WorldWideScience

Sample records for 18f-misonidazole positron emission

  1. Correlation of p16 status, hypoxic imaging using [18F]-misonidazole positron emission tomography and outcome in patients with loco-regionally advanced head and neck cancer

    We investigated the relationship between hypoxia, human papillomavirus (HPV) status and outcome in head and neck squamous cell carcinoma. Patients with stage III and IV head and neck squamous cell carcinoma treated on phase I and II chemoradiation trials with 70-Gy radiation combined with tirapazamine/cisplatin or cisplatin/fluorouracil (5FU), hypoxic imaging using [18F]-misonidazole positron emission tomography and known HPV status (by p16 immunohistochemistry) were included in this sub-study. Separate analyses were conducted to consider the impact of tirapazamine on HPV-negative tumours in the phase II trial. Both p16-positive oropharyngeal tumours and p16-negative head and neck squamous cell carcinoma tumours had a high prevalence of tumour hypoxia; 14/19 (74%) and 35/44 (80%), respectively. The distribution of hypoxia (primary, nodal) was similar. On phase II, trial patients with p16-negative hypoxic tumours had worse loco-regional control with cisplatin and 5FU compared with tirapazamine and cisplatin (P<0.001) and worse failure-free survival (hazard ratio=5.18; 95% confidence interval, 1.98–13.55; P=0.001). Only 1 out of 14 p16-positive patients on the phase II trial experienced loco-regional failure. Hypoxia, as assessed by [18F]-misonidazole positron emission tomography, is frequently present in both p16-positive and negative head and neck cancer. Further research is required to determine whether hypoxic imaging can be used to predict benefit from hypoxia-targeting therapies in patients with p16-negative tumours.

  2. Positron emission tomography.

    Hoffman, E J; Phelps, M E

    1979-01-01

    Conventional nuclear imaging techniques utilizing lead collimation rely on radioactive tracers with little role in human physiology. The principles of imaging based on coincidence detection of the annihilation radiation produced in positron decay indicate that this mode of detection is uniquely suited for use in emission computed tomography. The only gamma-ray-emitting isotopes of carbon, nitrogen, and oxygen are positron emitters, which yield energies too high for conventional imaging techniques. Thus development of positron emitters in nuclear medicine imaging would make possible the use of a new class of physiologically active, positron-emitting radiopharmaceuticals. The application of these principles is described in the use of a physiologically active compound labeled with a positron emitter and positron-emission computed tomography to measure the local cerebral metabolic rate in humans. PMID:440173

  3. Positron-emission tomography

    Positron-emission tomography (PET) combines early biochemical assessment of pathology achieved by nuclear medicine with the precise localization achieved by computerized image reconstruction. In this technique a chemical compound with the desired biological activity is labeled with a radioactive isotope that decays by emitting a positron, or positive electron. With suitable interpretation PET images can provide a noninvasive, regional assessment of many biochemical processes that are essential to the functioning of the organ that is being visualized

  4. Positron emission tomography

    The aim of this project is to provide a simple summary of new trends in positron emission tomography and its basic physical principles. It provides thereby compendious introduction of the trends of the present development in diagnostics using PET systems. A review of available literature was performed. (author)

  5. Positron emission tomography

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  6. Tomography by positrons emission

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are (11C), of the oxygen (15O), of the nitrogen (13N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11C, 15O, and 13N, other isotopes that can be obtained of a generator as the 68Ga and 82Rb

  7. Positron emission tomography

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon (11C), oxygen (15O), and nitrogen (13N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  8. Positron Emission Tomography (PET)

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  9. Positron emission mammography imaging

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  10. Positron emission tomography. Basic principles

    The basic principles of positron emission tomography (PET) technique are reviewed. lt allows to obtain functional images from gamma rays produced by annihilation of a positron, a positive beta particle. This paper analyzes positron emitters production in a cyclotron, its general mechanisms, and the various detection systems. The most important clinical applications are also mentioned, related to oncological uses of fluor-l8-deoxyglucose

  11. Fundamentals of positron emission tomography

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The methods is based on: (1) Radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. (orig.)

  12. [Fundamentals of positron emission tomography].

    Ostertag, H

    1989-07-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The method is based on: (1) radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. PMID:2667029

  13. NMF on positron emission tomography

    Bödvarsson, Bjarni; Hansen, Lars Kai; Svarer, Claus;

    2007-01-01

    In positron emission tomography, kinetic modelling of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling in the arm or as shown in (Liptrot, M, et al., 2004) by non-invasive K-means clustering....... We propose another method to estimate time-activity curves (TAC) extracted directly from dynamic positron emission tomography (PET) scans by non-negative matrix factorization (NMF). Since the scaling of the basis curves is lost in the NMF the estimated TAC is scaled by a vector alpha which is...

  14. Instrumentation in positron emission tomography

    Positron emission tomography (PET) is a three-dimensional medical imaging technique that noninvasively measures the concentration of radiopharmaceuticals in the body that are labeled with positron emitters. With the proper compounds, PET can be used to measure metabolism, blood flow, or other physiological values in vivo. The technique is based on the physics of positron annihilation and detection and the mathematical formulations developed for x-ray computed tomography. Modern PET systems can provide three-dimensional images of the brain, the heart, and other internal organs with resolutions on the order of 4 to 6 mm. With the selectivity provided by a choice of injected compounds, PET has the power to provide unique diagnostic information that is not available with any other imaging modality. This is the first five reports on the nature and uses of PET that have been prepared for the American Medical Association's Council on Scientific Affairs by an authoritative panel

  15. Positron emission tomography and migraine

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT2 serotonin receptors can be studied in migraine patients with PET

  16. Positron emission tomography wrist detector

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  17. Positron emission tomography basic sciences

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  18. Scintillators for positron emission tomography

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  19. Positron emission tomography in epilepsy

    Positron emission tomography (PET) was performed with the 18F-fluoro-deoxy-glucose method on 29 patients with epilepsy (generalized epilepsy, 4; partial epilepsy, 24; undetermined type, 1). The subjects were restricted to patients with epilepsy without focal abnormality on X-CT. All the patients with generalized epilepsy showed a normal pattern on PET. Fourteen out of the 24 patients with partial epilepsy and the 1 with epilepsy of undermined type showed focal hypometabolism on PET. The hypometabolic zone was localized in areas including the temporal cortex in 11 patients, frontal in 2 and thalamus in 1. The location of hypometabolic zone and that of interictal paroxysmal activity on EEG were well correlated in most patients. The patients with poorly-controlled seizure showed a higher incidence of PET abnormality (12 out of 13) than those with well-controlled seizures (2 out of 11). The incidence of abnormality on PET and MRI and the location of both abnormality were not necessarily coincident. These results indicated that the PET examination in epilepsy provides valuable information about the location of epileptic focus, and that the findings on PET in patients with partial epilepsy may be one of the good indicators about the intractability of partial epilepsy, and that PET and MRI provide complementary information in the diagnosis of epilepsy. (author)

  20. Cyclotron, positrons and PET [positron emission tomography]. An overview

    PET (positron emission tomography) is a powerful new scientific tool which is capable of revealing biochemical transformations while they are occurring in the brain and other organs in the living human body. The application of PET to problems in biology and medicine is dominated by the short half-life of the isotopes used to prepare the radiotracers. The most commonly used positron emitting isotopes are carbon-11, fluorine-18, nitrogen-13, and oxygen-15 which have half-lives of 20.4, 110, 10 and 2 minutes, respectively. Their incorporation into radiotracers having diverse chemical structures and biochemical specificities has allowed the study of blood flow, sugar metabolism, oxygen metabolism, neurotransmission, enzyme activity and binding sites for therapeutic drugs and substances of abuse. PET research is most commonly carried out at a Cyclotron-PET Center (cyclotron, positron emission tomography, chemistry laboratory) where the short-lived isotopes can be produced and used efficiently. The number of Cyclotron-PET Centers has grown from 4 in 1976 to several dozen in 1988 and the number is expected to double in the next five years attesting to the vitality of the field and the current and anticipated contributions to research in biology and medicine

  1. Ionization and positron emission in giant quasiatoms

    Electron excitation processes in superheavy quasiatoms are treated within a relativistic framework. Theoretical results on K-hole production rates as well as delta-electron and positron spectra are compared with experimental data. It is demonstrated that the study of heavy ion collisions with nuclear time delay promises a signature for the spontaneous positron formation in overcritical systems. Corresponding experimental results are confronted with our theoretical hypothesis. Recent speculations on the origin of the observed peak structures in positron spectra are critically reviewed. Atomic excitations are also employed to obtain information on the course of a nuclear reaction. Using a semiclassical picture we calculate the emission of delta-electrons and positrons in deep-inelastic nuclear reactions. Furthermore some consequences of conversion processes in giant systems are investigated. (orig.)

  2. Positron emission tomography imaging of gene expression

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  3. Advanced instrumentation for Positron Emission Tomography

    This paper summarizes the physical processes and medical science goals that underly modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost. 71 refs., 3 figs., 3 tabs

  4. Advanced Instrumentation for Positron Emission Tomography [PET

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  5. Positron emission tomography of the lung

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  6. Incidental colorectal polyps in positron emission tomography

    Fluorodeoxy glucose positron emission tomography/computed tomography (FDG PET/CT) is increasingly being used for diagnosing various malignancies and surveillance of cancer recurrence, staging and screening in high-risk individuals. Due to its high sensitivity in picking up small dysplastic lesions, incidental lesions are detected frequently. We present two patients who underwent PET CT as part of cancer screening and were incidentally detected with adenomatous colonic polyps. Colonoscopy and biopsy confirmed the diagnosis

  7. Positron emission tomography (PET) for cholangiocarcinoma

    Breitenstein, S; Apestegui, C.; Clavien, P.-A.

    2008-01-01

    The combination of positron emission tomography (PET) with computed tomography (PET-CT) provides simultaneous metabolic and anatomic information on tumors in the same imaging session. Sensitivity of PET/PET-CT is higher for intrahepatic (>90%) than for extrahepatic cholangiocarcinoma (CCA) (about 60%). The detection rate of distant metastasis is 100%. PET, and particularly PET-CT, improves the results and impacts on the oncological management in CCA compared with other imaging modalities. The...

  8. Positron Emission Tomography: Its 65 years

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  9. Positron emission tomography of FDG in schizophrenia

    The use of the Donner dynamic positron emission tomograph to study fluorodeoxyglucose labelled 18F uptake in the brain of six patients with schizophrenia is reported. The glucose metabolic rate and the local cerebral metabolic rate were calculated. The dynamic brain uptake data and the blood input function were used to calculate rate constants by an iterative least squares fitting program for all regions of interest chosen in the brain. Although the number of patients was small, differences in k3 were statistically significant in several brain regions compared with normal controls

  10. Perspectives for positron emission tomography with RPCs

    In this study, we address the feasibility and main properties of a positron emission tomograph (PET) based on RPCs. The concept, making use of the converter-plate principle, takes advantage of the intrinsic layered structure of RPCs and its simple and economic construction. The extremely good time and position resolutions of RPCs also allow the TOF-PET imaging technique to be considered. Monte-Carlo simulations, supported by experimental data, are presented and the main advantages and drawbacks for applications of potential interest are discussed

  11. Positron Emission Tomography Imaging of Pancreatic Cancer

    Saravanan Kokila Krishnamoorthy

    2014-03-01

    Full Text Available Positron emission tomography (PET using 18F-fluorodeoxyglucose (FDG is increasingly used for the staging of solidmalignancies, including lung and esophagus. However, controversy still exists in relation to the application of PET inpancreatic cancer. The authors review seven studies (Abstracts #183, #189, #190, #254, #357, #375, #378 presented at the2014 ASCO Gastrointestinal Cancers Symposium and discuss on the role of PET in this disease. As the limitations of theResponse Evaluation Criteria In Solid Tumors (RECIST continue to become evident, FDG-PET may identify changes in themetabolic activity within pancreatic adenocarcinoma, and can provide both diagnostic and prognostic information.

  12. Positron emission tomography tracers for imaging angiogenesis

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or αvβ3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging αvβ3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. (orig.)

  13. [Basic principles of 18F-fluorodeoxyglucose positron emission tomography].

    Standke, R

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. PMID:12506765

  14. 77 FR 8262 - Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    2012-02-14

    ... Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice... entitled ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The draft... Applications for Positron Emission Tomography (PET) drugs.'' The draft guidance summarizes the IND process...

  15. Pulmonary studies using positron emission tomography

    The detailed investigation of regional differences in lung function at a local level began when suitable γ-ray emitting isotopes and focused external radiation detectors (especially the Anger γ-camera) became available. A major recent advance has been the development of positron emission tomography (PET), which provides a powerful combination of highly accurate tomographic reconstruction of radioisotope concentration with a potentially unlimited list of biological compounds to be labelled with the positron emitting isotopes of oxygen, carbon and fluorine. Early studies using PET focused on the inhalation of 11CO (or C15O) and 19Ne gases and the intravenous injection of 13N in saline and H215O for the measurement of relatively simple aspects of regional lung function, such as tissue, blood and gas volumes, blood flow, ventilation and ventilation/perfusion (V'A/Q'). More recent work has been directed towards the more challenging areas of regional endothelial permeability, carbohydrate utilization, enzyme and receptor binding assays, and in vivo pharmacokinetics. The short physical half-lives of the isotopes (17 s to 2 h) and the noninvasive nature of PET allows serial measurements to be made on patients (within the constraints of permitted radiation doses) to assess the effect of physiological and therapeutic interventions. (au) 80 refs

  16. Positron emission tomography: radioisotope and radiopharmaceutical production

    A Centre for Positron Emission Tomography (PET) has been operational within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre (A and RMC) in Melbourne for seven years. PET is a non-invasive imaging technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic facility consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities, radiopharmacy and a whole body PET scanner. A strong radiolabelling development program, including the production of 15O-oxygen, 15O-carbon monoxide, 15O-carbon dioxide, 15O-water, 13N-ammonia, 18F-FDG, 18F-FMISO, 11C-SCH23390 and 11C-flumazenil has been pursued to support an ambitious clinical and research program in neurology, oncology, cardiology and psychiatry. Copyright (1999) Australasian Physical and Engineering Sciences in Medicine and the College of Biomedical Engineers

  17. Positron emission tomography of the heart

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease

  18. Positron emission tomography in urological cancer

    In staging cancer of the urinary bladder, the kidneys and the prostate and of testicular cancer there is a need for detecting tumor involvement of the lymph nodes to avoid surgical exploration. Positron emission tomography (PET) using fluorodeoxyglucose (FDG) can detect tumorous lymph nodes (sensitivity: 70%, specificity: 85%) which is helpful for several patients. In carcinoma of the prostate, other radiotracers than FDG (e.g. C-11-choline) might be more sensitive to detect tumorous lymph nodes. Up to now no diagnostical benefit of PET in germ cell tumors could be demonstrated in the published small series. In principle FDG-PET is useful in diagnosis of recurrence. In germ cell cancer FDG-PET seems to identify effectively persistent vital tumor tissue after chemotherapy. A multicenter study was initiated to demonstrate the potential of FDG-PET in a sufficient number of patients with germ cell tumor. (orig.)

  19. Compact conscious animal positron emission tomography scanner

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  20. Positron emission tomography and basal ganglia functions

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  1. Positron emission tomography of the heart

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  2. Motion correction in thoracic positron emission tomography

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  3. Recent developments in positron emission tomography (PET) instrumentation

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs

  4. Simultaneous emission and transmission scanning in positron emission tomography

    Examination by PET (positron emission tomography) scanning, following the dosage of 2-deoxy-18F fluoro-D-glucose (FDG), is positively utilized for the diagnosis of cancers, rather than for the purpose of studies. This is because the examination by FDG-PET (PET scanning following the dosage of FDG) ensures higher efficiency in discrimination of cancers, than conventional CT and PET. The method of whole body scanning by PET scanning following the dosage of FDG is effectively utilized not only for discrimination cancers, but also for determining the degree of malignancy of tumors and evaluating the methods of treatment of cancers. In conventional methods for examining the degree of malignancy of tumors and evaluating the methods of cancer treatment, it is necessary to correct for the gamma-ray attenuation, which requires a longer time for examination, increasing the physical and psychological pains of the patients. We have installed the simultaneous emission and transmission scanning capability into the HEADTOME-V of the Shimadzu SET-2000W Series positron emission tomographic scanning instruments, to establish an instrument that permits FDG-PET whole body scanning in actual clinical fields, with minimized physical and psychological pains of patients concerned, yet ensuring an outstandingly high examination efficiency. This report also presents some data obtained by this newly developed instrument and those obtained in practical applications. (author)

  5. Simulation of the annihilation emission of galactic positrons

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  6. Resistive plate chambers in positron emission tomography

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  7. Utility of positron emission tomography in schwannomatosis.

    Lieber, Bryan; Han, ByoungJun; Allen, Jeffrey; Fatterpekar, Girish; Agarwal, Nitin; Kazemi, Noojan; Zagzag, David

    2016-08-01

    Schwannomatosis is characterized by multiple non-intradermal schwannomas with patients often presenting with a painful mass in their extremities. In this syndrome malignant transformation of schwannomas is rare in spite of their large size at presentation. Non-invasive measures of assessing the biological behavior of plexiform neurofibromas in neurofibromatosis type 1 such as positron emission tomography (PET), CT scanning and MRI are well characterized but little information has been published on the use of PET imaging in schwannomatosis. We report a unique clinical presentation portraying the use of PET imaging in schwannomatosis. A 27-year-old woman presented with multiple, rapidly growing, large and painful schwannomas confirmed to be related to a constitutional mutation in the SMARCB1 complex. Whole body PET/MRI revealed numerous PET-avid tumors suggestive of malignant peripheral nerve sheath tumors. Surgery was performed on multiple tumors and none of them had histologic evidence of malignant transformation. Overall, PET imaging may not be a reliable predictor of malignant transformation in schwannomatosis, tempering enthusiasm for surgical interventions for tumors not producing significant clinical signs or symptoms. PMID:26960263

  8. Physiologic signal detection in positron emission tomography

    Positron emission tomography enables the noninvasive quantification in vivo of three-dimensional radionuclide distributions throughout the human body. Estimation of neurotransmitter and receptor function is performed through the application of tracer kinetic models and non-linear multiple regression parameter estimation methods. These quantitative estimates are often limited by the interaction between imaging characteristics of the PET scanner and the three-dimensional radionuclide distribution within the organ of interest. In order to assess the potential of PET to detect subtle changes in the function of the central nervous system, a three-dimensional PET simulation procedure based upon a digital brain phantom and tomograph detector response functions has been performed. Radiopharmaceutical kinetics for individual structures of the brain phantom (cortex, white matter, basal ganglia, etc.) have been assigned based upon in vitro autoradiography of human postmortem tissue and animal biodistribution studies. The recovery of the PET signals which originate from anatomic structures of interest has been evaluated for studies of the benzodiazepine, muscarinic, opiate, and GABA systems of the human brain. Typical results and the limitations of signal detection in PET neurotransmitter and receptor studies are discussed

  9. Amorphous silicon detectors in positron emission tomography

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε2τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  10. Beyond FDG positron emission tomography imaging

    At present, positron emission tomography/computed tomography (PET/CT) is one of the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although ((18)F) fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a 'specific' radiotracer for imaging malignant disease. Highly 'tumor-specific' PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. C-11 Methionine PET has been used to better define the radiotherapy field both for CNS tumors and head and neck (H and N) tumors to localize the most metabolic area inside a brain mass to guide the biopsy or in early evaluation of radiotherapy effect on H and N cancer. Flurodihydroxyphenylalanine (FDOPA) is an aromatic amino acid labelled with 18F. Besides it has also been introduced into oncological practice, in particular for malignant tumors of neural crest origin

  11. Amorphous silicon detectors in positron emission tomography

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  12. Patient radiation protection in positron emission tomography

    Patient radiation protection in Positron Emission Tomography (PET) is closely related to the correct execution of studies: proper scanner performance, and optimization of both image quality and patient dose. We describe the quality control tests considered as essential: scanner stability, spatial resolution, sensitivity and tomographic uniformity. Knowledge of the dose received by the critical organ and the effective dose for each radiopharmaceutical allows the establishment of strategies for dose optimization. Although a great variety of PET tracers exist, we review the dose produced by F-FDG, the most widely used tracer, and those used in our PET Center O-Water, N-Ammonia, C-Methionine, C-Choline, F-Choline, F-Dopa, and F-FHBG. Reduction of administered activity to the patient is the direct way to reduce the dose. Thus, PET acquisition in the 3D mode, with higher sensitivity, is a determining factor. In order to reduce the dose to different organs, efforts should be directed to the critical organs, mainly the urinary bladder wall. Finally, correct patient preparation improves, PET image quality, due to an optimum tracer uptake, which optimizes the dose to different organs. (Author) 25 refs

  13. Myocardial energy metabolism by positron emission tomography

    Positron emission tomography (PET) permits quantitative measurement of myocardial blood flow and metabolism in vivo in the cardiovascular areas. F-18 fluorodeoxyglucose (FDG) and C-11 palmitate have been used for energy metabolism in the cardiac PET. In fasting condition, beta-oxydation of fatty acids is the major energy source in the normal myocardium, whereas glucose metabolism is enhanced in the ischemic myocardium. No metabolic substrate is used in the necrotic myocardium. Thus, quantitative measurement of substrate utilization enables differentiation of ischemic from normal or infarcted myocardium and precise assessment of tissue abnormalities in vivo. FDG is administrated in fasting condition in our institute in order to delineate ischemic myocardium as a hot spot with suppression of the FDG uptake in the normal myocardium. However, when compared to the postprandial condition, FDG uptake may be enhanced even in the infarcted tissue, and thus, may possibly overestimate the tissue viability. A certain quantification of FDG uptake may be warranted for an accurate evaluation of FDG uptake. We have been measured FDG uptake index as a fraction of injected dose (% dose/100g tissue). This index correlated well with myocardial metabolic rate of glucose by Phelps method in the fasting condition. Dynamic PET study after C-11 palmitate injection has been used for estimate of fatty acid utilization. The first component of the washout from the myocardium is considered as rate of beta-oxydation. However, the washout of this tracer seems to be strikingly different between the fasting and postprandial conditions. (J.P.N.)

  14. Positron Emission Mammography with Multiple Angle Acquisition

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FDG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three- dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned

  15. Shielding design for positron emission tomography facility

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  16. Positron emission tomography/computed tomography.

    Townsend, David W

    2008-05-01

    Accurate anatomical localization of functional abnormalities obtained with the use of positron emission tomography (PET) is known to be problematic. Although tracers such as (18)F-fluorodeoxyglucose ((18)F-FDG) visualize certain normal anatomical structures, the spatial resolution is generally inadequate for accurate anatomic localization of pathology. Combining PET with a high-resolution anatomical imaging modality such as computed tomography (CT) can resolve the localization issue as long as the images from the two modalities are accurately coregistered. However, software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. Acquiring both CT and PET images in the same scanner obviates the need for software registration and routinely provides accurately aligned images of anatomy and function in a single scan. A CT scanner positioned in line with a PET scanner and with a common patient couch and operating console has provided a practical solution to anatomical and functional image registration. Axial translation of the couch between the 2 modalities enables both CT and PET data to be acquired during a single imaging session. In addition, the CT images can be used to generate essentially noiseless attenuation correction factors for the PET emission data. By minimizing patient movement between the CT and PET scans and accounting for the axial separation of the two modalities, accurately registered anatomical and functional images can be obtained. Since the introduction of the first PET/CT prototype more than 6 years ago, numerous patients with cancer have been scanned on commercial PET/CT devices worldwide. The commercial designs feature multidetector spiral CT and high-performance PET components. Experience has demonstrated an increased level of accuracy and confidence in the

  17. The introduction of positron emission tomography in Australia

    Positron Emission Tomography (PET) is a relatively new medical imaging modality based on images of the distribution of positron emitting radioisotopes in the human body. A PET scan can non-invasively provide quantitative information on the in vivo function performance of an organ, part thereof, or a bodily process. Two PET centres currently being established in Melbourne and in Sydney are introduced. 18 refs., 1 tab., 5 figs

  18. Human cerebral circulation. Positron emission tomography studies

    We reviewed the literature on human cerebral circulation and oxygen metabolism, as measured by positron emission tomography (PET), with respect to normal values and of regulation of cerebral circulation. A multicenter study in Japan showed that between-center variations in cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) values were not considerably larger than the corresponding within-center variations. Overall mean±SD values in cerebral cortical regions of normal human subjects were as follows: CBF=44.4±6.5 ml/100 ml/min; CBV=3.8±0.7 ml/100 ml; OEF=0.44±0.06; CMRO2=3.3±0.5 ml/100 ml/min (11 PET centers, 70 subjects). Intrinsic regulation of cerebral circulation involves several factors. Autoregulation maintains CBF in response to changes in cerebral perfusion pressure; chemical factors such as PaCO2 affect cerebral vascular tone and alter CBF; changes in neural activity cause changes in cerebral energy metabolism and CBF; neurogenic control of CBF occurs by sympathetic innervation. Regional differences in vascular response to changes in PaCO2 have been reported, indicating regional differences in cerebral vascular tone. Relations between CBF and CBV during changes in PaCO2 and during changes in neural activity were in good agreement with Poiseuille's law. The mechanisms of vascular response to neural activation and deactivation were independent on those of responses to PaCO2 changes. CBV in a brain region is the sum of three components: arterial, capillary and venous blood volumes. It has been reported that the arterial blood volume fraction is approximately 30% in humans and that changes in human CBV during changes in PaCO2 are caused by changes in arterial blood volume without changes in venous blood volume. These findings should be considered in future studies of the pathophysiology of cerebrovascular diseases. (author) 136 refs

  19. Application of positron emission tomography in neurophysiology

    PET measures the distribution of positron-emitting radiotracers in the organs of living subjects, by means of the angular correlation of the gamma-rays originating from positron annihilation. The UBC/TRIUMF Program focusses the technique on measurements of brain physiology, and radio-labelled tracers have been developed for measurements of regional cerebral glucose metabolism, regional cerebral blood flow, regional synthesis of dopamine neurotransmitter, and regional density and kinetics of dopamine receptor sites. Data have been obtained on normal physiology, and deranged physiology in Alzheimer's disease, Huntington's disease, Parkinson's disease, and astrocytoma brain tumors undergoing pion radiation treatment

  20. Perspectives for positron emission tomography with RPCs

    Full text: The basis of PET (Positron Emission Tomography) consists on the administration of a radioactive isotope attached to a tracer that permits to reveal its molecular pathways in a human body. A 3-D Complete-Body-Scan is desired in order to minimize the radiation dose to the patient and to increase the sensitivity of the axial field of view (FOV). A major candidate for gamma pair detection in 3-D Complete- Body-Scan are the RPCs (Resistive Plate Counters). They consist in a longitudinal microstrip grid 1.5 mm thick, spaced at 1 mm. The grid is placed between a large electric resistive glass anode and an aluminum cathode. The gap, around 300 m, is filled with a special gas and is polarized at around 6 kV. Every microstrip is equipped with high-speed preamplifier at both ends, allowing time of flight measurements. The RPC are solely tracking devices enjoying a large density of detection units. By construction they are able to provide an extremely large transverse resolution, the collecting leads being some 2.5 mm spaced. The longitudinal resolution is less sensitive, depending on the speed of the time of flight electronics. At this moment we estimate a 20 mm resolution. The RPCs present two main features: large longitudinal dimension and large transversal resolution which made them ideal for complete-body-scan devices. These peculiar features are the keys of a RPCs tomographic device. The evaluation of RPCs for 3-D Complete-Body-Scan followed two steps, the simulation of data acquisition and the image reconstruction. We choose the detecting base unit like a RPC, 2 meters long and 0.5 meters wide. According to previous assumptions this plate has a transverse resolution of 256 detection units and a longitudinal resolution of 100. (The transversal step is around 2 mm and the longitudinal step about 20 mm). Several base units are assembled to form different detecting structures. Two plates form an open detection structure like a sandwich. Four and six plates are

  1. Positron emission tomography in colorectal cancer;Tomografia por emissao de positron no cancer colorretal

    Gabure, Jose Luiz de Carvalho; Bacega, Marcelle Francine [Universidade Cidade de Sao Paulo (UNICID), Sao Paulo, SP (Brazil); Racy, Douglas Jorge; Lima, Rodrigo Vaz de; Rigo, Leticia, E-mail: letirigo3@hotmail.co [Med Imagem Diagnosticos por Imagem, Sao Paulo, SP (Brazil)

    2009-12-15

    After an introduction on the physical and biological basics of positron emission tomography, this paper reviews the current status of PET imaging using the glucose analogue FDG in colorectal cancer. The use of PET-FDG is reviewed for detection, initial staging, therapy monitoring and staging of disease relapse. (author)

  2. Physical and technical basis of positron emission tomography (PET)

    Positron emission tomography utilizes the annihilation of positrons, generating pairs of gamma quanta which are emitted in opposing directions. 'Electronic collimation' is performed by coincident detection of both quanta. Thus, there is no need for mechanical collimators and no limiting connection between sensitivity and spatial resolution. Transversal tomograms are reconstructed from the projection data by means of highly sophisticated data processing. The half life of the most positron emitters used in medical applications is short and of the order of some minutes. Therefore, many positron emitters have to be produced on-side by means of a cyclotron. PET is superior to SPECT with respect to physical and technical aspects, but the high costs of PET limit its wide-spread use up to now. (orig.)

  3. Improved sampling in positron emission tomography

    The biomedical research performed with the Donner 280-Crystal Positron Tomograph requires data acquisition times of five seconds or less and the ability to gate the data acquisition for periods during the cardiac cycle when the heart is nearly at rest. These requirements pose severe restrictions on the amount of detector movement and have motivated the search for a scheme that improves lateral sampling with a minimum number of detector positions. A new approach, developed by our group, involves only two positions of the detector assembly and increases lateral sampling uniformly by a factor of two. This new approach is referred as clamshell sampling. To test clamshell sampling we performed Monte Carlo computer simulations of data acquisition with the new geometry. Hot spots of varying sizes and separation comprise the model used in a geometry scaled to test imaging the human head with the Donner 280-Crystal Positron Tomograph

  4. Liquid Xenon Detectors for Positron Emission Tomography

    Miceli, A.; Amaudruz, P.; Benard, F.; Bryman, D. A.; Kurchaninov, L.; Martin, J. P.; Muennich, A.; Retiere, F.; Ruth, T J.; Sossi, V.; A.J. Stoessl

    2011-01-01

    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated per...

  5. Liquid Xenon Detectors for Positron Emission Tomography

    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of < 10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution < 1 mm (FWHM).

  6. Positron-emission tomography and cerebral metabolism

    In addition to the fact that radio-isotopes allow iso-atom labelling, they are short-lived and consequently may be injected into humans without serious problems of radiation damage. They disintegrate by emitting positrons which can be detected by external counting by virtue of the two 511 keV gamma rays emitted at the same time in opposite directions. These properties are used for tomographic detection and permit quantitative measurements of the radio-activity method will be described. The first concerns the transport of amino-acids into the brain, the second, the metabolism of psychoactive drugs. (orig./VJ)

  7. Liquid Xenon Detectors for Positron Emission Tomography

    Miceli, A; Benard, F; Bryman, D A; Kurchaninov, L; Martin, J P; Muennich, A; Retiere, F; Ruth, T J; Sossi, V; Stoessl, A J

    2011-01-01

    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of <10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution <1 mm (FWHM).

  8. Physiopathology of ischemic strokes: the input of positron emission tomography

    The tomography by positrons emissions has brought essential physiological and pathological knowledge relative to cerebral vascular accidents in the acute phase, because it is possible to measure the cerebral blood flow, the oxygen extraction rate and the local oxygen consumption. (N.C.)

  9. Advance of molecular imaging with positron emission tomography

    Molecular imaging with positron emission tomography (PET) is an important field of molecular imaging. This article summarizes the fundamental of PET molecular imaging technique and its application in protein function, gene expression and gene therapy, receptor imaging, and blood-flow infusion and metabolism imaging. (authors)

  10. Amyloid-β positron emission tomography imaging probes

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt;

    2013-01-01

    number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate on their...

  11. Skeletal muscle perfusion measured by positron emission tomography during exercise

    Ament, W; Lubbers, J; Rakhorst, G; Vaalburg, W; Verkerke, GJ; Paans, AMJ; Willemsen, ATM

    1998-01-01

    The applicability of (H2O)-O-15-positron emission tomographic (PET) imaging for the assessment of skeletal muscle perfusion during exercise was investigated in five healthy subjects performing intermittent isometric contractions on a calf ergometer. The workload of the left calf muscles was kept con

  12. MR imaging and positron emission tomography of cortical heterotopia

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using 18F-2-deoxyglucose

  13. Positron emission tomography/computerized tomography in lung cancer

    Sahiner, Ilgin; Vural, Gulin Ucmak

    2014-01-01

    Positron emission tomography (PET) using 2-(18F)-flouro-2-deoxy-D-glucose (FDG) has emerged as a useful tool in the clinical work-up of lung cancer. This review article provides an overview of applications of PET in diagnosis, staging, treatment response evaluation, radiotherapy planning, recurrence assessment and prognostication of lung cancer.

  14. 3D fast reconstruction in positron emission tomography

    The issue of long reconstruction times in positron emission tomography (PET) has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstructions in a few minutes per frame : on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementation of computationally less intensive algorithms

  15. Positron emission particle tracking-Application and labelling techniques

    David J.Parker; Xianfeng Fan

    2008-01-01

    The positron emission particle tracking (PEPT) technique has been widely used in science and engineering to obtain detailed information on the motion and flow fields of fluids or granular materials in multiphase systems, for example, fluids in rock cracks, chemical reactors and food processors; dynamic behaviour of granular materials in chemical reactors, granulators, mixers, dryers, rotating kilns and ball mills. The information obtained by the PEPT technique can be used to optimise the design, operational conditions for a wide range of industrial process systems, and to evaluate modelling work. The technique is based on tracking radioactively labelled particles (up to three particles) by detecting the pairs of back-to-back 511 ke V -γ-rays arising from annihilation of emitted positrons. It therefore involves a positron camera, location algorithms for calculating the tracer location and speed, and tracer labelling techniques. This paper will review the particle tracking technique from tracking algorithm, tracer labelling to their application.

  16. Positron emission tomography: a new paradigm in cancer management

    The National Cancer Institute (NCI) is currently building a positron emission tomography facility that will house a cyclotron and a PET fusion scanner. lt should be operational as of december 2007, being a cancer dedicated national referral center, the NCI should provide both positron-emitting radiopharmaceuticals and medical services to institutions and patients nationwide. PET technology provides metabolic information that has been documented to be useful in patient care. The properties of positron decay allow accurate imaging of the in vivo distribution of positron-emitting radiopharmaceuticals. a wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. The major clinical PET applications are in cancer patients using fluorine-18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. in this article, the instrumentation aspects of PET are described and most of the clinical applications in oncology are described

  17. Introducing Positron Emission Tomography (PET) in Clinical Practice

    Janevik-Ivanovska, Emilija; Avmedovski, Fatmir; Yamamoto, Mayumi; Bhonsle, Uday

    2009-01-01

    Positron emission tomography (PET) is a major diagnostic imaging technique predominantly used in determining the presence and severity of cancers, neurological conditions, and cardiovascular diseases. It is currently the most effective way to check for cancer recurrences and it offers significant advantages over other forms of imaging such as computed tomography (CT) or magnetic resonance imaging (MRI) scans in detecting disease in many patients. In the USA, an estimated 1 129 900 clinical PE...

  18. A novel clustering approach to positron emission particle tracking

    Wiggins, Cody; Santos, Roque; Ruggles, Arthur

    2016-03-01

    A novel approach to positron emission particle tracking is presented based on determining regions of space with high density of line of response crossing via clustering. The method is shown to be able to accurately track multiple particles in systems where the number of particles is unknown and in which particles can enter and leave the field of view of the scanning system. This method is explored in various environments and its parametric dependence is studied.

  19. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2010-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based r...

  20. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA)

    SakalihasanN, Natzi; Van Damme, Hendrik; Gomez, P.; RIGO, PIERRE; Lapiere, C. M.; Nusgens, Betty; Limet, Raymond

    2002-01-01

    Background: aneurysmal disease is associated with all inflammatory Cell infiltrate and enzymatic degradation of the vessel wall. Aim of the study: to detect increased metabolic activity in abdominal aortic aneurysms (AAA) by means of positron emission tomography (PET-imaging). Study design: twenty-six patients with AAA underwent PET-imaging Results: in tell patients, PET-imaging revealed increased, fluoro-deoxy-glucose (18-FDG) uptake at the level of the aneurysm. Patients with positive PET-i...

  1. A Case of Corticobasal Degeneration Studied with Positron Emission Tomography

    Nagasawa, H; T. Imamura; Nomura, H; Itoh, M; Ido, T.

    1993-01-01

    We measured cerebral blood flow, oxygen metabolism, glucose utilization, and dopamine metabolism in the brain of a patient with corticobasal degeneration using positron emission tomography (PET). The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Brain imagings of glucose and dopamine metabolism can demonstrate greater abnormalities in the cerebral cortex and in the striatum contralateral to the more affected side than those o...

  2. Nonhuman Primate Positron Emission Tomography Neuroimaging in Drug Abuse Research

    Howell, Leonard Lee; Murnane, Kevin Sean

    2011-01-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also charac...

  3. ENVISION, developing Positron Emission Tomography for particle therapy

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Positron Emission Tomography (PET) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  4. Positron emission holography: A new method of creating positron camera images

    By simulating the presence of a Fresnel zone plate in a camera designed for positron emission tomography (PET), a hologram can be synthesized which permits full three-dimensional images of the positron distribution in the original object to be rapidly constructed. The method requires no additional apparatus to a standard PET system, which is also operated in the usual way. The trajectory of each photon pair, detected in coincidence, is weighted as if it had passed through a zone plate optimised to suit the problem, before recording its intercept with a (single) plane to produce the hologram. The final image is created by calculating the diffraction pattern of monochromatic light passed through this hologram; it may also be created optically. The method is described in detail and its attractions discussed. Results are presented of some simple objects obtained from holograms produced from PET camera data, in comparison with images created by conventional back-projection processing of the same data. (orig.)

  5. Positron emission tomography and cerebral metabolism

    The association of new methods of labelling with short lived radioisotopes and of visualisation 'in vivo' of these labelled molecules by emission tomography, provide the possibility of studying brain metabolism at different levels. Two examples will illustrate the possibilities of this methodology. Cerebral metabolism of methionine-11C in phenylketonutic patients: The cerebral uptake of methionine was measured in 24 PKU children aged 1 to 40 months on a low protein diet. Ten of them were examined twice at intervals of several months. Stopping the diet for one week leads to an increase in blood phenylalanine and to a significant important decrease in brain uptake of labelled methionine. Futhermore, for children under treatment having a low phenylalanine blood concentration, brain uptake of methionine decreases with age between 1 and 40 months. These results suggest that the treatment of this disease should be started as soon as possible after birth. Cerebral metabolism of psychoactive drugs: The study of the brain distribution and kinetics of psychoactive drugs may help in understanding their mode of action. Chlorpromazine- 11C was administered i.v. to schyzophrenic patients not previously treated with neuroleptics. In all patients the brain uptake of the drug was high and rapid, and was localized mainly in the grey matter, probably in proportion to the blood flow. Non-specific binding of this drug to brain proteins prevented visualization of specific binding to dopaminergic or αnor-adrenergic receptors. Specific receptor binding of benzodiazepines was however visualized in the brain of baboons after injection of 11C-flunitrazepam (specific activity = 600 Ci/μmole) and subsequent displacement of this radioactive ligand by a pharmacological dose of Lorazepam

  6. Clinical cardiac positron emission tomography: State of the art

    Cardiac positron emission tomography (PET) has evolved rapidly from a relatively esoteric research tool into clinical applications providing unique, quantitative information on myocardial perfusion, metabolism, and cell membrane function and having a potentially significant impact on cardiovascular medicine. Although there are many different positron radionuclides for imaging diverse myocardial behavior, three radionuclides have reached accepted clinical utility. Cardiac PET using nitrogen-13-ammonia, rubidium-82, and fluoro-18-deoxyglucose has proved accurate and definitive in multiple university and private-practice sites for diagnosing and assessing severity and location of coronary artery disease in symptomatic or asymptomatic patients, for identifying injured but viable myocardium potentially salvageable by revascularization, and for ruling out clinically significant coronary artery stenosis with a high specificity in patients who might otherwise undergo coronary arteriography to document the absence of significant disease. 89 references

  7. Investigation of granular impact using positron emission particle tracking

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  8. Methods and clinical applications of positron emission tomography in endocrinology

    Positron emission tomography (PET) allows to detect in coincidence photons issued from annihilation between positrons and electrons nearby situated. Tomographic detection (plane by plane) and tomographic reconstruction will lead to the quantitation of radioactive distribution per voxel, in the organ of interest. Recent tomographs can acquire simultaneously several transaxial slices, with a high sensitivity and a spatial resolution of 3-5 mm. Commonly used positron emitters have a short half-life: 2, 10, 20 and 110 min for 150, 13N, 11C and 18F, respectively. The use of these isotopes requires on line production of radionuclides and synthesis of selected molecules. In endocrinology, PET allows among others to study noninvasively the receptor density of hormonodependent neoplasms such as breast, uterus, prostate tumors and prolactinomas. These last tumors represent a particular entity because of several combined characteristics: high turnover rate of amino acids, high density of dopaminergic receptors and response to bromocriptine (analogue of dopamine inhibiting the secretion of prolactine) in relation to the level of receptors. Because PET permits to evaluate the density of dopaminergic receptors and the metabolism of amino acids, theoretical response of the prolactinoma to bromocriptin can be predicted, the achieved therapeutic efficacy can be estimated and the long-term follow up of tumor growth can be assessed. This example illustrates the clinical value of PET in endocrinology

  9. Design of a volume-imaging positron emission tomograph

    Progress is reported in several areas of design of a positron volume imaging tomograph. As a means of increasing the volume imaged and the detector packing fraction, a lens system of detector light coupling is considered. A prototype layered scintillator detector demonstrates improved spatial resolution due to a unique Compton rejection capability.The conceptual design of a new mechanism for measuring scattered radiation during emission scans has been tested by Monte Carlo simulation. The problem of how to use effectively the resulting sampled scattered radiation projections is presented and discussed

  10. Positron Emission Tomography Imaging of Regional Pulmonary Perfusion and Ventilation

    Musch, Guido; Venegas, Jose G.

    2005-01-01

    Positron emission tomography (PET) imaging is a noninvasive, quantitative method to assess pulmonary perfusion and ventilation in vivo. The core of this article focuses on the use of [13N]nitrogen (13N2) and PET to assess regional gas exchange. Regional perfusion and shunt can be measured with the 13N2–saline bolus infusion technique. A bolus of 13N2, dissolved in saline solution, is injected intravenously at the start of a brief apnea, while the tracer kinetics in the lung is measured by a s...

  11. The investigation of cerebrovascular disorders with positron emission tomography

    Positron emission tomography (PET) provides a non-invasive, regional, in vivo method to measure physiological parameters including cerebral blood flow, glucose and oxygen metabolism, blood volume, and pH. Measurement of these parameters not only enables a more complete understanding of the pathophysiology of acute cerebral ischemia and infarction, but provides objective criteria with which to better manage patients. This chapter will first discuss PET methodology and tracer techniques used in the investigation of patients with cerebrovascular disease and then describe the progress that has already resulted from applying these methods. 73 refs.; 7 figs

  12. Positron emission tomography: diagnostic imaging on a molecular level

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed

  13. Kinetic modeling in pre-clinical positron emission tomography

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  14. Development of radioisotopically labeled compounds for clinical positron emission tomography

    It is its quantitative imaging capacity with high spatial resolution that makes positron emission tomography a unique tool for the development of quantitative tracer kinetic studies for the measurement of physiological processes in man. Research success in this area will depend on the ingenuity of biomedical scientists in prioritizing the development of tracers. Choices must be made based on the importance of different physiological measurements, the capacity to synthesize an appropriate radioisotopically labeled compound for this measurement and the ability to determine an adequate kinetic model for its interpretation. Examples are given of these steps in the development of PET tracers at the NIMH. 17 refs.; 1 table

  15. Imaging of brain activity by positron emission tomography

    Brain function is associated with regional energy metabolism and blood flow increase. Such brain activity is visualized by using external scintigraphy. Positron emission tomography (PET) is the currently available most superior technique, allowing three-dimensional imaging of subtle blood flow. In this article, imaging methods and application of PET are discussed in terms of the following items: (1) measurement of cerebral glucose consumption, (2) PET in persons with visual impairment, (3) association between brain function and regional cerebral blood flow, (4) measurement of cerebral blood flow, (5) method for decreasing noise in PET imaging, (6) anatomic standardization of PET images, and (7) speech load and regional cerebral activity images. (N.K.)

  16. Positron emission tomography. Present status and Romanian perspectives

    Basic principles of the positron emission tomography (PET) are summarised. The main PET methods using short-lived radioisotopes (i.e.11 C, 13 N, 15 O, 18 F) are briefly reviewed. Three types of particle accelerators for radioisotopes production and medical uses (including radiotherapy), corresponding to the proton energy (Ep p p < 200 MeV) are presented. PET imaging equipment and procedures are discussed. Main radiopharmaceuticals based on beta decay for PET studies and their role in medicine is also described. Finally, perspectives for a PET program in Romania (Cyclotron + Radiochemistry + Tomograph ) are discussed. (author)

  17. Use of positron emission tomography in colorectal cancer

    The value of PET (Positron Emission Tomography) in colorectal cancer is presented. PET is a novel technique that uses F-18-FDG (fluorodeoxiglucose) to assess glucose metabolism by whole body imaging. It has been demonstrated that malignant cells have both increase of glucose uptake and utilization. In colorectal cancer, PET is indicated for staging, assess recurrence, liver metastasis and treatment follow-up. PET is more sensitive and specific than CT (Computed Tomography) and is cost effective. In 30% of cases PET may change patient management, avoiding unnecessary procedures (au)

  18. Application of positron emission tomography in industrial research

    Positron Emission computed Tomography (PET) is a relatively new imaging technique, exploiting the 511 keV annihilation radiation characteristic of positron emitters. Although exclusively used till now in the field of nuclear medicine, the application of PET for the non-invasive, in-situ visualisation of processes of industrial interest is challenging, because PET can in principle be used to obtain quantitative, 2D/3D images of the flow and distribution of fluids inside process units, whose steel walls may be up to several centimeters thick. With the aid of a NeuroECAT positron tomographer the PET technique has been utilised to image important (model) processes in the petrochemical industry, using physical labelling of the phase to be imaged. First, the displacement of a brine/surfactant phase, labelled with 66Ga-EDTA, in a piece of reservoir rock was imaged. Secondly, the dehydration of water-in-oil emulsions was monitored dynamically by labelling the water phase with 68Ga-EDTA. The second study in particular demonstrates that in the presence of noisy data the image reconstruction method utilised strongly influences the results obtained. With the advent of PET in nuclear medicine the availability of short-lived positron emitting nuclides like 11C (t1/2 = 20 min), 13N (t1/2 = 10 min) and 150 (t1/2 = 2 min) has increased considerably, allowing the investigation of industrially important reactions by chemical labelling. Utilising the NeuroECAT in a special mode, the catalytic oxidation of carbon monoxide could be imaged in a model tubular reactor by using 11C-labelled CO, providing information about the kinetics of the individual reaction steps and interactions and about the degree of occupation of catalytically active sites. (author)

  19. Positron emission tomography: physics, instrumentation, and image analysis.

    Porenta, G

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources, PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and user-friendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. PMID:7941595

  20. Positron emission tomography: Physics, instrumentation, and image analysis

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  1. Basic principles of 18F-fluoro-deoxyglucose positron emission tomography

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. (author)

  2. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  3. A controlled study of positron-emission-tomography and positron-emission-tomography/computed tomography in differential diagnosis of solitary pulmonary nodules-report of 60 cases

    DING Qi-yong; HUA Yan-qing; ZHANG Guo-zhen; ZHAO Jun; GUAN Yi-hui; GE Xiao-jun; MAO Ding-biao; ZUO Chuan-tao

    2005-01-01

    @@ The differential diagnosis of solitary pulmonary nodules (SPNs) remains a challenge. It is acknowledged that combining positron-emission tomography (PET) and computed tomography (CT) offers the most reliable noninvasive method for the diagnosis of SPNs.

  4. 4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography

    The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography

  5. 77 FR 21783 - Guidance on Media Fills for Validation of Aseptic Preparations for Positron Emission Tomography...

    2012-04-11

    ... the same title was announced in the Federal Register on September 30, 2011 (76 FR 60847), and Docket... Preparations for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS... guidance entitled ``Media Fills for Validation of Aseptic Preparations for Positron Emission...

  6. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    2012-12-04

    ... announced in the Federal Register on February 14, 2012 (77 FR 8262), and Docket No. FDA-2012-D- 0081 was... Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance is intended...

  7. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  8. Positron Emission Tomography (PET) and breast cancer in clinical practice

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005

  9. Clinical impact of 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of neurological diseases

    In this review it will be discussed in which neurological disorders positron emission tomography can yield important diagnostic information. Because positron emission tomography is an expensive method indications have to be cleary defined. One important question concerns the differentiation of tumor recurrence and scar due to radiation therapy or an operation. The grading of brain tumors is another application. In HIV patients fluorodeoxyglucose positron emission tomography can separate lymphoma and toxoplasmosis. In the evaluation of dementia positron emission tomography can help to clarify the differential diagnosis. Another important area is the presurgical evaluation of epilepsy patients and patients with cerebrovascular disease in whom a surgical revascularization procedure is planned. In extrapyramidal disorders, positron emission tomography can often help to establish the final diagnosis. (author)

  10. Functional images analysis and visualization in positron emission tomography

    Essentially new information on the metabolism and pathophysiology is available since the recent past using techniques combining the use of positron emitters labelling radiopharmaceuticals, models correctly describing the process studied and system for the in vivo external detection of transverse section of the body. This method is currently called Positron Emission Tomography (PET). At the Service Hospitalier Frederic Joliot of the C.E.A. Departement of Biology, a system was developed for data analysis and colour-coded representation as a tool for functional interpretation. Indeed, the tomographic images, i.e. the radioactive concentration in the transverse section is often but the first step of the study, the actual goal being the regional distribution of a metabolic or physiologic parameter, itself derived from the former distribution by assumption of a model. Such a quantification assumes an accurate analysis of the factors involved in the obtention of the functional image, and the development of the software actually adapted to the clinician's needs. Special attention was given to the representation of graphs and images as a man-machine interface, a tool for model fitting and output of final results in pseudo-color scales adapted to the studied parameter

  11. Studies of the brain cannabinoid system using positron emission tomography

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  12. Timing performance comparison of digital methods in positron emission tomography

    Accurate timing information is essential in positron emission tomography (PET). Recent improvements in high speed electronics made digital methods more attractive to find alternative solutions to create a time mark for an event. Two new digital methods (mean PMT pulse model, MPPM, and median filtered zero crossing method, MFZCM) were introduced in this work and compared to traditional methods such as digital leading edge (LE) and digital constant fraction discrimination (CFD). In addition, the performances of all four digital methods were compared to analog based LE and CFD. The time resolution values for MPPM and MFZCM were measured below 300 ps at 1.6 GS/s and above that was similar to the analog based coincidence timing results. In addition, the two digital methods were insensitive to the changes in threshold setting that might give some improvement in system dead time.

  13. Magnet development for the BRF positron emission tomography accelerator

    A collaboration involving the Biomedical Research Foundation, Science Applications International Corporation, Fermi National Accelerator Laboratory, and the University of Washington is developing an accelerator for producing isotopes for Positron Emission Tomography (PET) scans. The Medium Energy Beam Transport (MEBT) section of this accelerator takes a small beam from a first RFQ acceleration device and matches it into a small 3D-acceptance at a second RFQ section. The beam transport system was designed to prevent beam losses due to emittance growth. The system includes two bending dipoles and seven quadrupoles of three different types. This report contains a brief description of the MEBT magnets and their electric, magnetic and thermal properties. The magnet measurements show that each of the magnets meets the system requirements

  14. Knowledge-based automated radiopharmaceutical manufacturing for Positron Emission Tomography

    This article describes the application of basic knowledge engineering principles to the design of automated synthesis equipment for radiopharmaceuticals used in Positron Emission Tomography (PET). Before discussing knowledge programming, an overview of the development of automated radiopharmaceutical synthesis systems for PET will be presented. Since knowledge systems will rely on information obtained from machine transducers, a discussion of the uses of sensory feedback in today's automated systems follows. Next, the operation of these automated systems is contrasted to radiotracer production carried out by chemists, and the rationale for and basic concepts of knowledge-based programming are explained. Finally, a prototype knowledge-based system supporting automated radiopharmaceutical manufacturing of 18FDG at Brookhaven National Laboratory (BNL) is described using 1stClass, a commercially available PC-based expert system shell

  15. Non-oncological positron emission tomography (PET): brain imaging

    Positron emission tomography (PET) allows evaluation of the central nervous system function. Imaging of regional cerebral blood flow and metabolism, and of several neurotransmission systems may be obtained using PET. PET quantification is accurate and has good test-retest reliability. For research purposes, PET has been used to study brain physiology, to explore neurological and psychiatric diseases pathophysiology and for the new drugs research and development. F.D.G. is the only PET radioligand with clinical application. Following criteria of evidence-based medicine, the clinical indications of F.D.G.-PET are: evaluation of treated gliomas, pre surgical study of partial refractory epilepsy and diagnosis of Alzheimer's disease when it is impossible to differentiate clinically from fronto-temporal dementia

  16. Radiopharmaceuticals for positron emission tomography investigations of Alzheimer's disease

    Alzheimer's disease (AD) is a common degenerative neurological disease that is an increasing medical, economical, and social problem. There is evidence that a long ''asymptomatic'' phase of the disease exists where functional changes in the brain are present, but structural imaging for instance with magnetic resonance imaging remains normal. Positron emission tomography (PET) is one of the tools by which it is possible to explore changes in cerebral blood flow and metabolism and the functioning of different neurotransmitter systems. More recently, investigation of protein aggregations such as amyloid deposits or neurofibrillary tangles containing tau-protein has become possible. The purpose of this paper is to review the current knowledge on various 18F- and 11C-labelled PET tracers that could be used to study the pathophysiology of AD, to be used in the early or differential diagnosis or to be used in development of treatment and in monitoring of treatment effects. (orig.)

  17. Development of the LBNL positron emission mammography camera

    We present the construction status of the LBNL Positron Emission Mammography (PEM) camera, which utilizes a PET detector module with depth of interaction measurement consisting of 64 LSO crystals (3x3x30 mm3) coupled on one end to a single photomultiplier tube (PMT) and on the opposite end to a 64 pixel array of silicon photodiodes (PDs). The PMT provides an accurate timing pulse, the PDs identify the crystal of interaction, the sum provides a total energy signal, and the PD/(PD+PMT) ratio determines the depth of interaction. We have completed construction of all 42 PEM detector modules. All data acquisition electronics have been completed, fully tested and loaded onto the gantry. We have demonstrated that all functions of the custom IC work using the production rigid-flex boards and data acquisition system. Preliminary detector module characterization and coincidence data have been taken using the production system, including initial images

  18. Investigation of language lateralization mechanism by Positron Emission Tomography

    As language lateralization in the brain left hemisphere is one of the most well known but less understood characteristics of the human brain, this research thesis reports the use of brain functional imaging to address some specific aspects of this lateralization. In a first part, the author reports the study of mechanisms of recovery from aphasia after a left hemisphere lesion within a population of aphasic right-handers. Based on a contrast between patients with a persistent aphasia despite usual language therapies, and patients with a significant recovery after a melodic and rhythmic therapy (TMR), a PET-based (positron emission tomography) activation study has been developed, based on the opposition between usual language stimuli and stimuli accentuated by TMR. In the second part, the author explored more systematically on sane patients the influence of some physical characteristics of auditory stimulation on the induced functional asymmetry

  19. Positron Emission Tomography: state of the art and future developments

    Pizzichemi, M.

    2016-08-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  20. FDG positron emission computed tomography in a study of aphasia

    Positron emission computed tomography (PECT) using 18F-2-fluoro-2-deoxy-D-glucose (FDG) was used to investigate the correlations between clinical status, anatomy (as described by CT), and metabolism in five patients with stable aphasia resulting from ischemic cerebral infarction. Local cerebral metabolic activity was diminished in an area larger than the area of infarction demonstrated by CT. In one patient, FDG PECT revealed a metabolic lesion that probably caused the aphasic syndrome and was not apparent by CT. The data suggest that reliance on CT in delineating the extent of the brain lesion in aphasia or other neuropsychological defects can be misleading; FDG PECT may provide important additional information. Two patients with similar metabolic lesions had very different clinical syndromes, showing that even when currently available methods are combined, major gaps remain in clinicoanatomical correlations in aphasia

  1. Methodological review on functional neuroimaging using positron emission tomography

    Park, Hae Jeong [Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Advance of neuroimaging technique has greatly influenced recent brain research field. Among various neuroimaging modalities, positron emission tomography has played a key role in molecular neuroimaging though functional MRI has taken over its role in the cognitive neuroscience. As the analysis technique for PET data is more sophisticated, the complexity of the method is more increasing. Despite the wide usage of the neuroimaging techniques, the assumption and limitation of procedures have not often been dealt with for the clinician and researchers, which might be critical for reliability and interpretation of the results. In the current paper, steps of voxel-based statistical analysis of PET including preprocessing, intensity normalization, spatial normalization, and partial volume correction will be revisited in terms of the principles and limitations. Additionally, new image analysis techniques such as surface-based PET analysis, correlational analysis and multimodal imaging by combining PET and DTI, PET and TMS or EEG will also be discussed.

  2. Studies of the brain cannabinoid system using positron emission tomography

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available

  3. Positron emission tomography with gamma camera in coincidence mode

    Positron emission tomography using F-18 FDG has been estbalished in clinical diagnostics with first indications especially in oncology. To install a conventional PET tomography (dedicated PET) is financially costly and restricted to PET examinations only. Increasing demand for PET diagnostics on one hand and restricted financial resources in the health system on the other hand led industry to develop SPECT cameras to be operated in coincidence mode (camera PET) in order to offer nuclear medicine physicians cost-effective devices for PET diagnostic. At the same time camera PET is inferior to conventional PET regarding sensitivity and detection-efficiency for 511 keV photons. Does camera-PET offer a reliable alternative to conventional PET? The first larger comparative studies are now available, so a first apraisal about the technical clinical performance of camera-PET can be done. (orig.)

  4. Differential diagnosis of depression: relevance of positron emission tomography

    The proper differential diagnosis of depression is important. A large body of research supports the division of depressive illness into bipolar and unipolar subtypes with respect to demographics, genetics, treatment response, and neurochemical mechanisms. Optimal treatment is different for unipolar and bipolar depressions. Treating a patient with bipolar depression as one would a unipolar patient may precipitate a serious manic episode or possibly even permanent rapid cycling disorder. The clinical distinction between these disorders, while sometimes difficult, can often be achieved through an increased diagnostic suspicion concerning a personal or family history of mania. Positron emission tomography and the FDG method, which allow in vivo study of the glucose metabolic rates for discrete cerebral structures, provide new evidence that bipolar and unipolar depression are two different disorders

  5. Guideline for performance evaluation of positron emission tomographs

    This supplement presents guideline for performance evaluation of positron emission tomographies (PET). The purpose of this guideline is to define measurement methods for evaluating both the performance of PET equipment and the accuracy of various data corrections in the clinical setting. The guideline has 8 items. The first four items, consisting of spatial dose distributions, scattering fraction, sensitivity, and counting loss and accidental coincidence counting, deals with the basic performance of PET equipment. The next three items, including image uniformity, accuracy of absorption and scattering correction, and characteristics of high counting rate (accuracy of counting loss corrections and S/N ratio), are designed to provide the quantitative evaluation of images reconstructed by various data corrections for absorption, scattering, counting loss, and others. The last item is partial volume effect (recovery coefficient), which is important for the quantitative analysis of PET images, with the aim of both the measurement method of partial volume effect and the definition of phantoms required. (N.K.)

  6. Axial positrons emission tomography: from mouse to human brain imaging

    Positrons emission tomography is a nuclear imaging technics using nuclear decays. It is used both in clinical and preclinical studies. The later requires the use of small animals such as the mouse. The objective is to obtain the best signal with the best spatial resolution. Yet, a weight ratio between humans and mice indicates the need of a sub-millimeter resolution. A conventional scanner is based on detection modules surrounding the object to image and arranged perpendicularly. This implies a strong relationship between efficiency and spatial resolution. This work focuses on the axial geometry in which detection modules are arranged parallel to the object. This limits the relationship between the figures of merit, leading to both high spatial resolution and efficiency. The simulations of prototypes showed great perspectives in term of sub-millimeter resolution with efficiencies of 15 or 40% according to the scanner's axial extension. These results indicate great perspectives for both clinical and preclinical imaging. (author)

  7. Positron Emission Tomography in the Differential Diagnosis of Parkinsonism

    Juha O Rinne

    2009-10-01

    Full Text Available Positron emission tomography (PET studies on presynaptic dopaminergic function can reveal hypofunction in early Parkinson’s disease (PD which may help in the early diagnosis especially in patients with mild symptoms. This hypofunction can be detected with fluorodopa (reflecting mainly aromatic amino acid decarboxylase activity of nigrostriatal terminals or dopamine transporter ligands. These studies can also help to distinguish PD from essential tremor. However, investigations of presynaptic dopaminergic function are not useful in the differential diagnosis of parkinsonian syndromes. PET ligands, such as fluorodeoxyglucose (reflecting glucose metabolism and dopamine receptor ligands, reflecting striatal neuronal function are better in this respect. Cardiac sympathetic function studies represent a new and interesting approach to improve differential diagnosis of parkinsonian syndromes but more studies are needed in larger patient populations with longer follow-up to evaluate the usefulness of these investigations. Multitracer approach combining ligands reflecting different aspects of dopaminergic neurotransmission and other physiological function will increase differential diagnostic accuracy.

  8. Methodological review on functional neuroimaging using positron emission tomography

    Advance of neuroimaging technique has greatly influenced recent brain research field. Among various neuroimaging modalities, positron emission tomography has played a key role in molecular neuroimaging though functional MRI has taken over its role in the cognitive neuroscience. As the analysis technique for PET data is more sophisticated, the complexity of the method is more increasing. Despite the wide usage of the neuroimaging techniques, the assumption and limitation of procedures have not often been dealt with for the clinician and researchers, which might be critical for reliability and interpretation of the results. In the current paper, steps of voxel-based statistical analysis of PET including preprocessing, intensity normalization, spatial normalization, and partial volume correction will be revisited in terms of the principles and limitations. Additionally, new image analysis techniques such as surface-based PET analysis, correlational analysis and multimodal imaging by combining PET and DTI, PET and TMS or EEG will also be discussed

  9. Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET) Imaging Using GEANT4 Toolkit

    Mohsen Mashayekhi; Ali Asghar Mowlavi

    2015-01-01

    Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET). In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEANT4 toolkit was used to simulate the transport and interactions of positrons. Calculations ...

  10. Scintillation crystals for positron emission tomography having a non reflecting band

    This invention relates generally to positron emission tomography, a sub-field of the class of medical imaging techniques using ionizing radiation and image reconstruction techniques; and more particularly to devices which use an array of scintillation detectors to detect the annihilation radiation from positron disintegration and use this information to reconstruct an image of the distribution of positron emitting isotope within a body section. 6 figs

  11. Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles.

    Chen, Feng; Goel, Shreya; Hernandez, Reinier; Graves, Stephen A; Shi, Sixiang; Nickles, Robert J; Cai, Weibo

    2016-05-01

    Optical imaging has been the primary imaging modality for nearly all of the renal clearable nanoparticles since 2007. Due to the tissue depth penetration limitation, providing accurate organ kinetics non-invasively has long been a huge challenge. Although a more quantitative imaging technique has been developed by labeling nanoparticles with single-photon emission computed tomography (SPECT) isotopes, the low temporal resolution of SPECT still limits its potential for visualizing the rapid dynamic process of renal clearable nanoparticles in vivo. The dynamic positron emission tomography (PET) imaging of renal clearable gold (Au) nanoparticles by labeling them with copper-64 ((64) Cu) to form (64) Cu-NOTA-Au-GSH is reported. Systematic nanoparticle synthesis and characterizations are performed to demonstrate the efficient renal clearance of as-prepared nanoparticles. A rapid renal clearance of (64) Cu-NOTA-Au-GSH is observed (>75%ID at 24 h post-injection) with its elimination half-life calculated to be less than 6 min, over 130 times shorter than previously reported similar nanoparticles. Dynamic PET imaging not only addresses the current challenges in accurately and non-invasively acquiring the organ kinetics, but also potentially provides a highly useful tool for studying renal clearance mechanism of other ultra-small nanoparticles, as well as the diagnosis of kidney diseases in the near future. PMID:27062146

  12. Spatial registration of echocardiographic and positron emission tomographic heart studies

    A method has been developed to match corresponding heart regions from functional echocardiographic (Echo) and metabolic fluorine-18-fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography (PET) studies in individual patients. Echo and PET images are spatially correlated by determining homologous anatomical landmarks (the two papillary muscles and the inferior junction of the right ventricle), identifiable in images obtained by both acquisition modalities. Echo-PET image registration is first performed in the plane identified by the three landmarks, using a rigid rotate-translate scale model. The registration parameters are then used to transform the whole PET volume. This allows a consistent Echo-PET regional analysis, according to a segmental subdivision of the heart. The technique was tested on patients. The overlay of Echo and PET registered images proved the reliability of realignment of the three markers and a good spatial correlation of myocardial walls. This approach to image registration could be applied to other acquisition modalities (such as magnetic resonance imaging and single-photon emission tomography), provided that the three anatomical landmarks are visualized. (orig.)

  13. Correlated electron-positron emission in heavy-ion collisions

    A group of narrow electron-positron sum-energy lines with similar mean energies around 610, 750 and 810 keV has been observed with the EPOS spectrometer in both collision systems 238U + 232Th and 238U + 181Ta studied so far at the UNILAC heavy ion accelerator of GSI, Darmstadt. The intensities of the three lines vary with the beam-energy, the variation being most clearly observed for the 748-keV line in 238U + 181Ta. On the basis of our present understanding Internal Pair Conversion in a collision product at rest or in flight as well as coincident lepton emission during the quasiatomic phase of the collision can be excluded as the origin. The very narrow widths of the sum-energy lines as compared to the widths of the associated broad structure in the difference spectrum of the lepton energies seem to argue for a mutual cancellation of kinematical shifts. Such correlation is expected for two leptons emitted back-to-back in a two-body decay of objects being at rest in the heavy-ion c.m. frame. This speculative hypothesis is confronted with the actual dependence of the lines on the individual lepton energy and the lepton emission angle, as well as on the opening angle of the pair. In fact, the back-to-back decay could not be proved to be a general feature of these lines. (orig.)

  14. Development of radiotracers for imaging NR2B subtype NMDA receptors with positron emission tomography

    The aim of this thesis was to develop new radioactive tracers for imaging NR2B subtype NMDA receptors with positron emission tomography. Several compounds including 4-(4-fluoro-benzyl)piperidine and presenting interesting in vivo biological properties were the object of a labelling with a positrons emitter atom (11C or 18F)

  15. Positron emission tomography scans on kanji and kana

    Sakurai, Yasuhisa [Mitsui Memorial Hospital, Tokyo (Japan)

    2002-12-01

    We reanalyzed our positron emission tomography (PET) study on reading of Japanese kanji (morphogram) words, kana (phonogram) words and kana nonwords, using Statistical Parametric Mapping (SPM). The basal occipital and occipito-temporal areas were activated in common, among which activity was most pronounced in the fusiform/inferior temporal gyri with kanji and in the inferior occipital gyrus with kana. The results were consistent with the clinical observations that damage to the posterior inferior temporal cortex including the fusiform/inferior temporal gyri causes alexia with agraphia for kanji, whereas damage to the posterior occipital area including the inferior occipital gyrus causes pure alexia for kana. Bases on the present results and the lesion studies, a dual-route hypothesis that modifies Iwata's model of reading about the Japanese language was proposed. That is, the middle occipital gyrus, deep perisylvian temporoparietal cortex and posterior temporal gyrus constitute a dorsal route for reading and process phonology for words, whereas the inferior occipital, fusiform and posterior inferior temporal gyri constitute a ventral route for reading and process orthography and lexico-semantics for words. The ventral route may gain dominance in reading, according as a word is repeatedly presented. (author)

  16. Cerebral perfusion reserve indexes determined by fluoromethane positron emission scanning

    An index of cerebral perfusion reserve (RES%), defined as the percent change of regional cerebral blood flow over baseline per mm Hg of end-tidal CO2 tension, was determined for each middle cerebral artery (MCA) territory in patients with unilateral carotid distribution transient ischemic attacks or minor cerebrovascular accidents and was compared with that of age-matched, neurologically normal volunteers. Vasodilator responses to induced hypercapnia were tested during inhalation of 5% CO2 in 95% O2 while regional cerebral blood flow was measured by fluoromethane inhalation positron emission tomography. Mean RES% for 24 normal MCA territories was 5.2 +/- 0.8%. Mean RES% for 15 patient nonischemic MCA territories was 3.8 +/- 1.3% and for 15 ischemic MCA territories was 2.8 +/- 1.9% (both p less than 0.001). Individual RES% values and symmetry ratios between ischemic and nonischemic regions were also determined and compared with angiographic data. Areas of diminished, asymmetric, or paradoxical (two patients) CO2 reactivity appear to correspond to areas of compensatory vasodilation. We found this technique to be a safe and reproducible method for defining and recording localized areas of cerebral tissue at apparent risk for hemodynamically related damage

  17. Positron emission tomography in degenerative disorders of the dopaminergic system

    21 patients who had Parkinson's disease (PD), PD plus dementia of Alzheimer type (PDAT) or progressive supranuclear palsy (PSP), were studied with positron emission tomography (PET) using (18F)-2-fluoro-2-deoxy-D-glucose (FDG). In one patient with strictly unilateral PD side differences in striatal dopa uptake were studied with 6-(18F)fluoro-L-dopa (F-dopa). In patients with PD PET with FDG did not show any significant change in regional cerebral metabolic rates for glucose (rCMR(Glu)). In PDAT glucose metabolism was generally reduced, the most severe decrease was found in parietal cortex. The metabolic pattern was similar to that typically found in patients with Alzheimer's disease (AD). In the patient with strictly unilateral PD rCMR(Glu) was normal, F-dopa PET, however, revealed a distinct reduction of dopa uptake in the contralateral putamen. In PSP glucose metabolism was significantly decreased in subcortical regions (caudatum, putamen and brainstem) and in frontal cortex. Thus PET demonstrated a clear difference of metabolic pattern between PDAT and PSP. (authors)

  18. Recent innovations in the detection systems of Positron Emission Tomography

    Since the recognition of the clinical value of Positron Emission Tomography (PET) for the diagnosis and staging of several cancers, the PET systems have evolved to systems associating PET and Computed Tomography (CT). The main constraint for clinical imaging is to reduce the acquisition duration. As a consequence, PET detectors are faster and emit more light than the BGO crystal used previously. These detectors allow an improvement of the count rate performance of the PET systems, reducing the scattered and the random events while increasing the true events at high activity concentration. Among the new crystals, some allow measuring the time of flight of the annihilation photons. This measurement further improves the performance of the systems. The spatial resolution of clinical PET systems is still equal to 5 mm at best. High spatial resolution PET systems dedicated to small animal imaging have been developed. These systems use similar crystal materials as the clinical systems. However, in order to permit spatial resolution close to 1 mm, the crystal elements have much smaller transverse dimensions than that of clinical systems. The detectors are compact using position sensitive photomultipliers or photodiodes. In order to preserve the uniformity of the spatial resolution over the transverse field of view of the tomography, solutions allowing the measurement of the depth of interaction of the photons in the crystal have been designed. New compact detectors based on semi conductors are currently investigated. (author)

  19. Biological imaging in radiation therapy: role of positron emission tomography

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required. (topical review)

  20. Predicting count loss in modern positron-emission tomography systems

    The purpose of the data-acquisition electronics for any positron-emission tomography (PET) system is to detect and digitally encode annihilation events as they occur. Individual elements of the electronics are placed in parallel or cascade to organize the event information for subsequent processing. Each element is parameterized with a count loss L which is the fraction of events lost due to dead time (encoding delays, etc.) or data overflow in queueing circuits. This is an important parameter because the sensitivity of the tomograph in proportional to (1-L). The authors have categorized processing elements according to five device types. For each type, they find an expression for count loss. Some mathematical models that have appeared in the literature are applicable. These are extended here to include other devices, such as bank encoders and time-to-digital converters (TDC), with coincidence time resolving circuitry. Because some PET systems will have devices that do not fall into these categories, the authors show the derivations of the loss expressions so that one could easily extend their models with parallel derivations for other device types. In addition to PET systems, one should also be able to apply their results to other types of instruments which count random events. Although they concentrate mainly on count loss, they also briefly discuss the evaluation of other metrics of counting efficiency, which are the fraction of miscoded events and the fraction of ''random coincidence'' events

  1. European health telematics networks for positron emission tomography

    Kontaxakis, George [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain)]. E-mail: g.kontaxakis@upm.es; Pozo, Miguel Angel [Centro PET Complutense, Madrid 28040 (Spain); Universidad Complutense de Madrid, Instituto Pluridisciplinar, Madrid 28040 (Spain); Ohl, Roland [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Visvikis, Dimitris [U650 INSERM, Lab. du Traitement de L' Information Medicale, University of Brest Occidentale, CHU Morvan, Brest 29609 (France); Sachpazidis, Ilias [Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany); Ortega, Fernando [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Guerra, Pedro [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Cheze-Le Rest, Catherine [Dept. Medicine Nucleaire, CHU Morvan, Brest 29609 (France); Selby, Peter [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Pan, Leyun [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Diaz, Javier [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Dimitrakopoulou-Strauss, Antonia [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Santos, Andres [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Strauss, Ludwig [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Sakas, Georgios [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany)

    2006-12-20

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  2. Positron emission tomography scans on kanji and kana

    We reanalyzed our positron emission tomography (PET) study on reading of Japanese kanji (morphogram) words, kana (phonogram) words and kana nonwords, using Statistical Parametric Mapping (SPM). The basal occipital and occipito-temporal areas were activated in common, among which activity was most pronounced in the fusiform/inferior temporal gyri with kanji and in the inferior occipital gyrus with kana. The results were consistent with the clinical observations that damage to the posterior inferior temporal cortex including the fusiform/inferior temporal gyri causes alexia with agraphia for kanji, whereas damage to the posterior occipital area including the inferior occipital gyrus causes pure alexia for kana. Bases on the present results and the lesion studies, a dual-route hypothesis that modifies Iwata's model of reading about the Japanese language was proposed. That is, the middle occipital gyrus, deep perisylvian temporoparietal cortex and posterior temporal gyrus constitute a dorsal route for reading and process phonology for words, whereas the inferior occipital, fusiform and posterior inferior temporal gyri constitute a ventral route for reading and process orthography and lexico-semantics for words. The ventral route may gain dominance in reading, according as a word is repeatedly presented. (author)

  3. Characterization of nontransmural myocardial infarction by positron-emission tomography

    The present study was performed to determine whether positron emission tomography (PET) performed after i.v. 11C-palmitate permits detection and characterization of nontransmural myocardial infarction. PET was performed after the i.v. injection of 11C-palmitate in 10 normal subjects, 24 patients with initial nontransmural myocardial infarction (defined electrocardiographically), and 22 patients with transmural infarction. Depressed accumulation of 11C-palmitate was detected with sagittal, coronal and transverse reconstructions, and quantified based on 14 contiguous transaxial reconstructions. Defects with homogeneously intense depression of accumulation of tracer were detected in all 22 patients with transmural infarction (100%). Abnormalities of the distribution of 11C-palmitate in the myocardium were detected in 23 patients with nontransmural infarction (96%). Thallium scintigrams were abnormal in only 11 of 18 patients with nontransmural infarction (61%). Tomographically estimated infarct size was greater among patients with transmural infarction (50.4 +/- 7.8 PET-g-Eq/m2 [+/- SEM SEM]) compared with those with nontransmural infarction (19 +/- 4 PET-g-Eq, p less than 0.01). Residual accumulation of 11C-palmitate within regions of infarction was more intensely depressed among patients with transmural compared to nontransmural infarction (33 +/- 1 vs 39 +/- 1% maximal myocardial radioactivity, p less than 0.01). Thus, PET and metabolic imaging with 11C-palmitate is a sensitive means of detecting, quantifying and characterizing nontransmural and transmural myocardial infarction

  4. Utilisation of spatial and temporal correlations in positron emission tomography

    In this thesis we propose, implement, and evaluate algorithms improving spatial resolution in reconstructed images and reducing data noise in positron emission tomography imaging. These algorithms have been developed for a high resolution tomograph (HRRT) and applied to brain imaging, but can be used for other tomographs or studies. We first developed an iterative reconstruction algorithm including a stationary and isotropic model of resolution in image space, experimentally measured. We evaluated the impact of such a model of resolution in Monte-Carlo simulations, physical phantom experiments and in two clinical studies by comparing our algorithm with a reference reconstruction algorithm. This study suggests that biases due to partial volume effects are reduced, in particular in the clinical studies. Better spatial and temporal correlations are also found at the voxel level. However, other methods should be developed to further reduce data noise. We then proposed a maximum a posteriori de-noising algorithm that can be used for dynamic data to de-noise temporally raw data (sino-grams) or reconstructed images. The a priori modeled the coefficients in a wavelet basis of all the signals without noise (in an image or sinogram). We compared this technique with a reference de-noising method on replicated simulations. This illustrates the potential benefits of our approach of sinogram de-noising. (author)

  5. Positron Emission Tomography with Three-Dimensional Reconstruction

    The development of two different low-cost scanners for positron emission tomography (PET) based on 3D acquisition are presented. The first scanner consists of two rotating scintillation cameras, and produces quantitative images, which have shown to be clinically useful. The second one is a system with two opposed sets of detectors, based on the limited angle tomography principle, dedicated for mammographic studies. The development of low-cost PET scanners can increase the clinical impact of PET, which is an expensive modality, only available at a few centres world-wide and mainly used as a research tool. A 3D reconstruction method was developed that utilizes all the available data. The size of the data-sets is considerably reduced, using the single-slice rebinning approximation. The 3D reconstruction is divided into 1D axial deconvolution and 2D transaxial reconstruction, which makes it relatively fast. This method was developed for the rotating scanner, but was also implemented for multi-ring scanners with and without inter plane septa. An iterative 3D reconstruction method was developed for the limited angle scanner, based on the new concept of 'mobile pixels', which reduces the finite pixel errors and leads to an improved signal to noise ratio. 100 refs

  6. Characterization of time resolved photodetector systems for Positron Emission Tomography

    Powolny, François

    The main topic of this work is the study of detector systems composed of a scintillator, a photodetector and readout electronics, for Positron Emission Tomography (PET). In particular, the timing properties of such detector systems are studied. The first idea is to take advantage of the good timing properties of the NINO chip, which is a fast preamplifier-discriminator developed for the ALICE Time of flight detector at CERN. This chip uses a time over threshold technique that is to be applied for the first time in medical imaging applications. A unique feature of this technique is that it delivers both timing and energy information with a single digital pulse, the time stamp with the rising edge and the energy from the pulse width. This entails substantial simplification of the entire readout architecture of a tomograph. The scintillator chosen in the detector system is LSO. Crystals of 2x2x10mm3 were used. For the photodetector, APDs were first used, and were then replaced by SiPMs to make use of their highe...

  7. Silicon as an unconventional detector in positron emission tomography

    Clinthorne, Neal; Brzezinski, Karol; Chesi, Enrico; Cochran, Eric; Grkovski, Milan; Grošičar, Borut; Honscheid, Klaus; Huh, Sam; Kagan, Harris; Lacasta, Carlos; Linhart, Vladimir; Mikuž, Marko; Smith, D. Shane; Stankova, Vera; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2013-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ˜5 mm FWHM spatial resolution in human studies and ˜1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET "magnifying glass" configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration.

  8. The natural history of misery perfusion in positron emission tomography

    This report reviews the natural courses of misery perfusion in 5 patients with atherosclerotic cerebrovascular occlusion diseases. Cases 1 showed partial improvement and Case 2 showed deterioration of misery perfusion on positron emission tomography (PET). These 2 patients did not show any clinical changes during the follow-up periods. Case 3 showed remarkable improvement of misery perfusion during the 2-year follow-ups, but his neurological condition worsened. The EC-IC bypass improved both in PET and clinical symptoms. Case 4 had a stroke at the region of misery perfusion in PET. Case 5 had a lacunar infarction 2 years after the EC-IC bypass on the opposite side. PET taken one month before the stroke did not show any signs of hypoperfusion in the area of the lacunar infarction. Misery perfusion seems not to be a static but a dynamic condition that can develop into cerebral infarction by some hemodynamic stresses. Cerebral cortical or lobar infarction may occur in the region of severe misery perfusion. EC-IC bypass may prevent impending infarction of the cerebral cortex by improving the regional cerebral blood flow. However, EC-CI bypass will not prevent the lacunar infarction of the basal ganglia or internal capsule. (author)

  9. European health telematics networks for positron emission tomography

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site

  10. Clinical application of positron emission tomography imaging in urologic tumors

    Positron emission tomography (PET) is an advanced noninvasive molecular imaging modality that is being investigated for use in the differentiation, diagnosis, and guiding therapy ora variety of cancer types. FDG PET has the unique clinical value in the differentiation, diagnosis, and monitoring therapy of prostate, such as bladder, renal, and testicle cancer. However, high false-positive and false-negative findings are observed in the detection of these tumors with FDG PET. 11C-Choline (CH) and 11C-acetate (AC) can overcome the pitfall of FDG, and appear to be more successful than FGD in imaging prostate cancer and bladder cancer. The short half-life of 11C prevents the widespread use of CH and AC and 18F-fluorocholine (FCH) and 18F-fluoroacetate (FAC) seem to be potential tracers. Potential clinical value of the new PET tracers, such as 3'-deoxy-3'-18F-fluorothymidine (FLT), 18F-fluorodihydrotestosterone (FDHT), and 9-(4-18F-3-hydroxymethylbutyl)-guanine(18F-FHBG) in the detection of urologic tumors, can deserve further study. (authors)

  11. Diagnosis of intrahepatic cholangiocarcinoma with positron emission tomography

    Diagnosis of intrahepatic cholangiocarcinoma (IC) by positron emission tomography (PET) has been scarcely reported and this paper reviews authors' experience of PET diagnosis of IC with [18F]deoxy-glucose (FDG). Subjects are 20 cases with IC who received FDG-PET diagnosis for evaluating the disease progression and 16 cases with suspicious recurrent IC. PET was done with Advance NXi machine (GE Medical System) 60 min after intravenous 200-250 MBq of FDG. Compared were images by PET and CT. For the IC, diagnostic sensitivities by CT and PET were found to be 95-100% and for metastatic lymph nodes, the sensitivity, specificity and overall accuracy of PET were 38, 100 and 74%, respectively, whereas those of CT, 75, 73 and 74%. For recurrence, those of PET were 77, 67 and 75%. In conclusion, PET images have a compensatory role for CT images, especially for lymphatic metastasis with higher specificity and for recurrence with higher overall accuracy. (R.T.)

  12. Anaesthesia for positron emission tomography scanning of animal brains.

    Alstrup, Aage Kristian Olsen; Smith, Donald F

    2013-01-01

    Positron emission tomography (PET) provides a means of studying physiological and pharmacological processes as they occur in the living brain. Mice, rats, dogs, cats, pigs and non-human primates are often used in studies using PET. They are commonly anaesthetized with ketamine, propofol or isoflurane in order to prevent them from moving during the imaging procedure. The use of anaesthesia in PET studies suffers, however, from the drawback of possibly altering central neuromolecular mechanisms. As a result, PET findings obtained in anaesthetized animals may fail to correctly represent normal properties of the awake brain. Here, we review findings of PET studies carried out either in both awake and anaesthetized animals or in animals given at least two different anaesthetics. Such studies provide a means of estimating the extent to which anaesthesia affects the outcome of PET neuroimaging in animals. While no final conclusion can be drawn concerning the 'best' general anaesthetic for PET neuroimaging in laboratory animals, such studies provide findings that can enhance an understanding of neurobiological mechanisms in the living brain. PMID:23349451

  13. European health telematics networks for positron emission tomography

    Kontaxakis, George; Pozo, Miguel Angel; Ohl, Roland; Visvikis, Dimitris; Sachpazidis, Ilias; Ortega, Fernando; Guerra, Pedro; Cheze-Le Rest, Catherine; Selby, Peter; Pan, Leyun; Diaz, Javier; Dimitrakopoulou-Strauss, Antonia; Santos, Andres; Strauss, Ludwig; Sakas, Georgios

    2006-12-01

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  14. Measurement of regional cerebral blood flow by positron emission tomography

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  15. Fluorodeoxyglucose positron emission tomography in pancreatic cancer: an unsolved problem

    Kato, Takashi [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Fukatsu, Hiroshi [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ito, Kengo; Tadokoro, Masanori [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ota, Toyohiro [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ikeda, Mitsuru [Dept. of Medical Information and Medical Records, Nagoya Univ. School of Medicine (Japan); Isomura, Takayuki [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ito, Shigeki [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Nishino, Masanari [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan); Ishigaki, Takeo [Dept. of Radiology, Nagoya Univ. School of Medicine (Japan)

    1995-01-01

    The aim of this study was to examine the significance and problems of 2-[fluorine-18]-2-deoxy-d-glucose (FDG) positron emission tomography (PET) in diagnosing pancreatic cancer and mass-forming pancreatitis (MFP). PET, X-ray computed tomography (CT) and magnetic resonance (MR) imaging were performed in 15 patients with pancreatic cancer and nine patients with MFP. The areas of the PET scan were determined according to the markers drawn on the patients at CT or MR imaging. Regions of interests (ROIs) were placed by reference to the CT or MR images corresponding to the PET images. Tissue metabolism was evaluated by the differential absorption ratio (DAR) at 50 min after intravenous injection of FDG [DAR = tissue tracer concentration/(injected dose/body weight)]. The DAR value differed significantly in pancreatic cancer (mean{+-}SD, 4.64{+-}1.94) and MFP (mean{+-}SD, 2.84{+-}2.22) (P<0.05). In one false-negative case (mucinous adenocarcinoma), the tumour contained a small number of malignant cells. In one false-positive case, lymphocytes accumulated densely in the mass in the pancreatic head. Further studies are necessary to investigate the histopathological characteristics (especially the cellularity) and other factors affecting the FDG DAR on PET images. (orig.)

  16. Positron emission tomography in degenerative disorders of the dopaminergic system

    21 patients who had Parkinson's disease (PD), PD plus dementia of Alzheimer type (PDAT) or progressive supranuclear palsy (PSP), were studied with positron emission tomography (PET) using (18F)-2-fluoro-2-deoxy-D-glucose (FDG). In one patient with strictly unilateral PD side differences in striatal dopa uptake were studied with 6-(18F)fluoro-L-dopa (F-dopa). In patients with PD PET with FDG did not show any significant change in regional cerebral metabolic rates for glucose (rCMR(Glu)). In PDAT glucose metabolism was generally reduced, the most severe decrease was found in parietal cortex. The matebolic pattern was similar to that typically found in patients with Alzheimer's disease (AD). In the patients with strictly unilateral PD rCMR(Glu) was normal, F-dopa PET, however, revealed a distinct reduction of dopa uptake in the contralateral putamen. In PSP glucose metabolism was significantly decreased in subcortical regions (caudatum, putamen and brainstem) and in frontal cortex. Thus PET demonstrated a clear difference of metabolic pattern between PDAT and PSP

  17. Photon time-of-flight-assisted positron emission tomography

    In positron emission tomography (PET), the annihilation radiation is usually detected as a coincidence occurrence that localizes the position of the annihilation event to a straight line joining the detectors. The measure of the difference between the time of flight (TOF) of the annihilation photons between their inception and their detection permits the localization of the position of the annihilation event along the coincidence line. The incorporation of TOF information into the PET reconstruction process improves the signal-to-noise ratio in the image obtained. The utilization of scintillation detectors utilizing cesium fluoride scintillators, fast photomultiplier tubes, and fast timing circuits allows sub-nanosecond coincidence timing resolution needed for the effective use of TOF in PET. Mathematical considerations and pilot experiments show that with state-of-the-art electronic components and through the application of proper reconstruction algorithms, the combination of TOF and PET positional data improves severalfold the signal-to-noise ratio with respect to conventional PET image reconstruction at the cost of increasing the amount of data to be processed. The construction of a TOF-assisted PET device is within the capability of state-of-the-art technology

  18. Measurement of regional cerebral glucose utilization in man by positron emission tomography

    The various methods available for the study of regional cerebral glucose consumption in man by positron emission tomography are described and their applications, limitations and principal physiopathological results are presented

  19. Diagnostic value for extrahepatic metastases of hepatocellular carcinoma in positron emission tomography/computed tomography scan

    2012-01-01

    AIM: To evaluated the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) scan in diagnosis of hepatocellular carcinoma (HCC) and extrahepatic metastases.

  20. 76 FR 47593 - Guidance for Small Business Entities on Current Good Manufacturing Practice for Positron Emission...

    2011-08-05

    ... a guidance for small business entities entitled ``PET Drugs--Current Good Manufacturing Practice... entitled ``PET Drugs--Current Good Manufacturing Practice (CGMP); Small Entity Compliance Guide.'' This... Manufacturing Practice for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug...

  1. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET)

    Graebe, M; Pedersen, Sune Folke; Borgwardt, L;

    2008-01-01

    OBJECTIVES: Atherosclerosis is recognised as an inflammatory disease, and new diagnostic tools are warranted to evaluate plaque inflammatory activity and risk of cardiovascular events. We investigated [18]-fluorodeoxyglucose (FDG) uptake in vulnerable carotid plaques visualised by positron emission...

  2. Synthesis of the radiopharmaceuticals for positron emission tomography

    In this paper is shown a short overview of the biogenic positron radiopharmaceuticals production and a brief summary of some PET preparation synthesis. At the end the overview of some forward-looking positron radionuclides, which can be used for a preparation of the PET radiopharmaceuticals is said. A short review of diagnostic use of PET radiopharmaceuticals is presented (authors)

  3. Software development for modeling positrons emission tomograph scanners

    The Geant4 Application for Tomographic Emission (GATE) is an international platform recognized and used to develop Computational Model Exposure (CME) in the context of Nuclear Medicine, although currently there are dedicated modules for applications in Radiotherapy and Computed Tomography (CT). GATE uses Monte Carlo (MC) methods, and has a scripting language of its own. The writing of scripts for simulation of a PET scanner in GATE involves a number of interrelated steps, and the accuracy of the simulation is dependent on the correct setup of the geometries involved, since the physical processes depend on them, as well as the modeling of electronic detectors in module Digitizer, for example. The manual implementation of this setup can be a source of errors, especially for users without experience in the field of simulations or without any previous knowledge of a programming language, and also due to the the fact that the modeling process in GATE still remains bounded to LINUX / UNIX based systems, an environment only familiar to a few. This becomes an obstacle for beginners and prevents the use of GATE by a larger number of users interested in optimizing their experiments and/or clinical protocols through a more accessible, fast and friendly application. The objective of this work is therefore to develop a user-friendly software for the modeling of Positron Emission Tomography called GUIGATE (Graphical User Interface for GATE), with specific modules dedicated to quality control in PET scanners. The results exhibit the features available in this first version of GUIGATE, present in a set of windows that allow users to create their input files, perform and display in real time the model and analyze its output file in a single environment, allowing so intuitively access the entire architecture of the GATE simulation and to CERN's data analyzer, the ROOT. (author)

  4. Positron emission tomography, physical bases and comparaison with other techniques

    Positron emission tomography (PET) is a medical imaging technique that measures the three-dimensional distribution of molecules marked by a positron-emitting particle. PET has grown significantly in clinical fields, particularly in oncology for diagnosis and therapeutic follow purposes. The technical evolutions of this technique are fast. Among the technical improvements, is the coupling of the PET scan with computed tomography (CT). PET is obtained by intravenous injection of a radioactive tracer. The marker is usually fluorine (18F) embedded in a glucose molecule forming the 18-fluorodeoxyglucose (FDG-18). This tracer, similar to glucose, binds to tissues that consume large quantities of the sugar such cancerous tissue, cardiac muscle or brain. Detection using scintillation crystals (BGO, LSO, LYSO) suitable for high energy (511keV) recognizes the lines of the gamma photons originating from the annihilation of a positron with an electron. The electronics of detection or coincidence circuit is based on two criteria: a time window, of about 6 to 15 ns, and an energy window. This system measures the true coincidences that correspond to the detection of two photons of 511 kV from the same annihilation. Most PET devices are constituted by a series of elementary detectors distributed annularly around the patient. Each detector comprises a scintillation crystal matrix coupled to a finite number (4 or 6) of photomultipliers. The electronic circuit, or the coincidence circuit, determines the projection point of annihilation by means of two elementary detectors. The processing of such information must be extremely fast, considering the count rates encountered in practice. The information measured by the coincidence circuit is then positioned in a matrix or sinogram, which contains a set of elements of a projection section of the object. Images are obtained by tomographic reconstruction by powerful computer stations equipped with a software tools allowing the analysis and

  5. Positron emission tomography in patients with drug-resistant epilepsy

    Positron emission tomography with 18Fluor-deoxyglucose (18FDG PET) was introduced as method of evaluation of the cerebral metabolism in the early 80s. 18FDG PET/computed tomography (PET/CT) has rapidly become a method of epileptogenic zone localization because of the hypometaboilsm of this zone during the interictal period. This paper represents the first Bulgarian series of patients with drug- resistant epilepsy who were evaluated with 18FDG PET as part of the presurgical work-up. Our study has included 21 patients with drug-resistant epilepsy who were evaluated with 18FDG PET/CT from January 2010 to May 2013. All patients were evaluated with dedicated MRI epilepsy protocol. PET/CT study was fused with 3D MRI study using FSL or GE software. Video EEG monitoring was performed in all 21 patients and seizures were recorded in 18 patients. Hypometabolic zones were found in 15 patients. The hypometabolism was focal in 5 patients, multilobar in 9 patients and hemispheric in 1 patient. The MRI was normal in 8 patients. Hypometabolic zones were found in 3 of these 8 patients with cryptogenic epilepsy. Epilepsy surgery was performed in 6 cases. All operated patients were with hypometabolic zones. Significant seizure reduction after surgery was observed in 5 of 6 operated patients. 18FDG PET/CT is a valuable method for epileptogenic zone localization in patients with drug-resistant epilepsy. The introduction of this method in the bulgarian epilepsy surgery program increases the chances for successful resective surgery. (authors)

  6. Positron Emission Tomography in the Management of Lung Cancer (NSCLC)

    Lung cancer is the leading cause of cancer deaths in men and the second most common cancer in women. Globally it remains the most commonly diagnosed cancer at 1.35 million, representing 12.4% of all new cancers. Almost half (49.9%) of the lung cancer cases occur in the developing countries of the world, which is a big change since 1980, when it was estimated that 69% were in developed countries. Although lung cancer is the most deadly of all the cancers, it is the only major cancer that does not have a widely accepted screening test. Lung cancer often presents as a solitary pulmonary nodule on chest radiographs, which are usually performed on patients as a preoperative screening test, or as a part of routine health screening, often in the absence of symptoms. Incidental detection can occur in up to 12% of cases in asymptomatic cases. It is clear that there is a need for the accurate diagnosis of these lesions. In recent years Positron early and Emission Tomography (PET) holds early and promise as a noninvasive investigative tool for the evaluation of lung cancer. 18F-FDG PET is currently indicated for the characterization of lung lesions, staging of non-small cell lung carcinoma (NSCLC), detection of distant metastases, and diagnosis of recurrent disease. PET/CT studies are also being increasingly employed in radiotherapy treatment also planning. Furthermore PET also plays an important role in monitoring of treatment response. On the face of it a PET-CT study may appear expensive. But in the overall context, PET/CT is cost-effective in the treatment of Lung cancer. The modality is the best discriminator of disease load if used in the correct clinical setting. It can do away with the need for multiple, many times needless investigations. It can reduce the number of futile operations, unwarranted interventions, as well as over and under treatments of lung cancer. (author)

  7. Positron emission tomography in urological cancer; Positronenemissionstomographie bei urologischen Tumoren

    Wit, M. de [Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. Onkologie/Haematologie, Medizinische Klinik; Kotzerke, J. [Universitaetsklinikum Ulm (DE). Radiologie III (Nuklearmedizin)

    2000-09-01

    In staging cancer of the urinary bladder, the kidneys and the prostate and of testicular cancer there is a need for detecting tumor involvement of the lymph nodes to avoid surgical exploration. Positron emission tomography (PET) using fluorodeoxyglucose (FDG) can detect tumorous lymph nodes (sensitivity: 70%, specificity: 85%) which is helpful for several patients. In carcinoma of the prostate, other radiotracers than FDG (e.g. C-11-choline) might be more sensitive to detect tumorous lymph nodes. Up to now no diagnostical benefit of PET in germ cell tumors could be demonstrated in the published small series. In principle FDG-PET is useful in diagnosis of recurrence. In germ cell cancer FDG-PET seems to identify effectively persistent vital tumor tissue after chemotherapy. A multicenter study was initiated to demonstrate the potential of FDG-PET in a sufficient number of patients with germ cell tumor. (orig.) [German] Bei Harnblasen-, Nieren-, Prostata- und Hodenkarzinomen besteht aus klinischer Sicht ein Bedarf an verbessertem Lymphknoten-Staging, um die operative Evaluation zu vermeiden. Die Positronenemissionstomographie (PET) mit Fluordeoxyglukose (FDG) kann daher im Einzelfall bei Harnblasen- und Nierenkarzinomen hilfreich sein (bei Sensitivitaet um 70% und Spezifitaet um 85%). Beim Prostatakarzinom koennten sich andere Radiotracer (z.B. C-11-Cholin) bei der Detektion von tumoroesen Lymphknoten ueberlegen erweisen. Bei Keimzelltumoren konnte ein Nutzen der PET im primaeren Staging bei den bisher publizierten kleinen Studien nicht nachgewiesen werden. Fuer die Rezidivdiagnostik ist bei den genannten Tumoren aus grundsaetzlicher Ueberlegung der Einsatz von DFG-PET sinnvoll. Die Erkennung von vitalem malignen Tumorgewebe nach Chemotherapie erscheint bei Keimzelltumoren mit FDG-PET weitgehend sicher zu gelingen. Eine multizentrische Studie wurde begonnen, die hierueber Aufschluss geben wird. (orig.)

  8. 18F-fluorodeoxyglucose positron emission tomography in uterine carcinosarcoma

    Uterine carcinosarcomas clinically confined to the uterus usually harbor occult metastases. We conducted a pilot study to evaluate the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in uterine carcinosarcoma. Patients with histologically confirmed uterine carcinosarcoma were enrolled. Abdominal and pelvic magnetic resonance imaging (MRI)/whole-body computed tomography (CT) scan, and whole-body 18F-FDG PET or PET/CT were undertaken for primary staging, evaluating response, and restaging/post-therapy surveillance. The clinical impact of 18F-FDG PET was determined on a scan basis. A total of 19 patients were recruited and 31 18F-FDG PET scans (including 8 scans performed on a PET/CT scanner) were performed. Positive impacts of scans were found in 36.8% (7/19) for primary staging, 66.7% (2/3) for monitoring response, and 11.1% (1/9) for restaging/post-therapy surveillance. PET excluded falsely inoperable disease defined by MRI in two patients. Aggressive treatment applying to three patients with PET-defined resectable stage IVB disease seemed futile. Two patients died of disease shortly after salvage therapy restaged by PET. With PET monitoring, one stage IVB patient treated by targeted therapy only was alive with good performance. Using PET did not lead to improvement of overall survival of this series compared with the historical control (n = 35) (P 0.779). The preliminary results suggest that 18F-FDG PET is beneficial in excluding falsely inoperable disease for curative therapy and in making a decision on palliation for better quality of life instead of aggressive treatment under the guidance of PET. PET seems to have limited value in post-therapy surveillance or restaging after failure. (orig.)

  9. Silicon as an unconventional detector in positron emission tomography

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ∼5mm FWHM spatial resolution in human studies and ∼1mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET “magnifying glass” configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration. -- Highlights: ► We examine the use of position-sensitive silicon detectors in magnifying PET geometries. ► A demonstrator using silicon detectors and BGO scintillation detectors was constructed. ► Both single-slice and volume PET configurations were tested. ► For a 4.5 cm field-of-view, resolutions <1mm were achievable. ► Resolution will improve further with higher resolution silicon detectors.

  10. Study of patients with spinocerebellar degeneration using positron emission tomography

    Kondo, Susumu; Tanaka, Makoto; Sun, X.; Sakai, Yasujiro; Hirai, Shunsaku (Gunma Univ., Maebashi (Japan). School of Medicine)

    1993-10-01

    We studied cerebral blood flow, oxygen metabolism and their relation to clinical symptoms in 45 patients with spinocerebellar degeneration (SCD) and 12 normal control subjects using positron emission tomography (PET). Regions of interest were acquired for the cerebellar hemispheres, cerebellar vermis, brainstem, thalami, and cerebral cortices. PET studies revealed that regional cerebral blood flow (CBF), regional cerebral oxygen metabolic rate (CMRO[sub 2]), CBF/mean CBF of each cerebral cortex (CBF/mCBF) and CMRO[sub 2]/mean CMRO[sub 2] of each cerebral cortex (CMRO[sub 2]/mCMRO[sub 2]) in the cerebellar hemispheres, cerebellar vermis, and brainstem showed a significant decrease in comparison with the normal control subjects, while in the cerebral cortices and thalami, SCD patients showed normal values. CBF/mCBF and CMRO[sub 2]/mCMRO[sub 2] were significantly decreased in patients with olivo-pontocerebellar atrophy (OPCA) and Menzel type of hereditary ataxia (Menzel type) in the cerebellar hemispheres, cerebellar vermis, and brainstem, whereas patients with late cortical cerebellar atrophy (LCCA) and Holmes type of hereditary ataxia (Holmes type) revealed a significant decrease of CBF/mCBF and CMRO[sub 2]/mCMRO[sub 2] in the cerebellar hemispheres and cerebellar vermis, but not in the brainstem. Patients with OPCA showed a significant decrease of CBF in the cerebellar hemispheres, cerebellar vermis, brainstem and that of CMRO[sub 2] in the cerebellar hemispheres and cerebellar vermis. Patients with LCCA showed a significant decrease of CBF in the right cerebellar hemisphere and cerebellar vermis. In patients with LCCA and Holmes type, the severity of upper limb ataxia and dysdiadochocinesis were significantly correlated with CBF/mCBF and CMRO[sub 2]/mCMRO[sub 2] in the cerebellar hemispheres and brainstem. PET may be useful for diagnosing SCD and understanding its pathogenesis. (author).

  11. Study of brain metabolism using positron emission computed tomography

    Positron emission tomography permits the three-dimensional regional measurement of metabolism and blood flow in the brain. For the determination of cerebral metabolic rates of glucose by PET 18fluordeoxyglucose is usually applied: cerebral metabolic rate of glucose was found to be 36 to 47 μmol/100 g/min in the grey matter and 23 to 29 μmol/100 g/min in the white matter of normal volunteers. During physiologic activation metabolic rate of glucose is increased in the respective brain areas in relation to the strength and complexity of the stimulation. In patients suffering from ischaemic stroke glucose metabolism is markedly decreased within the infarction. Additonally, glucose metabolism is reduced by 20% in morphologically intact areas of the homolateral cortex, in the basal ganglia, in the cortical area contralateral to the infarction and in the contralateral cerebellum. This remote reduction of glucose utilization is probably caused by functional inactivation of these brain structures; it could be responsible for the diffuse organic syndrome in stroke victims not caused by the focal lesion. In patients suffering from dementia of the multi-infarct type and of the Alzheimer type glucose metabolism is reduced; the lesions in Alzheimer cases are most prominent in partietal and frontal cortical areas. In Chorea Huntington cases glucose metabolism is primarily disturbed in the striate, especially in the caudate nucleus; in these cases the metabolic disturbance can be detected earlier than the atrophy in computed tomograms. Disturbances of glucose and oxygen utilization are not necessary causes, but may also be sequelae od functional impairment. Additional information on pathogentic mechanisms may be obtained by the investigation of the protein synthesis. (orig.)

  12. Effect of tissue heterogeneity on quantification in positron emission tomography

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMRglc in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k2 and k3 for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter kon.Bmax could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, Bmax was found to be insensitive while Kd was very sensitive to tissue heterogeneity. (orig.)

  13. Effect of tissue heterogeneity on quantification in positron emission tomography

    Blomqvist, G. [Dept. of Clinical Neuroscience, Experimental Alcohol and Drug Addiction Research Section, Karolinska Hospital, Stockholm (Sweden); Lammertsma, A.A. [PET Methodology Group, Cyclotron Unit, MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London (United Kingdom); Mazoyer, B. [Service Hospitalier Frederic Joliot CEA/Dept. de Biologie, Hopital d`Orsay and Antenne d`Informatique Medicale, Hopital Robert Debre, Paris (France); Wienhard, K. [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    1995-07-01

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMR{sub glc} in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k{sub 2} and k{sub 3} for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter k{sub on}.B{sub max} could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, B{sub max} was found to be insensitive while K{sub d} was very sensitive to tissue heterogeneity. (orig.)

  14. Noninvasive alternatives to arterial blood sampling in positron emission tomography

    Positron emission tomography is commonly employed for the quantitative assessment of regional biochemistry. The determination of glucose and oxygen utilization rates using [F-18] 2FDG and [0-15] 0/sub 2/ demand accurate measurement of the driving function producing the observed tissue response. Conventional techniques consist of an arterial or venous puncture with either discrete or continuous sampling of blood label concentrations. A time-of-flight (TOF) probe and expired gas detector have been developed as alternatives to these invasive techniques. The acquisition of serial spectra with the TOF pair (4 x 4cm BaF/sub 2/;XP2020Q;380 psec FWHM), sampling a line through the cardiac chambers, reveals the spatial distribution of activity in the heart and surrounding tissue as a function of time. Region-of-interest analysis of the temporally resolved spectra produce the activity time courses required for analysis of tissue response data. Multigated TOF acquisition using a pulsewatch (LED-phototransistor pair which detects finger-tip blood volume changes) as the gating mechanism promises to provide an easy and accurate method for positioning the TOF probe. Dynamic techniques for the measurement of oxygen utilization rates require both the arterial [0-15] 0/sub 2/ and [0-15] H/sub 2/O concentrations. A heated flow-through plastic (NE 102) beta detector was developed to measure the concentration of label in the alveolar gas which was equilibrated with the blood in the pulmonary capillaries. Combining the TOF probe and expired gas data allows the separation of the oxygen and water components of the input function

  15. Analysis of Factors Affecting Positron Emission Mammography (PEM) Image Formation

    Image reconstruction for positron emission mammography (PEM) with the breast positioned between two parallel, planar detectors is usually performed by backprojection to image planes. Three important factors affecting PEM image reconstruction by backprojection are investigated: (1) image uniformity (flood) corrections, (2) image sampling (pixel size) and (3) count allocation methods. An analytic expression for uniformity correction is developed that incorporates factors for spatial-dependent detector sensitivity and geometric effects from acceptance angle limits on coincidence events. There is good agreement between experimental floods from a PEM system with a pixellated detector and numerical simulations. The analytic uniformity corrections are successfully applied to image reconstruction of compressed breast phantoms and reduce the necessity for flood scans at different image planes. Experimental and simulated compressed breast phantom studies show that lesion contrast is improved when the image pixel size is half of, rather than equal to, the detector pixel size, though this occurs at the expense of some additional image noise. In PEM reconstruction counts usually are allocated to the pixel in the image plane intersected by the line of response (LOR) between the centers of the detection pixels. An alternate count allocation method is investigated that distributes counts to image pixels in proportion to the area of the tube of response (TOR) connecting the detection pixels that they overlay in the image plane. This TOR method eliminates some image artifacts that occur with the LOR method and increases tumor signal-to-noise ratios at the expense of a slight decrease in tumor contrast. Analysis of image uniformity, image sampling and count allocation methods in PEM image reconstruction points to ways of improving image formation. Further work is required to optimize image reconstruction parameters for particular detection or quantitation tasks

  16. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics.

    Morris, Evan D; Yoder, Karmen K

    2007-03-01

    There is great interest in positron emission tomography (PET) as a noninvasive assay of fluctuations in synaptic neurotransmitter levels, but questions remain regarding the optimal choice of tracer for such a task. A mathematical method is proposed for predicting the utility of any PET tracer as a detector of changes in the concentration of an endogenous competitor via displacement of the tracer (a.k.a., its 'vulnerability' to competition). The method is based on earlier theoretical work by Endres and Carson and by the authors. A tracer-specific predictor, the PET Displacement Sensitivity (PDS), is calculated from compartmental model simulations of the uptake and retention of dopaminergic radiotracers in the presence of transient elevations of dopamine (DA). The PDS predicts the change in binding potential (DeltaBP) for a given change in receptor occupancy because of binding by the endogenous competitor. Simulations were performed using estimates of tracer kinetic parameters derived from the literature. For D(2)/D(3) tracers, the calculated PDS indices suggest a rank order for sensitivity to displacement by DA as follows: raclopride (highest sensitivity), followed by fallypride, FESP, FLB, NMSP, and epidepride (lowest). Although the PDS takes into account the affinity constant for the tracer at the binding site, its predictive value cannot be matched by either a single equilibrium constant, or by any one rate constant of the model. Values for DeltaBP have been derived from published studies that employed comparable displacement paradigms with amphetamine and a D(2)/D(3) tracer. The values are in good agreement with the PDS-predicted rank order of sensitivity to displacement. PMID:16788713

  17. In vivo monitoring of tissue function and metabolism using positron emission tomography

    Positron emission tomography (PET) relies on a combination of the use of positron-emitting radioactive tracers and computerized tomography to monitor certain physiological and functional characteristics in vivo and noninvasively. Its special and most powerful applications to date are in brain physiology and neurology. There are many potential research applications in farm animals, such as the mapping of neuro-humoral pathways, but cost and the need for special facilities are likely to be prohibitive

  18. Catecholaminergic neurotransmission in heart and brain, development of tracers for positron emission tomography

    Langer, Claus Oliver

    2000-01-01

    The catecholamines norepinephrine and its biosynthetic precursor dopamine are two principal neurotransmitters in the human central nervous system (CNS). Moreover, norepinephrine is a major transmitter substance in the peripheral, autonomic nervous system. Positron emission tomography (PET) is a non-invasive imaging technique that uses positron-labeled molecules to image and measure the function of biological processes in vivo. Neuronal catecholaminergic pathways, both in CNS...

  19. Reconstruction Algorithms for Positron Emission Tomography and Single Photon Emission Computed Tomography and their Numerical Implementation

    Fokas, A S; Marinakis, V

    2004-01-01

    The modern imaging techniques of Positron Emission Tomography and of Single Photon Emission Computed Tomography are not only two of the most important tools for studying the functional characteristics of the brain, but they now also play a vital role in several areas of clinical medicine, including neurology, oncology and cardiology. The basic mathematical problems associated with these techniques are the construction of the inverse of the Radon transform and of the inverse of the so called attenuated Radon transform respectively. We first show that, by employing mathematical techniques developed in the theory of nonlinear integrable equations, it is possible to obtain analytic formulas for these two inverse transforms. We then present algorithms for the numerical implementation of these analytic formulas, based on approximating the given data in terms of cubic splines. Several numerical tests are presented which suggest that our algorithms are capable of producing accurate reconstruction for realistic phanto...

  20. Positron emission tomography in patients with head and neck carcinoma

    PURPOSE: To examine the role of positron emission tomography (PET) with labeled fluorodeoxyglucose (FDG) in patients with primary neoplasms of the head and neck. MATERIALS and METHODS: Between (9(92)) and (9(94)), forty-four FDG PET scans were performed on 27 patients with head and neck neoplasms. FDG uptake at the tumor sites was quantified with standardized uptake values (SUV). There were seven women and 20 men. Median age was 70 (37 - 85). All patients had squamous cell carcinoma except two with esthesioneuroblastoma. In six patients the primary site was occult and treatment consisted of surgery followed by radiation. In the other patients, primary sites included nasopharynx (2), base of tongue (6), tonsil (4), larynx (2), piriform sinus (3) paranasal sinuses (3) and multiple (1). Three were Stage II, four were Stage III, 11 were Stage IV and three had recurrent disease. Gross disease was treated by radiation (2), twice daily radiation (8) or concurrent chemotherapy and radiation (11). The median follow-up of survivors is 12 months (6 - 30). RESULTS: All patients had baseline scans prior to radiation therapy. In the six patients with occult primaries, no primary lesions were discovered by PET scans. In the other 21 patients, all known primary sites, regional node metastases and distant metastases demonstrated increased uptake on PET imaging. In one patient distant metastases were suggested on PET (but without corroborating clinical or radiographic evidence) and in two patients additional regional node metastases were discovered. Eleven patients had PET scans at the conclusion of radiation therapy. Five patients had complete responses by PET, two had major responses and four had partial responses. However, all these patients had good clinical responses and none have failed locally. Five patients had six scans during follow-up (at 3 to 12 months) to differentiate radiation changes from persistent disease. In four patients the PET scans were negative and they are

  1. Fabrication of polycrystalline scintillators for the positron emission tomography (PET)

    Transparent ceramics are becoming more and more important for two new types of applications. On the one hand in cases where high mechanical and thermal demands in combination with optical properties are required, on the other hand where the optical properties of transparent materials like glass are not sufficient e.g. in positron-emission-tomography (PET) diagnostics. Most state of the art PET-scanners are using high-priced single crystals as scintillator material. The technological challenge is to replace single crystal by cost-efficient transparent ceramics. Producing transparent ceramics is ordered in synthesis of the powders and in manufacturing of these into transparent ceramics. The aim of this work was to synthesize single phase yttrium-alumina-and Luthetiumalumina-garnet (YAG, LuAG) powders partially doped with neodymium or praseodymium by four different synthesis routes (Pechini-synthesis, sol-gel-route, coprecipitation and solid state reactions). Additionally industrial LuAG and LuPO4 powders were characterized and manufactured. The powders were processed as submicron- and nanopowders. The compaction of nanopowder greenbodies sintered at high temperatures leads to a ''cross-over'' between both manufacturing route. Newly produced single-phase powders were homogenized with additions of sintering additives like tetraethyl orthosilicate (TEOS) and binders like polyvinyl alcohol (PVA). Moulding the powders were carried out by uniaxial pressing, cold isostatic pressing and in individual cases also by slip casting. The achieved green densities were in a range of 25-42 %. Examination of calcination behaviour leads to a calcination temperature of 1000 C with 2 hours dwell time in air atmosphere. Only solid state reactions resulted into transparent YAG, YAG:Pr, LuAG, LuAG:Pr ceramics. Solid state reactions of nanopowders resulted in heterogeneously transparent samples. Ceramics made by powders of other synthetic routes gave nontransparent ceramics due to porosity

  2. Laparoscopic Scar: a mimicker of Sister Mary Joseph's nodule on positron emission tomography/CT

    Positron emission tomography/CT is an established imaging method in the diagnosis and staging of cancers. 18F-fluoro-2-deoxy-D-glucose (FDG) is the most commonly used radiotracer in positron emission tomography/CT. It is a tumour viability agent and usually its uptake within a lesion reflects the presence of a viable tumour tissue. However, false-positive FDG uptake is known to occur in benign processes of either inflammatory or infectious aetiology. We describe FDG uptake at the site of laparoscopic scar that mimicked Sister Mary Joseph's nodule in a patient with gastric adenocarcinoma. Here, the knowledge of the patient's history and subtle imaging findings helped in accurate staging of the patient. In this case report, we emphasize the value of the knowledge of the patient history and awareness of different pitfalls of FDG to achieve a correct diagnosis on positron emission tomography/CT

  3. The 511 keV emission from positron annihilation in the Galaxy

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferriere, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G. [CNRS, UMR7095, UMPC and Institut d' Astrophysique de Paris, F-75014, Paris (France) and LAPP, 9 Chemin de Bellevue, BP 110 F-74941 Annecy-le-Vieux (France); A. F. Ioffe Institute of Physics and Technology, Russian Academy of Sciences, 194021, St. Petersburg (Russian Federation); Max Planck Institut fuer Extraterrestrische Physik, D-85741 Garching (Germany); Laboratoire d' Astrophysique de Toulouse-Tarbes, Universite de Toulouse, CNRS, 14 avenue Edouard Belin, F-31400 Toulouse (France); American University of Sharjah, College of Arts and Sciences/Physics Department, P.O. Box 26666, Sharjah (United Arab Emirates); CESR, Universite de Toulouse, CNRS, 9, Avenue du Colonel Roche, Boite Postal 4346, F-31028 Toulouse Cedex 4 (France); L.U.P.M., Universite Montpellier II, CNRS, Place Eugene Bataillon, F-34095 Montpellier (France); Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, California 94305 (United States); Max Planck Institut fuer Extraterrestrische Physik, D-85741, Garching (Germany); Max Planck Institut fur Extraterrestrische Physik, Garching, D-85741 Germany, and MPI Halbleiterlabor, Otto-Hahn-Ring 6, D-81739 Muenchen (Germany)

    2011-07-01

    The first {gamma}-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agency's (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather ''exotic'' ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy ({approx}MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  4. Molecular Imaging of Transporters with Positron Emission Tomography

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  5. Value of positron emission tomography and computer tomography (PET/CT) for urologic malignancies

    Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning. (authors)

  6. [Value of positron emission tomography and computer tomography (PET/CT) for urologic malignancies].

    Boujelbene, N; Prior, J O; Boubaker, A; Azria, D; Schaffer, M; Gez, E; Jichlinski, P; Meuwly, J-Y; Mirimanoff, R O; Ozsahin, M; Zouhair, A

    2011-07-01

    Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning. PMID:21507695

  7. Positron emission tomography alone, positron emission tomography-computed tomography and computed tomography in diagnosing recurrent cervical carcinoma: a systematic review and meta-analysis

    Xiao, Yi; Wei, Jia; Zhang, Yicheng; Xiong, Weining

    2014-01-01

    Introduction The aim of the study was to assess systematically the accuracies of positron emission tomography (PET), PET/computed tomography (CT), and CT in diagnosing recurrent cervical cancer. Material and methods We searched for articles published from January 1980 to June 2013 using the following inclusion criteria: articles were reported in English; the use of PET, interpreted with or without the use of CT; use of CT to detect recurrent cervical cancer; and histopathologic analysis and/o...

  8. Positron emission tomography and migraine. Tomographie par emission de positons et migraine

    Chabriat, H. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1992-04-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT{sub 2} serotonin receptors can be studied in migraine patients with PET.

  9. Cerebral metabolic data obtained by positron emission tomography in physiological aging. A review of the literature

    Following a summary of the general principles and limitations of metabolic measurements by positron emission tomography and of the different indices used to interpret the data, the authors review the results of published studies on physiological aging. Globally, with strict inclusion criteria absolute metabolic values at rest and under partial sensorial deprivation are little or not modified by age. In contrast, functional interactions between regions, as deduced from metabolic intercorrelations, are perhaps different in elderly people. In any case, positron emission tomography seems to discriminate between normal aging and different patterns of pathological aging. Technical improvements, more refined neuropsychological correlations and the use of dynamic activation paradigms will no doubt provide, in the future, a better definition of normal and pathological aging as positron tomography

  10. Cerebral metabolic data obtained by positron emission tomography in physiological aging. A review of the literature

    Pellat, J.; Hommel, M.

    1987-06-18

    Following a summary of the general principles and limitations of metabolic measurements by positron emission tomography and of the different indices used to interpret the data, the authors review the results of published studies on physiological aging. Globally, with strict inclusion criteria absolute metabolic values at rest and under partial sensorial deprivation are little or not modified by age. In contrast, functional interactions between regions, as deduced from metabolic intercorrelations, are perhaps different in elderly people. In any case, positron emission tomography seems to discriminate between normal aging and different patterns of pathological aging. Technical improvements, more refined neuropsychological correlations and the use of dynamic activation paradigms will no doubt provide, in the future, a better definition of normal and pathological aging as positron tomography.

  11. Use of transputers in a 3-D positron emission tomograph

    This paper discusses the use of a VME-based transputer system as a front-end parallel processing engine for Positron Volume Imaging. The authors model different topologies with different numbers of nodes, using the Master/Worker software paradigm called a Processor Farm, and determine optimum configuration parameters for different computation requirements. The versatility and scalability of transputers makes them very suitable for use in PVI tomographs in that the same transputers can be used for speeding up data acquisition, image reconstruction and display

  12. Time resolution in scintillator based detectors for positron emission tomography

    In the domain of medical photon detectors L(Y)SO scintillators are used for positron emission tomography (PET). The interest for time of flight (TOF) in PET is increasing since measurements have shown that new crystals like L(Y)SO coupled to state of the art photodetectors, e.g. silicon photomultipliers (SiPM), can reach coincidence time resolutions (CTRs) of far below 500ps FWHM. To achieve these goals it is important to study the processe in the whole detection chain, i.e. the high energy particle or gamma interaction in the crystal, the scintillation process itself, the light propagation in the crystal with the light transfer to the photodetector, and the electronic readout. In this thesis time resolution measurements for a PET like system are performed in a coincidence setup utilizing the ultra fast amplifier discriminator NINO. We found that the time-over-threshold energy information provided by NINO shows a degradation in energy resolution for higher SiPM bias voltages. This is a consequence of the increasing dark count rate (DCR) of the SiPM with higher bias voltages together with the exponential decay of the signal. To overcome this problem and to operate the SiPM at its optimum voltage in terms of timing we developed a new electronic board that employs NINO only as a low noise leading edge discriminator together with an analog amplifier which delivers the energy information. With this new electronic board we indeed improved the measured CTR by about 15%. To study the limits of time resolution in more depth we measured the CTR with 2x2x3mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially available SiPMs (Hamamatsu S10931-50P MPPC) and achieved a CTR of 108±5ps FWHM at an energy of 511keV. We determined the influence of the data acquisition system and the electronics on the CTR to be 27±2ps FWHM and thus negligible. To quantitatively understand the measured values, we developed a Monte Carlo simulation tool in MATLAB that incorporates the timing

  13. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in evaluation of residual intramuscular myxoma

    Intramuscular myxoma (IM) is a rare benign neoplasm. In a patient diagnosed with IM of left thigh, we report the utility of a postoperative fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography scan in assessing the efficacy of surgical excision

  14. Monitoring liver tumor therapy with [18F]FDG positron emission tomography

    Positron emission tomography (PET) with [18F]-2-flurodeoxy-glucose (FDG) can be utilized as a functional imaging modality for monitoring liver tumor therapy. We report three cases in which PET-FDG was more useful for this purpose than other imaging methods and tumor markers

  15. Tomography by positrons emission: integral unit to the service of Mexico

    The applications of the Positron emission tomography (PET) together with the one radiopharmaceutical 2 - [18 F]-fluoro-2-deoxy-D-glucose in the area of the medical imaging is expanding quickly and it possesses a bigger impact at the moment in favor of those patient to who suffers an oncological, cardiac or neurological illness in Mexico. (Author)

  16. Positron emission tomography/computerized tomography imaging of multiple focus of neurolymphomatosis

    Neurolymphomatosis is defined as infiltration of the peripheral nervous system by malignant lymphocytes in the presence of lymphoma. In this case, we described multiple neurol involvement and findings of 18F-fluorodeoxyglucose positron emission tomography/computerized tomography in a 35-year-old female diagnosed with B-cell lymphoma

  17. Recurrent ovarian endodermal sinus tumor: demonstration by computed tomography, magnetic resonance imaging, and positron emission tomography

    We report a case of recurrent endodermal sinus tumor of the ovary that was identified and/or clearly depicted by computed tomography, magnetic resonance imaging, and positron emission tomography. The potential roles of various imaging modalities in the detection of recurrent endodermal sinus tumor are discussed. (orig.)

  18. Capillaries within compartments: microvascular interpretation of dynamic positron emission tomography data

    Munk, O L; Keiding, S; Bass, L

    2003-01-01

    Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PE...

  19. Diffuse nesidioblastosis diagnosed on a Ga-68 DOTATATE positron emission tomography/computerized tomography.

    Arun, Sasikumar; Rai Mittal, Bhagwant; Shukla, Jaya; Bhattacharya, Anish; Kumar, Praveen

    2013-07-01

    The authors describe a 50 days old pre-term infant with persistent hyperinsulinemic hypoglycemia of infancy in whom Ga-68 DOTATATE positron emission tomography/computerized tomography scan showed diffusely increased tracer uptake in the entire pancreas with no abnormal tracer uptake anywhere else in the body, suggestive of a diffuse variant of nesidioblastosis. PMID:24250024

  20. On the possible mixing of the electron capture and the positron emission channels in nuclear decay

    Isakov, V. I.

    2009-01-01

    On the basis of the idea of mixing (interaction) between the electron capture and the positron emission channels in the \\beta^+ decay in the cases when both channels are energetically allowed, we attempt to explain oscillations of the K-capture rates that were possibly seen in the recent experiment.

  1. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle Westergren;

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...

  2. Small animal positron emission tomography imaging and in vivo studies of atherosclerosis

    Hag, Anne Mette Fisker; Ripa, Rasmus Sejersten; Pedersen, Sune Folke;

    2013-01-01

    Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular and cellu...... knowledge obtained from in vivo positron emission tomography studies of atherosclerosis performed in small animals....

  3. Characterisation of beta(2)-adrenoceptors, using the agonist [C-11]formoterol and positron emission tomography

    Visser, T.J; van Waarde, Aaren; Doze, P; Elsinga, P.H; van der Mark, Thomas W.; Kraan, Jan; Ensing, Kees; Vaalburg, W.

    1998-01-01

    The agonist radioligand N-[2-hydroxy-5-[1-hydroxy-2-[[2-(4-[C-11]-methoxyphenyl)-1-methylethyl]amino]ethyl]phenyl]formamide ([C-11]formoterol) was synthesised in order to test its ability to visualise pulmonary beta(2)-adrenoceptors in vivo, with positron emission tomography (PET). Formoterol was la

  4. Positron emission imaging device and method of using the same

    Bingham, Philip R.; Mullens, James Allen

    2013-01-15

    An imaging system and method of imaging are disclosed. The imaging system can include an external radiation source producing pairs of substantially simultaneous radiation emissions of a picturization emission and a verification emissions at an emission angle. The imaging system can also include a plurality of picturization sensors and at least one verification sensor for detecting the picturization and verification emissions, respectively. The imaging system also includes an object stage is arranged such that a picturization emission can pass through an object supported on said object stage before being detected by one of said plurality of picturization sensors. A coincidence system and a reconstruction system can also be included. The coincidence can receive information from the picturization and verification sensors and determine whether a detected picturization emission is direct radiation or scattered radiation. The reconstruction system can produce a multi-dimensional representation of an object imaged with the imaging system.

  5. The review of myocardial positron emission computed tomography and positron imaging by gamma camera

    To measure myocardial blood flow, Nitrogen-13 ammonia, Oxygen-15 water, Rubidium-82 and et al. are used. Each has merit and demerit. By measuring myocardial coronary flow reserve, the decrease of flow reserve during dipyridamole in patients with hypercholesterolemia or diabetes mellitus without significant coronary stenosis was observed. The possibility of early detection of atherosclerosis was showed. As to myocardial metabolism, glucose metabolism is measured by Fluorine-18 fluorodeoxyglucose (FDG), and it is considered as useful for the evaluation of myocardial viability. We are using FDG to evaluate insulin resistance during insulin clamp in patients with diabetes mellitus by measuring glucose utilization rate of myocardium and skeletal muscle. FFA metabolism has been measured by 11C-palmitate, but absolute quantification has not been performed. Recently the method for absolute quantification was reported, and new radiopharmaceutical 18F-FTHA was reported. Oxygen metabolism has been estimated by 11C-acetate. Myocardial viability, cardiac efficiency was evaluated by oxygen metabolism. As to receptor or sympathetic nerve end, cardiac insufficiency or cardiac transplantation was evaluated. Imaging of positron emitting radiopharmaceutical by gamma camera has been performed. Collimator method is clinically useful for cardiac imaging of viability study. (author). 54 refs

  6. The review of myocardial positron emission computed tomography and positron imaging by gamma camera

    Ohtake, Tohru [Tokyo Univ. (Japan). Faculty of Medicine

    1998-04-01

    To measure myocardial blood flow, Nitrogen-13 ammonia, Oxygen-15 water, Rubidium-82 and et al. are used. Each has merit and demerit. By measuring myocardial coronary flow reserve, the decrease of flow reserve during dipyridamole in patients with hypercholesterolemia or diabetes mellitus without significant coronary stenosis was observed. The possibility of early detection of atherosclerosis was showed. As to myocardial metabolism, glucose metabolism is measured by Fluorine-18 fluorodeoxyglucose (FDG), and it is considered as useful for the evaluation of myocardial viability. We are using FDG to evaluate insulin resistance during insulin clamp in patients with diabetes mellitus by measuring glucose utilization rate of myocardium and skeletal muscle. FFA metabolism has been measured by {sup 11}C-palmitate, but absolute quantification has not been performed. Recently the method for absolute quantification was reported, and new radiopharmaceutical {sup 18}F-FTHA was reported. Oxygen metabolism has been estimated by {sup 11}C-acetate. Myocardial viability, cardiac efficiency was evaluated by oxygen metabolism. As to receptor or sympathetic nerve end, cardiac insufficiency or cardiac transplantation was evaluated. Imaging of positron emitting radiopharmaceutical by gamma camera has been performed. Collimator method is clinically useful for cardiac imaging of viability study. (author). 54 refs.

  7. Three-dimensional imaging of hidden objects using positron emission backscatter

    Positron emission backscatter imaging is a technique for interrogation and three-dimensional (3-D) reconstruction of hidden objects when we only have access to the objects from one side. Using time-of-flight differences in detected direct and backscattered positron-emitted photons, we construct 3-D images of target objects. Recently at Los Alamos National Laboratory, a fully three-dimensional imaging system has been built and the experimental results are discussed in this paper. Quantitative analysis of images reconstructed in both two- and three-dimensions are also presented.

  8. Determination of the positron diffusion length in Kapton by analysing the positronium emission

    Doppler profile spectroscopy and Compton-to-peak ratio analysis have been used to study the positronium (Ps) emission from the Kapton surface as a function of the positron implantation energy E. Two different positions for the sample have been performed in the experiment. In the first case the sample and the Ge-detector are perpendicular to the positron beam. With this geometry the emission of para-positronium (p-Ps) is detected as a narrow central peak. In the second case, by rotating the sample 45 deg. with respect to the beam axis, the emission of p-Ps is detected as a blue-shifted fly away peak. The implantation of the positrons is described by the Makhov profile, where we used the modified median implantation for polymers as given by Algers et al. [J. Algers, P. Sperr, W. Egger, G. Koegel, F.H.J. Maurer, Phys. Rev. B 67 (2003) 125404]. Thermalised positrons can diffuse to the surface and may pick up an electron to be emitted as Ps. We found a thermal and or epithermal positron diffusion length L+ = 5.43 ± 0.71 nm and L+ = 5.51 ± 0.28 nm correspondingly for both cases, which is much more than the one found by Brusa et al. [R.S. Brusa, A. Dupasquier, E. Galvanetto, A. Zecca, Appl. Phys. A 54 (1992) 233]. The respective efficiency for the emission of Ps by picking up an electron from the surface is found to be fpu = 0.247 ± 0.012 and fpu = 0.156 ± 0.003

  9. A new method of detection for a positron emission tomograph using a time of flight method

    In the first chapter, it is shown the advantages of positron radioemitters (β+) of low period, and the essential characteristics of positron tomographs realized at the present time. The second chapter presents the interest of an original technique of image reconstruction: the time of flight technique. The third chapter describes the characterization methods which were set for verifying the feasibility of cesium fluoride in tomography. Chapter four presents the results obtained by these methods. It appears that the cesium fluoride constitute presently the best positron emission associated to time of flight technique. The hypotheses made on eventual performances of such machines are validated by experiments with phantom. The results obtained with a detector (bismuth germanate) conserves all its interest in skull tomography

  10. A new positron emission particle tracking facility at iThemba LABS

    Positron emission particle tracking (PEPT) has become a powerful tool for in-situ characterisation and visualization of particulate flow within aggressive industrial environments, such as tumbling mills and powder mixers. PEPT is based on the tracking of a single tracer particle which has been labelled with a radionuclide that decays via beta-plus decay. The location of the particle is obtained by the triangulation of events associated with the detection of pairs of annihilation gamma rays in a modified 'positron camera.' One of the challenges facing PEPT is associated with labelling particles smaller than 100 μm which would allow studies in systems of finer particulate flow, such as flotation cells. The Positron Imaging Centre at the University of Birmingham is currently the only operational PEPT facility in the world. PEPT Cape Town will shortly become operational at iThemba LABS, South Africa. (author)

  11. Positron emission tomography studies of central receptors in humans

    Central neurotransmitter systems and receptors are intimately involved in the mechanism of several neurologic and psychiatric disorders. One well-known example is the nigro-striatal dopaminergic system in akinesia of Parkinson's disease. Although neurotransmitter concentration and receptor function can be measured regionally post-mortem, positron tomography (PET) studies can be performed during life and therefore may provide insight into changes at early stages of the disease as well as follow-up data on, and pharmacological modification of, such changes. PET allows to monitor non-invasively the time-course of regional tissue tracer concentration following administration of a radioactive drug. If the latter is known to interact selectively with specific binding sites, it can be used to probe in vivo the regional distribution and affinity of the receptors involved. This principle was first pioneered using 3H or 14C-labeled ligands injected intravenously to laboratory animal, but necessitated brain tissue sampling for determination of regional radioactive concentration. The feasibility of the PET paradigm to characterize specific binding in vivo showed that trace amounts of 11C-labeled flunitrazepam could be displaced specifically from the baboon's brain by a therapeutic load of the unlabeled competitor Lorazepam, indicating that specific in vivo binding of the radioligand to the benzodiazepine (BZD) receptors has taken place

  12. Basal ganglia disorders studied by positron emission tomography

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [18F]6-fluoro-L-dopa ([18F]dopa), and striatal dopamine receptor density with suitable PET ligands. [18F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [18F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [18F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [18F] dopa uptake is lower in MSA than PD. However, [18F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [18F]dopa uptake overlap. D1 and D2 receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [18F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D2 receptor binding have been reported in the striatum of PSP patients. The reduction in D2 receptor binding is more prominent in the caudate than putamen. Striatal [18F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D2 receptor binding is markedly reduced in patients with Huntington's disease, while striatal [18F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. These PET findings are useful in the differential diagnosis of basal ganglia disorders. (J.P.N.) 55 refs

  13. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities

  14. The electronics system for the LBNL positron emission mammography (PEM) camera

    Moses, W W; Baker, K; Jones, W; Lenox, M; Ho, M H; Weng, M

    2001-01-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, all...

  15. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions

  16. Scar or recurrent rectal cancer. Positron emission tomography is more helpful for diagnosis than immunoscintigraphy

    We used positron emission tomography and fludeoxyglucose F-18 to assess metabolic activity of a pelvic mass in 18 patients who had suspected recurrent rectal cancer. Computed tomography could not differentiate tumor from scar. All patients presenting increased uptake of fludeoxyglucose F 18 by the mass were proved by histologic studies to suffer from recurrent tumor. Six of seven patients with low fludeoxyglucose uptake had nonmalignant lesions. Using immunoscintigraphy in 14 patients with elevated carcinoembryonic antigen levels, only four of ten recurrences could be identified by increased antibody accumulation in the mass. On the other hand, two of four benign lesions were interpreted as being recurrent tumor because of high uptake. Therefore, only positron emission tomography seems to be a useful diagnostic tool in the differentiation of recurrent rectal cancer and scar by providing information about the metabolic activity of a mass

  17. Optimization of In-Beam Positron Emission Tomography for Monitoring Heavy Ion Tumor Therapy

    Vieira Crespo, Paulo Alexandre

    2010-01-01

    In-beam positron emission tomography (in-beam PET) is currently the only method for an in-situ monitoring of highly tumor-conformed charged hadron therapy. In such therapy, the clinical effect of deviations from treatment planning is highly minimized by implementing safety margins around the tumor and selecting proper beam portals. Nevertheless, in-beam PET is able to detect eventual, undesirable range deviations and anatomical modifications during fractionated irradiation, to verify the accu...

  18. Transcutaneous measurement of the arterial input function in positron emission tomography

    Positron emission tomography (PET) provides a powerful tool in medical research. Biochemical function can be both precisely localized and quantitatively measured. To achieve reliable quantitation it is necessary to know the time course of activity concentration in the arterial blood during the measurement. In this study the arterial blood curve from the brachial artery is compared to the activity measured in the internal carotid artery with a new transcutaneous detector

  19. Elevated Brain Cannabinoid CB1 Receptor Availability in Posttraumatic Stress Disorder: A Positron Emission Tomography Study

    Neumeister, Alexander; Normandin, Marc D.; Pietrzak, Robert H.; Piomelli, Daniele; Zheng, Ming-Qiang; Gujarro-Anton, Ana; Potenza, Marc N.; Bailey, Christopher R.; Lin, Shu-fei; Najafzadeh, Soheila; Ropchan, Jim; Henry, Shannan; Corsi-Travali, Stefani; Carson, Richard E; Huang, Yiyun

    2013-01-01

    Endocannabinoids and their attending cannabinoid type 1 receptor (CB1) have been implicated in animal models of posttraumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [11C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma controls [TC]) and those without such histories (healthy c...

  20. The establishment of crystal position look-up table for positron emission tomography with block detectors

    2009-01-01

    A method has been developed to establish the crystal position look-up table for positron emission tomography with block detectors. It is based on the principle that the counts in crystal position histogram obey the Gaussian mixture model (GMM). This method has taken full consideration of the characteristics of the GMM and the detector itself. The experimental results have proved that it is simple, reliable, and universal.

  1. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle W;

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...... study investigates the positive (PPV) and negative predictive value (NPV) of PET-CT in stage I disease and the clinical impact of the scan results in all disease stages....

  2. Regional structure-function correlations in chronic obstructive lung disease measured with positron emission tomography.

    Brudin, L H; Rhodes, C G; Valind, S O; Buckingham, P D; Jones, T; Hughes, J. M.

    1992-01-01

    BACKGROUND: Positron emission tomography, performed with isotopes of very short half life, can be used to relate local lung tissue density to local ventilation and to the ventilation:perfusion ratio. This method has been used in 10 patients with severe chronic airflow obstruction and differing values for carbon monoxide transfer factor (TLCO) and transfer coefficient (KCO). METHODS: Ventilation (VA) and the ventilation:perfusion ratio (V/Q), lung density, and blood volume were measured region...

  3. Usefulness of myocardial positron emission tomography/nuclear imaging in Takotsubo cardiomyopathy

    Marzia; Testa; Mauro; Feola

    2014-01-01

    AIM:To analyse and summarize all the articles related to positron emission tomography and Takotsubo cardiomyopathy(TTC).METHODS:We performed a systematic review of the existing literature on positron emission tomography/nuclear imaging and Takotsubo cardiomyopathy using PUBMED database.We combined search terms such as"takotsubo","takotsubo syndrome","myocardial positron emission tomography","positron emission tomography".All case reports were excluded.The list included only four articles which were reviewed by two independent investigators.It was not possible to undertake a formal meta-analysis because of the heterogeneity of the studies;therefore,we made a narrative synthesis of the collected data.RESULTS:Nuclear medicine techniques can be useful employed in the differential diagnosis of TTC from an acute coronary syndrome(ACS).In fact,transient left ventricular(LV)apical ballooning is a syndrome frequently misdiagnosed as an ACS and can mimic symptoms of myocardial infarction with ST-T segments changes on electrocardiography(ECG),a limited re-lease of myocardial enzyme,mainly reported after sudden emotional or physical stress,and an akinesis or dyskinesis of the left ventricle apex which are completely reversible in a few weeks.In the studies included in this review,nuclear medicine techniques have demonstrated a discrepancy between normal perfusion and a reduced glucose utilization in TTC,commonly known as"inverse flow metabolism mismatch".This suggests that apical ballooning represents a transient metabolic disorder on the cellular level,rather than a structural contractile disease of the myocardium,due to a transient decrease of glucose metabolism that might be related to a coronary microcirculation impairment followed by prolonged myocardial stunning.CONCLUSION:Nuclear medicine techniques can be usefully used for the diagnosis of TTC and can increase our knowledge of the pathophysiological mechanisms of TTC.

  4. Exogenous lipoid pneumonia with unusual CT pattern and FDG positron emission tomography scan findings

    We report a case of an exogenous lipoid pneumonia that appeared as a spiculated calcified mass on CT scan in which a positron emission tomography (PET) scan was performed before histological analysis. The F-18 fluoro-deoxy-D-glucose (FDG) PET showed a pattern highly suggestive of malignancy which, to our knowledge, has not yet been described. Similar to inflammatory and infectious lung diseases, lipoid pneumonia may be a false-positive case of F-18 FDG uptake. (orig.)

  5. Exogenous lipoid pneumonia with unusual CT pattern and FDG positron emission tomography scan findings

    Tahon, Florence; Berthezene, Yves; Blineau, Nadine; Marchand, Bruno [Department of Radiology, Hopital de la Croix-Rousse, 103 grande rue de la Croix-Rousse, 69317 Lyon Cedex (France); Hominal, Stephane; Guerin, Jean-Claude [Department of Chest, Hopital de la Croix-Rousse, 103 grande rue de la Croix-Rousse, 69317 Lyon Cedex (France); Cinotti, Luc [CERMEP, 59 bd Pinel, 69003 Lyon Cedex (France)

    2002-07-01

    We report a case of an exogenous lipoid pneumonia that appeared as a spiculated calcified mass on CT scan in which a positron emission tomography (PET) scan was performed before histological analysis. The F-18 fluoro-deoxy-D-glucose (FDG) PET showed a pattern highly suggestive of malignancy which, to our knowledge, has not yet been described. Similar to inflammatory and infectious lung diseases, lipoid pneumonia may be a false-positive case of F-18 FDG uptake. (orig.)

  6. Imaging Chronic Pain and Inflammation : Positron Emission Tomography Studies of Whiplash Associated Disorder

    Linnman, Clas

    2008-01-01

    This thesis is on chronic neck pain after a rear impact car injury, so called whiplash associated disorder (WAD). Three empirical studies using positron emission tomography (PET) with different radioligands have been performed. The first study evaluated resting state regional cerebral blood flow (rCBF) in WAD patients and in healthy, pain-free controls, by use of oxygen-15 labeled water. Patients had heightened resting rCBF bilaterally in the posterior parahippocampal and the posterior cingul...

  7. An 8×8 Row-Column Summing Readout Electronics for Preclinical Positron Emission Tomography Scanners

    Shih, Y. C.; Sun, F. W.; MacDonald, L R; Otis, B. P.; Miyaoka, R S; McDougald, W.; Lewellen, T K

    2009-01-01

    This work presents a row/column summing readout electronics for an 8×8 silicon photomultiplier array. The summation circuit greatly reduces the number of electronic channels, which is desirable for pursuing higher resolution positron emission tomography scanners. By using a degenerated common source topology in the summation circuit, more fan-in is possible and therefore a greater reduction in the number of electronic channels can be achieved. The timing signal is retrieved from a common anod...

  8. Dynamic Positron Emission Tomography Image Restoration via a Kinetics-Induced Bilateral Filter

    Bian, Zhaoying; Huang, Jing; Ma, Jianhua; Lu, Lijun; Niu, Shanzhou; Zeng, Dong; Feng, Qianjin; Chen, Wufan

    2014-01-01

    Dynamic positron emission tomography (PET) imaging is a powerful tool that provides useful quantitative information on physiological and biochemical processes. However, low signal-to-noise ratio in short dynamic frames makes accurate kinetic parameter estimation from noisy voxel-wise time activity curves (TAC) a challenging task. To address this problem, several spatial filters have been investigated to reduce the noise of each frame with noticeable gains. These filters include the Gaussian f...

  9. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography. [Dogs

    Schelbert, H.R.; Phelps, M.E.

    1980-06-01

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (/sup 13/N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique.

  10. Value of positron emission tomography in diagnosing synchronous penile metastasis from urothelial bladder cancer

    Rouanne, M.; Alhammadi, A.; Vilain, D.; Radulescu, C.; Lebret, T.

    2015-01-01

    Metastases to the penis are extremely rare events. Most frequently, penile metastases come from the urogenital system (bladder, prostate) or the rectum-sigmoid colon. Usually painful, penile lesions may be asymptomatic, making diagnosis more challenging. Hence, we report the adding value of 18F-fludeoxyglucose–positron emission tomography/computed tomography (18F-FDG PET/CT) in the detection of penile metastases originating from urothelial carcinoma of the bladder. Arguably, penile metastases...

  11. Positron emission tomography radioligands for in vivo imaging of Aβ plaques

    Mason, N Scott; Mathis, Chester A.; Klunk, William E

    2013-01-01

    The development of positron emission tomography (PET) radioligands for the non-invasive imaging of amyloid-β plaque burden has been the focus of intense research efforts over the last decade. A variety of structural backbones have been investigated and several radiolabeled molecules have been evaluated in phase I (and later) clinical studies. These efforts have been driven by the desire not only to develop a suitable diagnostic imaging agent but also to develop a means to evaluate potential t...

  12. [(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma

    Ratib Osman; Dipasquale Giovanna; Nouet Philippe; Rouzaud Michel; Haller Guy; Casanova Nathalie; Buchegger Franz; Zilli Thomas; Weber Damien C; Zaidi Habib; Vees Hansjorg; Miralbell Raymond

    2008-01-01

    Abstract Background To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of 18F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. Methods Nineteen patients with malignant glioma were...

  13. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki;

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  14. Positron emission tomography in cases of chorea with different underlying diseases.

    Hosokawa, S.; Ichiya, Y; Kuwabara, Y; Ayabe, Z; Mitsuo, K; Goto, I; Kato, M.

    1987-01-01

    Local cerebral metabolic rate for glucose (LCMRglc) was measured with positron emission tomography using the 18F-fluorodeoxy-glucose method in five patients with chorea due to different underlying diseases. Hypometabolism was observed in the striatum bilaterally in patients with Huntington's disease, choreoacanthocytosis, sporadic progressive chorea and dementia, and pseudo-Huntington form of dentato-rubro-pallido-luysian atrophy (DRPLA). The patient with hemichorea showed hypometabolism in t...

  15. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (13N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique

  16. Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET)

    Levin, Craig S; Virginia Ch. Spanoudaki

    2010-01-01

    We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pa...

  17. The electronics system for the LBNL positron emission tomography (PEM) camera

    Moses, W. W.; Young, J.W.; Baker, K.; Jones, W; Lenox, M.; Ho, M. H.; Weng, M.

    2000-01-01

    We describe the electronics for a high performance Positron Emission Mammography (PEM) camera. It is based on the electronics for a human brain PET camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An ASIC services the PD array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field programmable gate arrays (...

  18. Gliomatosis cerebri mimicking encephalitis evaluated using fluorine-18 fluorodeoxyglucose: Positron emission tomography/computed tomography

    Gliomatosis cerebri (GC) is a rare condition in which an infiltrative glial neoplasm spreads through the brain with preservation of the underlying structure. F-18 fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has an important role in demonstrating the appropriate metabolism and differentiating pathologies mimicking GC on CT and magnetic resonance imaging. We describe imaging findings of FDG PET/CT in GC in a 9-year-old male child mimicking encephalitis

  19. Human hemispheric infarction studied by positron emission tomography and the 15O continuous inhalation technique

    Positron emission tomography (PET) offers an entirely new approach to the study of the pathophysiology of cerebral ischemic disorders. For the first time it is possible to obtain functional tomographic images that represent cerebral perfusion and metabolism on a regional basis. We report here a study of cerebral blood flow and oxygen extraction by means of the 15O inhalation technique in a large number of human hemispheric infarctions. (orig.)

  20. Clinical Imaging Characteristics of the Positron Emission Mammography Camera: PEM Flex Solo II

    MacDonald, Lawrence; Edwards, John; Lewellen, Thomas; Haseley, David; Rogers, James; Kinahan, Paul

    2009-01-01

    We evaluated a commercial positron emission mammography (PEM) camera, the PEM Flex Solo II. This system comprises two 6 × 16.4 cm detectors that scan together covering up to a 24 × 16.4 cm field of view (FOV). There are no specific standards for testing this detector configuration. We performed several tests important to breast imaging, and we propose tests that should be included in standardized testing of PEM systems.

  1. Fluorodeoxyglucose positron emission tomography-computed tomography findings in a case of xanthogranulomatous pyelonephritis

    Joshi, Prathamesh; Lele, Vikram; Shah, Hardik

    2013-01-01

    Xanthogranulomatous pyelonephritis (XGNP) is an uncommon condition characterized by chronic suppurative renal inflammation that leads to progressive parenchymal destruction. This condition can clinically present as recurrent urinary tract infections, flank pain, hematuria, and occasionally sepsis, and weight loss. This condition is usually associated with obstructing renal calculus. We present 18-fluorodeoxyglucose positron emission tomography-computed tomography (18-FDG PET/CT) findings in a...

  2. Brain Imaging with Positron Emission Tomography: Quantification and Biomedical Applications in Alzheimer's Disease and Brain Tumors

    Wardak, Mirwais

    2013-01-01

    Positron emission tomography (PET) is a unique and powerful imaging technique that is used to visualize and quantify various biological processes in living subjects in health and disease. PET imaging can also provide biological information for the assessment of therapies. In this dissertation, we will cover three projects that utilize the quantitative capability of PET for studying two neurological disorders: Alzheimer's disease and brain tumors.One of the goals in PET imaging is to produce...

  3. Synthesis of Novel Neutrophil-Specific Imaging Agents for Positron Emission Tomography (PET) Imaging

    ZHANG Yi; Kundu, Bijoy; Fairchild, Karen D.; Locke, Landon; Berr, Stuart S.; Linden, Joel; Pan, Dongfeng

    2007-01-01

    A neutrophil specific peptide, cinnamoyl-F(D)LF(D)LFK (cFLFLFK), was conjugated consecutively with a polyethylene glycol moiety (3.4 K) and 2,2′,2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) to form cFLFLFK-PEG-DOTA. After 64Cu labeling, Positron Emission Tomography (PET) imaging was successfully able to detect mouse lung inflammation.

  4. Dynamic positron emission tomography in man using small bismuth germanate crystals

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives

  5. Identifying active vascular micro-calcification by 18F-sodium fluoride positron emission tomography

    Irkle, Agnese; Vesey, Alex T.; Lewis, David Y.; Jeremy N Skepper; Bird, Joseph L. E.; Dweck, Marc R; Joshi, Francis R.; Gallagher, Ferdia A.; Warburton, Elizabeth A; Bennett, Martin R; Kevin M. Brindle; Newby, David E; Rudd, James H.; Davenport, Anthony P.

    2015-01-01

    Vascular calcification is a complex biological process that is a hallmark of atherosclerosis. While macrocalcification confers plaque stability, microcalcification is a key feature of high-risk atheroma and is associated with increased morbidity and mortality. Positron emission tomography and X-ray computed tomography (PET/CT) imaging of atherosclerosis using 18F-sodium fluoride (18F-NaF) has the potential to identify pathologically high-risk nascent microcalcification. However, the precise m...

  6. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography

    Irkle, Agnese; Vesey, Alex T.; Lewis, David Y.; Jeremy N Skepper; Bird, Joseph L. E.; Dweck, Marc R; Joshi, Francis R.; Gallagher, Ferdia A.; Warburton, Elizabeth A; Bennett, Martin R; Kevin M. Brindle; Newby, David E; Rudd, James H.; Davenport, Anthony P.

    2015-01-01

    Vascular calcification is a complex biological process that is a hallmark of atherosclerosis. While macrocalcification confers plaque stability, microcalcification is a key feature of high-risk atheroma and is associated with increased morbidity and mortality. Positron emission tomography and X-ray computed tomography (PET/CT) imaging of atherosclerosis using (18)F-sodium fluoride ((18)F-NaF) has the potential to identify pathologically high-risk nascent microcalcification. However, the preci...

  7. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft;

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  8. Assessment of regional myocardial and renal blood flow with copper-PTSM and positron emission tomography.

    Shelton, M E; Green, M A; Mathias, C J; Welch, M J; Bergmann, S R

    1990-09-01

    We recently demonstrated in isolated, perfused hearts that radiolabeled pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II) (Cu-PTSM) is well extracted throughout a range of conditions including ischemia, hypoxia, and hyperemia. Once extracted, binding of radioactivity by the isolated heart was essentially irreversible, giving this tracer microspherelike qualities. Because Cu-PTSM can be readily prepared with the generator-produced positron-emitting copper 62 and other gamma- or positron-emitting copper radionuclides, we evaluated its usefulness for measuring regional myocardial and renal blood flow in vivo in intact dogs at rest, after ischemia, or after coronary hyperemia was induced by intravenous administration of dipyridamole. After intravenous administration of radiolabeled Cu-PTSM, the tracer cleared rapidly from the blood. Myocardial uptake of single photon-emitting 67Cu-labeled Cu-PTSM was measured directly in myocardial samples 15 minutes after tracer administration, and it increased proportionally with blood flow throughout the flow range (estimated concomitantly with radiolabeled microspheres) of 0.0-6.0 ml/g/min (n = 340 samples from 17 dogs, r = 0.99, Ycopper radioactivity = 85Xmicrosphere flow -7 chi 2 + 17). Renal uptake of radiolabeled Cu-PTSM was also proportional to blood flow. Positron emission tomography was performed in four intact dogs after intravenous administration of 64Cu-labeled Cu-PTSM (19% positron decay, t1/2 = 12.8 hours). High-quality images of heart and kidney were obtained. Accordingly, radiolabeled Cu-PTSM should be a useful, generator-produced tracer for estimating regional myocardial and renal blood flow with positron emission tomography. PMID:2394015

  9. Tomography by positrons emission: integral unit to the service of Mexico; Tomografia por emision de positrones: unidad integral al servicio de Mexico

    Lopez D, F.A. [Unidad PET-Ciclotron, Facultad de Medicina, UNAM (Mexico)]. e-mail: fred-alonso@correo.unam.mx

    2005-07-01

    The applications of the Positron emission tomography (PET) together with the one radiopharmaceutical 2 - [{sup 18} F]-fluoro-2-deoxy-D-glucose in the area of the medical imaging is expanding quickly and it possesses a bigger impact at the moment in favor of those patient to who suffers an oncological, cardiac or neurological illness in Mexico. (Author)

  10. A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment

    del Campo, Natalia; Fryer, Tim D; Hong, Young T.; Smith, Rob; Brichard, Laurent; Acosta-Cabronero, Julio; Chamberlain, Samuel R.; Tait, Roger; Izquierdo, David; Regenthal, Ralf; Dowson, Jonathan; Suckling, John; Baron, Jean-Claude; Aigbirhio, Franklin I.; Robbins, Trevor W.

    2013-01-01

    Through the combined use of 18F-fallypride positron emission tomography and magnetic resonance imaging this study examined the neural mechanisms underlying the attentional deficits associated with attention deficit/hyperactivity disorder and their potential reversal with a single therapeutic dose of methylphenidate. Sixteen adult patients with attention deficit/hyperactivity disorder and 16 matched healthy control subjects were positron emission tomography and magnetic resonance imaging scann...