies relate to mycorrhization and the pool of potential morphogenic substances produced by the surrounding soil community. Here, we investigated the effect exerted by the C18 - ketone β-apo-13-carotenone, D'orenone, on the ectomycorrhizal basidiomycete Tricholoma vaccinum and its symbiosis with the economically important host tree, spruce (Picea abies). D'orenone is an early intermediate in the biosynthesis of morphogens in sexual development of mucoromycetes, the trisporoids. In the ectomycorrhizal fungus T. vaccinum, D'orenone increased the production and/or release of the phytohormone indole-3-acetic acid (IAA) which had been proposed to be involved in the mutual symbiosis. The induced expression of the fungal aldehyde dehydrogenase, Ald5 is associated with IAA synthesis and excretion. In the host tree, D'orenone modulated root architecture by increasing lateral root length and hypertrophy of root cortex cells, likely via changed IAA concentrations and flux. Thus, we report for the first time on carotenoid metabolites from soil fungi affecting both ectomycorrhizal partners. The data imply a complex network of functions for secondary metabolites which act in an inter-kingdom signalling in soil. PMID:26636983

  19. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  20. Active metabolism of thyroid hormone during metamorphosis of amphioxus.

    Paris, Mathilde; Hillenweck, Anne; Bertrand, Stéphanie; Delous, Georges; Escriva, Hector; Zalko, Daniel; Cravedi, Jean-Pierre; Laudet, Vincent

    2010-07-01

    Thyroid hormones (THs), and more precisely the 3,3',5-triiodo-l-thyronine (T(3)) acetic derivative 3,3',5-triiodothyroacetic acid (TRIAC), have been shown to activate metamorphosis in amphioxus. However, it remains unknown whether TRIAC is endogenously synthesized in amphioxus and more generally whether an active TH metabolism is regulating metamorphosis. Here we show that amphioxus naturally produces TRIAC from its precursors T(3) and l-thyroxine (T(4)), supporting its possible role as the active TH in amphioxus larvae. In addition, we show that blocking TH production inhibits metamorphosis and that this effect is compensated by exogenous T(3), suggesting that a peak of TH production is important for advancement of proper metamorphosis. Moreover, several amphioxus genes encoding proteins previously proposed to be involved in the TH signaling pathway display expression profiles correlated with metamorphosis. In particular, thyroid hormone receptor (TR) and deiodinases gene expressions are either up- or down-regulated during metamorphosis and by TH treatments. Overall, these results suggest that an active TH metabolism controls metamorphosis in amphioxus, and that endogenous TH production and metabolism as well as TH-regulated metamorphosis are ancestral in the chordate lineage. PMID:21558188

  1. Polystyrene cups and containers: styrene migration.

    Tawfik, M S; Huyghebaert, A

    1998-07-01

    The level of styrene migration from polystyrene cups was monitored in different food systems including: water, milk (0.5, 1.55 and 3.6% fat), cold beverages (apple juice, orange juice, carbonated water, cola, beer and chocolate drink), hot beverages (tea, coffee, chocolate and soup (0.0, 0.5, 1, 2, and 3.6% fat), take away foods (yogurt, jelly, pudding and ice-cream), as well as aqueous food simulants (3% acetic acid, 15, 50, and 100% ethanol) and olive oil. Styrene migration was found to be strongly dependent upon the fat content and storage temperature. Drinking water gave migration values considerably lower than all of the fatty foods. Ethanol at 15% showed a migration level equivalent to milk or soup containing 3.6% fat. Maximum observed migration for cold or hot beverages and take-away foods was 0.025% of the total styrene in the cup. Food simulants were responsible for higher migration (0.37% in 100% ethanol). A total of 60 food samples (yogurt, rice with milk, fromage, biogardes, and cheese) packed in polystyrene containers were collected from retail markets in Belgium, Germany, and the Netherlands. The level of styrene detected in the foods was always fat dependent. PMID:9829045

  2. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  3. Genome-wide identification, isolation and expression analysis of auxin response factor(ARF gene family in sweet orange (Citrus sinensis

    si-bei eli

    2015-03-01

    Full Text Available Auxin response factors (ARFs are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologues of auxin response genes. A total of 19 non-redundant ARF genes (CiARF were identified and validated from the sweet orange genome. A comprehensive overview of the CiARF gene family was undertaken, including the gene structures, phylogeny, chromosome locations, conserved motifs, and cis-elements in promoter sequences. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid and N-1-napthylphthalamic acid treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members in citrus growth and development.

  4. Local auxin metabolism regulates environment-induced hypocotyl elongation.

    Zheng, Zuyu; Guo, Yongxia; Novák, Ondřej; Chen, William; Ljung, Karin; Noel, Joseph P; Chory, Joanne

    2016-01-01

    A hallmark of plants is their adaptability of size and form in response to widely fluctuating environments. The metabolism and redistribution of the phytohormone auxin play pivotal roles in establishing active auxin gradients and resulting cellular differentiation. In Arabidopsis thaliana, cotyledons and leaves synthesize indole-3-acetic acid (IAA) from tryptophan through indole-3-pyruvic acid (3-IPA) in response to vegetational shade. This newly synthesized auxin moves to the hypocotyl where it induces elongation of hypocotyl cells. Here we show that loss of function of VAS2 (IAA-amido synthetase Gretchen Hagen 3 (GH3).17) leads to increases in free IAA at the expense of IAA-Glu (IAA-glutamate) in the hypocotyl epidermis. This active IAA elicits shade- and high temperature-induced hypocotyl elongation largely independently of 3-IPA-mediated IAA biosynthesis in cotyledons. Our results reveal an unexpected capacity of local auxin metabolism to modulate the homeostasis and spatial distribution of free auxin in specialized organs such as hypocotyls in response to shade and high temperature. PMID:27249562

  5. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza.

    Xu, Zhichao; Ji, Aijia; Song, Jingyuan; Chen, Shilin

    2016-01-01

    Auxin response factors (ARFs) can function as transcriptional activators or repressors to regulate the expression of auxin response genes by specifically binding to auxin response elements (AuxREs) during plant development. Based on a genome-wide strategy using the medicinal model plant Salvia miltiorrhiza, 25 S. miltiorrhiza ARF (SmARF) gene family members in four classes (class Ia, IIa, IIb and III) were comprehensively analyzed to identify characteristics including gene structures, conserved domains, phylogenetic relationships and expression patterns. In a hybrid analysis of the phylogenetic tree, microRNA targets, and expression patterns of SmARFs in different organs, root tissues, and methyl jasmonate or indole-3-acetic acid treatment conditions, we screened for candidate SmARFs involved in various developmental processes of S. miltiorrhiza Based on this analysis, we predicted that SmARF25, SmARF7, SmARF16 and SmARF20 are involved in flower, leaf, stem and root development, respectively. With the further insight into the targets of miR160 and miR167, specific SmARF genes in S. miltiorrhiza might encode products that participate in biological processes as described for ARF genes in Arabidopsis Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of SmARFs in S. miltiorrhiza. PMID:27230647

  6. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza

    Zhichao Xu

    2016-06-01

    Full Text Available Auxin response factors (ARFs can function as transcriptional activators or repressors to regulate the expression of auxin response genes by specifically binding to auxin response elements (AuxREs during plant development. Based on a genome-wide strategy using the medicinal model plant Salvia miltiorrhiza, 25 S. miltiorrhiza ARF (SmARF gene family members in four classes (class Ia, IIa, IIb and III were comprehensively analyzed to identify characteristics including gene structures, conserved domains, phylogenetic relationships and expression patterns. In a hybrid analysis of the phylogenetic tree, microRNA targets, and expression patterns of SmARFs in different organs, root tissues, and methyl jasmonate or indole-3-acetic acid treatment conditions, we screened for candidate SmARFs involved in various developmental processes of S. miltiorrhiza. Based on this analysis, we predicted that SmARF25, SmARF7, SmARF16 and SmARF20 are involved in flower, leaf, stem and root development, respectively. With the further insight into the targets of miR160 and miR167, specific SmARF genes in S. miltiorrhiza might encode products that participate in biological processes as described for ARF genes in Arabidopsis. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of SmARFs in S. miltiorrhiza.

  7. Auxin and Cytokinin Metabolism and Root Morphological Modifications in Arabidopsis thaliana Seedlings Infected with Cucumber mosaic virus (CMV or Exposed to Cadmium

    Adriano Sofo

    2013-03-01

    Full Text Available Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 µM CdSO4 or infected with CMV. After 12 days the entire aerial parts and the root system were analyzed, and the presence of CMV or the accumulation of Cd were detected. Microscopic analysis revealed that both CMV and Cd influenced root morphology by a marked development in the length of root hairs and an intense root branching if compared to controls. Among the three treatments, Cd-treated seedlings showed a shorter root axis length and doubled their lateral root diameter, while the lateral roots of CMV-infected seedlings were the longest. The root growth patterns were accompanied by significant changes in the levels of indole-3-acetic acid, trans-zeatin riboside, dihydrozeatin riboside, as a probable consequence of the regulation of some genes involved in their biosynthesis/degradation. The opposite role on root development played by the phythormones studied is discussed in detail. The results obtained could provide insights into novel strategies for plant defense against pathogens and plant protection against pollutants.

  8. Auxin response under osmotic stress.

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment. PMID:27052306

  9. The single evolutionary origin of chlorinated auxin provides a phylogenetically informative trait in the Fabaceae.

    Lam, Hong Kiat; Ross, John J; McAdam, Erin L; McAdam, Scott A M

    2016-07-01

    Chlorinated auxin (4-chloroindole-3-acetic acid, 4-Cl-IAA), a highly potent plant hormone, was once thought to be restricted to species of the tribe Fabeae within the Fabaceae, until we recently detected this hormone in the seeds of Medicago, Melilotus and Trifolium species. The absence of 4-Cl-IAA in the seeds of the cultivated species Cicer aeritinum from the Cicerae tribe, immediately basal to the Fabeae and Trifolieae tribes, suggested a single evolutionary origin of 4-Cl-IAA. Here, we provide a more robust phylogenetic placement of the ability to produce chlorinated auxin by screening key species spanning this evolutionary transition. We report no detectable level of 4-Cl-IAA in Cicer echinospermum (a wild relative of C. aeritinum) and 4 species (Galega officinalis, Parochetus communis, Astragalus propinquus and A. sinicus) from tribes or clades more basal or sister to the Cicerae tribe. We did detect 4-Cl-IAA in the dry seeds of 4 species from the genus Ononis that are either basal to the genera Medicago, Melilotus and Trigonella or basal to, but still within, the Fabeae and Trifolieae (ex. Parochetus) clades. We conclude that the single evolutionary origin of this hormone in seeds can be used as a phylogenetically informative trait within the Fabaceae. PMID:27302610

  10. Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro

    Ke Yin; Xinxin Han; Zhihong Xu; Hongwei Xue

    2009-01-01

    Hormones are critical for cell differentiation,elongation, and division. The plant hormone auxin plays vital roles in plant growth and development and is essential for various physiologic processes. Previous studies showed that germin-like proteins (GLPs) are involved in multiple physiologic and developmental processes and that several GLP members could bind different auxin molecules. Here we showed that Arabidopsis thaliana GLP4 gene, which has a length of 660 bp and encodes a 219-aa polypeptide, contains the conserved auxin-binding region box A and hinds indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid (2,4-D) with low affinity, but not α-naphthaleneacetic acid, in vitro,by using assays equilibrium dialysis and nuclear magnetic resonance. This hinding character is different from that of auxin-binding protein 1, which does not hind 2,4-D. GLP4 is highly transcribed in various tissues, but it shows low transcription in roots and during embryo development. In addition, transcription of GLP4 is stimulated by auxin treatment. Suhcellular localization studies indicated that GLP4 protein is localized in the Golgi compartment and the N-terminus of GLP4 is crucial for its proper localization, which suggests that GLP4 may be involved in Goigi-dependent developmental processes.

  11. Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development.

    Jin, Lian; Qin, Qingqing; Wang, Yu; Pu, Yingying; Liu, Lifang; Wen, Xing; Ji, Shaoyi; Wu, Jianguo; Wei, Chunhong; Ding, Biao; Li, Yi

    2016-09-01

    The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB) protein and an auxin/indole-3-acetic acid (Aux/IAA) protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV), a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant) mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis. PMID:27606959

  12. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis.

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-07-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals. PMID:27255928

  13. Studies on the Rice LEAF INCLINATION1 (LC1),an IAA-amido Synthetase, Reveal the Effects of Auxin in Leaf Inclination Control

    Shu-Qing Zhao; Jing-Jing Xiang; Hong-Wei Xue

    2013-01-01

    The angle of rice leaf inclination is an important agronomic trait and closely related to the yields and architecture of crops.Although few mutants with altered leaf angles have been reported,the molecular mechanism remains to be elucidated,especially whether hormones are involved in this process.Through genetic screening,a rice gain-offunction mutant leaf inclination1,Ic1-D,was identified from the Shanghai T-DNA Insertion Population (SHIP).Phenotypic analysis confirmed the exaggerated leaf angles of Ic1-D due to the stimulated cell elongation at the lamina joint.LC1 is transcribed in various tissues and encodes OsGH3-1,an indole-3-acetic acid (IAA) amido synthetase,whose homolog of Arabidopsis functions in maintaining the auxin homeostasis by conjugating excess IAA to various amino acids.Indeed,recombinant LC1 can catalyze the conjugation of IAA to Ala,Asp,and Asn in vitro,which is consistent with the decreased free IAA amount in Ic1-D mutant.Ic1-D is insensitive to IAA and hypersensitive to exogenous BR,in agreement with the microarray analysis that reveals the altered transcriptions of genes involved in auxin signaling and BR biosynthesis.These results indicate the crucial roles of auxin homeostasis in the leaf inclination control.

  14. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-01

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin. PMID:27217573

  15. The evolution of the plant genome-to-morphology auxin circuit.

    Kutschera, Ulrich; Niklas, Karl J

    2016-09-01

    In his Generelle Morphologie der Organismen (1866), 150 years ago, Ernst Haeckel (1834-1919) combined developmental patterns in animals with the concept of organismic evolution, and 50 years ago, a new era of plant research started when focus shifted from crop species (sunflower, maize etc.) to thale cress (Arabidopsis thaliana) as a model organism. In this contribution, we outline the general principles of developmental evolutionary biology sensu Haeckel and describe the evolutionary genome-to-morphology-plant hormone auxin (IAA, indole-3-acetic acid)-circuit with reference to other phytohormones and a focus on land plants (embryophytes) plus associated epiphytic microbes. Our primary conclusion is that a system-wide approach is required to truly understand the ontogeny of any organism, because development proceeds according to signal pathways that integrate and respond to external as well as internal stimuli. We also discuss IAA-regulated embryology in A. thaliana and epigenetic phenomena in the gametophyte development, and outline how these processes are connected to the seminal work of Ernst Haeckel. PMID:27333773

  16. Apoplastic H2 O2 plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants.

    Chen, Xiao-Juan; Xia, Xiao-Jian; Guo, Xie; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Jing-Quan

    2016-09-01

    Although phytohormones such as indole-3-acetic acid (IAA), cytokinin (CK) and strigolactone are important modulators of plant architecture, it remains unclear whether reactive oxygen species are involved in the regulation of phytohormone-dependent axillary bud outgrowth in plants. We used diverse techniques, including transcriptional suppression, HPLC-MS, biochemical methodologies and gene transcript analysis to investigate the signaling pathway for apoplastic hydrogen peroxide (H2 O2 )-induced axillary bud outgrowth. Silencing of tomato RESPIRATORY BURST OXIDASE HOMOLOG 1 (RBOH1) and WHITEFLY INDUCED 1 (WFI1), two important genes involved in H2 O2 production in the apoplast, enhanced bud outgrowth, decreased transcript of FZY - a rate-limiting gene in IAA biosynthesis and IAA accumulation in the apex - and increased the transcript of IPT2 involved in CK biosynthesis and CK accumulation in the stem node. These effects were fully abolished by the application of exogenous H2 O2 . Both decapitation and the silencing of FZY promoted bud outgrowth, and downregulated and upregulated the transcripts for IAA3 and IAA15, and IPT2, respectively. However, these effects were not blocked by treatment with exogenous H2 O2 but by napthaleneacetic acid (NAA) treatment. These results suggest that RBOHs-dependent apoplastic H2 O2 promotes IAA biosynthesis in the apex, which, in turn, inhibits CK biosynthesis and subsequent bud outgrowth in tomato plants. PMID:27240824

  17. Protein patterns in the oat coleoptile as influenced by auxin and by protein turnover

    Bates, G.W.; Cleland, R.E.

    1980-01-01

    Synthesis of growth-limiting proteins is required for continued auxin-induced elongation of oat coleoptiles. In order to determine whether GLP synthesis is dependent or independent of auxin, a double-labeling ratio technique, coupled with disc-gel electrophoresis, has been used to assess the effect of auxin on the pattern of protein synthesis. Sections were peeled to enhance amino-acid uptake; proteins were labeled with (/sup 14/C)- or (/sup 3/H) leucine in the presence or absence of indole-3-acetic acid for 40 min to 6 h, and were separated into soluble, membrane-associated, and wall-associated fractions. Regardless of the conditions used, or the protein fraction examined, no changes in response to auxin were detected in the pattern or protein synthesis. In order to escape detection by this technique an auxin-induced protein would have to comprise less than 0.75% of the total newly synthesized protein. Thus the synthesis of GLP appears to be independent of auxin. The same technique has been used to follow protein turnover. During the chase, proteins are initially degraded at an average rate of 8% H/sup -1/, and some protein bands showed as much as 14% h/sup -1/ degradation. No protein was detected which had a turnover rate as rapid as the BLP.

  18. Auxin physiology of the tomato mutant diageotropical

    Daniel, S.G.; Rayle, D.L. (San Diego State Univ., CA (USA)); Cleland, R.E. (Univ. of Washington, Seattle (USA))

    1989-11-01

    The tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibits biochemical, physiological, and morphological abnormalities that suggest the mutation may have affected a primary site of auxin perception or action. We have compared two aspects of the auxin physiology of dgt and wild-type (VFN8) seedlings: auxin transport and cellular growth parameters. The rates of basipetal indole-3-acetic acid (IAA) polar transport are identical in hypocotyl sections of the two genotypes, but dgt sections have a slightly greater capacity for IAA transport. 2,3,5-Triiodobenzoic acid and ethylene reduce transport in both mutant and wild-type sections. The kinetics of auxin uptake into VFN8 and dgt sections are nearly identical. These results make it unlikely that an altered IAA efflux carrier or IAA uptake symport are responsible for the pleiotropic effects resulting from the dgt mutation. The lack of auxin-induced cell elongation in dgt plants is not due to insufficient turgor, as the osmotic potential of dgt cell sap is less (more negative) than that of VFN8. An auxin-induced increase in wall extensibility, as measured by the Instron technique, only occurs in the VFN8 plants. These data suggest dgt hypocotyls suffer a defect in the sequence of events culminating in auxin-induced cell wall loosening.

  19. The role of auxin and ethylene for gravitropic differential growth of coleoptiles and roots of rye- and maize seedlings

    Edelmann, H. G.; Sabovljevic, A.; Njio, G.; Roth, U.

    The relevance of auxin and ethylene for differential gravitropic growth has been analyzed both in shoots and roots of etiolated rye- and maize seedlings. As previously demonstrated for indolyl-3-acetic acid (IAA), incubation of coleoptiles in dichlorophenoxy acetic acid (2,4-D) resulted in a two- to threefold length increase compared to water controls. In spite of this immense effect on elongation growth, gravi-curvature was similar to water controls. In contrast, inhibition of ethylene synthesis prevented differential growth of abraded coleoptiles as well as of roots without a significant inhibiting effect on elongation. Inhibition of ethylene perception in horizontally stimulated maize roots growing on surfaces eliminated the capacity of the roots to adapt growth to the surface and a vertical orientation of the root tip. This effect is accompanied by up- and down-regulation of a number of proteins as detected with the 2D-MALDI-TOF (matrix-assisted laser desorption ionization- time of flight) method. Exogenous ethylene inhibited growth but enhanced gravitropic curvature in roots that were "freely" gravistimulated in a horizontal position, exhibiting a pronounced "waving" behavior. Together the data challenge the regulatory relevance of IAA-redistribution for gravitropic differential growth. They corroborate the crucial regulatory relevance of ethylene for gravitropic growth, in both roots and coleoptiles.

  20. Interactions of Oryza sativa OsCONTINUOUS VASCULAR RING-LIKE 1 (OsCOLE1) and OsCOLE1-INTERACTING PROTEIN reveal a novel intracellular auxin transport mechanism.

    Liu, Fei; Zhang, Lan; Luo, Yanzhong; Xu, Miaoyun; Fan, Yunliu; Wang, Lei

    2016-10-01

    Little is known about the transport mechanism of intracellular auxin. Here, we report two vacuole-localized proteins, Oryza sativa OsCONTINUOUS VASCULAR RING-LIKE 1 (OsCOLE1) and OsCOLE1-INTERACTING PROTEIN (OsCLIP), that regulate intracellular auxin transport and homoeostasis. Overexpression of OsCOLE1 markedly increased the internode length and auxin content of the stem base, whereas these parameters were decreased in RNA interference (RNAi) plants. OsCOLE1 was localized on the tonoplast and preferentially expressed in mature tissues. We further identified its interacting protein OsCLIP, which was co-localized on the tonoplast. Protein-protein binding assays demonstrated that the N-terminus of OsCOLE1 directly interacted with OsCLIP in yeast cells and the rice protoplast. Furthermore, (3) H-indole-3-acetic acid ((3) H-IAA) transport assays revealed that OsCLIP transported IAA into yeast cells, which was promoted by OsCOLE1. The results indicate that OsCOLE1 affects rice development by regulating intracellular auxin transport through interaction with OsCLIP, which provides a new insight into the regulatory mechanism of intracellular transport of auxin and the roles of vacuoles in plant development. PMID:27265035

  1. The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram

    Michael J. Prigge

    2016-05-01

    Full Text Available The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors. In this report, we demonstrate that both AFB4 and AFB5 also function as auxin receptors based on in vitro assays. We also provide genetic evidence that AFB4 and AFB5 are targets of the picloram family of auxinic herbicides in addition to indole-3-acetic acid. In contrast to previous studies we find that null afb4 alleles do not exhibit obvious defects in seedling morphology or auxin hypersensitivity. We conclude that AFB4 and AFB5 act in a similar fashion to other members of the family but exhibit a distinct auxin specificity.

  2. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum.

    Sanchez Carranza, Ana Paula; Singh, Aparajita; Steinberger, Karoline; Panigrahi, Kishore; Palme, Klaus; Dovzhenko, Alexander; Dal Bosco, Cristina

    2016-01-01

    Amide-linked conjugates of indole-3-acetic acid (IAA) have been identified in most plant species. They function in storage, inactivation or inhibition of the growth regulator auxin. We investigated how the major known endogenous amide-linked IAA conjugates with auxin-like activity act in auxin signaling and what role ILR1-like proteins play in this process in Arabidopsis. We used a genetically encoded auxin sensor to show that IAA-Leu, IAA-Ala and IAA-Phe act through the TIR1-dependent signaling pathway. Furthermore, by using the sensor as a free IAA reporter, we followed conjugate hydrolysis mediated by ILR1, ILL2 and IAR3 in plant cells and correlated the activity of the hydrolases with a modulation of auxin response. The conjugate preferences that we observed are in agreement with available in vitro data for ILR1. Moreover, we identified IAA-Leu as an additional substrate for IAR3 and showed that ILL2 has a more moderate kinetic performance than observed in vitro. Finally, we proved that IAR3, ILL2 and ILR1 reside in the endoplasmic reticulum, indicating that in this compartment the hydrolases regulate the rates of amido-IAA hydrolysis which results in activation of auxin signaling. PMID:27063913

  3. Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex.

    Suzuki, Hiromi; Yokawa, Ken; Nakano, Sayuri; Yoshida, Yuriko; Fabrissin, Isabelle; Okamoto, Takashi; Baluška, František; Koshiba, Tomokazu

    2016-08-01

    Gravitropism refers to the growth or movement of plants that is influenced by gravity. Roots exhibit positive gravitropism, and the root cap is thought to be the gravity-sensing site. In some plants, the root cap requires light irradiation for positive gravitropic responses. However, the mechanisms regulating this phenomenon are unknown. We herein report that maize roots exposed to white light continuously for ≥1-2h show increased indole-3-acetic acid (IAA) levels in the root tips, especially in the transition zone (1-3mm from the tip). Treatment with IAA biosynthesis inhibitors yucasin and l-kynurenine prevented any increases in IAA content and root curvature under light conditions. Analyses of the incorporation of a stable isotope label from tryptophan into IAA revealed that some of the IAA in roots was synthesized in the root apex. Furthermore, Zmvt2 and Zmyuc gene transcripts were detected in the root apex. One of the Zmyuc genes (ZM2G141383) was up-regulated by light irradiation in the 0-1mm tip region. Our findings suggest that IAA accumulation in the transition zone is due to light-induced activation of Zmyuc gene expression in the 0-1mm root apex region. Light-induced changes in IAA levels and distributions mediate the maize root gravitropic U-turn. PMID:27307546

  4. Auxin Is Rapidly Induced by Herbivore Attack and Regulates a Subset of Systemic, Jasmonate-Dependent Defenses.

    Machado, Ricardo A R; Robert, Christelle A M; Arce, Carla C M; Ferrieri, Abigail P; Xu, Shuqing; Jimenez-Aleman, Guillermo H; Baldwin, Ian T; Erb, Matthias

    2016-09-01

    Plant responses to herbivore attack are regulated by phytohormonal networks. To date, the role of the auxin indole-3-acetic acid (IAA) in this context is not well understood. We quantified and manipulated the spatiotemporal patterns of IAA accumulation in herbivore-attacked Nicotiana attenuata plants to unravel its role in the regulation of plant secondary metabolism. We found that IAA is strongly, rapidly, and specifically induced by herbivore attack. IAA is elicited by herbivore oral secretions and fatty acid conjugate elicitors and is accompanied by a rapid transcriptional increase of auxin biosynthetic YUCCA-like genes. IAA accumulation starts 30 to 60 s after local induction and peaks within 5 min after induction, thereby preceding the jasmonate (JA) burst. IAA accumulation does not require JA signaling and spreads rapidly from the wound site to systemic tissues. Complementation and transport inhibition experiments reveal that IAA is required for the herbivore-specific, JA-dependent accumulation of anthocyanins and phenolamides in the stems. In contrast, IAA does not affect the accumulation of nicotine or 7-hydroxygeranyllinalool diterpene glycosides in the same tissue. Taken together, our results uncover IAA as a rapid and specific signal that regulates a subset of systemic, JA-dependent secondary metabolites in herbivore-attacked plants. PMID:27485882

  5. An auxin-binding protein is localized to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23-kDa polypeptide

    Feldwisch, J.; Zettl, R.; Hesse, F.; Schell, J.; Palme, K. (Max-Planck-Inst. fuer Zuechtungsforschung, Koeln (West Germany))

    1992-01-15

    Plasma membrane vesicles were isolated from maize (Zea mays L.) coleoptile tissue by aqueous two-phase partitioning and assayed for homogeneity by the use of membrane-specific enzymatic assays. Using 5-azido-(7-{sup 3}H)indole-3-acetic acid (({sup 3}H)N{sub 3}IAA), the authors identified several IAA-binding proteins with the molecular masses of 60 kDa (pm60), 58 kDa (pm58), and 23 kDa (pm23). Using Triton X-114, they were able to selectively extract pm23 from the plasma membrane. They show that auxins and functional analogues compete with ({sup 3}H)N{sub 3}IAA for binding to pm23. They found that PAB130, a polyclonal antibody raised against auxin-binding protein 1 (ABP-1), recognized ABP-1 as well as pm23. This suggests that pm23 shares common epitopes with ABP-1. In addition, they identified an auxin-binding protein with a molecular mass of 24 kDa (pm24), which was detected in microsomal but not in plasma membrane vesicle preparations. Like pm23 this protein was extracted from membrane vesicles with Triton X-114. They designed a purification scheme allowing simultaneous purification of pm23 and pm24. Homogeneous pm23 and pm24 were obtained from coleoptile extracts after 7,000-fold purification.

  6. The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram

    Prigge, Michael J.; Greenham, Kathleen; Zhang, Yi; Santner, Aaron; Castillejo, Cristina; Mutka, Andrew M.; O’Malley, Ronan C.; Ecker, Joseph R.; Kunkel, Barbara N.; Estelle, Mark

    2016-01-01

    The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors. In this report, we demonstrate that both AFB4 and AFB5 also function as auxin receptors based on in vitro assays. We also provide genetic evidence that AFB4 and AFB5 are targets of the picloram family of auxinic herbicides in addition to indole-3-acetic acid. In contrast to previous studies we find that null afb4 alleles do not exhibit obvious defects in seedling morphology or auxin hypersensitivity. We conclude that AFB4 and AFB5 act in a similar fashion to other members of the family but exhibit a distinct auxin specificity. PMID:26976444

  7. The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway.

    Liu, Yangyang; Wang, Ruling; Zhang, Ping; Chen, Qi; Luo, Qiong; Zhu, Yiyong; Xu, Jin

    2016-07-01

    Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants. PMID:27217493

  8. Points of regulation for auxin action.

    Zazimalova, E; Napier, R M

    2003-03-01

    There have been few examples of the application of our growing knowledge of hormone action to crop improvement. In this review we discuss what is known about the critical points regulating auxin action. We examine auxin metabolism, transport, perception and signalling and identify genes and proteins that might be keys to regulation, particularly the rate-limiting steps in various pathways. Certain mutants show that substrate flow in biosynthesis can be limiting. To date there is little information available on the genes and proteins of catabolism. There have been several auxin transport proteins and some elegant transport physiology described recently, and the potential for using transport proteins to manage free indole-3-acetic acid (IAA) concentrations is discussed. Free IAA is very mobile, and so while it may be more practical to control auxin action through managing the receptor and signalling pathways, the candidate genes and proteins through which this can be done remain largely unknown. From the available evidence, it is clear that the reason for so few commercial applications arising from the control of auxin action is that knowledge is still limited. PMID:12789411

  9. A Gain-of-Function Mutation in IAA7/AXR2 Confers Late Flowering under Short-day Light in Arabidopsis

    Yan-Xia Mai; Long Wang; Hong-Quan Yang

    2011-01-01

    Floral initiation is a major step in the life cycle of plants, which is influenced by photoperiod, temperature,and phytohormones, such as gibberellins (GAs). It is known that GAs promote floral initiation under short-day light conditions (SDs) by regulating the floral meristem-identity gene LEAFY (LFY) and the flowering-time gene SUPPRESSOR OF OVEREXPRESSlON OF CO 1 (SOC1). We have defined the role of the auxin signaling component INDOLE-3-ACETIC ACID 7 (IAA7)/AUXIN RESISTANT 2 (AXR2) in the regulation of flowering time in Arabidopsis thaliana. We demonstrate that the gain-of-function mutant of IAA7/AXR2, axr2-1, flowers late under SDs. The exogenous application of GAs rescued the late flowering phenotype of axr2-1 plants. The expression of the GA20 oxidase (GA20ox) genes, GA20ox1 and GA20ox2,was reduced in axr2-1 plants, and the levels of both LFY and SOC1 transcripts were reduced in axr2-1 mutants under SDs. Furthermore, the overexpression of SOC1 or LFY in axr2-1 mutants rescued the late flowering phenotype under SDs. Our results suggest that IAA7/AXR2 might act to inhibit the timing of floral transition under SDs, at least in part, by negatively regulating the expressions of the GA20ox1 and GA20ox2 genes.

  10. In vitro direct shoot regeneration from proximal, middle and distal segment of Coleus forskohlii leaf explants.

    Krishna, Gaurav; Sairam Reddy, P; Anoop Nair, N; Ramteke, P W; Bhattacharya, P S

    2010-04-01

    Coleus forskohlii is an endangered multipurpose medicinal plant that has widespread applications. In spite of this, there have been few attempts to propagate its cultivation in India. The present communication presents an in vitro rapid regeneration method using leaf explants of Coleus forskohlii through direct organogenesis. Leaf explants that were excised into three different segments i.e. proximal (P), middle (M) and distal (D) were cultured on Murashige and Skoog (MS) basal medium supplemented with cytokinins. MS Media containing 5.0 mg L(-1) BAP (6-Benzylaminopurine) promoted regeneration of multiple shoots through direct organogenesis from the leaf, which were further elongated on MS media augmented with 0.1 mg L-1 BAP and 0.1 mg L(-1) IAA (Indole-3-acetic acid), cytokinin and auxin combination. Regenerated and elongated shoots, when transferred to ose resulted in profuse rooting plants that were transferred to soil after acclimatization and maintained in a green house. The current protocol offers a direct, mass propagation method bypassing the callus phase of C. forskohlii and is suitable for conservation, large-scale commercial cultivation, and genetic transformation with agronomically desirable traits. PMID:23572969

  11. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine.

    Hellgren, Jenny M; Olofsson, Kjell; Sundberg, Björn

    2004-05-01

    Gravistimulation of tree stems affects wood development by unilaterally inducing wood with modified properties, called reaction wood. Commonly, it also stimulates cambial growth on the reaction wood side. Numerous experiments involving applications of indole-3-acetic acid (IAA) or IAA-transport inhibitors have suggested that reaction wood is induced by a redistribution of IAA around the stem. However, in planta proof for this model is lacking. Therefore, we have mapped endogenous IAA distribution across the cambial region tissues in both aspen (Populus tremula, denoted poplar) and Scots pine (Pinus sylvestris) trees forming reaction wood, using tangential cryosectioning combined with sensitive gas chromatography-mass spectrometry analysis. Moreover, we have documented the kinetics of IAA during reaction wood induction in these species. Our analysis of endogenous IAA demonstrates that reaction wood is formed without any obvious alterations in IAA balance. This is in contrast to gravitropic responses in roots and shoots where a redistribution of IAA has been documented. It is also of interest that cambial growth on the tension wood side was stimulated without an increase in IAA. Taken together, our results suggest a role for signals other than IAA in the reaction wood response, or that the gravitational stimulus interacts with the IAA signal transduction pathway. PMID:15122024

  12. Light inhibits gravity-regulated peg formation and asymmetric mRNA accumulation of auxin-inducible CsIAA1 in the cortex of the transition zone in cucumber seedlings

    Fujii, Nobuharu; Saito, Yuko; Miyazawa, Yutaka; Takahashi, Hideyuki

    When cucumber seedlings are grown horizontally, a specialized protuberance, termed the peg, develops on the lower side of the transition zone between the hypocotyl and the root. Gravimorphogenesis regulates the lateral positioning of the peg in the transition zone and it has been suggested that auxin plays an important role in peg formation in cucumber seedlings. Here, we found that light inhibited auxin-regulated peg formation. In the transition zone of horizontally positioned cucumber seedlings grown in the dark, we detected an asymmetric accumulation of mRNA from the auxin-inducible gene CsIAA1 in the epidermis and cortex. However, in seedlings grown under illumination, this asymmetry was greatly reduced. In dark- and light-grown seedlings, application of 10 -3 M indole-3-acetic acid induced peg formation on both the lower and upper sides of the transition zone. These results suggest that light inhibits peg formation via modification of auxin distribution and/or levels in the transition zone of cucumber seedlings.

  13. Screening of Azotobacter isolates for PGP properties and antifungal activity

    Bjelić Dragana Đ.

    2015-01-01

    Full Text Available Аmong 50 bacterial isolates obtained from maize rhizospherе, 13 isolates belonged to the genus Azotobacter. Isolates were biochemically characterized and estimated for pH and halo tolerance ability and antibiotic resistance. According to characterization, the six representative isolates were selected and further screened in vitro for plant growth promoting properties: production of indole-3-acetic acid (IAA, siderophores, hydrogen cyanide (HCN, exopolysaccharides, phosphate solubilization and antifungal activity (vs. Helminthosporium sp., Macrophomina sp., Fusarium sp.. Beside HCN production, PGP properties were detected for all isolates except Azt7. All isolates produced IAA in the medium without L-tryptophan and the amount of produced IAA increased with concentration of precursor in medium. The highest amount of IAA was produced by isolates Azt4 (37.69 and 45.86 μg ml-1 and Azt5 (29.44 and 50.38 μg ml-1 in the medium with addition of L-tryptophan (2.5 and 5 mM. The isolates showed the highest antifungal activity against Helminthosporium sp. and the smallest antagonistic effect on Macrophomina sp. Radial Growth Inhibition (RGI obtained by the confrontation of isolates with tested phytopathogenic fungi, ranged from 10 to 48%. [Projekat Ministarstva nauke Republike Srbije, br. TR 31073

  14. Genome Sequencing of a Mung Bean Plant Growth Promoting Strain of P. aeruginosa with Biocontrol Ability

    Devaraj Illakkiam

    2014-01-01

    Full Text Available Pseudomonas aeruginosa PGPR2 is a mung bean rhizosphere strain that produces secondary metabolites and hydrolytic enzymes contributing to excellent antifungal activity against Macrophomina phaseolina, one of the prevalent fungal pathogens of mung bean. Genome sequencing was performed using the Ion Torrent Personal Genome Machine generating 1,354,732 reads (6,772,433 sequenced bases achieving ~25-fold coverage of the genome. Reference genome assembly using MIRA 3.4.0 yielded 198 contigs. The draft genome of PGPR2 encoded 6803 open reading frames, of which 5314 were genes with predicted functions, 1489 were genes of known functions, and 80 were RNA-coding genes. Strain specific and core genes of P. aeruginosa PGPR2 that are relevant to rhizospheric habitat were identified by pangenome analysis. Genes involved in plant growth promoting function such as synthesis of ACC deaminase, indole-3-acetic acid, trehalose, mineral scavenging siderophores, hydrogen cyanide, chitinases, acyl homoserine lactones, acetoin, 2,3-butanediol, and phytases were identified. In addition, niche-specific genes such as phosphate solubilising 3-phytase, adhesins, pathway-specific transcriptional regulators, a diguanylate cyclase involved in cellulose synthesis, a receptor for ferrienterochelin, a DEAD/DEAH-box helicase involved in stress tolerance, chemotaxis/motility determinants, an HtpX protease, and enzymes involved in the production of a chromanone derivative with potent antifungal activity were identified.

  15. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance.

    Yaish, Mahmoud W; Antony, Irin; Glick, Bernard R

    2015-06-01

    Endophytic bacteria were isolated from date palm (Phoenix dactylifera L.) seedling roots, characterized and tested for their ability to help plants grow under saline conditions. Molecular characterization showed that the majority of these strains belonged to the genera Bacillus and Enterobacter and had different degrees of resistance to various antibiotics. Some of these strains were able to produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and the plant growth regulatory hormone indole-3-acetic acid (IAA). Some strains were also able to chelate ferric iron (Fe(3+)) and solubilize potassium (K(+)), phosphorus (PO 4 (3-) ) and zinc (Zn(2+)), and produce ammonia. The results also showed that ACC deaminase activity and IAA production was slightly increased in some strains in response to an increase in NaCl concentration in the growth media. Consistent with these results, selected strains such as PD-R6 (Paenibacillus xylanexedens) and PD-P6 (Enterobacter cloacae) were able to enhance canola root elongation when grown under normal and saline conditions as demonstrated by a gnotobiotic root elongation assay. These results suggest that the isolated and characterized endophytic bacteria can alter ethylene and IAA levels and also facilitate nutrient uptake in roots and therefore have the potential role to promote the growth and development of date palm trees growing under salinity stress. PMID:25860542

  16. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses

    Shangguo Feng; Runqing Yue; Sun Tao Yanjun Yang; Lei Zhang; Mingfeng Xu; Huizhong Wang; Chenjia Shen

    2015-01-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The respon-siveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.

  17. Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics

    Pamela Calvo

    2010-12-01

    Full Text Available Bacillus spp. are well known rhizosphere residents of many crops and usually show plant growth promoting (PGP activities that include biocontrol capacity against some phytopatogenic fungi. Potato crops in the Andean Highlands of Peru face many nutritional and phytophatogenic problems that have a significant impact on production. In this context is important to investigate the natural presence of these microorganisms in the potato rhizosphere and propose a selective screening to find promising PGP strains. In this study, sixty three Bacillus strains isolated from the rhizosphere of native potato varieties growing in the Andean highlands of Peru were screened for in vitro antagonism against Rhizoctonia solani and Fusarium solani. A high prevalence (68% of antagonists against R. solani was found. Ninety one percent of those strains also inhibited the growth of F. solani. The antagonistic strains were also tested for other plant growth promotion activities. Eighty one percent produced some level of the auxin indole-3-acetic acid, and 58% solubilized tricalcium phosphate. Phylogenetic analysis revealed that the majority of the strains belonged to the B. amyloliquefaciens species, while strains Bac17M11, Bac20M1 and Bac20M2 may correspond to a putative new Bacillus species. The results suggested that the rhizosphere of native potatoes growing in their natural habitat in the Andes is a rich source of Bacillus fungal antagonists, which have a potential to be used in the future as PGP inoculants to improve potato crop.

  18. WOX5-1AA17 Feedback Circuit-Mediated CellularAuxin Response Is Crucial for the Patterning ofRoot Stem Cell Niches in Arabidopsis

    2014-01-01

    In plants, the patterning of stem cell-enriched meristems requires a graded auxin response maximum thatemerges from the concerted action of polar auxin transport, auxin biosynthesis, auxin metabolism, and cellular auxinresponse machinery. However, mechanisms underlying this auxin response maximum-mediated root stem cell mainte-nance are not fully understood. Here, we present unexpected evidence that WUSCHEL-RELATED HOMEOBOX 5 (WOX5)transcription factor modulates expression of auxin biosynthetic genes in the quiescent center (QC) of the root and thusprovides a robust mechanism for the maintenance of auxin response maximum in the root tip. This WOX5 action is bal-anced through the activity of indole-3-acetic acid 17 (IAA17) auxin response repressor. Our combined genetic, cell biol-ogy, and computational modeling studies revealed a previously uncharacterized feedback loop linking WOX5-mediatedauxin production to IAA17-dependent repression of auxin responses. This WOX5-1AA17 feedback circuit further assuresthe maintenance of auxin response maximum in the root tip and thereby contributes to the maintenance of distal stemcell (DSC) populations. Our experimental studies and in silico computer simulations both demonstrate that the WOX5-iAA17 feedback circuit is essential for the maintenance of auxin gradient in the root tip and the auxin-mediated root DSCdifferentiation.

  19. Molecular Engineering and Theoretical Investigation of Novel Metal-Free Organic Chromophores for Dye-Sensitized Solar Cells

    In this work we report design and synthesis of three new metal free D-D–A–π–A type dyes (E1-3) with different acceptor/anchoring groups, as effective sensitizers for nanocrystalline titanium dioxide based dye sensitized solar cells. All the three dyes carry electron donating methoxy group as an auxiliary and indole as a principal donor, cyanovinylene as an auxiliary acceptor and thiophene as a π-spacer. Whereas, cyanoacetic acid, rhodanine-3-acetic acid and 4-aminobenzoic acid perform as acceptor/anchoring moieties, respectively in the dyes E1-3. Though the dye containing 4-aminobenzoic acid unit (E3) exhibits comparatively lower λmax, it shows the highest power conversion efficiency arising from the higher electron life time and good light-harvesting capability. The DFT studies reveal a better charge separation between the HOMO and LUMO levels of E3, further substantiating the experimental results. Among the three dyes, E3 shows the best photovoltaic performance with short-circuit current density (Jsc) of 9.35 mA cm−2, open-circuit voltage (Voc) of 620 mV and fill factor (FF) of 0.71, corresponding to an overall conversion efficiency of 4.12% under standard global AM 1.5G

  20. The influence of light spectra, UV-A, and growth regulators on the in vitro seed germination of Senecio cineraria DC.

    Cristiane Pimentel Victório

    2010-10-01

    Full Text Available This study was carried out to investigate the effects of light spectra, additional UV-A, and different growth regulators on the in vitro germination of Senecio cineraria DC. Seeds were surface-sterilized and inoculated in MS medium to evaluate the following light spectra: white, white plus UV-A, blue, green, red or darkness. The maximum germinability was obtained using MS0 medium under white light (30% and MS + 0.3 mg L-1 GA3 in the absence of light (30.5%. S. cineraria seeds were indifferent to light. Blue and green lights inhibited germination. Different concentrations of gibberellic acid (GA3 (0.1; 0.4; 0.6; 0.8; 1.0 and 2.0 mg L-1 and indole-3-acetic acid IAA (0.1; 0.3 and 1.0 mg L-1 were evaluated under white light and darkness. No concentration of GA3 enhanced seed germination percentage under white light. However, when the seeds were maintained in darkness, GA3 improved germination responses in all tested concentrations, except at 1.0 mg L-1. Under white light, these concentrations also increased the germination time and reduced germination rate. Germination rate, under light or darkness, was lower using IAA compared with GA3.

  1. Endogenous hormones response to cytokinins with regard to organogenesis in explants of peach (Prunus persica L. Batsch) cultivars and rootstocks (P. persica × Prunus dulcis).

    Pérez-Jiménez, Margarita; Cantero-Navarro, Elena; Pérez-Alfocea, Francisco; Cos-Terrer, José

    2014-11-01

    Organogenesis in peach (Prunus persica L. Batsch) and peach rootstocks (P. persica × Prunus dulcis) has been achieved and the action of the regeneration medium on 7 phytohormones, zeatin (Z), zeatin riboside (ZR), indole-3-acetic acid (IAA), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA), has been studied using High performance liquid chromatography - mass spectrometry (HPLC-MS/MS). Three scion peach cultivars, 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach × almond rootstocks 'Garnem' and 'GF677' were cultured in two different media, Murashige and Skoog supplemented with plant growth regulators (PGRs) (regeneration medium) and without PGRs (control medium), in order to study the effects of the media and/or genotypes in the endogenous hormones content and their role in organogenesis. The highest regeneration rate was obtained with the peach × almond rootstocks and showed a lower content of Z, IAA, ABA, ACC and JA. Only Z, ZR and IAA were affected by the action of the culture media. This study shows which hormones are external PGRs-dependent and what is the weight of the genotype and hormones in peach organogenesis that provide an avenue to manipulate in vitro organogenesis in peach. PMID:25289519

  2. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil.

    Manikandan, Muthu; Kannan, Vijayaraghavan; Mendoza, Ordetta Hannah; Kanimozhi, Mahalingam; Chun, Sechul; Pašić, Lejla

    2016-01-01

    Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity. PMID:26147743

  3. Discovery of Highly Sweet Compounds from Natural Sources

    Kinghorn, A. Douglas; Kennelly, Edward J.

    1995-08-01

    Sucrose, the most widely used sweetener globally, is of plant origin. In addition, a number of other plant constituents are employed as dietary sucrose substitutes in one or more countries, including the diterpenoid, stevioside, the triterpenoid, glycyrrhizin, and the protein, thaumatin. Accordingly, there has been much interest in discovering further examples of potently sweet compounds of natural origin, for potential use in foods, beverages, and medicines. Approximately 75 plant-derived compounds are presently known, mainly representative of the flavonoid, proanthocyandin, protein, steroidal saponin, and terpenoid chemotypes. In our program directed towards the elucidation of further highly sweet molecules from plants, candidate sweet-tasting plants for laboratory investigation are obtained from ethnobotanical observations in the field or in the existing literature. Examples of novel sweet-tasting compounds obtained so far are the sesquiterpenoids, hernandulcin and 4beta-hydroxyhemandulcin; the triterpenoids, abrusosides A-D; a semi-synthetic dihydroflavonol based on the naturally occurring substance, dihydroquercetin 3-acetate; and the proanthocyanidin, selligueain A. Natural product sweeteners may be of potential commercial use per se, and can be used for synthetic modification to produce improved sweeteners, and can also be of value scientifically to aid in the better understanding of structure-sweetness relationships.

  4. Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls.

    Haga, Ken; Iino, Moritoshi

    2006-01-01

    The relationships between the distribution of the native auxin indole-3-acetic acid (IAA) and tropisms in the epicotyl of red light-grown pea (Pisum sativum L.) seedlings have been investigated. The distribution measurement was made in a defined zone of the third internode, using (3)H-IAA applied from the plumule as a tracer. The tropisms investigated were gravitropism, pulse-induced phototropism, and time-dependent phototropism. The investigation was extended to the phase of autostraightening (autotropism) that followed gravitropic curvature. It was found that IAA is asymmetrically distributed between the two halves of the zone, with a greater IAA level occurring on the convex side, at early stages of gravitropic and phototropic curvatures. This asymmetry was found in epidermal peels and, except for one case (pulse-induced phototropism), no asymmetry was detected in whole tissues. It was concluded, in support of earlier results, that auxin asymmetry mediates gravitropism and phototropism and that the epidermis or peripheral cell layers play an important role in the establishment of auxin asymmetry in pea epicotyls. During autostraightening, which results from a reversal of growth asymmetry, the extent of IAA asymmetry was reduced, but its direction was not reversed. This result demonstrated that autostraightening is not regulated through auxin distribution. In this study, the growth on either side of the investigated zone was also measured. In some cases, the measured IAA distribution could not adequately explain the local growth rate, necessitating further detailed investigation. PMID:16467412

  5. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds.

    Morris, Suzanne E; Cox, Marjolein C H; Ross, John J; Krisantini, Santi; Beveridge, Christine A

    2005-07-01

    One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time-frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth. PMID:15965021

  6. Evidence that the mature leaves contribute auxin to the immature tissues of pea (Pisum sativum L.).

    Jager, Corinne E; Symons, Gregory M; Glancy, Naomi E; Reid, James B; Ross, John J

    2007-07-01

    In plants such as the garden pea (Pisum sativum L.), it is widely thought that the auxin indole-3-acetic acid (IAA) is synthesised mainly in the immature tissues of the apical bud and then transported basipetally to other parts of the plant. Consistent with this belief are results showing that removal of the apical bud markedly reduces the IAA content in the stem. However, it has also been suggested that the mature leaves may synthesise substantial amounts of IAA, which enters the basipetal transport stream after being transported to the shoot apex in the phloem (Cambridge and Morris in Planta 99:583-588, 1996). To examine this theory, we defoliated pea plants and measured the effect on IAA content in the remaining shoot tissues. IAA levels were reduced in the internodes, and to a lesser extent in the apical bud, after defoliation, suggesting that mature leaves are indeed an important source of auxin for the shoot. Consistent with this idea, we have demonstrated that mature, fully expanded leaves are capable of de novo IAA synthesis. Furthermore, we report evidence for the presence of IAA in the phloem sap of pea. Together these results support those of Cambridge and Morris, suggesting that mature leaves are a source of the IAA in the basipetal transport stream. PMID:17308928

  7. Reassessing the role of N-hydroxytryptamine in auxin biosynthesis.

    Tivendale, Nathan D; Davies, Noel W; Molesworth, Peter P; Davidson, Sandra E; Smith, Jason A; Lowe, Edwin K; Reid, James B; Ross, John J

    2010-12-01

    The tryptamine pathway is one of five proposed pathways for the biosynthesis of indole-3-acetic acid (IAA), the primary auxin in plants. The enzymes AtYUC1 (Arabidopsis thaliana), FZY (Solanum lycopersicum), and ZmYUC (Zea mays) are reported to catalyze the conversion of tryptamine to N-hydroxytryptamine, putatively a rate-limiting step of the tryptamine pathway for IAA biosynthesis. This conclusion was based on in vitro assays followed by mass spectrometry or HPLC analyses. However, there are major inconsistencies between the mass spectra reported for the reaction products. Here, we present mass spectral data for authentic N-hydroxytryptamine, 5-hydroxytryptamine (serotonin), and tryptamine to demonstrate that at least some of the published mass spectral data for the YUC in vitro product are not consistent with N-hydroxytryptamine. We also show that tryptamine is not metabolized to IAA in pea (Pisum sativum) seeds, even though a PsYUC-like gene is strongly expressed in these organs. Combining these findings, we propose that at present there is insufficient evidence to consider N-hydroxytryptamine an intermediate for IAA biosynthesis. PMID:20974893

  8. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance.

    Tanaka, Mina; Takei, Kentaro; Kojima, Mikiko; Sakakibara, Hitoshi; Mori, Hitoshi

    2006-03-01

    In intact plants, the shoot apex grows predominantly and inhibits outgrowth of axillary buds. After decapitation of the shoot apex, outgrowth of axillary buds begins. This phenomenon is called an apical dominance. Although the involvement of auxin, which represses outgrowth of axillary buds, and cytokinin (CK), which promotes outgrowth of axillary buds, has been proposed, little is known about the underlying molecular mechanisms. In the present study, we demonstrated that auxin negatively regulates local CK biosynthesis in the nodal stem by controlling the expression level of the pea (Pisum sativum L.) gene adenosine phosphate-isopentenyltransferase (PsIPT), which encodes a key enzyme in CK biosynthesis. Before decapitation, PsIPT1 and PsIPT2 transcripts were undetectable; after decapitation, they were markedly induced in the nodal stem along with accumulation of CK. Expression of PsIPT was repressed by the application of indole-3-acetic acid (IAA). In excised nodal stem, PsIPT expression and CK levels also increased under IAA-free conditions. Furthermore, beta-glucuronidase expression, under the control of the PsIPT2 promoter region in transgenic Arabidopsis, was repressed by an IAA. Our results indicate that in apical dominance one role of auxin is to repress local biosynthesis of CK in the nodal stem and that, after decapitation, CKs, which are thought to be derived from the roots, are locally biosynthesized in the nodal stem rather than in the roots. PMID:16507092

  9. Auxin biosynthesis in pea: characterization of the tryptamine pathway.

    Quittenden, Laura J; Davies, Noel W; Smith, Jason A; Molesworth, Peter P; Tivendale, Nathan D; Ross, John J

    2009-11-01

    One pathway leading to the bioactive auxin, indole-3-acetic acid (IAA), is known as the tryptamine pathway, which is suggested to proceed in the sequence: tryptophan (Trp), tryptamine, N-hydroxytryptamine, indole-3-acetaldoxime, indole-3-acetaldehyde (IAAld), IAA. Recently, this pathway has been characterized by the YUCCA genes in Arabidopsis (Arabidopsis thaliana) and their homologs in other species. YUCCA is thought to be responsible for the conversion of tryptamine to N-hydroxytryptamine. Here we complement the genetic findings with a compound-based approach in pea (Pisum sativum), detecting potential precursors by gas chromatography/tandem-mass spectrometry. In addition, we have synthesized deuterated forms of many of the intermediates involved, and have used them to quantify the endogenous compounds, and to investigate their metabolic fates. Trp, tryptamine, IAAld, indole-3-ethanol, and IAA were detected as endogenous constituents, whereas indole-3-acetaldoxime and one of its products, indole-3-acetonitrile, were not detected. Metabolism experiments indicated that the tryptamine pathway to IAA in pea roots proceeds in the sequence: Trp, tryptamine, IAAld, IAA, with indole-3-ethanol as a side-branch product of IAAld. N-hydroxytryptamine was not detected, but we cannot exclude that it is an intermediate between tryptamine and IAAld, nor can we rule out the possibility of a Trp-independent pathway operating in pea roots. PMID:19710233

  10. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea.

    Foo, Eloise; Bullier, Erika; Goussot, Magali; Foucher, Fabrice; Rameau, Catherine; Beveridge, Christine Anne

    2005-02-01

    In Pisum sativum, the RAMOSUS genes RMS1, RMS2, and RMS5 regulate shoot branching via physiologically defined mobile signals. RMS1 is most likely a carotenoid cleavage enzyme and acts with RMS5 to control levels of an as yet unidentified mobile branching inhibitor required for auxin inhibition of branching. Our work provides molecular, genetic, and physiological evidence that RMS1 plays a central role in a shoot-to-root-to-shoot feedback system that regulates shoot branching in pea. Indole-3-acetic acid (IAA) positively regulates RMS1 transcript level, a potentially important mechanism for regulation of shoot branching by IAA. In addition, RMS1 transcript levels are dramatically elevated in rms3, rms4, and rms5 plants, which do not contain elevated IAA levels. This degree of upregulation of RMS1 expression cannot be achieved in wild-type plants by exogenous IAA application. Grafting studies indicate that an IAA-independent mobile feedback signal contributes to the elevated RMS1 transcript levels in rms4 plants. Therefore, the long-distance signaling network controlling branching in pea involves IAA, the RMS1 inhibitor, and an IAA-independent feedback signal. Consistent with physiological studies that predict an interaction between RMS2 and RMS1, rms2 mutations appear to disrupt this IAA-independent regulation of RMS1 expression. PMID:15659639

  11. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitiveein2mutant in pea (Pisum sativumL.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1and indole-3-acetic acid levels inein2roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses betweenein2and the severely gibberellin-deficientnaand brassinosteroid-deficientlkmutants showed increased nodule numbers and reduced nodule spacing compared with thenaandlksingle mutants, but nodule numbers and spacing were typical ofein2plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation,ein2does not override the effect oflkornaon the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. PMID:26889005

  12. Translocation in Polytrichum commune (Bryophyta). II. Clonal integration

    Polytrichum commune is a perennial moss that grows by rhizomatous production of interconnected shoots. It possesses a well-developed internal system of food-conducting tissue. Liquid scintillation determinations following pulse-14CO2 treatment of a single shoot in rhizomatously connected groups indicate that tagged photoassimilates are transported into: (1) newly developing stems during the early growing season; (2) shared rhizomes (with an increase observed in rhizome allocation toward the end of the year, as well as a year-end percentage increase in starch reserves); and (3) mature neighboring shoots. Over the course of the growing season, photoassimilate export from pulse-labeled shoots ranges between 12.9% and 21.4% of total tagged. The amount of export is significantly influenced by defoliation, shading, stem tip removal, and 50 ppm indole-3-acetic acid treatments performed on rhizomatously connected neighbor shoots. Physiological integration within P. commune can be inferred from these results. Control is exerted by endogenous hormones or by changes in the activity of sources and sinks

  13. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Jin Duan

    Full Text Available The plant growth-promoting bacterium (PGPB Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  14. Isomerization of 1-O-indol-3-ylacetyl-beta-D-glucose. Enzymatic hydrolysis of 1-O, 4-O, and 6-O-indol-3-ylacetyl-beta-D-glucose and the enzymatic synthesis of indole-3-acetyl glycerol by a hormone metabolizing complex

    Kowalczyk, S.; Bandurski, R. S.

    1990-01-01

    The first compound in the series of reactions leading to the ester conjugates of indole-3-acetic acid (IAA) in kernels of Zea mays sweet corn is the acyl alkyl acetal, 1-O-indol-3-ylacetyl-beta-D-glucose (1-O-IAGlu). The enzyme catalyzing the synthesis of this compound is UDP-glucose:indol-3-ylacetate glucosyl-transferase (IAGlu synthase). The IAA moiety of the high energy compound 1-O-IAGlu may be enzymatically transferred to myo-inositol or to glycerol or the 1-O-IAGlu may be enzymatically hydrolyzed. Alternatively, nonenzymatic acyl migration may occur to yield the 2-O, 4-O, and 6-O esters of IAA and glucose. The 4-O and 6-O esters may then be enzymatically hydrolyzed to yield free IAA and glucose. This work reports new enzymatic activities, the transfer of IAA from 1-O-IAGlu to glycerol, and the enzyme-catalyzed hydrolysis of 4-O and 6-O-IAGlu. Data is also presented on the rate of non-enzymatic acyl migration of IAA from the 1-O to the 4-O and 6-O positions of glucose. We also report that enzymes catalyzing the synthesis of 1-O-IAGlu and the hydrolysis of 1-O, 4-O, and 6-O-IAGlu fractionate as a hormone metabolizing complex. The association of synthetic and hydrolytic capabilities in enzymes which cofractionate may have physiological significance.

  15. Phytobeneficial Properties of Bacteria Isolated from the Rhizosphere of Maize in Southwestern Nigerian Soils.

    Abiala, M A; Odebode, A C; Hsu, S F; Blackwood, C B

    2015-07-01

    Biocontrol agents isolated outside Africa have performed inconsistently under field conditions in Africa. The development of indigenous phytobeneficial microbial strains that suit local environments may help enhance competitiveness with in situ microorganisms and effectiveness at suppressing local pathogen strains. We isolated bacteria from the rhizosphere of maize growing in southwestern Nigeria and assessed them for growth-promoting characteristics. The best isolates were characterized using 16S rRNA genes and were further evaluated in the greenhouse on maize seedlings. Four isolates (EBS8, IGBR11, EPR2, and ADS14) were outstanding in in vitro assays of antagonistic activity against a local strain of Fusarium verticillioides, phosphate solubilization efficiency, chitinase enzyme activity, and indole-3-acetic acid production. Inoculation of maize seeds with these isolates resulted in ≥95% maize seed germination and significantly enhanced radicle and plumule length. In the greenhouse, maize seedling height, stem girth, number of leaves, leaf area, shoot mass (dry matter), and nutrient contents were significantly enhanced. The bioprotectant and phytobeneficial effects were strongest and most consistent for isolate EBS8, which was identified as a Bacillus strain by 16S rRNA gene analysis. As a bacterial strain that exhibits multiple growth-promoting characteristics and is adapted to local conditions, EBS8 should be considered for the development of indigenous biological fertilizer treatments. PMID:25956774

  16. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria.

    Carlos, Mendoza-Hernández José; Stefani, Perea-Vélez Yazmin; Janette, Arriola-Morales; Melani, Martínez-Simón Sara; Gabriela, Pérez-Osorio

    2016-01-01

    This study poses a methodology in order to simultaneously quantify ACC deaminase and IAA levels in the same culture medium. Ten bacterial strains isolated from plant rhizosphere naturally settled in mining residues were chosen. These bacterial strains were characterized as PGPB, and all of them showed at least three characteristics (indole-3 acetic acid and siderophore production, ACC deaminase enzyme activity, and inorganic phosphate solubilization). Taxonomic identification showed that the strains belong to Enterobacter, Serratia, Klebsiella, and Escherichia genera. Similarly, both the ACC deaminase enzyme activity and the IAA synthesis in the presence of Cu, As, Pb, Ni, Cd, and Mn were measured. The results showed that both the ACC deaminase enzyme activity and the IAA synthesis were higher with the Pb, As, and Cu treatments than with the Escherichia N16, Enterobacter K131, Enterobacter N9, and Serratia K120 control treatments. On the other hand, Ni, Cd, and Mn negatively affected both the ACC deaminase enzyme activity and the IAA production on every bacterium except on the Klebsiella Mc173 strain. Serratia K120 bacterium got a positive correlation between ACC deaminase and IAA in the presence of every heavy metal, and it also promoted Helianthus annuus plant growth, showing a potential use in phytoremediation systems. PMID:27296962

  17. A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli.

    Bettina Bommarius

    Full Text Available Enteropathogenic Escherichia coli (EPEC, enterohemorrhagic E. coli (EHEC and enteroaggregative E. coli (EAEC are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogens. We identified indole, indole-3-carboxaldehyde (ICA, and indole-3-acetic acid (IAA, as factors that only in combination are sufficient to kill C. elegans. Importantly, although lethal to C. elegans, these molecules downregulate several bacterial processes important for pathogenesis in mammals. These include motility, biofilm formation and production of Shiga toxins. Some pathogenic E. coli strains are known to contain a Locus of Enterocyte Effacement (LEE, which encodes virulence factors that cause "attaching and effacing" (A/E lesions in mammals, including formation of actin pedestals. We found that these indole derivatives also downregulate production of LEE virulence factors and inhibit pedestal formation on mammalian cells. Finally, upon oral administration, ICA inhibited virulence and promoted survival in a lethal mouse infection model. In summary, the C. elegans model in conjunction with metabolomics has facilitated identification of a family of indole derivatives that broadly regulate physiology in E. coli, and virulence in pathogenic strains. These molecules may enable development of new therapeutics that interfere with bacterial small-molecule signaling.

  18. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. PMID:27133557

  19. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-11-01

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process. PMID:26516916

  20. Indolic Uremic Solutes Enhance Procoagulant Activity of Red Blood Cells through Phosphatidylserine Exposure and Microparticle Release

    Chunyan Gao

    2015-10-01

    Full Text Available Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs, the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS and indole-3-acetic acid (IAA on procoagulant activity (PCA of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients. Phosphatidylserine (PS exposure of RBCs and their microparticles (MPs release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca2+ ([Ca2+] with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca2+]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  1. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production. PMID:26499883

  2. Plant regeneration through callus organogenesis and true-to-type conformity of plants by RAPD analysis in Desmodium gangeticum (Linn.) DC.

    Cheruvathur, Meena K; Abraham, Jyothi; Thomas, T Dennis

    2013-03-01

    An efficient plant regeneration protocol was established for an endangered ethnomedicinal plant Desmodium gangeticum (Linn.) DC. Morphogenic calli were produced from 96 % of the cultures comprising the immature leaf explants on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (4.0 mg l(-1)) in combination with 6-benzylaminopurine (BA; 0.8 mg l(-1)). For callus regeneration, various concentrations of BA (1.0-5.0 mg l(-1)) or thidiazuron (TDZ; 1.0-5.0 mg l(-1)) alone or in combination with indole-3-acetic acid (IAA; 0.2-1.0 mg l(-1)) were used. Highest response of shoot regeneration was observed on MS medium fortified with TDZ (4.0 mg l(-1)) and IAA (0.5 mg l(-1)) combination. Here, 100 % cultures responded with an average number of 22.3 shoots per gram calli. Inclusion of indole-3-butyric acid in half MS medium favored rooting of recovered shoots. Out of 45 rooted plants transferred to soil, 40 survived. Total DNA was extracted from the leaves of the acclimatized plants of D. gangeticum. Analysis of random amplified polymorphic DNA using 13 arbitrary decanucleotide primers showed the genetic homogeneity in all the ten plants regenerated from callus with parental plant, suggesting that shoot regeneration from callus could be used for the true-to-type multiplication of this plant. PMID:23340869

  3. RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3.

    Liu, Xiaoguang; Wu, Yan; Chen, Yuanyuan; Xu, Fang; Halliday, Nigel; Gao, Kexiang; Chan, Kok Gan; Cámara, Miguel

    2016-04-01

    The σ(S) subunit RpoS of RNA polymerase functions as a master regulator of the general stress response in Escherichia coli and related bacteria. RpoS has been reported to modulate biocontrol properties in the rhizobacterium Serratia plymuthica IC1270. However, the role of RpoS in the stress response and biofilm formation in S. plymuthica remains largely unknown. Here we studied the role of RpoS from an endophytic S. plymuthica G3 in regulating these phenotypes. Mutational analysis demonstrated that RpoS positively regulates the global stress response to acid or alkaline stresses, oxidative stress, hyperosmolarity, heat shock and carbon starvation, in addition to proteolytic and chitinolytic activities. Interestingly, rpoS mutations resulted in significantly enhanced swimming motility, biofilm formation and production of the plant auxin indole-3-acetic acid (IAA), which may contribute to competitive colonization and environmental fitness for survival. These findings provide further insight into the strain-specific role of RpoS in the endophytic strain G3 of S. plymuthica, where it confers resistance to general stresses encountered within the plant environment. The heterogeneous functionality of RpoS in rhizosphere and endophytic S. plymuthica populations may provide a selective advantage for better adaptation to various physiological and environmental stresses. PMID:26671319

  4. The auxin-inducible GH3 homologue Pp-GH3.16 is downregulated in Pinus pinaster root systems on ectomycorrhizal symbiosis establishment.

    Reddy, S M; Hitchin, S; Melayah, D; Pandey, A K; Raffier, C; Henderson, J; Marmeisse, R; Gay, G

    2006-01-01

    In an attempt to determine whether auxin-regulated plant genes play a role in ectomycorrhizal symbiosis establishment, we screened a Pinus pinaster root cDNA library for auxin-upregulated genes. This allowed the identification of a cDNA, Pp-GH3.16, which encodes a polypeptide sharing extensive homologies with GH3 proteins of different plants. Pp-GH3.16 was specifically upregulated by auxins and was not affected by cytokinin, gibberellin, abscisic acid or ethylene, or by heat shock, water stress or anoxia. Pp-GH3.16 mRNAs were quantified in pine roots inoculated with two ectomycorrhizal fungi, Hebeloma cylindrosporum and Rhizopogon roseolus. Surprisingly, Pp-GH3.16 was downregulated following inoculation with both fungal species. The downregulation was most rapid on establishment of symbiosis with an indole-3-acetic acid (IAA)-overproducing mutant of H. cylindrosporum, which overproduced mycorrhizas characterized by a hypertrophic Hartig net. This indicates that, despite being auxin-inducible, Pp-GH3.16 can be downregulated on establishment of symbiosis with a fungus that releases auxin. By contrast, Pp-GH3.16 was not downregulated in pine root systems inoculated with a nonmycorrhizal mutant of H. cylindrosporum, suggesting that the downregulation we observed in mycorrhizal root systems was a component of the molecular cross-talk between symbiotic partners at the origin of differentiation of symbiotic structures. PMID:16608463

  5. Molecular candidates for early-stage flower-to-fruit transition in stenospermocarpic table grape (Vitis vinifera L.) inflorescences ascribed by differential transcriptome and metabolome profiles.

    Domingos, Sara; Fino, Joana; Paulo, Octávio S; Oliveira, Cristina M; Goulao, Luis F

    2016-03-01

    Flower-to-fruit transition depends of nutrient availability and regulation at the molecular level by sugar and hormone signalling crosstalk. However, in most species, the identities of fruit initiation regulators and their targets are largely unknown. To ascertain the main pathways involved in stenospermocarpic table grape fruit set, comprehensive transcriptional and metabolomic analyses were conducted specifically targeting the early phase of this developmental stage in 'Thompson Seedless'. The high-throughput analyses performed disclosed the involvement of 496 differentially expressed genes and 28 differently accumulated metabolites in the sampled inflorescences. Our data show broad transcriptome reprogramming of molecule transporters, globally down-regulating gene expression, and suggest that regulation of sugar- and hormone-mediated pathways determines the downstream activation of berry development. The most affected gene was the SWEET14 sugar transporter. Hormone-related transcription changes were observed associated with increased indole-3-acetic acid, stimulation of ethylene and gibberellin metabolisms and cytokinin degradation, and regulation of MADS-box and AP2-like ethylene-responsive transcription factor expression. Secondary metabolism, the most representative biological process at transcriptome level, was predominantly repressed. The results add to the knowledge of molecular events occurring in grapevine inflorescence fruit set and provide a list of candidates, paving the way for genetic manipulation aimed at model research and plant breeding. PMID:26810452

  6. Changes in the anti-inflammatory activity of soy isoflavonoid genistein versus genistein incorporated in two types of cyclodextrin derivatives

    Danciu CorinaTiulea

    2012-06-01

    Full Text Available Abstract Background The isoflavonoid genistein represents the major active compound from soybean, the vegetal product from Glycine max (Fabaceae. The aim of this study is to prove that genistein was incorporated in two semisynthetic cyclodextrins, beta-cyclodextrin derivatives: hydroxypropyl-beta-cyclodextrin and randomly-methylated-beta-cyclodextrin as well as to compare the anti-inflammatory activity of genistein with that of genistein incorporated in these two types of semisynthetic cyclodextrins. Results The animal studies were conducted on 8-week old C57BL/6 J female mice. Inflammation was induced in both ears of each mouse by topical application of 10 micrograms 12-O-tetradecanoylphorbol-3-acetate dissolved in 0.1 ml solvent (acetone : dimethylsulfoxide in a molar ratio 9:1. Thirty minutes later treatment was applied. The inflammatory reaction was correlated with increased values in ear thickness. Treatment with genistein and genistein incorporated in the two cyclodextrins led to decreased values for ear thickness. Better anti-inflammatory action was found for the complexes of genistein. Both haematoxylin-eosin analysis and CD45 marker expression are in agreement with these findings. Conclusions Results allow concluding that genistein is an active anti-inflammatory phytocompound and its complexation with hydrophilic beta-cyclodextrin derivatives leads to a stronger anti-inflammatory activity.

  7. Plant growth hormones suppress the development of Harpophora maydis, the cause of late wilt in maize.

    Degani, Ofir; Drori, Ran; Goldblat, Yuval

    2015-01-01

    Late wilt, a severe vascular disease of maize caused by the fungus Harpophora maydis, is characterized by rapid wilting of maize plants before tasseling and until shortly before maturity. The pathogen is currently controlled by resistant maize cultivars, but the disease is constantly spreading to new areas. The plant's late phenological stage at which the disease appears suggests that plant hormones may be involved in the pathogenesis. This work revealed that plant growth hormones, auxin (Indole-3-acetic acid) and cytokinin (kinetin), suppress H. maydis in culture media and in a detached root assay. Kinetin, and even more auxin, caused significant suppression of fungus spore germination. Gibberellic acid did not alter colony growth rate but had a signal suppressive effect on the pathogens' spore germination. In comparison, ethylene and jasmonic acid, plant senescing and defense response regulators, had minor effects on colony growth and spore germination rate. Their associate hormone, salicylic acid, had a moderate suppressive effect on spore germination and colony growth rate, and a strong influence when combined with auxin. Despite the anti-fungal auxin success in vitro, field experiments with dimethylamine salt of  2,4-dichlorophenoxyacetic acid (that mimics the influence of auxin) failed to suppress the late wilt. The lines of evidence presented here reveal the suppressive influence of the three growth hormones studied on fungal development and are important to encourage further and more in-depth examinations of this intriguing hormonal complex regulatory and its role in the maize-H. maydis interactions. PMID:25649030

  8. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  9. Changes in the population of seed bacteria of transgenerationally Cd-exposed Arabidopsis thaliana.

    Truyens, S; Weyens, N; Cuypers, A; Vangronsveld, J

    2013-11-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. Nevertheless, the role of endophytic bacteria present in seeds has not been investigated in depth. In this study, the cultivable endophytic population of seeds from Arabidopsis thaliana exposed to 2 μm cadmium for several generations (Cd seeds) was compared with a population isolated from seeds of plants that were never exposed to Cd (control seeds). We observed obvious differences between the two types of seed concerning genera present and phenotypic characteristics of the different isolates. Sinorhizobium sp. and Micrococcus sp. were only found in control seeds, while Pseudomonas sp., Bosea sp. and Paenibacillus sp. were only found in Cd seeds. Sphingomonas sp., Rhizobium sp., Acidovorax sp., Variovorax sp., Methylobacterium sp., Bacillus sp. and Staphylococcus sp. occurred in varying numbers in both types of seed. Metal tolerance and 1-aminocyclopropane-1-carboxylate deaminase activity were predominantly found in strains isolated from Cd seeds, while the production of siderophores, indole-3-acetic acid and organic acids was more prevalent in endophytes isolated from control seeds. These data support the hypothesis that certain endophytes are selected for transfer to the next generation and that their presence might be important for subsequent germination and early seedling development. PMID:23252960

  10. Insect stings to change gear for healthy plant: Improving maize drought tolerance by whitefly infestation.

    Park, Yong-Soon; Ryu, Choong-Min

    2016-05-01

    Since plants first appeared about 1.1 billion years ago, they have been faced with biotic and abiotic stresses in their environment. To overcome these stresses, plants developed defense strategies. Accumulating evidence suggests that the whitefly [Bemisia tabaci (Genn.)] affects the regulation of plant defenses and physiology. A recent study demonstrates that aboveground whitefly infestation positively modulates root biomass and anthocyanin pigmentation on brace roots of maize plants (Zea mays L.). In agreement with these observations, indole-3-acetic acid (IAA) and jasmonic acid (JA) contents and the expression of IAA- and JA-related genes are higher in whitefly-infested maize plants than in non-infected control plants. Interestingly, the fresh weight of whitefly-infested maize plants is approximately 20% higher than in non-infected control plants under water stress conditions. Further investigation has revealed that hydrogen peroxide (H2O2) accumulates in whitefly-infested maize plants after water stoppage. Taken together, these results suggest that activation of phytohormones- (i.e., IAA and JA) and H2O2-mediated maize signaling pathways triggered by aboveground whitefly infestation promotes drought resistance. They also provide an insight into how inter-kingdom interactions can improve drought tolerance in plants. PMID:27164447

  11. Comparison of visual inspection of cervix and pap smear for cervical cancer screening

    Objective: To evaluate the performance of visual inspection of cervix (VIA) after application of 3% acetic acid in cervical cancer screening in comparison with PAP smear. Results: Out of 540 subjects, 356 were negative with both screening techniques. One hundred and fifty-six subjects were positive with VIA (28.9%) while PAP smear was positive in seventy-eight subjects (14.4%). The sensitivity of VIA was 93.9% and of PAP smear was 46.9%. Corresponding specificities were 30.4% and 69.5%. There was no significant difference between the positive predictive value (PPV) of both test (p<0.05). The accuracy of VIA was 77.5% compared to 52.8% of PAP smear. The difference was highly significant (p < 0.01). Conclusion: These results indicate that VIA is more sensitive and has a higher accuracy as compared to PAP smear. It could, therefore, be valuable in detection of precancerous lesions of cervix. Low cost, easy applicability and immediate results make VIA a useful screening test in developing countries like Pakistan as compared to PAP smear. (author)

  12. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.

    Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña

    2016-10-01

    Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants. PMID:27543253

  13. Simultaneous determination of theobromine, (+)-catechin, caffeine, and (-)-epicatechin in standard reference material baking chocolate 2384, cocoa, cocoa beans, and cocoa butter.

    Risner, Charles H

    2008-01-01

    A reverse-phase liquid chromatography analysis is used to access the quantity of theobromine, (+)-catechin, caffeine, and (-)-epicatechin in Standard Reference Material 2384 Baking Chocolate, cocoa, cocoa beans, and cocoa butter using water or a portion of the mobile phase as the extract. The procedure requires minimal sample preparation. Theobromine, (+)-catechin, caffeine, and (-)-epicatechin are detected by UV absorption at 273 nm after separation using a 0.3% acetic acid-methanol gradient (volume fractions) and quantified using external standards. The limit of detection for theobromine, (+)-catechin, caffeine, and (-)-epicatechin averages 0.08, 0.06, 0.06, and 0.06 microg/mL, respectively. The method when applied to Standard Reference Material 2384 Baking Chocolate; baking chocolate reference material yields results that compare to two different, separate procedures. Theobromine ranges from 26000 mg/kg in cocoa to 140 mg/kg in cocoa butter; (+)-catechin from 1800 mg/kg in cocoa to below detection limits of < 32 mg/kg in cocoa butter; caffeine from 2400 mg/kg in cocoa to 400 mg/kg in cocoa butter, and (-)-epicatechin from 3200 mg/kg in cocoa to BDL, < 27 mg/kg, in cocoa butter. The mean recoveries from cocoa are 102.4 +/- 0.6% for theobromine, 100.0 +/- 0.6 for (+)-catechin, 96.2 +/- 2.1 for caffeine, and 106.2 +/- 1.7 for (-)-epicatechin. PMID:19007497

  14. Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell

    Werner, Craig M.

    2013-02-01

    A microbial osmotic fuel cell (MOFC) has a forward osmosis (FO) membrane situated between the electrodes that enable desalinated water recovery along with power generation. Previous designs have required aerating the cathode chamber water, offsetting the benefits of power generation by power consumption for aeration. An air-cathode MOFC design was developed here to improve energy recovery, and the performance of this new design was compared to conventional microbial fuel cells containing a cation (CEM) or anion exchange membrane (AEM). Internal resistance of the MOFC was reduced with the FO membrane compared to the ion exchange membranes, resulting in a higher maximum power production (43W/m3) than that obtained with an AEM (40W/m3) or CEM (23W/m3). Acetate (carbon source) removal reached 90% in the MOFC; however, a small amount of acetate crossed the membrane to the catholyte. The initial water flux declined by 28% from cycle 1 to cycle 3 of operation but stabilized at 4.1L/m2/h over the final three batch cycles. This decline in water flux was due to membrane fouling. Overall desalination of the draw (synthetic seawater) solution was 35%. These results substantially improve the prospects for simultaneous wastewater treatment and seawater desalination in the same reactor. © 2012 Elsevier B.V.

  15. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  16. GA3 and other signal regulators (MeJA and IAA) improve xanthumin biosynthesis in different manners in Xanthium strumarium L.

    Li, Changfu; Chen, Fangfang; Zhang, Yansheng

    2014-01-01

    Xanthanolides from Xanthium strumarium L. exhibit various pharmacological activities and these compounds are mainly produced in the glandular trichomes of aerial plant parts. The regulation of xanthanolide biosynthesis has never been reported in the literature. In this study, the effects of phytohormonal stimulation on xanthumin (a xanthanolide compound) biosynthesis, glandular trichomes and germacrene A synthase (GAS) gene expression in X. strumarium L. young leaves were investigated. The exogenous applications of methyl jasmonate (MeJA), indole-3-acetic acid (IAA), and gibberrellin A3 (GA3) at appropriate concentrations were all found to improve xanthumin biosynthesis, but in different ways. It was suggested that a higher gland density stimulated by MeJA (400 µM) or IAA (200 µM) treatment caused at least in part an improvement in xanthumin production, whereas GA3 (10 µM) led to an improvement by up-regulating xanthumin biosynthetic genes within gland cells, not by forming more glandular trichomes. Compared to the plants before the flowering stage, plants that had initiated flowering showed enhanced xanthumin biosynthesis, but no higher gland density, an effect was similar to that caused by exogenous GA3 treatment. PMID:25157461

  17. GA3 and Other Signal Regulators (MeJA and IAA Improve Xanthumin Biosynthesis in Different Manners in Xanthium strumarium L.

    Changfu Li

    2014-08-01

    Full Text Available Xanthanolides from Xanthium strumarium L. exhibit various pharmacological activities and these compounds are mainly produced in the glandular trichomes of aerial plant parts. The regulation of xanthanolide biosynthesis has never been reported in the literature. In this study, the effects of phytohormonal stimulation on xanthumin (a xanthanolide compound biosynthesis, glandular trichomes and germacrene A synthase (GAS gene expression in X. strumarium L. young leaves were investigated. The exogenous applications of methyl jasmonate (MeJA, indole-3-acetic acid (IAA, and gibberrellin A3 (GA3 at appropriate concentrations were all found to improve xanthumin biosynthesis, but in different ways. It was suggested that a higher gland density stimulated by MeJA (400 µM or IAA (200 µM treatment caused at least in part an improvement in xanthumin production, whereas GA3 (10 µM led to an improvement by up-regulating xanthumin biosynthetic genes within gland cells, not by forming more glandular trichomes. Compared to the plants before the flowering stage, plants that had initiated flowering showed enhanced xanthumin biosynthesis, but no higher gland density, an effect was similar to that caused by exogenous GA3 treatment.

  18. Sequential separation of ultra-trace U, Th, Pb, and lanthanides using a simple automatic system.

    Miyamoto, Yutaka; Yasuda, Kenichiro; Magara, Masaaki

    2015-07-01

    Uranium, thorium, lead, and the lanthanides were automatically and sequentially separated with a single anion-exchange column. This separation was achieved using eluents consisting of a simple and highly pure acid mixture of HCl, HNO3, acetic acid, and HF. The elements of interest were separated from the major constituents, which included alkaline metal elements, alkaline earth metal elements, and iron. This simple and automatic system is driven with pressurized nitrogen gas and controlled using a computer program. An optimized separation was accomplished under the following conditions: a 50 mm long and 2 mm diameter column, 11 μm diameter anion-exchange resin, and a 35 μL min(-1) flow rate. Using this system, 50 ng of varied elements in a 100 μL feed solution were perfectly separated within 5 h with >400 decontamination factors and >95% yield. In order to evaluate the performance of this system, a reference powdered rock sample was separated using this system. Abundances of objective elements, including 0.23 ng of lutetium, were accurately determined without corrections of chemical recovery yield or subtraction of the process blank. This separation technique saves time and effort for chemical processing, and is useful for ultra-trace quantitative and isotopic analyses of elements in small environmental samples. PMID:25994104

  19. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets

    The effect of gamma irradiation (0, 2, 3 and 4 kGy) on vacuum-packed marinated anchovy fillets was analyzed for their texture, color, lipid oxidation and sensory acceptability after 10 months under refrigeration. Marinated (3% acetic acid, 10% sodium chloride and 0.2% citric acid) Engraulis anchoita fillets were vacuum-packed and irradiated with a cobalt-60 source at a semi-industrial irradiation facility. The irradiation caused a slight increase in hardness values regardless of the applied dose but maintained a consistent texture over the 10 months, even though the control samples softened, most likely due to degradation. This hardness increase did not affect the textural sensory acceptability. Irradiation did not modify the color but still reduced color changes during storage, benefitting the product's quality. TBARS was increased in every sample throughout storage, but irradiation decreased these values. Sensory acceptability was not affected by gamma irradiation. Therefore, gamma irradiation could be successfully applied to this type of product for the purpose of shelf-life extension. - Highlights: • Marinated anchovies were γ-irradiated at 2, 3 and 4 kGy and stored at 4 °C (10 months). • Irradiation slightly hardened the texture and reduced its softening during storage. • Irradiated marinades had good sensory acceptability without differences with controls. • Irradiation improved the quality by reducing texture softening and color changes

  20. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.; Taskinen, M.R. (Helsinki Univ. and Research Labs. of the Finnish State Alcohol Co. (Finland))

    1988-02-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R{sub a} was matched by a comparable decrease in glucose utilization (R{sub d}), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level was comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R{sub a} is counterbalanced by equal inhibition of R{sub d}; (2) basal R{sub a} and R{sub d} are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance.