WorldWideScience

Sample records for 18f-flt human brain

  1. [18F]FDG and [18F]FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice

    Belinostat is a histone deacetylase inhibitor with anti-tumor effect in several pre-clinical tumor models and clinical trials. The aim of the study was to evaluate changes in cell proliferation and glucose uptake by use of 3’-deoxy-3’-[18F]fluorothymidine ([18F]FLT) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) following treatment with belinostat in ovarian cancer in vivo models. In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) were studied after treatment with belinostat. Mice were divided in 2 groups receiving either belinostat (40 mg/kg ip twice daily Day 0–4 and 6–10) or vehicle. Baseline [18F]FLT or [18F]FDG scans were made before treatment (Day 0) and repeated at Day 3, 6 and 10. Tracer uptake was quantified using small animal PET/CT. Tumors in the belinostat group had volumes that were 462 ± 62% (640 mm3) at Day 10 relative to baseline which was significantly different (P = 0.011) from the control group 769 ± 74% (926 mm3). [18F]FLT SUVmax increased from baseline to Day 10 (+30 ± 9%; P = 0.048) in the control group. No increase was observed in the treatment group. [18F]FDG SUVmean was significantly different in the treatment group compared to the control group (P = 0.0023) at Day 10. Within treatment groups [18F]FDG uptake and to a lesser extent [18F]FLT uptake at Day 3 were significantly correlated with tumor growth at Day 10. [18F]FDG uptake early following treatment initiation predicted tumor sizes at Day 10, suggesting that [18F]FDG may be a valuable biomarker for non-invasive assessment of anti-tumor activity of belinostat

  2. 18F-FLT and 18F-FDOPA PET kinetics in recurrent brain tumors

    In this study, kinetic parameters of the cellular proliferation tracer 18F-3'-deoxy-3'-fluoro-l-thymidine (FLT) and the amino acid probe 3,4-dihydroxy-6-18F-fluoro-l-phenylalanine (FDOPA) were measured before and early after the start of therapy, and were used to predict the overall survival (OS) of patients with recurrent malignant glioma using multiple linear regression (MLR) analysis. High-grade recurrent brain tumors in 21 patients (11 men and 10 women, age range 26 - 76 years) were investigated. Each patient had three dynamic PET studies with each probe: at baseline and after 2 and 6 weeks from the start of treatment. Treatment consisted of biweekly cycles of bevacizumab (an angiogenesis inhibitor) and irinotecan (a chemotherapeutic agent). For each study, about 3.5 mCi of FLT (or FDOPA) was administered intravenously and dynamic PET images were acquired for 1 h (or 35 min for FDOPA). A total of 126 PET scans were analyzed. A three-compartment, two-tissue model was applied to estimate tumor FLT and FDOPA kinetic rate constants using a metabolite- and partial volume-corrected input function. MLR analysis was used to model OS as a function of FLT and FDOPA kinetic parameters for each of the three studies as well as their relative changes between studies. An exhaustive search of MLR models using three or fewer predictor variables was performed to find the best models. Kinetic parameters from FLT were more predictive of OS than those from FDOPA. The three-predictor MLR model derived using information from both probes (adjusted R2 = 0.83) fitted the OS data better than that derived using information from FDOPA alone (adjusted R2 = 0.41), but was only marginally different from that derived using information from FLT alone (adjusted R2 = 0.82). Standardized uptake values (either from FLT alone, FDOPA alone, or both together) gave inferior predictive results (best adjusted R2 = 0.25). For recurrent malignant glioma treated with bevacizumab and irinotecan, FLT kinetic

  3. [18F]FLT PET for Non-Invasive Assessment of Tumor Sensitivity to Chemotherapy: Studies with Experimental Chemotherapy TP202377 in Human Cancer Xenografts in Mice

    Jensen, Mette Munk; Erichsen, Kamille Dumong; Björkling, Fredrik;

    2012-01-01

    3'-deoxy-3'-[¹⁸F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of the study was to use [18F]FLT positron emission tomography (PET) to study non-invasively early anti-proliferative effects of the experimental chemotherapeutic agent TP202377 in both sensi...

  4. Toxicology evaluation of radiotracer doses of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) for human PET imaging: Laboratory analysis of serial blood samples and comparison to previously investigated therapeutic FLT doses

    18F-FLT is a novel PET radiotracer which has demonstrated a strong potential utility for imaging cellular proliferation in human tumors in vivo. To facilitate future regulatory approval of 18F-FLT for clinical use, we wished to demonstrate the safety of radiotracer doses of 18F-FLT administered to human subjects, by: 1) performing an evaluation of the toxicity of 18F-FLT administered in radiotracer amounts for PET imaging, 2) comparing a radiotracer dose of FLT to clinical trial doses of FLT. Twenty patients gave consent to a 18F-FLT injection, subsequent PET imaging, and blood draws. For each patient, blood samples were collected at multiple times before and after 18F-FLT PET. These samples were assayed for a comprehensive metabolic panel, total bilirubin, complete blood and platelet counts. 18F-FLT doses of 2.59 MBq/Kg with a maximal dose of 185 MBq (5 mCi) were used. Blood time-activity curves were generated for each patient from dynamic PET data, providing a measure of the area under the FLT concentration curve for 12 hours (AUC12). No side effects were reported. Only albumin, red blood cell count, hematocrit and hemoglobin showed a statistically significant decrease over time. These changes are attributed to IV hydration during PET imaging and to subsequent blood loss at surgery. The AUC12 values estimated from imaging data are not significantly different from those found from serial measures of FLT blood concentrations (p = 0.66). The blood samples-derived AUC12 values range from 0.232 ng*h/mL to 1.339 ng*h/mL with a mean of 0.802 ± 0.303 ng*h/mL. This corresponds to 0.46% to 2.68% of the lowest and least toxic clinical trial AUC12 of 50 ng*h/mL reported by Flexner et al (1994). This single injection also corresponds to a nearly 3,000-fold lower cumulative dose than in Flexner's twice daily trial. This study shows no evidence of toxicity or complications attributable to 18F-FLT injected intravenously

  5. 18F-FDG and 18F-FLT-PET imaging for monitoring everolimus effect on tumor-growth in neuroendocrine tumors: studies in human tumor xenografts in mice.

    Camilla Bardram Johnbeck

    Full Text Available The mTOR inhibitor everolimus has shown promising results in some but not all neuroendocrine tumors. Therefore, early assessment of treatment response would be beneficial. In this study, we investigated the in vivo and in vitro treatment effect of everolimus in neuroendocrine tumors and evaluated the performance of 18F-FDG and the proliferation tracer 18F-FLT for treatment response assessment by PET imaging.The effect of everolimus on the human carcinoid cell line H727 was examined in vitro with the MTT assay and in vivo on H727 xenograft tumors. The mice were scanned at baseline with 18F-FDG or 18F-FLT and then treated with either placebo or everolimus (5 mg/kg daily for 10 days. PET/CT scans were repeated at day 1,3 and 10.Everolimus showed significant inhibition of H727 cell proliferation in vitro at concentrations above 1 nM. In vivo tumor volumes measured relative to baseline were significantly lower in the everolimus group compared to the control group at day 3 (126±6% vs. 152±6%; p = 0.016, day 7 (164±7% vs. 226±13%; p<0.001 and at day 10 (194±10% vs. 281±18%; p<0.001. Uptake of 18F-FDG and 18F-FLT showed little differences between control and treatment groups, but individual mean uptake of 18F-FDG at day 3 correlated with tumor growth day 10 (r2 = 0.45; P = 0.034, 18F-FLT mean uptake at day 1 correlated with tumor growth day 7 (r2 = 0.63; P = 0.019 and at day 3 18F-FLT correlated with tumor growth day 7 (r2 = 0.87; P<0.001 and day 10 (r2 = 0.58; P = 0.027.Everolimus was effective in vitro and in vivo in human xenografts lung carcinoid NETs and especially early 18F-FLT uptake predicted subsequent tumor growth. We suggest that 18F-FLT PET can be used for tailoring therapy for neuroendocrine tumor patients through early identification of responders and non-responders.

  6. Histopathologic validation of 3′-deoxy-3′-18F-fluorothymidine PET for detecting tumor repopulation during fractionated radiotherapy of human FaDu squamous cell carcinoma in nude mice18F-FLT PET repopulation -->

    Background and purpose: FaDu human squamous cell carcinoma (FaDu-hSCC) demonstrates accelerated tumor repopulation during fractionated irradiation with pathological validation (Ki-67 and BrdUrd makers) in a xenograft model system. However, these and other functional assays must be performed ex vivo and post hoc. We propose a novel, in vivo, real-time assay utilizing 18F-FLT PET. Material and methods: Nude mice with FaDu-hSCC were irradiated with 12 or 18 fractions of 1.8 Gy ([Dm] = 3.0 Gy), either daily or every second day. 18F-FLT micro-PET scans were performed at different time points, FLT parameters (SUVmax, SUVmean, and T/NT) were measured. Tumor sections were stained for Ki-67 and BrdUrd, a labeling index (LI) was calculated. Imaging-pathology correlation was determined by comparing FLT parameters and immunohistochemical results. Results: Measured SUVmax, SUVmean and T/NT decreased significantly after daily irradiation with 12 fractions in 12 days (P < 0.05) and 18 fractions in 18 days (P < 0.05). In contrast, these parameters increased in mice treated with 12 fractions in 24 days (P > 0.05) and 18 fractions in 36 days (P > 0.05), suggesting accelerated repopulation. Similarly, Ki-67 and BrdUrd LIs demonstrated significant decreases with daily irradiation (P < 0.05), and increases with every-second-day irradiation (P > 0.05). 18F-FLT parameters correlated strongly with proliferation markers (r2: 0.679–0.879, P < 0.001). Conclusions: 18F-FLT parameters were in good agreement with Ki-67 and BrdUrd Li. These results may support a potential role for 18F-FLT PET in real-time detection of tumor repopulation during fractionated radiotherapy

  7. {sup 18}F-FLT and {sup 18}F-FDOPA PET kinetics in recurrent brain tumors

    Wardak, Mirwais; Schiepers, Christiaan; Dahlbom, Magnus; Phelps, Michael E.; Huang, Sung-Cheng [David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); Cloughesy, Timothy F. [David Geffen School of Medicine at UCLA, Department of Neurology, Los Angeles, CA (United States)

    2014-06-15

    In this study, kinetic parameters of the cellular proliferation tracer {sup 18}F-3'-deoxy-3'-fluoro-l-thymidine (FLT) and the amino acid probe 3,4-dihydroxy-6-{sup 18}F-fluoro-l-phenylalanine (FDOPA) were measured before and early after the start of therapy, and were used to predict the overall survival (OS) of patients with recurrent malignant glioma using multiple linear regression (MLR) analysis. High-grade recurrent brain tumors in 21 patients (11 men and 10 women, age range 26 - 76 years) were investigated. Each patient had three dynamic PET studies with each probe: at baseline and after 2 and 6 weeks from the start of treatment. Treatment consisted of biweekly cycles of bevacizumab (an angiogenesis inhibitor) and irinotecan (a chemotherapeutic agent). For each study, about 3.5 mCi of FLT (or FDOPA) was administered intravenously and dynamic PET images were acquired for 1 h (or 35 min for FDOPA). A total of 126 PET scans were analyzed. A three-compartment, two-tissue model was applied to estimate tumor FLT and FDOPA kinetic rate constants using a metabolite- and partial volume-corrected input function. MLR analysis was used to model OS as a function of FLT and FDOPA kinetic parameters for each of the three studies as well as their relative changes between studies. An exhaustive search of MLR models using three or fewer predictor variables was performed to find the best models. Kinetic parameters from FLT were more predictive of OS than those from FDOPA. The three-predictor MLR model derived using information from both probes (adjusted R{sup 2} = 0.83) fitted the OS data better than that derived using information from FDOPA alone (adjusted R{sup 2} = 0.41), but was only marginally different from that derived using information from FLT alone (adjusted R{sup 2} = 0.82). Standardized uptake values (either from FLT alone, FDOPA alone, or both together) gave inferior predictive results (best adjusted R{sup 2} = 0.25). For recurrent malignant glioma treated

  8. [18F]FDG and [18F]FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice

    Jensen, Mette Munk; Erichsen, Kamille Dumong; Johnbeck, Camilla Bardram;

    2013-01-01

    Belinostat is a histone deacetylase inhibitor with anti-tumor effect in several pre-clinical tumor models and clinical trials. The aim of the study was to evaluate changes in cell proliferation and glucose uptake by use of 3'-deoxy-3'-[(18)F]fluorothymidine ([18F]FLT) and 2-deoxy-2-[(18)F]fluoro-...

  9. [18F]FLT and [18F]FDG PET for non-invasive treatment monitoring of the nicotinamide phosphoribosyltransferase inhibitor APO866 in human xenografts

    Erichsen, Kamille Dumong; Johnbeck, Camilla Bardram; Björkling, Fredrik;

    2013-01-01

    APO866 is a new anti-tumor compound inhibiting nicotinamide phosphoribosyltransferase (NAMPT). APO866 has an anti-tumor effect in several pre-clinical tumor models and is currently in several clinical phase II studies. 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell pr...

  10. Evaluation of 3'-deoxy-3'-[18F]-fluorothymidine (18F-FLT) kinetics correlated with thymidine kinase-1 expression and cell proliferation in newly diagnosed gliomas

    The thymidine analog 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) has been developed as a positron emission tomography (PET) tracer to assess the proliferation activity of tumors in vivo. The present study investigated the relationship between the kinetic parameters of 18F-FLT in vivo and thymidine kinase-1 (TK-1) expression and cell proliferation rate in vitro, and blood-brain barrier (BBB) breakdown in human brain gliomas. A total of 21 patients with newly diagnosed gliomas were examined by 18F-FLT PET kinetic analysis. Maximum standardized uptake value (SUVmax) and tumor-to-normal (T/N) ratio of 18F-FLT in the tumor and 18F-FLT kinetic parameters in the corresponding contralateral region were determined. The expression levels of TK-1 protein and mRNA were determined by immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR), respectively, using surgical specimens. The cell proliferation rate of the tumor was determined in terms of the Ki-67 labeling index. BBB breakdown was evaluated on MR images with contrast enhancement. 18F-FLT SUVmax and T/N ratio were significantly correlated with the influx rate constant (K1; P = 0.001 and P 3). IHC and real-time PCR studies demonstrated a significant correlation between K1 and TK-1 mRNA expression (P = 0.001), but not between k3 and TK-1 protein and mRNA expression. Linear regression analysis revealed a significant correlation between K1 and the Ki-67 index (P = 0.003), but not between k3 and the Ki-67 index. TK-1 mRNA expression was significantly correlated with the Ki-67 index (P = 0.009). 18F-FLT SUVmax and T/N ratio were significantly correlated with BBB breakdown evaluated by contrast enhancement in MR images (P = 0.003 and P = 0.011, respectively). These results indicate that 18F-FLT uptake in the tumor is significantly related to transport through the disrupted BBB, but not through phosphorylation activity. Although the tissue TK-1 expression reflects tumor proliferation activity, the phosphorylation

  11. A Pilot Study of 18F-FLT PET/CT in Pediatric Lymphoma.

    Costantini, Danny L; Vali, Reza; McQuattie, Susan; Chan, Jeffrey; Punnett, Angela; Weitzman, Shiela; Shammas, Amer; Charron, Martin

    2016-01-01

    We performed an observational pilot study of 18F-FLT PET/CT in pediatric lymphoma. Eight patients with equivocal 18F-FDG PET/CT underwent imaging with 18F-FLT PET/CT. No immediate adverse reactions to 18F-FLT were observed. Compared to 18F-FDG, 18F-FLT uptake was significantly higher in bone marrow and liver (18F-FLT SUV 8.6 ± 0.6 and 5.0 ± 0.3, versus 18F-FDG SUV 1.9 ± 0.1 and 3.4 ± 0.7, resp., p SUVs of 2.6 ± 0.1 and 2.0 ± 0.4, respectively. Nonspecific uptake in reactive lymph nodes and thymus was observed. Future studies to assess the clinical utility of 18F-FLT PET/CT in pediatric lymphoma are planned. PMID:27313888

  12. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT) in pancreatic cancer cell lines

    Here we report the expression of major pyrimidine metabolising enzymes in pancreatic cancer cell lines, chronic pancreatitis tissue and human pancreatic cancer and the in vitro uptake of 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT). The expression of pyrimidine metabolising enzymes was evaluated with real-time PCR, Western blot and immunostaining. Thymidine kinase 1 (TK-1) activity was measured with a fluorocytometric assay. The cellular uptake and intracellular metabolism of [18F]FLT were evaluated in pancreatic lobules and in transformed cancer cell lines. TK-1 and thymidine synthetase mRNA were increased in six pancreatic cancer cell lines, while mRNA levels of thymidine kinase 2 and deoxycytidine kinase were down-regulated. High TK-1 activity was confirmed in all cell lines. Furthermore, TK-1 was overexpressed in human pancreatic cancer as compared with normal pancreatic tissue and samples from patients with chronic pancreatitis. The cellular uptake of [18F]FLT was 18.4%±3.6% and 5.2%±1.4% of the applied radioactivity after 240 min in SW-979 and BxPc-3 cells, respectively, while uptake of [18F]fluorodeoxyglucose ([18F]FDG) was only 0.6%±0.04% (SW-979) and 0.3%±0.13% (BxPc-3) after 240 min of incubation. In contrast, cellular uptake of [18F]FLT in isolated pancreatic lobules and growth-arrested HT1080 cells was lower as compared with the uptake of [18F]FDG and with the malignant pancreatic cancer cell lines. HPLC analysis of the perchloric acid-soluble cell fraction demonstrated the phosphorylation of [18F]FLT to the respective monophosphate in both cell lines. Furthermore, 0.8%±0.12% (BxPc-3) and 1.3%±0.38% (SW-979) of the applied radioactivity was detected in the perchloric acid-insoluble cell fraction, indicating the incorporation of [18F]FLT into the DNA. Our results demonstrate the cellular uptake, intracellular trapping and incorporation into the DNA of [18F]FLT in pancreatic cancer cells in vitro. TK-1, as the rate-limiting enzyme of [18F]FLT

  13. 18FDG, [18F]FLT, [18F]FAZA, and 11C-Methionine Are Suitable Tracers for the Diagnosis and In Vivo Follow-Up of the Efficacy of Chemotherapy by miniPET in Both Multidrug Resistant and Sensitive Human Gynecologic Tumor Xenografts

    György Trencsényi

    2014-01-01

    Full Text Available Expression of multidrug pumps including P-glycoprotein (MDR1, ABCB1 in the plasma membrane of tumor cells often results in decreased intracellular accumulation of anticancer drugs causing serious impediment to successful chemotherapy. It has been shown earlier that combined treatment with UIC2 anti-Pgp monoclonal antibody (mAb and cyclosporine A (CSA is an effective way of blocking Pgp function. In the present work we investigated the suitability of four PET tumor diagnostic radiotracers including 2-[18F]fluoro-2-deoxy-D-glucose (18FDG, 11C-methionine, 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT, and [18F]fluoroazomycin-arabinofuranoside (18FAZA for in vivo follow-up of the efficacy of chemotherapy in both Pgp positive (Pgp+ and negative (Pgp− human tumor xenograft pairs raised in CB-17 SCID mice. Pgp+ and Pgp− A2780AD/A2780 human ovarian carcinoma and KB-V1/KB-3-1 human epidermoid adenocarcinoma tumor xenografts were used to study the effect of the treatment with an anticancer drug doxorubicin combined with UIC2 and CSA. The combined treatment resulted in a significant decrease of both the tumor size and the accumulation of the tumor diagnostic tracers in the Pgp+ tumors. Our results demonstrate that 18FDG, 18F-FLT, 18FAZA, and 11C-methionine are suitable PET tracers for the diagnosis and in vivo follow-up of the efficacy of tumor chemotherapy in both Pgp+ and Pgp− human tumor xenografts by miniPET.

  14. A Pilot Study of 18F-FLT PET/CT in Pediatric Lymphoma

    Danny L. Costantini

    2016-01-01

    Full Text Available We performed an observational pilot study of 18F-FLT PET/CT in pediatric lymphoma. Eight patients with equivocal 18F-FDG PET/CT underwent imaging with 18F-FLT PET/CT. No immediate adverse reactions to 18F-FLT were observed. Compared to 18F-FDG, 18F-FLT uptake was significantly higher in bone marrow and liver (18F-FLT SUV 8.6±0.6 and 5.0±0.3, versus 18F-FDG SUV 1.9±0.1 and 3.4±0.7, resp., p<0.05. In total, 15 lesions were evaluated with average 18F-FDG and 18F-FLT SUVs of 2.6±0.1 and 2.0±0.4, respectively. Nonspecific uptake in reactive lymph nodes and thymus was observed. Future studies to assess the clinical utility of 18F-FLT PET/CT in pediatric lymphoma are planned.

  15. Early changes in [{sup 18}F]FLT uptake after chemotherapy: an experimental study

    Dittmann, Helmut; Dohmen, Bernhard Matthias; Bartusek, Gabi; Pritzkow, Maren; Bares, Roland [Department of Nuclear Medicine, Eberhard-Karls-University, Roentgenweg 13, 72076 Tuebingen (Germany); Kehlbach, Rainer [Department of Diagnostic Radiology, Eberhard-Karls-University, Tuebingen (Germany); Sarbia, Mario [Institute of Pathology, Heinrich-Heine-University, Duesseldorf (Germany)

    2002-11-01

    This study evaluated the use of 3'-deoxy-3'-[{sup 18}F]fluorothymidine ([{sup 18}F]FLT) for monitoring of the early effects of anticancer chemotherapy on tumour cell proliferation. Cells derived from human oesophageal squamous cell carcinoma (OSC-1) were grown for 2 days and incubated with cisplatin (CDDP), 5-fluorouracil (5-FU), methotrexate (MTX) or gemcitabine (GEM) for 4 h. Cultures were incubated with drug doses (CDDP: 0.67, 6.7, 67 {mu}M; 5-FU 15.4, 154, 1,540 {mu}M; MTX: 4.4, 44, 440 {mu}M; GEM: 0.0067, 0.067, 0.67 {mu}M) corresponding to approximately 10%-95% proliferation inhibition (MTX: 10%-75%). Treatment was stopped and cells were allowed to recover for 4, 24 or 72 h. [{sup 18}F]FLT was added for 10-180 min. Control cultures were incubated with [{sup 18}F]fluorodeoxyglucose (FDG). Cell counts, viability, clonogenic activity and cell cycle distribution estimated by flow cytometry were used to evaluate the cytotoxic effects of chemotherapy. Strikingly, FLT uptake per 10{sup 5} viable cells was increased seven- to tenfold 24 h after treatment with 5-FU or MTX irrespective of dose. Thus, total FLT uptake per tissue culture exceeded that of controls despite a considerable decrease in overall cell counts due to cytostasis up to 72 h after treatment. 5-FU-treated cells showed accumulation in early S phase (overall S phase: 88% vs 42%). GEM treatment resulted in a more moderate increase in total FLT accumulation, to a maximum of fivefold at the dose close to the IC{sub 50}. In contrast, FLT accumulation was significantly reduced at cytostatic concentrations of CDDP and was still decreasing in a dose-related manner at 72 h despite considerable S phase arrest. With 5-FU or CDDP, the uptake of FDG did not differ significantly from control values 24 h after treatment. These findings demonstrate that tumour cell uptake of FLT - in contrast to that of FDG - reveals specific changes depending on the cytostatic drug used for treatment. The antimetabolites 5

  16. Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT

    The aim of this study was to determine whether the thymidine analogue 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) is adequate for early evaluation of the response of malignant lymphoma to antiproliferative treatment in a mouse xenotransplant model. Immunodeficient mice bearing a follicular lymphoma xenotransplant were treated with high-dose chemotherapy (cyclophosphamide, n 10), immunotherapy (CD20 mAb, ibritumomab-tiuxetan, n = 10) or radioimmunotherapy ([90Y]CD20 mAb, Zevalin, n = 10). Forty-eight hours after treatment, antiproliferative effects were assessed with [18F]FLT. Ninety minutes after i.v. injection of 5-10 MBq [18F]FLT, mice were sacrificed and radioactivity within the tumour and normal organs was measured using a gamma counter and calculated as % ID/g. The proliferation fraction in tissue samples derived from treated and untreated tumours was evaluated by Ki-67 immunohistochemistry, which served as the reference for proliferative activity. In untreated lymphoma, the mean proliferation fraction was 83.6%. After chemotherapy, the mean proliferation fraction decreased to 39.3% (p = 0.0001), after immunotherapy to 77.6% (p = 0.0078) and after radioimmunotherapy to 78.8% (p = 0.014). In none of the animals was a significant change in tumour size observed. In untreated lymphoma, tumoural [18F]FLT uptake was 5.4% ID/g, after chemotherapy it was 1.5% (p = 0.0005), after immunotherapy, 3.9% (non-significant), and after radioimmunotherapy, 5.8% (non-significant). In a lymphoma xenotransplant model, [18F]FLT detects early antiproliferative drug activity before changes in tumour size are visible. These findings further support the use of [18F]FLT-PET for imaging early response to treatment in malignant lymphoma. (orig.)

  17. [{sup 18}F]FLT is superior to [{sup 18}F]FDG for predicting early response to antiproliferative treatment in high-grade lymphoma in a dose-dependent manner

    Graf, Nicolas [Technische Universitaet Muenchen, Department of Hematology/Oncology, Munich (Germany); Schoen Klinik Starnberger See, Department of Hematology and Oncology, Berg (Germany); Herrmann, Ken; Numberger, Barbara; Zwisler, Daniela; Wester, Hans-Juergen; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Aichler, Michaela; Feuchtinger, Annette [Technische Universitaet Muenchen, Institute of Pathology (Helmholtz Zentrum Muenchen), Munich (Germany); Schuster, Tibor [Technische Universitaet Muenchen, Institute of Medical Statistics and Epidemiology, Munich (Germany); Peschel, Christian; Keller, Ulrich; Dechow, Tobias [Technische Universitaet Muenchen, Department of Hematology/Oncology, Munich (Germany); Buck, Andreas K. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Universitaetsklinikum Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany)

    2013-01-15

    Positron emission tomography (PET) with the thymidine analogue [{sup 18}F]fluorothymidine ([{sup 18}F]FLT) has been shown to detect early response to chemotherapy in high-grade lymphoma. In this preclinical in vitro and in vivo study we compared [{sup 18}F]FLT to the glucose analogue [{sup 18}F]fluorodeoxyglucose ([{sup 18}F]FDG) regarding dose-dependent visualization and prediction of early therapy response. Immunodeficient mice bearing human diffuse large B-cell lymphoma (SUDHL-4) xenotransplants were treated intraperitoneally with increasing doses of the cytotoxic agent doxorubicin. Metabolic and antiproliferative effects were assessed 2 days after therapy by [{sup 18}F]FLT and [{sup 18}F]FDG PET. Explanted lymphomas were analysed histologically and by immunostaining against Ki67 and caspase 3. In vitro, lymphoma cells were incubated with increasing concentrations of doxorubicin and analysed using the tetrazolium assay, fluorescence-activated cell sorting, and [{sup 18}F]FLT and [{sup 18}F]FDG uptake 48 h later. In vivo, tumour growth was inhibited by doses of doxorubicin ranging from 25 {mu}g to 200 {mu}g. The mean tumour-to-background ratio (TBR) of [{sup 18}F]FLT on day +2 was significantly reduced in all dose groups compared to control and baseline values and preceded changes in tumour volume. Importantly, there was a significant inverse correlation between reduction in TBR and dose of chemotherapy (r = -0.54, p = 0.021). The mean TBR of [{sup 18}F]FDG, however, increased after therapy and differed considerably between groups (r = -0.13, p = 0.668). Explanted tumours showed a dose-dependent decrease in the proliferation marker Ki67, but no change in the apoptotic marker caspase 3. In vitro, doxorubicin led to a dose-dependent reduction in cell viability and a decrease in S phase. Lymphoma cells showed a dose-dependent reduction in [{sup 18}F]FLT uptake, in contrast to a variable and decelerated reduction in [{sup 18}F]FDG uptake. Thus, the increase in [{sup

  18. [18F]FLT is superior to [18F]FDG for predicting early response to antiproliferative treatment in high-grade lymphoma in a dose-dependent manner

    Positron emission tomography (PET) with the thymidine analogue [18F]fluorothymidine ([18F]FLT) has been shown to detect early response to chemotherapy in high-grade lymphoma. In this preclinical in vitro and in vivo study we compared [18F]FLT to the glucose analogue [18F]fluorodeoxyglucose ([18F]FDG) regarding dose-dependent visualization and prediction of early therapy response. Immunodeficient mice bearing human diffuse large B-cell lymphoma (SUDHL-4) xenotransplants were treated intraperitoneally with increasing doses of the cytotoxic agent doxorubicin. Metabolic and antiproliferative effects were assessed 2 days after therapy by [18F]FLT and [18F]FDG PET. Explanted lymphomas were analysed histologically and by immunostaining against Ki67 and caspase 3. In vitro, lymphoma cells were incubated with increasing concentrations of doxorubicin and analysed using the tetrazolium assay, fluorescence-activated cell sorting, and [18F]FLT and [18F]FDG uptake 48 h later. In vivo, tumour growth was inhibited by doses of doxorubicin ranging from 25 μg to 200 μg. The mean tumour-to-background ratio (TBR) of [18F]FLT on day +2 was significantly reduced in all dose groups compared to control and baseline values and preceded changes in tumour volume. Importantly, there was a significant inverse correlation between reduction in TBR and dose of chemotherapy (r = -0.54, p = 0.021). The mean TBR of [18F]FDG, however, increased after therapy and differed considerably between groups (r = -0.13, p = 0.668). Explanted tumours showed a dose-dependent decrease in the proliferation marker Ki67, but no change in the apoptotic marker caspase 3. In vitro, doxorubicin led to a dose-dependent reduction in cell viability and a decrease in S phase. Lymphoma cells showed a dose-dependent reduction in [18F]FLT uptake, in contrast to a variable and decelerated reduction in [18F]FDG uptake. Thus, the increase in [18F]FDG uptake in vivo presumably reflected nonspecific glucose metabolism of

  19. Early assessment of therapy response in malignant lymphoma with the thymidine analogue [{sup 18}F]FLT

    Buck, Andreas K. [University Hospital Ulm, Department of Nuclear Medicine, Ulm (Germany); Technical University Munich, Department of Nuclear Medicine, Munich (Germany); Kratochwil, Clemens; Glatting, Gerhard; Tepsic, Djurdja; Vogg, Andreas T.J.; Neumaier, Bernd; Reske, Sven N. [University Hospital Ulm, Department of Nuclear Medicine, Ulm (Germany); Juweid, Malik [University of Iowa, Department of Radiology and Holden Comprehensive Cancer Center, Iowa City, IA (United States); Bommer, Martin [University Hospital Ulm, Department of Haematology, Ulm (Germany); Mattfeldt, Torsten; Moeller, Peter [University Hospital Ulm, Institute of Pathology, Ulm (Germany)

    2007-11-15

    The aim of this study was to determine whether the thymidine analogue 3'-deoxy-3'-[{sup 18}F]fluorothymidine ([{sup 18}F]FLT) is adequate for early evaluation of the response of malignant lymphoma to antiproliferative treatment in a mouse xenotransplant model. Immunodeficient mice bearing a follicular lymphoma xenotransplant were treated with high-dose chemotherapy (cyclophosphamide, n = 10), immunotherapy (CD20 mAb, ibritumomab-tiuxetan, n = 10) or radioimmunotherapy ([{sup 90}Y]CD20 mAb, Zevalin, n = 10). Forty-eight hours after treatment, antiproliferative effects were assessed with [{sup 18}F]FLT. Ninety minutes after i.v. injection of 5-10 MBq [{sup 18}F]FLT, mice were sacrificed and radioactivity within the tumour and normal organs was measured using a gamma counter and calculated as % ID/g. The proliferation fraction in tissue samples derived from treated and untreated tumours was evaluated by Ki-67 immunohistochemistry, which served as the reference for proliferative activity. In untreated lymphoma, the mean proliferation fraction was 83.6%. After chemotherapy, the mean proliferation fraction decreased to 39.3% (p = 0.0001), after immunotherapy to 77.6% (p = 0.0078) and after radioimmunotherapy to 78.8% (p = 0.014). In none of the animals was a significant change in tumour size observed. In untreated lymphoma, tumoural [{sup 18}F]FLT uptake was 5.4% ID/g, after chemotherapy it was 1.5% (p = 0.0005), after immunotherapy, 3.9% (non-significant), and after radioimmunotherapy, 5.8% (non-significant). In a lymphoma xenotransplant model, [{sup 18}F]FLT detects early antiproliferative drug activity before changes in tumour size are visible. These findings further support the use of [{sup 18}F]FLT-PET for imaging early response to treatment in malignant lymphoma. (orig.)

  20. Comparative study of 18F-FLT PET and 18F-FDG PET of lung cancer

    Xi LIU

    2011-12-01

    Full Text Available Objective The current paper aims to investigate the value of 18F-FLT PET in the diagnosis of lung cancer and the monitoring of tumor proliferation.Methods A total of 36 patients received and cured by the General Hospital of Chinese PLA from September 2005 to October 2008(27 males and 9 females,aged 38 years to 74 years with chest CT suspected lung cancer were examined with 18F-FLT PET.Up to 42 patients(29 males and 13 females,aged 37 years to 75 years received and cured at the same time also underwent 18F-FDG PET.The current experimental results were compared with that of the tumor pathology.Immunohistochemistry was used to measure the expression of cell nuclear antigen of excisional disease tissues Ki-67.Results The 18F-FDG PET standardize uptake value(SUV of lung cancer(SUV,5.2±2.9 was higher than that of the 18F-FLT PET SUV(3.2±1.3(P < 0.05.The sensitivity of 18F-FLT PET for the detection of primary lung cancer was 77%,the specificity was 86%,and the accuracy was 78%.The sensitivity,specificity,and accuracy of 18F-FDG PET were 88%,50%,and 79%,respectively.The sensitivity,specificity,and accuracy for the lymph node staging with 18F-FLT PET were 47%,88% and 75%,respectively,compared with the 68%,84%,and 79% for 18F-FDG PET,respectively.18F-FLT SUV of lung cancer was positively correlated with the Ki-67 index(r=0.8278,P < 0.001 than that of 18F-FDG SUV(r=0.0079,P=0.968.Conclusions 18F-FLT can be made to uptake by specificity of lung cancer tissue,and its uptake value is correlated significantly with the proliferation of lung cancer.Therefore,18F-FLT PET can be applied to assist the diagnosis of lung tumor,and is expected to be a tool to determine the proliferation activity of tumor cells.

  1. Evaluation of 18F-FDG and 18F-FLT for monitoring therapeutic responses of colorectal cancer cells to radiotherapy

    In order to compare the efficacy of 18F-fluorothymidine (FLT) and 18F-fluorodeoxyglucose (FDG) for monitoring early responses to irradiation, two human colorectal cancer (CRC) cell lines SW480 and SW620, which were derived from the primary lesions and the metastatic lymph node, underwent X-ray irradiation of 0, 10, or 20 Gy and were examined at 0, 24 and 72 h After irradiation, reduced proliferation of both SW480 and SW620 cells was observed in a dose-dependent manner (P < 0.001), G0-G1 arrest was also noted in both cell types after 72 h in the 20 Gy group (P < 0.001). Although increased apoptosis was observed in both cell lines after irradiation (P < 0.001), a greater percentage of SW480 cells underwent apoptosis in response to irradiation than SW620 cells. Increased Hsp27 and decreased integrin β3, Ki67 and VEGFR2 expression was observed over time via immunocytochemistry and Western blot analysis (P < 0.001), however, no significant changes were noted in response to irradiation. Finally, reduced uptake of 18F-FLT by SW480 or SW620 cells was observed at 24-h post-irradiation, however, reduced 18F-FDG uptake was only observed after 72 h. Therefore, we conclude that 18F-FLT is a more suitable positron emission tomography (PET) tracer for monitoring early responses to irradiation in primary and metastatic lymph node CRC cells

  2. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET

    Jensen, Mette Munk; Kjaer, Andreas

    2015-01-01

    treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) and 3'-deoxy-3'-[(18)F]fluorothymidine((18)F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can...... be visualized and quantified non-invasively by PET. With (18)F-FDG and (18)F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment...... response. It is hypothesized that decreases in glycolysis and cell proliferation may occur in tumors that are sensitive to theapplied cancer therapeutics and that tumors that are resistant to treatment will show unchanged glucose metabolism and cell proliferation. Whether (18)F-FDG and/or (18)F-FLT PET can...

  3. Study of the production of the radiopharmaceutical 18F-FLT in automated system: contribution for process validation

    Radiopharmaceutical 18F-FLT is a thymidine nucleoside analogue and a promising tumor proliferation marker for PET images. The synthesis of this radiopharmaceutical is not simple, and often has low yields. This radiopharmaceutical has already been studied for some years; however, there is no production, nor are there clinical studies in Brazil. The study of the production process and its compliance with the guidelines of Good Manufacturing Practices (ANVISA) are of extreme importance. This study aimed to investigate the synthesis of this radiopharmaceutical, evaluate methods of quality control that will be used in future production routines, perform cytotoxicity studies, biodistribution studies and PET imaging in animals, thereby contributing to the development and elaboration of the process validation protocol and to the establishment of analytical methods to be used during production routines. Initially, we studied the synthesis and production of 18F-FLT, with the evaluation of three different temperatures of radiolabeling to check the behavior of the radiochemical yield and stability of the nal product. Studies of analytical methodology comprised the analysis of radionuclide identification, determination of chromatographic profiles, radiochemical purity, residual solvents, and pH. In vitro studies of internalization and cytotoxicity were also carried out. In in vivo studies, we evaluated the pharmacokinetics, biodistribution in healthy animals and in animals with tumor models, in addition to PET/CT images in animals with melanomas. The final product had high radiochemical purity and was stable for up to 10 hours after the synthesis, but got a relatively low radiochemical yield, as described in the literature. The tested analytical methods proved suitable for use in the quality control of 18F-FLT. In in vitro studies, 18F-FLT showed a significant percentage of binding to tumor cells, and the nonradiolabeled molecule was not considered toxic for these studied cells

  4. Evaluation of the radiochemical impurities arising during the competitive fluorination of nosyl group during the synthesis of 3'-deoxy-3'-fluorothymidine, [18F]FLT

    The study is aimed at the analysis and identification of radiochemical and chemical impurities present in [18F]FLT synthesized by a simplified combination-column purification procedure, instead of the currently used HPLC purification. HPLC analysis of the final product showed an anionic radioactive byproduct, which was established as [18F]4-FBSA. The identity of the product was also confirmed by the radiofluorination of nosyl chloride. Mass spectrum analysis of both a decayed sample of [18F]FLT and fluorinated nosyl chloride showed a major peak at 242. We have also investigated the possible interference of this byproduct during PET-imaging in rabbits. (author)

  5. SU-E-J-250: A Methodology for Active Bone Marrow Protection for Cervical Cancer Intensity-Modulated Radiotherapy Using 18F-FLT PET/CT Image

    Purpose: The purpose of this study was to compare a radiation therapy treatment planning that would spare active bone marrow and whole pelvic bone marrow using 18F FLT PET/CT image. Methods: We have developed an IMRT planning methodology to incorporate functional PET imaging using 18F FLT/CT scans. Plans were generated for two cervical cancer patients, where pelvicactive bone marrow region was incorporated as avoidance regions based on the range: SUV>2., another region was whole pelvic bone marrow. Dose objectives were set to reduce the volume of active bone marrow and whole bone marraw. The volumes of received 10 (V10) and 20 (V20) Gy for active bone marrow were evaluated. Results: Active bone marrow regions identified by 18F FLT with an SUV>2 represented an average of 48.0% of the total osseous pelvis for the two cases studied. Improved dose volume histograms for identified bone marrow SUV volumes and decreases in V10(average 18%), and V20(average 14%) were achieved without clinically significant changes to PTV or OAR doses. Conclusion: Incorporation of 18F FLT/CT PET in IMRT planning provides a methodology to reduce radiation dose to active bone marrow without compromising PTV or OAR dose objectives in cervical cancer

  6. [{sup 18}F]FLT PET for diagnosis and staging of thoracic tumours

    Dittmann, Helmut; Dohmen, Bernhard Matthias; Eichhorn, Kai; Eschmann, Susanne Martina; Machulla, Hans Juergen; Bares, Roland [Department of Nuclear Medicine, Eberhard-Karls-University Tuebingen, Otfried-Mueller-Strasse 14, 72076, Tuebingen (Germany); Paulsen, Frank [Department of Radiotherapy, Eberhard-Karls-University Tuebingen (Germany); Horger, Marius [Department of Diagnostic Radiology, Eberhard-Karls-University Tuebingen (Germany); Wehrmann, Manfred [Department of Pathology, Eberhard-Karls-University Tuebingen (Germany)

    2003-10-01

    The nucleoside analogue 3'-deoxy-3'-[{sup 18}F]fluorothymidine (FLT) has been introduced for imaging of tumour cell proliferation by positron emission tomography (PET). This study evaluated the use of FLT in patients with thoracic tumours prior to treatment. Whole-body FLT PET was performed in 16 patients with 18 tumours [17 thoracic tumours (nine non-small cell lung cancers, five oesophageal carcinomas, two sarcomas, one Hodgkin's lymphoma) and one renal carcinoma] before treatment. Fluorine-18 fluorodeoxyglucose (FDG) PET was performed for comparison except in those patients with oesophageal carcinoma. For semi-quantitative analysis, the average and maximum standardised uptake values (avgSUV and maxSUV, respectively) (FLT, 114{+-}20 min p.i.; FDG, 87{+-}8 min p.i.; 50% isocontour region of interest) was calculated. All 17 thoracic tumours and 19/20 metastases revealed significant FLT accumulation, resulting in easy delineation from surrounding tissue. The additional small grade 1 renal carcinoma was not detected with either FLT or FDG. In most lung tumours (avgSUV 1.5-8.2) and metastases, FLT showed intense uptake. However, one of two spinal bone metastases was missed owing to the high physiological FLT uptake in the surrounding bone marrow. Oesophageal carcinoma primaries (avgSUV 2.7-10.0) and occasional metastases showed particularly favourable tumour/non-tumour contrast. Compared with FDG, tumour uptake of FLT was lower (avgSUV, P=0.0006; maxSUV, P=0.0001), with a significant linear correlation (avgSUV, r{sup 2}=0.45; maxSUV, r{sup 2}=0.49) between FLT and FDG. It is concluded that FLT PET accurately visualises thoracic tumour lesions. In the liver and the bone marrow, high physiological FLT uptake hampers detection of metastases. On the other hand, FLT may be favourable for imaging of brain metastases owing to the low physiological uptake. (orig.)

  7. 18F-FLT uptake kinetics in head and neck squamous cell carcinoma: A PET imaging study

    Purpose: To analyze the kinetics of 3′-deoxy-3′-[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). Methods: Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels. Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k3-2tiss and k5 of the two- and three-tissue models were studied alongside the flux parameters KFLT-2tiss and KFLT of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion (“EM-BIC clustering”) was used to distil the information from noisy parametric images. Results: Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps ofKFLT and KFLT-2tiss are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for KFLT-2tiss, 0.64 for KFLT). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k3-2tiss vs KFLT-2tiss and r = 0.68 for k5 vs KFLT); however, neither phosphorylation rate

  8. Multimodal imaging based on MRI and PET reveals [18F]FLT PET as a specific and early indicator of treatment efficacy in a preclinical model of recurrent glioblastoma

    The primary objective of this study was to compare the ability of PET and MRI biomarkers to predict treatment efficacy in a preclinical model of recurrent glioblastoma multiforme. MRI (anatomical, diffusion, vasculature and oxygenation) and PET ([18F]FDG and [18F]FLT) parameters were obtained 3 days after the end of treatment and compared with late tumour growth and survival. Early after tumour recurrence, no effect of treatment with temozolomide combined with bevacizumab was observed on tumour volume as assessed by T2-W MRI. At later times, the treatment decreased tumour volume and increased survival. Interestingly, at the earlier time, temozolomide + bevacizumab decreased [18F]FLT uptake, cerebral blood volume and oedema. [18F]FLT uptake, oedema and cerebral blood volume were correlated with overall survival but [18F]FLT uptake had the highest specificity and sensitivity for the early prediction of treatment efficacy. The present investigation in a preclinical model of glioblastoma recurrence underscores the importance of multimodal imaging in the assessment of oedema, tumour vascular status and cell proliferation. Finally, [18F]FLT holds the greatest promise for the early assessment of treatment efficacy. These findings may translate clinically in that individualized treatment for recurrent glioma could be prescribed for patients selected after PET/MRI examinations. (orig.)

  9. Multimodal imaging based on MRI and PET reveals [{sup 18}F]FLT PET as a specific and early indicator of treatment efficacy in a preclinical model of recurrent glioblastoma

    Corroyer-Dulmont, Aurelien; Peres, Elodie A.; Gerault, Aurelie N.; Divoux, Didier; Toutain, Jerome; Ibazizene, Meziane; MacKenzie, Eric T.; Barre, Louisa; Bernaudin, Myriam; Petit, Edwige; Valable, Samuel [CNRS, UMR 6301 ISTCT, CERVOxy and LDM-TEP groups. GIP CYCERON, Caen (France); CEA, DSV/I2BM, UMR 6301 ISTCT, CERVOxy et LDM-TEP Groups, GIP CYCERON, Caen (France); UNICAEN, UMR 6301 ISTCT, CERVOxy et LDM-TEP Groups, GIP CYCERON, Caen (France); Normandie Univ., Caen(France); Savina, Ariel; Bouquet, Fanny [Roche SAS, Boulogne-Billancourt (France)

    2016-04-15

    The primary objective of this study was to compare the ability of PET and MRI biomarkers to predict treatment efficacy in a preclinical model of recurrent glioblastoma multiforme. MRI (anatomical, diffusion, vasculature and oxygenation) and PET ([{sup 18}F]FDG and [{sup 18}F]FLT) parameters were obtained 3 days after the end of treatment and compared with late tumour growth and survival. Early after tumour recurrence, no effect of treatment with temozolomide combined with bevacizumab was observed on tumour volume as assessed by T2-W MRI. At later times, the treatment decreased tumour volume and increased survival. Interestingly, at the earlier time, temozolomide + bevacizumab decreased [{sup 18}F]FLT uptake, cerebral blood volume and oedema. [{sup 18}F]FLT uptake, oedema and cerebral blood volume were correlated with overall survival but [{sup 18}F]FLT uptake had the highest specificity and sensitivity for the early prediction of treatment efficacy. The present investigation in a preclinical model of glioblastoma recurrence underscores the importance of multimodal imaging in the assessment of oedema, tumour vascular status and cell proliferation. Finally, [{sup 18}F]FLT holds the greatest promise for the early assessment of treatment efficacy. These findings may translate clinically in that individualized treatment for recurrent glioma could be prescribed for patients selected after PET/MRI examinations. (orig.)

  10. {sup 18}F-FLT uptake kinetics in head and neck squamous cell carcinoma: A PET imaging study

    Liu, Dan, E-mail: dan.liu@oncology.ox.ac.uk; Fenwick, John D. [Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom); Chalkidou, Anastasia; Landau, David B.; Marsden, Paul K. [Division of Imaging Sciences and Biomedical Engineering, School of Medicine, King' s College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH (United Kingdom)

    2014-04-15

    Purpose: To analyze the kinetics of 3{sup ′}-deoxy-3{sup ′}-[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). Methods: Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels. Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k{sub 3-2tiss} and k{sub 5} of the two- and three-tissue models were studied alongside the flux parameters K{sub FLT-2tiss} and K{sub FLT} of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion (“EM-BIC clustering”) was used to distil the information from noisy parametric images. Results: Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps ofK{sub FLT} and K{sub FLT-2tiss} are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for K{sub FLT-2tiss}, 0.64 for K{sub FLT}). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k{sub 3-2tiss} vs K{sub FLT-2tiss} and r

  11. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation (18F-FDG, 64Cu-ATSM and 18F-FLT in a Dog with Fibrosarcoma: The Importance of Individualized Treatment Planning and Monitoring

    Kamilla Westarp Zornhagen

    2015-09-01

    Full Text Available Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management of cancer patients. A dog with fibrosarcoma was imaged using 18F-FDG, 64Cu-ATSM, and 18F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in 18F-FDG and 18F-FLT PET uptakes and a heterogeneous spatial distribution of the three tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response.

  12. Imaging proliferation of 18F-FLT PET/CT correlated with the expression of microvessel density of tumour tissue in non-small-cell lung cancer

    The aim of this study was to analyse the correlation between 18F-labelled 3'-deoxy-3'-fluorothymidine (18F-FLT) PET/CT proliferation images and tumour angiogenesis as reflected by intratumoral microvessel density (MVD) in non-small-cell lung cancer (NSCLC) to provide a noninvasive method to predict the response to antiangiogenic therapy. A total of 68 patients with proven or suspected NSCLC underwent FLT PET/CT scans followed by surgery. PET/CT images were compared with pathology. Tumour proliferation was evaluated in terms of a Ki-67 labelling index (Ki-67 LI). MVD was determined using an anti-CD31 mAb (CD31-MVD), anti-CD34 mAb (CD34-MVD) and an anti-CD105 mAb (CD105-MVD) for each resected tumour. Tumour FLT maximum standardized uptake values (SUVmax) were significantly correlated with the Ki-67 LI and CD105-MVD (r = 0.550 and 0.633, P = 0.000 and 0.000, respectively), but were only marginally correlated with the CD31-MVD and CD34-MVD (r = 0.228 and 0.235, P = 0.062 and 0.054, respectively). The FLT PET false-negative patients had a longer median survival time than the FLT PET true-positive patients (log rank test, P = 0.012). The patients with a lower CD105-MVD had a longer median survival time than those with a higher CD105-MVD (P = 0.046), while patients with a lower CD31-MVD and CD34-MVD did not have a longer median survival time than those with a higher value (P = 0.438 and 0.187, respectively). FLT PET/CT imaging correlated with tumour angiogenesis as reflected by CD105-MVD and prognosis, and may be helpful in assessing antiangiogenic therapy of NSCLC. (orig.)

  13. The value of delayed PET/CT imaging using 18F-FDG and18 F-FLT in pulmonary nodules%18F-FDG与18F-FLT PET/CT延迟显像对肺结节诊断效能的评价

    杨小丰; 王爽; 吴文凯; 田嘉禾; 于丽娟; 陈萍; 辛军; 马黎明; 冯惠茹; 赵周社; 李宏利

    2008-01-01

    目的 通过对多中心、前瞻性研究中接受了18F-脱氧葡萄糖(FDG)与18F-脱氧胸腺嘧啶核苷(FLT)延迟显像病例的分析,探讨18F-FDG与18F-FLT延迟显像对肺结节诊断的效能.方法 6个PET/CT中心,从2006年1月至2007年6月,按照统一标准,采用同机型、同一扫描条件,开展了肺结节样病变18F-FLT和18F-FDG PET/CT显像的多中心临床研究.在经确诊的55例病例中,25例患者进行了18F-FLT显像和延迟显像,34例患者进行了18F-FDG延迟显像.按常规计算延迟显像时病灶最大标准摄取值(SUVmax)及与早期显像时SUVmax相比的变化率(△SUVmax).对照临床确诊结果分析其诊断效能.采用SPSS11.0软件进行统计学处理.结果 18F-FDG延迟显像患者中,6例肺癌中5例、12例结核中9例、16例炎症或其他良性结节中9例的SUVmax较早期相升高.18F-FLT延迟显像组中,7例肺癌中3例、8例结核中3例和10例其他良性病灶中2例的SUVmax上升.经分组统计分析,不同疾病组间18F-FDG延迟显像SUVmax和△SUVmax差异无统计学意义;18F-FLT延迟显像SUVmax和△SUVmax组间差异也无统计学意义.无论18F-FDG还是18F-FLT,延迟显像的诊断效能均不如早期相.无论早期还是延迟显像,单独18F-FDG或18F-FLT显像的诊断效能均不如二者联合应用.结论 18F-FDG和18F-FLT延迟显像的SUVmax变化规律性不强,不宜单独应用于肺结节的鉴别诊断.%Objective Based on a multicentre clinical trial, the value of dual-phase PET/CT imaging in differential diagnosis of pulmonary pathologies using "F-fluorodeoxyglucose (FDG) and 18F-fluorothymidine (FLT) was investigated. Methods The multicentre clinical trial about 18F-FLT and 18F-FDG PET/CT imaging in lung nodules was carried out in six medical centers from January 2006 to June 2007 following the standardized protocols. Among 55 subjects successfully passed the data verification, 25 had delayed 18F-FLT PET/CT scanning and 34 18F-FDG at 120min post

  14. Study of the production of the radiopharmaceutical {sup 18}F-FLT in automated system: contribution for process validation; Estudo da producao do radiofarmaco FLT-{sup 18}F em sistema automatizado: contribuicao para a validacao do processo

    Zanette, Camila

    2013-07-01

    Radiopharmaceutical {sup 18}F-FLT is a thymidine nucleoside analogue and a promising tumor proliferation marker for PET images. The synthesis of this radiopharmaceutical is not simple, and often has low yields. This radiopharmaceutical has already been studied for some years; however, there is no production, nor are there clinical studies in Brazil. The study of the production process and its compliance with the guidelines of Good Manufacturing Practices (ANVISA) are of extreme importance. This study aimed to investigate the synthesis of this radiopharmaceutical, evaluate methods of quality control that will be used in future production routines, perform cytotoxicity studies, biodistribution studies and PET imaging in animals, thereby contributing to the development and elaboration of the process validation protocol and to the establishment of analytical methods to be used during production routines. Initially, we studied the synthesis and production of {sup 18}F-FLT, with the evaluation of three different temperatures of radiolabeling to check the behavior of the radiochemical yield and stability of the nal product. Studies of analytical methodology comprised the analysis of radionuclide identification, determination of chromatographic profiles, radiochemical purity, residual solvents, and pH. In vitro studies of internalization and cytotoxicity were also carried out. In in vivo studies, we evaluated the pharmacokinetics, biodistribution in healthy animals and in animals with tumor models, in addition to PET/CT images in animals with melanomas. The final product had high radiochemical purity and was stable for up to 10 hours after the synthesis, but got a relatively low radiochemical yield, as described in the literature. The tested analytical methods proved suitable for use in the quality control of {sup 18}F-FLT. In in vitro studies, {sup 18}F-FLT showed a significant percentage of binding to tumor cells, and the nonradiolabeled molecule was not considered toxic

  15. Study of [18F]FLT and [123I]IaraU for cellular imaging in HSV1 tk-transfected murine fibrosarcoma cells: evaluation of the tracer uptake using 5-fluoro, 5-iodo and 5-iodovinyl arabinosyl uridines as competitive probes

    As one of the most intensively studied probes for imaging of the cellular proliferation, [18F]FLT was investigated whether the targeting specificity of thymidine kinase 1 (TK1) dependency could be enhanced through a synergistic effect mediated by herpes simplex type 1 virus (HSV1) tk gene in terms of the TK1 or TK2 expression. 5-[123I]Iodo arabinosyl uridine ([123I]IaraU) was prepared in a radiochemical yield of 8% and specific activity of 21 GBq/μmol, respectively. Inhibition of the cellular uptake of these two tracers was compared by using the arabinosyl uridine analogs such as 5-iodo, 5-fluoro and 5-(E)-iodovinyl arabinosyl uridine along with 2′-fluoro-5-iodo arabinosyl uridine (FIAU). Due to potential instability of the iodo group, accumulation index of 1.6 for [123I]IaraU by HSV1-TK vs. control cells could virtually be achieved at 1.5 h, but dropped to 0.2 compared to 2.0 for [18F]FLT at 5 h. The results from competitive inhibition by these nucleosides against the accumulation of [18F]FLT implied that FLT exerted a mixed TK1- and TK2-dependent inhibition with HSV1-tk gene transfection because of the shifting of thymidine kinase status. Taken together, the combination of [18F]FLT and HSV1-TK provides a synergistic imaging potency.

  16. The diagnostic accuracy of 18F-FLT, 18F-FDG for pulmonary neopalsms%18F-FLT与18F-FDG PET/CT不同判断方法鉴别肺良恶性肿瘤诊断效能的比较

    陈萍; 王爽; 吴文凯; 田嘉禾; 杨小丰; 于丽娟; 辛军; 马黎明; 冯惠茹; 赵周社; 李宏利

    2008-01-01

    Objective The purpose of this study was to compare the diagnostic accuracy of 18F-fluorothymidine (FLT), 18F-fluorodeoxyglucose (FDG) for pulmonary nodules. Methods This paired, open, prospective, randomized and semi-blind multicentre clinical trial was executed from January 2006 to June 2007. All the patients enrolled in this trial were imaged twice by 18F-FDG and 18F-FLT within 1 week. Histopathology and clinic results served as the reference standard. Statistically significant differences in pulmonary neoplasm diagnosis between 18F-FDG and 18F-FLT were determined with 95% interval obtained by using receiver operating characteristic (ROC) curve analysis. Results Fifty-five patients were enrolled. Sixteen patients with histopathology proved lung cancers, and others' final diagnosis included 16 tuberculoses, 23 other benign lesions (inflammation, pseudotumor, granuloma, firbrosis and others). The area under curve (AUC) of 18F-FDG maximum standardized uptake value (SUVmax) was 0.780±0.065, and the AUC of 18F-FLT SUVmax was 0.828±0.058. The diagnostic sensitivity, specificity, accuracy of, 18F-FDG (SUVmax≥6.0) and 18SF-FLT (SUVmax≥2.4) and combination them by eye-ball for pulmonary neoplasm were 75.0%(12/16),64.1%(25/39) and 67.3%(37/55);81.3%(13/16),82.1%(32/39) and 81.8%(45/55);81.3%(13/16),87.2%(34/39) and 85.5%(47/55), respectively. Conclusions The diagnostic accuracy for malignant pulmonary neoplasm between 18F-FLT and 18F-FDG was no difference. And it could improve significantly pulmonary neoplasm diagnosis value if we combine 18F-FLT and 18F-FDG imaging.%目的 通过分析多中心临床研究病例,比较18F-脱氧胸腺嘧啶核苷(FIT)、18F-脱氧葡萄糖(FDG)PET/CT显像诊断肺恶性肿瘤的效能.方法 通过随机、盲法、前瞻性的多中心研究,获得以病理检查或临床随访结果确定诊断的55例肺结节患者,均同时行18F-FDG和18F-FLT PET/CT检查.应用受试者工作特征(ROC)曲线分析方法,分别计算病灶

  17. Human brain imaging

    Just as there have been dramatic advances in the molecular biology of the human brain in recent years, there also have been remarkable advances in brain imaging. This paper reports on the development and broad application of microscopic imaging techniques which include the autoradiographic localization of receptors and the measurement of glucose utilization by autoradiography. These approaches provide great sensitivity and excellent anatomical resolution in exploring brain organization and function. The first noninvasive external imaging of receptor distributions in the living human brain was achieved by positron emission tomography (PET) scanning. Developments, techniques and applications continue to progress. Magnetic resonance imaging (MRI) is also becoming important. Its initial clinical applications were in examining the structure and anatomy of the brain. However, more recent uses, such as MRI spectroscopy, indicate the feasibility of exploring biochemical pathways in the brain, the metabolism of drugs in the brain, and also of examining some of these procedures at an anatomical resolution which is substantially greater than that obtainable by PET scanning. The issues will be discussed in greater detail

  18. 18F-Fluorothymidine-Pet Imaging of Glioblastoma Multiforme: Effects of Radiation Therapy on Radiotracer Uptake and Molecular Biomarker Patterns

    Sanjay Chandrasekaran

    2013-01-01

    Full Text Available Introduction. PET imaging is a useful clinical tool for studying tumor progression and treatment effects. Conventional 18F-FDG-PET imaging is of limited usefulness for imaging Glioblastoma Multiforme (GBM due to high levels of glucose uptake by normal brain and the resultant signal-to-noise intensity. 18F-Fluorothymidine (FLT in contrast has shown promise for imaging GBM, as thymidine is taken up preferentially by proliferating cells. These studies were undertaken to investigate the effectiveness of 18F-FLT-PET in a GBM mouse model, especially after radiation therapy (RT, and its correlation with useful biomarkers, including proliferation and DNA damage. Methods. Nude/athymic mice with human GBM orthografts were assessed by microPET imaging with 18F-FDG and 18F-FLT. Patterns of tumor PET imaging were then compared to immunohistochemistry and immunofluorescence for markers of proliferation (Ki-67, DNA damage and repair (γH2AX, hypoxia (HIF-1α, and angiogenesis (VEGF. Results. We confirmed that 18F-FLT-PET uptake is limited in healthy mice but enhanced in the intracranial tumors. Our data further demonstrate that 18F-FLT-PET imaging usefully reflects the inhibition of tumor by RT and correlates with changes in biomarker expression. Conclusions. 18F-FLT-PET imaging is a promising tumor imaging modality for GBM, including assessing RT effects and biologically relevant biomarkers.

  19. Analysis of the growth dynamics of angiogenesis dependent and independent experimental glioblastomas by multimodal small animal PET and MRI

    The hypothesis of this study was that distinct experimental glioblastoma phenotypes resembling human disease can be noninvasively distinguished at various disease stages by imaging in vivo. Cultured spheroids from 2 human glioblastomas were implanted into the brains of nude rats. Glioblastoma growth dynamics were followed by PET using 18F-FDG, 11C-methyl-L-methionine (11C-MET), and 39-deoxy- 39-18F-fluoro-thymidine (18F-FLT) and by MRI at 3-6 wk after implantation. For image validation, parameters were co-registered with immunohistochemical analysis. Two tumor phenotypes (angiogenic and infiltrative) were obtained. The angiogenic phenotype showed high uptake of 11C-MET and 18F-FLT and relatively low uptake of 18F-FDG. 11C-MET was an early indicator of vessel remodeling and tumor proliferation. 18F-FLT uptake correlated to positive Ki67 staining at 6 wk. T1- and T2-weighted MR images displayed clear tumor delineation with strong gadolinium enhancement at 6 wk. The infiltrative phenotype did not accumulate 11C-MET and 18F-FLT and impaired the 18F-FDG uptake. In contrast, the Ki67 index showed a high proliferation rate. The extent of the infiltrative tumors could be observed by MRI but with low contrast. For angiogenic glioblastomas, noninvasive assessment of tumor activity corresponds well to immunohistochemical markers, and 11C-MET was more sensitive than 18F-FLT at detecting early tumor development. In contrast, infiltrative glioblastoma growth in the absence of blood-brain barrier breakdown is difficult to noninvasively follow by existing imaging techniques, and a negative 18F-FLT PET result does not exclude the presence of proliferating glioma tissue. The angiogenic model may serve as an advanced system to study imaging-guided anti-angiogenic and antiproliferative therapies. (authors)

  20. Genes and human brain evolution

    Geschwind, Daniel H.; Konopka, Genevieve

    2012-01-01

    Several genes were duplicated during human evolution. It seems that one such duplication gave rise to a gene that may have helped to make human brains bigger and more adaptable than those of our ancestors.

  1. Educating the Human Brain. Human Brain Development Series

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  2. Human Brain and Its Size

    邹国如

    2006-01-01

    @@ Two studies suggest that the human brain continues to change through the process of evolution.The findings conflict with a common belief that the brain has evolved about as much as it ever will.Scientists say modern humans developed about two hundred thousand years ago.Bruce Lahn of the Howard Hughes Medical Institute and the University of Chicago led the studies.The findings appeared in Science magazine.

  3. Neural network plasticity in the human brain

    Rizk, Sviatlana

    2013-01-01

    The human brain is highly organized within networks. Functionally related neural-assemblies communicate by oscillating synchronously. Intrinsic brain activity contains information on healthy and damaged brain functioning. This thesis investigated the relationship between functional networks and behavior. Furthermore, we assessed functional network plasticity after brain damage and as a result of brain stimulation. In different groups of patients we observed reduced functional connectivity bet...

  4. Human Brain Reacts to Transcranial Extraocular Light

    Sun, Lihua; Peräkylä, Jari; Kovalainen, Anselmi; Ogawa, Keith H.; Karhunen, Pekka J.; Hartikainen, Kaisa M.

    2016-01-01

    Transcranial extraocular light affects the brains of birds and modulates their seasonal changes in physiology and behavior. However, whether the human brain is sensitive to extraocular light is unknown. To test whether extraocular light has any effect on human brain functioning, we measured brain electrophysiology of 18 young healthy subjects using event-related potentials while they performed a visual attention task embedded with emotional distractors. Extraocular light delivered via ear can...

  5. Early detection of response to experimental chemotherapeutic Top216 with [18F]FLT and [18F]FDG PET in human ovary cancer xenografts in mice

    Jensen, Mette Munk; Erichsen, Kamille Dumong; Björkling, Fredrik;

    2010-01-01

    3'-Deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) is a tracer used to assess cell proliferation in vivo. The aim of the study was to use (18)F-FLT positron emission tomography (PET) to study treatment responses to a new anti-cancer compound. To do so, we studied early anti-proliferative effects of t...

  6. Brain mechanisms underlying human communication

    Matthijs L Noordzij

    2009-07-01

    Full Text Available Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”. However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender and recognizing the communicative intention of the same actions (by a receiver relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus. The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.

  7. Towards multimodal atlases of the human brain

    Toga, Arthur W.; Thompson, Paul M.; Mori, Susumu; Amunts, Katrin; Zilles, Karl

    2006-01-01

    Atlases of the human brain have an important impact on neuroscience. The emergence of ever more sophisticated imaging techniques, brain mapping methods and analytical strategies has the potential to revolutionize the concept of the brain atlas. Atlases can now combine data describing multiple aspects of brain structure or function at different scales from different subjects, yielding a truly integrative and comprehensive description of this organ. These integrative approaches have provided si...

  8. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    Koscik, Timothy R.; Tranel, Daniel

    2012-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the the...

  9. The human parental brain: In vivo neuroimaging

    Swain, James E.

    2010-01-01

    Interacting parenting thoughts and behaviors, supported by key brain circuits, critically shape human infants’ current and future behavior. Indeed, the parent–infant relationship provides infants with their first social environment, forming templates for what they can expect from others, how to interact with them and ultimately how they go on to themselves to be parents. This review concentrates on magnetic resonance imaging experiments of the human parent brain, which link brain physiology w...

  10. Modeling human brain development with cerebral organoids

    Muzio, Luca; Consalez, G. Giacomo

    2013-01-01

    The recent discovery of a new three-dimensional culture system for the derivation of cerebral organoids from human induced pluripotent stem cells provides developmental neurobiologists with the first example of a three-dimensional framework for the study of human brain development. This innovative approach permits the in vitro assembly of a human embryonic brain rudiment that recapitulates the developing human cerebrum. Organoids contain progenitor populations that develop to yield mature cor...

  11. Specialization of Functions in the Human Brain

    Parvizi, Josef

    2013-01-01

    The brain has fascinated us for ages. Some of the first serious discussions about the human brain started in ancient Egypt where the king of Alexandria allowed live dissections of criminals for the study of human anatomy [1]. Those who performed the dissections opened up the skull bone and saw the brain live. When they cut through the brain, they discovered large spaces inside it. These spaces were connected to each other like chambers in a house. They were also filled with a unique looking, ...

  12. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts

    The proposition of uPAR as a potential target in cancer therapy is advanced by its predominant expression at the invasive front of colorectal cancer (CRC) and its value as prognostic biomarker for poor survival in this disease. In this study, we provide the first in vivo proof-of-concept for a theranostic approach as treatment modality in a human xenograft colorectal cancer model. Methods: A DOTA-conjugated 9-mer high affinity uPAR binding peptide (DOTA-AE105) was radiolabeled with 64Cu and 177Lu, for PET imaging and targeted radionuclide therapy study, respectively. Human uPAR-positive CRC HT-29 cells were inoculated in Nude mice and treated with 177Lu-DOTA-AE105 once a visible tumor had formed. To evaluate the true effect of the targeted radiotherapy, two controls groups were included in this study, one receiving a 177Lu-labeled non-binding control peptide and one receiving vehicle. All animals were treated day 0 and 7. A parallel 18F-FLT PET/CT study was performed on day 0, 1, 3 and 6. Dosimetry calculations were based on a biodistribution study, where organs and tissue of interest were collected 0.5, 1.0, 2.0, 4.0 and 24 h post injection of 177Lu-DOTA-AE105. Toxicity was assessed by recording mouse weight and by H and E staining of kidneys in each treatment group. Results: uPAR-positive HT-29 xenograft was clearly visualized by PET/CT imaging using 64Cu-DOTA-AE105. Subsequently, these xenograft transplants were locally irradiated using 177Lu-DOTA-AE105, where a significant effect on tumor size and the number of uPAR-positive cells in the tumor was found (p 18F-FLT PET/CT imaging study revealed a significant correlation between 18F-FLT tumor uptake and efficacy of the radionuclide therapy. A histological examination of the kidneys from one animal in each treatment group did not reveal any gross abnormalities and the general performance of all treated animals also showed no indications of radioactivity-induced toxicity. Conclusion: These findings document for the

  13. Male microchimerism in the human female brain.

    William F N Chan

    Full Text Available In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus. Targeting the Y-chromosome-specific DYS14 gene, we performed real-time quantitative PCR in autopsied brain from women without clinical or pathologic evidence of neurologic disease (n=26, or women who had Alzheimer's disease (n=33. We report that 63% of the females (37 of 59 tested harbored male microchimerism in the brain. Male microchimerism was present in multiple brain regions. Results also suggested lower prevalence (p=0.03 and concentration (p=0.06 of male microchimerism in the brains of women with Alzheimer's disease than the brains of women without neurologic disease. In conclusion, male microchimerism is frequent and widely distributed in the human female brain.

  14. Male Microchimerism in the Human Female Brain

    Chan, William F. N.; Gurnot, Cécile; Montine, Thomas J.; Sonnen, Joshua A.; Guthrie, Katherine A.; Nelson, J. Lee

    2012-01-01

    In humans, naturally acquired microchimerism has been observed in many tissues and organs. Fetal microchimerism, however, has not been investigated in the human brain. Microchimerism of fetal as well as maternal origin has recently been reported in the mouse brain. In this study, we quantified male DNA in the human female brain as a marker for microchimerism of fetal origin (i.e. acquisition of male DNA by a woman while bearing a male fetus). Targeting the Y-chromosome-specific DYS14 gene, we...

  15. 18F-FLT PET in hematologic disorders : A novel technique to analyze the bone marrow compartment

    Agool, Ali; Schot, Bart W.; Jager, Pieter L.; Vellenga, Edo

    2006-01-01

    Few diagnostic procedures are available to determine the degree of bone marrow cellularity and the numbers of cycling cells in patients with bone marrow disorders. Noninvasive imaging of the bone marrow compartment may be helpful. The PET tracer 3'-fluoro-3'-deoxy-L-thymidine (F-18-FLT) has been dev

  16. Analysis of a human brain transcriptome map

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  17. Lactate fuels the human brain during exercise

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up...... suggests that lactate may partially replace glucose as a substrate for oxidation. Thus, the notion of the human brain as an obligatory glucose consumer is not without exceptions....... blockade but not with beta(1)-adrenergic blockade alone. Also, CMR decreases in response to epinephrine, suggesting that a beta(2)-adrenergic receptor mechanism enhances glucose and perhaps lactate transport across the blood-brain barrier. The pattern of CMR decrease under various forms of brain activation...

  18. Human brain mapping: Experimental and computational approaches

    Wood, C.C.; George, J.S.; Schmidt, D.M.; Aine, C.J. [Los Alamos National Lab., NM (US); Sanders, J. [Albuquerque VA Medical Center, NM (US); Belliveau, J. [Massachusetts General Hospital, Boston, MA (US)

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This program developed project combined Los Alamos' and collaborators' strengths in noninvasive brain imaging and high performance computing to develop potential contributions to the multi-agency Human Brain Project led by the National Institute of Mental Health. The experimental component of the project emphasized the optimization of spatial and temporal resolution of functional brain imaging by combining: (a) structural MRI measurements of brain anatomy; (b) functional MRI measurements of blood flow and oxygenation; and (c) MEG measurements of time-resolved neuronal population currents. The computational component of the project emphasized development of a high-resolution 3-D volumetric model of the brain based on anatomical MRI, in which structural and functional information from multiple imaging modalities can be integrated into a single computational framework for modeling, visualization, and database representation.

  19. Multiple aldehyde reductases of human brain.

    Hoffman, P L; Wermuth, B; von Wartburg, J P

    1980-01-01

    Human brain contains four forms of aldehyde reducing enzymes. One major activity, designated AR3, has properties indicating its identity with the NADPH-dependent aldehyde reductase, EC 1.1.1.2. The other major form of human brain enzyme, AR1, which is also NADPH-dependent, reduces both aldehyde and ketone-containing substrates, including vitamin K3 (menadione) and daunorubicin, a cancer chemotherapeutic agent. This enzyme is very sensitive to inhibition by the flavonoids quercitrin and quercetine, and may be analogous to a daunorubicin reductase previously described in liver of other species. One minor form of human brain aldehyde reductase, AR2, demonstrates substrate specificity and inhibitor sensitivity which suggest its similarity to aldose reductases found in lens and other tissues of many species. This enzyme, which can also use NADH as cofactor to some extent, is the most active in reducing the aldehyde derivatives of the biogenic amines. The fourth human brain enzyme ("SSA reductase") differs from the other forms in its ability to use NADH as well as or better than NADPH as cofactor, and in its molecular weight, which is nearly twice that of the other forms. It is quite specific for succinic semialdehyde (SSA) as substrate, and was found to be significantly inhibited only by quercetine and quercitrin. AR3 can also reduce SSA, and both enzymes may contribute to the production of gamma-hydroxybutyric acid in vivo. These results indicate that the human brain aldehyde reductases can play relatively specific physiologic roles. PMID:7424738

  20. Learning and memory in the human brain

    Petersson, Karl Magnus

    2005-01-01

    The first chapter of the thesis 'Learning and Memory in the Human Brain' provides a brief review of the brain as well as cognition from the point of view of information processing in physical systems. We include a brief outline of information processing as conceived of within the classical framework of cognitive science. We show how this perspective can be understood in terms of information processing in a certain class of dynamical systems and we indicate how this view of c...

  1. Human Nerual Stem Cells for Brain Repair

    Kim, Seung U.; Lee, Hong J.; In H Park; Chu, Kon; Lee, Soon T.; Kim, Manho; Roh, Jae K.; Kim, Seung K.; Wang, Kyu C.

    2008-01-01

    Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases including Parkinson disease, Huntington disease, amyotrophic lateral sclerosis (ALS), Alzheimer disease, multiple sclerosis (MS), stroke, spinal cord injury and brain cancer. In recent years, neurons and glial cells have successfully been generated from neural stem cells, a...

  2. Mapping human brain activity in vivo.

    Mazziotta, J.C.

    1994-01-01

    A wide range of structural and functional techniques now exists to map the human brain in health and disease. These approaches span the gamut from external tomographic imaging devices (positron-emission tomography, single photon-emission computed tomography, magnetic resonance imaging, computed tomography), to surface detectors (electroencephalography, magnetoencephalography, transcranial magnetic stimulation), to measurements made directly on the brain's surface or beneath it (intrinsic sign...

  3. Structural Brain Correlates of Human Sleep Oscillations

    Saletin, Jared M.; van der Helm, Els; Walker, Matthew P.

    2013-01-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Grey matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their propose...

  4. Imaging the Addicted Human Brain

    Fowler, Joanna S.; Volkow, Nora D.; Kassed, Cheryl A; Chang, Linda

    2007-01-01

    Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and deepened our knowledge of the neurobiological bases of drug abuse and addiction, and they address po...

  5. Computed tomography studies of human brain movements

    Rhythmic brain movements have been revealed by sets of sequential computed tomography scans of human brains (seen retrospectively to be normal). These scans have shown that both (unenhanced) brain parenchymal density and the shapes of the elements of the supratentorial ventricular/cisternal system are subject to wave motions having similar periods - ranging from 26 s through 56 s, 77-96 s, 109 s and 224 s to 224 X 2 s (or even longer), with good correlation between peak values. These motions, as well as phase variations between the waves, suggest a peristaltic movement of cerebrospinal fluid through the ventricular/cisternal system with progressive axial damping

  6. The human brain. Prenatal development and structure

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  7. Human intelligence and brain networks.

    Colom, Roberto; Karama, Sherif; Jung, Rex E; Haier, Richard J

    2010-01-01

    Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other. PMID:21319494

  8. Brain Mechanisms Underlying Human Communication

    Noordzij, Matthijs L.; Newman-Norlund, Sarah E.; Jan Peter De Ruiter; Peter Hagoort; Levinson, Stephen C.; Ivan Toni

    2009-01-01

    Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behaviora...

  9. Model human heart or brain signals

    Tuncay, Caglar

    2008-01-01

    A new model is suggested and used to mimic various spatial or temporal designs in biological or non biological formations where the focus is on the normal or irregular electrical signals coming from human heart (ECG) or brain (EEG). The electrical activities in several muscles (EMG) or neurons or other organs of human or various animals, such as lobster pyloric neuron, guinea pig inferior olivary neuron, sepia giant axon and mouse neocortical pyramidal neuron and some spatial formations are a...

  10. Zika virus impairs growth in human neurospheres and brain organoids.

    Garcez, Patricia P; Loiola, Erick Correia; Madeiro da Costa, Rodrigo; Higa, Luiza M; Trindade, Pablo; Delvecchio, Rodrigo; Nascimento, Juliana Minardi; Brindeiro, Rodrigo; Tanuri, Amilcar; Rehen, Stevens K

    2016-05-13

    Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased considerably in Brazil; however, causality between the viral epidemic and malformations in fetal brains needs further confirmation. We examined the effects of ZIKV infection in human neural stem cells growing as neurospheres and brain organoids. Using immunocytochemistry and electron microscopy, we showed that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and brain organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development. PMID:27064148

  11. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  12. Imaging visual function of the human brain

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  13. Epilepsy: Extreme Events in the Human Brain

    Lehnertz, Klaus

    The analysis of Xevents arising in dynamical systems with many degrees of freedom represents a challenge for many scientific fields. This is especially true for the open, dissipative, and adaptive system known as the human brain. Due to its complex structure, its immense functionality, and — as in the case of epilepsy — due to the coexistence of normal and abnormal functions, the brain can be regarded as one of the most complex and fascinating systems in nature. Data gathered so far show that the epileptic process exhibits a high spatial and temporal variability. Small, specific, regions of the brain are responsible for the generation of focal epileptic seizures, and the amount of time a patient spends actually having seizures is only a small fraction of his/her lifetime. In between these Xevents large parts of the brain exhibit normal functioning. Since the occurrence of seizures usually can not be explained by exogenous factors, and since the brain recovers its normal state after a seizure in the majority of cases, this might indicate that endogenous nonlinear (deterministic and/or stochastic) properties are involved in the control of these Xevents. In fact, converging evidence now indicates that (particularly) nonlinear approaches to the analysis of brain activity allow us to define precursors which, provided sufficient sensitivity and specificity can be obtained, might lead to the development of patient-specific seizure anticipation and seizure prevention strategies.

  14. Methylomic trajectories across human fetal brain development.

    Spiers, Helen; Hannon, Eilis; Schalkwyk, Leonard C; Smith, Rebecca; Wong, Chloe C Y; O'Donovan, Michael C; Bray, Nicholas J; Mill, Jonathan

    2015-03-01

    Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ∼ 400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity. PMID:25650246

  15. Human freedom and the brain.

    Kornhuber, Hans Helmut

    2009-06-01

    Freedom of will does exist, it is self-leadership of man based on reason and ethos. Evidence comes from truth. Determinism cannot be proved since if you try, you mean to prove a truth; but there is no truth without freedom. By contrast for freedom there are many pieces of evidence e.g. science, arts, technology. Freedom utilizes creative abstract thinking with phantasy. Freedom is graded, limited, based on nature, but not developed without good will. We perceive reliably freedom by self-consciousness and in other persons as long as we are sober. Freedom needs intelligence, but is more, it is a creative and moral virtue. The basis for freedom is phylogenesis and culture, in the individual learning and experimenting. Factors in the becoming of freedom are not only genes and environment but also self-discipline. But the creativity of free will is dangerous. Man therefore needs morale. Drives and feelings become humanized, cultural interests are developed. There is a humane nobility from long good will. PMID:25384854

  16. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  17. Hierarchical modularity in human brain functional networks

    Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009

    2010-01-01

    The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...

  18. Sex beyond the genitalia: The human brain mosaic

    Joel, Daphna; Berman, Zohar; Tavor, Ido; Wexler, Nadav; Gaber, Olga; Stein, Yaniv; Shefi, Nisan; Pool, Jared; Urchs, Sebastian; Margulies, Daniel S.; Liem, Franziskus; Hänggi, Jürgen; Jäncke, Lutz; Assaf, Yaniv

    2015-01-01

    Whereas a categorical difference in the genitals has always been acknowledged, the question of how far these categories extend into human biology is still not resolved. Documented sex/gender differences in the brain are often taken as support of a sexually dimorphic view of human brains ("female brain" or "male brain"). However, such a distinction would be possible only if sex/gender differences in brain features were highly dimorphic (i.e., little overlap between the forms of these features ...

  19. "Messing with the Mind”: Evolutionary Challenges to Human Brain Augmentation

    ARTHUR SANIOTIS

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to underst...

  20. Imaging Monoamine Oxidase in the Human Brain

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  1. Physical biology of human brain development

    Silvia eBudday; Paul eSteinmann; Ellen eKuhl

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal different...

  2. Mouse Genetic Models of Human Brain Disorders

    Celeste eLeung; Zhengping eJia

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectua...

  3. Imaging Monoamine Oxidase in the Human Brain

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets

  4. Neocortical glial cell numbers in human brains

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.; Pakkenberg, B.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... males, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  5. Toward Developmental Connectomics of the Human Brain

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  6. Towards Developmental Connectomics of the Human Brain

    Miao eCao

    2016-03-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and

  7. Toward Developmental Connectomics of the Human Brain.

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental

  8. Human brain networks function in connectome-specific harmonic waves

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In...

  9. Structural brain correlates of human sleep oscillations.

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure. PMID:23770411

  10. Visualization of monoamine oxidase in human brain

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  11. Tracking White Matter Fiber in Human Brain

    KANGNing; ZHANGJun; EricSCarlson

    2004-01-01

    A new approach for noninvasively tracing brain white matter fiber tracts is presented using diffusion tensor magnetic resonance imaging (DT-MRI) data. This technique is based on successive anisotropic diffusion simulations over the human brain, which are utilized to construct three dimensional diffusion fronts. The fiber pathways are determined by evaluating the distance and orientation from fronts to their corresponding diffusion seeds. Real DT-MRI data are used to demonstrate the tracking scheme. It is shown that several major white matter fiber pathways can be reproduced noninvasively, with the tract branching being allowed. Since the diffusion simulation,which is a truly physical phenomenon reflecting the underlying architecture of cerebral tissues, makes full use of the entire diffusion tensor data, the proposed approach is expected to enhance robustness and reliability of the DT-MRI based fiber tracking techniques in white matter fiber reconstruction.

  12. Diffusion Based Modeling of Human Brain Response to External Stimuli

    Namazi, Hamidreza

    2012-01-01

    Human brain response is the overall ability of the brain in analyzing internal and external stimuli in the form of transferred energy to the mind/brain phase-space and thus, making the proper decisions. During the last decade scientists discovered about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research there was less effort which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling of human EEG signal, as an alert state of overall human brain activity monitoring, due to receiving external stimuli, based on fractional diffusion equation. The results of this modeling show very good agreement with the real human EEG signal and thus, this model can be used as a strong representative of the human brain activity.

  13. Positive selection on gene expression in the human brain

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette;

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed in...... the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other...

  14. High-yielding, automated production of 3′-deoxy-3′-[18F]fluorothymidine using a modified Bioscan Coincidence FDG reaction module

    Introduction: High-yielding, automated production of a PET tracer that reflects proliferation, 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT), is reported using a modified Bioscan Coincidence FDG reaction module. Methods: Production of [18F]FLT was implemented through: (1) modification of an original FDG manifold; (2) application of an alternate time sequence; and (3) altered solid-phase extraction (SPE) purification. Quality control testing, including standard radiochemical figures of merit and preclinical positron emission tomography (PET) imaging, was carried out. Results: High decay-corrected yields of [18F]FLT (16–39%) were reproducibly obtained. The product exhibited very high specific activity (4586.9 TBq/mmol; 123,969 Ci/mmol) and radiochemical purity (>99%). Overall, the [18F]FLT produced in this manner was superior to typical productions that utilized a GE TRACERlab FXF-N reaction module. Additionally, purification with SPE cartridges, followed by manual elution, accelerated overall run time and resulted in a two-fold increase in [18F]FLT concentration. PET imaging showed the [18F]FLT produced by this method was highly suitable for non-invasive tumor imaging in mice. Conclusions: The Bioscan Coincidence GE FDG Reaction Module was readily adapted to reproducibly provide [18F]FLT in high yield, specific activity, and radiochemical purity. The approach was suitable to provide sufficient amounts of material for preclinical studies. - Highlights: • Synthesis of [18F]FLT using a modified Bioscan Coincidence GE FDG reaction module. • Typical decay-corrected yields of 16–39% were obtained (n=12). • Very high specific activities and radiochemical purity. • High, preferential uptake of [18F]FLT uptake in human colon cancer xenografts

  15. Physical biology of human brain development

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  16. The proteome of human brain microdialysate

    Feldmann Robert E

    2003-12-01

    Full Text Available Abstract Background Cerebral microdialysis has been established as a monitoring tool in neurocritically ill patients suffering from severe stroke. The technique allows to sample small molecules in the brain tissue for subsequent biochemical analysis. In this study, we investigated the proteomic profile of human cerebral microdialysate and if the identified proteins might be useful predictors for disease characteristics in stroke for tissue at risk in the contralateral hemisphere. We analysed cerebral protein expression in microdialysate from three stroke patients sampled from the hemisphere contralateral to the lesion. Using a proteomic approach based on two-dimensional gel electrophoresis and subsequent mass spectrometry, we created a protein map for the global protein expression pattern of human microdialyste. Results We found an average of 158 ± 24 (N = 18 protein spots in the human cerebral microdialysate and could identify 95 spots, representing 27 individual proteins. Most of these have been detected in human cerebrospinal fluid before, but 10 additional proteins mainly of cerebral intracellular origin were identified exclusively in the microdialysate. Conclusions The 10 proteins found exclusively in human cerebral microdialysate, but not in cerebrospinal fluid, indicate the possibility to monitor the progression of the disease towards deterioration. The correlation of protein composition in the human cerebral microdialysate with the patients' clinical condition and results of cerebral imaging may be a useful approach to future applications for neurological stroke diagnosis, prognosis, and treatment.

  17. The Human Brain in Numbers: A Linearly Scaled-up Primate Brain

    Suzana Herculano-Houzel

    2009-01-01

    The human brain has often been viewed as outstanding among mammalian brains: the most cognitively able, the largest-than-expected from body size, endowed with an overdeveloped cerebral cortex that represents over 80% of brain mass, and purportedly containing 100 billion neurons and 10× more glial cells. Such uniqueness was seemingly necessary to justify the superior cognitive abilities of humans over larger-brained mammals such as elephants and whales. However, our recent studies using a nove...

  18. Human brain : biochemical lateralization in normal subjects.

    Jayasundar R

    2002-07-01

    Full Text Available Chemical asymmetries in normal human brain were studied using the non-invasive technique of volume localized proton magnetic resonance spectroscopy (MRS. The technique of STEAM was used to acquire water-suppressed proton spectra from 8 ml voxels placed in bilaterally symmetrical positions in the two hemispheres of the brain. One hundred and sixty eight right-handed male volunteers were studied for six different regions in the brain (n=28, for each region. Parietal, occipital, temporal, frontal, thalamus and cerebellum regions were studied. The focus was on metabolites such as N-acetyl aspartate (NAA, creatine/phosphocreatine (Cr/PCr and choline (Cho containing compounds. Ratios of the peak areas were calculated for them. Quantitation of the metabolites were carried for data on 18 volunteers. Significant interhemispheric differences in the distribution of metabolites were observed for all the regions studied. There were statistically significant differences on right and left side for the metabolite ratios in all the regions studied. The study has shown the existence of significant lateralization in the distribution of proton MR visible metabolites for all the regions studied.

  19. Fast optical imaging of human brain function

    Gabriele Gratton

    2010-06-01

    Full Text Available Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years may provide descriptions of localized (to sub-cm level brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed.

  20. Distribution of melatonin receptor in human fetal brain

    WANG Guo-quan; SHAO Fu-yuan; ZHAO Ying; LIU Zhi-min

    2001-01-01

    Objective: To study the distribution of 2 kinds of melatonin receptor subtypes (mtl and MT2) in human fetal brain. Methods: The fetal brain tissues were sliced and the distribution ofmelatonin receptors in human fetal brain were detected using immunohistochemistry and in situ hybridization. Results: Melatonin receptor mtl existed in the cerebellun and hypothalamus, melatonin receptor MT2 exists in hypothalamus, occipital and medulla. Conclusion: Two kinds of melatonin receptors, mtl and MT2 exist in the membrane and cytosol of brain cells, indicating that human fetal brain is a target organ of melatonin.

  1. Model human heart or brain signals

    Tuncay, Caglar

    2008-01-01

    A new model is suggested and used to mimic various spatial or temporal designs in biological or non biological formations where the focus is on the normal or irregular electrical signals coming from human heart (ECG) or brain (EEG). The electrical activities in several muscles (EMG) or neurons or other organs of human or various animals, such as lobster pyloric neuron, guinea pig inferior olivary neuron, sepia giant axon and mouse neocortical pyramidal neuron and some spatial formations are also considered (in Appendix). In the biological applications, several elements (cells or tissues) in an organ are taken as various entries in a representative lattice (mesh) where the entries are connected to each other in terms of some molecular diffusions or electrical potential differences. The biological elements evolve in time (with the given tissue or organ) in terms of the mentioned connections (interactions) besides some individual feedings. The anatomical diversity of the species (or organs) is handled in terms o...

  2. Hierarchical modularity in human brain functional networks

    Renaud Lambiotte

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  3. [Neuroethics: Ethical Endowments of Human Brain].

    López Moratalla, Natalia

    2015-01-01

    The neurobiological processes underlying moral judgement have been the focus of Neuroethics. Neurosciences demonstrate which cerebral areas are active and inactive whilst people decide how to act when facing a moral dilemma; in this way we know the correlation between determined cerebral areas and our human acts. We can explain how the ″ethical endowments″ of each person, common to all human beings, is ″embedded″ in the dynamic of cerebral flows. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion related areas of the brain contribute to moral judgement. The outcome of man's natural inclinations is on one hand linked to instinctive systems of animal survival and to basic emotions, and on the other, to the life of each individual human uninhibited by automatism of the biological laws, because he is governed by the laws of freedom. The capacity to formulate an ethical judgement is an innate asset of the human mind. PMID:26546796

  4. Left Brain to Right Brain: Notes from the Human Laboratory.

    Baumli, Francis

    1982-01-01

    Examines the implications of the left brain-right brain theory on communications styles in male-female relationships. The author contends that women tend to use the vagueness of their emotional responses manipulatively. Men need to apply rational approaches to increase clarity in communication. (AM)

  5. Brain-Computer Interfaces and Human-Computer Interaction

    Tan, Desney; Nijholt, Anton; Tan, Desney S.; Nijholt, Anton

    2010-01-01

    Advances in cognitive neuroscience and brain imaging technologies have started to provide us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that can monitor some of the physical processes that occur within the brain that correspo

  6. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  7. The Complex Functioning of the Human Brain: The Two Hemispheres

    Iulia Cristina Timofti

    2010-01-01

    The present study reveals just a glimpse of the possible functions and reactions that the human brain can have. I considered as good examples different situations characteristic both of a normal person and a split-brain one. These situations prove that the brain, although divided in two, works as a unit, as an amazing computer that has data processing as a main goal.

  8. Thresholding magnetic resonance images of human brain

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  9. Changes in cognitive state alter human functional brain networks

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  10. "Messing with the Mind: Evolutionary Challenges to Human Brain Augmentation

    ARTHUR eSANIOTIS

    2014-09-01

    Full Text Available The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce augmented brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties.

  11. "Messing with the mind": evolutionary challenges to human brain augmentation.

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understand some of the basic concepts of cognition. Therefore, this article proposes that brain-machine interfacing and nootropics are not going to produce "augmented" brains because we do not understand enough about how evolutionary pressures have informed the neural networks which support human cognitive faculties. PMID:25324734

  12. From reverse transcription to human brain tumors

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  13. Neuronal connectivity, regional differentiation, and brain damage in humans.

    Zaidel, Dahlia W.

    1999-01-01

    When circumscribed brain regions are damaged in humans, highly specific iimpairments in language, memory, problem solving, and cognition are observed. Neurosurgery such as "split brain" or hemispherectomy, for example has shown that encompassing regions, the left and right cerebral hemispheres each control human behavior in unique ways. Observations stretching over 100 years of patients with unilateral focal brain damage have revealed, withouth the theoretical benefits of "cognitive neurosci...

  14. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the possibil

  15. Analysis of brain CT on 120 patients of human cysticercosis

    A study on brain CT was made in 120 patients of human cysticercosis, which is a rare disease in Japan and clinical symptoms and laboratory data for the diagnosis were also discussed. From the point of therapeutic view, we proposed a new differentiation on brain CT of human cysticercosis, which is divided into two groups according to the alve or dead parasite. Furthermore, we proposed a new type named multiple large and small cysts type on brain CT. The idea of diagnostic standard was made integrating brain CT image, clinical symptoms and labolatory data. (author)

  16. Analysis of brain CT on 120 patients of human cysticercosis

    Ma, J.; To, R.; Ri, T.; Ra, S. (Jiamusi Medical Coll. (China)); Inomata, Taiten; Ogawa, Yasuhiro; Maeda, Tomoo

    1990-08-01

    A study on brain CT was made in 120 patients of human cysticercosis, which is a rare disease in Japan and clinical symptoms and laboratory data for the diagnosis were also discussed. From the point of therapeutic view, we proposed a new differentiation on brain CT of human cysticercosis, which is divided into two groups according to the alve or dead parasite. Furthermore, we proposed a new type named multiple large and small cysts type on brain CT. The idea of diagnostic standard was made integrating brain CT image, clinical symptoms and labolatory data. (author).

  17. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  18. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  19. Two action systems in the human brain.

    Binkofski, Ferdinand; Buxbaum, Laurel J

    2013-11-01

    The distinction between dorsal and ventral visual processing streams, first proposed by Ungerleider and Mishkin (1982) and later refined by Milner and Goodale (1995) has been elaborated substantially in recent years, spurred by two developments. The first was proposed in large part by Rizzolatti and Matelli (2003) and is a more detailed description of the multiple neural circuits connecting the frontal, temporal, and parietal cortices. Secondly, there are a number of behavioral observations that the classic "two visual systems" hypothesis is unable to accommodate without additional assumptions. The notion that the Dorsal stream is specialized for "where" or "how" actions and the Ventral stream for "What" knowledge cannot account for two prominent disorders of action, limb apraxia and optic ataxia, that represent a double dissociation in terms of the types of actions that are preserved and impaired. A growing body of evidence, instead, suggests that there are at least two distinct Dorsal routes in the human brain, referred to as the "Grasp" and "Use" systems. Both of these may be differentiated from the Ventral route in terms of neuroanatomic localization, representational specificity, and time course of information processing. PMID:22889467

  20. Brain Prostheses as a Dynamic System (Immortalizing the Human Brain?)

    Astakhov, Vadim

    2007-01-01

    Interest in development of brain prostheses, which might be proposed to recover mental functions lost due to neuron-degenerative disease or trauma, requires new methods in molecular engineering and nanotechnology to build artificial brain tissues. We develop a Dynamic Core model to analyze complexity of damaged biological neural network as well as transition and recovery of the system functionality due to changes in the system environment. We provide a method to model complexity of physical systems which might be proposed as an artificial tissue or prosthesis. Delocalization of Dynamic Core model is developed to analyze migration of mental functions in dynamic bio-systems which undergo architecture transition induced by trauma. Term Dynamic Core is used to define a set of causally related functions and Delocalization is used to describe the process of migration. Information geometry and topological formalisms are proposed to analyze information processes. A holographic model is proposed to construct dynamic e...

  1. New Heuristics for Interfacing Human Motor System using Brain Waves

    Mohammed El-Dosuky

    2012-09-01

    Full Text Available There are many new forms of interfacing human users to machines. We persevere here electric-mechanical form of interaction between human and machine. The emergence of brain-computer interface allows mind-to-movement systems. The story of the Pied Piper inspired us to devise some new heuristics for interfacing human motor system using brain waves, by combining head helmet and LumbarMotionMonitor. For the simulation we use java GridGain. Brain responses of classified subjects during training indicates that Probe can be the best stimulus to rely on in distinguishing between knowledgeable and not knowledgeable

  2. New Heuristics for Interfacing Human Motor System using Brain Waves

    Mohammed El-Dosuky; Ahmed El-Bassiouny; Taher Hamza; Magdy Rashad

    2012-01-01

    There are many new forms of interfacing human users to machines. We persevere here electric-mechanical form of interaction between human and machine. The emergence of brain-computer interface allows mind-to-movement systems. The story of the Pied Piper inspired us to devise some new heuristics for interfacing human motor system using brain waves, by combining head helmet and LumbarMotionMonitor. For the simulation we use java GridGain. Brain responses of classified subjects during training in...

  3. Common genetic variants influence human subcortical brain structures

    Hibar, Derrek P.; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from...

  4. Common genetic variants influence human subcortical brain structures

    Hibar, Derrek P.; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magn...

  5. Canonical Genetic Signatures of the Adult Human Brain

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Anil G. Jegga; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L; Menche, Jörge; Szafer, Aaron; Collman, Forrest

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological ann...

  6. Moment-to-moment brain signal variability: A next frontier in human brain mapping?

    Garrett, D.; Samanez-Larkin, G.; MacDonald, S; Lindenberger, U; McIntosh, A.; Grady, C.

    2013-01-01

    Neuroscientists have long observed that brain activity is naturally variable from moment-to-moment, but neuroimaging research has largely ignored the potential importance of this phenomenon. An emerging research focus on within-person brain signal variability is providing novel insights, and offering highly predictive, complementary, and even orthogonal views of brain function in relation to human life-span development, cognitive performance, and various clinical conditions. As a result, brai...

  7. Neuroglobin and Cytoglobin expression in the human brain

    Hundahl, Christian Ansgar; Kelsen, Jesper; Hay-Schmidt, Anders

    2013-01-01

    Neuroglobin and Cytoglobin are new members of the heme-globin family. Both globins are primarily expressed in neurons of the brain and retina. Neuroglobin and Cytoglobin have been suggested as novel therapeutic targets in various neurodegenerative diseases based on their oxygen binding and cell...... protecting properties. However, findings in Neuroglobin-deficient mice question the endogenous neuroprotective properties. The expression pattern of Neuroglobin and Cytoglobin in the rodent brain is also in contradiction to a major role of neuronal protection. In a recent study, Neuroglobin was ubiquitously...... expressed and up-regulated following stroke in the human brain. The present study aimed at confirming our previous observations in rodents using two post-mortem human brains. The anatomical localization of Neuroglobin and Cytoglobin in the human brain is much like what has been described for the rodent...

  8. Towards Developmental Connectomics of the Human Brain

    Miao eCao; Hao eHuang; Yun ePeng; Qi eDong; Yong eHe

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders...

  9. Common genetic variants influence human subcortical brain structures

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigat

  10. An anatomically comprehensive atlas of the adult human brain transcriptome

    Hawrylycz, M.J.; Beckmann, C.F.; et al., et al.

    2012-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising

  11. Alcohol-related brain damage in humans.

    Amaia M Erdozain

    Full Text Available Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann's area (BA 9 from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics.

  12. Artificial Brain Based on Credible Neural Circuits in a Human Brain

    Burger, John Robert

    2010-01-01

    Neurons are individually translated into simple gates to plan a brain with human psychology and intelligence. State machines, assumed previously learned in subconscious associative memory are shown to enable equation solving and rudimentary thinking using nanoprocessing within short term memory.

  13. Optogenetic control of human neurons in organotypic brain cultures

    Andersson, My; Avaliani, Natalia; Svensson, Andreas;

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof......-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies....

  14. Quantitation of glial fibrillary acidic protein in human brain tumours

    Rasmussen, S; Bock, E; Warecka, K;

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...... amounts of GFA, up to 85 times the concentration in parietal grey substance of normal human brain. GFA was not found in neurinomas, meningiomas, adenomas of the hypophysis, or in a single case of metastasis of adenocarcinoma. Non-glial tumours of craniopharyngioma and haemangioblastoma were infiltrated by...

  15. Decoding the visual and subjective contents of the human brain

    Kamitani, Yukiyasu; Tong, Frank

    2005-01-01

    The potential for human neuroimaging to read-out the detailed contents of a person’s mental state has yet to be fully explored. We investigated whether the perception of edge orientation, a fundamental visual feature, can be decoded from human brain activity measured with functional magnetic resonance imaging (fMRI). Using statistical algorithms to classify brain states, we found that ensemble fMRI signals in early visual areas could reliably predict on individual trials which of eight stimul...

  16. Optogenetic control of human neurons in organotypic brain cultures.

    Andersson, My; Avaliani, Natalia; Svensson, Andreas; Wickham, Jenny; Pinborg, Lars H; Jespersen, Bo; Christiansen, Søren H; Bengzon, Johan; Woldbye, David P D; Kokaia, Merab

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies. PMID:27098488

  17. Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells

    Dirks, Peter B.

    2007-01-01

    Conceptual and technical advances in neural stem cell biology are being applied to the study of human brain tumours. These studies suggest that human brain tumours are organized as a hierarchy and are maintained by a small number of tumour cells that have stem cell properties. Most of the bulk population of human brain tumours comprise cells that have lost the ability to initiate and maintain tumour growth. Although the cell of origin for human brain tumours is uncertain, recent evidence poin...

  18. Functional network organization of the human brain

    Power, Jonathan D.; Cohen, Alexander L.; Nelson, Steven M.; Wig, Gagan S.; Barnes, Kelly Anne; Church, Jessica A.; Vogel, Alecia C.; Laumann, Timothy O.; Miezin, Fran M.; Schlaggar, Bradley L.; Petersen, Steven E.

    2011-01-01

    Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional br...

  19. Methylomic trajectories across human fetal brain development

    Spiers, Helen; Hannon, Eilis; Schalkwyk, Leonard C; Smith, Rebecca; Wong, Chloe C. Y.; Michael C. O’Donovan; Bray, Nicholas J.; Mill, Jonathan

    2015-01-01

    Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited...

  20. Estimating Neural Signal Dynamics in the Human Brain

    Christopher W Tyler

    2011-06-01

    Full Text Available Although brain imaging methods are highly effective for localizing the effects of neural activation throughout the human brain in terms of the blood oxygenation level dependent (BOLD response, there is currently no way to estimate the underlying neural signal dynamics in generating the BOLD response in each local activation region (except for processes slower than the BOLD time course. Knowledge of the neural signal is critical information if spatial mapping is to progress to the analysis of dynamic information flow through the cortical networks as the brain performs its tasks. We introduce an analytic approach that provides a new level of conceptualization and specificity in the study of brain processing by noninvasive methods. This technique allows us to use brain imaging methods to determine the dynamics of local neural population responses to their native temporal resolution throughout the human brain, with relatively narrow confidence intervals on many response properties. The ability to characterize local neural dynamics in the human brain represents a significant enhancement of brain imaging capabilities, with potential application from general cognitive studies to assessment of neuropathologies.

  1. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  2. Human capital in European peripheral regions: Brain - Drain and Brain - Gain : policies on brain drain

    CSTM,

    2004-01-01

    Policies on brain drain Many policies are related to the problem of brain drain and brain gain. For instance, every policy that makes a region more attractive to live in, will make a region a more attractive place for the highly educated to settle. In theory this can be everything ranging from infra

  3. Human brain activity with functional NIR optical imager

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  4. 18F-FDG and 18F-FLT-PET Imaging for Monitoring Everolimus Effect on Tumor-Growth in Neuroendocrine Tumors

    Johnbeck, Camilla Bardram; Munk Jensen, Mette; Nielsen, Carsten Haagen;

    2014-01-01

    INTRODUCTION: The mTOR inhibitor everolimus has shown promising results in some but not all neuroendocrine tumors. Therefore, early assessment of treatment response would be beneficial. In this study, we investigated the in vivo and in vitro treatment effect of everolimus in neuroendocrine tumors...

  5. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer

    The nucleoside analogue 3'-deoxy-3'-18F-fluorothymidine (FLT) has recently been introduced for imaging cell proliferation with positron emission tomography (PET). We prospectively evaluated whether FLT uptake reflects proliferative activity as indicated by the Ki-67 index in non-small cell lung cancer (NSCLC), in comparison with 2-deoxy-2-18F-fluoro-D-glucose (FDG). A total of 18 patients with newly diagnosed NSCLC were examined with both FLT PET and FDG PET. PET imaging was performed at 60 min after each radiotracer injection. Tumour lesions were identified as areas of focally increased uptake, exceeding background uptake in the lungs. For semi-quantitative analysis, the maximum standardised uptake value (SUV) was calculated. Proliferative activity as indicated by the Ki-67 index was estimated in tissue specimens. Immunohistochemical findings were correlated with SUVs. The sensitivity of FLT and FDG PET for the detection of lung cancer was 72% and 89%, respectively. Four of the five false-negative FLT PET findings occurred in bronchiolo-alveolar carcinoma. The mean FLT SUV was significantly lower than the mean FDG SUV. A significant correlation was observed between FLT SUV and Ki-67 index (r = 0.77; p < 0.0002) and for FDG SUV (r = 0.81; p < 0.0001). The results of this preliminary study suggest that, compared with FDG, FLT may be less sensitive for primary staging in patients with NSCLC. Although FLT uptake correlated significantly with proliferative activity in NSCLC, the correlation was not better than that for FDG uptake. (orig.)

  6. A new antigen retrieval technique for human brain tissue.

    Raúl Alelú-Paz

    Full Text Available Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times.

  7. TV, Brain Waves and Human Behavior

    Science News, 1978

    1978-01-01

    Describes the procedure to test the hypothesis that subjects' brain waves in response to a television flicker (distraction) would be smaller in amplitude during television programs of high, in contrast to low, interest. Results from 12 viewers support the hypothesis. (CP)

  8. Evolution of the human brain: when bigger is better.

    Michel A. Hofman

    2014-03-01

    Full Text Available Comparative studies of the brain in mammals suggest that there are general architectural principles governing its growth and evolutionary development. We are beginning to understand the geometric, biophysical and energy constraints that have governed the evolution and functional organization of the brain and its underlying neuronal network. The object of this review is to present current perspectives on primate brain evolution, especially in humans, and to examine some hypothetical organizing principles that underlie the brain’s complex organization. Some of the design principles and operational modes that underlie the information processing capacity of the cerebral cortex in primates will be explored. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains, then otherwise would have been possible. In view of the central importance placed on brain evolution in explaining the success of our own species, one may wonder whether there are physical limits that constrain its processing power and evolutionary potential. It will be argued that at a brain size of about 3500 cm3, corresponding to a brain volume two to three times that of modern man, the brain seems to reach its maximum processing capacity. The larger the brain grows beyond this critical size, the less efficient it will become, thus limiting any improvement in cognitive power.

  9. Expression of iron-related genes in human brain and brain tumors

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  10. Sibling rivalry among paralogs promotes evolution of the human brain

    Tyler-Smith, Chris; Xue, Yali

    2012-01-01

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functional-relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution.

  11. Sibling rivalry among paralogs promotes evolution of the human brain.

    Tyler-Smith, Chris; Xue, Yali

    2012-05-11

    Geneticists have long sought to identify the genetic changes that made us human, but pinpointing the functionally relevant changes has been challenging. Two papers in this issue suggest that partial duplication of SRGAP2, producing an incomplete protein that antagonizes the original, contributed to human brain evolution. PMID:22579279

  12. Shortcomings of the Human Brain and Remedial Action by Religion

    Reich, K. Helmut

    2010-01-01

    There is no consensus as to whether, and if so, in which regard and to what extent science and religion is needed for human survival. Here a circumscribed domain is taken up: the sovereignty and sufficiency of the human brain in this context. Several of its shortcomings are pointed out. Religion and other aspects of culture are needed for remedial…

  13. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  14. Magnetoencephalography in studies of human cognitive brain function.

    Näätänen, R; Ilmoniemi, R J; Alho, K

    1994-09-01

    Magnetoencephalography provides a new dimension to the functional imaging of the brain. The cerebral magnetic fields recorded noninvasively enable the accurate determination of locations of cerebral activity with an uncompromized time resolution. The first whole-scalp sensor arrays have just recently come into operation, and significant advances are to be expected in both neurophysiological and cognitive studies, as well as in clinical practice. However, although the accuracy of locating isolated sources of brain activity has improved, identification of multiple simultaneous sources can still be a problem. Therefore, attempts are being made to combine magnetoencephalography with other brain-imaging methods to improve spatial localization of multiple sources and, simultaneously, to achieve a more complete characterization of different aspects of brain activity during cognitive processing. Owing to its good time resolution and considerably better spatial accuracy than that provided by EEG, magnetoencephalography holds great promise as a tool for revealing information-processing sequences of the human brain. PMID:7529443

  15. Three-dimensional morphology of the human embryonic brain

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  16. The bilingual brain: Flexibility and control in the human cortex

    Buchweitz, Augusto; Prat, Chantel

    2013-12-01

    The goal of the present review is to discuss recent cognitive neuroscientific findings concerning bilingualism. Three interrelated questions about the bilingual brain are addressed: How are multiple languages represented in the brain? how are languages controlled in the brain? and what are the real-world implications of experience with multiple languages? The review is based on neuroimaging research findings about the nature of bilingual processing, namely, how the brain adapts to accommodate multiple languages in the bilingual brain and to control which language should be used, and when. We also address how this adaptation results in differences observed in the general cognition of bilingual individuals. General implications for models of human learning, plasticity, and cognitive control are discussed.

  17. Expectation modulates neural representations of valence throughout the human brain.

    Ramayya, Ashwin G; Pedisich, Isaac; Kahana, Michael J

    2015-07-15

    The brain's sensitivity to unexpected gains or losses plays an important role in our ability to learn new behaviors (Rescorla and Wagner, 1972; Sutton and Barto, 1990). Recent work suggests that gains and losses are ubiquitously encoded throughout the human brain (Vickery et al., 2011), however, the extent to which reward expectation modulates these valence representations is not known. To address this question, we analyzed recordings from 4306 intracranially implanted electrodes in 39 neurosurgical patients as they performed a two-alternative probability learning task. Using high-frequency activity (HFA, 70-200 Hz) as an indicator of local firing rates, we found that expectation modulated reward-related neural activity in widespread brain regions, including regions that receive sparse inputs from midbrain dopaminergic neurons. The strength of unexpected gain signals predicted subjects' abilities to encode stimulus-reward associations. Thus, neural signals that are functionally related to learning are widely distributed throughout the human brain. PMID:25937489

  18. Decade of the Brain 1990--2000: Maximizing human potential

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  19. Endocannabinoids modulate human blood–brain barrier permeability in vitro

    Hind, William H.; Tufarelli, Cristina; Neophytou, Maria; Anderson, Susan I; England, Timothy J.; O'Sullivan, Saoirse E

    2015-01-01

    Background and Purpose Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood–brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. Experimental Approach Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was mo...

  20. The intrinsic geometry of the human brain connectome

    Ye, Allen Q.; Ajilore, Olusola A.; Conte, Giorgio; GadElkarim, Johnson; Thomas-Ramos, Galen; Zhan, Liang; Yang, Shaolin; Kumar, Anand; Magin, Richard L.; G. Forbes, Angus; Leow, Alex D.

    2015-01-01

    This paper describes novel methods for constructing the intrinsic geometry of the human brain connectome using dimensionality-reduction techniques. We posit that the high-dimensional, complex geometry that represents this intrinsic topology can be mathematically embedded into lower dimensions using coupling patterns encoded in the corresponding brain connectivity graphs. We tested both linear and nonlinear dimensionality-reduction techniques using the diffusion-weighted structural connectome ...

  1. Gene Expression Profiling in the Brains of Human Cocaine Abusers

    Bannon, Michael J.; Kapatos, Gregory; ALBERTSON, DAWN N.

    2005-01-01

    Chronic cocaine abuse induces long-term neurochemical, structural and behavioural changes thought to result from altered gene expression within the nucleus accumbens and other brain regions playing a critical role in addiction. Recent methodological advances now allow the profiling of gene expression in human postmortem brain. In this article, we review studies in which we have used Affymetrix oligonucleotide microarrays to identify transcripts that are differentially expressed in the nucleus...

  2. Increased morphological asymmetry, evolvability and plasticity in human brain evolution

    Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C.

    2013-01-01

    The study of hominin brain evolution relies mostly on evaluation of the endocranial morphology of fossil skulls. However, only some general features of external brain morphology are evident from endocasts, and many anatomical details can be difficult or impossible to examine. In this study, we use geometric morphometric techniques to evaluate inter- and intraspecific differences in cerebral morphology in a sample of in vivo magnetic resonance imaging scans of chimpanzees and humans, with spec...

  3. An Embodied Brain Model of the Human Foetus

    Yasunori Yamada; Hoshinori Kanazawa; Sho Iwasaki; Yuki Tsukahara; Osuke Iwata; Shigehito Yamada; Yasuo Kuniyoshi

    2016-01-01

    Cortical learning via sensorimotor experiences evoked by bodily movements begins as early as the foetal period. However, the learning mechanisms by which sensorimotor experiences guide cortical learning remain unknown owing to technical and ethical difficulties. To bridge this gap, we present an embodied brain model of a human foetus as a coupled brain-body-environment system by integrating anatomical/physiological data. Using this model, we show how intrauterine sensorimotor experiences rela...

  4. Aluminum accumulation in human brain tissues

    Ishihara, R.; Takeuchi, T.; Ohta, T. [Dept. of Psychiatry, Nagoya University School of Medicine, Nagoya, Aichi (Japan); Ektessabi, A.M. [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Hanaichi, T.; Ishihara, Y. [Hanaichi Ultrastructure Research Institute Co. Okazaki, Okazaki, Aichi (Japan); Fujita, Y. [Equipment Center for Research and Education, Nagoya, Aichi (Japan)

    1999-07-01

    Normal cell functions of the brain are often impaired by an excess accumulation of metal ions. There have been increasing efforts in recent years to measure and quantify excessive accumulations of biological constituent elements (such as Fe, Zn, Cu, and Ca), as well as the presence and distribution of contaminating elements (such as Al) in the brain tissues. Since Al might be associated with cases of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amiotrophic lateral screlosis (ALS), it is very important to measure and quantify Al levels using precise analytical techniques. The aim of this investigation is to measure the Al contents present in the temporal cortices for three cases. The specimens concerned were taken from unfixed autopsy brains, which have been preserved in a deep freezer at -80degC. A tandem type accelerator of 2 MeV energy was used to measure the concentrations of Al in these specimen tissues. In order to increase the sensitivity of the signals in the low energy region of the spectra, the absorber was removed. The results show that peak intensity depends on the site measured. In certain cases, however, an extremely high concentration of Al was observed in PIXE spectra, with an intensity higher than those of the other major elements present in the brain. Samples from the same subjects were also analyzed using EPMA-EDX. X-ray maps produced by EPMA-EDX showed the presence of extremely high concentrations of Al. The results yielded by PIXE analysis was in good qualitative agreement with those from EPMA-EDX. (author)

  5. Addiction Circuitry in the Human Brain*

    Volkow, Nora D.; Wang, Gene-Jack; Fowler, Joanna S.; Tomasi, Dardo

    2011-01-01

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person’s risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circ...

  6. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing. PMID:26966964

  7. Three-dimensional microtomographic imaging of human brain cortex

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  8. Distribution of vesicular glutamate transporters in the human brain

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  9. A navigational guidance system in the human brain.

    Spiers, Hugo J; Maguire, Eleanor A

    2007-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one's current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional magnetic resonance imaging as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analyzed in combination with metric measures of proximity and direction to goal destinations that were derived from each individual subject's coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behavior in general. PMID:17492693

  10. Pain perception and its genesis in the human brain

    Andrew CN CHEN

    2008-01-01

    In the past two decades, pain perception in the human brain has been studied with EEG/MEG brain topography and PET/ fMRI neuroimaging techniques. A host of cortical and subeortical loci can be activated by various nociceptive conditions. The activation in pain perception can be induced by physical (electrical, thermal, mechanical), chemical (capsacin, ascoric acid), psychological (anxiety, stress, nocebo) means, and pathological (e.g. migraine, neuropathic) diseases. This article deals mainly on the activation, but not modulation, of human pain in the brain. The brain areas identified are named pain representation, matrix, neuraxis, or signature. The sites are not uniformly isolated across various studies, but largely include a set of cores sites: thalamus and primary somatic area (SI), second somatic area (SII), insular cortex (IC), prefrontal cortex (PFC), cingnlate, and parietal cortices. Other areas less reported and considered important in pain perception include brainstem, hippocampus, amygdala and supplementary motor area (SMA). The issues of pain perception basically encompass both the site and the mode of brain function. Although the site issue is delineared to a large degree, the mode issue has been much less explored. From the temporal dynamics, IC can be considered as the initial stage in genesis of pain perception as conscious suffering, the unique aversion in the human brain.

  11. Regional distribution of serotonin transporter protein in postmortem human brain

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  12. Decoding the visual and subjective contents of the human brain.

    Kamitani, Yukiyasu; Tong, Frank

    2005-05-01

    The potential for human neuroimaging to read out the detailed contents of a person's mental state has yet to be fully explored. We investigated whether the perception of edge orientation, a fundamental visual feature, can be decoded from human brain activity measured with functional magnetic resonance imaging (fMRI). Using statistical algorithms to classify brain states, we found that ensemble fMRI signals in early visual areas could reliably predict on individual trials which of eight stimulus orientations the subject was seeing. Moreover, when subjects had to attend to one of two overlapping orthogonal gratings, feature-based attention strongly biased ensemble activity toward the attended orientation. These results demonstrate that fMRI activity patterns in early visual areas, including primary visual cortex (V1), contain detailed orientation information that can reliably predict subjective perception. Our approach provides a framework for the readout of fine-tuned representations in the human brain and their subjective contents. PMID:15852014

  13. Measuring dopamine release in the human brain with PET

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  14. Magnetic resonance elastography in normal human brain: preliminary study

    Objective: To study the application of magnetic resonance elastography (MRE) in the human brain. Methods: An external force actuator was developed. The actuator was fixed to the head coil. During MRE scan, one side of the actuator was attached to the volunteers' head. Low frequency oscillation was produced by the actuator and generated shear waves propagating into brain tissue. The pulse sequence of MRE was designed. A modified gradient echo sequence was developed with motion sensitizing gradient (MSG) imposed along X, Y or Z direction. Cyclic displacement within brain tissue induced by shear waves caused a measurable phase shift in the received MR signal. From the measured phase shift, the displacement at each voxel could be calculated, and the shear waves within the brain were directly imaged. By adjusting the phase offset, the dynamic propagation of shear waves in a wave cycle was obtained. Phase images were processed with local frequency estimation (LFE) technique to obtain the elasticity images. Shear waves at 100 Hz, 150 Hz, and 200 Hz were applied. Results: The phase images of MRE directly imaged the propagating shear waves within the brain. The direction of the propagation was from surface of the brain to the center. The wavelength of shear waves varied with the change of actuating frequency. The change of wavelength of shear waves in gray and white matter of the brain was identified. The wavelength of shear waves in gray matter was shorter than that in white matter. The elasticity image of the brain revealed that the shear modulus of the white matter was higher than that of gray matter. Conclusion: The phase images of MRE can directly visualize the propagation of shear waves in the brain tissue. The elasticity image of the brain can demonstrate the change of elasticity between gray and white matter. (authors)

  15. The brain-mind quiddity: ethical issues in the use of human brain tissue for therapeutic and scientific purposes.

    Burd, L; Gregory, J.M.; Kerbeshian, J

    1998-01-01

    The use of human brain tissue in neuroscience research is increasing. Recent developments include transplanting neural tissue, growing or maintaining neural tissue in laboratories and using surgically removed tissue for experimentation. Also, it is likely that in the future there will be attempts at partial or complete brain transplants. A discussion of the ethical issues of using human brain tissue for research and brain transplantation has been organized around nine broadly defined topic ar...

  16. Common genetic variants influence human subcortical brain structures.

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  17. The modular and integrative functional architecture of the human brain.

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions. PMID:26598686

  18. Addiction circuitry in the human brain (*).

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.

    2011-09-27

    A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors, developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.

  19. Toward discovery science of human brain function

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian;

    2010-01-01

    priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally...... require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter......-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the...

  20. A versatile new technique to clear mouse and human brain

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  1. Visual dictionaries as intermediate features in the human brain

    Kandan eRamakrishnan

    2015-01-01

    Full Text Available The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2 and V3. However BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.

  2. Unveiling the mystery of visual information processing in human brain

    Diamant, Emanuel

    2008-01-01

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. ...

  3. Antigenic constituents of basic proteins from human brain

    Rajam, P. C.; Bogoch, S.; Rushworth, Mary A.; Forrester, P. C.

    1966-01-01

    1. A minimum of three distinct basic proteins have been chromatographically separated from a neutral, low ionic strength extract of human grey matter, using a discontinuous eluant series. 2. These chromatographic subfractions have been characterized by gradient elution chromatography and each subfraction analysed for distinct antigenic characteristics. 3. Evidence was adduced for the presence of a minimum of three distinct basic protein antigens, all of which may be specific to human brain but not to human liver. None of them appear to be human serum proteins. ImagesFIG. 2FIG. 3 PMID:4958738

  4. Rock magnetism linked to human brain magnetite

    Kirschvink, Joseph L.

    Magnetite has a long and distinguished career as one of the most important minerals in geophysics, as it is responsible for most of the remanent magnetization in marine sediments and the oceanic crust. It may come as a surprise to discover that it also ranks as the third or fourth most diverse mineral product formed biochemically by living organisms, and forms naturally in a variety of human tissues [Kirschvink et al., 1992].Magnetite was discovered in teeth of the Polyplacophora mollusks over 30 years ago, in magnetotactic bacteria nearly 20 years ago, in honey bees and homing pigeons nearly 15 years ago, but only recently in human tissue.

  5. Connectomics and new approaches for analyzing human brain functional connectivity

    Craddock, R. Cameron; Tungaraza, Rosalia L; Milham, Michael P.

    2015-01-01

    Estimating the functional interactions between brain regions and mapping those connections to corresponding inter-individual differences in cognitive, behavioral and psychiatric domains are central pursuits for understanding the human connectome. The number and complexity of functional interactions within the connectome and the large amounts of data required to study them position functional connectivity research as a “big data” problem. Maximizing the degree to which knowledge about human br...

  6. Frequency representation within the human brain: Stability versus plasticity

    Lim, Hubert H.; Minoo Lenarz; Gert Joseph; Thomas Lenarz

    2013-01-01

    A topographical representation for frequency has been identified throughout the auditory brain in animals but with limited evidence in humans. Using a midbrain implant, we identified an ordering of pitch percepts for electrical stimulation of sites across the human inferior colliculus (IC) that was consistent with the IC tonotopy shown in animals. Low pitches were perceived by the subject for stimulation of superficial IC sites while higher pitches were perceived for stimulation of deeper sit...

  7. Stem Cells Expand Insights into Human Brain Evolution.

    Dyer, Michael A

    2016-04-01

    Substantial expansion in the number of cerebral cortex neurons is thought to underlie cognitive differences between humans and other primates, although the mechanisms underlying this expansion are unclear. Otani et al. (2016) utilize PSC-derived brain organoids to study how species-specific differences in cortical progenitor proliferation may underlie cortical evolution. PMID:27058930

  8. Mapping Human Brain Function with MRI at 7 Tesla

    2002-01-01

    @@ In the past decade, the most significant development in MRI is the introduction of fMRI, which permits the mapping of human brain function with exquisite details noninvasively. Functional mapping can be achieved by measuring changes in the blood oxygenation level (I.e. The BOLD contrast) or cerebral blood flow.

  9. Proton NMR spectroscopy of human brain at 3 TESLA

    Mlynárik, V.; Starčuk, Zenon; Starčuk jr., Zenon; Gruber, S.; Moser, E.

    Valtice : Masarykova Univerzita, 2002, s. 30. ISBN 80-210-2808-4. [NMR Valtice. Valtice (CZ), 08.04.2002-10.04.2002] Institutional research plan: CEZ:AV0Z2065902 Keywords : spectroscopy * human brain Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. The human brain response to dental pain relief.

    Meier, M L; Widmayer, S; Abazi, J; Brügger, M; Lukic, N; Lüchinger, R; Ettlin, D A

    2015-05-01

    Local anesthesia has made dental treatment more comfortable since 1884, but little is known about associated brain mechanisms. Functional magnetic resonance imaging is a modern neuroimaging tool widely used for investigating human brain activity related to sensory perceptions, including pain. Most brain regions that respond to experimental noxious stimuli have recently been found to react not only to nociception alone, but also to visual, auditory, and other stimuli. Thus, presumed functional attributions have come under scrutiny regarding selective pain processing in the brain. Evidently, innovative approaches are warranted to identify cerebral regions that are nociceptive specific. In this study, we aimed at circumventing known methodological confounders by applying a novel paradigm in 14 volunteers: rather than varying the intensity and thus the salience of painful stimuli, we applied repetitive noxious dental stimuli at constant intensity to the left mandibular canine. During the functional magnetic resonance imaging paradigm, we suppressed the nociceptive barrage by a mental nerve block. Brain activity before and after injection of 4% articaine was compared intraindividually on a group level. Dental pain extinction was observed to correspond to activity reduction in a discrete region of the left posterior insular cortex. These results confirm previous reports demonstrating that direct electrical stimulation of this brain region-but not of others-evokes bodily pain sensations. Hence, our investigation adds further evidence to the notion that the posterior insula plays a unique role in nociceptive processing. PMID:25691071

  11. Common genetic variants influence human subcortical brain structures

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  12. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides.

    Sarbu, Mirela; Robu, Adrian C; Ghiulai, Roxana M; Vukelić, Željka; Clemmer, David E; Zamfir, Alina D

    2016-05-17

    The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series. PMID:27088833

  13. Environmental influence in the brain, human welfare and mental health.

    Tost, Heike; Champagne, Frances A; Meyer-Lindenberg, Andreas

    2015-10-01

    The developing human brain is shaped by environmental exposures--for better or worse. Many exposures relevant to mental health are genuinely social in nature or believed to have social subcomponents, even those related to more complex societal or area-level influences. The nature of how these social experiences are embedded into the environment may be crucial. Here we review select neuroscience evidence on the neural correlates of adverse and protective social exposures in their environmental context, focusing on human neuroimaging data and supporting cellular and molecular studies in laboratory animals. We also propose the inclusion of innovative methods in social neuroscience research that may provide new and ecologically more valid insight into the social-environmental risk architecture of the human brain. PMID:26404717

  14. Xanthine oxidase activity regulates human embryonic brain cells growth

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  15. Cell culture: Progenitor cells from human brain after death

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  16. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-01-01

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too. PMID:22947971

  17. Large-Scale Networks in the Human Brain revealed by Functional Connectivity MRI

    Krienen, Fenna Marie

    2013-01-01

    The human brain is composed of distributed networks that connect a disproportionately large neocortex to the brainstem, cerebellum and other subcortical structures. New methods for analyzing non-invasive imaging data have begun to reveal new insights into human brain organization. These methods permit characterization of functional interactions within and across brain networks, and allow us to appreciate points of departure between the human brain and non-human primates.

  18. A human-specific de novo protein-coding gene associated with human brain functions.

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  19. MR-visible brain water content in human acute stroke

    Gideon, P; Rosenbaum, S; Sperling, B;

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate......CBF from Day 0-3 to Day 4-7 (p = 0.050) and from Day 0-3 to Day 8-21 (p = 0.028). No correlation between rCBF and water content was found. Water content in ischemic brain tissue increased significantly between Day 4-7 after stroke. This should be considered when performing quantitative 1H-MRS using water...

  20. Brain-Computer Interfaces Revolutionizing Human-Computer Interaction

    Graimann, Bernhard; Allison, Brendan

    2010-01-01

    A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.

  1. The maternal brain and its plasticity in humans.

    Kim, Pilyoung; Strathearn, Lane; Swain, James E

    2016-01-01

    This article is part of a Special Issue "Parental Care". Early mother-infant relationships play important roles in infants' optimal development. New mothers undergo neurobiological changes that support developing mother-infant relationships regardless of great individual differences in those relationships. In this article, we review the neural plasticity in human mothers' brains based on functional magnetic resonance imaging (fMRI) studies. First, we review the neural circuits that are involved in establishing and maintaining mother-infant relationships. Second, we discuss early postpartum factors (e.g., birth and feeding methods, hormones, and parental sensitivity) that are associated with individual differences in maternal brain neuroplasticity. Third, we discuss abnormal changes in the maternal brain related to psychopathology (i.e., postpartum depression, posttraumatic stress disorder, substance abuse) and potential brain remodeling associated with interventions. Last, we highlight potentially important future research directions to better understand normative changes in the maternal brain and risks for abnormal changes that may disrupt early mother-infant relationships. PMID:26268151

  2. Interactions between occlusion and human brain function activities.

    Ohkubo, C; Morokuma, M; Yoneyama, Y; Matsuda, R; Lee, J S

    2013-02-01

    There are few review articles in the area of human research that focus on the interactions between occlusion and brain function. This systematic review discusses the effect of occlusion on the health of the entire body with a focus on brain function. Available relevant articles in English from 1999 to 2011 were assessed in an online database and as hard copies in libraries. The selected 19 articles were classified into the following five categories: chewing and tongue movements, clenching and grinding, occlusal splints and occlusal interference, prosthetic rehabilitation, and pain and stimulation. The relationships between the brain activity observed in the motor and sensory cortices and movements of the oral and maxillofacial area, such as those produced by gum chewing, tapping and clenching, were investigated. It was found that the sensorimotor cortex was also affected by the placement of the occlusal interference devices, splints and implant prostheses. Brain activity may change depending on the strength of the movements in the oral and maxillofacial area. Therefore, mastication and other movements stimulate the activity in the cerebral cortex and may be helpful in preventing degradation of a brain function. However, these findings must be verified by evidence gathered from more subjects. PMID:22624951

  3. Virtual model of the human brain for neurosurgical simulation.

    De Paolis, Lucio T; De Mauro, Alessandro; Raczkowsky, Joerg; Aloisio, Giovanni

    2009-01-01

    The aim of this work is to develop a realistic virtual model of the human brain that could be used in a neurosurgical simulation for both educational and preoperative planning purposes. The goal of such a system would be to enhance the practice of surgery students, avoiding the use of animals, cadavers and plastic phantoms. A surgeon, before carrying out the real procedure, will, with this system, be able to rehearse by using a surgical simulator based on detailed virtual reality models of the human brain, reconstructed with real patient's medical images. In order to obtain a realistic and useful simulation we focused our research on the physical modelling of the brain as a deformable body and on the interactions with surgical instruments. The developed prototype is based on the mass-spring-damper model and, in order to obtain deformations similar to the real ones, a three tiered structure has been built. In this way, we have obtained local and realistic deformations using an ad-hoc point distribution in the volume where the contact between the brain surface and a surgical instrument takes place. PMID:19745425

  4. The Speculative Neuroscience of the Future Human Brain

    Robert A. Dielenberg

    2013-05-01

    Full Text Available The hallmark of our species is our ability to hybridize symbolic thinking with behavioral output. We began with the symmetrical hand axe around 1.7 mya and have progressed, slowly at first, then with greater rapidity, to producing increasingly more complex hybridized products. We now live in the age where our drive to hybridize has pushed us to the brink of a neuroscientific revolution, where for the first time we are in a position to willfully alter the brain and hence, our behavior and evolution. Nootropics, transcranial direct current stimulation (tDCS, transcranial magnetic stimulation (TMS, deep brain stimulation (DBS and invasive brain mind interface (BMI technology are allowing humans to treat previously inaccessible diseases as well as open up potential vistas for cognitive enhancement. In the future, the possibility exists for humans to hybridize with BMIs and mobile architectures. The notion of self is becoming increasingly extended. All of this to say: are we in control of our brains, or are they in control of us?

  5. Drug delivery to the human brain via the cerebrospinal fluid

    This Study investigates the flow of Cerebrospinal Fluid (CSF) inside the human ventricular system with particular emphasis on drug path flow for the purpose of medical drug injections. The investigation is conducted using the computational fluid dynamics package FLUENT. The role of the ventricular system is very important in protecting the brain from injury by cushioning it against the cranium during sudden movements. If for any reason the passage of CSF through the ventricular system is blocked (usually by stenosis) then a condition known as Hydrocephalus occurs, where by the blocked CSF causes the Intra Cranial Pressure (ICP) inside the brain to rise. If this is not treated then severe brain damage and death can occur. Previous work conducted by the authors on this subject has focused on the technique of ventriculostomy to treat hydrocephalus. The present study carries on from the previous work but focuses on delivering medical drugs to treat brain tumors that are conventionally not accessible and which require complicated surgical procedures to remove them. The study focuses on the possible paths for delivering drugs to tumors in the human nervous system through conventionally accessible locations without major surgery. The results of the investigation have shown that it is possible to reach over 95% of the ventricular system by injection of drugs however the results also show that there are many factors that can affect the drug flow paths through the ventricular system and thus the areas reachable, by these drugs. (author)

  6. Human plasma DNP level after severe brain injury

    GAO Yi-lu; XIN Hui-ning; FENG Yi; FAN Ji-wei

    2006-01-01

    Objective: To determine the relationship between DNP level after human severe brain injury and hyponatremia as well as isorrhea.Methods: The peripheral venous plasma as control was collected from 8 volunteers. The peripheral venous plasma from 14 severe brain injury patients were collected in the 1, 3, 7 days after injury. Radioimmunoassay was used to detect the DNP concentration. Meanwhile, daily plasma and urine electrolytes, osmotic pressure as well as 24 h liquid intake and output volume were detected.Results: The normal adult human plasma DNP level was 62. 46 pg/ml ± 27. 56 pg/ml. In the experimental group, the plasma DNP levels were higher from day 1 today 3 in 8 of the 14 patients than those in the control group (P1 =0.05, P3 =0.03). Negative fluid balance occurred in 8 patients and hyponatremia in 7 patients. The increase of plasma DNP level was significantly correlated with the development of a negative fluid balance (r=-0.69,P<0.01) and hyponatremia (x2 =4.38, P<0.05).Conclusions: The increase of plasma DNP level is accompanied by the enhancement of natriuretic and diuretic responses in severe brain-injured patients, which is associated with the development of a negative fluid balance and hyponatremia after brain injury.

  7. The Evolution of Brains from Early Mammals to Humans.

    Kaas, Jon H

    2013-01-01

    The large size and complex organization of the human brain makes it unique among primate brains. In particular, the neocortex constitutes about 80% of the brain, and this cortex is subdivided into a large number of functionally specialized regions, the cortical areas. Such a brain mediates accomplishments and abilities unmatched by any other species. How did such a brain evolve? Answers come from comparative studies of the brains of present-day mammals and other vertebrates in conjunction with information about brain sizes and shapes from the fossil record, studies of brain development, and principles derived from studies of scaling and optimal design. Early mammals were small, with small brains, an emphasis on olfaction, and little neocortex. Neocortex was transformed from the single layer of output pyramidal neurons of the dorsal cortex of earlier ancestors to the six layers of all present-day mammals. This small cap of neocortex was divided into 20-25 cortical areas, including primary and some of the secondary sensory areas that characterize neocortex in nearly all mammals today. Early placental mammals had a corpus callosum connecting the neocortex of the two hemispheres, a primary motor area, M1, and perhaps one or more premotor areas. One line of evolution, Euarchontoglires, led to present-day primates, tree shrews, flying lemurs, rodents and rabbits. Early primates evolved from small-brained, nocturnal, insect-eating mammals with an expanded region of temporal visual cortex. These early nocturnal primates were adapted to the fine branch niche of the tropical rainforest by having an even more expanded visual system that mediated visually guided reaching and grasping of insects, small vertebrates, and fruits. Neocortex was greatly expanded, and included an array of cortical areas that characterize neocortex of all living primates. Specializations of the visual system included new visual areas that contributed to a dorsal stream of visuomotor processing in a

  8. Functional imaging of the human brain using conventional MRI

    It was shown in 1991 by Belliveau and coworkers that the activation of the human brain can be visualized in a completely noninvasive way by MRI. First publications coming from the US claimed that very high magnetic field strength or echo planar imaging, both available only at a few research sites, would be necessary to do this job. Recently, it was demonstrated that functional imaging of the human brain can be done with high spatial resolution MRI using conventional FLASH-sequences with the commercial widely available 1,5 Tesla systems. First results have been reported for visual as well as primary motor cortex activation in healthy volunteers. The key to a successful application of the conventional technique lies in the design of extremely low bandwidth, long echo-time FLASH-sequences with high spatial resolution. (orig.)

  9. A Novel Human Body Area Network for Brain Diseases Analysis.

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system. PMID:27526187

  10. “Messing with the mind”: evolutionary challenges to human brain augmentation

    Saniotis, Arthur; Henneberg, Maciej; Kumaratilake, Jaliya; Grantham, James P

    2014-01-01

    The issue of brain augmentation has received considerable scientific attention over the last two decades. A key factor to brain augmentation that has been widely overlooked are the complex evolutionary processes which have taken place in evolving the human brain to its current state of functioning. Like other bodily organs, the human brain has been subject to the forces of biological adaptation. The structure and function of the brain, is very complex and only now we are beginning to understa...

  11. A Collaborative Brain-Computer Interface for Improving Human Performance

    Wang, Yijun; Jung, Tzyy-Ping

    2011-01-01

    Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world prac...

  12. Quantization of continuous arm movements in humans with brain injury

    Krebs, Hermano Igo; Aisen, Mindy L.; Volpe, Bruce T.; Hogan, Neville

    1999-01-01

    Segmentation of apparently continuous movement has been reported for over a century by human movement researchers, but the existence of primitive submovements has never been proved. In 20 patients recovering from a single cerebral vascular accident (stroke), we identified the apparent submovements that composed a continuous arm motion in an unloaded task. Kinematic analysis demonstrated a submovement speed profile that was invariant across patients with different brain lesions and provided ex...

  13. Motor Skill Acquisition Promotes Human Brain Myelin Plasticity

    Bimal Lakhani; Borich, Michael R.; Jackson, Jacob N.; Wadden, Katie P.; Sue Peters; Anica Villamayor; MacKay, Alex L.; Vavasour, Irene M.; Alexander Rauscher; Boyd, Lara A.

    2016-01-01

    Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent ch...

  14. Human functional neuroimaging of brain changes associated with practice

    GARAVAN, HUGH PATRICK

    2005-01-01

    PUBLISHED The discovery that experience-driven changes in the human brain can occur from a neural to a cortical level throughout the lifespan has stimulated a proliferation of research into how neural function changes in response to experience, enabled by neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging. Studies attempt to characterize these changes by examining how practice on a task affects the functional anatomy underlying performance. ...

  15. Two distinct forms of functional lateralization in the human brain

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    This study alters our fundamental understanding of the functional interactions between the cerebral hemispheres of the human brain by establishing that the left and right hemispheres have qualitatively different biases in how they dynamically interact with one another. Left-hemisphere regions are biased to interact more strongly within the same hemisphere, whereas right-hemisphere regions interact more strongly with both hemispheres. These two different patterns of interaction are associated ...

  16. Dynamic Shimming of the Human Brain at 7 Tesla

    Juchem, Christoph; Nixon, Terence W.; Diduch, Piotr; Rothman, Douglas L.; Starewicz, Piotr; de Graaf, Robin A.

    2010-01-01

    Dynamic shim updating (DSU) of the zero- to second-order spherical harmonic field terms has previously been shown to improve the magnetic field homogeneity in the human brain at 4 Tesla. The increased magnetic field inhomogeneity at 7 Tesla can benefit from inclusion of third-order shims during DSU. However, pulsed higher-order shims can generate a multitude of temporally varying magnetic fields arising from eddy-currents that can strongly degrade the magnetic field homogeneity.

  17. Predicting errors from reconfiguration patterns in human brain networks

    Ekman, Matthias; Derrfuss, Jan; Tittgemeyer, Marc; Fiebach, Christian J.

    2012-01-01

    Task preparation is a complex cognitive process that implements anticipatory adjustments to facilitate future task performance. Little is known about quantitative network parameters governing this process in humans. Using functional magnetic resonance imaging (fMRI) and functional connectivity measurements, we show that the large-scale topology of the brain network involved in task preparation shows a pattern of dynamic reconfigurations that guides optimal behavior. This network could be deco...

  18. Maintaining the Brain: Insight into Human Neurodegeneration From Drosophila Mutants

    Lessing, Derek; Bonini, Nancy M.

    2009-01-01

    The fruit fly Drosophila melanogaster has brought significant advances to research in neurodegenerative disease, notably in the identification of genes that are required to maintain the structural integrity of the brain, defined by recessive mutations that cause adult-onset neurodegeneration. Here, we survey these genes in the fly and classify them according to five key cell biological processes. Over half of these genes have counterparts in mouse or human that are also associated with neurod...

  19. Quantitative MRI of he human brain at 7 tesla

    Polders, D.L.

    2012-01-01

    This thesis describes the implementation of quantitative MR methods in the human brain at 7 T. By highlighting the drawbacks and advantages of the increased field strength, the use of 7 T MRI for quantitative measurements in clinical research was demonstrated. Inhomogeneities in the transmitted RF field limit the feasibility of methods that rely on the application of homogeneous RF pulses. The increased SNR at this high field strength enables rapid acquisition of high quality imaging volumes ...

  20. Investigation of G72 (DAOA expression in the human brain

    Hirsch Steven

    2008-12-01

    Full Text Available Abstract Background Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO, supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions. Methods The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth in silico analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability. Results Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala, spinal cord or testis. A detailed in silico analysis provides several lines of evidence that support the apparent low or absent expression of G72. Conclusion Our results suggest that native G72 protein is not normally present in the tissues that we analysed

  1. Brain tumors induced in rats by human adenovirus type 12

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  2. Imaging synaptic density in the living human brain.

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. PMID:27440727

  3. Relevance Of Human Brain Banking In Neuroscience - A National Facility

    Shankar S K

    1999-01-01

    Full Text Available The lack of animal models for many of the neurodegenerative and psychiatric disorders and the fact that animal models cannot substitute for human tissue led to the establishment of Brain Banks that collect, preserve and provide fresh human tissue for researchers. One such Bank has been set up at the National Institute of Mental Health and Neurosciences funded by Dept. of Biotechnology, Dept. of Science and Technology and ICMR. Brains and tissue fluids (serum and CSF are collected at autopsy following informed consent from close relatives. One half of the fresh brain from neurodegenerative and psychiatric disorders are frozen at -70′ C while the other half and brains from infective conditions are formalin fixed which can be used for pathomorphological studies. Only fresh frozen tissues that are tested and found negative for HIV and HbsAg are provided for research. The neural tissues as well as tissue fluids that are being supplied by the Brain Bank have supported a number of research projects in diverse fields of neurosciences. Many significant discoveries that have contributed towards understanding pathogenesis of disease, their genetic basis, and evolving prognostic and diagnostic markers for neurologic disease in the CSF have been made possible by the existence of such a facility. The continued functioning of such a facility requires the close co-operation of the clinical neuroscientists, pathologists and the other neuroscientists. Increased awareness and commitment amongst the scientific fraternity is necessary to keep alive the demand and ensure uninterrupted supply of fresh tissue for research. This will help usher in the era of molecular neurobiology with the fond hope that many more of the relentlessly progressive neurodegenerative disorders will eventually find a cause and cure.

  4. Transolfactory neuroinvasion by viruses threatens the human brain.

    Mori, I

    2015-12-01

    Viral neuroinvasion via the olfactory system has been investigated in a variety of virus-animal models by scientists in many fields including virologists, pathologists, and neurologists. In humans, herpes simplex virus type 1 (HSV-1), human herpesvirus 6 (HHV-6), Borna disease virus, rabies virus, and influenza A virus have been shown to take the olfactory route for neuroinvasion based on forensic and post-mortem specimens. This article briefly summarizes the anatomy, physiology, and immunology of the olfactory system and presents a battery of neurovirulent viruses that may threaten the human brain by invading through this peripheral pathway, especially focusing on two of the most intensively studied viruses--HSV-1 and influenza A virus. Viruses may insidiously invade the olfactory neural network not only to precipitate encephalitis/encephalopathy but also to promote the development of neurodegenerative and demyelinating disorders. Substantial information obtained by analyzing human specimens is required to argue for or against this hypothesis. PMID:26666182

  5. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts

    Persson, Morten; Rasmussen, Palle; Madsen, Jacob;

    2012-01-01

    animals were treated day 0 and 7. A parallel 18F-FLT PET/CT study was performed on day 0, 1, 3 and 6. Dosimetry calculations were based on a biodistribution study, where organs and tissue of interest were collected 0.5, 1.0, 2.0, 4.0 and 24h post injection of 177Lu-DOTA-AE105. Toxicity was assessed by...... theranostic approach as treatment modality in a human xenograft colorectal cancer model. MethodsA DOTA-conjugated 9-mer high affinity uPAR binding peptide (DOTA-AE105) was radiolabeled with 64Cu and 177Lu, for PET imaging and targeted radionuclide therapy study, respectively. Human uPAR-positive CRC HT-29...... cells were inoculated in Nude mice and treated with 177Lu-DOTA-AE105 once a visible tumor had formed. To evaluate the true effect of the targeted radiotherapy, two controls groups were included in this study, one receiving a 177Lu-labeled non-binding control peptide and one receiving vehicle. All...

  6. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  7. Specialisation in the human brain: the case of numbers

    Roi Cohen Kadosh

    2011-07-01

    Full Text Available How numerical representation is encoded in the adult human brain is important for a basic understanding of human brain organization, its typical and atypical development, its evolutionary precursors, cognitive architectures, education and rehabilitation. Previous studies have shown that numerical processing activates the same intraparietal regions irrespective of the presentation format (e.g. symbolic digits or non-symbolic dot arrays. This has led to claims that there is a single format independent, numerical representation. In the current study we used a functional magnetic resonance adaptation paradigm, and effective connectivity analysis to re-examine whether numerical processing in the intraparietal sulci is dependent or independent on the format of the stimuli. We obtained two novel results. First, the whole brain analysis revealed that format change (e.g., from dots to digits, in the absence of a change in magnitude, activated the same intraparietal regions as magnitude change, but to a greater degree. Second, using dynamic causal modeling (DCM as a tool to disentangle neuronal specialization across regions that are commonly activated, we found that the connectivity between the left and right intraparietal sulci is format-dependent. Together, this line of results supports the idea that numerical representation is subserved by multiple mechanisms within the same parietal regions.

  8. Mass spectrometry quantification of clusterin in the human brain

    Chen Junjun

    2012-08-01

    Full Text Available Abstract Background The multifunctional glycoprotein clusterin has been associated with late-onset Alzheimer’s disease (AD. Further investigation to define the role of clusterin in AD phenotypes would be aided by the development of techniques to quantify level, potential post-translational modifications, and isoforms of clusterin. We have developed a quantitative technique based on multiple reaction monitoring (MRM mass spectrometry to measure clusterin in human postmortem brain tissues. Results A stable isotope-labeled concatenated peptide (QconCAT bearing selected peptides from clusterin was expressed with an in vitro translation system and purified. This clusterin QconCAT was validated for use as an internal standard for clusterin quantification using MRM mass spectrometry. Measurements were performed on the human postmortem frontal and temporal cortex from control and severe AD cases. During brain tissues processing, 1% SDS was used in the homogenization buffer to preserve potential post-translational modifications of clusterin. However, MRM quantifications in the brain did not suggest phosphorylation of Thr393, Ser394, and Ser396 residues reported for clusterin in serum. MRM quantifications in the frontal cortex demonstrated significantly higher (P  Conclusions The proposed protocol is a universal quantitative technique to assess expression level of clusterin. It is expected that application of this protocol to quantification of various clusterin isoforms and potential post-translational modifications will be helpful in addressing the role of clusterin in AD.

  9. Canonical genetic signatures of the adult human brain.

    Hawrylycz, Michael; Miller, Jeremy A; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L; Jegga, Anil G; Aronow, Bruce J; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F; Dierker, Donna L; Menche, Jörg; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R; Jones, Allan; Van Essen, David C; Koch, Christof; Lein, Ed

    2015-12-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  10. Felbamate increases [3H]glycine binding in rat brain and sections of human postmortem brain.

    McCabe, R T; Sofia, R D; Layer, R T; Leiner, K A; Faull, R L; Narang, N; Wamsley, J K

    1998-08-01

    The anticonvulsant compound felbamate (2-phenyl-1,3-propanediol dicarbamate; FBM) appears to inhibit the function of the N-methyl-D-aspartate (NMDA) receptor complex through an interaction with the strychnine-insensitive glycine recognition site. Since we have demonstrated previously that FBM inhibits the binding of [3H]5, 7-dichlorokynurenic acid (DCKA), a competitive antagonist at the glycine site, we assessed the ability of FBM to modulate the binding of an agonist, [3H]glycine, to rat forebrain membranes and human brain sections. In contrast to its ability to inhibit [3H]5,7-DCKA binding, FBM increased [3H]glycine binding (20 nM; EC50 = 485 microM; Emax = 211% of control; nH = 1.8). FBM, but not carbamazepine, phenytoin, valproic acid or phenobarbital, also increased [3H]glycine binding (50 nM; EC50 = 142 microM; Emax = 157% of control; nH = 1.6) in human cortex sections. Autoradiographic analysis of human brain slices demonstrated that FBM produced the largest increases in [3H]glycine binding in the cortex, hippocampus and the parahippocampal gyrus. Because various ions can influence the binding of glycine-site ligands, we assessed their effects on FBM-modulation of [3H]glycine binding. FBM-enhanced [3H]glycine binding was attenuated by Zn++ and not inhibited by Mg++ in human brain. These results suggest that FBM increases [3H]glycine binding in a manner sensitive to ions which modulate the NMDA receptor. These data support the hypothesis that FBM produces anticonvulsant and neuroprotective effects by inhibiting NMDA receptor function, likely through an allosteric modulation of the glycine site. PMID:9694960

  11. Memory-related brain lateralisation in birds and humans.

    Moorman, Sanne; Nicol, Alister U

    2015-03-01

    Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation. PMID:25036892

  12. Human Brain Glycogen Metabolism During and After Hypoglycemia

    Öz, Gülin; Kumar, Anjali; Rao, Jyothi P.; Kodl, Christopher T.; Chow, Lisa; Eberly, Lynn E.; Seaquist, Elizabeth R.

    2009-01-01

    OBJECTIVE We tested the hypotheses that human brain glycogen is mobilized during hypoglycemia and its content increases above normal levels (“supercompensates”) after hypoglycemia. RESEARCH DESIGN AND METHODS We utilized in vivo 13C nuclear magnetic resonance spectroscopy in conjunction with intravenous infusions of [13C]glucose in healthy volunteers to measure brain glycogen metabolism during and after euglycemic and hypoglycemic clamps. RESULTS After an overnight intravenous infusion of 99% enriched [1-13C]glucose to prelabel glycogen, the rate of label wash-out from [1-13C]glycogen was higher (0.12 ± 0.05 vs. 0.03 ± 0.06 μmol · g−1 · h−1, means ± SD, P < 0.02, n = 5) during a 2-h hyperinsulinemic-hypoglycemic clamp (glucose concentration 57.2 ± 9.7 mg/dl) than during a hyperinsulinemic-euglycemic clamp (95.3 ± 3.3 mg/dl), indicating mobilization of glucose units from glycogen during moderate hypoglycemia. Five additional healthy volunteers received intravenous 25–50% enriched [1-13C]glucose over 22–54 h after undergoing hyperinsulinemic-euglycemic (glucose concentration 92.4 ± 2.3 mg/dl) and hyperinsulinemic-hypoglycemic (52.9 ± 4.8 mg/dl) clamps separated by at least 1 month. Levels of newly synthesized glycogen measured from 4 to 80 h were higher after hypoglycemia than after euglycemia (P ≤ 0.01 for each subject), indicating increased brain glycogen synthesis after moderate hypoglycemia. CONCLUSIONS These data indicate that brain glycogen supports energy metabolism when glucose supply from the blood is inadequate and that its levels rebound to levels higher than normal after a single episode of moderate hypoglycemia in humans. PMID:19502412

  13. Microtesla MRI of the human brain with simultaneous MEG

    Zotev, V S; Matlashov, A N; Savukov, I M; Espy, M A; Mosher, J C; Gómez, J J; Kraus, R H

    2007-01-01

    Magnetic resonance imaging at ultra-low fields (ULF MRI) uses SQUIDs (superconducting quantum interference devices) to measure spin precession at a microtesla-range field after sample magnetization is enhanced by a stronger pre-polarizing field. Here, the first ULF images of the human head acquired at 46 microtesla measurement field with pre-polarization at 30 mT are reported. The imaging was performed with 3 mm x 3 mm x 6 mm resolution using the seven-channel SQUID system designed for both ULF MRI and magnetoencephalography (MEG). Auditory MEG signals were measured immediately after the imaging while the human subject remained inside the system. These results demonstrate that ULF MRI of the human brain is feasible and can be naturally combined with MEG.

  14. Brain-Based Learning: The Neurological Findings About the Human Brain that Every Teacher Should Know to be Effective

    Ronald Jean Degen

    2011-01-01

    The purpose of this paper is to present the main neurological findings about the human brain that provide the basis for brain-based learning, and that represent a narrow field of cognitive science as a whole. The findings that are described were made primarily by neuroscientists who studied the structure and functions of the nervous system with the purpose of correcting abnormalities. Only recently have neuroscientists begun studying the brain-based learning processes of normal students in de...

  15. Why our brains cherish humanity: Mirror neurons and colamus humanitatem

    John R. Skoyles

    2008-06-01

    Full Text Available Commonsense says we are isolated. After all, our bodies are physically separate. But Seneca’s colamus humanitatem, and John Donne’s observation that “no man is an island” suggests we are neither entirely isolated nor separate. A recent discovery in neuroscience—that of mirror neurons—argues that the brain and the mind is neither built nor functions remote from what happens in other individuals. What are mirror neurons? They are brain cells that process both what happens to or is done by an individual, and, as it were, its perceived “refl ection,” when that same thing happens or is done by another individual. Thus, mirror neurons are both activated when an individual does a particular action, and when that individual perceives that same action done by another. The discovery of mirror neurons suggests we need to radically revise our notions of human nature since they offer a means by which we may not be so separated as we think. Humans unlike other apes are adapted to mirror interact nonverbally when together. Notably, our faces have been evolved to display agile and nimble movements. While this is usually explained as enabling nonverbal communication, a better description would be nonverbal commune based upon mirror neurons. I argue we cherish humanity, colamus humanitatem, because mirror neurons and our adapted mirror interpersonal interface blur the physical boundaries that separate us.

  16. Multi-dimensional dynamics of human electromagnetic brain activity

    Tetsuo eKida

    2016-01-01

    Full Text Available Magnetoencephalography (MEG and electroencephalography (EEG are invaluable neuroscientific tools for unveiling human neural dynamics in three dimensions (space, time, and frequency, which are associated with a wide variety of perceptions, cognition, and actions. MEG/EEG also provides different categories of neuronal indices including activity magnitude, connectivity, and network properties along the three dimensions. In the last 20 years, interest has increased in inter-regional connectivity and complex network properties assessed by various sophisticated scientific analyses. We herein review the definition, computation, short history, and pros and cons of connectivity and complex network (graph-theory analyses applied to MEG/EEG signals. We briefly describe recent developments in source reconstruction algorithms essential for source-space connectivity and network analyses. Furthermore, we discuss a relatively novel approach used in MEG/EEG studies to examine the complex dynamics represented by human brain activity. The correct and effective use of these neuronal metrics provides a new insight into the multi-dimensional dynamics of the neural representations of various functions in the complex human brain.

  17. Natural image classification driven by human brain activity

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  18. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  19. Imaging neuroreceptors in the human brain in health and disease

    For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human brain in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, and glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On 25 May 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 N-methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine-2 receptors than in serotonin-2 receptors. Preliminary studies of patients with neuropsychiatric disorders suggest that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits a quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. (author)

  20. Modelling Human Cortical Network in Real Brain Space

    ZHAO Qing-Bai; FENG Hong-Bo; TANG Yi-Yuan

    2007-01-01

    Highly specific structural organization is of great significance in the topology of cortical networks.We introduce a human cortical network model.taking the specific cortical structure into account,in which nodes are brain sites placed in the actual positions of cerebral cortex and the establishment of edges depends on the spatial path length rather than the linear distance.The resulting network exhibits the essential features of cortical connectivity,properties of small-world networks and multiple clusters structure.Additionally.assortative mixing is also found in this roodel.All of these findings may be attributed to the spedtic cortical architecture.

  1. The structure of creative cognition in the human brain

    Rex Eugene Jung

    2013-07-01

    Full Text Available Creativity is a vast construct, seemingly intractable to scientific inquiry – perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR. Behaviorally, one can limit the “blind variation” component to idea generation tests as manifested by measures of divergent thinking. The “selective retention” component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI, Diffusion Tensor Imaging (DTI, and proton magnetic resonance imaging (1H-MRS. We also review lesion studies, considered to be the “gold standard” of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981. We provide a perspective, involving aspects of the default mode network, which might provide a “first approximation” regarding how creative cognition might map on to the human brain.

  2. MR-visible brain water content in human acute stroke

    Gideon, P; Rosenbaum, S; Sperling, B; Petersen, P

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate...... brain water content during the course of cerebral infarction. Measurements were performed serially in the acute, subacute, and chronic phase of infarction. Fourteen patients with acute cerebral infarction were examined as well as 9 healthy controls. To correlate with regional cerebral blood flow (r......CBF) SPECT-scanning using 99mTc-HMPAO as flow tracer was performed in the patients. Mean water content (SD) in the infarct area was 37.7 (5.1); 41.8 (4.8); 35.2 (5.4); and 39.3 (5.1) mol x [kg wet weight](-1) at 0-3; 4-7; 8-21; and >180 days after stroke, respectively. Water content increased between Day 0...

  3. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng;

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees,...

  4. Alpha-synuclein expression in the developing human brain.

    Raghavan, Ravi; Kruijff, Loes de; Sterrenburg, Monique D; Rogers, Beverly B; Hladik, Christa L; White, Charles L

    2004-01-01

    Alpha (alpha)-synuclein is a presynaptic protein, abnormal expression of which has been associated with neurodegenerative and neoplastic diseases. It is abundant in the developing vertebrate central nervous system (CNS), but less is known about its developmental expression in the human CNS. Immunohistochemical expression of alpha-synuclein was studied in 39 fetal, perinatal, pediatric, and adolescent brains. Perikaryal expression of alpha-synuclein is observed as early as 11-wk gestation in the cortical plate. Several discrete neuronal groups in the hippocampus, basal ganglia, and brain stem express perikaryal alpha-synuclein by 20-wk gestation, persisting through the first few years of life. In the cerebellum, alpha-synuclein is present by 21-wk gestation and persists into adult life as a coarse granular neuropil reaction product in the internal granular layer, and as a diffuse neuropil "blush" in the molecular layer. The germinal matrix, glia, endothelial cells, external granular layer, Pukinje cells, and dentate neurons are consistently negative for alpha-synuclein. We conclude that alpha-synuclein is expressed very early in human gestation, and that its distribution and temporal sequence of expression varies in discrete neuronal groups. Perikaryal alpha-synuclein starts disappearing from the neuronal cytosol in early childhood, and only the neuropil retains immunoreactivity into adulthood. The reappearance of alpha-synuclein in the adult neuronal cytosol in certain disease processes may represent reemergence of cues from an earlier developmental stage as part of a stress response. PMID:15547775

  5. Flow distributions and spatial correlations in human brain capillary networks

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  6. Human Development XII: A Theory for the Structure and Function of the Human Brain

    Søren Ventegodt

    2008-01-01

    Full Text Available The human brain is probably the most complicated single structure in the biological universe. The cerebral cortex that is traditionally connected with consciousness is extremely complex. The brain contains approximately 1,000,000 km of nerve fibers, indicating its enormous complexity and which makes it difficult for scientists to reveal the function of the brain. In this paper, we propose a new model for brain functions, i.e., information-guided self-organization of neural patterns, where information is provided from the abstract wholeness of the biophysical system of an organism (often called the true self, or the “soul””. We present a number of arguments in favor of this model that provide self-conscious control over the thought process or cognition. Our arguments arise from analyzing experimental data from different research fields: histology, anatomy, electroencephalography (EEG, cerebral blood flow, neuropsychology, evolutionary studies, and mathematics. We criticize the popular network theories as the consequence of a simplistic, mechanical interpretation of reality (philosophical materialism applied to the brain. We demonstrate how viewing brain functions as information-guided self-organization of neural patterns can explain the structure of conscious mentation; we seem to have a dual hierarchical representation in the cerebral cortex: one for sensation-perception and one for will-action. The model explains many of our unique mental abilities to think, memorize, associate, discriminate, and make abstractions. The presented model of the conscious brain also seems to be able to explain the function of the simpler brains, such as those of insects and hydra.

  7. Human development XII: a theory for the structure and function of the human brain.

    Ventegodt, Søren; Hermansen, Tyge Dahl; Kandel, Isack; Merrick, Joav

    2008-01-01

    The human brain is probably the most complicated single structure in the biological universe. The cerebral cortex that is traditionally connected with consciousness is extremely complex. The brain contains approximately 1,000,000 km of nerve fibers, indicating its enormous complexity and which makes it difficult for scientists to reveal the function of the brain. In this paper, we propose a new model for brain functions, i.e., information-guided self-organization of neural patterns, where information is provided from the abstract wholeness of the biophysical system of an organism (often called the true self, or the "soul"). We present a number of arguments in favor of this model that provide self-conscious control over the thought process or cognition. Our arguments arise from analyzing experimental data from different research fields: histology, anatomy, electroencephalography (EEG), cerebral blood flow, neuropsychology, evolutionary studies, and mathematics. We criticize the popular network theories as the consequence of a simplistic, mechanical interpretation of reality (philosophical materialism) applied to the brain. We demonstrate how viewing brain functions as information-guided self-organization of neural patterns can explain the structure of conscious mentation; we seem to have a dual hierarchical representation in the cerebral cortex: one for sensation-perception and one for will-action. The model explains many of our unique mental abilities to think, memorize, associate, discriminate, and make abstractions. The presented model of the conscious brain also seems to be able to explain the function of the simpler brains, such as those of insects and hydra. PMID:18661051

  8. Reconsolidation of human memory: brain mechanisms and clinical relevance.

    Schwabe, Lars; Nader, Karim; Pruessner, Jens C

    2014-08-15

    The processes of memory formation and storage are complex and highly dynamic. Once memories are consolidated, they are not necessarily fixed but can be changed long after storage. In particular, seemingly stable memories may re-enter an unstable state when they are retrieved, from which they must be re-stabilized during a process known as reconsolidation. During reconsolidation, memories are susceptible to modifications again, thus providing an opportunity to update seemingly stable memories. While initial demonstrations of memory reconsolidation came mainly from animal studies, evidence for reconsolidation in humans is now accumulating as well. Here, we review recent advances in our understanding of human memory reconsolidation. After a summary of findings on the reconsolidation of human fear and episodic memory, we focus particularly on recent neuroimaging data that provide first insights into how reconsolidation processes are implemented in the human brain. Finally, we discuss the implications of memory modifications during reconsolidation for the treatment of mental disorders such as posttraumatic stress disorder and drug addiction. PMID:24755493

  9. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver.

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-02-26

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development. PMID:26719341

  10. Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution

    Herculano-Houzel, Suzana; Kaas, Jon H.

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that ...