WorldWideScience

Sample records for 18f-fdg positron emission

  1. {sup 18}F-FDG positron emission tomography in the early diagnosis of enterocolitis: preliminary results

    Kresnik, E.; Gallowitsch, H.J.; Igerc, I.; Kumnig, G.; Gomez, I.; Lind, P. [Nuclear Medicine and Special Endocrinology, PET Centre, General Hospital, St. Veiterstrasse 47, 9020 Klagenfurt (Austria); Mikosch, P.; Alberer, D.; Hebenstreit, A. [Department of Internal Medicine and Gastroenterology, General Hospital, Klagenfurt (Austria); Wuertz, F. [Department of Pathology, General Hospital, Klagenfurt (Austria); Kogler, D.; Gasser, J. [Department of Radiology, General Hospital, Klagenfurt (Austria)

    2002-10-01

    Collagenous and eosinophilic colitis are rare diseases characterised by chronic watery diarrhoea. Radiographic evaluation of the gastrointestinal tract and colonoscopy are usually non-diagnostic since as many as one-third of patients will have minor abnormalities. To date a few investigators have reported increased fluorine-18 fluorodeoxyglucose ({sup 18}F-FDG) uptake on positron emission tomography (PET) in patients with acute enterocolitis, but there have been no reports on the use of {sup 18}F-FDG PET for the diagnosis of collagenous or eosinophilic colitis in an early clinical stage. The aim of this preliminary study was to evaluate the usefulness of {sup 18}F-FDG PET in the early diagnosis of patients with colitis. We investigated five women (mean age 61.2{+-}12.1 years) who had been diagnosed as having colitis in an early clinical stage. In all but one of the patients, the diagnosis of colitis was based on biopsy. Magnetic resonance colonography, ultrasonography and colonoscopy were performed in all but one of the patients. Two women were identified as having collagenous colitis in an early clinical stage. Another two patients had eosinophilic colitis. The morphological imaging methods, magnetic resonance colonography and ultrasonography, yielded no suspicious findings, and the results of colonoscopy similarly showed no abnormalities. One patient had colitis due to bacterial infection. In all patients {sup 18}F-FDG PET showed a pathological increase in tracer uptake in the large bowel, suggestive of colitis. In four of the five patients, colitis was confirmed by histology, and in one, by bacterial analysis. {sup 18}F-FDG PET was able to detect colitis in an early clinical stage, when morphological imaging methods and colonoscopy were non-diagnostic. The early performance of {sup 18}F-FDG PET imaging in patients with possible colitis is encouraging. (orig.)

  2. Positron emission tomography with [{sup 18}F]FDG for therapy response monitoring in lymphoma patients

    Spaepen, Karoline; Stroobants, Sigrid; Mortelmans, Luc [Department of Nuclear Medicine, UZ Gasthuisberg, Herestraat 49, 3000, Leuven (Belgium); Verhoef, Gregor [Department of Hematology, UZ Gasthuisberg, Herestraat 49, 3000, Leuven (Belgium)

    2003-06-01

    Lymphomas are a heterogeneous group of diseases with differing histopathology, clinical behaviour, response to therapy and outcome. Lymphomas are highly sensitive to chemotherapy and radiotherapy, and the recent developments in treatment have considerably improved clinical outcome. However, there is increasing recognition that this has been at the cost of long-term treatment-related effects in a relatively young patient population. Thus, one of the most challenging aspects in the imaging of lymphoma patients is tailoring the intensity of the treatment to the individual patient. This paper reviews recently published data concerning the use of fluorine-18 fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG-PET) for therapy monitoring in lymphoma patients and highlights the shortcomings and future directions. A temporary strategy for the implementation of [{sup 18}F]FDG-PET in the management of lymphoma patients is proposed. (orig.)

  3. 18F-FDG Positron Emission Tomography – An Innovative Technique for the Diagnosis of a Canine Lameness

    Mann, Kelly; Hart, Juliette; Duerr, Felix

    2016-01-01

    Introduction Positron emission tomography (PET) imaging with fluorine-18-fluorodeoxyglucose (18F-FDG) is widely known for its use in the diagnosis and tracking of primary and metastatic tumors via uptake and retention of the radiopharmaceutical by hypermetabolic cells. 18F-FDG is also used to study the normal physiology of glucose uptake, metabolism, and muscle activity during and after exercise. Background A pilot study adding PET imaging to the diagnostic evaluation of canine patients under...

  4. The Role of 18F-FDG-Positron Emission Tomography/Computed Tomography in Staging Primary Breast Cancer

    Naoki Niikura, Naoto T. Ueno

    2010-01-01

    Full Text Available Despite Medicare approving the use of positron emission tomography/computed tomography (PET/CT in staging primary breast cancer, little evidence is available to support the use of 18F-FDG-PET/CT for the detection of distant metastases in the initial staging of breast cancer. In this review of the literature listed in MEDLINE, we examine whether 18F-FDG-PET/CT may play a role in the initial staging of breast cancer. We discuss studies comparing PET/CT with conventional imaging for diagnosing distant metastases and axillary and extra-axillary lymph node metastases.

  5. Optimization of Quantitative Processing Data of Positron Emission Tomography with 18F-FDG in Patients with Lung Cancer

    Granov A.M.; Tyutin L.А.; Tlostanova М.S.; Avetisyan А.О.; Ryzhkova D.V.

    2012-01-01

    The aim of the investigation is to increase efficiency of positron emission tomography (PET) with 18F-FDG in differential diagnostics of ung cancer and non-neoplastic diseases by means of quantitative processing data optimization. Materials and Methods. PET findings of 347 patients with focal or infiltrative changes in the lungs were studied. Quantitative processing of the findings included the measurement of scintigraphic size of the focus, SUV index calculations and SUV/size. Diagnostic...

  6. Background 18F-FDG uptake in positron emission mammography (PEM): Correlation with mammographic density and background parenchymal enhancement in breast MRI

    We aimed to determine whether background 18F-FDG uptake in positron emission mammography (PEM) was related to mammographic density or background parenchymal enhancement in breast MRI. Methods: We studied a total of 52 patients (mean age, 50.9 years, 26 premenopausal, 26 postmenopausal) with newly diagnosed breast cancer who underwent 18F-FDG PEM (positron emission mammography), conventional mammography and breast MRI. The background mean 18F-FDG uptake value on PEM was obtained by drawing a user-defined region of interest (ROI) in a normal area of the contralateral breast. We reviewed the mammography retrospectively for overall breast density of contralateral breast according to the four-point scale (grade 1–4) of the Breast Imaging Reporting and Data System (BI-RADS) classification. The background parenchymal enhancement of breast MRI was classified as minimal, mild, moderate, or marked. All imaging findings were interpreted by two readers in consensus without knowledge of image findings of other modalities. Results: Multiple linear regression analysis revealed a significant correlation between background 18F-FDG uptake on PEM and mammographic density after adjustment for age and menopausal status (P 18F-FDG uptake on PEM and background parenchymal enhancement on MRI. Conclusion: Background 18F-FDG uptake on PEM significantly increases as mammographic density increases. Background parenchymal enhancement in breast MRI was not an independent predictor of the background 18F-FDG uptake on PEM unlike mammographic density

  7. IgG4-associated multifocal systemic fibrosis detected by cancer screening with 18F-FDG positron emission tomography/computed tomography

    Serial fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) studies were performed with an interval of one year in a 62-year-old man with IgG4-associated multifocal systemic fibrosis (IMSF). He first underwent 18F-FDG PET/CT cancer screening, which revealed multiple 18F-FDG-avid uptakes in the pancreas, prostate, and lymph nodes in the upper mediastinum, pulmonary hila, porta hepatis, and the left iliac and inguinal regions. He was not symptomatic at this initial examination. The follow-up 18F-FDG PET/CT study showed disappearance of 18F-FDG-avid uptake foci in the pancreas despite no treatment having been administered, but demonstrated new lesions in the abdominal para-aortic region and more intense FDG uptake in the porta hepatis lesion. Serial 18F-FDG PET/CT studies might be useful in monitoring patients with IMSF, as well as evaluating the state of systemic involvement. Findings of 18F-FDG PET/CT may provide information useful for determining the optimal initiation of IMSF treatment. (author)

  8. Non-malignant 18F-FDG uptake in the thorax by positron emission tomography computed tomography fusion imaging

    Fluorine-18 2-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET) has been used exclusively to diagnose malignancies. However, increased FDG uptake is not always limited to malignant tissue. Many false positive findings for PET have been reported. Moreover, the use of PET/CT may allow the reassessment of previously recognized patterns of physiological bio-distribution of a tracer. In this report we demonstrate the physiological FDG uptake of normal structures in the thorax using PET/CT imaging and illustrate many benign pathological conditions with standardized uptake values greater than 2.5

  9. Positron emission tomography with [18F]FDOPA and [18F]FDG in the imaging of small cell lung carcinoma: preliminary results

    Small cell lung carcinomas (SCLC) express neuroendocrine markers, and dihydroxyphenylalanine (DOPA) is known to accumulate in neuroendocrine tumours. This study was performed with the aim of evaluating the uptake of 3,4-dihydroxy-6-18F-fluoro-phenylalanine ([18F]FDOPA) by SCLC, based on comparison with the results of fluorine-18 fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) and standard imaging procedures. [18F]FDG PET and [18F]FDOPA PET were performed on four patients with newly diagnosed SCLC. There was agreement between the results of [18F]FDOPA PET and [18F]FDG PET in four tumoural sites out of 11, whereas [18F]FDG PET and standard imaging procedures were in full agreement. A semi-quantitative analysis based on standardised uptake values (SUVs) was performed in order to compare [18F]FDG and [18F]FDOPA tumour uptake. The median [18F]FDG SUVmax was 5.9 (with a 95% confidence interval from 4.4 to 9.2), while the median [18F]FDOPA SUVmax was 1.9 (with a 95% confidence interval from 1.6 to 3.8). The difference between [18F]FDG SUVmax and [18F]FDOPA SUVmax was significant (P18F]FDOPA PET appeared less sensitive than [18F]FDG PET and standard imaging procedures in the staging of SCLC. No clear relation between [18F]FDOPA uptake and positivity of neuroendocrine markers on immunohistochemistry emerged from these preliminary results; however, since [18F]FDOPA uptake may reflect better differentiation of the tumour, and possibly a better prognosis, this point warrants clarification in a larger study. (orig.)

  10. Using Positron Emission Tomography with [18F]FDG to Predict Tumor Behavior in Experimental Colorectal Cancer

    Bryan M. Burt

    2001-01-01

    Full Text Available This study investigates the relationship between FDG uptake as determined by positron emission tomography (PET imaging and rates of tumor growth, cellular GLUT1 transporter density, and the activities of hexokinase and glucose-6-phosphatase in a solid tumor implant model. Five different human colorectal xenografts of different growth properties were implanted in athymic rats and evaluated by dynamic 18F-FDG-PET. The phosphorylating and dephosphorylating activities of the key glycolytic enzymes, hexokinase and glucose-6-phosphatase, were measured in these tumor types by spectrophotometric assays and the expression of GLUT1 glucose transporter protein was determined by immunohistochemistry. Correlations among FDG accumulation, hexokinase activity, and tumor doubling time are reported in these colon xenografts. The results indicate that the activity of tumor hexokinase may be a marker of tumor growth rate that can be determined by 18F-FDG-PET imaging. PET scanning may not only be a useful tool for staging patients for extent of disease, but may provide important prognostic information concerning the proliferative rates of malignancies.

  11. Background {sup 18}F-FDG uptake in positron emission mammography (PEM): Correlation with mammographic density and background parenchymal enhancement in breast MRI

    Koo, Hye Ryoung, E-mail: huilings@hanmail.net [Department of Radiology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Moon, Woo Kyung, E-mail: moonwk@snu.ac.kr [Department of Radiology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Chun, In Kook, E-mail: inkook.chun@gmail.com [Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Eo, Jae Seon, E-mail: jaeseon76@gmail.com [Department of Nuclear Medicine, Korea University Guro Hospital, 148 Gurodongro, Guro-gu, Seoul 152-703 (Korea, Republic of); Jeyanth, Joseph Xavier, E-mail: jeyanth7@snu.ac.kr [Department of Radiology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Chang, Jung Min, E-mail: imchangjm@gmail.com [Department of Radiology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Cho, Nariya, E-mail: river7774@gmail.com [Department of Radiology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Kang, Keon Wook, E-mail: kangkw@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of)

    2013-10-01

    We aimed to determine whether background {sup 18}F-FDG uptake in positron emission mammography (PEM) was related to mammographic density or background parenchymal enhancement in breast MRI. Methods: We studied a total of 52 patients (mean age, 50.9 years, 26 premenopausal, 26 postmenopausal) with newly diagnosed breast cancer who underwent {sup 18}F-FDG PEM (positron emission mammography), conventional mammography and breast MRI. The background mean {sup 18}F-FDG uptake value on PEM was obtained by drawing a user-defined region of interest (ROI) in a normal area of the contralateral breast. We reviewed the mammography retrospectively for overall breast density of contralateral breast according to the four-point scale (grade 1–4) of the Breast Imaging Reporting and Data System (BI-RADS) classification. The background parenchymal enhancement of breast MRI was classified as minimal, mild, moderate, or marked. All imaging findings were interpreted by two readers in consensus without knowledge of image findings of other modalities. Results: Multiple linear regression analysis revealed a significant correlation between background {sup 18}F-FDG uptake on PEM and mammographic density after adjustment for age and menopausal status (P < 0.01), but not between background {sup 18}F-FDG uptake on PEM and background parenchymal enhancement on MRI. Conclusion: Background {sup 18}F-FDG uptake on PEM significantly increases as mammographic density increases. Background parenchymal enhancement in breast MRI was not an independent predictor of the background {sup 18}F-FDG uptake on PEM unlike mammographic density.

  12. [18F]FDG and [18F]FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice

    Belinostat is a histone deacetylase inhibitor with anti-tumor effect in several pre-clinical tumor models and clinical trials. The aim of the study was to evaluate changes in cell proliferation and glucose uptake by use of 3’-deoxy-3’-[18F]fluorothymidine ([18F]FLT) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) following treatment with belinostat in ovarian cancer in vivo models. In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) were studied after treatment with belinostat. Mice were divided in 2 groups receiving either belinostat (40 mg/kg ip twice daily Day 0–4 and 6–10) or vehicle. Baseline [18F]FLT or [18F]FDG scans were made before treatment (Day 0) and repeated at Day 3, 6 and 10. Tracer uptake was quantified using small animal PET/CT. Tumors in the belinostat group had volumes that were 462 ± 62% (640 mm3) at Day 10 relative to baseline which was significantly different (P = 0.011) from the control group 769 ± 74% (926 mm3). [18F]FLT SUVmax increased from baseline to Day 10 (+30 ± 9%; P = 0.048) in the control group. No increase was observed in the treatment group. [18F]FDG SUVmean was significantly different in the treatment group compared to the control group (P = 0.0023) at Day 10. Within treatment groups [18F]FDG uptake and to a lesser extent [18F]FLT uptake at Day 3 were significantly correlated with tumor growth at Day 10. [18F]FDG uptake early following treatment initiation predicted tumor sizes at Day 10, suggesting that [18F]FDG may be a valuable biomarker for non-invasive assessment of anti-tumor activity of belinostat

  13. The influence of tumor oxygenation on 18F-FDG (Fluorine-18 Deoxyglucose) uptake: A mouse study using positron emission tomography (PET)

    This study investigated whether changing a tumor's oxygenation would alter tumor metabolism, and thus uptake of 18F-FDG (fluorine-18 deoxyglucose), a marker for glucose metabolism using positron emission tomography (PET). Tumor-bearing mice (squamous cell carcinoma) maintained at 37°C were studied while breathing either normal air or carbogen (95% O2, 5% CO2), known to significantly oxygenate tumors. Tumor activity was measured within an automatically determined volume of interest (VOI). Activity was corrected for the arterial input function as estimated from image and blood-derived data. Tumor FDG uptake was initially evaluated for tumor-bearing animals breathing only air (2 animals) or only carbogen (2 animals). Subsequently, 5 animals were studied using two sequential 18F-FDG injections administered to the same tumor-bearing mouse, 60 min apart; the first injection on one gas (air or carbogen) and the second on the other gas. When examining the entire tumor VOI, there was no significant difference of 18F-FDG uptake between mice breathing either air or carbogen (i.e. air/carbogen ratio near unity). However, when only the highest 18F-FDG uptake regions of the tumor were considered (small VOIs), there was a modest (21%), but significant increase in the air/carbogen ratio suggesting that in these potentially most hypoxic regions of the tumor, 18F-FDG uptake and hence glucose metabolism, may be reduced by increasing tumor oxygenation. Tumor 18F-FDG uptake may be reduced by increases in tumor oxygenation and thus may provide a means to further enhance 18F-FDG functional imaging

  14. Prognostic value of 18F-FDG positron emission tomography in patients with coronary artery disease and left ventricular dysfunction

    Objective: To evaluate the prognostic value of 18F-FDG positron emission tomography (PET) in patients (pts) with coronary artery disease (CAD)and left ventricular dysfunction and to clarify whether revascularization (RVS) will decrease the cardiac events in pts with myocardial perfusion-metabolism mismatch(MM). Methods: 107 consecutive pts (mean age 57 +- 9 yr.) with CAD and left ventricular dysfunction [left ventricular ejection fraction (LVEF)=(38 +- 9)%] who underwent 18F-FDG PET imaging and 99Tcm-MIBI SPECT imaging were followed up for (24 +- 5) months. Myocardial segments were classified as myocardial perfusion-metabolism mismatch (MM) and match (M). LVEF and left ventricular end diastolic diameter (LVEDD) were measured with echocardiography (Echo). Results: Fifty-nine pts underwent RVS and 48 pts underwent medical therapy. Three months (POS1) and 6 months (POS2) after RVS, Echo was performed on forty-six pts and 23 pts, respectively. Cardiac death, myocardial infarction, unstable angina pectoris and late RVS (>3 mon) were considered as cardiac events. Among 64 patients with 2 or more MM segments, 35 pts received RVS (MM1) and 29 pts received medical therapy (MM2). Among 43 pts with less than 2 MM segments, 24 pts underwent RVS (M1) and 19 pts underwent medical therapy (M2). After RVS, LVEF in MM1 was increased from (38 +- 8)% to (48 +- 10)% (P0.05). The cardiac event rate of 51.7% (15/29) in MM2 was significantly higher than that of 2.9% (1/35) in MM1 (x2 = 20.14, P2 = 7.02, P24.52, P<0.05). Conclusions: The results suggest that the presence of MM in pts with CAD and left ventricular dysfunction is associated with poor prognosis on medical therapy, and these pts may need aggressive RVS to prevent a future cardiac event and to improve left ventricular function

  15. Metabolic Pattern of Asymptomatic Hip-Prosthesis by 18F-FDG-Positron-Emission-Tomography

    Joint replacement is a procedure with a major impact on the quality of life of patients with joint degenerative disease or traumatic injuries. However, some patients develop symptoms after the intervention caused by mechanical loosening or infection. Metabolic imaging by 18F-FDG-PET investigated in these patients isoften hampered by low specificity for diagnosis of possible septic vs. mechanical loosening. The reason for this shortcoming is to our opinion the unawareness of physiological remodeling processes that could be seen in asymptomatic patients. In order to overcome this drawback, we aimed to find out the physiological metabolic functional pattern in asymptomatic patients with implanted hip prosthesis Twelve patients (6 males, 6 females); mean age 73 ± 7 (range 58 - 91) years were prospectively enrolled in the study. The patients were admitted to our department for oncological referral with implanted hip prostheses. All patients explained no symptoms with regard to their implanted prosthesis. The attenuation corrected images were used for analysis. Fourteen hip prostheses in 12 patients were visually analyzed. Seven out of 14 prostheses among 12 patients showed focal periprosthetic enhanced metabolism, two of which showed two sites of enhanced uptake; whereas, the remaining five prostheses showed singular hypermetabolic areas within the periprosthetic site. The remaining seven prostheses in the other five patients showed no periprosthetic-enhanced uptake. Of the asymptomatic patients investigated, 58% showed focal enhanced periprosthetic glucose metabolism. This finding should be taken into consideration as a more probable unspecific metabolic pattern for correct interpretation of 18F-FDG-PET studies in patients with suspected septic loosening of the hip prosthesis

  16. Monitoring liver tumor therapy with [18F]FDG positron emission tomography

    Positron emission tomography (PET) with [18F]-2-flurodeoxy-glucose (FDG) can be utilized as a functional imaging modality for monitoring liver tumor therapy. We report three cases in which PET-FDG was more useful for this purpose than other imaging methods and tumor markers

  17. Early detection of response to imatinib therapy for gastrointestinal stromal tumor by using 18F-FDG-positron emission tomography and computed tomography imaging

    Sabri Zincirkeser; Alper Sevinc; M Emin Kalender; Celalettin Camci

    2007-01-01

    A 41-year old female with metastatic gastrointestinal stromal tumor was referred to 18F-FDG-positron emission tomography and computed tomography (PET/CT) scan before and after one-month treatment with imatinib(Glivec(R), Gleevec(R), Novartis, Basel, Switzerland), a tyrosine kinase inhibitor (400 mg/d). Metabolic response was evaluated before and after one month of therapy. The decrease of the maximum standardised uptake value (SUV)was 79% (from 9.8 to 2.1). Positron emission tomography demonstrated complete metabolic response after one-month of imatinib treatment. Additionally, the previous lesion was compared with the coronal computerized tomographic image. There was no difference in the size of the tumor before and after therapy according to CT images. However, metabolic activity was inhibited.18F-FDG-PET is a valuable method for the detection of response to one-month imatinib treatment in patients with gastrointestinal stromal tumors.

  18. Effect of ginseng pretreatment on cerebral glucose metabolism in ischaemic rats using animal positron emission tomography (PET) and [18F]-FDG

    To investigate the effect of ginseng on damaged brain activity, we evaluated the cerebral metabolic rate of glucose (CMRglc) as a functional index in post-ischaemic rats and compared the results with those obtained after the administration of a ginseng extract. CMRglc was measured using high resolution animal positron emission tomography with 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG). The rats subjected to a 30-min occlusion showed a significant reduction of k3, the rate constant for phosphorylation of 18F-FDG by hexokinase, compared with the normal value. The ginseng pretreatment prevented the reduction in k3 and CMRglc caused by ischaemia. Although further investigation is needed to elucidate the mechanism of action, ginseng may be useful for prevention and treatment of ischaemia. © 1997 John Wiley & Sons, Ltd

  19. Early detection of response to imatinib therapy for gastrointestinal stromal tumor by using 18F-FDG-positron emission tomography and computed tomography imaging

    Zincirkeser, Sabri; Sevinc, Alper; Kalender, M.Emin; Camci, Celalettin

    2007-01-01

    A 41-year old female with metastatic gastrointestinal stromal tumor was referred to 18F-FDG-positron emission tomography and computed tomography (PET/CT) scan before and after one-month treatment with imatinib (Glivec®, Gleevec®, Novartis, Basel, Switzerland), a tyrosine kinase inhibitor (400 mg/d). Metabolic response was evaluated before and after one month of therapy. The decrease of the maximum standardised uptake value (SUV) was 79% (from 9.8 to 2.1). Positron emission tomography demonstr...

  20. A Novel Method to Evaluate Local Control of Lung Cancer in Stereotactic Body Radiation Therapy (SBRT) Treatment Using 18F-FDG Positron Emission Tomography (PET)

    Kathriarachchi, Vindu Wathsala

    An improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations associated with SUVmax and objectively demonstrates a strong correlation between the low SUVcmax (PET scans, therefore such inclusion is not recommended for assessing local tumor control of post lung SBRT.

  1. Measurement of glucose metabolism in patients with dilated cardiomyopathy using positron emission tomography with 18F-FDG: Initial Experience

    Introduction: Fluorine18 deoxyglucose (18F-FDG) has been used in numerous studies to determine the cardiac rate of glucose metabolism in normal and pathological conditions. It is known that during heart failure the metabolic pattern is altered. Patlack's graphical analysis allows the assessment of heart muscle glucose consumption in patients with non-ischaemic heart failure and normal subjects. Methods: Standardized measurement of glucose metabolism was performed in four patients with dilated cardiomyopathy and three healthy subjects. All subjects received an oral load of carbohydrates (75gr) previous to scanning. Dynamic images of the thorax were acquired. Myocardial uptake was estimated from time-activity curves in the atrium and left ventricle using Patlack's graphical analysis. Results: All subjects studied were male. 18F-FDG uptake rate for the group with dilated cardiomyopathy was 1.31±0.2, versus 1.26±0.37 ml/100gr/min in the control group. Conclusion: Measurement of cardiac glucose metabolism by 18F-FDG PET is feasible in a clinical service, allowing impact evaluation of physiologic and metabolic changes in the myocardium in different pathologic scenarios in addition to therapy assessment

  2. Estudo do metabolismo da glicose na tuberculose pulmonar ativa utilizando a tomografia por emissão de pósitrons (18F-FDG PET Evaluation of glucose metabolism in active lung tuberculosis by positron-emission tomography (18F-FDG PET

    SIDNEY BOMBARDA

    2002-09-01

    Full Text Available Os métodos de imagem utilizados na avaliação da tuberculose pulmonar incluem a radiografia e a tomografia computadorizada do tórax. As imagens obtidas pelos métodos de medicina nuclear permitem estudos funcionais e metabólicos dos órgãos de interesse, através do uso de radiofármacos específicos. Alterações do metabolismo da glicose podem ser detectadas pela tomografia por emissão de pósitrons (PET utilizando-se o 18F-fluorodesoxiglicose (18F-FDG. Essas alterações estão presentes nas doenças neoplásicas, inflamatórias e infecciosas. A tuberculose é uma doença granulomatosa causada pelo Mycobacterium tuberculosis, que se utiliza de glicose como fonte de energia. Objetivo: O estudo do metabolismo da glicose na tuberculose pulmonar através da PET e sua comparação com a tomografia computadorizada de tórax. Material e métodos: Foram avaliados 20 pacientes portadores de tuberculose pulmonar. Todos foram submetidos à PET e à tomografia computadorizada de tórax, em até 30 dias após o início do tratamento. Resultados: Todos os pacientes apresentaram captação positiva do 18F-FDG na PET. Na tomografia computadorizada do tórax, todos os pacientes apresentaram sinais compatíveis com atividade de tuberculose. A sensibilidade dos dois métodos foi de 100%. Houve concordância entre os achados do 18F-FDG PET e da tomografia computadorizada (K = 0,27 e p Current methods to evaluate lung tuberculosis include chest radiography and computed tomography. Nuclear medicine imaging techniques are performed after administration of specific radiopharmaceuticals that accumulate in the organs of interest. Alterations of glucose metabolism can be observed by positron-emission tomography, using 18F-fluorodeoxyglucose (18F-FDG PET. These findings are present in the neoplasms, but also in inflammatory and infectious diseases. Tuberculosis is a granulomatous disease caused by Mycobacterium tuberculosis , that uses glucose as an energy source

  3. Impact of maximum Standardized Uptake Value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report

    In this era of molecular targeting therapy when various systematic treatments can be selected, prognostic biomarkers are required for the purpose of risk-directed therapy selection. Numerous reports of various malignancies have revealed that 18-Fluoro-2-deoxy-D-glucose (18F-FDG) accumulation, as evaluated by positron emission tomography, can be used to predict the prognosis of patients. The purpose of this study was to evaluate the impact of the maximum standardized uptake value (SUVmax) from 18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) on survival for patients with advanced renal cell carcinoma (RCC). A total of 26 patients with advanced or metastatic RCC were enrolled in this study. The FDG uptake of all RCC lesions diagnosed by conventional CT was evaluated by 18F-FDG PET/CT. The impact of SUVmax on patient survival was analyzed prospectively. FDG uptake was detected in 230 of 243 lesions (94.7%) excluding lung or liver metastases with diameters of less than 1 cm. The SUVmax of 26 patients ranged between 1.4 and 16.6 (mean 8.8 ± 4.0). The patients with RCC tumors showing high SUVmax demonstrated poor prognosis (P = 0.005 hazard ratio 1.326, 95% CI 1.089-1.614). The survival between patients with SUVmax equal to the mean of SUVmax, 8.8 or more and patients with SUVmax less than 8.8 were statistically different (P = 0.0012). This is the first report to evaluate the impact of SUVmax on advanced RCC patient survival. However, the number of patients and the follow-up period were still not extensive enough to settle this important question conclusively. The survival of patients with advanced RCC can be predicted by evaluating their SUVmax using 18F-FDG-PET/CT. 18F-FDG-PET/CT has potency as an 'imaging biomarker' to provide helpful information for the clinical decision-making

  4. Impact of maximum Standardized Uptake Value (SUVmax evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT on survival for patients with advanced renal cell carcinoma: a preliminary report

    Miura Takeshi

    2010-12-01

    Full Text Available Abstract Background In this era of molecular targeting therapy when various systematic treatments can be selected, prognostic biomarkers are required for the purpose of risk-directed therapy selection. Numerous reports of various malignancies have revealed that 18-Fluoro-2-deoxy-D-glucose (18F-FDG accumulation, as evaluated by positron emission tomography, can be used to predict the prognosis of patients. The purpose of this study was to evaluate the impact of the maximum standardized uptake value (SUVmax from 18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT on survival for patients with advanced renal cell carcinoma (RCC. Methods A total of 26 patients with advanced or metastatic RCC were enrolled in this study. The FDG uptake of all RCC lesions diagnosed by conventional CT was evaluated by 18F-FDG PET/CT. The impact of SUVmax on patient survival was analyzed prospectively. Results FDG uptake was detected in 230 of 243 lesions (94.7% excluding lung or liver metastases with diameters of less than 1 cm. The SUVmax of 26 patients ranged between 1.4 and 16.6 (mean 8.8 ± 4.0. The patients with RCC tumors showing high SUVmax demonstrated poor prognosis (P = 0.005 hazard ratio 1.326, 95% CI 1.089-1.614. The survival between patients with SUVmax equal to the mean of SUVmax, 8.8 or more and patients with SUVmax less than 8.8 were statistically different (P = 0.0012. This is the first report to evaluate the impact of SUVmax on advanced RCC patient survival. However, the number of patients and the follow-up period were still not extensive enough to settle this important question conclusively. Conclusions The survival of patients with advanced RCC can be predicted by evaluating their SUVmax using 18F-FDG-PET/CT. 18F-FDG-PET/CT has potency as an "imaging biomarker" to provide helpful information for the clinical decision-making.

  5. Metabolic and clinical assessment of efficacy of cryoablation therapy on skeletal masses by {sup 18}F-FDG positron emission tomography/computed tomography (PET/CT) and visual analogue scale (VAS): initial experience

    Masala, Salvatore; Bartolucci, Alberto D.; Mammucari, Matteo; Simonetti, Giovanni [University Hospital Tor Vergata, Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Rome (Italy); Schillaci, Orazio; Calabria, Ferdinando [University Hospital Tor Vergata, Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Rome (Italy); I.R.C.C.S. Neuromed, Department of Nuclear Medicine and Neuroradiology, Pozzilli (Italy); Policlinico Tor Vegata, Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Rome (Italy)

    2011-02-15

    Various therapy modalities have been proposed as standard treatments in management of bone metastases. Radiation therapy remains the standard of care for patients with localized bone pain, but up to 30% of them do not experience notable pain relief. Percutaneous cryoablation is a minimally invasive technique that induces necrosis by alternately freezing and thawing a target tissue. This technique is successfully used to treat a variety of malignant and benign diseases in different sites. {sup 18}F-FDG positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) is a single technique of imaging that provides in a ''single step'' both morphological and metabolic features of neoplastic lesions of the bone. The aim of this study was to evaluate the efficacy of the cryosurgical technique on secondary musculoskeletal masses according to semi-quantitative PET analysis and clinical-test evaluation with the visual analogue scale (VAS). We enrolled 20 patients with painful bone lesions (score pain that exceeded 4 on the VAS) that were non-responsive to treatment; one lesion per patient was treated. All patients underwent a PET-CT evaluation before and 8 weeks after cryotherapy; maximum standardized uptake value (SUV{sub max}) was measured before and after treatment for metabolic assessment of response to therapy. After treatment, 18 patients (90%) showed considerable reduction in SUV{sub max} value (>50%) suggestive of response to treatment; only 2 patients did not show meaningful reduction in metabolic activity. Our preliminary study demonstrates that quantitative analysis provided by PET correlates with response to cryoablation therapy as assessed by CT data and clinical VAS evaluation. (orig.)

  6. Metabolic and clinical assessment of efficacy of cryoablation therapy on skeletal masses by 18F-FDG positron emission tomography/computed tomography (PET/CT) and visual analogue scale (VAS): initial experience

    Various therapy modalities have been proposed as standard treatments in management of bone metastases. Radiation therapy remains the standard of care for patients with localized bone pain, but up to 30% of them do not experience notable pain relief. Percutaneous cryoablation is a minimally invasive technique that induces necrosis by alternately freezing and thawing a target tissue. This technique is successfully used to treat a variety of malignant and benign diseases in different sites. 18F-FDG positron emission tomography/computed tomography (18F-FDG PET/CT) is a single technique of imaging that provides in a ''single step'' both morphological and metabolic features of neoplastic lesions of the bone. The aim of this study was to evaluate the efficacy of the cryosurgical technique on secondary musculoskeletal masses according to semi-quantitative PET analysis and clinical-test evaluation with the visual analogue scale (VAS). We enrolled 20 patients with painful bone lesions (score pain that exceeded 4 on the VAS) that were non-responsive to treatment; one lesion per patient was treated. All patients underwent a PET-CT evaluation before and 8 weeks after cryotherapy; maximum standardized uptake value (SUVmax) was measured before and after treatment for metabolic assessment of response to therapy. After treatment, 18 patients (90%) showed considerable reduction in SUVmax value (>50%) suggestive of response to treatment; only 2 patients did not show meaningful reduction in metabolic activity. Our preliminary study demonstrates that quantitative analysis provided by PET correlates with response to cryoablation therapy as assessed by CT data and clinical VAS evaluation. (orig.)

  7. Functional evaluation of myocardial viability by 99mTc tetrofosmin gated SPECT. A quantitative comparison with 18F fluorodeoxyglucose positron emission CT (18F FDG PET)

    To validate functional analysis of gated SPECT in detecting myocardial viability, seventeen patients (male 15, female 2, mean age 58) with angiographically proven chronic ischemic heart disease (RCA 6, LAD 10, LCX 1) and eight normal volunteers (all male) were studied. All patients underwent 18F FDG PET and 99mTc tetrofosmin (TF) gated SPECT within a week. After being displayed in a polar map, myocardial perfusion was regionally determined by the mean count in 9 segments at end diastole (ED) and end systole (ES) in gated SPECT. Systolic function was determined by the count increase ratio from ED to ES (WTI: ES-ED/ED). Glucose metabolism was assessed by 18F FDG PET in the segments correspondent to those defined for SPECT. TF %uptake of <60% was defined as hypoperfusion, and FDG %uptake of <50% was defined as reduced glucose metabolism. The myocardial segments were classified into 3 categories: ''normal'' perfusion (n=85), ''mismatch'' (reduced perfusion with reserved FDG uptake, n=25) and ''matched'' reduced perfusion and metabolic reduction (n=26). Mean WTI in ''mismatch'' segment was 0.38±0.21, and was significantly greater than that in ''matched reduced'' segments, 0.15±0.20 (p<0.001). It was also greater than that in normal'' segments, 0.27±0.16. Regression analysis showed that association between WTI and FDG %uptake was significant (r=0.57, p<0.0005) for the ischemic segments (''mismatch''+''matched'', n=51), but the association was weak for the entire segments although it was statistically significant (r=0.26, p=0.02, n=136). For the segments determined as infarct by perfusion image, systolic functional analysis by gated SPECT is helpful in differentiation of a viable myocardial region or artifact from a scar. Nevertheless, further clinical and technical assessment is required for ECG gating to eliminate overestimation of viability and to warrant clinical use. (author)

  8. Estudo do metabolismo da glicose na tuberculose pulmonar ativa utilizando a tomografia por emissão de pósitrons (18F-FDG PET) Evaluation of glucose metabolism in active lung tuberculosis by positron-emission tomography (18F-FDG PET)

    SIDNEY BOMBARDA; JOSÉ SOARES JÚNIOR; MÁRIO TERRA FILHO

    2002-01-01

    Os métodos de imagem utilizados na avaliação da tuberculose pulmonar incluem a radiografia e a tomografia computadorizada do tórax. As imagens obtidas pelos métodos de medicina nuclear permitem estudos funcionais e metabólicos dos órgãos de interesse, através do uso de radiofármacos específicos. Alterações do metabolismo da glicose podem ser detectadas pela tomografia por emissão de pósitrons (PET) utilizando-se o 18F-fluorodesoxiglicose (18F-FDG). Essas alterações estão presentes nas doenças...

  9. {sup 18}F-FDG positron autoradiography with a particle counting silicon pixel detector

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, and INFN Sezione di Napoli, I-80126 Napoli (Italy); Marotta, M [Dipartimento di Medicina Sperimentale, Universita di Napoli Federico II, I-80131 Napoli (Italy); Aloj, L; Lastoria, S [Medicina Nucleare, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione G. Pascale, I-80131 Napoli (Italy)], E-mail: adele.lauria@na.infn.it

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with {sup 18}F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm{sup 2} sensitive area, 300 {mu}m thick) has high intrinsic resolution (55 {mu}m pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with {sup 18}F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with {sup 18}F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of {sup 18}F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for {beta}{sup +} of 0.377 cps Bq{sup -1}, a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm{sup -2}. Real-time {sup 18}F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 {mu}m) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with {approx}100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  10. Monitoring bone and soft-tissue tumors after carbon-ion radiotherapy using 18F-FDG positron emission tomography: a retrospective cohort study

    The results of treatment for malignant bone and soft-tissue tumors arising from the deep trunk and pelvis are still not acceptable due to the relatively high recurrence and low overall survival rates. Recently, carbon ion radiotherapy (CIRT) was applied for several malignancies, including bone and soft-tissue sarcomas, and provided favorable results. However, it has been unclear what modalities should be used for evaluating the response and for the follow-up of these patients. Here, we analyzed the methods used to predict local recurrence and to find local failures or metastases. We analyzed 37 patients with bone and soft-tissue tumors who received CIRT at our institute. The patients were examined with FDG positron emission tomography (PET) and enhanced MRI before and three months after CIRT. The pre-treatment maximum standardized uptake value (SUVmax), and that three months after treatment, the difference between the pre- and post-CIRT SUVmax, the ratio of the post- to pre-SUVmax in FDG-PET and the size of the tumors were evaluated as predictors for local recurrence. FDG-PET and enhanced MRI were used to detect local recurrence. Local recurrence appeared in 10 cases after CIRT. Nine of the 10 lesions (90.0 %) were detected with FDG-PET, while enhanced MRI detected just 50.0 % of the recurrences. One case of local recurrence, in which the lesion was negative on FDG-PET, was detected using enhanced MRI. A receiver operating characteristic curve analysis showed that neither the SUVmax on FDG-PET nor the tumor size before or three months after CIRT could be used to predict local recurrence. The combination of FDG-PET and enhanced MRI is recommended to detect local recurrence for patients with sarcomas who have received CIRT; however, no parameters obtained during the examinations performed before and three months after CIRT accurately predicted the development of local recurrence

  11. Use of micro-positron emission tomography with (18)F-fallypride to measure the levels of dopamine receptor-D2 and (18)F-FDG as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 rats.

    Li, Ping; Gui, Songbai; Cao, Lei; Gao, Hua; Bai, Jiwei; Li, Chuzhong; Zhang, Yazhuo

    2016-01-01

    Dopamine receptor-D2 (DRD2) is the most important drug target in prolactinoma. The aim of this current study was to investigate the role of using micro-positron emission tomography (micro-PET) with (18)F-fallypride and (18)F-fluorodeoxyglucose ((18)F-FDG) as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 (F344) rats and detect the difference of the levels of DRD2 in the pituitary glands and prolactinomas of F344 rat prolactinoma models. Female F344 rat prolactinoma models were established by subcutaneous administration of 15 mg 17β-estradiol for 8 weeks. The growth of tumors was monitored by the small-animal magnetic resonance imaging and micro-PET. A series of molecular biological experiments were also performed 4 and 6 weeks after pump implantation. The micro-PET molecular imaging with (18)F-fallypride revealed a decreased expression of DRD2 in F344 rat prolactinoma models, but the micro-PET molecular imaging with (18)F-FDG presented an increased uptake in the prolactinoma compared with the pituitary gland. A decreasing trend of levels of DRD2 in F344 rat prolactinoma models was also detected by molecular biological experiments. From this, we can conclude that micro-PET with (18)F-fallypride and (18)F-FDG can be used to assess tumorigenesis of the prolactinomas in vivo and molecular imaging detection of DRD2 level in prolactinoma may be an indication of treatment effect in the animal experiment. PMID:27103832

  12. Use of micro-positron emission tomography with 18F-fallypride to measure the levels of dopamine receptor-D2 and 18F-FDG as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 rats

    Li, Ping; Gui, Songbai; Cao, Lei; Gao, Hua; Bai, Jiwei; Li, Chuzhong; Zhang, Yazhuo

    2016-01-01

    Dopamine receptor-D2 (DRD2) is the most important drug target in prolactinoma. The aim of this current study was to investigate the role of using micro-positron emission tomography (micro-PET) with 18F-fallypride and 18F-fluorodeoxyglucose (18F-FDG) as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 (F344) rats and detect the difference of the levels of DRD2 in the pituitary glands and prolactinomas of F344 rat prolactinoma models. Female F344 rat prolactinoma models were established by subcutaneous administration of 15 mg 17β-estradiol for 8 weeks. The growth of tumors was monitored by the small-animal magnetic resonance imaging and micro-PET. A series of molecular biological experiments were also performed 4 and 6 weeks after pump implantation. The micro-PET molecular imaging with 18F-fallypride revealed a decreased expression of DRD2 in F344 rat prolactinoma models, but the micro-PET molecular imaging with 18F-FDG presented an increased uptake in the prolactinoma compared with the pituitary gland. A decreasing trend of levels of DRD2 in F344 rat prolactinoma models was also detected by molecular biological experiments. From this, we can conclude that micro-PET with 18F-fallypride and 18F-FDG can be used to assess tumorigenesis of the prolactinomas in vivo and molecular imaging detection of DRD2 level in prolactinoma may be an indication of treatment effect in the animal experiment. PMID:27103832

  13. Reproducibility of (18)F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    Rasmussen, J H; Fischer, B M; Aznar, M C;

    2015-01-01

    OBJECTIVE: To investigate reproducibility of fluorine-18 fludeoxyglucose ((18)F-FDG) uptake on (18)F-FDG positron emission tomography (PET)/CT and (18)F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). METHODS: 30 patients with HNSCC were included in this prospecti...

  14. Use of micro-positron emission tomography with 18F-fallypride to measure the levels of dopamine receptor-D2 and 18F-FDG as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 rats

    Li P

    2016-04-01

    Full Text Available Ping Li,1–3,* Songbai Gui,2,* Lei Cao,2 Hua Gao,1 Jiwei Bai,2 Chuzhong Li,1 Yazhuo Zhang1 1Beijing Neurosurgical Institute, 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 3Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, People’s Republic of China *These authors contributed equally to this work Abstract: Dopamine receptor-D2 (DRD2 is the most important drug target in prolactinoma. The aim of this current study was to investigate the role of using micro-positron emission tomography (micro-PET with 18F-fallypride and 18F-fluorodeoxyglucose (18F-FDG as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 (F344 rats and detect the difference of the levels of DRD2 in the pituitary glands and prolactinomas of F344 rat prolactinoma models. Female F344 rat prolactinoma models were established by subcutaneous administration of 15 mg 17β-estradiol for 8 weeks. The growth of tumors was monitored by the small-animal magnetic resonance imaging and micro-PET. A series of molecular biological experiments were also performed 4 and 6 weeks after pump implantation. The micro-PET molecular imaging with 18F-fallypride revealed a decreased expression of DRD2 in F344 rat prolactinoma models, but the micro-PET molecular imaging with 18F-FDG presented an increased uptake in the prolactinoma compared with the pituitary gland. A decreasing trend of levels of DRD2 in F344 rat prolactinoma models was also detected by molecular biological experiments. From this, we can conclude that micro-PET with 18F-fallypride and 18F-FDG can be used to assess tumorigenesis of the prolactinomas in vivo and molecular imaging detection of DRD2 level in prolactinoma may be an indication of treatment effect in the animal experiment. Keywords: pituitary prolactin, dopamine agonists, prolactinoma

  15. (18)F-FDG PET/CT in a rare case of Stewart-Treves syndrome

    Jensen, Mads Radmer; Friberg, Lars; Karlsmark, Tonny;

    2011-01-01

    The aim of this article is to illustrate the possible applications of (18)F-fluorodeoxyglucose positron emission tomography/computer tomography ((18)F-FDG PET/CT) in chronic extremity lymphedema and its complications.......The aim of this article is to illustrate the possible applications of (18)F-fluorodeoxyglucose positron emission tomography/computer tomography ((18)F-FDG PET/CT) in chronic extremity lymphedema and its complications....

  16. Quantitative and qualitative analysis of [18F]FDG and [18F]FAZA positron emission tomography of head and neck cancers and associations with HPV status and treatment outcome

    While methods for imaging tumor hypoxia with positron emission tomography (PET) have been developed, optimal methods for interpreting and utilizing these datasets in the clinic remain unclear. In this study, we analyzed hypoxia PET images of head and neck cancer patients and compared imaging metrics with human papilloma virus (HPV) status and clinical outcome. Forty-one patients treated as part of a phase III trial of the hypoxic cytotoxin tirapazamine (TROG 02.02) were imaged with PET using fluorodeoxyglucose (FDG) and fluoroazomycin arabinoside (FAZA). FDG and FAZA PET images were interpreted qualitatively and quantitatively, and compared with tumor T stage, HPV status, and treatment outcome using multivariate statistics. PET signals in the tumor and lymph nodes exhibited significant intra- and inter-patient variability. The FAZA hypoxic volume demonstrated a significant correlation with tumor T stage. PET-hypoxic tumors treated with cisplatin exhibited significantly worse treatment outcomes relative to PET-oxic tumors or PET-hypoxic tumors treated with tirapazamine. Quantitative analysis of FAZA PET yielded metrics that correlated with clinical T stage and were capable of stratifying patient outcome. These results encourage further development of this technology, with particular emphasis on establishment of robust quantitative methods. (orig.)

  17. Multidetector CT Assessment of Lymph Node Size for Nodal Staging in Patients with Potentially Operable Squamous Esophageal Cancer and the 18F-FDG Positron Emission Tomography CT Correlation

    To investigate the size criteria of multidetector computed tomography (MDCT) for the evaluation metastatic lymph nodes (LNs) for potentially operable squamous esophageal cancer, and to compare this information with the results of positron emission tomography-CT (PET-CT). Twenty-four patients who underwent radical esophagectomy for esophageal cancer were studied. All patients had preoperative MDCT and PET-CT. The MDCT findings were compared with those of PET-CT and were correlated with the surgical records. The receiver operating characteristic (ROC) curve method was used to determine the appropriate cut-off value to distinguish benign from metastatic LNs. The size of metastatic LNs (9.35 ± 3.41 mm) was significantly larger than that of benign LNs (5.74 ± 1.64 mm) (p<0.001). The best cut-off value was 7 mm (81.8% sensitivity, 80.8% specificity). PET-CT detected all metastatic LNs except for four in the peritumoral region. The sensitivity and specificity of metastatic LN evaluation on PET-CT were 82.6% and 99.4%, respectively. Only one LN without metastasis showed increased fluoro-2-deoxy-D-glucose uptake on PET-CT. Size of metastatic LNs can typically be < 10 mm. For MDCT, the short diameter of 7 mm may be the optimal criterion. PET-CT is very accurate for the assessment of metastatic LNs except for those in the peritumoral region

  18. Quantitative and qualitative analysis of [{sup 18}F]FDG and [{sup 18}F]FAZA positron emission tomography of head and neck cancers and associations with HPV status and treatment outcome

    Graves, Edward E.; Le, Quynh-Thu [Stanford University, Department of Radiation Oncology, Stanford, CA (United States); Hicks, Rodney J.; Binns, David; Peters, Lester [Peter MacCallum Cancer Centre, Division of Radiation Oncology and Cancer Imaging, Melbourne (Australia); Bressel, Mathias; Young, Richard J. [Peter MacCallum Cancer Centre, Division of Research, Melbourne (Australia); Rischin, Danny [Peter MacCallum Cancer Centre, Division of Cancer Medicine, Melbourne (Australia)

    2016-04-15

    While methods for imaging tumor hypoxia with positron emission tomography (PET) have been developed, optimal methods for interpreting and utilizing these datasets in the clinic remain unclear. In this study, we analyzed hypoxia PET images of head and neck cancer patients and compared imaging metrics with human papilloma virus (HPV) status and clinical outcome. Forty-one patients treated as part of a phase III trial of the hypoxic cytotoxin tirapazamine (TROG 02.02) were imaged with PET using fluorodeoxyglucose (FDG) and fluoroazomycin arabinoside (FAZA). FDG and FAZA PET images were interpreted qualitatively and quantitatively, and compared with tumor T stage, HPV status, and treatment outcome using multivariate statistics. PET signals in the tumor and lymph nodes exhibited significant intra- and inter-patient variability. The FAZA hypoxic volume demonstrated a significant correlation with tumor T stage. PET-hypoxic tumors treated with cisplatin exhibited significantly worse treatment outcomes relative to PET-oxic tumors or PET-hypoxic tumors treated with tirapazamine. Quantitative analysis of FAZA PET yielded metrics that correlated with clinical T stage and were capable of stratifying patient outcome. These results encourage further development of this technology, with particular emphasis on establishment of robust quantitative methods. (orig.)

  19. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Purpose Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Materials and methods Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32–75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. Results In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in

  20. Diagnostic value of combined {sup 18}F-FDG PET/MRI for staging and restaging in paediatric oncology

    Pfluger, Thomas; Melzer, Henriette I.; Mueller, Wolfgang P.; Bartenstein, Peter [Ludwig Maximilians University of Munich, Department of Nuclear Medicine, Munich (Germany); Coppenrath, Eva [Ludwig Maximilians University of Munich, Department of Radiology, Munich (Germany); Albert, Michael H.; Schmid, Irene [Ludwig Maximilians University of Munich, Department of Paediatric Oncology/Haematology, Munich (Germany)

    2012-11-15

    The present study compares the diagnostic value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and MRI to combined/registered {sup 18}F-FDG PET/MRI for staging and restaging in paediatric oncology. Over 8 years and 2 months, 270 {sup 18}F-FDG PET and 270 MRI examinations (mean interval 5 days) were performed in 132 patients with proven (n = 117) or suspected (n = 15) malignant disease: solid tumours (n = 64), systemic malignancy (n = 53) and benign disease (n = 15). A total of 259 suspected tumour lesions were analysed retrospectively during primary diagnosis and 554 lesions during follow-up. Image analysis was performed separately on each modality, followed by analysis of combined and registered {sup 18}F-FDG PET/MRI imaging. A total of 813 lesions were evaluated and confirmed by histopathology (n = 158) and/or imaging follow-up (n = 655) after 6 months. In the separate analysis of {sup 18}F-FDG PET and MRI, sensitivity was 86 %/94 % and specificity 85 %/38 %. Combined/registered {sup 18}F-FDG PET/MRI led to a sensitivity of 97 %/97 % and specificity of 81 %/82 %. False-positive results ({sup 18}F-FDG PET n = 69, MRI n = 281, combined {sup 18}F-FDG PET/MRI n = 85, registered {sup 18}F-FDG PET/MRI n = 80) were due to physiological uptake or post-therapeutic changes. False-negative results ({sup 18}F-FDG PET n = 50, MRI n = 20, combined {sup 18}F-FDG PET/MRI n = 11, registered {sup 18}F-FDG PET/MRI n = 11) were based on low uptake or minimal morphological changes. Examination-based evaluation during follow-up showed a sensitivity/specificity of 91 %/81 % for {sup 18}F-FDG PET, 93 %/30 % for MRI and 96 %/72 % for combined {sup 18}F-FDG PET/MRI. For the detection of single tumour lesions, registered {sup 18}F-FDG PET/MRI proved to be the methodology of choice for adequate tumour staging. In the examination-based evaluation, MRI alone performed better than {sup 18}F-FDG PET and combined/registered imaging during primary diagnosis. At follow

  1. Anesthesia condition for {sup 18}F-FDG imaging of lung metastasis tumors using small animal PET

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cheon, Gi Jeong [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)], E-mail: larry@kcch.re.kr; Choi, Chang Woon; Lim, Sang Moo [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)

    2008-01-15

    Small animal positron emission tomography (PET) with {sup 18}F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal {sup 18}F-FDG PET. Methods: To determine the impact of anesthesia on {sup 18}F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of {sup 18}F-FDG in various tissues were evaluated. The {sup 18}F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of {sup 18}F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased {sup 18}F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest {sup 18}F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by {sup 18}F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal {sup 18}F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire {sup 18}F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model.

  2. [{sup 18}F]FDG PET monitoring of tumour response to chemotherapy: does [{sup 18}F]FDG uptake correlate with the viable tumour cell fraction?

    Spaepen, Karoline; Stroobants, Sigrid; Dupont, Patrick; Bormans, Guy; Mortelmans, Luc [Department of Nuclear Medicine, UZ Gasthuisberg, Herestraat 49, 3000, Leuven (Belgium); Balzarini, Jan [Rega Institute, Katholieke Universiteit, Leuven (Belgium); Verhoef, Gregor; Vandenberghe, Peter [Department of Hematology, UZ Gasthuisberg, Leuven (Belgium); De Wolf-Peeters, Christine [Department of Pathology, UZ Gasthuisberg, Leuven (Belgium)

    2003-05-01

    Because metabolic changes induced by chemotherapy precede the morphological changes, fluorine-18 fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) is thought to predict response to therapy earlier and more accurately than other modalities. To be a reliable predictor of response, changes in tumour [{sup 18}F]FDG uptake should reflect changes in viable cell fraction, but little is known about the contribution of apoptotic and necrotic cancer cells and inflammatory tissue to the [{sup 18}F]FDG signal. In a tumour mouse model we investigated the relation between chemotherapy-induced changes in various tumoral components and tumour uptake and size. SCID mice were subcutaneously inoculated in the right thigh with 5 x 10{sup 6} Daudi cells. When the tumour measured 15-20 mm, Endoxan was given intravenously. At different time points [1-15 days (d1-d15) after the injection of Endoxan], ex vivo autoradiography and histopathology were performed in two mice and [{sup 18}F]FDG uptake in the tumour and tumour size were correlated with the different cell fractions measured with flow cytometry in five mice. At d1/d3, similar reductions in [{sup 18}F]FDG uptake and viable tumoral cell fraction were observed and these reductions preceded changes in tumour size. By d8/d10, [{sup 18}F]FDG uptake had stabilised despite a further reduction in viable tumoral cell fraction. At these time points a major inflammatory response was observed. At d15, an increase in viable tumour cells was again observed and this was accurately predicted by an increase in [{sup 18}F]FDG uptake, while the tumour volume remained unchanged. In contrast with variations in tumour volume, [{sup 18}F]FDG is a good marker for chemotherapy response monitoring. However, optimal timing seems crucial since a transient increase in stromal reaction may result in overestimation of the fraction of viable cells. (orig.)

  3. Evaluation of thymic tumors with 18F-FDG PET-CT - A pictorial review

    Sharma, Punit; Singhal, Abhinav; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh [Dept. of Nuclear Medicine, All India Inst. of Medical Sciences, New Delhi (India)], e-mail: rkphulia@yahoo.com; Kumar, Arvind [Dept. of Surgical Disciplines, All India Inst. of Medical Sciences, New Delhi (India)

    2013-02-15

    Thymic tumors represent a broad spectrum of neoplastic disorders and pose considerable diagnostic difficulties. A non-invasive imaging study to determine the nature of thymic lesions can have significant impact on management of such tumors. 18F-flurorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) has shown promising results in characterization of thymic tumors. The objective of this article is to provide an illustrative tutorial highlighting the clinical utility of 18F-FDG PET-CT imaging in patients with thymic tumors. We have pictorially depicted the 18F-FDG PET-CT salient imaging characteristics of various thymic tumors, both epithelial and non-epithelial. Also discussed is the dynamic physiology of thymus gland which is to be kept in mind when evaluating thymic pathology on 18F-FDG PET-CT, as it can lead to interpretative pitfalls.

  4. Evaluation of thymic tumors with 18F-FDG PET-CT - A pictorial review

    Thymic tumors represent a broad spectrum of neoplastic disorders and pose considerable diagnostic difficulties. A non-invasive imaging study to determine the nature of thymic lesions can have significant impact on management of such tumors. 18F-flurorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) has shown promising results in characterization of thymic tumors. The objective of this article is to provide an illustrative tutorial highlighting the clinical utility of 18F-FDG PET-CT imaging in patients with thymic tumors. We have pictorially depicted the 18F-FDG PET-CT salient imaging characteristics of various thymic tumors, both epithelial and non-epithelial. Also discussed is the dynamic physiology of thymus gland which is to be kept in mind when evaluating thymic pathology on 18F-FDG PET-CT, as it can lead to interpretative pitfalls

  5. Brown adipose tissue {sup 18}F-FDG uptake in pediatric PET/CT imaging

    Hong, Terence S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Shammas, Amer; Charron, Martin [The Hospital for Sick Children, Department of Diagnostic Imaging, Division of Nuclear Medicine, Toronto (Canada); Zukotynski, Katherine A. [Harvard Medical School, Department of Imaging, Division of Nuclear Medicine, Dana-Farber Cancer Institute, Boston, MA (United States); Drubach, Laura A. [Children' s Hospital Boston, Harvard Medical School, Department of Radiology, Division of Nuclear Medicine/PET, Boston, MA (United States); Lim, Ruth [Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2011-06-15

    Positron emission tomography (PET) using [F-18]2-fluoro-2-deoxyglucose (FDG) fused with CT ({sup 18}F-FDG PET/CT) has been widely adopted in oncological imaging. However, it is known that benign lesions and other metabolically active tissues, such as brown adipose tissue (BAT), can accumulate {sup 18}F-FDG, potentially resulting in false-positive interpretation. Previous studies have reported that {sup 18}F-FDG uptake in BAT is more common in children than in adults. We illustrate BAT FDG uptake in various anatomical locations in children and adolescents. We also review what is known about the effects of patient-related physical attributes and environmental temperatures on BAT FDG uptake, and discuss methods used to reduce BAT FDG uptake on {sup 18}F-FDG PET. (orig.)

  6. Brown adipose tissue 18F-FDG uptake in pediatric PET/CT imaging

    Positron emission tomography (PET) using [F-18]2-fluoro-2-deoxyglucose (FDG) fused with CT (18F-FDG PET/CT) has been widely adopted in oncological imaging. However, it is known that benign lesions and other metabolically active tissues, such as brown adipose tissue (BAT), can accumulate 18F-FDG, potentially resulting in false-positive interpretation. Previous studies have reported that 18F-FDG uptake in BAT is more common in children than in adults. We illustrate BAT FDG uptake in various anatomical locations in children and adolescents. We also review what is known about the effects of patient-related physical attributes and environmental temperatures on BAT FDG uptake, and discuss methods used to reduce BAT FDG uptake on 18F-FDG PET. (orig.)

  7. In vivo 18F-FDG tumour uptake measurements in small animals using Cerenkov radiation

    2-[18F]Fluoro-2-deoxy-D-glucose (18F-FDG) is a widely used PET radiotracer for the in vivo diagnosis of several diseases such as tumours. The positrons emitted by 18F-FDG, travelling into tissues faster than the speed of light in the same medium, are responsible for Cerenkov radiation (CR) emission which is prevalently in the visible range. The purpose of this study is to show that CR escaping from tumour tissues of small living animals injected with 18F-FDG can be detected with optical imaging (OI) techniques using a commercial optical instrument equipped with charge-coupled detectors (CCD). The theory behind the Cerenkov light emission and the source depth measurements using CR is first presented. Mice injected with 18F-FDG or saline solution underwent dynamic OI acquisition and a comparison between images was performed. Multispectral analysis of the radiation was used to estimate the depth of the source of Cerenkov light. Small animal PET images were also acquired in order to compare the 18F-FDG bio-distribution measured using OI and PET scanner. Cerenkov in vivo whole-body images of tumour-bearing mice and the measurements of the emission spectrum (560-660 nm range) are presented. Brain, kidneys and tumour were identified as a source of visible light in the animal body: the tissue time-activity curves reflected the physiological accumulation of 18F-FDG in these organs. The identification is confirmed by the comparison between CR and 18F-FDG images. These results will allow the use of conventional OI devices for the in vivo study of glucose metabolism in cancer and the assessment, for example, of anti-cancer drugs. Moreover, this demonstrates that 18F-FDG can be employed as it is a bimodal tracer for PET and OI techniques. (orig.)

  8. [18F]FDG-PET in lung cancer: current status

    Jane Dobbs, H; Quint, Leslie Eisenbud; Miles, K A

    2005-01-01

    Increasingly, evidence of safety, effectiveness and cost-effectiveness is required to support funding of new diagnostic technologies. However, diagnostic imaging is a rapidly changing speciality with new data constantly being added to the evidence base. This article aims to review the evidence base for the application of fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) in lung cancer and to identify areas in which the evidence base is evolving. Currently, there is strong evidenc...

  9. Does Delayed-Time-Point Imaging Improve 18F-FDG-PET in Patients With MALT Lymphoma?

    Mayerhoefer, Marius E.; Giraudo, Chiara; Senn, Daniela; Hartenbach, Markus; Weber, Michael; Rausch, Ivo; Kiesewetter, Barbara; Herold, Christian J.; Hacker, Marcus; Pones, Matthias; Simonitsch-Klupp, Ingrid; Müllauer, Leonhard; Dolak, Werner; Lukas, Julius; Raderer, Markus

    2016-01-01

    Purpose To determine whether in patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue lymphoma (MALT), delayed–time-point 2-18F-fluoro-2-deoxy-d-glucose-positron emission tomography (18F-FDG-PET) performs better than standard–time-point 18F-FDG-PET. Materials and Methods Patients with untreated histologically verified MALT lymphoma, who were undergoing pretherapeutic 18F-FDG-PET/computed tomography (CT) and consecutive 18F-FDG-PET/magnetic resonance imaging (MRI), using a single 18F-FDG injection, in the course of a larger-scale prospective trial, were included. Region-based sensitivity and specificity, and patient-based sensitivity of the respective 18F-FDG-PET scans at time points 1 (45–60 minutes after tracer injection, TP1) and 2 (100–150 minutes after tracer injection, TP2), relative to the reference standard, were calculated. Lesion-to-liver and lesion-to-blood SUVmax (maximum standardized uptake values) ratios were also assessed. Results 18F-FDG-PET at TP1 was true positive in 15 o f 23 involved regions, and 18F-FDG-PET at TP2 was true-positive in 20 of 23 involved regions; no false-positive regions were noted. Accordingly, region-based sensitivities and specificities were 65.2% (confidence interval [CI], 45.73%–84.67%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP1; and 87.0% (CI, 73.26%–100%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP2, respectively. FDG-PET at TP1 detected lymphoma in at least one nodal or extranodal region in 7 of 13 patients, and 18F-FDG-PET at TP2 in 10 of 13 patients; accordingly, patient-based sensitivity was 53.8% (CI, 26.7%–80.9%) for 18F-FDG-PET at TP1, and 76.9% (CI, 54.0%–99.8%) for 18F-FDG-PET at TP2. Lesion-to-liver and lesion-to-blood maximum standardized uptake value ratios were significantly lower at TP1 (ratios, 1.05 ± 0.40 and 1.52 ± 0.62) than at TP2 (ratios, 1.67 ± 0.74 and 2.56 ± 1.10; P = 0.003 and P = 0.001). Conclusions Delayed–time-point imaging

  10. Characteristics of Integrated 18F-FDG PET/CT in Pulmonary Cryptococcosis

    Chung-Jen Huang; Li-Han Hsu (Div. of Pulmonary and Intensive Care Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China)); Dong-Ling You; Pei-Ing Lee (Dept. of Nuclear Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China)); Chia-Chuan Liu; Chih-Shiun Shih (Div. of Thoracic Surgery, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China)); Chiang-Ching Shih; Hsiu-Chin Tseng (Dept. of Internal Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan (China))

    2009-05-15

    Background: Pulmonary cryptococcosis is an uncommon cause of pulmonary nodules found by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans. It is rarely reported but may mislead interpretation. Purpose: To describe the 18F-FDG PET/CT findings of pulmonary cryptococcosis. Material and Methods: The 18F-FDG PET/CT images of seven patients with pulmonary cryptococcosis were evaluated. Results: The 18F-FDG PET/CT exams showed single or multiple nodular lesions. The standardized uptake values (SUV) in early images varied significantly for the seven patients (ranging from 2.2 to 11.6). Delayed SUVs showed significant increases in four patients. Conclusion: Pulmonary cryptococcosis mimics primary or metastatic lung cancer on 18F-FDG PET/CT scan. Tissue confirmation should be considered for any suspicious pulmonary nodules found on 18F-FDG PET/CT scan with an SUV score higher than 2.5, in order to avoid overdiagnosis or overstaging.

  11. Characteristics of Integrated 18F-FDG PET/CT in Pulmonary Cryptococcosis

    Background: Pulmonary cryptococcosis is an uncommon cause of pulmonary nodules found by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans. It is rarely reported but may mislead interpretation. Purpose: To describe the 18F-FDG PET/CT findings of pulmonary cryptococcosis. Material and Methods: The 18F-FDG PET/CT images of seven patients with pulmonary cryptococcosis were evaluated. Results: The 18F-FDG PET/CT exams showed single or multiple nodular lesions. The standardized uptake values (SUV) in early images varied significantly for the seven patients (ranging from 2.2 to 11.6). Delayed SUVs showed significant increases in four patients. Conclusion: Pulmonary cryptococcosis mimics primary or metastatic lung cancer on 18F-FDG PET/CT scan. Tissue confirmation should be considered for any suspicious pulmonary nodules found on 18F-FDG PET/CT scan with an SUV score higher than 2.5, in order to avoid overdiagnosis or overstaging

  12. Comparison of 18F-FET and 18F-FDG PET in brain tumors

    The purpose of this study was to compare the diagnostic value of positron emission tomography (PET) using [18F]-fluorodeoxyglucose (18F-FDG) and O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) in patients with brain lesions suspicious of cerebral gliomas. Methods: Fifty-two patients with suspicion of cerebral glioma were included in this study. From 30 to 50 min after injection of 180 MBq 18F-FET, a first PET scan (18F-FET scan) was performed. Thereafter, 240 MBq 18F-FDG was injected and a second PET scan was acquired from 30 to 60 min after the second injection (18F-FET/18F-FDG scan). The cerebral accumulation of 18F-FDG was calculated by decay corrected subtraction of the 18F-FET scan from the 18F-FET/18F-FDG scan. Tracer uptake was evaluated by visual scoring and by lesion-to-background (L/B) ratios. The imaging results were compared with the histological results and prognosis. Results: Histology revealed 24 low-grade gliomas (LGG) of World Health Organization (WHO) Grade II and 19 high-grade gliomas (HGG) of WHO Grade III or IV, as well as nine others, mainly benign histologies. The gliomas showed increased 18F-FET uptake (>normal brain) in 86% and increased 18F-FDG uptake (>white matter) in 35%. 18F-FET PET provided diagnostically useful delineation of tumor extent while this was impractical with 18F-FDG due to high tracer uptake in the gray matter. A local maximum in the tumor area for biopsy guidance could be identified with 18F-FET in 76% and with 18F-FDG in 28%. The L/B ratios showed significant differences between LGG and HGG for both tracers but considerable overlap so that reliable preoperative grading was not possible. A significant correlation of tracer uptake with overall survival was found with 18F-FDG only. In some benign lesions like abscesses, increased uptake was observed for both tracers indicating a limited specificity of both techniques. Conclusions: 18F-FET PET is superior to 18F-FDG for biopsy guidance and treatment planning of cerebral gliomas

  13. {sup 18}F-FDG PET/CT in Primary AL Hepatic Amyloidosis Associated with Multiple Myeloma

    Son, Youn Mi; Bak, Cheol Hee [Seoul Medical Center, Seoul (Korea, Republic of); Choi, Joon Young; Cheon, Mi Ju; Kim, Young Eun; Lee, Kyung Han; Kim, Byung Tae [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2011-10-15

    We report here on a rare case of primary AL hepatic amyloidosis associated with multiple myeloma in a 64-year-old woman. The patient was referred for evaluating her progressive jaundice and right upper quadrant pain. {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET)/computed tomography (CT) showed diffusely and markedly increased {sup 18}F-FDG uptake in the liver. Although there have been several case studies showing positive {sup 18}F-FDG uptake in pulmonary amyloidosis, to the best of our knowledge, the {sup 18}F-FDG PET/CT findings of hepatic amyloidosis or primary hepatic amyloidosis associated with multiple myeloma have not been reported previously.

  14. The role of 18F FDG-PET/CT in diagnosis of pulmonary nodules

    We reviewed the role of 18F fluorodeoxyglucose-positron emission tomography (FDG-PET)/CT in differentiation between benign and malignant pulmonary nodules. By evaluating pulmonary nodules using both spiculation in CT and FDG standardized uptake value (SUV) max in 18F FDG-PET/CT, the sensitivity for the diagnosis of pulmonary nodule enhanced compared to diagnosing either the method alone. The combination of 18F FDG-PET/CT with thin slice CT might be useful for the diagnosis of pulmonary nodules. (author)

  15. Clinical significance of patterns of incidental thyroid uptake at 18F-FDG PET/CT

    Incidental uptake of 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) in the thyroid gland is not uncommonly encountered in day-to-day practice of oncological 18F-FDG positron-emission tomography/computed tomography (PET/CT). These are often felt to be “nuisance lesions” by referring clinicians and radiologists alike. However, recognition of the importance of different patterns of FDG uptake in the thyroid gland and knowledge of the possible underlying aetiologies are crucial in ensuring that patients are managed appropriately in the clinical context of their primary diagnosis, as the underlying pathological condition may be clinically important in a significant minority of such cases. This review describes the various patterns of 18F-FDG uptake within the thyroid and discusses the clinical significance and possible impact on patient management. Incidental low-grade homogeneous diffuse increased thyroid 18F-FDG uptake is usually seen in the patients with chronic thyroiditis, Grave's disease, and hypothyroidism. Thyroid function tests and antibody profiling are advised in these patients. Incidental focal 18F-FDG thyroid uptake should raise the possibility of underlying malignancy. Ultrasound with or without fine-needle aspiration cytology is usually recommended for the evaluation of these lesions. Heterogeneous uptake with prominent focal uptake in the thyroid should be further evaluated to exclude malignancy

  16. Paediatric dosimetry of 18F-FDG whole body PET/CT scans

    A combined 18F-FDG (18F-2-deoxy-D-glucose) positron emission tomography/computed tomography (PET/CT) scan provides both the metabolic information from FDG-PET and anatomic information from CT in a single examination. The use of PET/CT for management of malignancies in children has increased over the past few years. This raises an important consideration of radiation exposure in children since they are relatively more radiosensitive than adults and also have a potential for a longer life thereby increasing the probability of manifestation of late radiation effects; particularly cancer. Unfortunately, the data regarding the doses received by children from undergoing such examinations is scarce. The present study aims at estimating the effective doses to paediatric patients from whole body 18F-FDG PET/CT studies. The purpose of the study is to estimate the radiation doses to children from undergoing whole body PET/CT scans using 18F-FDG

  17. Clinical values for abnormal {sup 18}F-FDG uptake in the head and neck region of patients with head and neck squamous cell carcinoma

    Lee, Hwan Seo [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Jae Seung [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Roh, Jong-Lyel, E-mail: rohjl@amc.seoul.kr [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Seung-Ho; Nam, Soon Yuhl [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang Yoon [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-08-15

    Highlights: • Abnormal {sup 18}F-FDG uptakes in the head and neck (HN) region can be carefully interpreted as being index primary, second primary cancer (SP) or benign. • {sup 18}F-FDG PET/CT identified 91.9% primary HN squamous cell carcinomas (HNSCC). • The specificity and negative predictive value of {sup 18}F-FDG PET/CT for identification of SP were as high as 98.7% and 99.3%, respectively. • Proper detection of primary tumors and SP in the HN region may promote appropriate therapeutic planning of HNSCC patients. - Abstract: Purpose: Fluorine 18-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET)/computed tomography (CT) is used to identify index or second primary cancer (SP) of the head and neck (HN) through changes in {sup 18}F-FDG uptake. However, both physiologic and abnormal lesions increase {sup 18}F-FDG uptake. Therefore, we evaluated {sup 18}F-FDG uptake in the HN region to determine clinical values of abnormal tracer uptake. Methods: A prospective study approved by the institutional review board was conducted in 314 patients with newly diagnosed HN squamous cell carcinoma (HNSCC) and informed consent was obtained from all enrolled patients. The patients received initial staging workups including {sup 18}F-FDG PET/CT and biopsies. All lesions with abnormal HN {sup 18}F-FDG uptake were recorded and most of those were confirmed by biopsies. Diagnostic values for abnormal {sup 18}F-FDG uptake were calculated. Results: Abnormal {sup 18}F-FDG uptake was identified in primary tumors from 285 (91.9%) patients. False-negative results were obtained for 22.3% (23/103) T1 tumors and 2.2% (2/93) T2 tumors (P < 0.001). Thirty-eight regions of abnormal {sup 18}F-FDG uptake were identified in 36 (11.5%) patients: the thyroid (n = 13), maxillary sinus (n = 7), palatine tonsil (n = 6), nasopharynx (n = 5), parotid gland (n = 2) and others (n = 5). Synchronous SP of the HN was identified in eight (2.5%) patients: the thyroid (n = 5), palatine

  18. Novel synthesis and initial preclinical evaluation of 18F-[FDG] labeled rhodamine: a potential PET myocardial perfusion imaging agent

    Myocardial perfusion imaging is one of the most commonly performed investigations in nuclear medicine studies. Due to the clinical importance of [18F]-fluoro-2-deoxy-D-glucose ([18F]-FDG) and its availability in almost every PET center, a new radiofluorinated [18F]-FDG-rhodamine conjugate was synthesized using [18F]-FDG as a prosthetic group. In a convenient and simple one-step radiosynthesis, [18F]-FDG-rhodamine conjugate was prepared in quantitative radiochemical yields, with total synthesis time of nearly 20 min and radiochemical purity of greater than 98%, without the need for HPLC purification, which make these approaches amenable for automation. Biodistribution studies in normal rats at 60 min post-injection demonstrated a high uptake in the heart (> 11% ID/g) and favorable pharmacokinetics. Additionally, [18F]-FDG-rhodamine showed an extraction value of 27.63% ± 5.12% in rat hearts. These results demonstrate that [18F]-FDG-rhodamine conjugate may be useful as an imaging agent for the positron emission tomography evaluation of myocardial perfusion. - Highlights: • Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, Boston • Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, Boston • Harvard Medical School, Boston

  19. The value of {sup 18}F-FDG PET/CT in diagnosing infectious endocarditis

    Kouijzer, Ilse J.E. [Radboud University Nijmegen Medical Centre, Department of Internal Medicine, P.O. Box 9101, Nijmegen (Netherlands); Vos, Fidel J. [Radboud University Nijmegen Medical Centre, Department of Internal Medicine, P.O. Box 9101, Nijmegen (Netherlands); Sint Maartenskliniek, Nijmegen (Netherlands); Janssen, Marcel J.R. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Dijk, Arie P.J. van [Radboud University Nijmegen Medical Centre, Department of Cardiology, Nijmegen (Netherlands); Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Radboud University Nijmegen Medical Centre, Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Nijmegen (Netherlands); Bleeker-Rovers, Chantal P. [Radboud University Nijmegen Medical Centre, Department of Internal Medicine, P.O. Box 9101, Nijmegen (Netherlands); Radboud University Nijmegen Medical Centre, Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Nijmegen (Netherlands)

    2013-07-15

    Early detection of infectious endocarditis is challenging. For diagnosing infectious endocarditis, the revised Duke criteria are the gold standard. Evidence of endocardial involvement on echocardiography is a major criterion, but sensitivity and specificity of echocardiography are not optimal. Here we investigated the utility of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) to diagnose infectious endocarditis in patients with gram-positive bacteraemia. Seventy-two patients with gram-positive bacteraemia were prospectively included. Patients with a positive blood culture growing Staphylococcus aureus, Streptococcus species or Enterococcus species were eligible when a risk factor for developing metastatic infectious foci was present. Infectious endocarditis was defined according to the revised Duke criteria. All patients underwent {sup 18}F-FDG PET/CT and echocardiography. {sup 18}F-FDG uptake in or around the heart valves was evaluated independently by two nuclear medicine physicians. Sensitivity for diagnosing infectious endocarditis with {sup 18}F-FDG PET/CT was 39 % and specificity was 93 %. The positive predictive value was 64 % and negative predictive value was 82 %. The mortality rate in patients without infectious endocarditis and without increased {sup 18}F-FDG uptake in or around the heart valves was 18 %, and in patients without infectious endocarditis but with high {sup 18}F-FDG uptake in or around the heart valves the mortality rate was 50 % (p = 0.181). {sup 18}F-FDG PET/CT is currently not sufficiently adequate for the diagnosis of infectious endocarditis because of its low sensitivity. Improvements such as patient preparation with low carbohydrate-fat allowed diet and technical advances in the newest PET/CT scanners may increase sensitivity in future studies. (orig.)

  20. The Clinical Role of Dual-Time-Point 18F-FDG PET/CT in Differential Diagnosis of the Thyroid Incidentaloma

    Lee, Sinae; Park, Taegyu; Park, Soyeon; Pahk, Kisoo; Rhee, Seunghong; Cho, Jaehyuk; Jeong, Eugene; Kim, Sungeun; CHOE, JAE GOL

    2013-01-01

    Thyroid incidentalomas are common findings during imaging studies including 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) for cancer evaluation. Although the overall incidence of incidental thyroid uptake detected on PET imaging is low, clinical attention should be warranted owing to the high incidence of harboring primary thyroid malignancy. We retrospectively reviewed 2,368 dual-time-point 18F-FDG PET/CT cases that were undertaken for cancer eval...

  1. Routine use of dual time 18F-FDG PET for staging of preoperative lung cancer. Does it affect clinical management?

    The objective of this study was to compare the diagnostic accuracy of dual-time-point 18F-fluorodeoxy-glucose (18F-FDG) positron emission tomography (PET) to single-time-point 18F-FDG PET for staging of preoperative lung cancer. Between November 2008 and December 2009, 107 patients who were diagnosed as having lung cancer or strongly suspected of having lung cancer were enrolled. They underwent dual-time-point 18F-FDG PET following conventional imaging. Dual-time-point 18F-FDG PET imaging (whole body) was performed at 1-h (early) post-FDG injection and repeated (2 h delayed) after injection. The diagnostic accuracy of pre-PET staging and post-PET staging was retrospectively evaluated, and the diagnostic accuracy of dual-time-point 18F-FDG PET was compared to that of single-time-point 18F-FDG PET. In 100 patients, the early 18F-FDG PET scan resulted in upstaging of the tumor in ten (10%) and down-staging of the tumor in five (5%) compared to the conventional scan. The delayed phase of 18F-FDG PET provided no additional information on staging for lung cancer patients. The remaining seven patients were diagnosed as not having lung cancer. This study confirmed that dual-time-point 18F-FDG PET is useful for differential diagnosis between benign and malignant lesions, but has no major impact on staging and therapeutic management of patients with pathologically proven lung cancer. (author)

  2. The impact of 18F-FDG PET on the management of patients with suspected large vessel vasculitis

    We aimed to assess the impact of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) on the management of patients with suspected large vessel vasculitis. An international expert panel determined diagnoses and clinical management in patients with suspected large vessel vasculitis, with and without the results of 18F-FDG PET, respectively. The accuracy of the clinical diagnosis and the resulting clinical management with and without the 18F-FDG PET results were compared using logistic regression models. The analysis included 30 patients referred to a tertiary care centre with large vessel vasculitis and 31 controls. 18F-FDG PET had an overall sensitivity of 73.3% [95% confidence interval (CI) 54.1-87.7%], a specificity of 83.9% (95% CI 66.3-94.5%), a positive predictive value of 81.5% (95% CI 61.9-93.7%) and a negative predictive value of 76.5% (95% CI 58.8-89.3%). The diagnostic accuracy of 18F-FDG PET was higher in patients not receiving immunosuppressive drugs (93.3 vs 64.5%, p = 0.006). Taken in context with other available diagnostic modalities, the addition of 18F-FDG PET increased the clinical diagnostic accuracy from 54.1 to 70.5% (p = 0.04). The addition of 18F-FDG PET increased the number of indicated biopsies from 22 of 61 patients (36.1%) to 25 of 61 patients (41.0%) and changed the treatment recommendation in 8 of 30 patients (26.7%) not receiving immunosuppressive medication and in 7 of 31 patients (22.6%) receiving immunosuppressive medication. 18F-FDG PET is a sensitive and specific imaging tool for large vessel vasculitis, especially when performed in patients not receiving immunosuppressive drugs. It increases the overall diagnostic accuracy and has an impact on the clinical management in a significant proportion of patients. (orig.)

  3. Multiple primary malignant tumors of upper gastrointestinal tract:A novel role of ~(18)F-FDG PET/CT

    2010-01-01

    AIM: To evaluate the capacity of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for detecting multiple primary cancer of upper gastrointestinal (UGI) tract. METHODS: Fifteen patients (12 without cancer histories and 3 with histories of upper GI tract cancer) were investigated due to the suspicion of primary cancer of UGI tract on X-ray barium meal and CT scan. Subsequent whole body 18F-FDG PET/CT scan was carried out for initial staging or restaging. All the patient...

  4. Basic principles and applications of 18F-FDG-PET/CT in oral and maxillofacial imaging: A pictorial essay

    A combination of positron emission tomography (PET) with 18F-labeled fluoro-2-deoxyglucose (18F-FDG) and computed tomography (18F-FDG-PET/CT) has increasingly become a widely used imaging modality for the diagnosis and management of head and neck cancer. On the basis of both recent literature and our professional experience, we present a set of principles with pictorial illustrations and clinical applications of FDG-PET/CT in the evaluation and management planning of squamous cell carcinoma of the oral cavity and oropharynx. We feel that this paper will be of interest and will aid the learning of oral and maxillofacial radiology trainees and practitioners.

  5. 18F-FDG PET/CT in detection of sarcomatous degeneration of renal angiomyolipoma in setting of tuberous sclerosis

    Angiomyolipomas (AMLs) of kidneys are one of the common extracranial manifestations of tuberous sclerosis (TSC). AMLs when large may cause life-threatening hemorrhage, but seldom undergo malignant degeneration. We describe the appearance of renal AML degenerated to angiosarcoma on 18F-flruorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and contrast-enhanced CT (CECT)

  6. 18F-FDG PET/CT is Useful for pretreatment Assessment of the Histopathologic Type of Thymic Epithelial Tumors

    This study was performed to assess the usefulness of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) of PET/computed tomography (CT) for distinguishing thymic epithelial tumors according to World Health Organization (WHO) classifications. We analyzed a total of 45 patients (range, 29-75 years of age; mean, 55 years) with pathologically confirmed thymic epithelial tumors who underwent pretreatment 18F-FDG PET or PET/CT between November 2003 and October 2009. The size, visual grading of uptake value, peak standardized uptake value (SUVpeak), uptake pattern, and contour of each tumor, and associated findings on PET or PET/CT, were analyzed relative to the three simplified WHO subgroups: lee-invasive thymomas (types A and AB), more-invasive thymomas (types B1, B2, and B3) and thymic carcinomas. We statistically assessed the relationship of 18F-FDG PET or PET/CT findings with these simplified subgroups. Of the 45 patients, ten had less-invasive thymomas, 23 had more-invasive thymomas, and 12 had thymic carcinomas. The SUVpeak of the less- and more-invasive thymomas were significantly lower than those of thymic carcinomas (p18F-FDG PET or PET/CT differed significantly by histologic subgroups. Pretreatment evaluation with 18F-FDG PET or PET/CT might be helpful in differentiating subgroups of thymic epithelial tumors.

  7. Restaging in patients with preoperative breast cancer using 18F-FDG-PET/CT

    The purpose of this study was to investigate the usefulness of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT) in the assessment of patients with preoperative breast cancer. During April 2006 to February 2008, 294 patients (age 34-73 years) with biopsy proven breast cancer were enrolled in this preoperative staging study. Distant metastases such as bone, extraaxiall lymphnode, lung, liver, were disclosed by 18F-FDG-PET/CT in 4.6% cases of clinical Stage II and in 17% cases of clinical Stage III, and in 7.2% cases of clinical Stage II and III. Otherwise, 80% of them had not been demonstrated. 18F-FDG-PET/CT has the usefulness in restaging the patients with clinical Stage II and III of preoperative breast cancer. (author)

  8. 18F-FDG PET/CT in Neurolymphomatosis: Report of 3 Cases

    Nguyen Xuan Canh; Ngo Van Tan; Tran Thanh Tung; Nguyen Truong Son; Simone Maurea

    2014-01-01

    Neurolymphomatosis is a rare manifestation of non-Hodgkin lymphoma characterized by infiltration of peripheral nerves, nerve roots, plexus and cranial nerves by malignant lymphocytes. This report presents positron emission tomography/computed tomography (PET/CT)imaging with 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) in 3 cases of non-Hodgkin lymphoma with nerve infiltration, including one newly diagnosed lymphoma, one recurrent lymphoma in previous nerve lesions and one newly recurrent lymphoma...

  9. Toxoplasmic Lymphadenitis Mimicking a Metastatic Thyroid Carcinoma at 18F-FDG-PET/CT

    A 28-year-old woman underwent total thyroidectomy for a papillary thyroid carcinoma in the right thyroid lobe (pTx, pN1b). Subsequently a 131I-ablation (4.4 GBq) was performed. Four years later the patient presented increased thyroglobulin (Tg) serum levels (8.4 μg/l) during thyroxine treatment. Furthermore, enlarged hypoechoic and round-shaped bilateral cervical lymph nodes were detected at cervical ultrasonography (US). Based on laboratory and US findings suspicious for lymph nodal recurrence of thyroid carcinoma, the patient underwent an 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) to check for distant metastases (Fig. 1). The patient underwent a US-guided fine-needle aspiration cytology on an 18F-FDG-avid cervical lymph-node. The smears were hypercellulated and consisted of numerous small- to medium-sized lymphocytes, macrophages, dendritic cells and tingible body macrophages. The cytological diagnosis was consistent with that of reactive lymphadenitis. Serological test revealed elevated IgM and IgG anti-Toxoplasma antibodies with a very low IgG-avidity, indicating an acute toxoplasmosis. Serum Tg was then measured by using heterophilic antibody blocking tubes, as previously reported, and serum value dropped to 18F-FDG-PET/CT in oncological patients. Few reports have described toxoplasmic infection mimicking malignancy at 18F-FDG-PET/CT; these findings were found mainly in immunodepressive patients or with history of lymphoma. Conversely, we described here a case of toxoplasmosis inducing false-positive Tg measurement, neck US and 18F-FDG-PET/CT findings in a patient with papillary thyroid carcinoma

  10. Can 18F-FDG PET improve the evaluation of suspicious breast lesions on MRI?

    Highlights: • Prone 18F-FDG PET can improve the evaluation of suspicious breast lesions on MRI. • 18F-FDG PET's results were better for mass lesions higher than 10 mm. • 18F-FDG PET has the potential to identify more aggressive breast tumors. - Abstract: Objective: To evaluate the impact of adding 18F-fluorine-2-deoxy-D-glucose (FDG) positron emission tomography (PET) in the evaluation of suspicious breast lesions on magnetic resonance imaging (MRI). Methods: Sixty patients with suspicious breast lesions on MRI were selected to perform a PET–CT in prone position, dedicated to the evaluation of the breasts. The areas with increased 18F-FDG concentration relative to normal parenchyma were considered positive on PET–CT. Fusion of PET and MRI images (PET–MRI) was performed on a dedicated workstation to better locate corresponding lesions, and its findings were compared with histological results. Results: 76 lesions were evaluated, including 64 mass lesions (84.2%) and 12 non-mass lesions (15.8%). Lesions’ mean diameter on MRI was 29.6 ± 19.2 mm (range 6–94 mm). PET–CT showed increased metabolically activity on 57 lesions (75.0%), with mean maximum SUV of 5.7 ± 5.0 (range 0.8–23.1). On histopathology, there were 17 (22.4%) benign and 59 (79.7%) malignant lesions. Considering all lesions, PET–MRI fusion provided 89.8% sensitivity, 76.5% specificity and 86.8% accuracy. Considering only mass lesions higher than 10 mm, PET–MRI fusion provided 95.8% sensitivity, 83.3% specificity and 93.3% accuracy. Conclusion: The inclusion of 18F-FDG PET on the evaluation of suspicious breast lesions on MRI helped to differentiate benign from malignant breast lesions, especially for mass lesions with a diameter higher than 10 mm

  11. Comparative PET/CT study with 11C-MET and 18F-FDG for diagnosing Glioma

    In this paper, we investigate the diagnostic value of 11C-methionine (MET) positron emission tomography/computed tomography (PET/CT) for brain gliomas, and compare the results to 18F-fluorodeoxyglucose. Forty-four patients with suspected gliomas were examined with 11C-MET and 18F-FDG PET/CT. 18F-FDG and 11C-MET PET/CT images were compared and evaluated by visual and semiquantitative analysis. The accuracy of 11C-MET and 18F-FDG PET/CT for detecting gliomas were 88.6% and 65.9%, respectively. Semiquantitative analysis showed that the 26 gliomas had higher mean ± SD T/NGmax ratio on 11C-MET PET/CT than on 18F-FDG PET/CT(1.95±0.52 vs. 0.90±0.27, t=9.101, P11C-MET had a higher sensitivity than 18F-FDG (83.3% vs.33.3%, χ2 =4.16, P18F-FDG in the sensitivity for high-grade gliomas(100% vs. 64.3%, χ2=3.20, P>0.05). The difference was no significant, too, between high-and low-grade gliomas, compared by 11C-MET T/NGmax ratio (2.07±0.51 vs. 1.81±0.52, t=1.302, P=0.205). 18F-FDG T/NGmax ratio in high-grade gliomas was significantly higher than that in low-grade gliomas (1.03±0.30 vs. 0.75±0.11, t=3.198, P=0.004). It is concluded that 11C-MET PET/CT is more accurate than 18F-FDG PET/CT for detecting and delineating gliomas, especially for low-grade gliomas, and it can play a complement role to 18F-FDG in tumor grading. (authors)

  12. Adrenergic pathway activation enhances brown adipose tissue metabolism: A [18 F]FDG PET/CT study in mice

    Objective: Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [18 F]fluoro-2-deoxyglucose ([18 F]FDG) positron emission tomography (PET)/computed tomography (CT) in mice. Methods: A β3-adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine), were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [18 F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. Results: Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [18 F]FDG PET images. CL 316243 increased the total [18 F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [18 F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [18 F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [18 F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [18 F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT Hounsfield unit (HU) (R2 = 0

  13. Flip-flop phenomenon in systemic sclerosis on fluorodeoxyglucose positron emission tomography/computed tomography

    Systemic sclerosis (SSc) is a rare autoimmune disease, which may affect multiple organ systems. Fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) can demonstrate the degree and anatomical extent of involvement in the entire body and coexisting malignancies in connective tissue diseases. We present a case of SSc with an increased 18F-FDG uptake in the cutaneous and subcutaneous tissues even higher than the neighboring skeletal muscles (“flip-flop phenomenon,” that is, an increased 18F-FDG uptake in the skin but a decreased 18F-FDG uptake in the skeletal muscles)

  14. {sup 18}F-FDG-PET/CT in staging, restaging, and treatment response assessment of male breast cancer

    Groheux, David, E-mail: dgroheux@yahoo.fr [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Hindié, Elif [Department of Nuclear Medicine, Haut-Lévêque Hospital, CHU Bordeaux, University Bordeaux-Segalen, Bordeaux (France); Marty, Michel [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); Centre for Therapeutic Innovation, Saint-Louis Hospital, Paris (France); Espié, Marc [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); Rubello, Domenico [Department of Nuclear Medicine, Santa Maria della Misericordia, Rovigo Hospital, Rovigo (Italy); Vercellino, Laetitia [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Bousquet, Guilhem [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France); INSERM U728, University Institute of Hematology, University of Paris VII, Paris (France); Ohnona, Jessica; Toubert, Marie-Elisabeth [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Merlet, Pascal [Department of Nuclear Medicine, Saint-Louis Hospital, Paris (France); Doctoral School of Biology and Biotechnology, University Institute of Hematology, University of Paris VII, Paris (France); Misset, Jean-Louis [Breast Diseases Unit and Department of Medical Oncology, Saint-Louis Hospital, Paris (France)

    2014-10-15

    Purpose: Male breast cancer (BC) is a rare disease, with patterns different from those found in women. Most tumors are detected at more advanced stages than in women. The aim of this study was to analyze the performance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG-PET/CT) in staging, restaging, and therapy response assessment. Methods: We performed a systematic analysis in the database of Saint-Louis Hospital to identify male patients with BC referred for PET/CT. {sup 18}F-FDG-PET/CT findings considered suspicious for malignancy were compared to biopsy results, further work-up and/or patient follow-up of at least 6 months. Performances of {sup 18}F-FDG-PET/CT were compared to that of conventional imaging (CI) using the McNemar test. The impact of PET/CT on management was evaluated. Results: During 6 consecutive years, among 12,692 {sup 18}F-FDG-PET/CT oncology studies, 30 were performed in 15 men with BC: 7 examinations for initial staging, 11 for restaging, and 12 for response assessment. Tumors profile was ER+ and one had HER2 overexpression. PET/CT sensitivity, specificity, positive predictive value, negative predictive value and accuracy to detect distant metastases were 100%, 67%, 86%, 100% and 89%, respectively. PET/CT was more informative than CI in 40% of studies (p = 0.03; 95% confidence interval: 3.26 – 40%). Findings from {sup 18}F-FDG-PET/CT led to modification in the planned treatment in 13/30 cases (43%). Conclusion: Although all the tumors were ER+, primary lesions and metastases were diagnosed with high sensitivity. {sup 18}F-FDG-PET/CT seems to be a powerful imaging method to perform staging, restaging and treatment response assessment in male patients with BC.

  15. 18F-FDG-PET/CT in staging, restaging, and treatment response assessment of male breast cancer

    Purpose: Male breast cancer (BC) is a rare disease, with patterns different from those found in women. Most tumors are detected at more advanced stages than in women. The aim of this study was to analyze the performance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in staging, restaging, and therapy response assessment. Methods: We performed a systematic analysis in the database of Saint-Louis Hospital to identify male patients with BC referred for PET/CT. 18F-FDG-PET/CT findings considered suspicious for malignancy were compared to biopsy results, further work-up and/or patient follow-up of at least 6 months. Performances of 18F-FDG-PET/CT were compared to that of conventional imaging (CI) using the McNemar test. The impact of PET/CT on management was evaluated. Results: During 6 consecutive years, among 12,692 18F-FDG-PET/CT oncology studies, 30 were performed in 15 men with BC: 7 examinations for initial staging, 11 for restaging, and 12 for response assessment. Tumors profile was ER+ and one had HER2 overexpression. PET/CT sensitivity, specificity, positive predictive value, negative predictive value and accuracy to detect distant metastases were 100%, 67%, 86%, 100% and 89%, respectively. PET/CT was more informative than CI in 40% of studies (p = 0.03; 95% confidence interval: 3.26 – 40%). Findings from 18F-FDG-PET/CT led to modification in the planned treatment in 13/30 cases (43%). Conclusion: Although all the tumors were ER+, primary lesions and metastases were diagnosed with high sensitivity. 18F-FDG-PET/CT seems to be a powerful imaging method to perform staging, restaging and treatment response assessment in male patients with BC

  16. (18)F-FDG PET/CT in a rare case of Stewart-Treves syndrome

    Jensen, Mads Radmer; Friberg, Lars; Karlsmark, Tonny;

    2011-01-01

    BACKGROUND: The aim of this article is to illustrate the possible applications of (18)F-fluorodeoxyglucose positron emission tomography/computer tomography ((18)F-FDG PET/CT) in chronic extremity lymphedema and its complications. METHODS AND RESULTS: (18)F-FDG PET/CT findings in a rare case of...... Stewart-Treves Syndrome (STS), angiosarcoma secondary to chronic extremity lymphedema, are presented. Lymphedema of the extremities is a debilitating disease characterized by chronic swelling due to interstitial edema caused by insufficient lymphatic drainage capacity. Progression with skin thickening......, subcutaneous fibrosis, and increased adipose tissue volume is common. Chronic inflammation has been suggested as a key pathophysiologic component. STS is a rare complication with a very poor prognosis; however, early diagnosis and radical treatment is associated with increased survival. Thus, accurate...

  17. Soft tissue metastases from differentiated thyroid cancer diagnosed by {sup 18}F FDG PET-CT

    Califano, Ines; Quildrian, Sergio; Otero, Jose; Coduti, Martin; Califano, Leonardo; Rojas Bilbao, Erica, E-mail: ines.m.califano@gmail.com [Instituto de Oncologia Angel H. Roffo, Universidad de Buenos Aires (Argentina)

    2013-06-15

    Distant metastases of differentiated thyroid cancer are unusual; lung and bones are the most frequently affected sites. Soft tissue metastases (STM) are extremely rare. We describe two cases of patients with differentiated thyroid cancer metastasizing to soft tissues. Both patients had widespread metastatic disease; clinically asymptomatic soft tissue metastases were found by 18-Fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F FDG PET-CT), and confirmed by cytological and/or histopathological studies. These findings underscore the ability of {sup 18}F FDG PET-CT in accurately assessing the extent of the disease, as well as the utility of the method to evaluate regions of the body that are not routinely explored. (author)

  18. Bilateral Tubo Ovarian Abscess Mimics Ovarian Cancer on MRI and 18F FDG PET/CT

    A 20 year old woman, who presented with a several week history of abdominal pain, was referred for magnetic resonance imaging (MRI) and 18F fluorodeoxy glucose (FDG) positron emission tomography (PET)/computed tomography (CT) after an ultrasound showed complex cystic masses arising from both ovaries. The MRI and 18F FDG PET/CT imaging characteristics of the ovarian masses were strongly suspicious for malignancy, and the masses were surgically removed. Histopathological evaluation revealed a bilateral tuboovarian abscess, with no evidence of malignancy. This case highlights a potentially serious pitfall in the evaluation of suspicious pelvic masses by 18F FDG PET/CT, Whereby a complex bilateral tuboovarian abscess may mimic the PET/CT imaging characteristics of an ovarian or pelvic malignancy.

  19. Multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic activity in a case of occult recurrent metastatic melanoma

    Walker Michael J

    2008-01-01

    Full Text Available Abstract Background The use of diagnostic 18F-fluorodeoxyglucose (18F-FDG positron emission tomography/computed tomography (PET/CT imaging for the staging, restaging, and treatment monitoring of melanoma patients has become a well-recognized standard of care. It plays a key role in detecting sites of occult disease and is widely utilized in the medical and surgical planning of such patients. In the current report, we describe an innovative multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic tumor foci in a case of occult recurrent metastatic melanoma. Case presentation This report discusses a case of occult recurrent metastatic melanoma, isolated to three separate sites within the subcutaneous tissues of the left thigh region, which was not clinically apparent but was found on diagnostic restaging whole body 18F-FDG PET/CT scan utilizing an intravenous injection of 14.8 mCi 18F-FDG. Then, on the day of surgery, the patient received an intravenous injection of 12.8 mCi 18F-FDG. A multimodality approach of intraoperative handheld gamma probe detection, intraoperative ultrasound tumor localization, specimen PET/CT imaging, and postoperative PET/CT imaging was utilized for accomplishing and verifying the excision of all three sites of occult recurrent metastatic melanoma within the left thigh region. Conclusion This innovative multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound is promising combined technology for aiding in tumor localization and verification of excision and may ultimately impact positively upon long-term outcome of selected patients.

  20. Quantifying murine bone marrow and blood radiation dose response following {sup 18}F-FDG PET with DNA damage biomarkers

    Manning, Grainne [Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom); Taylor, Kristina [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON (Canada); Finnon, Paul [Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom); Lemon, Jennifer A.; Boreham, Douglas R. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON (Canada); Badie, Christophe, E-mail: christophe.badie@phe.gov.uk [Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom)

    2014-12-15

    Highlights: • Mice received either a range of {sup 18}F-FDG activities or whole body X-ray doses. • Blood samples were collected at 24 and 43 h for MN-RET and QPCR analysis. • Regression analysis showed that both types of exposure produced a linear response. • BM doses of 33 mGy ({sup 18}F-FDG) and 25 mGy X-rays were significantly higher than controls. • No significant difference between internal ({sup 18}F-FDG) and external (X-ray) was found. - Abstract: The purpose of this study was to quantify the poorly understood radiation doses to murine bone marrow and blood from whole-body fluorine 18 ({sup 18}F)-fluorodeoxyglucose (FDG) positron emission tomography (PET), by using specific biomarkers and comparing with whole body external low dose exposures. Groups of 3–5 mice were randomly assigned to 10 groups, each receiving either a different activity of {sup 18}F-FDG: 0–37 MBq or whole body irradiated with corresponding doses of 0–300 mGy X-rays. Blood samples were collected at 24 h and at 43 h for reticulocyte micronucleus assays and QPCR analysis of gene expression in peripheral blood leukocytes. Blood and bone marrow dose estimates were calculated from injected activities of {sup 18}F-FDG and were based on a recommended ICRP model. Doses to the bone marrow corresponding to 33.43 mGy and above for internal {sup 18}F-FDG exposure and to 25 mGy and above for external X-ray exposure, showed significant increases in radiation-induced MN-RET formation relative to controls (P < 0.05). Regression analysis showed that both types of exposure produced a linear response with linear regression analysis giving R{sup 2} of 0.992 and 0.999 for respectively internal and external exposure. No significant difference between the two data sets was found with a P-value of 0.493. In vivo gene expression dose–responses at 24 h for Bbc3 and Cdkn1 were similar for {sup 18}F-FDG and X-ray exposures, with significant modifications occurring for doses over 300 mGy for Bbc3

  1. {sup 18}F-FDG uptake on PET in primary mediastinal non-thymic neoplasm: A clinicopathological study

    Kaira, Kyoichi, E-mail: kkaira1970@yahoo.co.jp [Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Abe, Masato [Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Nakagawa, Kazuo; Ohde, Yasuhisa; Okumura, Takehiro [Division of Thoracic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Takahashi, Toshiaki; Murakami, Haruyasu; Shukuya, Takehito; Kenmotsu, Hirotsugu; Naito, Tateaki [Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Hayashi, Isamu [Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Oriuchi, Noboru [Department of Diagnostic Radiology and Nuclear medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi 371-8511, Gunma (Japan); Endo, Masahiro [Division of Diagnostic Radiology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Kondo, Haruhiko [Division of Thoracic Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Nakajima, Takashi [Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan); Yamamoto, Nobuyuki [Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777 (Japan)

    2012-09-15

    Background: The usefulness of 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography (PET) has been investigated in thymic epithelial tumors. However, little is known about PET imaging of {sup 18}F-FDG in primary non-thymic mediastinal neoplasms. The aim of this study is to explore the clinicopathological significance of {sup 18}F-FDG PET in primary mediastinal (non-thymic) neoplasms. Methods: Twenty-one patients with mediastinal neoplasms who underwent {sup 18}F-FDG PET before treatment were included in this study. Tumor sections were stained by immunohistochemistry for glucose transporter 1 (Glut1); glucose transporter 3 (Glut3); hypoxia-inducible factor-1 alpha (HIF-1α); hexokinase I; vascular endothelial growth factor (VEGF); microvessels (CD34); epidermal growth factor receptor (EGFR); Akt/mTOR signaling pathway (p-Akt and p-mTOR); cell cycle control (p53). Results: Seventeen of 21 patients were imaged on PET system using {sup 18}F-FDG, but 4 patients with a histology of cyst showed nothing abnormal in PET scans. The histology of the resected tumors was as follows: 6 schwannoma, 3 teratoma, 4 cyst, 3 sarcoma, 1 undifferentiated carcinoma, 1 seminoma, 1 mediastinal goiter, 1 ganglioneuroma, and 1 Hodgkin lymphoma. {sup 18}F-FDG uptake was significantly correlated with Glut1, HIF-1α, EGFR, p-Akt and p-S6K. These biomarkers were highly expressed in schwannoma, teratoma and high grade malignancies, whereas all patients with cyst and ganglioneuroma had no positive expression of these biomarkers. High uptake of {sup 18}F-FDG was significant associated with Glut1, VEGF, EGFR, p-Akt, p-S6K and tumor maximal size. Conclusion: The amount of {sup 18}F-FDG uptake in primary mediastinal non-thymic neoplasms is determined by the presence of glucose metabolism (Glut1), hypoxia (HIF-1α) and upstream components of HIF-1α (EGFR, p-Akt and p-S6K)

  2. Quantifying murine bone marrow and blood radiation dose response following 18F-FDG PET with DNA damage biomarkers

    Highlights: • Mice received either a range of 18F-FDG activities or whole body X-ray doses. • Blood samples were collected at 24 and 43 h for MN-RET and QPCR analysis. • Regression analysis showed that both types of exposure produced a linear response. • BM doses of 33 mGy (18F-FDG) and 25 mGy X-rays were significantly higher than controls. • No significant difference between internal (18F-FDG) and external (X-ray) was found. - Abstract: The purpose of this study was to quantify the poorly understood radiation doses to murine bone marrow and blood from whole-body fluorine 18 (18F)-fluorodeoxyglucose (FDG) positron emission tomography (PET), by using specific biomarkers and comparing with whole body external low dose exposures. Groups of 3–5 mice were randomly assigned to 10 groups, each receiving either a different activity of 18F-FDG: 0–37 MBq or whole body irradiated with corresponding doses of 0–300 mGy X-rays. Blood samples were collected at 24 h and at 43 h for reticulocyte micronucleus assays and QPCR analysis of gene expression in peripheral blood leukocytes. Blood and bone marrow dose estimates were calculated from injected activities of 18F-FDG and were based on a recommended ICRP model. Doses to the bone marrow corresponding to 33.43 mGy and above for internal 18F-FDG exposure and to 25 mGy and above for external X-ray exposure, showed significant increases in radiation-induced MN-RET formation relative to controls (P < 0.05). Regression analysis showed that both types of exposure produced a linear response with linear regression analysis giving R2 of 0.992 and 0.999 for respectively internal and external exposure. No significant difference between the two data sets was found with a P-value of 0.493. In vivo gene expression dose–responses at 24 h for Bbc3 and Cdkn1 were similar for 18F-FDG and X-ray exposures, with significant modifications occurring for doses over 300 mGy for Bbc3 and at the lower dose of 150 mGy for Cdkn1a. Both

  3. Value of 18F-FDG PET/CT in the detection of ovarian malignancy

    Ovarian cancer is a leading cause of gynecologic malignancy. As symptoms of ovarian cancer are nonspecific, only 20 % of ovarian cancers are diagnosed while they are still limited to the ovaries. Thus, early and accurate detection of disease is important for an improved prognosis. For the accurate and effective diagnosis of ovarian malignancy on 18F-fluorodeoxyglucose (18F--FDG) positron emission tomography/computed tomography (PET/CT), we analyzed several parameters, including visual assessment. A total of 51 peritoneal lesions in 19 patients who showed ovarian masses with diffuse peritoneal infiltration were enrolled. Twelve patients were confirmed to have ovarian malignancy and seven patients with benign disease by pathologic examination. All patients were examined by 18F--FDG PET/CT, and an additional 2-h delayed 18F--FDG PET/CT was also performed for 15 patients with 42 peritoneal lesions. We measured semiquantitative parameters including maximum and mean standardized uptake values (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) on a 1-h initial 18F--FDG PET/CT image (Parameter1) and on a 2-h delayed image (Parameter2). Additionally, retention indices of each parameter were calculated, and each parameter among the malignant and benign lesions was compared by Mann-Whitney U test. We also assessed the visual characteristics of each peritoneal lesion, including metabolic extent, intensity, shape, heterogeneity, and total visual score. Associations between visual grades and malignancy were analyzed using linear by linear association methods. Moreover, a receiver operating characteristic (ROC) curve was analyzed to compare the effectiveness of significant parameters. In a comparison between the malignant and benign groups in the analysis of 51 total peritoneal lesions, SUVmax1, SUVmean1, and TLG1 showed significant differences. Also, in the analysis of 42 peritoneal lesions that underwent an additional 2-h 18F--FDG PET

  4. 18F-FDG PET in children with lymphomas

    The aim of this study was to retrospectively evaluate the performance of positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) in children with lymphomas, at various stages of their disease. Twenty-eight children (mean age 12.5 years, 14 girls, 14 boys) with Hodgkin's disease (HD, n=17) or non-Hodgkin's lymphoma (NHL, n=11) were evaluated. Patients were investigated at initial staging (n=19), early in the course of treatment (n=19), at the end of treatment (n=16) and during long-term follow-up (n=19). A total of 113 whole-body PET studies were performed on dedicated scanners. PET results were compared with the results of conventional methods (CMs) such as physical examination, laboratory studies, chest X-rays, computed tomography, magnetic resonance imaging, ultrasonography and bone scan when available. At initial evaluation (group 1), PET changed the disease stage and treatment in 10.5% of the cases. In early evaluation of the response to treatment (group 2), PET failed to predict two relapses and one incomplete response to treatment. In this group, however, PET did not show any false positive results. There were only 4/75 false positive results for PET among patients studied at the end of treatment (group 3, specificity 94%) or during the systematic follow-up (group 4, specificity 95%), as compared with 27/75 for CMs (specificity 54% and 66%, respectively). 18F-FDG-PET is a useful tool for evaluating children with lymphomas. Large prospective studies are needed to appreciate its real impact on patient management. (orig.)

  5. {sup 18}F-FDG PET in children with lymphomas

    Depas, Gisele; Barsy, Caroline De; Foidart, Jacqueline; Rigo, Pierre; Hustinx, Roland [University Hospital, Division of Nuclear Medicine, Liege (Belgium); Jerusalem, Guy [University Hospital, Division of Medical Oncology, Liege (Belgium); Hoyoux, Claire; Dresse, Marie-Francoise [CHR Citadelle, Division of Pediatric Hematology and Oncology, Liege (Belgium); Fassotte, Marie-France [University Hospital, Division of Hematology, Liege (Belgium); Paquet, Nancy [Hotel de Dieu, Levis, Division of Nuclear Medicine, Quebec (Canada)

    2005-01-01

    The aim of this study was to retrospectively evaluate the performance of positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in children with lymphomas, at various stages of their disease. Twenty-eight children (mean age 12.5 years, 14 girls, 14 boys) with Hodgkin's disease (HD, n=17) or non-Hodgkin's lymphoma (NHL, n=11) were evaluated. Patients were investigated at initial staging (n=19), early in the course of treatment (n=19), at the end of treatment (n=16) and during long-term follow-up (n=19). A total of 113 whole-body PET studies were performed on dedicated scanners. PET results were compared with the results of conventional methods (CMs) such as physical examination, laboratory studies, chest X-rays, computed tomography, magnetic resonance imaging, ultrasonography and bone scan when available. At initial evaluation (group 1), PET changed the disease stage and treatment in 10.5% of the cases. In early evaluation of the response to treatment (group 2), PET failed to predict two relapses and one incomplete response to treatment. In this group, however, PET did not show any false positive results. There were only 4/75 false positive results for PET among patients studied at the end of treatment (group 3, specificity 94%) or during the systematic follow-up (group 4, specificity 95%), as compared with 27/75 for CMs (specificity 54% and 66%, respectively). {sup 18}F-FDG-PET is a useful tool for evaluating children with lymphomas. Large prospective studies are needed to appreciate its real impact on patient management. (orig.)

  6. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    uptake in the heart and was readily observed in the absence of insulin loading. [18F]-FDG-positron emission tomography (PET) could be a useful tool for evaluating insulin resistance in images by investigating tissue-specific differences in [18F]-FDG uptake. (author)

  7. The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer

    Measuring tumour heterogeneity by textural analysis in 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) provides predictive and prognostic information but technical aspects of image processing can influence parameter measurements. We therefore tested effects of image smoothing, segmentation and quantisation on the precision of heterogeneity measurements. Sixty-four 18F-FDG PET/CT images of oesophageal cancer were processed using different Gaussian smoothing levels (2.0, 2.5, 3.0, 3.5, 4.0 mm), maximum standardised uptake value (SUVmax) segmentation thresholds (45 %, 50 %, 55 %, 60 %) and quantisation (8, 16, 32, 64, 128 bin widths). Heterogeneity parameters included grey-level co-occurrence matrix (GLCM), grey-level run length matrix (GLRL), neighbourhood grey-tone difference matrix (NGTDM), grey-level size zone matrix (GLSZM) and fractal analysis methods. The concordance correlation coefficient (CCC) for the three processing variables was calculated for each heterogeneity parameter. Most parameters showed poor agreement between different bin widths (CCC median 0.08, range 0.004-0.99). Segmentation and smoothing showed smaller effects on precision (segmentation: CCC median 0.82, range 0.33-0.97; smoothing: CCC median 0.99, range 0.58-0.99). Smoothing and segmentation have only a small effect on the precision of heterogeneity measurements in 18F-FDG PET data. However, quantisation often has larger effects, highlighting a need for further evaluation and standardisation of parameters for multicentre studies. (orig.)

  8. Efficiency calibration of a HPGe detector for [{sup 18}F] FDG activity measurements

    Fragoso, Maria da Conceicao de Farias; Lacerda, Isabelle Viviane Batista de; Albuquerque, Antonio Morais de Sa, E-mail: mariacc05@yahoo.com.br, E-mail: isabelle.lacerda@ufpe.br, E-mail: moraisalbuquerque@hotmaiI.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Oliveira, Mercia Liane de; Hazin, Clovis Abrahao; Lima, Fernando Roberto de Andrade, E-mail: mercial@cnen.gov.br, E-mail: chazin@cnen.gov.br, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-11-01

    The radionuclide {sup 18}F, in the form of flurodeoxyglucose (FDG), is the most used radiopharmaceutical for Positron Emission Tomography (PET). Due to [{sup 18}F]FDG increasing demand, it is important to ensure high quality activity measurements in the nuclear medicine practice. Therefore, standardized reference sources are necessary to calibrate of {sup 18}F measuring systems. Usually, the activity measurements are performed in re-entrant ionization chambers, also known as radionuclide calibrators. Among the existing alternatives for the standardization of radioactive sources, the method known as gamma spectrometry is widely used for short-lived radionuclides, since it is essential to minimize source preparation time. The purpose of this work was to perform the standardization of the [{sup 18}F]FDG solution by gamma spectrometry. In addition, the reference sources calibrated by this method can be used to calibrate and test the radionuclide calibrators from the Divisao de Producao de Radiofarmacos (DIPRA) of the Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE). Standard sources of {sup 152}Eu, {sup 137}Cs and {sup 68}Ge were used for the efficiency calibration of the spectrometer system. As a result, the efficiency curve as a function of energy was determined in wide energy range from 122 to 1408 keV. Reference sources obtained by this method can be used in [{sup 18}F]FDG activity measurements comparison programs for PET services localized in the Brazilian Northeast region. (author)

  9. Efficiency calibration of a HPGe detector for [18F] FDG activity measurements

    The radionuclide 18F, in the form of flurodeoxyglucose (FDG), is the most used radiopharmaceutical for Positron Emission Tomography (PET). Due to [18F]FDG increasing demand, it is important to ensure high quality activity measurements in the nuclear medicine practice. Therefore, standardized reference sources are necessary to calibrate of 18F measuring systems. Usually, the activity measurements are performed in re-entrant ionization chambers, also known as radionuclide calibrators. Among the existing alternatives for the standardization of radioactive sources, the method known as gamma spectrometry is widely used for short-lived radionuclides, since it is essential to minimize source preparation time. The purpose of this work was to perform the standardization of the [18F]FDG solution by gamma spectrometry. In addition, the reference sources calibrated by this method can be used to calibrate and test the radionuclide calibrators from the Divisao de Producao de Radiofarmacos (DIPRA) of the Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE). Standard sources of 152Eu, 137Cs and 68Ge were used for the efficiency calibration of the spectrometer system. As a result, the efficiency curve as a function of energy was determined in wide energy range from 122 to 1408 keV. Reference sources obtained by this method can be used in [18F]FDG activity measurements comparison programs for PET services localized in the Brazilian Northeast region. (author)

  10. Performance of 18F-FDG PET/CT as a postoperative surveillance imaging modality for asymptomatic advanced gastric cancer patients

    The purpose of this study was to investigate the diagnostic performance of postoperative fluorine-18 fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) as a surveillance modality for advanced gastric cancer patients who were asymptomatic and negative by conventional follow-up. We retrospectively collected 46 advanced gastric cancer patients who received approximately 1-year-postoperative 18F-FDG PET/CT surveillance following curative resection (mean age 60.6 ± 11.5 years). 18F-FDG PET/CT was interpreted by nuclear medicine physicians who were blind to the clinical information. Final confirmation was determined by clinical follow-up using tumor markers, conventional CT scan, upper gastrointestinal endoscopy and with/without subsequent histopathologic diagnosis. Four patients developed recurrence (8.7%; 1 local and 3 distant recurrences). For local recurrence, 18F-FDG PET/CT found four hypermetabolic lesions and one was local recurrence. For distant recurrence, seven hypermetabolic lesions were found in six patients and true-positive was three lesions. False-positive cases were mainly turned out to be physiologic small bowel uptake. Regardless of the recurrence site, the sensitivity, specificity, positive predictive value and negative predictive value of 18F-FDG PET/CT were 100% (4/4, 95% confidence interval (CI) 39.6-100%), 88.1% (37/42, 95% CI 73.6-95.5%), 44.4% (4/9, 95% CI 15.3-77.3%) and 100% (37/37, 95% CI 88.3-100%), respectively in the patient-based analysis. Our study showed good specificity of postoperative surveillance 18F-FDG PET/CT for detecting recurrence. Careful caution should be made for interpreting some false-positive hypermetabolic lesions in postoperative 18F-FDG PET/CT, especially at the local anastomosis site. (author)

  11. Conversion of arterial input functions for dual pharmacokinetic modeling using Gd-DTPA/MRI and 18F-FDG/PET.

    Poulin, Eric; Lebel, Réjean; Croteau, Etienne; Blanchette, Marie; Tremblay, Luc; Lecomte, Roger; Bentourkia, M'hamed; Lepage, Martin

    2013-03-01

    Reaching the full potential of magnetic resonance imaging (MRI)-positron emission tomography (PET) dual modality systems requires new methodologies in quantitative image analyses. In this study, methods are proposed to convert an arterial input function (AIF) derived from gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) in MRI, into a (18)F-fluorodeoxyglucose ((18)F-FDG) AIF in PET, and vice versa. The AIFs from both modalities were obtained from manual blood sampling in a F98-Fisher glioblastoma rat model. They were well fitted by a convolution of a rectangular function with a biexponential clearance function. The parameters of the biexponential AIF model were found statistically different between MRI and PET. Pharmacokinetic MRI parameters such as the volume transfer constant (K(trans)), the extravascular-extracellular volume fraction (ν(e)), and the blood volume fraction (ν(p)) calculated with the Gd-DTPA AIF and the Gd-DTPA AIF converted from (18)F-FDG AIF normalized with or without blood sample were not statistically different. Similarly, the tumor metabolic rates of glucose (TMRGlc) calculated with (18) F-FDG AIF and with (18) F-FDG AIF obtained from Gd-DTPA AIF were also found not statistically different. In conclusion, only one accurate AIF would be needed for dual MRI-PET pharmacokinetic modeling in small animal models. PMID:22570280

  12. Evolving role of 18F-FDG-PET/CT for the body tumor and metastases in pediatrics

    18F-FDG-positron emission tomography-computerized tomography (18F-FDG-PET/CT) scan is an important imaging tool which may provide both functional and anatomical information in a single diagnostic test. It has the potential to be a valuable tool in the noninvasive evaluation and monitoring of pediatric tumors including the metastases because 18fluorodeoxyglucose (18F-FDG) is a glucose analogue that concentrates in areas of active metabolic activity. This review provides an update on functional and metabolic imaging approaches for assessment and management of the body tumor and metastases in pediatrics using a combined whole body 18F-FDG-PET/CT scanners. We discuss the benefits include improved pediatric patients' outcome facilitated by staging and monitoring of disease and better treatment planning. It is worth to concern the preparation of children undergoing PET studies and radiation dosimetry and its implications for family and caregivers. It is important to consider the normal distribution of 18FDG in children, common variations of the normal distribution. We show some of our cases that most tumors in children accumulate and retain FDG, allowing high-quality images of their distribution and pathophysiology either at the primary site as well as in the areas of metastatic disease.

  13. Evolving role of {sup 18}F-FDG-PET/CT for the body tumor and metastases in pediatrics

    Chen Zhengguang, E-mail: guangchen1@gmail.co [Department of Radiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No. 5 Hai Yun Cang Beijing 100700 (China); Li Xiaozhen, E-mail: lixiaozhen79@gmail.co [Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shui Fu Yuan, Wang Fu Jing Da Jie, Beijing 100730 (China); Li Fang, E-mail: lifang@gmail.co [Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shui Fu Yuan, Wang Fu Jing Da Jie, Beijing 100730 (China); Ouyang Qiaohong [Department of Nuclear Medicine, First Affiliated Hospital, PLA General Hospital, Beijing 100853 (China); Yu Tong [Imaging Center, Beijing Children' s Hospital Affiliated to Capital Medical University. 56, Nanlishi Road, Xicheng District, Beijing 100045 (China)

    2010-09-15

    {sup 18}F-FDG-positron emission tomography-computerized tomography ({sup 18}F-FDG-PET/CT) scan is an important imaging tool which may provide both functional and anatomical information in a single diagnostic test. It has the potential to be a valuable tool in the noninvasive evaluation and monitoring of pediatric tumors including the metastases because {sup 18}fluorodeoxyglucose ({sup 18}F-FDG) is a glucose analogue that concentrates in areas of active metabolic activity. This review provides an update on functional and metabolic imaging approaches for assessment and management of the body tumor and metastases in pediatrics using a combined whole body {sup 18}F-FDG-PET/CT scanners. We discuss the benefits include improved pediatric patients' outcome facilitated by staging and monitoring of disease and better treatment planning. It is worth to concern the preparation of children undergoing PET studies and radiation dosimetry and its implications for family and caregivers. It is important to consider the normal distribution of {sup 18}FDG in children, common variations of the normal distribution. We show some of our cases that most tumors in children accumulate and retain FDG, allowing high-quality images of their distribution and pathophysiology either at the primary site as well as in the areas of metastatic disease.

  14. The Usefulness of {sup 18}F-FDG PET as a Cancer Screening Test

    Ko, Doo Heun; Choi, Joon Young; Song, Yun Mi; Lee, Su Jin; Kim, Young Hwan; Lee, Kyung Han; Kim, Byung Tae; Lee, Moon Kyu [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2008-12-15

    The aim of this study was to evaluate the usefulness of whole body positron emission tomography (PET) using {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) for cancer screening in asymptomatic subjects. The subjects were 1,762 men and 259 women who voluntarily underwent {sup 18}F-FDG PET for cancer screening as a part of a routine health examination. Final diagnosis was decided by other diagnostic studies, pathological results or clinical follow-up for 1 year. Of 2,021 subjects, 40 (2.0%) were finally proved to have cancer. Abnormal focal {sup 18}F-FDG uptake suggesting malignancy was found in 102 subjects (5.0%). Among them, 21 subjects (1.0%) were proved to have cancer. Other tests in the routine health examination could not find 9 of 21 cancers (42.9%) detected by PET. The sensitivity, specificity, positive predictive value, and negative predictive value of PET for cancer screening were 52.5%, 95.9%, 20.6%, and 99.0%, respectively. Pathologies of cancers missed on PET were adenocarcinoma (n=9; 3 colon cancers, 3 prostate cancers, 2 stomach cancers, and 1 rectal cancer), differentiated thyroid carcinoma (n=6), bronchioalveolar cell carcinoma (n=2), urinary bladder cancer (n=1), and melanoma (n=1). More than half of cancers which were not detected by PET were smaller than 1 cm in diameter. {sup 18}F-FDG PET might be useful for cancer screening in asymptomatic subjects due to its high specificity and negative predictive value and play a supplementary role to the conventional health check-up, but it could not replace due to limited sensitivity for urological cancers, small-sized tumors and some hypometaboic cancers.

  15. The Usefulness of 18F-FDG PET as a Cancer Screening Test

    The aim of this study was to evaluate the usefulness of whole body positron emission tomography (PET) using 18F-fluorodeoxyglucose (18F-FDG) for cancer screening in asymptomatic subjects. The subjects were 1,762 men and 259 women who voluntarily underwent 18F-FDG PET for cancer screening as a part of a routine health examination. Final diagnosis was decided by other diagnostic studies, pathological results or clinical follow-up for 1 year. Of 2,021 subjects, 40 (2.0%) were finally proved to have cancer. Abnormal focal 18F-FDG uptake suggesting malignancy was found in 102 subjects (5.0%). Among them, 21 subjects (1.0%) were proved to have cancer. Other tests in the routine health examination could not find 9 of 21 cancers (42.9%) detected by PET. The sensitivity, specificity, positive predictive value, and negative predictive value of PET for cancer screening were 52.5%, 95.9%, 20.6%, and 99.0%, respectively. Pathologies of cancers missed on PET were adenocarcinoma (n=9; 3 colon cancers, 3 prostate cancers, 2 stomach cancers, and 1 rectal cancer), differentiated thyroid carcinoma (n=6), bronchioalveolar cell carcinoma (n=2), urinary bladder cancer (n=1), and melanoma (n=1). More than half of cancers which were not detected by PET were smaller than 1 cm in diameter. 18F-FDG PET might be useful for cancer screening in asymptomatic subjects due to its high specificity and negative predictive value and play a supplementary role to the conventional health check-up, but it could not replace due to limited sensitivity for urological cancers, small-sized tumors and some hypometaboic cancers

  16. Diagnostic value of 18F-FDG uptake by spleen in acute radiation disease

    Shao-jie WU

    2015-07-01

    Full Text Available Objective To investigate whether 18F-FDG uptake can be applied in dosimetry to facilitate a rapid and accurate evaluation of individual radiation dosage after a nuclear accident. Methods Forty-eight Tibetan minipigs were randomly assigned into 6 groups, i.e., 0, 1, 2, 5, 8 and 11Gy groups. Animals in all except 0Gy group received total body irradiation (TBI with a 8MV X centrifugal linear accelerator, and 18F-FDG combined positron-emission tomography and computed tomography (PET/CT were carried out before TBI, and also at 6, 24 and 72h after receiving TBI in different doses ranging from 1 to 11Gy. Spleen tissues and blood samples were collected for histological examination, apoptosis, and routine blood analysis. Results Mean standardized uptake values (SUVs of the spleen showed significant differences between experimental groups and control group. The spleen SUVs at 6h post-irradiation showed significant correlation with radiation dose; Spearman's correlation coefficient was 0.95(P<0.01. Histopathological observations showed that the degree of splenic damage was proportional to the radiation dose. Moreover, flow cytometry revealed that apoptosis was one of the major forms of splenic lymphocyte death. Conclusion In the Tibetan minipig model, it was shown that radiation doses bear a close relationship with the 18F-FDG uptake of spleen. This finding suggests that 18F-FDG PET/CT may be useful for the rapid detection of individual radiation dosage after acute radiation disease (ARD. DOI: 10.11855/j.issn.0577-7402.2015.07.08

  17. Skin Manifestation of Unsuspecting Prostate Cancer Detected by {sup 18}F-FDG PET/CT Performed To Assess Underlying Multiple Myeloma

    AbAziz, Aini; Mahaletchumy, Thanuja; Chung, Junekey [Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur (Malaysia)

    2013-12-15

    Skin metastases from either prostate adenocarcinoma or multiple myeloma rarely occur. We report the case of a 73-year-old man with multiple myeloma who presented with multiple subcutaneous nodules 3 years after his initial diagnosis. Fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging was suggestive of a concomitant second primary from the prostate. This case highlights not only a rare initial manifestation of prostate cancer, but also the role of 18F-FDG-PET/CT in detecting a clinically unsuspected second malignancy. It potentially corroborates the possible association of both diseases, as has been reported before.

  18. Reproducibility of functional volume and activity concentration in (18)F-FDG PET/CT of liver metastases in colorectal cancer

    Heijmen, L.; Geus-Oei, L.F. de; Wilt, J.H. de; Visvikis, D.; Hatt, M.; Visser, E.P.; Bussink, J.; Punt, C.J.A.; Oyen, W.J.G.; Laarhoven, H.W.M. van

    2012-01-01

    PURPOSE: Several studies showed potential for monitoring response to systemic therapy in metastatic colorectal cancer patients with (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Before (18)F-FDG PET can be implemented for response evaluation the repeatability should be known. Th

  19. Role of 18F-FDG PET-CT imaging for the detection of an unknown primary tumour: preliminary results in 21 patients

    Metastatic cancer of unknown primary origin is a syndrome characterised by a poor prognosis, with a typical survival rate from diagnosis of no longer than 1 year. Only 20-27% of primary tumours are identified by conventional radiological imaging. By contrast, it has been reported that 18F-fluorodeoxyglucose positron emission tomography (FDG PET) allows the identification of 24-40% of otherwise unrecognised primary tumours. To our knowledge, the studies on this topic have been conducted using 18F-FDG PET imaging alone. The aim of this study was to evaluate the potential additional diagnostic role of fused 18F-FDG PET-CT imaging for the detection of metastatic occult primary tumours. The study population consisted of 21 consecutive patients with biopsy-proven metastatic disease and negative conventional diagnostic procedures. Each patient underwent a PET scan, carried out according to a standard procedure (6 h of fasting, i.v. injection of 370 MBq of 18F-FDG and image acquisition with a dedicated PET-CT scanner for 4 min per bed position). 18F-FDG PET-CT detected the occult primary tumour in 12 patients (57% of cases), providing a detection rate higher than that reported with any other imaging modality, including conventional 18F-FDG PET. The favourable results of this study need to be confirmed in larger patient populations with long-term follow-up. (orig.)

  20. Prediction of Pathologic Grade and Prognosis in Mucoepidermoid Carcinoma of the Lung Using 18F-FDG PET/CT

    Park, Byungjoon; Kim, Hong Kwan; Choi, Yong Soo; Kim, Jhingook; Zo, Jae Il; Choi, Joon Young; Shim, Young Mog

    2015-01-01

    Objective The maximum standardized uptake value (SUVmax) of pulmonary mucoepidermoid carcinoma (PMEC) in fluorine-18fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) was evaluated as a preoperative predictor of pathologic grade and survival rate. Materials and Methods Twenty-three patients who underwent preoperative PET/CT and complete resection for PMEC were enrolled. The optimal cut-off SUVmax for tumor grade was calculated as 6.5 by receiver operating cha...

  1. Role of 18F-FDG PET Scan in Rheumatoid Lung Nodule: Case Report and Review of the Literature

    Lohr, Kristine M.; Chhakchhuak, Christine L.; Mehdi Khosravi

    2013-01-01

    Flourine-18 fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography combined with computed tomography (PET/CT) is a useful test for the management of malignant conditions. Inflammatory and infectious processes, however, can cause increased uptake on PET scanning, often causing diagnostic dilemmas. This knowledge is important to the rheumatologist not only because of the inflammatory conditions we treat but also because certain rheumatic diseases impose an increased risk of malignancy ei...

  2. The evolving role of 18F-FDG PET scans in patients with aggressive non-Hodgkin’s lymphoma

    Hosein, Peter J.; Lossos, Izidore S.

    2010-01-01

    Functional imaging by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) is being increasingly incorporated into the evaluation of patients with aggressive non-Hodgkin lymphoma (NHL). Its use for the initial staging in combination with computed tomography has now become standard. PET has recently been included in consensus criteria for response after therapy for Hodgkin lymphoma and aggressive NHL. At the end of therapy, PET has a high positive and negative predictive value (PP...

  3. 18F-FDG PET/CT for Diagnosis of Osteosclerotic and Osteolytic Vertebral Metastatic Lesions: Comparison with Bone Scintigraphy

    Uchida, Kenzo; Nakajima, Hideaki; Miyazaki, Tsuyoshi; Tsuchida, Tatsuro; Hirai, Takayuki; Sugita, Daisuke; Watanabe, Shuji; Takeura, Naoto; Yoshida, Ai; Okazawa, Hidehiko; Baba, Hisatoshi

    2013-01-01

    Study Design A retrospective study. Purpose The aims of this study were to investigate the diagnostic value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in PET/computed tomography (CT) in the evaluation of spinal metastatic lesions. Overview of Literature Recent studies described limitations regarding how many lesions with abnormal 18F-FDG PET findings in the bone show corresponding morphologic abnormalities. Methods The subjects for this retrospective study were 227 pat...

  4. Functional imaging of infection: conventional nuclear medicine agents and the expanding role of {sup 18-}F-FDG PET

    Parisi, Marguerite T. [Seattle Children' s Hospital, Department of Radiology R-5417, Seattle, WA (United States)

    2011-07-15

    A growing body of literature suggests that 18-fluorine fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET), particularly when combined with CT, is a useful tool for the detection of infectious and inflammatory disease processes. This article will briefly review the data to date on the use of FDG PET in diagnosing musculoskeletal infections and fever of unknown origin, comparing it to conventional scintigraphic techniques in both adults and, when available, in children. (orig.)

  5. Functional imaging of infection: conventional nuclear medicine agents and the expanding role of 18-F-FDG PET

    A growing body of literature suggests that 18-fluorine fluorodeoxyglucose positron emission tomography (18F-FDG PET), particularly when combined with CT, is a useful tool for the detection of infectious and inflammatory disease processes. This article will briefly review the data to date on the use of FDG PET in diagnosing musculoskeletal infections and fever of unknown origin, comparing it to conventional scintigraphic techniques in both adults and, when available, in children. (orig.)

  6. Dynamic {sup 18}F-FDG PET for Assessment of Tumor Physiology in Two Breast Carcinoma Xenografts

    Kristian, Alexandr; Nilsen, Line B.; Roe, Kathrine; Revheim, Monaelisabeth; Engebraten, Olav; Maelandsmo, Gunhild M.; Holm, Ruth; Malinen Eirik; Seierstad, Therese [Oslo Univ. Hospital, Oslo (Norway)

    2013-09-15

    To compare dynamic 2-deoxy-2-[{sup 18}F]fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) parameters in two selected human breast cancer xenografts and to evaluate associations with immunohistochemistry and histology. Dynamic {sup 18}F-FDG PET of luminal-like MAS98.06 and basal-like MAS98.12 xenografts was performed, and the compartmental transfer rates (k{sub 1}, k{sub 2}, k{sub 3}), blood volume fraction (v{sub B}) and metabolic rate of {sup 18}F-FDG(MR{sub FDG}) were estimated from pharmacokinetic model analysis. After sacrifice, analyses of hypoxia (pimonidazole), proliferation (Ki-67), vascularization (CD31), glucose transport receptor (GLUT1) and necrosis (HE) was performed. The level of hexokinase 2 (HK2) was estimated from Western blot analysis. The {sup 18}F-FDG uptake curves for the two xenografts were significantly different (p<0.05). k{sub 1} and v{sub B} were higher for MAS98.12 (p<0.01), while k{sub 3} was higher for MAS98.06 (p<0.01). MAS98.12 had a higher fraction of stromal tissue and higher microvessel density (MVD), and it was less necrotic and hypoxic than MAS98.06 MAS98.12 had stronger positive GLUT1 staining and lower Ki-67 than MAS98.06. In both models significant correlations were found between k{sub 1} and the GLUT1 score, between k{sub 3} and the level of HK2, and between v{sub B} and MVD. Significant differences in dynamic {sup 18}F-FDG parameters between the two human breast cancer xenografts were found. The differences could be explained by underlying histological and physiological characteristics.

  7. The impact of {sup 18}F-FDG PET on the management of patients with suspected large vessel vasculitis

    Fuchs, Martin; Rasch, Helmut; Berg, Scott; Ng, Quinn K.T.; Mueller-Brand, Jan; Walter, Martin A. [University Hospital, Institute of Nuclear Medicine, Basel (Switzerland); Briel, Matthias [University Hospital Basel, Institute for Clinical Epidemiology and Biostatistics, Basel (Switzerland); McMaster University, Department of Clinical Epidemiology and Biostatistics, Hamilton, ON (Canada); Daikeler, Thomas; Tyndall, Alan [University Hospital Basel, Department of Rheumatology, Basel (Switzerland); Walker, Ulrich A. [Felix Platter Spital, Department of Rheumatology of Basle University, Basel (Switzerland); Raatz, Heike [University Hospital Basel, Institute for Clinical Epidemiology and Biostatistics, Basel (Switzerland); Jayne, David [Addenbrooke' s Hospital, Vasculitis and Lupus Unit, Cambridge (United Kingdom); Koetter, Ina [University Hospital Tuebingen, Department of Internal Medicine II, Tuebingen (Germany); Blockmans, Daniel [University Hospital Gasthuisberg, Department of General Internal Medicine, Leuven (Belgium); Cid, Maria C.; Prieto-Gonzalez, Sergio [Hospital Clinic, University of Barcelona, IDIBAPS, Department of Systemic Autoimmune Diseases, 08036-Barcelona (Spain); Lamprecht, Peter [University Hospital of Schleswig-Holstein, Department of Rheumatology, Luebeck (Germany); Salvarani, Carlo [Arcispedale S. Maria Nuova, Department of Rheumatology, Reggio Emilia (Italy); Karageorgaki, Zaharenia [Agios Dimitrios General Hospital, 1st Department of Internal Medicine, Thessaloniki (Greece); Watts, Richard [University of East Anglia, Norwich Medical School, Norwich (United Kingdom); Ipswich Hospital NHS Trust, Ipswich (United Kingdom); Luqmani, Raashid [Nuffield Orthopaedic Centre, Department of Rheumatology, Oxford (United Kingdom)

    2012-02-15

    We aimed to assess the impact of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) on the management of patients with suspected large vessel vasculitis. An international expert panel determined diagnoses and clinical management in patients with suspected large vessel vasculitis, with and without the results of {sup 18}F-FDG PET, respectively. The accuracy of the clinical diagnosis and the resulting clinical management with and without the {sup 18}F-FDG PET results were compared using logistic regression models. The analysis included 30 patients referred to a tertiary care centre with large vessel vasculitis and 31 controls. {sup 18}F-FDG PET had an overall sensitivity of 73.3% [95% confidence interval (CI) 54.1-87.7%], a specificity of 83.9% (95% CI 66.3-94.5%), a positive predictive value of 81.5% (95% CI 61.9-93.7%) and a negative predictive value of 76.5% (95% CI 58.8-89.3%). The diagnostic accuracy of {sup 18}F-FDG PET was higher in patients not receiving immunosuppressive drugs (93.3 vs 64.5%, p = 0.006). Taken in context with other available diagnostic modalities, the addition of {sup 18}F-FDG PET increased the clinical diagnostic accuracy from 54.1 to 70.5% (p = 0.04). The addition of {sup 18}F-FDG PET increased the number of indicated biopsies from 22 of 61 patients (36.1%) to 25 of 61 patients (41.0%) and changed the treatment recommendation in 8 of 30 patients (26.7%) not receiving immunosuppressive medication and in 7 of 31 patients (22.6%) receiving immunosuppressive medication. {sup 18}F-FDG PET is a sensitive and specific imaging tool for large vessel vasculitis, especially when performed in patients not receiving immunosuppressive drugs. It increases the overall diagnostic accuracy and has an impact on the clinical management in a significant proportion of patients. (orig.)

  8. Characterizing IgG4-related disease with 18F-FDG PET/CT: a prospective cohort study

    IgG4-related disease (IgG4-RD) is an increasingly recognized clinicopathological disorder with immune-mediated inflammatory lesions mimicking malignancies. A cohort study was prospectively designed to investigate the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in characterizing IgG4-RD. Thirty-five patients diagnosed with IgG4-RD according to the consensus criteria were enrolled with informed consent. All patients underwent baseline 18F-FDG PET/CT evaluation. Among them, 29 patients underwent a second 18F-FDG PET/CT scan after 2 to 4 weeks of steroid-based therapy. All 35 patients were found with 18F-FDG-avid hypermetabolic lesion(s); 97.1 % (34/35) of these patients showed multi-organ involvement. Among the 35 patients, 71.4 % (25/35) patients were found with more organ involvement on 18F-FDG PET/CT than conventional evaluations including physical examination, ultrasonography, and computed tomography (CT). 18F-FDG PET/CT demonstrated specific image characteristics and pattern of IgG4-RD, including diffusely elevated 18F-FDG uptake in the pancreas and salivary glands, patchy lesions in the retroperitoneal region and vascular wall, and multi-organ involvement that cannot be interpreted as metastasis. Comprehensive understanding of all involvement aided the biopsy-site selection in seven patients and the recanalization of ureteral obstruction in five patients. After 2 to 4 weeks of steroid-based therapy at 40 mg to 50 mg prednisone per day, 72.4 % (21/29) of the patients showed complete remission, whereas the others exhibited > 81.8 % decrease in 18F-FDG uptake. F-FDG PET/CT is a useful tool for assessing organ involvement, monitoring therapeutic response, and guiding interventional treatment of IgG4-RD. The image pattern is suggested to be updated into the consensus diagnostic criteria for IgG4-RD. (orig.)

  9. Characterizing IgG4-related disease with {sup 18}F-FDG PET/CT: a prospective cohort study

    Zhang, Jingjing; Ma, Yanru; Niu, Na; Wang, Xinwei; Li, Fang; Zhu, Zhaohui [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing (China); Chen, Hua; Lin, Wei; Zhang, Fengchun; Zhang, Wen [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Rheumatology, Peking Union Medical College Hospital, Beijing (China); Xiao, Yu; Liang, Zhiyong [Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Pathology, Peking Union Medical College Hospital, Beijing (China)

    2014-08-15

    IgG4-related disease (IgG4-RD) is an increasingly recognized clinicopathological disorder with immune-mediated inflammatory lesions mimicking malignancies. A cohort study was prospectively designed to investigate the value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in characterizing IgG4-RD. Thirty-five patients diagnosed with IgG4-RD according to the consensus criteria were enrolled with informed consent. All patients underwent baseline {sup 18}F-FDG PET/CT evaluation. Among them, 29 patients underwent a second {sup 18}F-FDG PET/CT scan after 2 to 4 weeks of steroid-based therapy. All 35 patients were found with {sup 18}F-FDG-avid hypermetabolic lesion(s); 97.1 % (34/35) of these patients showed multi-organ involvement. Among the 35 patients, 71.4 % (25/35) patients were found with more organ involvement on {sup 18}F-FDG PET/CT than conventional evaluations including physical examination, ultrasonography, and computed tomography (CT). {sup 18}F-FDG PET/CT demonstrated specific image characteristics and pattern of IgG4-RD, including diffusely elevated {sup 18}F-FDG uptake in the pancreas and salivary glands, patchy lesions in the retroperitoneal region and vascular wall, and multi-organ involvement that cannot be interpreted as metastasis. Comprehensive understanding of all involvement aided the biopsy-site selection in seven patients and the recanalization of ureteral obstruction in five patients. After 2 to 4 weeks of steroid-based therapy at 40 mg to 50 mg prednisone per day, 72.4 % (21/29) of the patients showed complete remission, whereas the others exhibited > 81.8 % decrease in {sup 18}F-FDG uptake. F-FDG PET/CT is a useful tool for assessing organ involvement, monitoring therapeutic response, and guiding interventional treatment of IgG4-RD. The image pattern is suggested to be updated into the consensus diagnostic criteria for IgG4-RD. (orig.)

  10. Toxoplasmic Lymphadenitis Mimicking a Metastatic Thyroid Carcinoma at {sup 18}F-FDG-PET/CT

    Treglia, Giorgio; Bongiovanni, Massimo; Ceriani, Luca; Paone, Gaetano; Giovanella, Luca [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)

    2013-12-15

    A 28-year-old woman underwent total thyroidectomy for a papillary thyroid carcinoma in the right thyroid lobe (pTx, pN1b). Subsequently a {sup 131}I-ablation (4.4 GBq) was performed. Four years later the patient presented increased thyroglobulin (Tg) serum levels (8.4 μg/l) during thyroxine treatment. Furthermore, enlarged hypoechoic and round-shaped bilateral cervical lymph nodes were detected at cervical ultrasonography (US). Based on laboratory and US findings suspicious for lymph nodal recurrence of thyroid carcinoma, the patient underwent an {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG-PET/CT) to check for distant metastases (Fig. 1). The patient underwent a US-guided fine-needle aspiration cytology on an {sup 18}F-FDG-avid cervical lymph-node. The smears were hypercellulated and consisted of numerous small- to medium-sized lymphocytes, macrophages, dendritic cells and tingible body macrophages. The cytological diagnosis was consistent with that of reactive lymphadenitis. Serological test revealed elevated IgM and IgG anti-Toxoplasma antibodies with a very low IgG-avidity, indicating an acute toxoplasmosis. Serum Tg was then measured by using heterophilic antibody blocking tubes, as previously reported, and serum value dropped to <0.2 μg/l. It is well known that antibody interference may falsely increase serum Tg; in particular, increased anti-Toxoplasma antibodies likely interfered to the Tg measurement in our case. Additionally, activated granulocytes and macrophages may display significantly increased glucose consumption, giving false-positive results at {sup 18}F-FDG-PET/CT in oncological patients. Few reports have described toxoplasmic infection mimicking malignancy at {sup 18}F-FDG-PET/CT; these findings were found mainly in immunodepressive patients or with history of lymphoma. Conversely, we described here a case of toxoplasmosis inducing false-positive Tg measurement, neck US and {sup 18}F-FDG

  11. 123I-Mibg scintigraphy and 18F-Fdg-Pet imaging for diagnosing neuroblastoma

    Bleeker, Gitta; Tytgat, Godelieve Am; Adam, Judit A; Caron, Huib N; Kremer, Leontien Cm; Hooft, Lotty; van Dalen, Elvira C

    2015-01-01

    Background Neuroblastoma is an embryonic tumour of childhood that originates in the neural crest. It is the second most common extracranial malignant solid tumour of childhood. Neuroblastoma cells have the unique capacity to accumulate Iodine-123-metaiodobenzylguanidine (123I-MIBG), which can be used for imaging the tumour. Moreover, 123I-MIBG scintigraphy is not only important for the diagnosis of neuroblastoma, but also for staging and localization of skeletal lesions. If these are present, MIBG follow-up scans are used to assess the patient's response to therapy. However, the sensitivity and specificity of 123I-MIBG scintigraphy to detect neuroblastoma varies according to the literature. Prognosis, treatment and response to therapy of patients with neuroblastoma are currently based on extension scoring of 123I-MIBG scans. Due to its clinical use and importance, it is necessary to determine the exact diagnostic accuracy of 123I-MIBG scintigraphy. In case the tumour is not MIBG avid, fluorine-18-fluorodeoxy-glucose (18F-FDG) positron emission tomography (PET) is often used and the diagnostic accuracy of this test should also be assessed. Objectives Primary objectives: 1.1 To determine the diagnostic accuracy of 123I-MIBG (single photon emission computed tomography (SPECT), with or without computed tomography (CT)) scintigraphy for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 1.2 To determine the diagnostic accuracy of negative 123I-MIBG scintigraphy in combination with 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old, i.e. an add-on test. Secondary objectives: 2.1 To determine the diagnostic accuracy of 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 2.2 To compare the diagnostic accuracy of 123I

  12. Using {sup 18F} FDG PET/CT to Detect an occult Mesenchymal Tumor Causing Oncogenic Osteomalacia

    Seo, Hyo Jung; Choi, Yun Jung; Kim, Hyun Jeong; Jeong, Yong Hyu; Cho, Arthur; Lee, Jae Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    2011-09-15

    Oncogenic osteomalacia is a rare paraneoplastic syndrome characterized by renal phosphate excretion, hypophosphatemia, and osteomalacia. This syndrome is often caused by tumors of mesenchymal origin. Patients with oncogenic osteomalacia have abnormal bone mineralization, resulting in a high frequency of fractures. Tumor resection is the treatment of choice, as it will often correct the metabolic imbalance. Although oncogenic osteomalacia is a potentially curable disease, diagnosis is difficult and often delayed because of the small size and sporadic location of the tumor. Bone scintigraphy and radiography best characterize osteoma lacia; magnetic resonance imaging findings are nonspecific. Here, we report a case of oncogenic osteomalacia secondary to a phosphaturic mesenchymal tumor that was successfully detected by {sup 18F} fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18F} FDG PET/CT). This case illustrates the advantages of {sup 18F} FDG PET/CT in detecting the occult mesenchymal tumor that causes oncogenic osteomalacia.

  13. Basic principles and applications of {sup 18}F-FDG-PET/CT in oral and maxillofacial imaging: A pictorial essay

    Omami, Galal [Dept. of Oral Diagnosis and Polyclinics, Faculty of Dentistry, The Hong Kong University, Hong Kong (Hong Kong); Tamimi, Dania [BeamReaders Inc., Orlando (United States); Branstette, Barton F. [Dept. of Otolaryngology and Radiology, University of Pittsburgh School of Medicine, Pittsburgh (United States)

    2014-12-15

    A combination of positron emission tomography (PET) with 18F-labeled fluoro-2-deoxyglucose ({sup 18}F-FDG) and computed tomography ({sup 18}F-FDG-PET/CT) has increasingly become a widely used imaging modality for the diagnosis and management of head and neck cancer. On the basis of both recent literature and our professional experience, we present a set of principles with pictorial illustrations and clinical applications of FDG-PET/CT in the evaluation and management planning of squamous cell carcinoma of the oral cavity and oropharynx. We feel that this paper will be of interest and will aid the learning of oral and maxillofacial radiology trainees and practitioners.

  14. 3D tumour spheroids as a model to assess the suitability of [18F]FDG-PET as an early indicator of response to PI3K inhibition

    Background: [18F] Fluorodeoxyglucose Positron Emission Tomography ([18F]FDG-PET) is widely used to monitor response to therapy in the clinic and has, more recently, been proposed as an early marker of long term response. This relies on the assumption that a change in glucose consumption parallels a reduction in viability and long term growth potential. However, cells may utilise substrates other than glucose and as many therapeutics interfere with glucose metabolism directly, it is entirely plausible that a positive [18F]FDG-PET response may be unrelated to long term growth. Furthermore, changes in metabolism and proliferation may take place on different temporal scales, thus restricting the time window in which [18F]FDG-PET is predictive. The PI3K oncogenic signalling pathway is a master regulator of multiple cellular processes including glucose metabolism, proliferation and cell survival. Inhibition of PI3K has been shown to reduce [18F]FDG uptake in several tumour types but the relative influence of this pathway on glucose metabolism and proliferation is not fully established. Aim: We proposed to (i) assess the suitability of [18F]FDG as a tracer for measuring response to PI3K inhibition and (ii) determine the optimum imaging schedule, in vitro. We used multicellular tumour spheroids, an excellent 3D in vitro model of avascular tumours, to investigate the effects of the PI3K inhibitors, NVP-BKM120 and NVP-BEZ235, on [18F]FDG uptake and its relation to 3D growth. Methods: Spheroids were prepared from two cell lines with a constitutively active PI3K/Akt pathway, EMT6 (highly proliferative mouse mammary) and FaDu (moderately proliferate human nasopharyngeal). Treatment consisted of a 24 h exposure to either inhibitor, and growth was monitored over the following 7 days. To mimic potential imaging regimens with [18F]FDG-PET, average [18F]FDG uptake per viable cell was measured (a) directly following the 24 h exposure, (b) following an additional 24 h recovery period

  15. Estimation of radiation dose received by the radiation worker during 18F FDG injection process

    The radiation dosimetric literature concerning the medical and non-medical personnel working in nuclear medicine departments are limited, particularly radiation doses received by radiation worker in nuclear medicine department during positron emission tomography (PET) radiopharmaceutical injection process. This is of interest and concern for the personnel. To measure the radiation dose received by the staff involved in injection process of Fluorine-18 Fluorodeoxyglucose (FDG). The effective whole body doses to the radiation workers involved in injections of 1511 patients over a period of 10 weeks were evaluated using pocket dosimeter. Each patient was injected with 5 MBq/kg of 18F FDG. The 18F-FDG injection protocol followed in our department is as follows. The technologist dispenses the dose to be injected and records the pre-injection activity. The nursing staff members then secure an intravenous catheter. The nuclear medicine physicians/residents inject the dose on a rotation basis in accordance with ALARA principle. After the injection of the tracer, the nursing staff members flush the intravenous catheter. The person who injected the tracer then measures the post-injection residual dose in the syringe. The mean effective whole body doses per injection for the staff were the following: Nurses received 1.44 ± 0.22 μSv/injection (3.71 ± 0.48 nSv/MBq), for doctors the dose values were 2.44 ± 0.25 μSv/injection (6.29 ± 0.49 nSv/MBq) and for technologists the doses were 0.61 ± 0.10 μSv/injection (1.58 ± 0.21 nSv/MBq). It was seen that the mean effective whole body dose per injection of our positron emission tomography/computed tomography (PET/CT) staff who were involved in the 18F-FDG injection process was maximum for doctors (54.34% differential doses), followed by nurses (32.02% differential doses) and technologist (13.64% differential doses). This study confirms that low levels of radiation dose are received by staff during 18F-FDG injection and these

  16. Correlation of Glut-1 glucose transporter expression with [{sup 18}F]FDG uptake in non-small cell lung cancer

    Higashi, Kotaro; Wang, Xiao; Xu, Linfeng; Oguchi, Manabu; Taki, Suzuka; Tonami, Hisao; Yamamoto, Itaru [Department of Radiology, Kanazawa Medical University, Ishikawa (Japan); Ueda, Yoshimichi; Sakurai, Aya; Katsuda, Shogo [Department of Pathology, Kanazawa Medical University, Ishikawa (Japan); Murakami, Manabu [Medical Research Institute, Kanazawa Medical University, Ishikawa (Japan); Seki, Hiroyasu [Department of Radiology, Kanazawa Cardiovascular Hospital, Ishikawa (Japan); Nambu, Yoshihiro [Department of Internal Medicine, Division of Respiratory Disease, Kanazawa Medical University, Ishikawa (Japan)

    2000-12-01

    Positron emission tomography (PET) with [{sup 18}F]2-fluoro-2-deoxy-D-glucose (FDG) may show negative results for bronchioloalveolar lung carcinoma. We investigated the correlation of Glut-1 glucose transporter expression with [{sup 18}F]FDG uptake in non-small cell lung cancer. Thirty-two patients with 34 non-small cell lung cancers (7 bronchioloalveolar carcinomas, 23 non-bronchioloalveolar adenocarcinomas, 3 squamous cell carcinomas, and 1 adenosquamous cell carcinoma) were studied. Final diagnoses were established by histology (via thoracotomy) in all patients. [{sup 18}F]FDG PET was performed 40 min after i.v. injection of 185 MBq [{sup 18}F]FDG. For semi-quantitative analysis of [{sup 18}F]FDG uptake, standardized uptake values (SUVs) were calculated. Glut-1 expression was studied in terms of the immunohistochemistry of paraffin sections using anti-Glut-1 antibody to determine the intensity (0-3) of Glut-1 immunoreactivity and percentage of the Glut-1-positive area. Of seven bronchioloalveolar carcinomas, six (85.7%) were negative for the expression of Glut-1, while only one (4.3%) of 23 non-bronchioloalveolar adenocarcinomas was negative (P<0.0001). The percentages of Glut-1-positive area, as well as the SUVs, were significantly lower in bronchioloalveolar carcinomas (n=7) (2.86%{+-}7.56% and 1.25{+-}0.75, respectively) than in non-bronchioloalveolar adenocarcinomas (n=23) (54.83%{+-}25.64%, P<0.0001, and 3.94{+-}1.93, P=0.001, respectively). The degree of cell differentiation correlated with the percentage of Glut-1-positive area and SUVs in adenocarcinoma of the lung. Correlations between SUVs and the intensity of Glut-1 immunoreactivity were also significant (intensities 0 and 1, n=11, SUV 1.47{+-}0.63; intensities 2 and 3, n=23, SUV 4.78{+-}2.13; P<0.0001). The percentage of Glut-1-positive area correlated significantly with SUVs (n=34, r=0.658, P<0.01). Overexpression of Glut-1 correlated with high [{sup 18}F]FDG uptake. These findings suggest that Glut

  17. Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus

    Although positron emission tomography (PET) using 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) is a promising imaging modality for bone infections, the technique may still give false-positive results due to unspecific uptake in healing bone. This experimental study compared 18F-FDG and 68Ga in PET imaging of osteomyelitis and normal bone healing. A diffuse osteomyelitis model of the tibia was applied in the rat (n=50). Two weeks after operation, PET imaging with 18F-FDG and 68Ga was performed, followed by peripheral quantitative computed tomography (pQCT) and radiography. Osteomyelitis was verified by quantitative bacteriology. In addition to in vivo imaging, ex vivo measurements of tissue radioactivity were performed to verify uptake of the tracers. Compared with controls with normal bone healing, the osteomyelitic tibias showed increased SUV ratios (i.e. radioactivity ratios between the operated and non-operated sides) for both 18F-FDG (1.74±0.37) and 68Ga (1.62±0.28) (P18F-FDG and P68Ga). The intensity of 68Ga uptake reflected pathological changes of osteomyelitic bones measured by pQCT. The uptake of 18F-FDG, however, did not show as close a correlation with the anatomical changes. The healing bones without infection exhibited slightly elevated uptake of 18F-FDG (SUV ratio 1.16±0.06), but 68Ga did not accumulate in the healing bone, as judged on the basis of both in vivo imaging (SUV ratio 1.02±0.05) and ex vivo measurements (SUV 0.92±0.21) (P=0.003 and P=0.022 compared with 18F-FDG uptake, respectively). This study suggests the feasibility of 68Ga PET imaging of bone infections. However, further studies are needed to clarify the value of 68Ga PET for clinical purposes. (orig.)

  18. Diuretic {sup 18}F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: prospective evaluation of a novel technique

    Nayak, Brusabhanu; Dogra, Prem Nath [All India Institute of Medical Sciences, Department of Urology, New Delhi (India); Naswa, Niraj [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); Kumar, Rakesh [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); New Delhi (India)

    2013-03-15

    Positron emission tomography/computed tomography (PET/CT) with {sup 18}F-fluorodeoxyglucose (FDG) has been used with limited success in the past in primary diagnosis and locoregional staging of urinary bladder cancer, mainly because of the pharmacokinetics of renal excretion of {sup 18}F-FDG. In the present prospective study, we have evaluated the potential application of diuretic {sup 18}F-FDG PET/CT in improving detection and locoregional staging of urinary bladder tumours. Twenty-five patients suspected of having primary carcinoma of the urinary bladder were evaluated prospectively for diagnosis and staging. All of these 25 patients underwent conventional contrast-enhanced computed tomography (CECT) of the abdomen/pelvis and whole-body diuretic {sup 18}F-FDG PET/CT. In addition, pelvic PET/CT images were obtained using the special technique of forced diuresis using intravenous furosemide (20-40 mg). Of the 25 patients, 10 underwent radical cystectomy and 15 underwent transurethral resection of the bladder tumour (TURBT). Results of CECT and diuretic {sup 18}F-FDG PET/CT were compared considering histopathology as a reference standard. Of the 25 patients, CECT detected a primary tumour in 23 (sensitivity 92 %), while {sup 18}F-FDG PET/CT was positive in 24 patients (sensitivity 96 %). Mean size and maximum standardized uptake value of the bladder tumours were 3.33 cm (range 1.6-6.2) and 5.3 (range 1.3-11.7), respectively. Of the 25 patients, only 10 patients underwent radical cystectomy based on disease status on TURBT. Among those ten patients, nine had locoregional metastases. Among the nine patients who had positive lymph nodes for metastasis on histopathology, CECT and PET/CT scan had a sensitivity of 44 and 78 %, respectively. {sup 18}F-FDG PET/CT was found to be superior to CECT in the detection of the primary tumour and locoregional staging (p < 0.05). Diuretic {sup 18}F-FDG PET/CT is highly sensitive and specific and plays an important role in improving

  19. The evaluation of breast cancer curative effect and prognosis in 18F-FDG PET/CT

    Objective: To evaluate the value of using 18F-Fluro-deoxy-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in followup studies of breast cancer patients which have been given to comprehensive treatment. Methods: Measuring the standardized uptake value (SUV) of 18F-FDG PET/CT by a retrospective research breast cancer patients in PET Center during November, 2003 to December, 2010 and following up. And analyzing the prognosis of the patients. Results: 114 patients of breast cancer which was confirmed by pathology have been screened out. In which 64 patients showed negative results when having 18F-FDG PET/CT scan, while in other 50 cases of recurrence, residual or metastasis, showed positive results. Average standardized uptake value (SUVave) of the positive results was ranging from 1.0∼11.2 (3.9±1.9), and maximum standardized uptake value (SUVmax) was from 1.1∼ 16.2 (5.0±2.8). The sensitivity, specificity and accuracy of 18F-FDG PET/CT were 96.0%, 100% and 98.5% in diagnosis of breast cancer, while in traditional imaging were 81.8%, 77.6% and 72.9%. By the time of following up, 33 out of 50 positive patients had undergone certain therapies of breast cancer. 17 positive patients were without any therapy. Spearman rank correlation analysis results showed the positive patients in PET/CT scanning with higher maximum standardized uptake value the worse the prognosis. Fisher exact test showed the positive patients with or without treatment prognosis had significant difference. Other 43 patients had no evidence of disease/recurrence or new metastases of breast cancer. 28 of them had undergone certain therapies of breast cancer, while 36 hadn't. Fisher exact test showed the positive patients with or without treatment prognosis hadn't significant difference. Conclusion: 18F-FDG PET/CT scan can find recurrence or metastases of breast cancer at the early stage. It will be a valid way to project prognosis of the patient. And 18F-FDG PET/CT scan can

  20. An Unusual Case of Plasmablastic Lymphoma Presenting as Paravertebral Mass Evaluated by {sup 18}F-FDG PET/CT

    Treglia, Giorgio; Paone, Gaetano; Stathis, Anastasios; Ceriani, Luca; Giovanella, Luca [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)

    2014-03-15

    A 60-year-old man underwent radiological investigations due to the onset of back pain. Computed tomography (CT) and magnetic resonance imaging (MRI) showed the presence of a paravertebral mass located ahead the body of the third thoracic vertebra. Based on these findings the patient underwent biopsy of the paravertebral mass, which showed the presence of a plasmablastic lymphoma. Therefore, the patient underwent fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) for staging. Before {sup 18}F-FDG injection, the patient had fasted for at least 6 h; at the time of the radiopharmaceutical injection he presented glucose blood levels corresponding to 98 mg/dl. Images were acquired 1 h after intravenous injection of 280 MBq of {sup 18}F-FDG according to the body mass index. PET images were interpreted visually and semiquantitatively by using the maximal standardized uptake value (SUVmax). {sup 18}F-FDG PET/CT showed moderate radiopharmaceutical uptake corresponding to the paravertebral lesion (SUVmax 3.3) and diffuse uptake in the skeleton suspicious for bone marrow neoplastic involvement, with more evident hypermetabolic areas in the left scapula (SUVmax 3.7), right sixth rib (SUVmax 3.5), and left iliac bone (SUVmax 3.4) (Fig. 1). Subsequent bone marrow biopsy confirmed the bone marrow infiltration by plasmablastic cells. Based on these findings, a final diagnosis of plasmablastic lymphoma with bone marrow involvement was performed and the patient was addressed to chemotherapy. Plasmablastic lymphoma is a rare CD20-negative large-cell lymphoma with plasmablastic features occurring primarily in HIV or Epstein-Barr virus positive individuals. Distinguishing this tumor from myeloma could be challenging. The most frequent site of presentation is the oral cavity, whereas extraoral localizations of plasmablastic lymphoma are considered to be very rare and they should be differentiated from extraosseous localization of

  1. Validation of a new protocol for 18F-FDG infusion using an automatic combined dispenser and injector system

    In nuclear medicine, radiopharmaceuticals are usually administered in unit doses partitioned from multi-dose vials. The partitioning typically takes place in a radiopharmacy, depending on local practice. Automatic, as opposed to manual, partitioning and administration should reduce radiation exposure of the personnel involved, improve the accuracy of the administration and mitigate contamination. This study set out to verify and validate the 18F-fluorodeoxyglucose (FDG) administration procedure performed using Intego trademark (MEDRAD, Inc., Warrendale, PA, USA), a combined dispenser and injector system. We considered maintenance of sterility and the system's potential to improve, with respect to the manual procedure, the accuracy of net administered 18F-FDG radioactivity in patients and the radiation protection of operators. A media-fill procedure was used to assess whether sterility is maintained during use of the Intego trademark system. Simulating a typical working day's setup and use of the system, we investigated the accuracy of the net administered 18F-FDG activity obtained with Intego trademark versus the manual dose delivery system. We also measured personnel radiation exposure during use of Intego trademark and during manual administration and recorded and compared environmental doses in the two conditions. The radiopharmaceutical remained sterile in all the tests performed. The accuracy of the net 18F-FDG activity delivered to the patients was found to be within 3 % points, as required by European Association of Nuclear Medicine (EANM) guidelines on 18F-FDG imaging procedures. With Intego trademark, the residual radioactivity in the tubing was 0.20 MBq, corresponding to approximately 0.07 % of the mean activity delivered. With manual injection, the residual radioactivity in the syringe averaged 7.37 MBq, corresponding to a mean error of 2.9 % in the delivered dose. During the injection step of the positron emission tomography (PET) procedure, whole

  2. The precision of textural analysis in {sup 18}F-FDG-PET scans of oesophageal cancer

    Doumou, Georgia; Siddique, Musib [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Tsoumpas, Charalampos [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); University of Leeds, The Division of Medical Physics, Leeds (United Kingdom); Goh, Vicky [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Guy' s and St Thomas' Hospitals NHS Foundation Trust, Radiology Department, London (United Kingdom); Cook, Gary J. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Guy' s and St Thomas' Hospitals NHS Foundation Trust, The PET Centre, London (United Kingdom); University of Leeds, The Division of Medical Physics, Leeds (United Kingdom); St Thomas' Hospital, Clinical PET Centre, Division of Imaging Sciences and Biomedical Engineering, Kings College London, London (United Kingdom)

    2015-09-15

    Measuring tumour heterogeneity by textural analysis in {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) provides predictive and prognostic information but technical aspects of image processing can influence parameter measurements. We therefore tested effects of image smoothing, segmentation and quantisation on the precision of heterogeneity measurements. Sixty-four {sup 18}F-FDG PET/CT images of oesophageal cancer were processed using different Gaussian smoothing levels (2.0, 2.5, 3.0, 3.5, 4.0 mm), maximum standardised uptake value (SUV{sub max}) segmentation thresholds (45 %, 50 %, 55 %, 60 %) and quantisation (8, 16, 32, 64, 128 bin widths). Heterogeneity parameters included grey-level co-occurrence matrix (GLCM), grey-level run length matrix (GLRL), neighbourhood grey-tone difference matrix (NGTDM), grey-level size zone matrix (GLSZM) and fractal analysis methods. The concordance correlation coefficient (CCC) for the three processing variables was calculated for each heterogeneity parameter. Most parameters showed poor agreement between different bin widths (CCC median 0.08, range 0.004-0.99). Segmentation and smoothing showed smaller effects on precision (segmentation: CCC median 0.82, range 0.33-0.97; smoothing: CCC median 0.99, range 0.58-0.99). Smoothing and segmentation have only a small effect on the precision of heterogeneity measurements in {sup 18}F-FDG PET data. However, quantisation often has larger effects, highlighting a need for further evaluation and standardisation of parameters for multicentre studies. (orig.)

  3. 18F FDG PET/CT in differential diagnosis of Parkinsonian disorders

    Full text: Differential diagnosis of Parkinsonian disorders can be challenging in the early phase of disease course. Positron Emission Tomography (PET) imaging with 18F Fluorodeoxyglucose (FDG) has been used to identify characteristic patterns of glucose metabolism in patients with idiopathic Parkinson's Disease (PD) as well as variant forms of Parkinsonism such as Multisystem Atrophy (MSA), Progressive Supranuclear Palsy (PSP) and cortico basal ganglionic degeneration (CBGD). In this study we assessed the utility of 18F FDG PET/CT in the differential diagnosis Parkinsonian syndromes. 66 Parkinsonian patients with a mean age of 59.6 ± 11.50 years, male: female ratio of 3.12:1, age range of 35-84 years with a disease duration of 2.6 ± .68 years were referred for FDG PET to determine whether their scan patterns could distinguish idiopathic Parkinsons from the Parkinson plus syndromes. Approximately 60 minutes following intravenous injection of 370 MBq of 18F-FDG, PET/CT scan of the brain was acquired in a whole-body Full Ring PET/CT scanner (Discovery STE16 camera). A low dose CT was obtained on the same area without IV contrast for attenuation correction and coregistration. Images were reconstructed using a 3D VUE algorithm and slices were reformatted into transaxial, coronal and sagittal views. Subsequently the images were processed and visually analyzed on Xeleris workstation. Images were classified by visual analysis into the various subgroups, those with normal to increased basal ganglia uptake were classified into Idiopathic Parkinson's (40/45) and when basal ganglia uptake was decreased they were Parkinsons Plus (19/21). The study demonstrates that 18F FDG PET performed at the time of initial referral for parkinsonism could accurately classify patients into Parkinson's disease and Parkinson plus subtypes

  4. (18)F-FDG PET imaging of murine atherosclerosis

    Hag, Anne Mette Fisker; Pedersen, Sune Folke; Christoffersen, Christina;

    2012-01-01

    To study whether (18)F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18)F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice.......To study whether (18)F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between (18)F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE(-/-) mice....

  5. Quantitative analysis of myocardial glucose utilization in patients with left ventricular dysfunction by means of {sup 18}F-FDG dynamic positron tomography and three-compartment analysis

    Morita, Koichi; Yoshinaga, Keiichiro; Mabuchi, Megumi; Kageyama, Hiroyuki; Shiga, Tohru; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Kita-ku, Sapporo (Japan); Katoh, Chietsugu; Kuge, Yuji [Hokkaido University Graduate School of Medicine, Department of Tracer Kinetics, Kita-ku, Sapporo (Japan); Noriyasu, Kazuyuki; Tsukamoto, Takahiro [Hokkaido University Graduate School of Medicine, Department of Cardiovascular Medicine, Kita-Ku, Sapporo (Japan)

    2005-07-01

    Myocardial glucose utilization (MGU) is altered in various heart diseases. The aim of this study was to quantitatively assess regional myocardial glucose utilization in patients with left ventricular (LV) dysfunction by dynamic{sup 18}F-fluorodeoxyglucose positron emission tomography (FDG PET). A total of 18 subjects were studied, including ten with LV dysfunction (seven with idiopathic dilated cardiomyopathy and three with aortic regurgitation; NYHA II in 8 and III in 2) and eight healthy normal volunteers. Patients with diabetes mellitus were excluded. A dynamic PET study was performed for 40 min following the injection of 370 MBq of FDG after 50-g glucose loading. On the basis of a three-compartment model, MGU, K{sub 1}, k{sub 2}, and k{sub 3} were computed on a pixel by pixel basis to generate LV myocardial parametric maps. FDG standardized uptake value (SUV) was also calculated using static images obtained 40 min after FDG injection. These metabolic values were compared with myocardial flow distribution (%Flow), LVEF, LV volumes, and LV wall thickening (WT) determined by gated myocardial single-photon emission computed tomography using QGS software in eight myocardial segments. MGU correlated positively with LV volumes and negatively with LVEF. K{sub 1} was significantly higher in the segments of the patients than in those of the normal volunteers (0.082{+-}0.055 vs 0.041{+-}0.017 ml min{sup -1} g{sup -1}, p<0.05), although there was no difference in MGU between the groups. On the other hand, SUV, k{sub 2}, and k{sub 3} did not differ significantly between the groups. Among the patients, the K{sub 1} values were significantly higher in the areas with impaired WT (%WT<17%) (0.109{+-}0.063 vs 0.069{+-}0.062 ml min{sup -1} g{sup -1}, p<0.05) and in the areas with flow reduction (%Flow<71%) (0.112{+-}0.076 vs 0.071{+-}0.046 ml min{sup -1} g{sup -1}, p<0.05). These results indicate that glucose utilization was preserved in the patients with LV dysfunction, mainly

  6. Impacto clínico da Tomografia por Emissão de Pósitrons realizada pelo sistema de coincidência com FDG-18F, na conduta terapêutica de pacientes com cardiopatia isquêmica pós-infarto do miocárdio Clinical impact of Positron Emission Tomography by coincidence system with 18F-FDG on therapeutic decision-making of patients with ischemic cardiomyopathy after myocardial infarction

    Renata Christian Martins Felix

    2006-05-01

    Full Text Available OBJETIVO: Avaliar a influência da PET por Sistema de Coincidência, na tomada de decisão terapêutica, em pacientes com cardiopatia isquêmica e disfunção ventricular. MÉTODOS: Trinta e um pacientes realizaram PET com FDG-18F por Sistema de Coincidência entre setembro de 2003 e novembro de 2004. Os médicos assistentes responderam a um questionário sobre a proposta terapêutica do paciente antes da PET e após seu resultado. RESULTADOS: Vinte e sete (87% pacientes apresentaram viabilidade miocárdica. Vinte e um (68% médicos concordaram em que a PET modificou a terapêutica proposta para o paciente e 27 (87% acharam que a PET contribuiu diretamente para a conduta tomada, mesmo quando não modificada. O tratamento atual proposto para o paciente (clínico ou revascularização correlacionou-se com o achado de viabilidade (p=0,006. CONCLUSÕES: A PET pelo Sistema de Coincidência demonstra ser útil por auxiliar o médico na tomada de decisão quanto ao melhor tratamento de pacientes com cardiopatia isquêmica. A sintomatologia, o eletrocardiograma, a fração de ejeção e a área de fibrose miocárdica não se correlacionam com a viabilidade e, portanto, não servem como guia para indicação ou não da realização da PET.OBJECTIVE: To evaluate the influence of the myocardium viability study by coincidence imaging using 18F-FDG in the clinical decision-making of patients with ischemic cardiomyopathy and left ventricular dysfunction. METHODS: Thirty-one patients were submitted to myocardial viability study with 18F-FDG by coincidence imaging between September 2003 and November 2004. The physician answered a questionnaire about the choice of therapeutic procedure before and after PET. RESULTS: Twenty-seven patients (87% had myocardial viability. Twenty-one (68% physicians thought that PET changed the therapeutic procedure for their patients and 27(87% considered that PET added to the therapeutic decision. The current treatment decision

  7. Assessment of aortitis by semiquantitative analysis of 180-min 18F-FDG PET/CT acquisition images

    The aim of this study was to evaluate the contribution of semiquantitative analysis of 180-min 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images for the assessment of aortitis in cases of suspected large vessel vasculitis (LVV) and to establish a threshold index for application in the clinical setting. This prospective study included 43 patients (mean age 67.5 ± 12.9 years) with suspicion of LVV (25 with a final diagnosis of aortitis). 18F-FDG PET/CT scan was acquired 180 min after injection of 7 MBq/kg of 18F-FDG. A semiquantitative analysis was performed calculating the aortic wall maximum standardized uptake value (SUVmax) (T), the lumen SUVmax (B) and the target to background ratio (TBR). These results were also compared with those obtained in a control population. The mean aortic wall SUVmax was 2.00 ± 0.62 for patients with aortitis and 1.45 ± 0.31 for patients without aortitis (p max (0.997 vs 0.871). The highest sensitivity and specificity was obtained for a TBR of 1.34 (sensitivity 100 %, specificity 94.4 %). Semiquantitative analysis of PET/CT images acquired 180 min after 18F-FDG injection and the TBR index of 1.34 show very high accuracy and, therefore, are strongly recommended for the diagnosis of aortitis in the clinical setting. (orig.)

  8. Accuracy of 18F-FDG PET/CT for lymph node staging in non-small-cell lung cancers

    LIU Bao-jun; DONG Jing-cheng; XU Chang-qing; ZUO Chuan-tao; LE Jing-jing; GUAN Yi-hui; ZHAO Jun; WU Jin-feng; DUAN Xiao-hong; CAO Yu-xue

    2009-01-01

    Background This retrospective study evaluated the diagnostic accuracy of 2-(F18)-fluoro-2-deoxy-D-glucose-positron emission tomography(18F-FDG-PET)/COmputed tomography(PET/CT)in the preoperative diagnosis of metastatic mediastinal and hilar lymph node in patients with non-small-cell lung cancer(NSCLC).Methods A total of 39 patients received preoperative 18F-FDG PET/CT and the postoperative biopsy.We compared preoperative PET/CT scan results with corresponding intraoperative histopathalogic findings in 39 NSCLC patients.The sensitivity,specificity,accuracy,positive and negative predictive value of 18F-FDG PET/CT were assessed.Results Histopathologic examination confirmed metastasis in 57 out of the 208 excised lymph nodes;23 of the 57 nodes were mediastinal and hilar lymph nodes.The sensitivity,specificity,accuracy,positive predictive value and negative predictive value of PET/CT in the preoperative diagnosis of mediastinal lymph node metastasis in NSCLC patients were 65%,96.8%,92%,78.5%and 90%,respectively.Conclusions PET/CT scan showed good accuracy in the preoperative diagnosis of mediastinal and hilar lymph node metastasis in the patients with NSCLC.We recommend that PET/CT scanning be used as a first-line evaluation tool for tumor diagnosis,therapy evaluation and follow-up.

  9. Different 18F-FDG Uptake According to Tumor Location and Morphology of Cholangiocarcinoma and Its Clinical Implication

    18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) scan has been found to reflect tumor aggressiveness and prognosis in various types of cancer. However, pattern of FDG uptake in biliary malignancies and its clinical significance have not been studied well. The purpose of this study was to assess the additional value of 18F-FDG PET in differential diagnosis and prognosis of cholangiocarcinoma (CC) according to the tumor location and tumor morphology. From April 2005 to May 2008, eighty two patients (M:F=55:27, age 66.2±9.6 yrs) with CC underwent 18F-FDG PET. For semiquantitative analysis, the maximum standardized uptake value (SUVmax) was obtained from the primary tumor. The difference of SUVmax according to the tumor location and tumor growth pattern, such as scirrhous type, nodular type, polypoid type were compared. Overall sensitivity of PET scan was 81.7% in CC. SUVmax on PET scan in intrahepatic CC was significantly higher compared to extrahepatic CC. In extrahepatic CC, polypoid type showed significantly higher SUVmax compared to scirrhous type. 18F-FDG PET may have a significant impact on clinical decision-making and on the management of Intrahepatic cholangiocarcinoma. And it is related to the shape of the tumor and the sensitivity of detection is higher in the mass-forming type than in the scirrhous type

  10. The Prevalence and Characteristics of Brown Adipose Tissue in an 18F-FDG PET Study of Koreans

    The object of this study was to evaluate the prevalence and characteristics of brown adipose tissue (BAT) in Korean subjects using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). Six thousand and five consecutive 18F-FDG PET/CT scans of 5,115 patients (3,007 females and 2,108 males, mean age 53.5 years) were retrospectively reviewed. We characterized the nature of BAT, such as tis location, and we assessed the influence of sex, age, body mass index (BMI), and temperature on BAT. The prevalence of BAT in Koreans in a single 18F-FDG PET/CT scan in average conditions was 1.07%. The BAT detection rate was higher in females than males (1.32% vs 0.73%), and also with younger age (7.94% vs 0.73%), and lower BMI (BMI with BAT, 21.1 vs BMI without BAT, 23.15) and cold outdoor temperature (1.65% vs 0.49%). The most frequent location of BAT was the supraclavicular area (left, 0.91%; right, 0.88%) and ventral neck area (left, 0.62%; right, 0.63%). Conclusions The characteristics of BAT in Koreans are not different from those described for Caucasians. However, the low prevalence of BAT in our study might be related to some scan condition like ambient temperature, but further study is needed.

  11. 18F-FDG PET/CT is a valuable tool for relapsing polychondritis diagnose and therapeutic response monitoring

    To retrospectively investigate the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for the diagnosis and therapeutic response in relapsing polychondritis (RP) patients. 18F-FDG PET/CT findings were reviewed in six RP patients. The initial scans were performed for all patients, follow-up scans were performed during steroid therapy for five patients. Changes in the abnormal lesions and the maximal standard uptake value (SUVmax) were analyzed. The initial PET/CT scans revealed intense FDG uptake in the cartilages for all six patients. The lesions of abnormal FDG uptake were tracheal/bronchial cartilage (n=4), costicartilage (n=4), nasal cartilage (n=3), cricoid cartilage (n=3), auricular cartilage (n=3), arytenoid cartilage (n=3), thyroid cartilage (n=2), hyoid cartilage (n=1) and mediastinum lymph node (n=1). The mean visual score and the mean SUVmax were 2.96 ± 0.20 and 4.10 ± 0.6. The intense uptake reduced or disappeared during steroid therapy for five patients, the mean visual score and the mean SUVmax were 1.58 ± 1.4 and 1.51 ± 1.4. 18F-FDG PET/CT enables the acquisition of both morphologic and glucose metabolic of the related cartilage structures. It plays a valuable role in assessing almost all cartilage and detecting RP, which is a better selection of a biopsy site as well as therapeutic response monitoring. (author)

  12. Regional nodal staging with 18F-FDG PET–CT in non-small cell lung cancer: Additional diagnostic value of CT attenuation and dual-time-point imaging

    Background: [Fluorine-18]-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET–CT) is widely performed in the regional nodal staging of non-small cell lung cancer (NSCLC). However, the uptake of 18F-FDG by tubercular granulomatous tissues may lead to false-positive diagnosis. This is of special concern in China, where tubercular granulomatous disease is epidemic. Herein, we evaluated the efficacy of an additional CT attenuation and a dual-time-point scan in determining the status of lymph nodes. Methods: Eighty NSCLC patients underwent curative surgical resection after 18F-FDG PET–CT and separate breath-hold CT examinations. The initial images were analyzed by two methods. In method 1, nodal status was determined by 18F-FDG uptake only. In Method 2, nodal status was determined by 18F-FDG uptake associated with CT attenuation. For dual-time-point imaging, the retention index (RI) of benign and malignant nodal groups with positive uptake in the initial scan was examined. Results: A total of 265 nodal groups were documented. On a per-nodal-group basis, the diagnostic sensitivity, specificity, and accuracy of Method 1 were 66.7%, 89.7%, and 85.3%, respectively, whereas those of Method 2 were 64.7%, 96.7%, and 90.6%, respectively. The improvement in diagnostic specificity and accuracy associated with the addition of CT attenuation in Method 2 as compared to Method 1 was statistically significant (p 0.05). Conclusion: 18F-FDG PET–CT has high diagnostic value for preoperative lymph-node (N) staging of NSCLC patients. We show that 18F-FDG uptake combined with CT attenuation improves the diagnostic specificity and accuracy of nodal diagnosis in NSCLC. For the lymph nodes with positive uptake in the initial scan, dual-time-point imaging has limited effect in differentiation.

  13. {sup 18}F-FDG uptake by spleen helps rapidly predict the dose level after total body irradiation in a Tibetan minipig model

    Wang, Yu Jue; Gu, Wei Wang [Southern Medical University, Department of Laboratory Animal Center, Guangzhou, Guangdong (China); Wu, Shao Jie; Guo, Kun Yuan; Chen, Chi [Southern Medical University, Department of Hematology, Zhujiang Hospital, Guangzhou, Guangdong (China); Xie, Qiang; Cai, Liang [Chinese People' s Armed Police Forces, Department of Oncology and PET/CT, Guangdong Provincial Corp Hospital, Guangzhou, Guangdong (China); Zou, Fei [Southern Medical University, School of Public Health and Tropical Medicine, Guangzhou, Guangdong (China)

    2012-09-15

    To investigate whether {sup 18}F- FDG uptake can be applied in dosimetry to facilitate the rapid and accurate evaluation of individual radiation doses after a nuclear accident. Forty-eight Tibetan minipigs were randomised into a control group (n = 3) and treatment groups (n = 45). {sup 18}F-FDG combined positron-emission tomography and computed tomography (PET/CT) were carried out before total body irradiation (TBI) and at 6, 24 and 72 h after receiving TBI doses ranging from 1 to 11 Gy. Spleen tissues and blood samples were also collected for histological examination, apoptosis and blood analysis. Mean standardised uptake values (SUVs) of the spleen showed significant differences between the experimental and the control groups. Spleen SUV at 6 h post-irradiation showed significant correlation with radiation dose; Spearman's correlation coefficient was 0.97 (P < 0.01). Histological observations showed that damage to the splenic lymphocyte became more severe with an increase in the radiation dose. Moreover, apoptosis was one of the major routes of splenic lymphocyte death, which was also confirmed by flow cytometry analysis. In the Tibetan minipig model, radiation doses have a close relationship with the {sup 18}F-FDG uptake of the spleen. This finding suggests that {sup 18}F-FDG PET/CT may be useful for the rapid detection of individual radiation doses. (orig.)

  14. Fibrous dysplasia mimicking bone metastasis on both bone scintigraphy and {sup 18}F FDG PET CT: Diagnostic dilemma in a patient with breast cancer

    KC, Sud Hir Suman; Sharma, Punit; Singh, Har Man Deep; Bal, Chand Rasekhar; Kumar, Rake Sh [India Institute of Medical Sciences, New Delhi (India)

    2012-12-15

    Bone is the most common distant site to which breast cancer metastasizes. Commonly used imaging modalities for imaging bone metastasis are bone scintigraphy, plain radiography, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Although bone scintigraphy gas high sensitivity for detecting bone metastasis, its specificity is low. This is because of the fact that bone scintigraphy images secondary changes in bone rather than just tumor cells {sup 18}F fluorodeoxyglucose ({sup 18}F FDG) PET CT, on the other hand, directly images the tumor cells' glucose metabolism. Unfortunately, similar to bone scintigraphy, benign bone conditions can also show increased {sup 18}F FDG uptake on PET CT, and PET positive asymptomatic fibrous dysplasia can be misinterpreted as a metastasis. Fibrous dysplasia of bone has wide skeletal distribution, with variability of {sup 18}F FDG uptake and CT appearance. It is therefore important to recognize the characteristics of this skeletal dysplasia, to allow differentiation from skeletal metastasis. Bone lesions with {sup 18}F FDG uptake need to be carefully interpreted when evaluating patients with known malignancy. In doubtful cases, fibrous dysplasia should be given as a differential diagnosis and histopathological diagnosis may be warranted, as highlighted in the present case.

  15. Suggestion of a national diagnostic reference level for {sup 18}F-FDG/PET scans in adult cancer patients in Brazil

    Oliveira, Cassio Miri; Alonso, Thessa Cristina; Silva, Teogenes Augusto da, E-mail: cmo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Sa, Lidia Vasconcellos de [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-09-15

    Objective: To suggest a national value for the diagnostic reference level (DRL) in terms of activity in MBq.kg{sup -1}, for nuclear medicine procedures with fluorodeoxyglucose ({sup 18}F-FDG) in whole body positron emission tomography (PET) scans of adult patients. Materials and methods: a survey on values of {sup 18}F-FDG activity administered in Brazilian clinics was undertaken by means of a questionnaire including questions about number and manufacturer of the installed equipment, model and detector type. The suggested DRL value was based on the calculation of the third quartile of the activity values distribution reported by the clinics. Results: Among the surveyed Brazilian clinics, 58% responded completely or partially the questionnaire; and the results demonstrated variation of up to 100% in the reported radiopharmaceutical activity. The suggested DRL for {sup 18}F-FDG/PET activity was 5.54 MBq.kg{sup 1} (0.149 mCi.kg{sup -1}). Conclusion: the present study has demonstrated the lack of standardization in administered radiopharmaceutical activities for PET procedures in Brazil, corroborating the necessity of an official DRL value to be adopted in the country. The suggested DLR value demonstrates that there is room for optimization of the procedures and {sup 18}F-FDG/PET activities administered in Brazilian clinics to reduce the doses delivered to patients. It is important to highlight that this value should be continually revised and optimized at least every five years. (author)

  16. Fibrous dysplasia mimicking bone metastasis on both bone scintigraphy and 18F FDG PET CT: Diagnostic dilemma in a patient with breast cancer

    Bone is the most common distant site to which breast cancer metastasizes. Commonly used imaging modalities for imaging bone metastasis are bone scintigraphy, plain radiography, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Although bone scintigraphy gas high sensitivity for detecting bone metastasis, its specificity is low. This is because of the fact that bone scintigraphy images secondary changes in bone rather than just tumor cells 18F fluorodeoxyglucose (18F FDG) PET CT, on the other hand, directly images the tumor cells' glucose metabolism. Unfortunately, similar to bone scintigraphy, benign bone conditions can also show increased 18F FDG uptake on PET CT, and PET positive asymptomatic fibrous dysplasia can be misinterpreted as a metastasis. Fibrous dysplasia of bone has wide skeletal distribution, with variability of 18F FDG uptake and CT appearance. It is therefore important to recognize the characteristics of this skeletal dysplasia, to allow differentiation from skeletal metastasis. Bone lesions with 18F FDG uptake need to be carefully interpreted when evaluating patients with known malignancy. In doubtful cases, fibrous dysplasia should be given as a differential diagnosis and histopathological diagnosis may be warranted, as highlighted in the present case

  17. Value of {sup 18}F-FDG PET/CT in the detection of ovarian malignancy

    Park, Tae Gyu; Lee, Si Nae; Park, So Yeon [Dept. of Nuclear Medicine, Korea University Guro Hospital, Seoul (Korea, Republic of); and others

    2015-03-15

    Ovarian cancer is a leading cause of gynecologic malignancy. As symptoms of ovarian cancer are nonspecific, only 20 % of ovarian cancers are diagnosed while they are still limited to the ovaries. Thus, early and accurate detection of disease is important for an improved prognosis. For the accurate and effective diagnosis of ovarian malignancy on {sup 18}F-fluorodeoxyglucose ({sup 18}F--FDG) positron emission tomography/computed tomography (PET/CT), we analyzed several parameters, including visual assessment. A total of 51 peritoneal lesions in 19 patients who showed ovarian masses with diffuse peritoneal infiltration were enrolled. Twelve patients were confirmed to have ovarian malignancy and seven patients with benign disease by pathologic examination. All patients were examined by {sup 18}F--FDG PET/CT, and an additional 2-h delayed {sup 18}F--FDG PET/CT was also performed for 15 patients with 42 peritoneal lesions. We measured semiquantitative parameters including maximum and mean standardized uptake values (SUV{sub max}, SUV{sub mean}), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) on a 1-h initial {sup 18}F--FDG PET/CT image (Parameter1) and on a 2-h delayed image (Parameter2). Additionally, retention indices of each parameter were calculated, and each parameter among the malignant and benign lesions was compared by Mann-Whitney U test. We also assessed the visual characteristics of each peritoneal lesion, including metabolic extent, intensity, shape, heterogeneity, and total visual score. Associations between visual grades and malignancy were analyzed using linear by linear association methods. Moreover, a receiver operating characteristic (ROC) curve was analyzed to compare the effectiveness of significant parameters. In a comparison between the malignant and benign groups in the analysis of 51 total peritoneal lesions, SUV{sub max1}, SUV{sub mean1}, and TLG1 showed significant differences. Also, in the analysis of 42 peritoneal lesions

  18. Study of the demand for radiopharmaceutical 18F-FDG in the metropolitan regions of Sao Paulo and adjacent areas

    Nuclear Medicine in Brazil and worldwide has developed distinction with diagnosis techniques that allow metabolic research of the disease, changing in a significant fashion the patient's outcome. This innovative technology leads expectations from specific fields up to society itself. This research studied the use of 18F-FDG radiopharmaceutical in the metropolitan region of Sao Paulo and adjacent areas, as well as the recent trade structure and the difficulties that should be overcome with the increase of the 18F-FDG demand. This research counted on the analysis of the international radiopharmaceutical trade and the main changes that have been happening in this area in Brazil during the past few years. Interviews were performed with professionals within the area of nuclear medicine and data has been collected through questionnaire sent to the consuming centers of the radiopharmaceutical in the region covered in this research. The interviews expressed the opinions of the interviewees concerning transformations in this field and future tendencies and the information obtained from the survey was the basis of complementation of the use of radiopharmaceutical on equipment such as Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET) and Positron Emission Tomography I Computer Tomography (PET/CT). The major use of 18F-FDG has been used for oncology diagnosis with equipment such as PET and PEC/CT. This use shall grow in the next years, maybe expanding to other specialties such as neurology and cardiology. Although nowadays restricted to the cities of Sao Paulo and Rio de Janeiro, there is a possibility of expansion to other diagnosis modalities in other states of the country that are starting to structure the production of the radioisotope. The recent change in the constitution permitting the production and commerce of short half-life radioisotopes also contributes to the increase the interest of private funding of this sector in which

  19. Mucoepidermoid carcinoma of bronchus in a pediatric patient: {sup 18}F-FDG PET findings

    Lee, Edward Y. [Children' s Hospital Boston and Harvard Medical School, Departments of Radiology and Medicine, Pulmonary Division, Boston, MA (United States); Vargas, Sara O. [Children' s Hospital Boston and Harvard Medical School, Department of Pathology, Boston, MA (United States); Sawicki, Gregory S.; Boyer, Debra [Children' s Hospital Boston and Harvard Medical School, Division of Respiratory Diseases, Boston, MA (United States); Grant, Frederick D.; Voss, Stephan D. [Children' s Hospital Boston and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2007-12-15

    In children, primary neoplasms of the tracheobronchial tree and lungs are rare; most are malignant. Of the primary malignant pulmonary neoplasms arising in childhood, mucoepidermoid carcinoma accounts for approximately 10%. Due to its well-confined local growth within the airway, mucoepidermoid carcinoma commonly produces respiratory symptoms from progressive tracheal or bronchial obstruction. Mucoepidermoid tumor has minimal metastatic potential in children, and local resection alone is the current treatment of choice. Early detection, diagnosis, and surgical resection of mucoepidermoid tumor are especially important in pediatric patients since the bulk of the remaining pulmonary parenchyma can be preserved, thereby decreasing the thoracic deformity and pulmonary functional morbidity. Radiographic and CT imaging findings of bronchial mucoepidermoid carcinoma in children have been described in several case reports. However, to the best of our knowledge, imaging findings of 2-({sup 18}F)-fluoro-2-deoxy-d-glucose positron emission tomography ({sup 18}F-FDG PET) of mucoepidermoid carcinoma of the bronchus in pediatric patients have not been well established. We report a mucoepidermoid carcinoma arising from the right upper lobe bronchus in a 15-year-old girl with an emphasis on the {sup 18}F-FDG PET findings. (orig.)

  20. Mucoepidermoid carcinoma of bronchus in a pediatric patient: 18F-FDG PET findings

    In children, primary neoplasms of the tracheobronchial tree and lungs are rare; most are malignant. Of the primary malignant pulmonary neoplasms arising in childhood, mucoepidermoid carcinoma accounts for approximately 10%. Due to its well-confined local growth within the airway, mucoepidermoid carcinoma commonly produces respiratory symptoms from progressive tracheal or bronchial obstruction. Mucoepidermoid tumor has minimal metastatic potential in children, and local resection alone is the current treatment of choice. Early detection, diagnosis, and surgical resection of mucoepidermoid tumor are especially important in pediatric patients since the bulk of the remaining pulmonary parenchyma can be preserved, thereby decreasing the thoracic deformity and pulmonary functional morbidity. Radiographic and CT imaging findings of bronchial mucoepidermoid carcinoma in children have been described in several case reports. However, to the best of our knowledge, imaging findings of 2-(18F)-fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET) of mucoepidermoid carcinoma of the bronchus in pediatric patients have not been well established. We report a mucoepidermoid carcinoma arising from the right upper lobe bronchus in a 15-year-old girl with an emphasis on the 18F-FDG PET findings. (orig.)

  1. 18F-FDG PET/CT for initial assessment and response monitoring in a case of high grade primary lymphoma of the thyroid gland: A case report and review of literature

    Thyroid lymphoma is a rare disease entity of elderly females. Chronic lymphocytic thyroiditis is said to be the precursor of thyroid lymphoma, suggesting a role of chronic antigen stimulation in the development of the disease. We present a case of male with lymphocytic thyroiditis who presented with painless progressive neck enlargement and pathology revealed features of high grade lymphoma. Staging and posttreatment 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) was performed. This report reemphasizes the role of 18F-FDG PET/CT in the diagnosis, staging, and assessment of therapy response in patients with extranodal lymphoma, including the primary thyroid lymphoma

  2. Quantitative carotid PET/MR imaging: clinical evaluation of MR-Attenuation correction versus CT-Attenuation correction in (18)F-FDG PET/MR emission data and comparison to PET/CT.

    Bini, Jason; Robson, Philip M; Calcagno, Claudia; Eldib, Mootaz; Fayad, Zahi A

    2015-01-01

    Current PET/MR systems employ segmentation of MR images and subsequent assignment of empirical attenuation coefficients for quantitative PET reconstruction. In this study we examine the differences in the quantification of (18)F-FDG uptake in the carotid arteries between PET/MR and PET/CT scanners. Five comparisons were performed to asses differences in PET quantification: i) PET/MR MR-based AC (MRAC) versus PET/MR CTAC, ii) PET/MR MRAC versus PET/CT, iii) PET/MR MRAC with carotid coil versus PET/MR MRAC without coil, iv) PET/MR MRAC scan 2 versus PET/MR MRAC scan 1, and v) PET/MR CTAC versus PET/CT. Standardized uptakes values (SUV) mean and SUV maximum were calculated for six regions-of-interests: left and right carotid arteries, left and right lungs, spine and muscle. Pearson's Correlation and Bland-Altman plots were used to compare SUV mean and maximum within each ROI of each patient. PET/MR emission data reconstructed with MRAC versus PET/MR emission data reconstructed with CTAC had percent differences of SUV mean ranging from -2.0% (Absolute Difference, -0.02) to 7.4% (absolute difference, 0.06). Percent differences within the carotid arteries proved to correlate well with differences of SUV mean of 5.4% (Absolute Difference, 0.07) in the left carotid and 2.7% (Absolute Difference, 0.03) in the right carotid. Pearson's correlation and Bland-Altman of PET/MR with MRAC versus PET/MR with CTAC showed high correlation between SUV mean (R(2)=0.80, mean difference 0.03 ± 0.18 SUV, p=0.3382), demonstrating excellent correlation within ROIs analyzed. The results of this study support the use of (18)F-FDG PET/MR for quantitative measure of inflammation in the carotid arteries. PMID:26069863

  3. Paraneoplastic cerebellar degeneration as initial presentation of papillary carcinoma of the fallopian tube: Evaluation and usefulness of {sup 18}F FDG PET/CT. Case report and literature review

    Lopez, Nayelli Ortega; Gonzalez, Digna Pachuca; Garcla, Jose Alfonso Rumoroso; Reyna, Juan Carlos Garcia; Lopez, Luis Feilpe Alva [Division of Nuclear Medicine, Mexico City Univ., Mexico City (Mexico)

    2012-03-15

    The acquisition of an {sup 18}F FDG PET/CT scan in patients with suspected paraneoplastic cerebellar syndrome can be helpful in determining the origin of a neoplasm because of its high sensitivity and also helps guide the neurological development course depending on the degree of incorporation of {sup 18}F FDG to the cerebellar parenchyma when compared with the rest of the brain. The {sup 18}F FDG whole body PET-CT (positron emission tomography and computed tomography) scan is a useful tool to determine the origin of a possible paraneoplastic cerebellar degeneration in patients suspected of having malignancy. In this case report, we describe the usefulness of the {sup 18}F fluorodeoxyglucose (FDG) PET CT scan to evaluate the possible presence of PCD, determine the current status of the disease, and find its possible origin.

  4. PET imaging of inflammation and adenocarcinoma xenografts using vascular adhesion protein 1 targeting peptide 68Ga-DOTAVAP-P1: comparison with 18F-FDG

    The aim of this study was to evaluate inflammation and tumour imaging with a vascular adhesion protein 1 (VAP-1) targeting peptide 68Ga-DOTAVAP-P1 in comparison with 18F-FDG. Rats with both subcutaneous human pancreatic adenocarcinoma xenografts and turpentine oil-induced acute sterile inflammation were evaluated by dynamic positron emission tomography (PET) and by digital autoradiography of tissue cryosections. Subsequently, the autoradiographs were combined with histological and immunohistological analysis of the sections. 68Ga-DOTAVAP-P1 delineated acute, sterile inflammation comparable with 18F-FDG. However, the tumour uptake of 68Ga-DOTAVAP-P1 was low in contrast to prominent 18F-FDG uptake. The standardised uptake values of inflammation and tumours by PET were 1.1 ± 0.4 (mean ± SEM) and 0.4 ± 0.1 for 68Ga-DOTAVAP-P1 and 2.0 ± 0.5 and 1.6 ± 0.8 for 18F-FDG, respectively. In addition, PET studies showed inflammation to muscle and tumour to muscle ratios of 5.1 ± 3.1 and 1.7 ± 0.3 for 68Ga-DOTAVAP-P1 and 6.2 ± 0.7 and 4.6 ± 2.2 for 18F-FDG, respectively. Immunohistochemistry revealed increased expression of luminal VAP-1 on the endothelium at the site of inflammation and low expression in the tumour The 68Ga-DOTAVAP-P1 PET was able to visualise inflammation better than tumour, which was in accordance with the luminal expression of VAP-1 on vasculature in these experimental models. (orig.)

  5. Reproducibility of 18F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L

    2015-01-01

    Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069

  6. Usefulness of 18F-FDG-PET/CT in Evaluating a Brainstem Glioma in an Adult Patient with Neurofibromatosis Type 1

    We describe a case of a brainstem glioma (BSG) occurred in an adult patient with neurofibromatosis type 1 (NF1) and evaluated by Flourine-18-Fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT). A 32-year-old male patient with NF1 underwent brain magnetic resonance imaging (MRI) for the onset of diplopia, facial paresis and cerebellar signs and symptoms. MRI showed a brainstem lesion compatible with BSG. Biopsy was not performed. 18F-FDG-PET/CT demonstrated intense 18F-FDG uptake in the brainstem lesion, suggesting an aggressive neoplasm. The patient was referred to radiotherapy but he developed rapid disease progression. In this case, 18F-FDG-PET/CT provided useful information about this rare NF1-associated tumor. Subsequently, the patient was referred to radiotherapy, but he developed rapid disease progression and died 3 months later. NF-1 is an autosomal dominant disorder characterized by multiple cafe-au-lait spots, axillary and inguinal freckling, multiple cutaneous neurofibromas, and iris Lisch nodules. NF-1 is also characterized by low-grade tumors of the central and peripheral nervous system. There is also an increased risk of developing malignant tumors such as malignant peripheral nerve sheath tumors or central nervous system high-grade gliomas. NF1-associated BSGs are less common than NF1-associated optic gliomas (OGs) and seem to represent a particular entity which tend, as a whole, to have a more favorable prognosis and a more indolent course than BSGs in patients without NF1; nevertheless, some NF1-associted BSG may rapidly progress. 18F-FDG-PET/CT has demonstrated to provide useful information to the surveillance of OGs in children with NF1, particularly to identify progressive, symptomatic tumors. To the best of our knowledge, there are no data about the usefulness of 18F-FDG-PET/CT in adult patients with NF1-associated BSG. In our case, 18F-FDG-PET/CT has been useful in evaluating this rare NF1-associated tumor

  7. Role of Pre-therapeutic 18F-FDG PET/CT in Guiding the Treatment Strategy and Predicting Prognosis in Patients with Esophageal Carcinoma

    Teik Hin Tan

    2016-07-01

    Full Text Available Objective(s: The present study aimed to evaluate the role of pretherapeutic 18fluorine-fluorodeoxyglucose positron emission tomographycomputed tomography (18F-FDG PET-CT and maximum standardized uptake value (SUVmax in guiding the treatment strategy and predicting the prognosis of esophageal carcinoma, using the survival data of thepatients.Methods: The present retrospective, cohort study was performed on 40 consecutive patients with esophageal carcinoma (confirmed by endoscopic biopsy, who underwent pre-operative 18F-FDG PET-CTstaging between January 2009 and June 2014. All the patients underwent contrast-enhanced CT and non-contrasted 18F-FDG PET-CT evaluations.The patients were followed-up over 12 months to assess the changes in therapeutic strategies. Survival analysis was done considering the primary tumor SUVmax, using the Kaplan–Meier product-limit method.Results: In a total of 40 patients, 18F-FDG PET-CT scan led to changes in disease stage in 26n (65.0% cases, with upstaging and downstaging reported in 10n (25.0% and 16n (40.0% patients, respectively. The management strategy changed from palliative to curative in 10 out of 24 patients and from curative to palliative in 7 out of 16 cases. Based on the18F-FDG PET-CT scan alone, the median survival of patients in the palliative group was 4.0n (95 % CI 3.0-5.0 months, whereas the median survival in the curative group has not been reached, based on the 12-month followup.Selection of treatment strategy on the basis of 18F-FDG PET/CT alone was significantly associated with the survival outcomes at nine months (P=0.03 and marginally significant at 12 months (P=0.05. On the basisof SUVmax, the relation between survival and SUVmax was not statistically significant.Conclusion: 18F-FDG PET/CT scan had a significant impact on stage stratification and subsequently, selection of a stage-specific treatment approach and the overall survival outcome in patients with esophageal carcinoma. However, pre

  8. Usefulness of {sup 18}F-FDG-PET/CT in Evaluating a Brainstem Glioma in an Adult Patient with Neurofibromatosis Type 1

    Treglia, Giorgio [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Muoio, Barbara; Del Ciello, Annemilia [Univ. of the Sacred, Rome (Italy); Bertagna, Francesco [Univ. of Brescia, Brescia (Italy)

    2013-09-15

    We describe a case of a brainstem glioma (BSG) occurred in an adult patient with neurofibromatosis type 1 (NF1) and evaluated by Flourine-18-Fluorodeoxyglucose-positron emission tomography/computed tomography ({sup 18}F-FDG-PET/CT). A 32-year-old male patient with NF1 underwent brain magnetic resonance imaging (MRI) for the onset of diplopia, facial paresis and cerebellar signs and symptoms. MRI showed a brainstem lesion compatible with BSG. Biopsy was not performed. {sup 18}F-FDG-PET/CT demonstrated intense {sup 18}F-FDG uptake in the brainstem lesion, suggesting an aggressive neoplasm. The patient was referred to radiotherapy but he developed rapid disease progression. In this case, {sup 18}F-FDG-PET/CT provided useful information about this rare NF1-associated tumor. Subsequently, the patient was referred to radiotherapy, but he developed rapid disease progression and died 3 months later. NF-1 is an autosomal dominant disorder characterized by multiple cafe-au-lait spots, axillary and inguinal freckling, multiple cutaneous neurofibromas, and iris Lisch nodules. NF-1 is also characterized by low-grade tumors of the central and peripheral nervous system. There is also an increased risk of developing malignant tumors such as malignant peripheral nerve sheath tumors or central nervous system high-grade gliomas. NF1-associated BSGs are less common than NF1-associated optic gliomas (OGs) and seem to represent a particular entity which tend, as a whole, to have a more favorable prognosis and a more indolent course than BSGs in patients without NF1; nevertheless, some NF1-associted BSG may rapidly progress. {sup 18}F-FDG-PET/CT has demonstrated to provide useful information to the surveillance of OGs in children with NF1, particularly to identify progressive, symptomatic tumors. To the best of our knowledge, there are no data about the usefulness of {sup 18}F-FDG-PET/CT in adult patients with NF1-associated BSG. In our case, {sup 18}F-FDG-PET/CT has been useful in

  9. 18F-FDG PET/CT makes a significant contribution to diagnosis of malignancy in patients with cervical lymphadenopathy: a study using optimal scale regression tests

    OUYANG Lin; SHI Zhao-yin; LIN Zhi-gang

    2013-01-01

    Background The specificity and precision of lymphadenopathy assessment using US,CT and MRI are generally unsatisfactory,while fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) can support this process by providing additional information about the lymph node features.However,which image features of 18F-FDG PET/CT play the key role in the diagnosis and cutoffs of malignant cervical lymphadenopathy still needs to be determined by further studies.Our study aimed to identify 18F-FDG PET/CT abnormalities that would assist in making a reliable diagnosis of malignant cervical lymphadenopathy in enlarged cervical lymph nodes of patients with unknown primary diseases.Methods One hundred and ninety-one consecutive patients of cervical lymphadenopathy with unknown primary causes were examined by 18F-FDG PET/CT from May 2007 to October 2011 and a definite diagnosis was established by pathologic biopsy.18F-FDG PET/CT images were evaluated to identify the relevant abnormalities.All image features were analyzed by optimal scale regression tests to determine the important factors that were predictive for the diagnosis of malignant cervical lymphadenopathy and the cutoffs.Results The factors studied in 18F-FDG PET/CT images for predicting malignant cervical lymphadenopathy were sex,age,node location,size,shape,margins,maximum standard uptake value (SUV),mean SUV,FDG uptake pattern and number of nodes.It was found that mean SUV,maximum SUV,FDG uptake pattern,location,size and margins were the important risk factors of cervical lymph nodes that could predict malignant cervical lymphadenopathy.Signs of mean SUV≥2.5 (or maximum SUV≥3.5),nodular FDG uptake pattern,location of ⅡA,Ⅲ,Ⅳ,ⅤB,Ⅵ and Ⅶ regions,size≥1.5 cm and vague margins had their optimal diagnostic accuracy (Ac) and Youden index (YI),further,combination of any three factors of these six important risk factors would led to the best diagnosticAc of 96% and YI of 0

  10. Highly metabolic thrombus of the portal vein: 18F fluorodeoxyglucose positron emission tomography/computer tomography demonstration and clinical significance in hepatocellular carcinoma

    Sun, Long; Guan, Yong-Song; Pan, Wei-Ming; Chen, Gui-Bing; Luo, Zuo-Ming; Wei, Ji-Hong; Wu, Hua

    2008-01-01

    AIM: To assess the ability of 18F-fluorodeoxyglucose positron emission tomography/computer tomography (18F-FDG PET/CT) to differentiate between benign and malignant portal vein thrombosis in hepatocellular carcinoma (HCC) patients.

  11. Synthesis of 18F-FDG with FDG MicroLabTM system. Basic studies for clinical application

    We synthesized 18F-FDG by using an automated synthetic apparatus ''FDG MicroLab'' (GE Medical Systems) which produces 18F-FDG by a solid phase 18F-fluorination. Its quality and reproducibility were evaluated in order to assess feasibility of the apparatus for routine clinical production of 18F-FDG. For 5 consecutive 18F-FDG synthesis, target irradiation was carried out at 15 μA for 60 min. 18F-FDG was obtained in 50 min after EOB with an end-of-synthesis yield of 9.34±1.06 GBq. Radiochemical yield and radiochemical purity were 47±3% (decay corrected) and 98.0±0.5%, respectively. Other several quality control parameters tested conformed with Standards of Compounds Labeled with Positron Nuclides'' (RADIOISOTOPES, 44, 1995). Thus, the automated synthetic apparatus ''FDG MicroLab'' has proven to stably produce 18F-FDG with high yield and high purity. The apparatus is feasible for routine clinical production of 18F-FDG. (author)

  12. Diagnostic performance of {sup 68}Ga-DOTATATE PET/CT, {sup 18}F-FDG PET/CT and {sup 131}I-MIBG scintigraphy in mapping metastatic pheochromocytoma nd paraganglioma

    Tan, Teik Hin [Dept. of Nuclear Medicine, National Cancer Institute, Putrajaya (Malaysia); Hussein, Zanariah [Dept. of Endocrine, Hospital Putrajaya, Putrajaya (Malaysia); Sad, Fathinul Fikri Ahmad [Dept. of Diagnostic Imaging, Serdang Hospital, Serdang (Malaysia); Shuaib, Ibrahim Lutfi [Dept. of Radiology, Advanced Medical and Dental Institute, University Sains Malaysia, Pulau Pinang (Malaysia)

    2015-06-15

    To evaluate the diagnostic performance of '6{sup 8}Ga-DOTATATE {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET)/computed tomography (CT), {sup 18}F-FDG PET/CT and {sup 131}I-MIBG scintigraphy in the mapping of metastatic pheochromocytoma and paraganglioma. Seventeen patients (male = 8, female = 9; age range, 13–68 years) with clinically proven or suspicious metastatic pheochromocytoma or paraganglioma were included in this prospective study. Twelve patients underwent all three modalities, whereas five patients underwent {sup 68}Ga-DOTATATE and {sup 131}I-MIBG without {sup 18}F-FDG. A composite reference standard derived from anatomical and functional imaging findings, along with histopathological information, was used to validate the findings. Results were analysed on a per-patient and on per-lesion basis. Sensitivity and accuracy were assessed using McNemar's test. On a per-patient basis, 14/17 patients were detected in {sup 68}Ga-DOTATATE, 7/17 patients in {sup 131}I-MIBG, and 10/12 patients in {sup 18}F-FDG. The sensitivity and accuracy of {sup 68}Ga-DOTATATE, {sup 131}I-MIBG and {sup 18}F-FDG were (93.3 %, 94.1 %), (46.7 %, 52.9 %) and (90.9 %, 91.7 %) respectively. On a per-lesion basis, an overall of 472 positive lesions were detected; of which 432/472 were identified by {sup 68}Ga-DOTATATE, 74/472 by {sup 131}I-MIBG, and 154/300 (patient, n = 12) by {sup 18}F-FDG. The sensitivity and accuracy of {sup 68}Ga-DOTATATE, {sup 131}I-MIBG and {sup 18}F-FDG were (91.5 %, 92.6 % p < 0.0001), (15.7 %, 26.0 % p < 0.0001) and (51.3 %, 57.8 % p < 0.0001) respectively. Discordant lesions were demonstrated on {sup 68}Ga-DOTATATE, {sup 131}I-MIBG and {sup 18}F-FDG. Ga-DOTATATE PET/CT shows high diagnostic accuracy than {sup 131}I-MIBG scintigraphy and {sup 18}F-FDG PET/ CT in mapping metastatic pheochromocytoma and paraganglioma.

  13. Diagnostic performance of 68Ga-DOTATATE PET/CT, 18F-FDG PET/CT and 131I-MIBG scintigraphy in mapping metastatic pheochromocytoma nd paraganglioma

    To evaluate the diagnostic performance of '68Ga-DOTATATE 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT), 18F-FDG PET/CT and 131I-MIBG scintigraphy in the mapping of metastatic pheochromocytoma and paraganglioma. Seventeen patients (male = 8, female = 9; age range, 13–68 years) with clinically proven or suspicious metastatic pheochromocytoma or paraganglioma were included in this prospective study. Twelve patients underwent all three modalities, whereas five patients underwent 68Ga-DOTATATE and 131I-MIBG without 18F-FDG. A composite reference standard derived from anatomical and functional imaging findings, along with histopathological information, was used to validate the findings. Results were analysed on a per-patient and on per-lesion basis. Sensitivity and accuracy were assessed using McNemar's test. On a per-patient basis, 14/17 patients were detected in 68Ga-DOTATATE, 7/17 patients in 131I-MIBG, and 10/12 patients in 18F-FDG. The sensitivity and accuracy of 68Ga-DOTATATE, 131I-MIBG and 18F-FDG were (93.3 %, 94.1 %), (46.7 %, 52.9 %) and (90.9 %, 91.7 %) respectively. On a per-lesion basis, an overall of 472 positive lesions were detected; of which 432/472 were identified by 68Ga-DOTATATE, 74/472 by 131I-MIBG, and 154/300 (patient, n = 12) by 18F-FDG. The sensitivity and accuracy of 68Ga-DOTATATE, 131I-MIBG and 18F-FDG were (91.5 %, 92.6 % p < 0.0001), (15.7 %, 26.0 % p < 0.0001) and (51.3 %, 57.8 % p < 0.0001) respectively. Discordant lesions were demonstrated on 68Ga-DOTATATE, 131I-MIBG and 18F-FDG. Ga-DOTATATE PET/CT shows high diagnostic accuracy than 131I-MIBG scintigraphy and 18F-FDG PET/ CT in mapping metastatic pheochromocytoma and paraganglioma

  14. Asymptomatic cauda equina metastasis in a patient with nasopharyngeal carcinoma: Detection by 18F-FDG PET/CT

    The central nervous system metastasis from nasopharyngeal carcinoma (NPC) is an extremely rare occurrence, although direct intracranial invasion is not infrequent in patients with NPC. Herein we report a case of a 62-year-old male with NPC, in whom the asymptomatic cauda equina metastasis was detected on staging 18F-Fluordeoxyglucose positron emission tomography-computed tomography (F-FDG PET/CT). By demonstrating distant metastasis to cauda equina, 18F-FDG PET/CT detection helped in change of management in this patient

  15. Pioneering and fundamental achievements on the development of positron emission tomography (PET) in oncology

    Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG), a glucose analog, is widely used throughout the world as an indispensable imaging modality for the management of cancer treatment. This article reviews the pioneering achievements of PET in oncology with a focus on the development of PET that occurred from 1980 through the early-1990s. 18F-FDG was first applied for imaging of animal tumors in 1980 and for brain tumor imaging clinically in 1982. 18F-FDG enabled to visualize liver metastasis as clear positive image that could not be obtained by conventional nuclear imaging. Subsequently, 18F-FDG was used for imaging various cancers, such as lung, pancreas, colorectal and hepatoma. 11C-L-methionine (11C-MET) that reflects amino acid transport of cancers has an advantage that its uptake is lower in the brain and inflammatory tissue compared to 18F-FDG, and was first applied for imaging lung cancer and brain tumor. 18F-FDG and 11C-MET were proved to be sensitive tracers that can be used to objectively evaluate the effectiveness of cancer treatment. The diagnostic accuracy of PET, which is critical in clinical practice, was evaluated for the differential diagnosis of malignant and benign lung nodules using 18F-FDG or 11C-MET. In addition to 18F-FDG and 11C-MET, many radiopharmaceuticals were developed, such as 18F-labled thymidine analogs for evaluating proliferative activity, 18F-fluoromisonidazole for imaging of hypoxia, and 18F-fluorodeoxygalactose for evaluating liver-specific galactose metabolism and for imaging of hepatoma that retains galactose metabolic activity. These early efforts and achievements have greatly contributed to the development and clinical application of 18F-FDG PET in oncology. (author) 113 refs.

  16. Predictive value of 18F-FDG PET/CT in restaging patients affected by ovarian carcinoma: a multicentre study

    Ovarian cancer is the eighth most common malignancy among women and has a high mortality rate. Prognostic factors able to drive an effective therapy are essential. 18F-Fluoro-2-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) has been investigated in patients with epithelial ovarian cancer and showed promise in diagnosing, staging, detecting recurrent lesions and monitoring treatment response. Conversely, its prognostic role remains unclear. We aimed at assessing the prognostic value of 18F-FDG PET/CT performed in the restaging process in a multicentre study. We evaluated 168 patients affected by ovarian carcinoma, who underwent a restaging 18F-FDG PET/CT. The presence of local recurrences, lymph node involvement and distant metastasis was recorded as well as lesion dimensions, maximum and mean standardized uptake values (SUVmax and SUVmean, respectively). Progression-free survival (PFS) and overall survival (OS) at 3 and 4 years were computed by using Kaplan-Meier curves. Increased odds ratio was assessed using Cox regression analysis testing all lesion parameters measured by PET/CT. PFS was significantly longer in patients with a negative than a positive restaging PET/CT study (3- and 4-year PFS 64 and 53 % vs 23 and 12 %, respectively; p < 0.001). Similarly, a negative study was associated with a significantly higher OS rate after 4 years of follow-up (67 vs 25 % in negative and positive groups, respectively; p < 0.001). Lymph node or distant involvement were also independently associated with an increased risk of disease progression [hazard ratio (HR) 1.6 and 2.2, respectively; p = 0.003]. Moreover, PET/CT showed an incremental prognostic value compared to the International Federation of Gynecology and Obstetrics (FIGO) staging system. In the analysis of patient subsets, individuals with the same FIGO stage I-II but with negative PET had a significantly better 4-year OS than patients with low FIGO stage but positive PET. This

  17. 18F-FDG PET/CT-Negative Recurrent High-Grade Anaplastic Astrocytoma Detected by 18F-FDOPA PET-CT

    A 37-year-old woman with grade 3 anaplastic astrocytoma (AA) of the left frontal lobe, underwent surgical excision, chemotherapy and external beam radiation therapy in 2004. After being in remission for 5 years, recurrence was suspected clinically when she presented with seizures. The result of contrast-enhanced magnetic resonance imaging (MRI) was equivocal for recurrence and radiation necrosis (not available ). The patient was then referred for 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT), as the initial primary tumour was high grade in nature. 18F-FDG PET-CT was negative for recurrence and demonstrated only post-operative changes in the left frontal region (Fig. 1a, b, arrow). Due to strong clinical suspicion, 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine (18F-FDOPA) PET-CT was done, 5 days after 18F-FDG PET-CT. The study revealed an 18F-FDOPA-avid mass lesion in the left frontal region (Fig. 1c, d, arrow), thereby confirming the presence of recurrent disease. The patient underwent surgical resection of the mass, and it was confirmed by histopathology as grade 3 AA. However, after a short asymptomatic period of 4 months the patient became symptomatic again. Follow-up MRI after 6 months of surgery revealed presence of ipsilateral and contralateral multifocal contrast enhancing recurrent mass lesions (Fig. 1e, f, arrow), suggesting the progression of disease. The patient was started on temozolamide but she died after 8 months' follow-up. Though MRI is routinely used in assessment of brain tumours, its ability to differentiate between treatment-induced changes and residual or recurrent tumour is limited. 18F-FDG PET was the first tracer used for assessment of brain tumours; however, it has a low tumour-to-background ratio in brain, limiting its utility. 18F-FDG uptake correlates with tumour grade, with high-grade gliomas (grades III and IV) showing higher uptake than low-grade gliomas. Therefore, in spite of its

  18. {sup 18}F-FDG PET/CT-Negative Recurrent High-Grade Anaplastic Astrocytoma Detected by {sup 18}F-FDOPA PET-CT

    Karunanithi, Sellam; Singh, Harmandeep; Sharma, Punit; Gupta, Deepak Kumar; Bal, Chandrasekhar [All India Institute of Medical Sciences, New Delhi (India)

    2013-12-15

    A 37-year-old woman with grade 3 anaplastic astrocytoma (AA) of the left frontal lobe, underwent surgical excision, chemotherapy and external beam radiation therapy in 2004. After being in remission for 5 years, recurrence was suspected clinically when she presented with seizures. The result of contrast-enhanced magnetic resonance imaging (MRI) was equivocal for recurrence and radiation necrosis (not available ). The patient was then referred for {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography-computed tomography (PET-CT), as the initial primary tumour was high grade in nature. {sup 18}F-FDG PET-CT was negative for recurrence and demonstrated only post-operative changes in the left frontal region (Fig. 1a, b, arrow). Due to strong clinical suspicion, 3,4-dihydroxy-6-{sup 18}F-fluoro-L-phenylalanine ({sup 18}F-FDOPA) PET-CT was done, 5 days after {sup 18}F-FDG PET-CT. The study revealed an {sup 18}F-FDOPA-avid mass lesion in the left frontal region (Fig. 1c, d, arrow), thereby confirming the presence of recurrent disease. The patient underwent surgical resection of the mass, and it was confirmed by histopathology as grade 3 AA. However, after a short asymptomatic period of 4 months the patient became symptomatic again. Follow-up MRI after 6 months of surgery revealed presence of ipsilateral and contralateral multifocal contrast enhancing recurrent mass lesions (Fig. 1e, f, arrow), suggesting the progression of disease. The patient was started on temozolamide but she died after 8 months' follow-up. Though MRI is routinely used in assessment of brain tumours, its ability to differentiate between treatment-induced changes and residual or recurrent tumour is limited. {sup 18}F-FDG PET was the first tracer used for assessment of brain tumours; however, it has a low tumour-to-background ratio in brain, limiting its utility. {sup 18}F-FDG uptake correlates with tumour grade, with high-grade gliomas (grades III and IV) showing higher uptake

  19. Absorbed 18F-FDG Dose to the Fetus During Early Pregnancy

    We describe a rare case of a woman who underwent 18F-FDG PET/CT during early pregnancy (fetus age, 10 wk). The fetal absorbed dose was calculated by taking into account the 18F-FDG fetal self-dose, photon dose coming from the maternal tissues, and CT dose received by both mother and fetus. Methods: The patient (weight, 71 kg) had received 296 MBq of 18F-FDG. Imaging started at 1 h, with unenhanced CT acquisition, followed by PET acquisition. From the standardized uptake value measured in fetal tissues, we calculated the total number of disintegrations per unit of injected activity. Monte Carlo analysis was then used to derive the fetal 18F-FDG self-dose, including positrons and self-absorbed photons. Photon dose from maternal tissues and CT dose were added to obtain the final dose. Results: The maximum standardized uptake value in fetal tissues was 4.5. Monte Carlo simulation showed that the fetal self-dose was 3.0 * 10-2 mGy/MBq (2.7 * 10-2 mGy/MBq from positrons and 0.3 * 10-2 mGy/MBq from photons). The estimated photon dose to the fetus from maternal tissues was 1.04*10-2 mGy/MBq. Accordingly, the specific 18F-FDG dose to the fetus was about 4.0 *10-2 mGy/MBq (11.8 mGy in this patient). The CT scan added a further 10 mGy. Conclusion: The dose to the fetus during early pregnancy can be as high as 4.0*10-2 mGy/MBq of 18F-FDG. Current dosimetric standards in early pregnancy may need to be revised. (authors)

  20. 18F-FDG-avid sites mimicking active disease in pediatric Hodgkin's

    About 1,700 children in the United States are diagnosed yearly with lymphomas; Hodgkin's disease accounts for approximately half of these cases, or 6% of all childhood cancers. Contemporary therapy allows for the achievement of remission in the majority of cases. The fusion of positron emission tomography (PET) with CT provides the most accurate imaging method for disease characterization and treatment response. However, experience with 18F-FDG PET-CT is limited in pediatric Hodgkin's disease. Numerous non-oncologic processes can mimic recurrent or residual tumor. This pictorial addresses mimickers of disease such as uptake in normal structures, infections, transforming germinal canters and effects of therapy on normal tissues. It is essential for radiologists to be familiar with these findings in order to stage disease activity and therapeutic response accurately. (orig.)

  1. Can brown fat uptake of 18F-FDG be reduced by beta-blockers?

    With the increasing application of F-18-fluorodeoxyglucose (FDG) positron emission imaging, there has been an evolving appreciation for the range of normal variants and the realization that false- positives can lead to serious consequences. One of the most common causes of a false-positive study is the uptake of FDG in areas of brown adipose tissue. BAT is generally present in deep cervical regions, including the supraclavicular areas, the interscapular and paravertebral regions, and areas near large vessels. Areas of involvement are often spatially closely related to important lymph node groups in the neck, axilla, and upper mediastinum, making critical differentiation difficult. The uptake of 18F FDG in brown adipose tissue (BAT) limits the ability of a PET scan to detect the sites of viable disease. Many studies have been done after premedication with Diazepam (benzodiazepines) to reduce the uptake of FDG by brown fat. But they are of limited value. Thus, it would be ideal if a drug could completely reverse the brown fat uptake and thus aid in proper management of the patient. The aim of this study is to see if by giving a single dose of a beta-blocker such as 'Ciplar' (Propranolol) 40 mg, 30 minutes prior to the FDG injection will help in reduction of brown fat uptake of 18F-FDG or not. Materials and Methods: Patients who were referred for a PET scan, either for a pretreatment or a post treatment evaluation and who showed FDG uptake in brown adipose tissue (BAT) were taken up for this study. The total number of patients was 14. A repeat PET scan was done after a gap of at least 48 hrs after the first study. The patients were advised to keep themselves warm with adequate warm clothing on the day of the second study. 40 mg of 'Ciplar' (propranolol) was given orally 30 minutes prior to the 18F-FDG injection. A whole body PET scan was performed on a dedicated whole body PET scanner (ADVANCE, GE Medical Systems, Milwaukee, WI.), using attenuation correction with 68

  2. {sup 18}F-FDG PET and MRS of the early stages of subacute sclerosing panencephalitis in a child with a normal initial MRI

    Seo, Yeong-Seon; Jung, Da-Eun [Ajou University School of Medicine, Department of Pediatrics, Suwon, Kyungki-do (Korea, Republic of); Kim, Ho-Sung [Ajou University School of Medicine, Department of Radiology, Suwon, Kyungki-do (Korea, Republic of)

    2010-11-15

    In subacute sclerosing panencephalitis (SSPE), conventional MRI findings have been reported. However, in the early clinical stages, imaging studies can appear normal. Moreover, with no history of infant measles infection, the diagnosis of SSPE can only be arrived at after extensive investigation that must eliminate a number of neurodegenerative diseases. We report here on {sup 18} F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) and magnetic resonance spectroscopy (MRS) findings in a 14-year-old girl with a normal initial MRI who had not contracted measles. Although {sup 18} F-FDG PET and MRS are not specific or diagnostic for SSPE, these techniques can demonstrate substantial metabolic impairments when MRI findings show no obvious abnormalities, as is often the case in the early stages of this disease. (orig.)

  3. 18F-FDG PET and MRS of the early stages of subacute sclerosing panencephalitis in a child with a normal initial MRI

    In subacute sclerosing panencephalitis (SSPE), conventional MRI findings have been reported. However, in the early clinical stages, imaging studies can appear normal. Moreover, with no history of infant measles infection, the diagnosis of SSPE can only be arrived at after extensive investigation that must eliminate a number of neurodegenerative diseases. We report here on 18 F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) and magnetic resonance spectroscopy (MRS) findings in a 14-year-old girl with a normal initial MRI who had not contracted measles. Although 18 F-FDG PET and MRS are not specific or diagnostic for SSPE, these techniques can demonstrate substantial metabolic impairments when MRI findings show no obvious abnormalities, as is often the case in the early stages of this disease. (orig.)

  4. Usefulness of dynamic 18F-FDG PET scan in lung cancer and inflammation disease

    The diagnostic utility of fluorine-18 2-deoxy-D-glucose positron emission tomography (18F-FDG PET) for the non-invasive differentiation of focal lung lesions originated from cancer or inflammation disease by combined visual image interpretation and semi-quantitative uptake value analysis has been documented. In general, Standardized Uptake Value (SUV) is used to diagnose lung disease. But SUV dose not contain dynamic information of lung tissue for the glucose. Therefore, this study was undertaken to hypothesis that analysis of dynamic kinetics of focal lung lesions base on 18F-FDG PET may more accurately determine the lung disease. So we compared Time Activity Curve (TAC), Standardized Uptake Value-Dynamic Curve (SUV-DC) graph pattern with Glucose Metabolic Rate (MRGlu) from Patlak analysis. With lung disease, 17 patients were examined. They were injected with 18F-FDG over 30-s into peripheral vein while acquisition of the serial transaxial tomographic images were started. For acquisition protocol, we used twelve 10-s, four 30-s, sixteen 60-s, five 300-s and one 900-s frame for 60 mins. Its images were analyzed by visual interpretation TAC, SUV-DC and a kinetic analysis (Patlak analysis). The latter was based on region of interest (ROIs) which were drawn with the lung disease shape. Each optimized patterns were compared with itself. In TAC patterns, it hard to observe cancer type with inflammation disease in early pool blood area but over the time cancer type slope more remarkably increased than inflammation disease. SUV-DC was similar to TAC pattern. In the result of Patlak analysis, In time activity curve of aorta, even though inflammation disease showed higher blood activity than cancer, at first as time went by, blood activity of inflammation disease became the lowest. However, in time activity curve of tissue, cancer had the highest uptake and inflammation disease was in the middle. Through the examination, TAC and SUV-DC could approached the results that lung

  5. 18F-FDG PET/CT在乳腺癌术后肿瘤标志物升高中的价值%THE VALUE OF 18F-FDG PET/CT IN MONITORING PATIENTS WITH INCREASED TUMOR MAKERS AFTER BREAST CANCER SURGERY

    郭佳; 陈跃

    2011-01-01

    [目的]探讨18F-脱氧葡萄糖(Fluorine-18 fluorodeoxyglucose,FDG)正电子发射计算机断层显像(Positron Emission Computer Tomography,PET/CT)在乳腺癌术后肿瘤标志物(CA153,CA125,CEA)升高患者中的应用价值.[方法]对22例乳腺癌术后伴肿瘤标志物升高的患者临床资料进行回顾性分析,18F-FDG PET/CT全身显像探测有无复发或/和转移灶.[结果]18F-FDG PET/CT诊断阳性11例,其中1例经针吸病理证实为假阳性;18F-FDG PET/CT诊断阴性11例,经随访证实为真阴性.18F-FDG PET/CT诊断乳腺癌转移的灵敏度100%(10/10),特异性91.67%(11/12),阳性预测值90.91%(10/11),阴性预测值100%(11/11).[结论]18F-FDG PET/CT显像能可靠地鉴别肿瘤标志物升高的乳腺癌术后患者有无转移或复发,准确探测复发()转移灶,改变治疗方案,是其他影像学方法和肿瘤标志物监测的重要补充.%[Objective] To evaluate the value of 18F-FDG PET/CT in monitoring patients with increased tumor makers after breast cancer surgery. [Methods] 22 patients underwent chemoradiotherapy after operation with increased tumor makers (one or two or three) were performed 18F-FDG PET/CT for monitoring recurrence or metastasis. Finally, the results of PET/CT imaging were proved by pathology and clinical follow-up. The duration of the clinical follow-up varied from 3 months to 7 months. [Results] 18F-FDG PET/CT diagnosed 11 positive, but one of the 11 was proven as false positive by needle sampling. 18F-FDG PET/CT diagnosed the other 11 negative which were proven true negative by follow-up. The sensitivity, specificity, positive predictive value and negative predictive value obtained by 18F-FDG PET/CT were 100% (10/10), 91.67% (11/12), 90.91% (10/11) and 100% (11/11), respectively. [Conclusion] I8F-FDG PET/CT imaging can reliably identify and detect recurrences or metastasis in breast cancer patients with increased tumor makers, change treatment plans. It can be the critical supplement

  6. The role of diffusion-weighted MRI and 18F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: A systematic review

    After neoadjuvant radiochemotherapy (RCT) for locally advanced rectal cancer, 15–27% of the patients experience a pathological complete response (pCR). This observation raises the question as to whether invasive surgery could be avoided in a selected cohort of patients who obtain a clinical complete response after preoperative RCT. In this respect, there has been growing interest in functional imaging techniques to improve clinical response assessment. This systematic review focuses on the role of diffusion-weighted imaging (DWI) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in the prediction of pCR after RCT for rectal cancer. A total of 14 publications on DWI and 25 on 18F-FDG PET/CT were retrieved. Pooled analysis of individual patient data shows both imaging modalities have a low positive predictive value in the prediction of pCR (mean PPV of 54% and 39% for DWI- and 18F-FDG PET/CT-based parameters respectively). Especially pre-RCT imaging is unable to predict pCR with overall accuracies of 68–72% for DWI and 44% for 18F-FDG PET/CT. Qualitative DWI assessment 5–10 weeks after the end of RCT may outperform apparent diffusion coefficient (ADC)-based DWI-parameters (overall accuracy of 87% vs. 74–78%). Although few data are available, early changes in FDG-uptake seem promising in the prediction of pCR and the role of 18F-FDG PET/CT during RCT should be further investigated. Quantitative and qualitative 18F-FDG PET/CT measurements are equally effective in the assessment of pCR after RCT. The major strength of DWI and 18F-FDG PET/CT lies in the identification of non-responders who are not candidates for organ preservation. Up to now, DWI and 18F-FDG PET/CT are not accurate enough to safely select patients for organ-sparing strategies. Future research must focus on the integration of functional imaging with clinical data and molecular biomarkers

  7. Initial clinical results of simultaneous {sup 18}F-FDG PET/MRI in comparison to {sup 18}F-FDG PET/CT in patients with head and neck cancer

    Kubiessa, K.; Gawlitza, M.; Kuehn, A.; Fuchs, J.; Kahn, T.; Stumpp, P. [University Hospital of Leipzig, Department of Diagnostic and Interventional Radiology, Leipzig (Germany); Purz, S.; Steinhoff, K.G.; Sabri, O.; Kluge, R. [University Hospital of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Boehm, A. [University Hospital of Leipzig, ENT Department, Leipzig (Germany)

    2014-04-15

    The aim of this study was to evaluate the diagnostic capability of simultaneous {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/MRI compared to {sup 18}F-FDG PET/CT as well as their single components in head and neck cancer patients. In a prospective study 17 patients underwent {sup 18}F-FDG PET/CT for staging or follow-up and an additional {sup 18}F-FDG PET/MRI scan with whole-body imaging and dedicated examination of the neck. MRI, CT and PET images as well as PET/MRI and PET/CT examinations were evaluated independently and in a blinded fashion by two reader groups. Results were compared with the reference standard (final diagnosis determined in consensus using all available data including histology and follow-up). Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. A total of 23 malignant tumours were found with the reference standard. PET/CT showed a sensitivity of 82.7 %, a specificity of 87.3 %, a PPV of 73.2 % and a NPV of 92.4 %. Corresponding values for PET/MRI were 80.5, 88.2, 75.6 and 92.5 %. No statistically significant difference in diagnostic capability could be found between PET/CT and PET/MRI. Evaluation of the PET part from PET/CT revealed highest sensitivity of 95.7 %, and MRI showed best specificity of 96.4 %. There was a high inter-rater agreement in all modalities (Cohen's kappa 0.61-0.82). PET/MRI of patients with head and neck cancer yielded good diagnostic capability, similar to PET/CT. Further studies on larger cohorts to prove these first results seem justified. (orig.)

  8. The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease

    This study was performed to investigate the value of18F-fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Twenty-six consecutive patients (21 females, 5 males; median age - years, range 17-86 years) with giant cell arteritis or Takayasu's arteritis were examined with [18F]FDG-PET. Follow-up scans were performed in four patients. Twenty-six age- and gender-matched controls (21 females, 5 males; median age 71 years, range 17-86 years) were included. The severity of large-vessel [18F]FDG uptake was visually graded using a four-point scale. C-reactive protein (CRP) and the erythrocyte sedimentation rate (ESR) were measured and correlated with [18F]FDG-PET results by logistic regression. [18F]FDG-PET revealed pathological findings in 18 of 26 patients. Three scans were categorised as grade I, 12 as grade II and 3 as grade III arteritis. Visual grade was significantly correlated with both CRP and ESR levels (p=0.002 and 0.007 respectively; grade I: CRP 4.0 mg/l, ESR 6 mm/h; grade II: CRP 37 mg/l, ESR 46 mm/h; grade III: CRP 172 mg/l, ESR 90 mm/h). Overall sensitivity was 60% (95% CI 40.6-77.3%), specificity 99.8% (95% CI 89.1-100%), positive predictive value 99.7% (95% CI 77-100%), negative predictive value 67.9% (95% CI 49.8-80.9%) and accuracy 78.6% (95% CI 65.6-88.4%). In patients presenting with a CRP 18F]FDG-PET is highly effective in assessing the activity and the extent of large-vessel vasculitis. Visual grading was validated as representing the severity of inflammation. Its use is simple and provides high specificity, while high sensitivity is achieved by scanning in the state of active inflammation. (orig.)

  9. Malaria masquerading as relapse of Hodgkin's lymphoma on contrast enhanced 18F-fluorodeoxyglucose positron emission tomography/computed tomography: A diagnostic dilemma

    18Flurodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is nowadays routinely used in management of lymphoma patients. We here present a case of Hodgkin's lymphoma which showed 18F-FDG avid splenomegaly on PET/CT done for clinically suspected relapse. Further evaluation by peripheral smear examination revealed malaria. The patient was then started on anti-malarial medications and follow-up PET/CT revealed resolution of hypermetabolic splenomegaly. This report highlights that in endemic regions malaria can cause 18F-FDG avid splenomegaly and might mimic relapse of lymphoma

  10. Prostate cancer with lytic bone metastases: 18F-fluorodeoxyglucose positron emission tomography-computed tomography for diagnosis and monitoring response to medical castration therapy

    Lytic bone metastases are rare in prostate cancer. We here present 18 fluorine fluorodeoxyglucose (18F-FDG) positron emission tomography computed tomography (PET-CT) images of a 67-year-old male patient with lytic metastases from prostate cancer. Repeat 18F-FDG PET-CT done 6 months later showed response to medical castration therapy. While the role of 18F-FDG PET-CT for sclerotic bone metastases in prostate cancer remains controversial, it appears to be useful for detection and response assessment of lytic prostate cancer metastases. (author)

  11. The use of molecular sieves to simulate hot lesions in (18)F-fluorodeoxyglucose--positron emission tomography imaging.

    Matheoud, R; Secco, C; Ridone, S; Inglese, E; Brambilla, M

    2008-04-21

    We investigated the use of a kind of zeolite, the Bowie chabazite, to produce radioactive sources of different shapes, dimensions and activity concentrations that can be used for lesion simulation in positron emission tomography (PET) imaging. The (18)F-fluorodeoxyglucose ((18)F-FDG) uptake of a group of 12 zeolites was studied as a function of their weight (120-1,520 mg) and of the activity concentration of the (18)F-FDG solution (1-37 MBq ml(-1)), using a multiple linear regression model. The reproducibility, homogeneity and stability over time of the (18)F-FDG uptake were assessed. The fit of the regression model is good (r(2) = 0.83). This relation allows the production of zeolites of a desired (18)F-FDG activity using knowledge of the concentration of the soaking solution and the weight of the zeolite. The reproducibility of the (18)F-FDG uptake after heating the zeolites is elevated (CV% = 3.68). The almost complete regeneration of the zeolites allows us to reuse them in successive experiments. The stability of the (18)F-FDG uptake on zeolites is far from ideal. When placed in a saline solution the 'activated' zeolites release the (18)F-FDG with an effective half-time of 53 min. The sealing of the zeolites in plastic film bags has been demonstrated to be effective in preventing any release of (18)F-FDG. These features, together with their variable dimensions and shapes, make them ideal (18)F-FDG sources with a fixed target-to-background ratio that can be placed anywhere in a phantom to study lesion detectability in PET imaging. PMID:18379022

  12. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia.

    Della Rosa, Pasquale Anthony; Cerami, Chiara; Gallivanone, Francesca; Prestia, Annapaola; Caroli, Anna; Castiglioni, Isabella; Gilardi, Maria Carla; Frisoni, Giovanni; Friston, Karl; Ashburner, John; Perani, Daniela

    2014-10-01

    [18F]-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) is a widely used diagnostic tool that can detect and quantify pathophysiology, as assessed through changes in cerebral glucose metabolism. [18F]-FDG PET scans can be analyzed using voxel-based statistical methods such as Statistical Parametric Mapping (SPM) that provide statistical maps of brain abnormalities in single patients. In order to perform SPM, a "spatial normalization" of an individual's PET scan is required to match a reference PET template. The PET template currently used for SPM normalization is based on [15O]-H2O images and does not resemble either the specific metabolic features of [18F]-FDG brain scans or the specific morphological characteristics of individual brains affected by neurodegeneration. Thus, our aim was to create a new [18F]-FDG PET aging and dementia-specific template for spatial normalization, based on images derived from both age-matched controls and patients. We hypothesized that this template would increase spatial normalization accuracy and thereby preserve crucial information for research and diagnostic purposes. We investigated the statistical sensitivity and registration accuracy of normalization procedures based on the standard and new template-at the single-subject and group level-independently for subjects with Mild Cognitive Impairment (MCI), probable Alzheimer's Disease (AD), Frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB). We found a significant statistical effect of the population-specific FDG template-based normalisation in key anatomical regions for each dementia subtype, suggesting that spatial normalization with the new template provides more accurate estimates of metabolic abnormalities for single-subject and group analysis, and therefore, a more effective diagnostic measure. PMID:24952892

  13. The association of 18F-FDG PET/CT parameters with survival in malignant pleural mesothelioma

    Malignant pleural mesothelioma (MPM) is a disease with poor prognosis despite multimodal therapy but there is variation in survival between patients. Prognostic information is therefore potentially valuable in managing patients, particularly in the context of clinical trials where patients could be stratified according to risk. Therefore we have evaluated the prognostic ability of parameters derived from baseline 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT). In order to determine the relationships between metabolic activity and prognosis we reviewed all 18F-FDG PET/CT scans used for pretreatment staging of MPM patients in our institution between January 2005 and December 2011 (n = 60) and measured standardised uptake values (SUV) including mean, maximum and peak values, metabolic tumour volume (MTV) and total lesion glycolysis (TLG). Overall survival (OS) or time to last censor was recorded, as well as histological subtypes. Median follow-up was 12.7 months (1.9-60.9) and median OS was 14.1 months (1.9-54.9). By univariable analysis histological subtype (p = 0.013), TLG (p = 0.024) and MTV (p = 0.038) were significantly associated with OS and SUVmax was borderline (p = 0.051). On multivariable analysis histological subtype and TLG were associated with OS but at borderline statistical significance (p = 0.060 and 0.058, respectively). No statistically significant differences in any PET parameters were found between the epithelioid and non-epithelioid histological subtypes. 18F-FDG PET/CT parameters that take into account functional volume (MTV, TLG) show significant associations with survival in patients with MPM before adjusting for histological subtype and are worthy of further evaluation to determine their ability to stratify patients in clinical trials. (orig.)

  14. The diagnostic value of [18F]-FDG-PET/CT in hematopoietic radiation toxicity. A Tibet minipig model

    This study was undertaken to assess the diagnostic value of 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography with computed tomography ([18F]-FDG-PET/CT) in the detection of radiation toxicity in normal bone marrow using Tibet minipigs as a model. Eighteen Tibet minipigs were caged in aseptic rooms and randomly divided into six groups. Five groups (n=3/group) were irradiated with single doses of 2, 5, 8, 11 and 14 Gy of total body irradiation (TBI) using an 8-MV X-ray linear accelerator. These pigs were evaluated with [18F]-FDG-PET/CT, and their marrow nucleated cells were counted. The data were initially collected at 6, 24 and 72 h after treatment and were then collected on Days 5-60 post-TBI at 5-day intervals. At 24 and 72 h post-TBI, marrow standardized uptake value (SUV) data showed a dose-dependent decrease in the radiation dose range from 2-8 Gy. Upon long-term observation, SUV and marrow nucleated cell number in the 11-Gy and 14-Gy groups showed a continuous and marked reduction throughout the entire time course, while Kaplan-Meier curves of survival showed low survival. In contrast, the SUVs in the 2-, 5- and 8-Gy groups showed early transient increases followed by a decline from approximately 72 h through Days 5-15 and then normalized or maintained low levels through the endpoint; marrow nucleated cell number and survival curves showed approximately the same trend and higher survival, respectively. Our findings suggest that [18F]-FDG-PET/CT may be helpful in quickly assessing the absorbed doses and predicting the prognosis in patients. (author)

  15. The association of {sup 18}F-FDG PET/CT parameters with survival in malignant pleural mesothelioma

    Klabatsa, Astero; Lang-Lazdunski, Loic [Guys and St Thomas' NHS Foundation Trust, Department of Thoracic Oncology, London (United Kingdom); Chicklore, Sugama; Barrington, Sally F.; Goh, Vicky [Kings College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Cook, Gary J.R. [Kings College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Kings College London, Clinical PET Centre, Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, London (United Kingdom)

    2014-02-15

    Malignant pleural mesothelioma (MPM) is a disease with poor prognosis despite multimodal therapy but there is variation in survival between patients. Prognostic information is therefore potentially valuable in managing patients, particularly in the context of clinical trials where patients could be stratified according to risk. Therefore we have evaluated the prognostic ability of parameters derived from baseline 2-[{sup 18}F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT). In order to determine the relationships between metabolic activity and prognosis we reviewed all {sup 18}F-FDG PET/CT scans used for pretreatment staging of MPM patients in our institution between January 2005 and December 2011 (n = 60) and measured standardised uptake values (SUV) including mean, maximum and peak values, metabolic tumour volume (MTV) and total lesion glycolysis (TLG). Overall survival (OS) or time to last censor was recorded, as well as histological subtypes. Median follow-up was 12.7 months (1.9-60.9) and median OS was 14.1 months (1.9-54.9). By univariable analysis histological subtype (p = 0.013), TLG (p = 0.024) and MTV (p = 0.038) were significantly associated with OS and SUV{sub max} was borderline (p = 0.051). On multivariable analysis histological subtype and TLG were associated with OS but at borderline statistical significance (p = 0.060 and 0.058, respectively). No statistically significant differences in any PET parameters were found between the epithelioid and non-epithelioid histological subtypes. {sup 18}F-FDG PET/CT parameters that take into account functional volume (MTV, TLG) show significant associations with survival in patients with MPM before adjusting for histological subtype and are worthy of further evaluation to determine their ability to stratify patients in clinical trials. (orig.)

  16. Assessment of aortitis by semiquantitative analysis of 180-min {sup 18}F-FDG PET/CT acquisition images

    Martinez-Rodriguez, Isabel [University of Cantabria, Department of Nuclear Medicine, Marques de Valdecilla University Hospital, Santander (Spain); Hospital Universitario Marques de Valdecilla, S. Medicina Nuclear, Santander (Spain); Martinez-Amador, N.; Banzo, I.; Quirce, R.; Jimenez-Bonilla, J.; Arcocha-Torres, M. de; Ibanez-Bravo, S.; Lavado-Perez, C.; Bravo-Ferrer, Z.; Carril, J.M. [University of Cantabria, Department of Nuclear Medicine, Marques de Valdecilla University Hospital, Santander (Spain); Blanco, R.; Gonzalez-Gay, M.A. [University of Cantabria, Department of Rheumatology, Marques de Valdecilla University Hospital, Santander (Spain)

    2014-12-15

    The aim of this study was to evaluate the contribution of semiquantitative analysis of 180-min {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images for the assessment of aortitis in cases of suspected large vessel vasculitis (LVV) and to establish a threshold index for application in the clinical setting. This prospective study included 43 patients (mean age 67.5 ± 12.9 years) with suspicion of LVV (25 with a final diagnosis of aortitis). {sup 18}F-FDG PET/CT scan was acquired 180 min after injection of 7 MBq/kg of {sup 18}F-FDG. A semiquantitative analysis was performed calculating the aortic wall maximum standardized uptake value (SUV{sub max}) (T), the lumen SUV{sub max} (B) and the target to background ratio (TBR). These results were also compared with those obtained in a control population. The mean aortic wall SUV{sub max} was 2.00 ± 0.62 for patients with aortitis and 1.45 ± 0.31 for patients without aortitis (p < 0.0001). The TBR was 1.66 ± 0.26 for patients with aortitis and 1.24 ± 0.08 for patients without aortitis (p < 0.0001). The differences were also statistically significant when the patients with aortitis and controls were compared. Receiver-operating characteristic (ROC) analysis revealed that the area under the curve was greater for the TBR than for the aortic wall SUV{sub max} (0.997 vs 0.871). The highest sensitivity and specificity was obtained for a TBR of 1.34 (sensitivity 100 %, specificity 94.4 %). Semiquantitative analysis of PET/CT images acquired 180 min after {sup 18}F-FDG injection and the TBR index of 1.34 show very high accuracy and, therefore, are strongly recommended for the diagnosis of aortitis in the clinical setting. (orig.)

  17. Double-phase 18F-FDG PET-CT for determination of pulmonary tuberculoma activity

    The aim of this study is to evaluate the potential role of double phase acquisition of 18F fluorodeoxyglucose (FDG) positron emission tomography (PET) for the differentiation of active pulmonary tuberculoma. A total of 25 consecutive patients with pulmonary tuberculoma were enrolled. PET/CT imaging was performed 60 (range 53-71) and 120 min (range 109-131) after injection of 18F-FDG. The intensity of 18F-FDG uptake by pulmonary lesions was assessed visually, and the intensity was scored with a four-point scale (grade 1: absent, grade 2: faint, grade 3: moderate, grade 4: intense). Active tuberculoma shows statistically significant higher values in maximal standardized uptake values SUVmaxE (active = 2.3 ± 0.75, inactive 0.79 ± 0.15), SUVmaxD (active = 2.48 ± 0.79, inactive = 0.75 ± 0.13), and %ΔSUVmax (active = 8.07 ± 7.77%, inactive = -3.83 ± 6.59) than those of inactive tuberculoma. When greater than or equal to visual grade 2 was used as the cutoff value, the sensitivity and specificity were 100 and 81.8%. When SUVmaxE 1.05 was used as the cutoff point, the sensitivity and specificity were 100 and 100%. When SUVmaxD 0.97 was used as the cutoff value, the sensitivity and specificity were 92.8 and 100%. When %ΔSUVmax 6.59 was used as the cutoff value, the sensitivity and specificity were 71.4 and 100%. The %ΔSUVmax was the potent predictor by logistic regression analysis. The ΔSUVmax is a potential predictor for activity of pulmonary tuberculoma. However, the diagnostic performances were similar between visual and quantitative analyses. The visual assessment may be sufficient for determination of pulmonary tuberculoma activity. Further studies are needed to confirm these results and improve statistical accuracy. (orig.)

  18. Improved quality control of [18F]FDG by HPLC with UV detection.

    Nakao, Ryuji; Ito, Takehito; Yamaguchi, Masatoshi; Suzuki, Kazutoshi

    2005-11-01

    A conventional high-performance liquid chromatographic (HPLC) method for the analysis of 2-fluoro-2-deoxy-d-glucose (FDG) and 2-deoxy-2-chloro-d-glucose (ClDG) in [18F]FDG preparations is described. This method was based on a postcolumn derivatization with 2-cyanoacetamide (2-CA) and UV detection. FDG and ClDG were separated on a normal-phase column using acetonitrile/water as the mobile phase. The eluate was mixed with 2-CA in sodium borate buffer solution at the outlet of a PTFE coil (10 m x 0.5 mm id) from the column, and the reaction was carried out at 100 degrees C during the passage through the coil. The UV absorbance of the resultant product was monitored at 276 nm. Under optimum conditions, the detection limits [signal-to-noise (S/N) ratio=3] for FDG and ClDG were 0.31 and 0.17 microg/ml for a 20-microl injection volume, respectively, and the linearity ranges were 0.5-100 microg/ml for both compounds. The intra- and interday reproducibilities were better than 2.2% [relative standard deviation (R.S.D.)]. This HPLC separation procedure is also useful for determining the radiochemical purity of [18F]FDG preparations since it allows the analysis of 2-[18F]fluoro-1,3,4,6-tetra-O-acetyl-d-glucose ([18F]TAG), partially hydrolyzed [18F]TAG and [18F]F-. This method can be used at many positron emission tomography (PET) facilities since it does not require an expensive, sophisticated electrochemical detector. PMID:16253817

  19. {sup 18}F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes

    Koo, Hye Ryoung [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Park, Jeong Seon [Hanyang University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kang, Keon Wook [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Cho, Nariya; Chang, Jung Min; Bae, Min Sun; Kim, Won Hwa; Lee, Su Hyun; Seo, Mirinae; Moon, Woo Kyung [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kim, Mi Young [Konkuk University Medical Center, Department of Radiology, Seoul (Korea, Republic of); Kim, Jin You [Pusan National University Hospital, Department of Radiology, Pusan (Korea, Republic of)

    2014-03-15

    To determine whether a correlation exists between maximum standardized uptake value (SUV{sub max}) on {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) and the subtypes of breast cancer. This retrospective study involved 548 patients (mean age 51.6 years, range 21-81 years) with 552 index breast cancers (mean size 2.57 cm, range 1.0-14.5 cm). The correlation between {sup 18}F-FDG uptake in PET/CT, expressed as SUV{sub max}, and immunohistochemically defined subtypes (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive and triple negative) was analyzed. The mean SUV{sub max} value of the 552 tumours was 6.07 ± 4.63 (range 0.9-32.8). The subtypes of the 552 tumours were 334 (60 %) luminal A, 66 (12 %) luminal B, 60 (11 %) HER2 positive and 92 (17 %) triple negative, for which the mean SUV{sub max} values were 4.69 ± 3.45, 6.51 ± 4.18, 7.44 ± 4.73 and 9.83 ± 6.03, respectively. In a multivariate regression analysis, triple-negative and HER2-positive tumours had 1.67-fold (P < 0.001) and 1.27-fold (P = 0.009) higher SUV{sub max} values, respectively, than luminal A tumours after adjustment for invasive tumour size, lymph node involvement status and histologic grade. FDG uptake was independently associated with subtypes of invasive breast cancer. Triple-negative and HER2-positive breast cancers showed higher SUV{sub max} values than luminal A tumours. circle {sup 18} F-FDG PET demonstrates increased tissue glucose metabolism, a hallmark of cancers. (orig.)

  20. Comparison of 131I whole-body imaging, 131I SPECT/CT, and 18F-FDG PET/CT in the detection of metastatic thyroid cancer

    The aim of this study was to compare 131I whole-body scintigraphy (WBS), WBS with 131I single photon emission computed tomography/computed tomography (SPECT/CT), and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the detection of distant metastases of differentiated thyroid cancer (DTC). A total of 140 patients with 258 foci of suspected distant metastases were evaluated. 131I WBS, 131I SPECT/CT, and 18F-FDG PET/CT images were interpreted separately. The final diagnosis was obtained from histopathologic study, serum thyroglobulin level, other imaging modalities, and/or clinical follow-up. Of the 140 patients with 258 foci, 46 patients with 166 foci were diagnosed as positive for distant metastasis. The sensitivity, specificity, and diagnostic accuracy of each imaging modality were 65, 55, and 59%, respectively, for 131I WBS; 65, 95, and 85% for 131I SPECT/CT, respectively; and 61, 98, and 86%, respectively, for 18F-FDG PET/CT in patient-based analyses. Lesion-based analyses demonstrated that both SPECT/CT and PET/CT were superior to WBS (p18F-FDG PET/CT presented the highest diagnostic performance in patients who underwent multiple challenges of radioiodine therapy. (orig.)

  1. Assessing the role of 18F-FDG PET and 18F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies: a systematic review and meta-analysis

    Twelve years ago a meta-analysis evaluated the diagnostic performance of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in assessing musculoskeletal soft tissue lesions (MsSTL). Currently, PET/CT has substituted PET imaging; however, there has not been any published meta-analysis on the use of PET/CT or a comparison of PET/CT with PET in the diagnosis of MsSTL. Therefore, we conducted a meta-analysis to identify the current diagnostic performance of 18F-FDG PET/CT and determine if there is added value when compared to PET. A systematic review of English articles was conducted, and MEDLINE PubMed, the Cochrane Library, and Embase were searched from 1996 to March 2015. Studies exploring the diagnostic accuracy of 18F-FDG PET/CT (or dedicated PET) compared to histopathology in patients with MsSTL undergoing investigation for malignancy were included. Our meta-analysis included 14 articles composed of 755 patients with 757 soft tissue lesions. There were 451 (60 %) malignant tumors and 306 benign lesions. The 18F-FDG PET/CT (and dedicated PET) mean sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for diagnosing MsSTL were 0.96 (0.90, 1.00), 0.77 (0.67, 0.86), 0.88 (0.85, 0.91), 0.86 (0.78, 0.94), and 0.91 (0.83, 0.99), respectively. The posterior mean (95 % highest posterior density interval) for the AUC was 0.92 (0.88, 0.96). PET/CT had higher specificity, accuracy, and positive predictive value when compared to a dedicated PET (0.85, 0.89, and 0.91 vs 0.71, 0.85, and 0.82, respectively). 18F-FDG PET/CT and dedicated PET are both highly accurate in the diagnosis of MsSTL. PET/CT is more accurate and specific and has a higher positive predictive value than PET. (orig.)

  2. Assessing the role of {sup 18}F-FDG PET and {sup 18}F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies: a systematic review and meta-analysis

    Etchebehere, Elba C. [The University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States); Sirio Libanes Hospital, Department of Nuclear Medicine, Sao Paulo (Brazil); Hobbs, Brian P.; Milton, Denai R. [The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, TX (United States); Malawi, Osama [The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX (United States); Patel, Shreyaskumar; Benjamin, Robert S. [The University of Texas MD Anderson Cancer Center, Department of Sarcoma Medical Oncology, Houston, TX (United States); Macapinlac, Homer A. [The University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Houston, TX (United States)

    2016-05-15

    Twelve years ago a meta-analysis evaluated the diagnostic performance of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in assessing musculoskeletal soft tissue lesions (MsSTL). Currently, PET/CT has substituted PET imaging; however, there has not been any published meta-analysis on the use of PET/CT or a comparison of PET/CT with PET in the diagnosis of MsSTL. Therefore, we conducted a meta-analysis to identify the current diagnostic performance of {sup 18}F-FDG PET/CT and determine if there is added value when compared to PET. A systematic review of English articles was conducted, and MEDLINE PubMed, the Cochrane Library, and Embase were searched from 1996 to March 2015. Studies exploring the diagnostic accuracy of {sup 18}F-FDG PET/CT (or dedicated PET) compared to histopathology in patients with MsSTL undergoing investigation for malignancy were included. Our meta-analysis included 14 articles composed of 755 patients with 757 soft tissue lesions. There were 451 (60 %) malignant tumors and 306 benign lesions. The {sup 18}F-FDG PET/CT (and dedicated PET) mean sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for diagnosing MsSTL were 0.96 (0.90, 1.00), 0.77 (0.67, 0.86), 0.88 (0.85, 0.91), 0.86 (0.78, 0.94), and 0.91 (0.83, 0.99), respectively. The posterior mean (95 % highest posterior density interval) for the AUC was 0.92 (0.88, 0.96). PET/CT had higher specificity, accuracy, and positive predictive value when compared to a dedicated PET (0.85, 0.89, and 0.91 vs 0.71, 0.85, and 0.82, respectively). {sup 18}F-FDG PET/CT and dedicated PET are both highly accurate in the diagnosis of MsSTL. PET/CT is more accurate and specific and has a higher positive predictive value than PET. (orig.)

  3. Production And Quality Control Of Radiopharmaceutical 18F-FDG

    18F-FDG is a radiopharmaceutical for imaging diagnosis with PET/CT in Nuclear Medicine. Criteria of injection pharmaceuticals are the highest standards. So, quality assurance and quality control must be followed very strictly. The selection of the procedure for 18F-FDG has based on several criteria: high chemical efficiency, short synthesis time, toxic component free and etc. The quality control of 18F-FDG consist many fields such as: nuclear physic (nuclear purity), radiochemistry (radionuclear purity, radiochemical purity), chemistry (chemical purity), radiation measurement (half life), microbiology (pyrogen, endotoxin), etc. which is following USP, BP or EP. (author)

  4. Estimation of patient radiation dose from whole body 18F- FDG PET/CT examination in cancer imaging: a preliminary study

    This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques

  5. Pulmonary Mycobacterium kansasii Infection Mimicking Malignancy on the 18F-FDG PET Scan in a Patient Receiving Etanercept: A Case Report and Literature Review

    Zaw Min

    2014-01-01

    Full Text Available A 66-year-old male presented with chest pain, malaise, generalized weakness, and weight loss. He had been receiving etanercept injection for rheumatoid arthritis. Chest X-ray revealed a right upper lobe mass. Chest computed tomography (CT showed a right apical mass, highly suggestive of a Pancoast tumor. The thoracic fluorine-18 fluoro-deoxy-glucose (18F-FDG positron emission tomography (PET scan demonstrated significantly high metabolic pulmonary lesions with the standardized uptake value (SUV of 12.5, consistent with lung cancer. The patient underwent bronchoscopy and bronchoalveolar lavage (BAL. BAL cytology was negative for malignant cells. BAL acid fast bacilli (AFB smears were positive, and Mycobacterium kansasii was eventually isolated. He received a 12-month course of rifampin, isoniazid, and ethambutol. Interval resolution of pulmonary lesions was noted on follow-up serial CT chest studies. There has been increasing incidence of nontuberculous mycobacterial infections reported in patients treated with the antitumor necrosis factor-alpha (anti-TNF-alpha agents. Infectious foci have an increased glucose metabolism which potentially causes a high FDG uptake on the 18F-FDG PET scan, leading to undue anxiety and cost to the patients. This is the first reported case of pulmonary M. kansasii infection with a positive thoracic 18F-FDG PET study mimicking malignancy in a patient on etanercept.

  6. 18F-FDG PET analysis of schwannoma: increase of SUVmax in the delayed scan is correlated with elevated VEGF/VPF expression in the tumors

    In order to clarify the increased 2-deoxy-2-fluoro-18F-d-glucopyranose (18F-FDG) accumulation in schwannoma by positron emission tomography (PET) analysis, immunohistochemical analysis for the factors involved in glucose transportation and vascular formation was performed. Twenty-six patients with schwannoma (13 men and 13 women) with ages ranging from 27 to 75 years, who received whole body 18F-FDG PET scan, were enrolled for the present study. The retention index (RI) was calculated by dividing the increase in the standardized uptake value (SUVmax) at the delayed scan by the SUVmax in the early scan. SUVmax and RI were compared with the histologic variables, including the expression of glucose transporters 1 and 3, hexokinase II, vascular endothelial growth factor/vascular permeability factor (VEGF/VPF), and microvascular density shown by CD31 immunohistochemistry. Mean SUVmax values in the early and delayed scans were 2.64±1.47 and 2.71±1.57 (mean ± SD), respectively. RI was -2.5±21 (percentage). SUVmax showed a positive correlation with the tumor size (tumor size 5 cm, 3.95±1.89; p18F-FDG accumulation in schwannoma. (orig.)

  7. Prognostic value of volumetric parameters of 18F-FDG PET in non-small-cell lung cancer: a meta-analysis

    We conducted a comprehensive systematic review of the literature on volumetric parameters from 18F-FDG PET and a meta-analysis of the prognostic value of metabolic tumour volume (MTV) and total lesion glycolysis (TLG) in patients with lung cancer. A systematic search of MEDLINE and EMBASE was performed using the keywords ''positron emission tomography (PET)'', ''lung cancer'', and ''volume''. Inclusion criteria were: 18F-FDG PET used as an initial imaging tool; studies limited to non-small-cell lung cancer (NSCLC); volume measurement of lung cancer; patients who had not undergone surgery, chemotherapy, or radiotherapy before the PET scan; and studies that reported survival data. Event-free survival and overall survival were evaluated as outcomes. The impact of MTV and TLG on survival was measured in terms of the hazard ratio (HR) effect size. Data from each study were analysed using Review Manager 5.2. Thirteen eligible studies including 1,581 patients were analysed. Patients with high MTV showed a worse prognosis with an HR of 2.71 (95 % CI 1.82 - 4.02, p 18F-FDG PET are significant prognostic factors for outcome in patients with NSCLC. Patients with a high MTV or TLG are at higher risk of adverse events and death. MTV and TLG were significant prognostic factors in patients with TNM stage I/II and stage III/IV NSCLC. (orig.)

  8. Assessment of the usefulness of the standardized uptake values and the radioactivity levels for the preoperative diagnosis of thyroid cancer measured by using 18F-FDG PET/CT dual-time-point imaging

    Lee, Hyeon-Guck; Hong, Seong-Jong; Cho, Jae-Hwan; Han, Man-Seok; Kim, Tae-Hyung; Lee, Ik-Han

    2013-02-01

    The purpose of this study was to assess and compare the changes in the SUV (standardized uptake value), the 18F-FDG (18F-fluorodeoxyglucose) uptake pattern, and the radioactivity level for the diagnosis of thyroid cancer via dual-time-point 18F-FDG PET/CT (positron emission tomographycomputed tomography) imaging. Moreover, the study aimed to verify the usefulness and significance of SUV values and radioactivity levels to discriminate tumor malignancy. A retrospective analysis was performed on 40 patients who received 18F-FDG PET/CT for thyroid cancer as a primary tumor. To set the background, we compared changes in values by calculating the dispersion of scattered rays in the neck area and the lung apex, and by comparing the mean and SD (standard deviation) values of the maxSUV and the radioactivity levels. According to the statistical analysis of the changes in 18F-FDG uptake for the diagnosis of thyroid cancer, a high similarity was observed with the coefficient of determination being R2 = 0.939, in the SUVs and the radioactivity levels. Moreover, similar results were observed in the assessment of tumor malignancy using dual-time-point. The quantitative analysis method for assessing tumor malignancy using radioactivity levels was neither specific nor discriminative compared to the semi-quantitative analysis method.

  9. Induction and repair of DNA double-strand breaks in blood lymphocytes of patients undergoing 18F-FDG PET/CT examinations

    The purpose of this study was to evaluate DNA double-strand breaks (DSBs) in blood lymphocytes of patients undergoing positron emission tomography (PET)/CT using γ-H2AX immunofluorescence microscopy and to differentiate between 18F-fluorodeoxyglucose (FDG) and CT-induced DNA lesions. This study was approved by the local Ethics Committee and complies with Health Insurance Portability and Accountability Act (HIPAA) requirements. After written informed consent was obtained, 33 patients underwent whole-body 18F-FDG PET/CT (3 MBq/kg body weight, 170/100 reference mAs at 120 kV). The FDG PET and CT portions were performed as an initial CT immediately followed by the PET. Blood samples were obtained before, at various time points following 18F-FDG application and up to 24 h after the CT scan. Distinct foci representing DSBs were quantified in isolated lymphocytes using fluorescence microscopy after staining against the phosphorylated histone variant γ-H2AX. The DSB values at the various time points were significantly different (p 18F-FDG administration (median excess foci 0.11/cell, range 0.06-0.27/cell) and 5 min after CT (median excess foci 0.17/cell, range 0.05-0.54/cell). A significant correlation between CT-induced DSBs and dose length product was obtained (ρ = 0.898, p 18F-FDG injection and 5 min after CT. The radionuclide contributes considerably to the total DSB induction in this setting. (orig.)

  10. Prognostic significance of standardized uptake value on preoperative {sup 18}F-FDG PET/CT in patients with ampullary adenocarcinoma

    Choi, Hye Jin [Yonsei University College of Medicine, Division of Oncology, Department of Internal Medicine, Seoul (Korea, Republic of); Kang, Chang Moo; Lee, Woo Jung [Yonsei University College of Medicine, Division of Hepatobiliary and Pancreas, Department of Surgery, Seoul (Korea, Republic of); Jo, Kwanhyeong; Lee, Jong Doo [Yonsei University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Lee, Jae-Hoon [Yonsei University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Yonsei University College of Medicine, Department of Nuclear Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Ryu, Young Hoon [Yonsei University College of Medicine, Department of Nuclear Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of)

    2015-05-01

    The purpose of this study was to investigate the prognostic value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with ampullary adenocarcinoma (AAC) after curative surgical resection. Fifty-two patients with AAC who had undergone {sup 18}F-FDG PET/CT and subsequent curative resections were retrospectively enrolled. The maximum standardized uptake value (SUV{sub max}) and tumor to background ratio (TBR) were measured on {sup 18}F-FDG PET/CT in all patients. The prognostic significances of PET/CT parameters and clinicopathologic factors for recurrence-free survival (RFS) and overall survival (OS) were evaluated by univariate and multivariate analyses. Of the 52 patients, 19 (36.5 %) experienced tumor recurrence during the follow-up period and 18 (35.8 %) died. The 3-year RFS and OS were 62.3 and 61.5 %, respectively. Preoperative CA19-9 level, tumor differentiation, presence of lymph node metastasis, SUV{sub max}, and TBR were significant prognostic factors for both RFS and OS (p < 0.05) on univariate analyses, and patient age showed significance only for predicting RFS (p < 0.05). On multivariate analyses, SUV{sub max} and TBR were independent prognostic factors for RFS, and tumor differentiation, SUV{sub max}, and TBR were independent prognostic factors for OS. SUV{sub max} and TBR on preoperative {sup 18}F-FDG PET/CT are independent prognostic factors for predicting RFS and OS in patients with AAC; patients with high SUV{sub max} (>4.80) or TBR (>1.75) had poor survival outcomes. The role of and indications for adjuvant therapy after curative resection of AAC are still unclear. {sup 18}F-FDG uptake in the primary tumor could provide additive prognostic information for the decision-making process regarding adjuvant therapy. (orig.)

  11. Comparison of 18F-FDG PET/CT with bone scintigraphy for detection of bone metastasis: a meta-analysis

    Background. The skeleton is one of the favorable sites for the metastasis of almost all human malignant neoplasms. An accurate diagnosis of bone metastasis is crucial for the patient's staging and management. Purpose. To investigate and compare diagnostic performance of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) and bone scintigraphy (BS) for detection of bone metastasis in malignancies using meta-analysis. Material and Methods. PubMed (Medline included) was searched for relevant articles. We assessed the methodological quality with Quality Assessment of Diagnosis Accuracy Studies (QUADAS) score tool, and used statistical software to obtain pooled estimates of sensitivity, specificity, diagnostic odds ratio (DOR), and summary receiver-operating characteristic (SROC) curve. Results. Six studies met inclusion criteria. For 18F-FDG PET/CT, the pooled sensitivity and specificity were 0.934 and 0.975, respectively. The pooled positive likelihood ratio (LR+), negative likelihood ratio (LR-) and diagnostic odds ratio (DOR) were 34.990, 0.068 and 559.02, respectively. The area under the SROC curve was 0.9854. For BS, the pooled sensitivity, specificity, LR+ , LR- and DOR were 0.706 (0.642-0.764), 0.911 (0.896-0.926), 13.982 (2.419-80.817), 0.319 (0.143-0.712), and 60.420 (21.393-170.64), respectively. The area under the SROC curve was 0.9386. Conclusion. The results indicate that 18F-FDG PET/CT do have both higher sensitivity and specificity than bone scintigraphy for detecting metastatic bone tumor. However, further research is needed to evaluate the diagnostic performance of 18F-FDG PET/CT and BS in each common malignancy

  12. Virtual 3-D {sup 18}F-FDG PET/CT panendoscopy for assessment of the upper airways of head and neck cancer patients: a feasibility study

    Buchbender, Christian; Heusner, Till A. [University Duesseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Duesseldorf (Germany); University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Treffert, Jon [Siemens Health Care, Molecular Imaging, Knoxville, TN (United States); Lehnerdt, Goetz; Mattheis, Stefan [University Duisburg-Essen, Medical Faculty, Department of Otorhinolaryngology, Essen (Germany); Geiger, Bernhard [Siemens Corporate Research Inc., Princeton, NJ (United States); Bockisch, Andreas [University Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Forsting, Michael [University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Antoch, Gerald [University Duesseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Duesseldorf (Germany)

    2012-09-15

    The aim of this study was to evaluate whether a virtual 3-D {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT panendoscopy is feasible and can be used for noninvasive imaging of the upper airways and pharyngeal/laryngeal tumours. From {sup 18}F-FDG PET/CT data sets of 40 patients (29 men, 11 women; age 61 {+-} 9 years) with pharyngeal or laryngeal malignancies virtual 3-D {sup 18}F-FDG PET/CT panendoscopies were reconstructed and the image processing time was measured. The feasibility of assessing the oral cavity, nasopharynx, tongue base, soft palate, pharyngeal tonsils, epiglottis, aryepiglottic folds, piriform sinus, postcricoid space, glottis, subglottis, trachea, bronchi and oesophagus and of detecting primary tumours was tested. Results of fibre-optic bronchoscopy and histology served as the reference standard. The nasopharynx, tongue base, soft palate, pharyngeal tonsils, epiglottis, subglottis and the tracheobronchial tree were accessible in all 40, and the aryepiglottic folds, posterior hypopharyngeal wall, postcricoid space, piriform sinus, glottis, oral cavity and oesophagus in 37, 37, 37, 37, 33, 16 and 0 patients, respectively. In all 12 patients with restricted fibre-optic evaluation due to being primarily intubated, the subglottis was accessible via virtual panendoscopy. The primary tumour was depicted in 36 of 40 patients (90 %). The mean processing time for virtual {sup 18}F-FDG PET/CT panendoscopies was 145 {+-} 98 s. Virtual {sup 18}F-FDG PET/CT panendoscopy of the upper airways is technically feasible and can detect pharyngeal and laryngeal malignancies. This new tool can aid in the complete evaluation of the subglottic space in intubated patients and may be used for planning optical panendoscopies, biopsies and surgery in the future. (orig.)

  13. 18F-FDG PET/CT for detection and localization of residual or recurrent disease in patients with multiple myeloma after stem cell transplantation

    The aim of the study was to determine the diagnostic performance of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT for the detection and localization of residual or recurrent disease in patients with multiple myeloma (MM) after stem cell transplantation. A total of 197 whole-body 18F-FDG PET/CT scans were performed in 99 patients with MM at different time points in the course of disease after autologous or allogeneic stem cell transplantation. Post-transplant PET/CT scans and clinical remission status as determined by the clinical gold standard (Uniform Response Criteria) were analysed and compared. A total of 576 focal osseous and extramedullary lesions were detected in 79 scans. Additional diffuse bone marrow involvement was detected in 17 patients. 18F-FDG PET/CT had a sensitivity of 54.6%, a specificity of 82.1%, a positive predictive value of 82.3%, a negative predictive value of 54.2% and an overall accuracy of 65.5%. The sensitivity of 18F-FDG PET/CT was shown to depend on the disease category according to the Uniform Response Criteria for myeloma. In patients with MM in the post-transplant setting, 18F-FDG PET/CT may (1) contribute to the detection and localization of disease, (2) provide information about the extent of distinct myeloma manifestations and the total disease burden and (3) add information about the metabolic activity of disease, but (4) has substantially lower sensitivity for this purpose compared to the pretreatment setting. (orig.)

  14. A pilot study of changes in (18)F-FDG uptake, calcification and global metabolic activity of the aorta with aging.

    Bural, Gonca G; Torigian, Drew A; Botvinick, Elias; Houseni, Mohamed; Basu, Sandip; Chen, Wengen; Alavi, Abass

    2009-01-01

    Our aim was to quantify changes in the inflammatory and calcific components of atherosclerosis in the aortic wall using fluoro-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (18)F-FDGPET and contrast enhanced computerized tomography (CECT) with increasing age. Twelve subjects, 8 men and 4 women aged from 21-80 years who had both (18)F-FDG-PET and CECT of the chest and abdomen were included in this study. Subjects were grouped into three according to age. (18)F-FDG uptake in four segments of the aorta was measured. Using CECT images, aortic segmental wall volumes were measured. Wall calcification volume in each aortic segment was also measured via adaptation of a coronary artery calcium-scoring program to the aorta. Calcification volumes were then subtracted from aortic wall volumes. Each net segmental aortic wall volume was then multiplied by the accompanying mean SUV of the segment to calculate global metabolic activity (GMA) for each aortic segment. Our results showed that in each aortic wall segment, mean SUV, wall volumes, wall calcification volumes, and GMA statistically significantly increased with age. In conclusion, (18)F-FDG uptake, wall volume, wall calcification volume, and GMA in the aorta increase with aging. The (18)F-FDG uptake represents the early inflammatory component of the atherosclerotic process, whereas calcification generally represents a later and irreversible stage of the disease. Measurement and combination of PET and CECT parameters to calculate GMA may allow for optimal morphologic and functional noninvasive quantitative assessment of global aortic atherosclerotic disease. PMID:19675864

  15. {sup 18}F-FDG PET/CT for detection and localization of residual or recurrent disease in patients with multiple myeloma after stem cell transplantation

    Derlin, Thorsten; Wisotzki, Christian; Klutmann, Susanne [University Medical Center Hamburg-Eppendorf, Department of Nuclear Medicine, Hamburg (Germany); Weber, Christoph; Habermann, Christian R.; Herrmann, Jochen [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Ayuk, Francis; Wolschke, Christine; Kroeger, Nicolaus [University Medical Center Hamburg-Eppendorf, Clinic for Stem Cell Transplantation, Hamburg (Germany)

    2012-03-15

    The aim of the study was to determine the diagnostic performance of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT for the detection and localization of residual or recurrent disease in patients with multiple myeloma (MM) after stem cell transplantation. A total of 197 whole-body {sup 18}F-FDG PET/CT scans were performed in 99 patients with MM at different time points in the course of disease after autologous or allogeneic stem cell transplantation. Post-transplant PET/CT scans and clinical remission status as determined by the clinical gold standard (Uniform Response Criteria) were analysed and compared. A total of 576 focal osseous and extramedullary lesions were detected in 79 scans. Additional diffuse bone marrow involvement was detected in 17 patients. {sup 18}F-FDG PET/CT had a sensitivity of 54.6%, a specificity of 82.1%, a positive predictive value of 82.3%, a negative predictive value of 54.2% and an overall accuracy of 65.5%. The sensitivity of {sup 18}F-FDG PET/CT was shown to depend on the disease category according to the Uniform Response Criteria for myeloma. In patients with MM in the post-transplant setting, {sup 18}F-FDG PET/CT may (1) contribute to the detection and localization of disease, (2) provide information about the extent of distinct myeloma manifestations and the total disease burden and (3) add information about the metabolic activity of disease, but (4) has substantially lower sensitivity for this purpose compared to the pretreatment setting. (orig.)

  16. Virtual 3-D 18F-FDG PET/CT panendoscopy for assessment of the upper airways of head and neck cancer patients: a feasibility study

    The aim of this study was to evaluate whether a virtual 3-D 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT panendoscopy is feasible and can be used for noninvasive imaging of the upper airways and pharyngeal/laryngeal tumours. From 18F-FDG PET/CT data sets of 40 patients (29 men, 11 women; age 61 ± 9 years) with pharyngeal or laryngeal malignancies virtual 3-D 18F-FDG PET/CT panendoscopies were reconstructed and the image processing time was measured. The feasibility of assessing the oral cavity, nasopharynx, tongue base, soft palate, pharyngeal tonsils, epiglottis, aryepiglottic folds, piriform sinus, postcricoid space, glottis, subglottis, trachea, bronchi and oesophagus and of detecting primary tumours was tested. Results of fibre-optic bronchoscopy and histology served as the reference standard. The nasopharynx, tongue base, soft palate, pharyngeal tonsils, epiglottis, subglottis and the tracheobronchial tree were accessible in all 40, and the aryepiglottic folds, posterior hypopharyngeal wall, postcricoid space, piriform sinus, glottis, oral cavity and oesophagus in 37, 37, 37, 37, 33, 16 and 0 patients, respectively. In all 12 patients with restricted fibre-optic evaluation due to being primarily intubated, the subglottis was accessible via virtual panendoscopy. The primary tumour was depicted in 36 of 40 patients (90 %). The mean processing time for virtual 18F-FDG PET/CT panendoscopies was 145 98 s. Virtual 18F-FDG PET/CT panendoscopy of the upper airways is technically feasible and can detect pharyngeal and laryngeal malignancies. This new tool can aid in the complete evaluation of the subglottic space in intubated patients and may be used for planning optical panendoscopies, biopsies and surgery in the future. (orig.)

  17. Evaluation of treatment response of cilengitide in an experimental model of breast cancer bone metastasis using dynamic PET with 18F-FDG.

    Cheng, Caixa; Komljenovic, Dorde; Pan, Leyun; Dimitrakopoulou-Strauss, Antonia; Strauss, Ludwig; Bäuerle, Tobias

    2011-01-01

    The purpose of this study was the assessment of the feasibility of dynamic positron emission tomography (PET) studies with fluorine-18 fluorodeoxyglucose ((18)F-FDG) to quantify effects of the cyclic Arg-Gly-Asp peptide cilengitide, which targets the ανβ 3 and ανβ 5 integrin receptors in rats with breast cancer bone metastases. Rats were inoculated with MDA-MB-231 breast cancer cells, followed by the development of lytic lesions in the hind leg. Rats with lytic lesions were treated with cilengitide five times weekly on a continuous basis from days 30 to 55 after tumor cell inoculation. Dynamic PET studies with (18)F-FDG were performed in untreated (n=9), controlled (n=4) and treated rats (n=6). The data were assessed using learning-machine two-tissue compartmental analysis. The (18)F-FDG kinetic parameters obtained by two-tissue compartmental model learning-machine showed significant differences when individual parameters were compared between the control group and treated animals. Quantitative assessment of the tracer kinetics and the application of classification analysis to the data provided us with evidence to identify those tumors that demonstrated effect of cilengitide treatment. The transport rate K1 and the phosphorylation rate k3 were significantly different (P=0.033 and 0.038, respectively). Classification analysis based on support vector machines ranking feature elimination of the combination of PET parameters revealed an overall accuracy of 80.0% between treated animals and the control group. We were able to identify 83.3% treated animals compared with the control group based on k2 and VB. In conclusion, the results revealed that cilengitide treatment of experimental breast cancer bone metastases had a significant therapeutic impact on (18)F-FDG kinetics. PMID:21512659

  18. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for {sup 18}F-FDG imaging of myocardial inflammation in mice

    Thackeray, James T.; Bankstahl, Jens P.; Bengel, Frank M. [Hanover Medical School, Department of Nuclear Medicine, Hanover (Germany); Wang, Yong; Wollert, Kai C. [Hanover Medical School, Department of Cardiology and Angiology, Hanover (Germany)

    2015-04-01

    Myocardial inflammation is an emerging target for novel therapies and thus for molecular imaging. Positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG) has been employed, but requires an approach for suppression of cardiomyocyte uptake. We tested clinically viable strategies for their suitability in mouse models in order to optimize preclinical imaging protocols. C57BL/6 mice (n = 56) underwent FDG PET under various conditions. In healthy animals, the effect of low-dose (5 units/kg) or high-dose (500 units/kg, 15 min prior) intravenous heparin, extended fasting (18 h) and the impact of conscious injection with limited, late application of isoflurane anaesthesia after 40 min of conscious uptake were examined in comparison to ketamine/xylazine anaesthesia. Conscious injection/uptake strategies were further evaluated at 3 days after permanent coronary artery occlusion. Under continuous isoflurane anaesthesia, neither heparin administration nor extended fasting significantly impacted myocardial {sup 18}F-FDG accumulation. Injection with 40 min uptake in awake mice resulted in a marked reduction of global myocardial {sup 18}F-FDG uptake compared to standard isoflurane anaesthesia (5.7 ± 1.1 %ID/g vs 30.2 ± 7.9 %ID/g, p < 0.01). Addition of heparin and fasting further reduced uptake compared to conscious injection alone (3.8 ± 1.5 %ID/g, p < 0.01) similar to ketamine/xylazine (2.4 ± 2.2 %ID/g, p < 0.001). In the inflammatory phase, 3 days after myocardial infarction, conscious injection/uptake with and without heparin/fasting identified a marked increase in myocardial {sup 18}F-FDG accumulation that was similar to that observed under ketamine/xylazine. Continuous isoflurane anaesthesia obscures any suppressive effect of heparin or fasting on cardiomyocyte glucose utilization. Conscious injection of FDG in rodents significantly reduces cardiomyocyte uptake and enables further suppression by heparin and fasting, similar to clinical observations. In

  19. Heterogeneous bone marrow uptake on interim 18F-fluorodeoxyglucose positron emission tomography for lymphoma mimicking disease progression: a case report

    Cherk, Martin H; Patil, Sushrut; Beech, Paul; Kalff, Victor

    2014-01-01

    Introduction The use of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning for baseline staging and assessment of treatment response for higher grade lymphomas is considered to be the standard of care. Evaluation of lymphomatous bone marrow infiltration on 18F-FDG PET can usually distinguish between normal regenerating marrow following chemotherapy by a characteristic pattern of uptake. Case presentation Here we report the case of a 51-year-old Caucasian woman with mix...

  20. Detection of bone marrow involvement in newly diagnosed post-transplant lymphoproliferative disorder: (18)F-fluorodeoxyglucose positron emission tomography/computed tomography versus bone marrow biopsy.

    Gheysens, Olivier; Thielemans, Sanne; Morscio, Julie; Boeckx, Nancy; Goffin, Karolien E; Deroose, Christophe M; Sagaert, Xavier; Wlodarska, Iwona; Verhoef, Gregor; Dierickx, Daan; Tousseyn, Thomas

    2016-10-01

    Detecting bone marrow involvement (BMI) in lymphoma is important as it adversely affects stage. Bone marrow biopsy (BMB) remains the standard to detect BMI but is prone to sampling error. We retrospectively investigated whether (18)F-fluorodeoxyglucose positron emission tomography with computed tomography ((18)F-FDG-PET/CT) could identify BMI in patients with post-transplant lymphoproliferative disorder (PTLD) with sufficient accuracy in comparison with staging BMB. Twenty-five patients diagnosed with PTLD who underwent (18)F-FDG-PET/CT and BMB within one month were evaluated. Based on our criteria, six patients (24%) were considered positive for BMI on (18)F-FDG-PET/CT compared to one by BMB. Although we cannot completely exclude false positive results on (18)F-FDG-PET/CT, our data indicate a significantly higher sensitivity of (18)F-FDG-PET/CT compared to BMB (100% vs 17%) but similar specificity. These data confirm the high diagnostic performance of (18)F-FDG-PET/CT for detecting BMI, but prospective studies are needed to determine whether (18)F-FDG-PET/CT could indeed replace staging BMB in PTLD. PMID:26854937

  1. {sup 18}F-FDG PET/CT diagnosis of unexpected extracardiac septic embolisms in patients with suspected cardiac endocarditis

    Bonfiglioli, Rachele; Nanni, Cristina; Morigi, Joshua James; Ambrosini, Valentina; Fanti, Stefano [Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Nuclear Medicine, Bologna (Italy); Graziosi, Maddalena; Rapezzi, Claudio [Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Cardiology, Bologna (Italy); Trapani, Filippo; Bartoletti, Michele; Tumietto, Fabio; Viale, Pier Luigi [Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Infective Diseases, Bologna (Italy); Ferretti, Alice; Rubello, Domenico [Azienda Ospedaliera S. Maria della Misericordia, Nuclear Medicine, Radiology, Neuroradiology, Medical Physics, Rovigo (Italy)

    2013-08-15

    Acute infective endocarditis is a potentially life-threatening disease. Its outcome strongly depends on systemic embolization and extracardiac infections. When present, these conditions usually lead to a more aggressive therapeutic approach. However, the diagnosis of peripheral septic embolism is very challenging. {sup 18}F-Fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT has proven to be accurate for the detection of inflammatory diseases and occult infections. The aim of this study was to assess the added value of {sup 18}F-FDG PET/CT in the detection of extracardiac embolisms in the evaluation of patients with suspected valvular endocarditis (VE). Seventy-one patients with suspected infective endocarditis, enrolled between June 2010 and December 2012, underwent {sup 18}F-FDG PET/CT with the standard procedure on a dedicated PET/CT scanner. Extracardiac findings were subsequently evaluated with other imaging procedures. Of the 71 patients with suspicion of infective endocarditis, we found unexpected extracardiac findings in 17 patients (24 %) without any clinical suspicion. Extracardiac findings were subsequently evaluated with other imaging procedures. PET/CT detected unexpected extra sites of infection in 24 % of cases, leading to changes in therapeutic management in a very relevant percentage of patients. These findings may have important therapeutic implications. (orig.)

  2. Isolated skeletal muscle metastatic deposit in a patient with micropapillary carcinoma thyroid identified by 18F FDG PET CT

    Micropapillary carcinoma of thyroid is said to be low risk differentiated thyroid malignancy with excellent prognosis. We report the identification of an isolated FDG avid muscle deposit in a treated case of micropapillary carcinoma of the right lobe and widely invasive follicular carcinoma of the left lobe thyroid gland. Patient was found to have an elevated thyroglobulin level with negative iodine scan (TENIS syndrome) on follow up at 6 months. An 18F FDG PET CT (18 fluorine- fluorodeoxyglucose positron emission computed tomography) whole body study revealed a solitary FDG avid deltoid muscle deposit which was histopathologically confirmed to be metastatic papillary carcinoma. While follicular carcinoma is known to have distant metastases, this may be the first reported case of solitary skeletal metastases from micropapillary carcinoma of thyroid and probably the second reported skeletal muscle deposit from DTC detected on 18F FDG PET CT done following elevated thyroglobulin level and negative 131 iodine WB scan (TENIS). This case also assumes importance because it demonstrates possibility of metastases even from a micropapillary carcinoma in contrast to American Thyroid Association guidelines (2009) which suggests that micropapillary carcinoma of thyroid does not merit further treatment after a Total Thyroidectomy.

  3. Characterization of solitary pulmonary nodules with 18F-FDG PET/CT relative activity distribution analysis

    Zhao, Liang; Lin, Jie; Tang, Kun; Zheng, SiSi; Yin, WeiWei; Zheng, XiangWu [The First Affiliated Hospital of Wenzhou Medical University, Division of PET/CT, Department of Radiology, Wenzhou (China); Tong, Li [The First People' s Hospital of Hefei, CT Department, Hefei (China); Li, WenFeng [The First Affiliated Hospital of Wenzhou Medical University, Department of Radiotherapy and Chemotherapy, Wenzhou (China); Cheng, DeZhi [The First Affiliated Hospital of Wenzhou Medical University, Department of Cardiothoracic Surgery, Wenzhou (China)

    2015-07-15

    To compare the capability of relative activity distribution (RAD), a new index of fluorodeoxyglucose F18 ({sup 18}F-FDG) uptake, with those of the typical markers for differentiating benign and malignant solitary pulmonary nodules (SPNs) by integrated positron emission tomography (PET)/computed tomography (CT). RAD, maximal standardised uptake value (SUV{sub max}), partial volume corrected SUV{sub max} (corrSUV{sub max}), and retention index (RI) were calculated prospectively for 115 malignant and 60 benign SPNs. Area under receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy were compared (P < 0.05). Malignant lesions (0.98 ± 0.03) had significantly lower RAD than benign lesions (1.01 ± 0.02). AUC (0.935) was significantly larger and specificity (96.67 %) was significantly higher for RAD than for SUV{sub max} (P ≤ 0.0001), corrSUV{sub max} (P < 0.0001), RI (P < 0.0001), and visual assessment (P = 0.01 and 0.002, respectively). Further, RAD had significantly higher sensitivity (92.17 %) than SUV{sub max} (P = 0.0007) and higher accuracy (93.71 %) than SUV{sub max} (P < 0.0001), corrSUV{sub max} (P < 0.0001), and RI (P = 0.002). RAD seems to be more specific and accurate than the typical markers for differentiating malignant and benign SPNs by {sup 18}F-FDG PET/CT. (orig.)

  4. Electrocardiographic-gated dual-isotope simultaneous acquisition SPECT using 18F-FDG and 99mTc-sestamibi to assess myocardial viability and function in a single study

    Dual-isotope simultaneous acquisition single-photon emission computed tomography (DISA SPECT) with 18F-fluorodeoxyglucose (FDG) and 99mTc-sestamibi appears attractive for the detection of viable myocardium because it permits simultaneous assessment of glucose utilisation and perfusion. Another potential benefit of this approach is that the measurement of left ventricular (LV) function may be possible by ECG gating. The aim of this study was to test the hypothesis that both myocardial viability and LV function can be assessed by a single ECG-gated 18F-FDG/99mTc-sestamibi DISA SPECT study, based on comparison with 18F-FDG/13N-ammonia positron emission tomography (PET) and magnetic resonance imaging (MRI) as reference techniques. Thirty-three patients with prior myocardial infarction underwent ECG-gated 18F-FDG/99mTc-sestamibi DISA SPECT and 18F-FDG/13N-ammonia PET on a single day. Of these, 25 patients also underwent cine-MRI to assess LV function. The LV myocardium was divided into nine regions, and each region was classified as viable or scar using a semiquantitative visual scoring system as well as quantitative analysis. The global and regional LV function measured by gated SPECT was compared with the results of MRI. There was good agreement in respect of viability (90-96%, κ0.74-0.85) between DISA SPECT and PET by either visual or quantitative analysis. Furthermore, although both global and regional LV function measured by gated SPECT agreed with those by MRI, 99mTc-sestamibi showed a closer correlation with MRI than did 18F-FDG. In conclusion, ECG-gated DISA SPECT provides information on myocardial viability, as well as global and regional LV function, similar to that obtained by PET and MRI. (orig.)

  5. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With 1H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [18F]FDG-PET

    Purpose: To correlate proton magnetic resonance spectroscopy (1H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and 18F-labeled fluorodeoxyglucose positron emission tomography ([18F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with 1H-MRS, DCE-MRI, and [18F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among 1H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [Ktrans]; volume fraction of the extravascular extracellular space [ve]; and redistribution rate constant [kep]), and [18F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG (ρ = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(ve) (ρ = −0.691; p = 0.004) and std(kep) (ρ = −0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume (ρ = 0.643; p = 0.007). Logistic regression indicated that std(Ktrans) and SUVmean were significant predictors of short-term response (p 1H-MRS, DCE-MRI, and [18F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [18F]FDG PET parameters were predictive of short-term response to treatment.

  6. Comparisons of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol with [{sup 18}F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    McLarty, Kristin; Moran, Matthew D. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Scollard, Deborah A.; Chan, Conrad [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Sabha, Nesrin; Mukherjee, Joydeep; Guha, Abhijit [Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, ON, M5G 1X8 (Canada); McLaurin, JoAnne [Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 3H2 (Canada); Nitz, Mark [Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Houle, Sylvain; Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Reilly, Raymond M., E-mail: raymond.reilly@utoronto.ca [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network, Toronto, ON, M5G 2M9 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Vasdev, Neil, E-mail: neil.vasdev@utoronto.ca [Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8 (Canada); PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2011-10-15

    Introduction: The aim of the study was to evaluate the uptake of [{sup 18}F]-1-deoxy-1-fluoro-scyllo-inositol ([{sup 18}F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [{sup 18}F]-2-fluoro-2-deoxy-D-glucose ([{sup 18}F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [{sup 18}F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [{sup 18}F]-scyllo-inositol and [{sup 18}F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [{sup 18}F]-scyllo-inositol was automated with good radiochemical yields (24.6%{+-}3.3%, uncorrected for decay, 65{+-}2 min, n=5) and high specific activities ({>=}195 GBq/{mu}mol at end of synthesis). Uptake of [{sup 18}F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [{sup 18}F]-FDG (4.6{+-}0.5 vs. 5.5{+-}2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [{sup 18}F]-scyllo-inositol in inflammation was lower than [{sup 18}F]-FDG. While uptake of [{sup 18}F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [{sup 18}F]-FDG, the tumour-to-brain ratio was significantly higher (10.6{+-}2.5 vs. 2.1{+-}0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [{sup 18}F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [{sup 18}F]-FDG. The tumour-to-brain ratio of [{sup 18}F]-scyllo-inositol was also significantly higher than that of [{sup 18}F]-FDG for visualizing intracranial glioma xenografts in

  7. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined 18F-FDG PET/MR imaging

    The aim of this study was to investigate in 18 patients with ischaemic stroke classified as cryptogenic and presenting non-stenotic carotid atherosclerotic plaques the morphological and biological aspects of these plaques with magnetic resonance imaging (MRI) and 18F-fluoro-deoxyglucose positron emission tomography (18F-FDG PET) imaging. Carotid arteries were imaged 150 min after injection of 18F-FDG with a combined PET/MRI system. American Heart Association (AHA) lesion type and plaque composition were determined on consecutive MRI axial sections (n = 460) in both carotid arteries. 18F-FDG uptake in carotid arteries was quantified using tissue to background ratio (TBR) on corresponding PET sections. The prevalence of complicated atherosclerotic plaques (AHA lesion type VI) detected with high-resolution MRI was significantly higher in the carotid artery ipsilateral to the ischaemic stroke as compared to the contralateral side (39 vs 0 %; p = 0.001). For all other AHA lesion types, no significant differences were found between ipsilateral and contralateral sides. In addition, atherosclerotic plaques classified as high-risk lesions with MRI (AHA lesion type VI) were associated with higher 18F-FDG uptake in comparison with other AHA lesions (TBR = 3.43 ± 1.13 vs 2.41 ± 0.84, respectively; p < 0.001). Furthermore, patients presenting at least one complicated lesion (AHA lesion type VI) with MRI showed significantly higher 18F-FDG uptake in both carotid arteries (ipsilateral and contralateral to the stroke) in comparison with carotid arteries of patients showing no complicated lesion with MRI (mean TBR = 3.18 ± 1.26 and 2.80 ± 0.94 vs 2.19 ± 0.57, respectively; p < 0.05) in favour of a diffuse inflammatory process along both carotid arteries associated with complicated plaques. Morphological and biological features of high-risk plaques can be detected with 18F-FDG PET/MRI in non-stenotic atherosclerotic plaques ipsilateral to the stroke, suggesting a causal role

  8. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined {sup 18}F-FDG PET/MR imaging

    Hyafil, Fabien [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Bichat University Hospital, Department of Nuclear Medicine, Paris (France); Schindler, Andreas; Obenhuber, Tilman; Saam, Tobias [Ludwig Maximilians University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Sepp, Dominik; Hoehn, Sabine; Poppert, Holger [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Bayer-Karpinska, Anna [Ludwig Maximilians University Hospital Munich, Institute for Stroke and Dementia Research, Munich (Germany); Boeckh-Behrens, Tobias [Technische Universitaet Muenchen, Department of Neuroradiology, Klinikum Rechts der Isar, Munich (Germany); Hacker, Marcus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Nekolla, Stephan G. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Partner Site Munich Heart Alliance, German Centre for Cardiovascular Research (DZHK), Munich (Germany); Rominger, Axel [Ludwig Maximilians University Hospital Munich, Department of Nuclear Medicine, Munich (Germany); Dichgans, Martin [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Munich Cluster of Systems Neurology (SyNergy), Munich (Germany); Schwaiger, Markus [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany)

    2016-02-15

    The aim of this study was to investigate in 18 patients with ischaemic stroke classified as cryptogenic and presenting non-stenotic carotid atherosclerotic plaques the morphological and biological aspects of these plaques with magnetic resonance imaging (MRI) and {sup 18}F-fluoro-deoxyglucose positron emission tomography ({sup 18}F-FDG PET) imaging. Carotid arteries were imaged 150 min after injection of {sup 18}F-FDG with a combined PET/MRI system. American Heart Association (AHA) lesion type and plaque composition were determined on consecutive MRI axial sections (n = 460) in both carotid arteries. {sup 18}F-FDG uptake in carotid arteries was quantified using tissue to background ratio (TBR) on corresponding PET sections. The prevalence of complicated atherosclerotic plaques (AHA lesion type VI) detected with high-resolution MRI was significantly higher in the carotid artery ipsilateral to the ischaemic stroke as compared to the contralateral side (39 vs 0 %; p = 0.001). For all other AHA lesion types, no significant differences were found between ipsilateral and contralateral sides. In addition, atherosclerotic plaques classified as high-risk lesions with MRI (AHA lesion type VI) were associated with higher {sup 18}F-FDG uptake in comparison with other AHA lesions (TBR = 3.43 ± 1.13 vs 2.41 ± 0.84, respectively; p < 0.001). Furthermore, patients presenting at least one complicated lesion (AHA lesion type VI) with MRI showed significantly higher {sup 18}F-FDG uptake in both carotid arteries (ipsilateral and contralateral to the stroke) in comparison with carotid arteries of patients showing no complicated lesion with MRI (mean TBR = 3.18 ± 1.26 and 2.80 ± 0.94 vs 2.19 ± 0.57, respectively; p < 0.05) in favour of a diffuse inflammatory process along both carotid arteries associated with complicated plaques. Morphological and biological features of high-risk plaques can be detected with {sup 18}F-FDG PET/MRI in non-stenotic atherosclerotic plaques ipsilateral

  9. [{sup 18}F]FLT is superior to [{sup 18}F]FDG for predicting early response to antiproliferative treatment in high-grade lymphoma in a dose-dependent manner

    Graf, Nicolas [Technische Universitaet Muenchen, Department of Hematology/Oncology, Munich (Germany); Schoen Klinik Starnberger See, Department of Hematology and Oncology, Berg (Germany); Herrmann, Ken; Numberger, Barbara; Zwisler, Daniela; Wester, Hans-Juergen; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Aichler, Michaela; Feuchtinger, Annette [Technische Universitaet Muenchen, Institute of Pathology (Helmholtz Zentrum Muenchen), Munich (Germany); Schuster, Tibor [Technische Universitaet Muenchen, Institute of Medical Statistics and Epidemiology, Munich (Germany); Peschel, Christian; Keller, Ulrich; Dechow, Tobias [Technische Universitaet Muenchen, Department of Hematology/Oncology, Munich (Germany); Buck, Andreas K. [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Universitaetsklinikum Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany)

    2013-01-15

    Positron emission tomography (PET) with the thymidine analogue [{sup 18}F]fluorothymidine ([{sup 18}F]FLT) has been shown to detect early response to chemotherapy in high-grade lymphoma. In this preclinical in vitro and in vivo study we compared [{sup 18}F]FLT to the glucose analogue [{sup 18}F]fluorodeoxyglucose ([{sup 18}F]FDG) regarding dose-dependent visualization and prediction of early therapy response. Immunodeficient mice bearing human diffuse large B-cell lymphoma (SUDHL-4) xenotransplants were treated intraperitoneally with increasing doses of the cytotoxic agent doxorubicin. Metabolic and antiproliferative effects were assessed 2 days after therapy by [{sup 18}F]FLT and [{sup 18}F]FDG PET. Explanted lymphomas were analysed histologically and by immunostaining against Ki67 and caspase 3. In vitro, lymphoma cells were incubated with increasing concentrations of doxorubicin and analysed using the tetrazolium assay, fluorescence-activated cell sorting, and [{sup 18}F]FLT and [{sup 18}F]FDG uptake 48 h later. In vivo, tumour growth was inhibited by doses of doxorubicin ranging from 25 {mu}g to 200 {mu}g. The mean tumour-to-background ratio (TBR) of [{sup 18}F]FLT on day +2 was significantly reduced in all dose groups compared to control and baseline values and preceded changes in tumour volume. Importantly, there was a significant inverse correlation between reduction in TBR and dose of chemotherapy (r = -0.54, p = 0.021). The mean TBR of [{sup 18}F]FDG, however, increased after therapy and differed considerably between groups (r = -0.13, p = 0.668). Explanted tumours showed a dose-dependent decrease in the proliferation marker Ki67, but no change in the apoptotic marker caspase 3. In vitro, doxorubicin led to a dose-dependent reduction in cell viability and a decrease in S phase. Lymphoma cells showed a dose-dependent reduction in [{sup 18}F]FLT uptake, in contrast to a variable and decelerated reduction in [{sup 18}F]FDG uptake. Thus, the increase in [{sup

  10. [18F]FLT is superior to [18F]FDG for predicting early response to antiproliferative treatment in high-grade lymphoma in a dose-dependent manner

    Positron emission tomography (PET) with the thymidine analogue [18F]fluorothymidine ([18F]FLT) has been shown to detect early response to chemotherapy in high-grade lymphoma. In this preclinical in vitro and in vivo study we compared [18F]FLT to the glucose analogue [18F]fluorodeoxyglucose ([18F]FDG) regarding dose-dependent visualization and prediction of early therapy response. Immunodeficient mice bearing human diffuse large B-cell lymphoma (SUDHL-4) xenotransplants were treated intraperitoneally with increasing doses of the cytotoxic agent doxorubicin. Metabolic and antiproliferative effects were assessed 2 days after therapy by [18F]FLT and [18F]FDG PET. Explanted lymphomas were analysed histologically and by immunostaining against Ki67 and caspase 3. In vitro, lymphoma cells were incubated with increasing concentrations of doxorubicin and analysed using the tetrazolium assay, fluorescence-activated cell sorting, and [18F]FLT and [18F]FDG uptake 48 h later. In vivo, tumour growth was inhibited by doses of doxorubicin ranging from 25 μg to 200 μg. The mean tumour-to-background ratio (TBR) of [18F]FLT on day +2 was significantly reduced in all dose groups compared to control and baseline values and preceded changes in tumour volume. Importantly, there was a significant inverse correlation between reduction in TBR and dose of chemotherapy (r = -0.54, p = 0.021). The mean TBR of [18F]FDG, however, increased after therapy and differed considerably between groups (r = -0.13, p = 0.668). Explanted tumours showed a dose-dependent decrease in the proliferation marker Ki67, but no change in the apoptotic marker caspase 3. In vitro, doxorubicin led to a dose-dependent reduction in cell viability and a decrease in S phase. Lymphoma cells showed a dose-dependent reduction in [18F]FLT uptake, in contrast to a variable and decelerated reduction in [18F]FDG uptake. Thus, the increase in [18F]FDG uptake in vivo presumably reflected nonspecific glucose metabolism of

  11. Comparisons of [18F]-1-deoxy-1-fluoro-scyllo-inositol with [18F]-FDG for PET imaging of inflammation, breast and brain cancer xenografts in athymic mice

    Introduction: The aim of the study was to evaluate the uptake of [18F]-1-deoxy-1-fluoro-scyllo-inositol ([18F]-scyllo-inositol) in human breast cancer (BC) and glioma xenografts, as well as in inflammatory tissue, in immunocompromised mice. Studies of [18F]-2-fluoro-2-deoxy-D-glucose ([18F]-FDG) under the same conditions were also performed. Methods: Radiosynthesis of [18F]-scyllo-inositol was automated using a commercial synthesis module. Tumour, inflammation and normal tissue uptakes were evaluated by biodistribution studies and positron emission tomography (PET) imaging using [18F]-scyllo-inositol and [18F]-FDG in mice bearing subcutaneous MDA-MB-231, MCF-7 and MDA-MB-361 human BC xenografts, intracranial U-87 MG glioma xenografts and turpentine-induced inflammation. Results: The radiosynthesis of [18F]-scyllo-inositol was automated with good radiochemical yields (24.6%±3.3%, uncorrected for decay, 65±2 min, n=5) and high specific activities (≥195 GBq/μmol at end of synthesis). Uptake of [18F]-scyllo-inositol was greatest in MDA-MB-231 BC tumours and was comparable to that of [18F]-FDG (4.6±0.5 vs. 5.5±2.1 %ID/g, respectively; P=.40), but was marginally lower in MDA-MB-361 and MCF-7 xenografts. Uptake of [18F]-scyllo-inositol in inflammation was lower than [18F]-FDG. While uptake of [18F]-scyllo-inositol in intracranial U-87 MG xenografts was significantly lower than [18F]-FDG, the tumour-to-brain ratio was significantly higher (10.6±2.5 vs. 2.1±0.6; P=.001). Conclusions: Consistent with biodistribution studies, uptake of [18F]-scyllo-inositol was successfully visualized by PET imaging in human BC and glioma xenografts, with lower accumulation in inflammatory tissue than [18F]-FDG. The tumour-to-brain ratio of [18F]-scyllo-inositol was also significantly higher than that of [18F]-FDG for visualizing intracranial glioma xenografts in NOD SCID mice, giving a better contrast. -- Graphical Abstract: Display Omitted

  12. Regional nodal staging with {sup 18}F-FDG PET-CT in non-small cell lung cancer: Additional diagnostic value of CT attenuation and dual-time-point imaging

    Li, Meng, E-mail: caseylimeng@126.com [Department of Diagnostic Radiology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021 (China); Wu, Ning, E-mail: cjr.wuning@vip.163.com [PET-CT Center, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021 (China); Department of Diagnostic Radiology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021 (China); Liu, Ying, E-mail: liuyinggqw@sina.com [PET-CT Center, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021 (China); Zheng, Rong, E-mail: zhengrong_2004@yahoo.com.cn [PET-CT Center, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021 (China); Liang, Ying, E-mail: liangy_2000@sina.com [PET-CT Center, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021 (China); Zhang, Wenjie, E-mail: winjiezh@163.com [PET-CT Center, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021 (China); Zhao, Ping, E-mail: dr.zhaoping@263.net [PET-CT Center, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021 (China)

    2012-08-15

    Background: [Fluorine-18]-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET-CT) is widely performed in the regional nodal staging of non-small cell lung cancer (NSCLC). However, the uptake of {sup 18}F-FDG by tubercular granulomatous tissues may lead to false-positive diagnosis. This is of special concern in China, where tubercular granulomatous disease is epidemic. Herein, we evaluated the efficacy of an additional CT attenuation and a dual-time-point scan in determining the status of lymph nodes. Methods: Eighty NSCLC patients underwent curative surgical resection after {sup 18}F-FDG PET-CT and separate breath-hold CT examinations. The initial images were analyzed by two methods. In method 1, nodal status was determined by {sup 18}F-FDG uptake only. In Method 2, nodal status was determined by {sup 18}F-FDG uptake associated with CT attenuation. For dual-time-point imaging, the retention index (RI) of benign and malignant nodal groups with positive uptake in the initial scan was examined. Results: A total of 265 nodal groups were documented. On a per-nodal-group basis, the diagnostic sensitivity, specificity, and accuracy of Method 1 were 66.7%, 89.7%, and 85.3%, respectively, whereas those of Method 2 were 64.7%, 96.7%, and 90.6%, respectively. The improvement in diagnostic specificity and accuracy associated with the addition of CT attenuation in Method 2 as compared to Method 1 was statistically significant (p < 0.01). Thirty-nine nodal groups with positive uptake in the initial scan underwent dual-time-point imaging and the difference in the RI between benign and malignant groups showed no statistical significance (p > 0.05). Conclusion: {sup 18}F-FDG PET-CT has high diagnostic value for preoperative lymph-node (N) staging of NSCLC patients. We show that {sup 18}F-FDG uptake combined with CT attenuation improves the diagnostic specificity and accuracy of nodal diagnosis in NSCLC. For the lymph nodes with positive uptake in

  13. 18F-FDG whole body positron emission tomography (PET) in patients with unknown primary tumours (UPT)

    Lassen, U; Daugaard, G; Eigtved, A;

    1999-01-01

    adenocarcinomas and 1 poorly differentiated carcinoma). The remaining patients had metastases located in bone (3), bone marrow (1), brain (1), pericardium (1), skin (1), pleura (1) and chest wall (1). All metastatic lesions were visible with PET. In 13 patients PET suggested the site for the primary tumour and...... chemotherapy prompted by the PET result. The rest received either radical radiotherapy to the head and neck region (7), palliative radiotherapy to the metastatic lesion (8), chemotherapy based on signet ring cell carcinoma in bone marrow (1) or no therapy (1). These results indicates that PET is useful in UPT...

  14. Primary pulmonary low-grade angiosarcoma characterized by mismatch between {sup 18}F-FDG FET and dynamic contrast-enhanced CT

    KIm, Eun Young; Lee, Ho Yun; Han, Joung Ho; Choi, Joon Young [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-10-15

    We report a rare case of primary pulmonary low-grade angiosarcoma on dynamic contrast-enhanced CT and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT imaging. A 38-year-old, asymptomatic woman was hospitalized because of an abnormality on chest radiography. A dynamic contrast-enhanced chest CT showed a 1.2 cm-sized irregular-margined nodule with strong and persistent enhancement in the right lower lobe. The lesion had low metabolic activity on an {sup 18}F-FDG PET/CT scan. The patient underwent a wedge resection for the lesion, and pathology revealed a primary pulmonary low-grade angiosarcoma.

  15. A quantitative comparison of gross tumour volumes delineated on [18F]-FDG PET-CT scan and CECT scan in head and neck cancers

    Venkada, Manickam G; Rawat, Sheh; Choudhury, PS; T. Rajesh; Rao, SA; Khullar, Pooja; Kakria, Anjali

    2012-01-01

    Purpose: To compare quantitatively Gross tumor volume (GTV), both primary and nodal areas of head and neck cancers, delineated on [18F]-2fluoro, 2deoxy d-glucose-positron emission tomography/computed tomography ([18F]-FDG-PET-CT) scan to those delineated on Contrast-enhanced CT scan (CECT scan). Methods: A total of 26 consecutive patients with squamous cell cancers of head and neck were included in this study. The primary sites were oropharynx (n = 7), hypopharynx (n = 6), paranasal sinus (n ...

  16. Predictive value of {sup 18}F-FDG PET/CT in restaging patients affected by ovarian carcinoma: a multicentre study

    Caobelli, Federico [Medizinische Hochschule Hannover, Klinik fuer Nuklearmedizin, Hanover (Germany); Alongi, Pierpaolo [University of Milano-Bicocca, Nuclear Medicine Unit, Milan (Italy); IRCSS San Raffaele Scientific Institute, Nuclear Medicine Department, Milan (Italy); Evangelista, Laura; Saladini, Giorgio [Veneto Institute of Oncology IOV - IRCCS, Radiotherapy and Nuclear Medicine Unit, Padua (Italy); Picchio, Maria [IRCSS San Raffaele Scientific Institute, Nuclear Medicine Department, Milan (Italy); Rensi, Marco; Geatti, Onelio [Hospital of Udine, Nuclear Medicine Department, Udine (Italy); Castello, Angelo; Laghai, Iashar [University of Florence, Nuclear Medicine Department, Florence (Italy); Popescu, Cristina E. [Niguarda Ca' Granda Hospital, Nuclear Medicine Department, Milan (Italy); Dolci, Carlotta; Crivellaro, Cinzia [University of Milan-Bicocca, Nuclear Medicine Department, San Gerardo Hospital, Tecnomed Foundation, Milan (Italy); Seghezzi, Silvia [Hospital of Treviglio, Nuclear Medicine Department, Treviglio, Bergamo (Italy); Kirienko, Margarita [University of Milano-Bicocca, Nuclear Medicine Unit, Milan (Italy); De Biasi, Vincenzo [Nuclear Medicine Department, Arcispedale Santa Maria Nuova, Reggio Emilia (Italy); Cocciolillo, Fabrizio [Catholic University of the Sacred Heart, Nuclear Medicine Department, Rome (Italy); Quartuccio, Natale [University of Messina, Nuclear Medicine Unit, Department of Biomedical Sciences and of Morphological and Functional Images, Messina (Italy); Collaboration: Young AIMN Working Group

    2016-03-15

    Ovarian cancer is the eighth most common malignancy among women and has a high mortality rate. Prognostic factors able to drive an effective therapy are essential. {sup 18}F-Fluoro-2-deoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) has been investigated in patients with epithelial ovarian cancer and showed promise in diagnosing, staging, detecting recurrent lesions and monitoring treatment response. Conversely, its prognostic role remains unclear. We aimed at assessing the prognostic value of {sup 18}F-FDG PET/CT performed in the restaging process in a multicentre study. We evaluated 168 patients affected by ovarian carcinoma, who underwent a restaging {sup 18}F-FDG PET/CT. The presence of local recurrences, lymph node involvement and distant metastasis was recorded as well as lesion dimensions, maximum and mean standardized uptake values (SUV{sub max} and SUV{sub mean}, respectively). Progression-free survival (PFS) and overall survival (OS) at 3 and 4 years were computed by using Kaplan-Meier curves. Increased odds ratio was assessed using Cox regression analysis testing all lesion parameters measured by PET/CT. PFS was significantly longer in patients with a negative than a positive restaging PET/CT study (3- and 4-year PFS 64 and 53 % vs 23 and 12 %, respectively; p < 0.001). Similarly, a negative study was associated with a significantly higher OS rate after 4 years of follow-up (67 vs 25 % in negative and positive groups, respectively; p < 0.001). Lymph node or distant involvement were also independently associated with an increased risk of disease progression [hazard ratio (HR) 1.6 and 2.2, respectively; p = 0.003]. Moreover, PET/CT showed an incremental prognostic value compared to the International Federation of Gynecology and Obstetrics (FIGO) staging system. In the analysis of patient subsets, individuals with the same FIGO stage I-II but with negative PET had a significantly better 4-year OS than patients with low

  17. Dual-time-point {sup 18}F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia

    Umeda, Yukihiro; Demura, Yoshiki; Ishizaki, Takeshi; Ameshima, Shingo [University of Fukui, Department of Respiratory Medicine, Yoshida-gun, Fukui (Japan); Miyamori, Isamu [University of Fukui, Third Department of Internal Medicine, Yoshida-gun, Fukui (Japan); Saito, Yuji [Fujita Health University, Division of Respirology and Allergology, Department of Internal Medicine, School of Medicine, Toyoake, Aichi (Japan); Tsuchida, Tatsuro [University of Fukui, Department of Radiology, Yoshida-gun, Fukui (Japan); Fujibayashi, Yasuhisa; Okazawa, Hidehiko [University of Fukui, Biomedical Imaging Research Center, Yoshida-gun, Fukui (Japan)

    2009-07-15

    Individual clinical courses of idiopathic interstitial pneumonia (IIP) are variable and difficult to predict because the pathology and disease activity are contingent, and chest computed tomography (CT) provides little information about disease activity. In this study, we applied dual-time-point [{sup 18}F]-fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography (PET), commonly used for diagnosis of malignant tumours, to the differential diagnosis and prediction of disease progression in IIP patients. Fifty patients with IIP, including idiopathic pulmonary fibrosis (IPF, n = 21), non-specific interstitial pneumonia (NSIP, n = 18) and cryptogenic organizing pneumonia (COP, n = 11), underwent {sup 18}F-FDG PET examinations at two time points: scan 1 at 60 min (early imaging) and scan 2 at 180 min (delayed imaging) after {sup 18}F-FDG injection. The standardized uptake values (SUV) at the two points and the retention index (RI-SUV) calculated from them were evaluated and compared with chest CT findings, disease progression and disease types. To evaluate short-term disease progression, all patients were examined by pulmonary function test every 3 months for 1 year after {sup 18}F-FDG PET scanning. The early SUV for COP (2.47 {+-} 0.74) was significantly higher than that for IPF (0.99 {+-} 0.29, p = 0.0002) or NSIP (1.22 {+-} 0.44, p= 0.0025). When an early SUV cut-off value of 1.5 and greater was used to distinguish COP from IPF and NSIP, the sensitivity, specificity and accuracy were 90.9, 94.3 and 93.5%, respectively. The RI-SUV for IPF and NSIP lesions was significantly greater in patients with deteriorated pulmonary function after 1 year of follow-up (progressive group, 13.0 {+-} 8.9%) than in cases without deterioration during the 1-year observation period (stable group, -16.8 {+-} 5.9%, p < 0.0001). However, the early SUV for all IIP types provided no additional information of disease progression. When an RI-SUV cut-off value of 0% and greater was

  18. Dual-time-point 18F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia

    Individual clinical courses of idiopathic interstitial pneumonia (IIP) are variable and difficult to predict because the pathology and disease activity are contingent, and chest computed tomography (CT) provides little information about disease activity. In this study, we applied dual-time-point [18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET), commonly used for diagnosis of malignant tumours, to the differential diagnosis and prediction of disease progression in IIP patients. Fifty patients with IIP, including idiopathic pulmonary fibrosis (IPF, n = 21), non-specific interstitial pneumonia (NSIP, n = 18) and cryptogenic organizing pneumonia (COP, n = 11), underwent 18F-FDG PET examinations at two time points: scan 1 at 60 min (early imaging) and scan 2 at 180 min (delayed imaging) after 18F-FDG injection. The standardized uptake values (SUV) at the two points and the retention index (RI-SUV) calculated from them were evaluated and compared with chest CT findings, disease progression and disease types. To evaluate short-term disease progression, all patients were examined by pulmonary function test every 3 months for 1 year after 18F-FDG PET scanning. The early SUV for COP (2.47 ± 0.74) was significantly higher than that for IPF (0.99 ± 0.29, p = 0.0002) or NSIP (1.22 ± 0.44, p= 0.0025). When an early SUV cut-off value of 1.5 and greater was used to distinguish COP from IPF and NSIP, the sensitivity, specificity and accuracy were 90.9, 94.3 and 93.5%, respectively. The RI-SUV for IPF and NSIP lesions was significantly greater in patients with deteriorated pulmonary function after 1 year of follow-up (progressive group, 13.0 ± 8.9%) than in cases without deterioration during the 1-year observation period (stable group, -16.8 ± 5.9%, p 18F-FDG PET are useful parameters for the differential diagnosis and prediction of disease progression in patients with IIP. (orig.)

  19. Is 18F-FDG a surrogate tracer to measure tumor hypoxia? Comparison with the hypoxic tracer 14C-EF3 in animal tumor models

    Introduction: Fluorodeoxyglucose (FDG) has been reported as a surrogate tracer to measure tumor hypoxia with positron emission tomography (PET). The hypothesis is that there is an increased uptake of FDG under hypoxic conditions secondary to enhanced glycolysis, compensating the hypoxia-induced loss of cellular energy production. Several studies have already addressed this issue, some with conflicting results. This study aimed to compare the tracers 14C-EF3 and 18F-FDG to detect hypoxia in mouse tumor models. Materials and methods: C3H, tumor-bearing mice (FSAII and SCCVII tumors) were injected iv with 14C-EF3, and 1 h later with 18F-FDG. Using a specifically designed immobilization device with fiducial markers, PET (Mosaic (registered) , Philips) images were acquired 1 h after the FDG injection. After imaging, the device containing mouse was frozen, transversally sliced and imaged with autoradiography (AR) (FLA-5100, Fujifilm) to obtain high resolution images of the 18F-FDG distribution within the tumor area. After a 48-h delay allowing for 18F decay a second AR was performed to image 14C-EF3 distribution. AR images were aligned to reconstruct the full 3D tumor volume, and were compared with the PET images. Image segmentation with threshold-based methods was applied on both AR and PET images to derive various tracer activity volumes. The matching index DSI (dice similarity index) was then computed. The comparison was performed under normoxic (ambient air, FSAII: n = 4, SCCVII, n = 5) and under hypoxic conditions (10% O2 breathing, SCCVII: n = 4). Results: On AR, under both ambient air and hypoxic conditions, there was a decreasing similarity between 14C-EF3 and FDG with higher activity sub-volumes. Under normoxic conditions, when comparing the 10% of tumor voxels with the highest 18F-FDG or 14C-EF3 activity, a DSI of 0.24 and 0.20 was found for FSAII and SCCVII, respectively. Under hypoxic conditions, a DSI of 0.36 was observed for SCCVII tumors. When comparing

  20. [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer

    To evaluate the diagnostic potential of PET/MRI with [18F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [18F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [18F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [18F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [18F]FDG PET/MRI was inferior to low-dose [18F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [18F]FDG PET/MRI was equal to contrast-enhanced neck [18F]FDG PET/CT. Therefore, [18F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast agent is contraindicated. (orig.)

  1. Comparison of autologous 111In-leukocytes, 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate for diagnostic nuclear imaging in a juvenile porcine haematogenous Staphylococcus aureus osteomyelitis model

    Nielsen, Ole L.; Afzelius, Pia; Bender, Dirk;

    The aim of this study was to compare 111In-labeled leukocyte single-photon emission computed tomography (SPECT) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) to PET with tracers that potentially could improve detection of osteomyelitis. We chose 11C-methionine, 11C-PK11195...... and 68Ga-citrate and validated their diagnostic utility in a porcine haematogenous osteomyelitis model. Four juvenile 14-15 weeks old female pigs were scanned seven days after intra-arterial inoculation in the right femoral artery with a porcine strain of Staphylococcus aureus using a sequential scan...... protocol with 18F-FDG, 68Ga-citrate, 11C-methionine, 11C-PK11195, 99mTc-Nanocoll and 111In-labelled autologous leukocytes. This was followed by necropsy of the pigs and gross pathology, histopathology and microbial examination. The pigs developed a total of five osteomyelitis lesions, five lesions...

  2. Comparison of autologous 111In-leukocytes, 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate for diagnostic nuclear imaging in a juvenile porcine haematogenous Staphylococcus aureus osteomyelitis model

    Nielsen, Ole Lehberg; Afzelius, Pia; Bender, Dirk;

    2014-01-01

    The aim of this study was to compare 111In-labeled leukocyte single-photon emission computed tomography (SPECT) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) to PET with tracers that potentially could improve detection of osteomyelitis. We chose 11C-methionine, 11C-PK11195...... and 68Ga-citrate and validated their diagnostic utility in a porcine haematogenous osteomyelitis model. Four juvenile 14-15 weeks old female pigs were scanned seven days after intra-arterial inoculation in the right femoral artery with a porcine strain of Staphylococcus aureus using a sequential scan...... protocol with 18F-FDG, 68Ga-citrate, 11C-methionine, 11C-PK11195, 99mTc-Nanocoll and 111In-labelled autologous leukocytes. This was followed by necropsy of the pigs and gross pathology, histopathology and microbial examination. The pigs developed a total of five osteomyelitis lesions, five lesions...

  3. Pre-medication to block [18F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients

    Radiopharmaceutical uptake of [18F]2-deoxy-2-glucose (FDG) in brown adipose tissue is noted on 15-20% of positron emission tomography (PET) scans in children and adolescents. To determine whether [18F]FDG uptake in brown adipose tissue can be adequately blocked by pre-medication other than moderate-dose oral diazepam. One hundred and eighteen [18F]FDG PET body imaging studies were performed in 69 pediatric patients with a variety of solid tumors. The mean age at the time of imaging was 12.9 years (range 1.2-22.6 years), and 33 studies were performed in patients younger than 10 years old. Seventy-six were performed in boys and 42 in girls. Patients were imaged using a dedicated PET camera. Pre-medication was given in 88 studies: 45 received intravenous fentanyl (0.75-1.0 μg/kg), 34 received low-dose oral diazepam (0.06 mg/kg) and 9 received moderate-dose oral diazepam (0.10 mg/kg). Thirty patients received no pre-medication, 7 of whom were known to have received opiates for pain during the 12 h before the study. Six body regions in the neck and chest were reviewed for [18F]FDG uptake in brown adipose tissue. Uptake of FDG in brown fat was visually graded: 0 for no FDG uptake, 1 for low-grade uptake, 2 for moderate uptake, and 3 for intense uptake. Visual grades 2 and 3 were considered to interfere potentially with image interpretation in the neck and chest. Data were analyzed by multivariate regression using a Poisson distribution. [18F]FDG uptake in brown adipose tissue was most often seen in the lateral neck region and superior and lateral to the lungs (in 36 and 39 studies, respectively). Uptake was also seen near the costovertebral junctions (15 studies), in the superior and central neck in 7 studies and in the anterior mediastinum in 2. Brown adipose tissue uptake was thought to interfere potentially with image interpretation (visual grades 2 and 3) in 19 studies - in 6 of 23 (26.1%) studies after no pre-medication and no opiates for pain, in 10 of 34 (29

  4. Quantitative carotid PET/MR imaging: clinical evaluation of MR-Attenuation correction versus CT-Attenuation correction in 18F-FDG PET/MR emission data and comparison to PET/CT

    Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Eldib, Mootaz; Fayad, Zahi A.

    2015-01-01

    Current PET/MR systems employ segmentation of MR images and subsequent assignment of empirical attenuation coefficients for quantitative PET reconstruction. In this study we examine the differences in the quantification of 18F-FDG uptake in the carotid arteries between PET/MR and PET/CT scanners. Five comparisons were performed to asses differences in PET quantification: i) PET/MR MR-based AC (MRAC) versus PET/MR CTAC, ii) PET/MR MRAC versus PET/CT, iii) PET/MR MRAC with carotid coil versus P...

  5. Usefulness of {sup 18}F-FDG PET, combined FDG-PET/CT and EUS in diagnosing primary pancreatic carcinoma: A meta-analysis

    Tang Shuang [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Huang Gang, E-mail: huang2802@163.com [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Liu Jianjun [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Liu Tao [Department of Orthopedics, Soochow University, Suzhou (China); Treven, Lyndal [Faculty of Public Health, University of Sydney, Sydney (Australia); Song Saoli; Zhang Chenpeng; Pan Lingling [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Zhang Ting [Department of Anesthesiology, Renji Hospital, Shanghai (China)

    2011-04-15

    The aim was to evaluate the diagnostic value of {sup 18}F-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG PET), combined {sup 18}F-fluorodeoxyglucose-positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and endoscopic ultrasonography (EUS) in diagnosing patients with pancreatic carcinoma. MEDLINE, EMBASE, Cochrane library and some other databases, from January 1966 to April 2009, were searched for initial studies. All the studies published in English or Chinese relating to the diagnostic value of {sup 18}F-FDG PET, PET/CT and EUS for patients with pancreatic cancer were collected. Methodological quality was assessed. The statistic software called 'Meta-Disc 1.4' was used for data analysis. Results: 51 studies were included in this meta-analysis. The pooled sensitivity estimate for combined PET/CT (90.1%) was significantly higher than PET (88.4%) and EUS (81.2%). The pooled specificity estimate for EUS (93.2%) was significantly higher than PET (83.1%) and PET/CT (80.1%). The pooled DOR estimate for EUS (49.774) was significantly higher than PET (32.778) and PET/CT (27.105). SROC curves for PET/CT and EUS showed a little better diagnostic accuracy than PET alone. For PET alone, when interpreted the results with knowledge of other imaging tests, its sensitivity (89.4%) and specificity (80.1%) were closer to PET/CT. For EUS, its diagnostic value decreased in differentiating pancreatic cancer for patients with chronic pancreatitis. In conclusion, PET/CT was a high sensitive and EUS was a high specific modality in diagnosing patients with pancreatic cancer. PET/CT and EUS could play different roles during different conditions in diagnosing pancreatic carcinoma.

  6. Multiple 18F-FDG, PET-CT for Postoperative Monitoring of Breast Cancer Patients

    Kurata, A.; Murata, Y.; Kubota, K.; Shibuya, H. (Dept. of Radioloy, Tokyo Medical and Dental Univ. Hospital, Tokyo (Japan)); Osanai, T. (Dept. of Breast Surgery, Tokyo Medical and Dental Univ. Hospital, Tokyo (Japan))

    2009-11-15

    Background: Positron emission tomography (PET)-computed tomography (CT) may be useful in the post-treatment follow-up of breast cancer patients. Purpose: To assess the usefulness of 18F-fluorodeoxyglucose (FDG) PET-CT (PET-CT) for postoperative monitoring of breast cancer patients. Material and Methods: One hundred twenty-nine PET-CT studies performed on 55 female postoperative breast cancer patients (median age 56 years, range 36-86 years) were analyzed. The median interval between the PET-CT studies was 6 months (range 1-15 months). In order to determine the usefulness of serial PET-CT examinations in the postoperative follow-up of breast cancer patients, the PET-CT findings were compared with the physical findings, findings obtained by other imaging modalities, and the 18F-FDG-PET (PET) findings. Results: The PET findings were negative in 4 metastatic bone lesions with a positive bone scan. The PET findings were also negative in 6 of 9 osteogenic bone metastases and one of 64 osteolytic bone lesions. There were 5 cases with false-positive of PET, which were determined to be areas of soft-tissue hyperactivity. All false-positive/-negative findings were corrected by the addition of CT. Conclusion: The results of this study lend support to the clinical role of PET-CT in the postoperative follow-up/monitoring of breast cancer patients

  7. Multiple 18F-FDG, PET-CT for Postoperative Monitoring of Breast Cancer Patients

    Background: Positron emission tomography (PET)-computed tomography (CT) may be useful in the post-treatment follow-up of breast cancer patients. Purpose: To assess the usefulness of 18F-fluorodeoxyglucose (FDG) PET-CT (PET-CT) for postoperative monitoring of breast cancer patients. Material and Methods: One hundred twenty-nine PET-CT studies performed on 55 female postoperative breast cancer patients (median age 56 years, range 36-86 years) were analyzed. The median interval between the PET-CT studies was 6 months (range 1-15 months). In order to determine the usefulness of serial PET-CT examinations in the postoperative follow-up of breast cancer patients, the PET-CT findings were compared with the physical findings, findings obtained by other imaging modalities, and the 18F-FDG-PET (PET) findings. Results: The PET findings were negative in 4 metastatic bone lesions with a positive bone scan. The PET findings were also negative in 6 of 9 osteogenic bone metastases and one of 64 osteolytic bone lesions. There were 5 cases with false-positive of PET, which were determined to be areas of soft-tissue hyperactivity. All false-positive/-negative findings were corrected by the addition of CT. Conclusion: The results of this study lend support to the clinical role of PET-CT in the postoperative follow-up/monitoring of breast cancer patients

  8. Use of Molecular Imaging Markers of Glycolysis, Hypoxia and Proliferation (18F-FDG, 64Cu-ATSM and 18F-FLT in a Dog with Fibrosarcoma: The Importance of Individualized Treatment Planning and Monitoring

    Kamilla Westarp Zornhagen

    2015-09-01

    Full Text Available Glycolysis, hypoxia, and proliferation are important factors in the tumor microenvironment contributing to treatment-resistant aggressiveness. Imaging these factors using combined functional positron emission tomography and computed tomography can potentially guide diagnosis and management of cancer patients. A dog with fibrosarcoma was imaged using 18F-FDG, 64Cu-ATSM, and 18F-FLT before, during, and after 10 fractions of 4.5 Gy radiotherapy. Uptake of all tracers decreased during treatment. Fluctuations in 18F-FDG and 18F-FLT PET uptakes and a heterogeneous spatial distribution of the three tracers were seen. Tracer distributions partially overlapped. It appears that each tracer provides distinct information about tumor heterogeneity and treatment response.

  9. Risk of malignancy in thyroid incidentalomas detected by (18)f-fluorodeoxyglucose positron emission tomography

    Soelberg, Kerstin; Bonnema, Steen Joop; Brix, Thomas Heiberg;

    2012-01-01

    Background: The expanding use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) has led to the identification of increasing numbers of patients with an incidentaloma in the thyroid gland. We aimed to review the proportion of incidental thyroid cancers found by (18)F-FDG PET...... uptake, 7 of whom (4.4%) had thyroid malignancy. In the eight studies reporting individual maximum standardized uptake values (SUV(max)), the mean SUV(max) was 4.8 (standard deviation [SD] 3.1) and 6.9 (SD 4.7) in benign and malignant lesions, respectively (p...

  10. [18F] FDG PET in gastric non-Hodgkin's lymphoma

    The possibility of using [18F] FDG PET for assessment of tumor extension in primary gastric non-Hodgkin's lymphoma (NHL) was studied in 8 patients (6 high-grade and 2 low-grade, one of the MALT type) and in a control group of 7 patients (5 patients with NHL without clinical signs of gastric involvement, 1 patient with NHL and benign gastric ulcer and 1 patient with adenocarcinoma of the stomach). All patients with gastric NHL and the two with benign gastric ulcer and adenocarcinoma, respectively, underwent endoscopy including multiple biopsies for histopathological diagnosis. All patients with high-grade and one of the two with low-grade NHL and the patient with adenocarcinoma displayed high gastric uptake of [18F] FDG corresponding to the pathological findings at endoscopy and/or CT. No pathological tracer uptake was seen in the patient with low-grade gastric NHL of the MALT type. In 6/8 patients with gastric NHL, [18F] FDG PET demonstrated larger tumor extension in the stomach than was found at endoscopy, and there was high tracer uptake in the stomach in two patients who were evaluated as normal on CT. [18F] FDG PET correctly excluded gastric NHL in the patient with a benign gastric ulcer and in the patients with NHL without clinical signs of gastric involvement. Although the experience is as yet limited, [18F] FDG PET affords a novel possibility for evaluation of gastric NHL and would seem valuable as a complement to endoscopy and CT in selected patients, where the technique can yield additional information decisive for the choice of therapy. (orig.)

  11. Locally advanced esophageal adenocarcinoma: Response to neoadjuvant chemotherapy and survival predicted by {sup [18F]}FDG-PET/CT

    Kauppi, Juha T.; Salo, Jarmo A.; Sihvo, Eero I.; Raesaenen, Jari V. [Helsinki Univ. Central Hospital, Div. of General Thoracic and Esophageal Surgery, Dept. of Cardiothoracic Surgery, Helsinki Univ. Central Hospital, Helsinki (Finland)], Email: jarmo.salo@hus.fi; Oksala, Niku [Dept. of Vascular Surgery, Tampere Univ. Central Hospital, Tampere (Finland); Helin, Heikki [HUSLAB/Dept. of Pathology, Helsinki Univ. Central Hospital, Helsinki (Finland); Karhumaeki, Lauri [HUSLAB/Dept. of Clinical Physiology and Nuclear Medicine, Helsinki Univ. Central Hospital, Helsinki (Finland); Kemppainen, Jukka [PET-Center, Turku Univ., Turku (Finland)

    2012-05-15

    Background. {sup [18F]}fluorodeoxyglucose-Positron Emission Tomography/Computer Tomography ({sup [18F]}FDG-PET/CT) is commonly used in staging of locally advanced esophageal cancer. Its predictive value for response to neoadjuvant therapy and survival after multimodality therapy is controversial. Methods. Sixty-six consecutive patients with locally advanced adenocarcinoma of the esophagus or esophagogastric junction underwent surgery after neoadjuvant chemotherapy. Staging was done prospectively with {sup [18F]}FDG-PET/CT, before and after completion of neoadjuvant therapy. Pre- and post-therapy maximal standardized uptake values for the primary tumor (SUV1 and SUV2) were determined, and their relative change (SUV{Delta}%) calculated. Percentage change in SUV1 was compared with histopathologic response (HPR, complete or subtotal histologic remission), disease-free- (DFS) and overall survival (OS). Results. Resection with negative margins was achieved in 60 patients. HPR rate was 14 of 66 (21.2%). Median follow-up was 16 months (range 4-72). For all patients, OS probability at three years was 59% and DFS 50%. In receiver operating characteristics (ROC) analysis, HPR was optimally predicted by a > 67% change in baseline maximal SUV (sensitivity 79% and specificity 75%). In univariate survival analysis (Cox regression proportional hazards), HPR associated with improved DFS (HR 0.208, p = 0.033) but not OS (HR 0.030, p = 0.101), SUV % > 67% associated with improved OS (HR 0.249, p = 0.027) and DFS (HR 0.383, p 0.040). In a multivariate model (adjusted by age, sex, and ASA score), neither HPR nor SUV{Delta}% > 67% was predictive of improved OS and DFS. However, SUV{Delta}% as a continuous variable was an independent predictor of OS (HR 0.966, p < 0.0001) or DFS (HR 0.973, p < 0.0001). Conclusion. Our results support previous results showing that {sup [18F]}FDG-PET/CT can distinguish a group of patients with worse prognosis after neoadjuvant chemotherapy in

  12. Supraclavicular Lymph Node Metastasis from Various Malignancies: Assessment with 18F-Fluorodeoxyglucose Positron Emission Tomography/CT, Contrast-Enhanced CT and Ultrasound

    Ryu, Eun Bi; Oh, Kyung Seung; Jeong, Kyung Soon [Dept. of Radiology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of)

    2012-01-15

    The purpose of this study is to compare the usefulness of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)/CT, contrast-enhanced CT and ultrasound (US) for diagnosing metastatic supraclavicular lymph nodes. This study included 53 supraclavicular lymph nodes of 48 consecutive patients with various malignancies observed on 18F-FDG PET/CT, contrast-enhanced CT and US. Detection of supraclavicular lymph nodes was determined by 18F-FDG PET/CT where uptake was greater than that of surrounding tissue and contrast-enhanced CT with a node short-axis diameter of 5 mm or more. On US, we classified the supraclavicular lymph node as benign or malignant by sonographic criteria. The diagnostic values of these modalities were compared in the detection of metastatic supraclavicular lymph nodes. Metastatic supraclavicular lymph nodes were diagnosed cytologically in 44 (83%) of 53 lesions. In the detection of metastatic supraclavicular lymph nodes, the diagnostic accuracies of 18F-FDG PET/CT, contrast-enhanced CT, and US were 92%, 89%, and 91%, respectively. The specificity (67%) and negative predictive value (86%) of 18F-FDG PET/CT were higher than those of contrast-enhanced CT and US. 18F-FDG PET/CT is more useful for detecting and characterizing supraclavicular lymph nodes in patients with cancer, because of its high specificity and negative predictive value.

  13. The role of metabolic tumor volume and total lesion glycolysis on {sup 18}F-FDG PET/CT in the prognosis of epithelial ovarian cancer

    Lee, Jeong Won; Cho, Arthur; Lee, Jae-Hoon; Yun, Mijin; Lee, Jong Doo; Kang, Won Jun [Yonsei University College of Medicine, Department of Nuclear Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul (Korea, Republic of); Kim, Young Tae [Yonsei University College of Medicine, Department of Obstetrics and Gynecology, 134 Shinchon-dong, Seodaemoon-gu, Seoul (Korea, Republic of)

    2014-10-15

    This study assessed the prognostic value of pre-operative 2-[{sup 18}F] fluoro-2-deoxy-D-glucose ({sup 18}F-FDG) positron emission tomography/computed tomography (PET/CT) volumetric parameters, including metabolic tumor volume (MTV) and total lesion glycolysis (TLG), in patients with epithelial ovarian cancer. A total of 175 patients with epithelial ovarian cancer who underwent {sup 18} F-FDG PET/CT and subsequent cytoreductive surgery were retrospectively enrolled. Maximum standardized uptake value (SUVmax) on {sup 18}F-FDG PET/CT was measured for all patients. Because nine patients showed low tumor-to-background uptake ratios, MTV and TLG were measured in 166 patients. Univariate and multivariate analyses were performed to evaluate the prognostic significance of SUVmax, MTV, TLG, and clinicopathological factors for disease progression-free survival. Disease progressed in 78 (44.6 %) of the 175 patients, and the 2-year disease progression-free survival rate was 57.5 %. Univariate analysis showed that tumor stage, histopathological type, presence of regional lymph node metastasis, residual tumor after cytoreductive surgery, pre-operative serum carbohydrate antigen 125 (CA125) level, SUVmax, MTV, and TLG were significant prognostic factors (p < 0.05). Among these variables, tumor stage (p = 0.0006) and TLG (p = 0.008) independently correlated with disease progression-free survival on multivariate analysis. The disease progression rate was only 2.3 % in stage I-II patients with low TLG (≤100.0), compared to 80.0 % in stage III-IV patients with high TLG (>100.0). Along with tumor stage, TLG is an independent prognostic factor for disease progression after cytoreductive surgery in patients with epithelial ovarian cancer. By combining tumor stage and TLG, one can further stratify the risk of disease progression for patients undergoing cytoreductive surgery. (orig.)

  14. Correlation of {sup 18}F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    Shusharina, Nadya, E-mail: nshusharina@partners.org; Cho, Joseph; Sharp, Gregory C.; Choi, Noah C.

    2014-05-01

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations after therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.

  15. Evaluation of intratumoural heterogeneity on 18F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1

    The aim of the study was to evaluate the potential usefulness of intratumoural tracer uptake heterogeneity on 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT as compared to a cut-off maximum standardized uptake value (SUVmax) for characterization of peripheral nerve sheath tumours (PNSTs) in neurofibromatosis type 1 (NF1). Fifty patients suffering from NF1 were examined by 18F-FDG PET/CT. Intralesional tracer uptake was analysed qualitatively and semi-quantitatively by measuring the mean and maximum SUV. Uptake heterogeneity was graded qualitatively using a three-point scale and semi-quantitatively by calculating an SUV-based heterogeneity index (HISUV). Cohen's κ was used to determine inter- and intra-rater agreement. Histopathological evaluation and clinical as well as radiological follow-up examinations served as the reference standards. A highly significant correlation between the degree of intratumoural uptake heterogeneity on 18F-FDG PET and malignant transformation of PNSTs was observed (p SUV was significantly higher in malignant PNSTs (MPNSTs) than in benign tumours (p = 0.0002). Both intralesional heterogeneity and SUVmax could be used to identify malignant tumours with a sensitivity of 100 %. Cohen's κ was 0.86 for inter-rater agreement and 0.88 for intra-rater agreement on heterogeneity. MPNSTs in patients with NF1 demonstrate considerable intratumoural uptake heterogeneity on 18F-FDG PET/CT. Assessment of tumour heterogeneity is highly reproducible. Both tumour heterogeneity and a cut-off SUVmax may be used to sensitively identify malignant PNSTs, but the specificity is higher for the latter. A combination of both methods leads to a non-significant improvement in diagnostic performance. (orig.)

  16. {sup 18}F-FDG PET analysis of schwannoma: increase of SUVmax in the delayed scan is correlated with elevated VEGF/VPF expression in the tumors

    Hamada, Kenichiro [Osaka Medical Center for Cancer and Cardiovascular Diseases, Department of Orthopedic Surgery, Osaka (Japan)]|[Osaka University Graduate School of Medicine, Department of Nuclear Medicine and Tracer Kinetics, Osaka (Japan); Tomita, Yasuhiko; Tomoeda, Miki [Osaka Medical Center for Cancer and Cardiovascular Diseases, Department of Pathology, Osaka, Osaka (Japan); Qiu, Ying; Aozasa, Katsuyuki [Osaka University Graduate School of Medicine, Department of Pathology, Osaka (Japan); Ueda, Takafumi [Osaka National Hospital, Department of Orthopedic Surgery, Osaka (Japan); Tamai, Noriyuki; Hashimoto, Nobuyuki; Yoshikawa, Hideki [Osaka University Graduate School of Medicine, Department of Orthopedic Surgery, Osaka (Japan); Hatazawa, Jun [Osaka University Graduate School of Medicine, Department of Nuclear Medicine and Tracer Kinetics, Osaka (Japan)

    2009-03-15

    In order to clarify the increased 2-deoxy-2-fluoro-{sup 18}F-d-glucopyranose ({sup 18}F-FDG) accumulation in schwannoma by positron emission tomography (PET) analysis, immunohistochemical analysis for the factors involved in glucose transportation and vascular formation was performed. Twenty-six patients with schwannoma (13 men and 13 women) with ages ranging from 27 to 75 years, who received whole body {sup 18}F-FDG PET scan, were enrolled for the present study. The retention index (RI) was calculated by dividing the increase in the standardized uptake value (SUVmax) at the delayed scan by the SUVmax in the early scan. SUVmax and RI were compared with the histologic variables, including the expression of glucose transporters 1 and 3, hexokinase II, vascular endothelial growth factor/vascular permeability factor (VEGF/VPF), and microvascular density shown by CD31 immunohistochemistry. Mean SUVmax values in the early and delayed scans were 2.64{+-}1.47 and 2.71{+-}1.57 (mean {+-} SD), respectively. RI was -2.5{+-}21 (percentage). SUVmax showed a positive correlation with the tumor size (tumor size <5 cm, 2.06 {+-} 0.72; >5 cm, 3.95{+-}1.89; p<0.05) and the microvascular density (negative density, 2.16{+-}1.12; positive density, 3.56{+-}1.67; p<0.05). RI correlated with VEGF/VPF expression in the tumors (negative expression, -11{+-}6.1; positive expression, 13{+-}8.1; p<0.05). Other factors showed no correlation with SUVmax or RI. Microvascular density and vascular permeability of the tumor are suggested to affect the enhanced {sup 18}F-FDG accumulation in schwannoma. (orig.)

  17. Correlation of 18F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography (18F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial 18F-FDG PET examinations after therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUVmax) (≥50% of SUVmax) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUVmax. The VOI of pretherapy and posttherapy 18F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUVmax-≥50% isocontour may be a biological target volume for escalated radiation dose

  18. Analysis of Imaging Characteristics of18F-FDG PET/CT in Misdiagnosed Bone Tuberculosis:A Report of 12 Cases

    DING Qi-yong; LI Tian-nyu; CHEN Jian-wei; LIU Lian-ke

    2015-01-01

    Objective: To analyze the imaging characteristics of18F-lfuorodeoxyglucose positron emission tomography/computer tomography (18F-FDG PET/CT) in 12 cases of misdiagnosed bone tuberculosis so as to explore the differential diagnostic method with metastatic bone tumors. Methods: The images of 12 patients with bone tuberculosis diagnosed by18F-FDG PET/CT were retrospectively analyzed. Distribution of lesion locations in the whole body and characteristics of glucose metabolism were analyzed by qualitative and semi-quantitative methods, especially for bone lesion location, number and range, glucose uptake form and CT imaging characteristics, and the maximum of standardized uptake value (SUVmax) was measured and recorded. Results: Of 12 patients, 1 showed increased glucose uptake of diffuse bone marrow in the whole body, whereas the rest suffered from 19 bone lesions, in which each one had 1 bone lesion in 9 cases, accounting for 75.0%. The images of PET/CT in 12 patients primarily manifested annular or nonuniform increase of glucose uptake (63.2%), sequestrum within osteolytic lesions (31.6%), injured intervertebral disc caused by vertebral lesions (61.5%) and cold abscesses around the lesions (68.4%). The glucose uptake rate of cold abscesses was higher than that of bone lesion locations. The tuberculosis complicated with other parts included lymphatic tuberculosis (100.0%), pulmonary tuberculosis (66.7%), pericardial or pleural tuberculosis (25.0%) and hepatolienal tuberculosis (8.3%). Conclusion: The characteristics of bone tuberculosis lesions are prominent in18F-FDG PET/CT imaging, which could contribute to diagnosis of whole body tuberculosis and has a greater value in the differentiation of bone tuberculosis and metastatic bone tumors.

  19. {sup 18}F-FDG PET/CT for diagnosing infectious complications in patients with severe neutropenia after intensive chemotherapy for haematological malignancy or stem cell transplantation

    Vos, Fidel J.; Kullberg, Bart-Jan; Bleeker-Rovers, Chantal P. [Radboud University Nijmegen Medical Centre, Department of Internal Medicine, PO Box 9101, Nijmegen (Netherlands); Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Donnelly, J.P.; Blijlevens, Nicole M.A. [Radboud University Nijmegen Medical Centre, Department of Hematology, Nijmegen (Netherlands); Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Nijmegen Institute for Infection, Inflammation and Immunity (N4i), Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-01-15

    Between 30 and 50% of febrile neutropenic episodes are accounted for by infection. C-reactive protein (CRP) is a nonspecific parameter for infection and inflammation but might be employed as a trigger for diagnosis. The aim of the study was to evaluate whether {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT can be used to detect inflammatory foci in neutropenic patients with elevated CRP and whether it helps to direct treatment. Twenty-eight consecutive patients with neutropenia as a result of intensive chemotherapy for haematological malignancies or myeloablative therapy for haematopoietic stem cell transplantation were prospectively included. {sup 18}F-FDG PET/CT was added to the regular diagnostic workup once the CRP level rose above 50 mg/l. Pathological FDG uptake was found in 26 of 28 cases despite peripheral neutrophil counts less than 0.1 x 10{sup -9}/l in 26 patients: in the digestive tract in 18 cases, around the tract of the central venous catheter (CVC) in 9 and in the lungs in 7 cases. FDG uptake in the CVC tract was associated with coagulase-negative staphylococcal bacteraemia (p < 0.001) and deep venous thrombosis (p = 0.002). The number of patients having Streptococcus mitis bacteraemia appeared to be higher in patients with grade 3 oesophageal FDG uptake (p = 0.08). Pulmonary FDG uptake was associated with the presence of invasive fungal disease (p = 0.04). {sup 18}F-FDG PET/CT scanning during chemotherapy-induced febrile neutropenia and increased CRP is able to detect localized foci of infection and inflammation despite the absence of circulating neutrophils. Besides its potential role in detecting CVC-related infection during febrile neutropenia, the high negative predictive value of {sup 18}F-FDG PET/CT is important for avoiding unnecessary diagnostic tests and therapy. (orig.)

  20. Evaluation of intratumoural heterogeneity on {sup 18}F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1

    Salamon, Johannes; Derlin, Thorsten; Bannas, Peter; Busch, Jasmin D.; Herrmann, Jochen; Adam, Gerhard [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Bockhorn, Maximilian [University Medical Center Hamburg-Eppendorf, Department of General, Visceral and Thoracic Surgery, Hamburg (Germany); Hagel, Christian [University Medical Center Hamburg-Eppendorf, Institute of Neuropathology, Hamburg (Germany); Friedrich, Reinhard E. [University Medical Center Hamburg-Eppendorf, Department of Oral and Maxillofacial Surgery, Hamburg (Germany); Mautner, Victor F. [University Medical Center Hamburg-Eppendorf, Department of Neurology, Hamburg (Germany)

    2013-05-15

    The aim of the study was to evaluate the potential usefulness of intratumoural tracer uptake heterogeneity on {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT as compared to a cut-off maximum standardized uptake value (SUV{sub max}) for characterization of peripheral nerve sheath tumours (PNSTs) in neurofibromatosis type 1 (NF1). Fifty patients suffering from NF1 were examined by {sup 18}F-FDG PET/CT. Intralesional tracer uptake was analysed qualitatively and semi-quantitatively by measuring the mean and maximum SUV. Uptake heterogeneity was graded qualitatively using a three-point scale and semi-quantitatively by calculating an SUV-based heterogeneity index (HI{sub SUV}). Cohen's {kappa} was used to determine inter- and intra-rater agreement. Histopathological evaluation and clinical as well as radiological follow-up examinations served as the reference standards. A highly significant correlation between the degree of intratumoural uptake heterogeneity on {sup 18}F-FDG PET and malignant transformation of PNSTs was observed (p < 0.0001). Semi-quantitative HI{sub SUV} was significantly higher in malignant PNSTs (MPNSTs) than in benign tumours (p = 0.0002). Both intralesional heterogeneity and SUV{sub max} could be used to identify malignant tumours with a sensitivity of 100 %. Cohen's {kappa} was 0.86 for inter-rater agreement and 0.88 for intra-rater agreement on heterogeneity. MPNSTs in patients with NF1 demonstrate considerable intratumoural uptake heterogeneity on {sup 18}F-FDG PET/CT. Assessment of tumour heterogeneity is highly reproducible. Both tumour heterogeneity and a cut-off SUV{sub max} may be used to sensitively identify malignant PNSTs, but the specificity is higher for the latter. A combination of both methods leads to a non-significant improvement in diagnostic performance. (orig.)

  1. Selective intra-arterial administration of {sup 18}F-FDG to the rat brain - effects on hemispheric uptake

    Arnberg, Fabian; Samen, Erik; Lundberg, Johan; Grafstroem, Jonas; Soederman, Michael; Stone-Elander, Sharon; Holmin, Staffan [Karolinska Institutet, Department of Clinical Neuroscience, Stockholm (Sweden); Karolinska University Hospital-Solna, Department of Neuroradiology, Stockholm (Sweden); Lu, Li [Karolinska University Hospital-Solna, KERIC, Stockholm (Sweden)

    2014-05-15

    The purpose of this study was to investigate the radioligand uptake and iodine contrast distribution in the intra- and extracranial circulation of the rat, after intra-arterial injections to the common carotid artery and different parts of the internal carotid artery. All animal experiments were carried out in accordance with Karolinska Institutet's guidelines and were approved by the local laboratory animal ethics committee. We used clinical neurointerventional systems to place microcatheters in the extra- or intracranial carotid artery of 15 Sprague-Dawley rats. Here, injection dynamics of iodine contrast was assessed using digital subtraction angiography. Maintaining the catheter position, the animals were placed in a micro PET and small-animal positron emission tomography (PET) was used to analyze injections [2-{sup 18}F]-2-fluoro-2-deoxy-d-glucose ({sup 18}F-FDG). Microcatheters had to be placed in the intracranial carotid artery (iICA) for the infusate to distribute to the brain. Selective injection via the iICA resulted in a 9-fold higher uptake of {sup 18}F-FDG in the injected hemisphere (p < 0.005) compared to both intravenous and more proximal carotid artery injections. Furthermore, selective injection gave a dramatically improved contrast between the brain and extracranial tissue. Intra-arterial injection increases the cerebral uptake of a radiotracer dramatically compared to systemic injection. This technique has potential applications for endovascular treatment of malignancies allowing intra-interventional modifications of injection strategy, based on information on tumor perfusion and risk to surrounding normal parenchyma. Furthermore the technique may increase diagnostic sensitivity and avoid problems due to peripheral pharmacological barriers and first passage metabolism of labile tracers. (orig.)

  2. Prognostic significance of volume based metabolic parameters by 18F FDG PET/CT in gallbladder carcinoma

    We investigated the prognostic values of volume based metabolic parameters by 18F fluorodeoxyglucose (18F FDG)positron emission tomography (PET)/computed tomography (CT)in gallbladder carcinoma patients and compared them with other prognostic parameters. We enrolled 44 patients, who were initially diagnosed with gallbladder carcinoma and under going 18F FDG PET/CT. Various metabolic volume based PET parameters of primary tumors, including maximum and average standardized uptake values (SUVmax, SUVavg), metabolic tumor volume (MTV), and total lesion glycolysis (TLG), were measured in gallbladder carcinoma patients using mediastinal blood pool activity as a threshold SUV for determining the tumor boundaries. Overall survival analysis was performed using the Kaplan Meier method with PET parameters and other clinical variables. For determining independent prognostic factors, Cox proportional hazards regression analysis was performed. Of the 44 enrolled patients, cancer- or treatment related death occurred in 30 (68.2%). The mean clinical follow up period was 22.2±10.4m (range, 0.6-35.9m). Univariate analysis demonstrated that clinical or pathologic TNM stage (P3, P=0.001), and TLG (cutoff=7.090, P<0.05)were significant prognostic factors. In multivariate analysis, both clinical or pathologic TNM stage [hazard ratio (HR)=2.019 (I vs II), 21.287 (I vs III), and 24.354 (I vs IV); P=0.001)and TLG (HR=2.930; P<0.05)were independent prognostic factors for predicting overall survival. In gallbladder cancer, TLG of the primary tumor, a volume based metabolic parameter, is a significant independent prognostic factor for overall survival in conjunction with the clinical or pathological TNM stage

  3. (18)F-FDG PET patterns and BAL cell profiles in pulmonary sarcoidosis.

    Keijsers, R.G.; Grutters, J.C.; Velzen-Blad, H. van; Bosch, J.M. van den; Oyen, W.J.G.; Verzijlbergen, F.J.

    2010-01-01

    PURPOSE: Bronchoalveolar lavage (BAL) and (18)F-fluorodeoxyglucose ((18)F-FDG) PET can both demonstrate sarcoid activity. To assess whether metabolic activity imaged by (18)F-FDG PET represents signs of disease activity as reflected by BAL, (18)F-FDG PET patterns were compared with BAL cell profiles

  4. [18F]-FDG coincidence imaging in patients with increased CA 15-3 levels during follow-up for breast cancer

    This study evaluated the usefulness of 18-Fluoro-Deoxy-Glucose imaging performed with a Coincidence Detection Emission Tomography camera ([18F]-FDG-CDET) in the detection of breast cancer recurrence. 27 patients with increasing CA 15-3 levels during follow-up were included in this study. 18FDG imaging was performed with a CDET camera in all patients. [18F]-FDG-CDET findings were compared with other imaging modalities results. Recurrence was confirmed in 25/27 patients and included 5 patients with local-regional recurrences and one with local-regional and liver metastasis, 10 with visceral metastases and 9 patients with bone metastases. No recurrence was confirmed in the remaining 2 patients during a 2 years follow-up. The overall sensitivity of [18F]-FDG-CDET and other imaging modalities was similar (88% and 80% respectively). [18]-FDG-CDET and abdominal CT had similar sensitivity (66% and 63% respectively) in the diagnosis of liver metastases. In detection of bone metastases, the sensitivity of [18F]-FDG-CDET and bone scintigraphy was similar. In patients with local-regional recurrences, [18F]-FDG-CDET detected 6/6 recurrences and other imaging modalities 4/6. In this study, [18F]-FDG-TEDC had similar performance than a strategy combining several imaging modalities for metastases and a better performance for local-regional recurrence detection. (author)

  5. Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer

    Miccò, Maura, E-mail: miccom@mskcc.org [Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Vargas, Hebert Alberto; Burger, Irene A. [Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Kollmeier, Marisa A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 1006 (United States); Goldman, Debra A. [Department of Epidemiology-Biostatistics, Memorial Sloan-Kettering Cancer Center, 307 E 63rd Street, New York, NY 10065 (United States); Park, Kay J. [Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Abu-Rustum, Nadeem R. [Department of Surgery, Gynecologic Oncology Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Hricak, Hedvig; Sala, Evis [Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States)

    2014-07-15

    Objective: To determine the associations of quantitative parameters derived from multiphase contrast-enhanced magnetic resonance imaging (CE-MRI), diffusion-weighted (DW) MRI and 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/computed tomography (PET/CT) with clinico-histopathological prognostic factors, disease-free survival (DFS) and overall survival (OS) in patients with cervical cancer. Methods and materials: Our institutional review board approved this retrospective study of 49 patients (median age, 45 years) with histopathologically proven IB-IVB International Federation of Gynecology and Obstetrics (FIGO) cervical cancer who underwent pre-treatment pelvic MRI and whole-body 18F-FDG PET/CT between February 2009 and May 2012. Maximum diameter ({sub max}TD), percentage enhancement (PE) and mean apparent diffusion coefficient (ADC{sub mean}) of the primary tumor were measured on MRI. Maximum standardized uptake value (SUV{sub max}), metabolic tumor volume (MTV), total lesion glycolysis (TLG) were measured on 18F-FDG PET/CT. Correlations between imaging metrics and clinico-histopathological parameters including revised 2009 FIGO stage, tumor histology, grade and lymph node (LN) metastasis at diagnosis were evaluated using the Wilcoxon rank sum test. Cox modeling was used to determine associations with DFS and OS. Results: Median follow-up was 17 months. 41 patients (83.6%) were alive. 8 patients (16.3%) died of disease. Progression/recurrence occurred in 17 patients (34.6%). Significant differences were observed in ADC{sub mean}, SUV{sub max}, MTV and TLG according to FIGO stage (p < 0.001–0.025). There were significant correlations between ADC{sub mean}, MTV, TLG and LN metastasis (p = 0.017–0.032). SUV{sub max} was not associated with LN metastasis. FIGO stage (p = 0.017/0.033), LN metastases (p = 0.001/0.020), ADC{sub mean} (p = 0.007/0.020) and MTV (p = 0.014/0.026) were adverse predictors of both DFS/OS. {sub max}TD (p = 0.005) and TLG (p

  6. Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer

    Objective: To determine the associations of quantitative parameters derived from multiphase contrast-enhanced magnetic resonance imaging (CE-MRI), diffusion-weighted (DW) MRI and 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/computed tomography (PET/CT) with clinico-histopathological prognostic factors, disease-free survival (DFS) and overall survival (OS) in patients with cervical cancer. Methods and materials: Our institutional review board approved this retrospective study of 49 patients (median age, 45 years) with histopathologically proven IB-IVB International Federation of Gynecology and Obstetrics (FIGO) cervical cancer who underwent pre-treatment pelvic MRI and whole-body 18F-FDG PET/CT between February 2009 and May 2012. Maximum diameter (maxTD), percentage enhancement (PE) and mean apparent diffusion coefficient (ADCmean) of the primary tumor were measured on MRI. Maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG) were measured on 18F-FDG PET/CT. Correlations between imaging metrics and clinico-histopathological parameters including revised 2009 FIGO stage, tumor histology, grade and lymph node (LN) metastasis at diagnosis were evaluated using the Wilcoxon rank sum test. Cox modeling was used to determine associations with DFS and OS. Results: Median follow-up was 17 months. 41 patients (83.6%) were alive. 8 patients (16.3%) died of disease. Progression/recurrence occurred in 17 patients (34.6%). Significant differences were observed in ADCmean, SUVmax, MTV and TLG according to FIGO stage (p < 0.001–0.025). There were significant correlations between ADCmean, MTV, TLG and LN metastasis (p = 0.017–0.032). SUVmax was not associated with LN metastasis. FIGO stage (p = 0.017/0.033), LN metastases (p = 0.001/0.020), ADCmean (p = 0.007/0.020) and MTV (p = 0.014/0.026) were adverse predictors of both DFS/OS. maxTD (p = 0.005) and TLG (p = 0.024) were adverse predictors of DFS. PE and SUVmax

  7. The Clinical Role of Dual-Time-Point 18F-FDG PET/CT in Differential Diagnosis of the Thyroid Incidentaloma

    Thyroid incidentalomas are common findings during imaging studies including 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) for cancer evaluation. Although the overall incidence of incidental thyroid uptake detected on PET imaging is low, clinical attention should be warranted owing to the high incidence of harboring primary thyroid malignancy.We retrospectively reviewed 2,368 dual-time-point 18F-FDG PET/CT cases that were undertaken for cancer evaluation from November 2007 to February 2009, to determine the clinical impact of dual-time-point imaging in the differential diagnosis of thyroid incidentalomas. Focal thyroid uptake was identified in 64 PET cases and final diagnosis was clarified with cytology/histology in a total of 27 patients with 18F-FDG-avid incidental thyroid lesion. The maximum standardized uptake value (SUVmax) of the initial image (SUV1) and SUVmax of the delayed image (SUV2) were determined, and the retention index (RI) was calculated by dividing the difference between SUV2 and SUV1 by SUV1 (i. e., RI=[SUV2-SUV1]/SUV1Χ100). These indices were compared between patient groups that were proven to have pathologically benign or malignant thyroid lesions. There was no statistically significant difference in SUV1 between benign and malignant lesions. SUV2 and RI of the malignant lesions were significantly higher than the benign lesions. The areas under the ROC curves showed that SUV2 and RI have the ability to discriminate between benign and malignant thyroid lesions. The predictability of dual-time-point PET parameters for thyroid malignancy was assessed by ROC curve analyses. When SUV2 of 3.9 was used as cut-off threshold, malignancy on the pathology could be predicted with a sensitivity of 87.5 % and specificity of 75 %. A thyroid lesion that shows RI greater than 12.5 % could be expected to be malignant (sensitivity 88.9 %, specificity 66.3 %). All malignant lesions showed an increase in SUVmax on the

  8. {sup 18}F-FDG PET in Patients with Primary Systemic Anaplastic Large Cell Lymphoma: Differential Features According to Expression of Anaplastic Lymphoma Kinase

    Lee, Dong Yun; Lee, Jong Jin; Park, Seol Hoon; Chae, Sunyoung; Kim, Shin; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung; Ryu, Jinsook [Univ. of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2013-12-15

    Primary systemic anaplastic large cell lymphoma (ALCL) is divided into two entities according to the expression of anaplastic lymphoma kinase (ALK). We investigated {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) findings in primary systemic ALCL according to ALK expression. Thirty-seven patients who had baseline PET before CHOP (cyclophosphamide, doxorubicin, vincristine and prednisolone)-based chemotherapy were enrolled. Among them, patients who underwent interim and/or post-therapy PET were further investigated for the treatment response and survival analysis. Baseline PET was analyzed visually and semi-quantitatively using peak SUV, and interim and post-therapy PETs were visually analyzed. All cases were {sup 18}F-FDG-avid on baseline PET. The peak SUV of ALK-positive ALCL (n =16, 18.7±10.5) was higher than that of ALK-negative ALCL (n =21, 10.0±4.9) (P =0.006). In ALK-negative ALCL, complete response (CR) rate in negative-interim PET was higher than positive-interim PET (100 % vs 37.5 %, P=0.02); however, there was no such difference in ALK-positive ALCL (100 % vs 75 %, P =0.19). The 3-year progression-free survival (PFS) was not significantly different between ALK-positive and ALK-negative ALCL (72.7 % vs 47.6 %, P =0.34). In ALK-negative ALCL, negative interim and post-therapy PET patients had better 3-year PFS than positive interim (83.3 % vs 25.0 %, P =0.06) and post-therapy PET patients (70.0%vs 20.0 %, P =0.04). In contrast, ALK-positive ALCL had no such differences between PFS and PET results. On baseline PET, all cases showed {sup 18}F-FDG avidity, and ALK expression was related to higher {sup 18}F-FDG uptake. ALK-positive patients tend to have better PFS than ALK-negative patients. Negative-interim PET was a good indicator of CR, and interim or post-therapy PET was helpful for predicting the prognosis only in the ALK-negative group.

  9. Localisation of motor areas in brain tumour patients: a comparison of preoperative [18F]FDG-PET and intraoperative cortical electrostimulation

    Assessment of the exact spatial relation between tumour and adjacent functionally relevant brain areas is a primary tool in the presurgical planning in brain tumour patients. The purpose of this study was to compare a preoperative fluorine-18 fluorodeoxyglucose positron emission tomography ([18F]FDG PET) activation protocol in patients with tumours near the central area with the results of intraoperative direct cortical electrostimulation, and to determine whether non-invasive preoperative PET imaging can provide results equivalent to those achieved with the invasive neurosurgical ''gold standard''. In this prospective study, we examined 20 patients with various tumours of the central area, performing two PET scans (each 30 min after i.v. injection of 134-341 MBq [18F]FDG) in each patient: (1) a resting baseline scan and (2) an activation scan using a standardised motor task (finger tapping, foot stretching). Following PET/MRI realignment and normalisation to the whole brain counts, parametric images of the activation versus the rest study were calculated and pixels above categorical threshold values were projected to the individual MRI for bimodal assessment of morphology and function (PET/MRI overlay). Intraoperative direct cortical electrostimulation was performed using a Viking IV probe (5 pulses, each of 100 μs) and documented using a dedicated neuro navigation system. Results were compared with the preoperative PET findings. PET revealed significant activation of the contralateral primary motor cortex in 95% (19/20) of the brain tumour patients (hand activation 13/13, foot activation 6/7), showing a mean increase in normalised [18F]FDG uptake of 20.5%±5.2% (hand activation task) and 17.2%±2.5% (foot activation task). Additionally detected activation of the ipsilateral primary motor cortex was interpreted as a metabolic indication for interhemispheric compensational processes. Evaluation of the PET findings by cortical stimulation yielded a 94% sensitivity

  10. Localisation of motor areas in brain tumour patients: a comparison of preoperative [{sup 18}F]FDG-PET and intraoperative cortical electrostimulation

    Schreckenberger, M.; Sabri, O.; Meyer, P.T.; Zeggel, T.; Zimny, M.; Buell, U. [Technische Univ. Aachen (Germany). Dept. of Nuclear Medicine; Spetzger, U.; Gilsbach, J. [Dept. of Neurosurgery, Aachen Univ. of Technology (Germany)

    2001-09-01

    Assessment of the exact spatial relation between tumour and adjacent functionally relevant brain areas is a primary tool in the presurgical planning in brain tumour patients. The purpose of this study was to compare a preoperative fluorine-18 fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) activation protocol in patients with tumours near the central area with the results of intraoperative direct cortical electrostimulation, and to determine whether non-invasive preoperative PET imaging can provide results equivalent to those achieved with the invasive neurosurgical ''gold standard''. In this prospective study, we examined 20 patients with various tumours of the central area, performing two PET scans (each 30 min after i.v. injection of 134-341 MBq [{sup 18}F]FDG) in each patient: (1) a resting baseline scan and (2) an activation scan using a standardised motor task (finger tapping, foot stretching). Following PET/MRI realignment and normalisation to the whole brain counts, parametric images of the activation versus the rest study were calculated and pixels above categorical threshold values were projected to the individual MRI for bimodal assessment of morphology and function (PET/MRI overlay). Intraoperative direct cortical electrostimulation was performed using a Viking IV probe (5 pulses, each of 100 {mu}s) and documented using a dedicated neuro navigation system. Results were compared with the preoperative PET findings. PET revealed significant activation of the contralateral primary motor cortex in 95% (19/20) of the brain tumour patients (hand activation 13/13, foot activation 6/7), showing a mean increase in normalised [{sup 18}F]FDG uptake of 20.5%{+-}5.2% (hand activation task) and 17.2%{+-}2.5% (foot activation task). Additionally detected activation of the ipsilateral primary motor cortex was interpreted as a metabolic indication for interhemispheric compensational processes. Evaluation of the PET findings by