WorldWideScience

Sample records for 183-h solar evaporation

  1. Closure proposal: 183-H Solar Evaporation Basins

    This document describes the overall approach and logic for implementing clean closure of the 183-H Solar Evaporation basins (183-H) in a cost-effective and timely manner and in accordance with all applicable regulations. The Resource Conservation and Recovery Act of 1976 and the Washington Administrative Code (WAC) 173-303 are the regulatory bases for this closure strategy. The closure described herein is consistent with potential future land uses, and with remedial action planning in the 100-H area, as well as with other decontamination and decommissioning (D ampersand D) of the 100-H structures

  2. 183-H Solar Evaporation Basins PostClosure Plan

    The 183-H Solar Evaporation Basins (183-H) have certified closure under a modified closure option available in the Hanford Facility Dangerous Waste Permit under Condition II.K.3. The following information contains a description of the unit, past closure actions, and postclosure care requirements subject to compliance under the Permit. Corrective actions required for dangerous waste constituents remaining at 183-H will occur in conjunction with Comprehensive Environmental Response, Compensation, and Liability Act remedial actions for the 100-HR-1 Source Operable Unit and the 100-HR-3 Groundwater Operable Unit

  3. Groundwater monitoring plan for the 183-H Solar Evaporation Basins

    Groundwater monitoring at the 183-H Solar Evaporation Basins is regulated under Washington Administrative Code 173-303-645. Proposed in this plan is the first phase of a final-status, corrective action monitoring program for the site. The monitoring network consists of four existing wells: 199-H4-3, 199-H4-7, 199-H4-12A, and 199-H4-12C. Well 199-H4-12C is completed at the base of the unconfined aquifer; the other wells are screened at the water table. Wells 199-H4-7 and 199-H4-12A are groundwater extraction wells used in a pump-and-treat system. Groundwater samples will be collected from each well annually. Samples will be analyzed for the following: (1) constituents of concern (i.e., chromium, nitrate, technetium-99, and uranium) and fluoride; (2) additional constituents to aid data interpretation (e.g., alkalinity, anions, and metals); and (3) field parameters routinely acquired at the wellhead (e.g., pH, specific conductance, temperature, and turbidity). The objective of monitoring during operation of the pump-and-treat system is to determine whether concentrations of the contaminants of concern are decreasing

  4. Field screening sampling and analysis strategy and methodology for the 183-H Solar Evaporation Basins: Phase 2, Soils

    This document provides a sampling/analytical strategy and methodology for Resource Conservation and Recovery Act (RCRA) closure of the 183-H Solar Evaporation Basins within the boundaries and requirements identified in the initial Phase II Sampling and Analysis Plan for RCRA Closure of the 183-H Solar Evaporation Basins

  5. Unit-Specific Contingency Plan for the 183-H Solar Evaporation Basins

    This document is a supplement to DOE/RL-93-75, 'Hanford Contingency Plan.' It provides the unit-specific information needed to fully comply with the Washington Administrative Code. General emergency and response information is contained in the Hanford Facility Contingency Plan and is not repeated in this supplement. The 183-H Solar Evaporation Basins were four concrete internal surfaces, which contained radiologically and hazardous contaminated waste. The 183-H Basin area is a final status treatment, storage, and disposal unit undergoing Resource Conservation and Recovery Act modified post- closure care

  6. Unit-specific contingency plan for the 183-H Solar Evaporation Basins. Revision 2

    This document is a supplement to the Hanford Facility Contingency Plan. It provides the unit-specific information needed to fully comply with the Washington Administrative Code, Chapter 173-303, ''Dangerous Waste Regulations,'' for contingency plans. General emergency and response information is contained in the Hanford Facility Contingency Plan and is not repeated in this supplement. The 183-H Solar Evaporation Basins are four concrete internal surfaces which contained radiologically- and hazardous-contaminated waste. The 183-H basins are currently empty, inactive and designated as a Resource Conservation and Recovery Act interim-status treatment, storage, and disposal unit undergoing closure. There is no dangerous waste management actively occurring. There is very little likelihood of any incidents that would present hazards to public health or the environment occurring at the 183-H basins

  7. Unit-specific contingency plan for the 183-H solar evaporation basins. Revision 1

    This document is a supplement to the Hanford Facility Contingency Plan. It provides the unit-specific information needed to fully comply with the Washington Administrative Code, Chapter 173-303, ''Dangerous Waste Regulations,'' for contingency plans. General emergency and response information is contained in the Hanford Facility Contingency Plan and is not repeated in this supplement. The 183-H solar evaporation basins are four concrete internal surfaces which contained radiologically- and hazardous-contaminated waste. The 183-H basins are currently empty, inactive and designated as a Resource Conservation and Recovery Act interim-status treatment, storage, and disposal unit undergoing closure. There is no dangerous waste management actively occurring. There is very little likelihood of any incidents that would present hazards to public health or the environment occurring at the 183-H basins

  8. 1996 Phase 2 soil sampling at the 183-H Solar Evaporation Basin site

    This report consolidates 1996 soil sampling data collected from the 183-H Solar Evaporation Basin Site. This report is intended to be a data reference and does not make comparisons or conclusions regarding specific regulatory criteria. Chemical and radiological data were collected to support cleanup activities at the Hanford Site; soil sampling occurred beneath and next to the former basin structures. The 183-H Solar Evaporation Basins, which consisted of four adjoining concrete basins, were located in the 100 Area of the Hanford Site, north of the retired 105-H Reactor. Originally, the basins were built as part of the 100-H water treatment structures. The four basins were inactive from the mid-1960's until 1973 when radioactive and dangerous (mixed) waste from the 300 Area Fuel Fabrication Facility was shipped to the basins for storage and treatment. The basins were used for solar evaporation of the waste. The last shipment of waste to the 183-H Basins took place in November 1985. Decontamination of the cement structure took place in 1995. The structure has subsequently been dismantled and disposed. Chapters 2.0 through 4.0 present summary information about sampling (1) beneath the loading ramp and berm piles, (2) in shallow soils beneath the former basin floor, and (3) deep vadose soils. Detailed data are provided in the appendices

  9. Action taken to remediate the 183-H solar evaporation basins at the Hanford, Washington site

    The four 183-H solar evaporation basins were originally constructed as floccation/settling basins which were part of the cooling water treatment facility associated with the operation of the 100-H plutonium production reactor (circa 1949-1965). The basins were converted in 1973 to solar evaporation basins for chemical/low level radioactive liquid wasted from Hanford fuel fabrication operations. Use of the basins for evaporation continued until 1985. One of the basins was suspected of leaking prior to being taken out of operation. When the current decontamination and decommissioning (D and D) efforts began in 1986, basin number-sign 1 which had suspected leakage, had been cleaned of all liquid and sludge, and the three remaining basins contained a total of 500,000 gallons of liquid and 30,000 cubic feet of sludge. Between 1986 and 1988, the 500,000 gallons of liquid was reduced to 350,000 gallons through natural evaporation

  10. RCRA closure experience with radioactive mixed waste in the 183-H Solar Evaporation Basins at the Hanford Site

    This paper provides an overview of the Resource Conservation and Recovery Act (RCRA) of 1976 closure work of the 183-H Solar Evaporation Basins, at the Hanford Site for the US Department of Energy Field Office, Richland, Washington. A description of how the hazardous wastes and radioactive wastes (mixed wastes) were treated and removed is provided, as well as presenting an overview of the sampling program used to demonstrate and document closure

  11. Interim status of closure/post-closure plan for 183-H solar evaporation basins

    This report describes a plan for decommissioning several solar evaporation basins on the Hanford reservation. The document describes procedures for sampling during decommissioning and a plan for certification of the resulting completed landfill. Additional plans deal with the training, security of the site, and post-closure monitoring

  12. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  13. RESULTS OF GROUNDWATER MONITORING FOR THE 183-H SOLAR EVAPORATION BASINS AND 300 AREA PROCESS TRENCHES JANUARY - JUNE 2008

    This is one of a series of reports on Resource Conservation and Recovery Act of 1976 (RCRA) monitoring at the 183-H solar evaporation basins and the 300 Area process trenches. It fulfills the requirement of Washington Administrative Code (WAC) 173-303-645(11)(g), 'Release from Regulated Units', to report twice each year on the effectiveness of the corrective action program. This report covers the period from January through June 2008. The current objective of corrective action monitoring the 183-H basins is simply to track trends. Although there is short-term variability in contaminant concentrations, trends over the past 10 years are downward. The current Hanford Facility RCRA Permit (Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste (Permit No. WA 7890008967)) and monitoring plan remain adequate for the objective of tracking trends. The objective of groundwater monitoring at the 300 Area process trenches is to demonstrate the effectiveness of the corrective action program by examining the trend of the constituents of interest to confirm that they are attenuating naturally. The overall concentration of uranium in network wells remained above the 30 (micro)g/L drinking water standard in the three downgradient wells screened at the water table. Fluctuations of uranium concentration are caused by changes in river stage. The concentration of cis-1,2-dichloroethene remained above the 70 (micro)g/L drinking water standard in one well (399-1-16B). Concentrations are relatively steady at this well and are not affected by river stage. Trichloroethene and tetrachloroethene concentrations were below detection limits in all wells during the reporting period

  14. Engineering evaluation/cost analysis for disposal of structural concrete and soil from the 183-H Solar Evaporation Basin

    This engineering evaluation/cost analysis is intended to aid the US Department of Energy, Richland Operations Office in selecting a preferred response action alternative for removing contaminated structural concrete and soils stockpiled next to the 183-H evaporation basin, which was conducted under the Resource Conservation and Recovery Act of 1976. This EE/CA evaluates possible alternative response actions and documents the decision making process

  15. Radiological dose assessment for the decontaminated concrete removed from 183-H solar evaporation basins at the Hanford site, Richland, Washington

    Potential maximum radiation dose rates over a 1,000-year time horizon were calculated for exposure to the decontaminated concrete removed from the 183-H Solar Evaporation Basins at the Hanford Site, Richland, Washington. The RESRAD computer code, Version 5.62, which implements the methodology described in the US Department of Energy's manual for developing residual radioactive material guidelines, was used in this evaluation. Currently, the concrete is not being used. Four potential exposure scenarios were developed for the land area where the decontaminated concrete will be stored. In Scenario A industrial use of the land is assumed; in Scenario B recreational use of the land is assumed; in Scenario C residential use of the land is assumed; and in Scenario D (a plausible but unlikely land-use scenario), the presence of a subsistence farmer in the immediate vicinity of the land is assumed. For Scenarios A and B, water used for drinking is assumed to be surface water from the Columbia River; for Scenarios C and D, groundwater drawn from a well located at the downgradient edge of the storage area is the only source of water for drinking, irrigation, and raising livestock. Conservative parameters values were used to estimate the radiation doses. The results of the evaluation indicate that the US Department of Energy's dose limit of 100 mrem/yr would not be exceeded for any of the scenarios analyzed. The potential maximum dose rates for Scenarios A, B, C, and D are 0.75, 0.022, 29, 29 mrem/yr, respectively. An uncertainty analysis was performed to determine which parameters have the greatest impact on the estimated doses. The doses in Scenarios C and D were found to be very sensitive to the magnitude of the irrigation rate

  16. Results of Groundwater Monitoring for the 183-H Solar Evaporation Basins Reporting Period: July-December 2006

    This is one of a series of reports on Resource Conservation and Recovery Act monitoring at the 183 H basins. It fulfills a requirement of WAC 173-303-645(11)(g) to report twice each year on the effectiveness of the corrective action program. This report covers the period from July through December 2006. The current objective of corrective action monitoring is simply to track trends. Although there is short-term variability in contaminant concentrations, trends over the past 10 years are downward. The current RCRA permit and monitoring plan remain adequate for the objective of tracking trends.

  17. 1995 Phase 1 concrete sampling at the decontaminated 183-H basins

    This report provides a consolidated reference for 1995 concrete sampling data associated with the Hanford Site's 183-H Solar Evaporation Basins (located at the Hanford Site in Richland, Washington). In 1995, the basins were decontaminated and dismantled. Sampling efforts began after completion of concrete decontamination efforts. Soil and water samples were collected and are described in chronological order in this report

  18. Radioactive air emissions notice of construction for the decontamination and closure of the 183-H Solar Evaporation Basins

    A Notice of Construction (NOC) is required by the Washington State Department of Health (DOH), pursuant to Washington Administrative Code (WAC) Chapter 246-247-060, for any proposed construction or modification of an existing registered or unregistered emissions unit. The following document is the NOC application to be submitted to the DOH for the establishment of a new environmental analytical laboratory at the 100-N Area on the Hanford Site. The environmental analytical laboratory will contain a radioactive air emissions unit

  19. 183-H Basin sludge treatability test report

    This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted

  20. Explosive evaporation in solar flares

    Fisher, George H.

    1987-01-01

    This paper develops a simple analytical model for the phenomenon of 'explosive evaporation' driven by nonthermal electron heating in solar flares. The model relates the electron energy flux and spectrum, plus details of the preflare atmosphere, to the time scale for explosive evaporation to occur, the maximum pressure and temperature to be reached, rough estimates for the UV pulse emission flux and duration, and the evolution of the blueshifted component of the soft X-ray lines. An expression is given for the time scale for buildup to maximum pressures and the onset of rapid motion of the explosively evaporating plasma. This evaporation can excite a rapid response of UV line and continuum emission. The emission lines formed in the plasma approach a given emissivity-weighted blueshift speed.

  1. Conduction-driven chromospheric evaporation in a solar flare

    Zarro, Dominic M.; Lemen, James R.

    1988-01-01

    Observations of gentle chromospheric evaporation during the cooling phase of a solar flare are presented. Line profiles of the low-temperature (T of about 6 x 10 to the 6th K) coronal Mg XI line, observed with the X-Ray Polychromator on the Solar Maximum Mission, show a blueshift that persisted for several minutes after the impulsive heating phase. This result represents the first detection of an evaporation signature in a soft X-ray line formed at this low temperature. By combining the Mg XI blueshift velocity data with simultaneous measurements of the flare temperature derived from Ca XIX observations, it is demonstrated that the upward flux of enthalpy transported by this gently evaporating plasma varies linearly with the downward flux of thermal energy conducted from the corona. This relationship is consistent with models of solar flares in which thermal conduction drives chromospheric evaporation during the early part of the cooling phase.

  2. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    Reep, Jeffrey; Alexander, David

    2015-01-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  3. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  4. Morphology Control in co-evaporated bulk heterojunction solar cells

    Kovacik, P; Assender, HE; Watt, AAR

    2013-01-01

    Bulk heterojunction solar cells made by vacuum co-evaporation of polythiophene (PTh) and fullerene (C60) are reported and the blend morphology control through donor-acceptor composition and post-situ annealing demonstrated. Co-deposited heterojunctions are shown to generate about 60% higher photocurrents than their thickness-optimized PTh/C60 planar heterojunction counterparts. Furthermore, by annealing the devices post-situ the power conversion efficiency is improved by as much as 80%. UV-vi...

  5. Recent developments in evaporated CdTe solar cells

    Khrypunov, G. [Kharkov State Polytechnic University, UA-310002 Kharkov (Ukraine); Romeo, A. [Faculty of Science, University of Verona, Ca' Vignal 2, Strada Delle Grazie, 37134 Verona (Italy); Kurdesau, F. [National Academy of Sciences Belarus, Logoysky Tract 22, Minsk 220090 (Belarus); Baetzner, D.L. [The Australian National University, ACTON, ACT 0200 (Australia); Zogg, H.; Tiwari, A.N. [Thin Film Physics Group, Laboratory for Solid State Physics, ETH (Swiss Federal Institute of Technology) Zuerich, Technoparkstrasse 1, 8005 Zurich (Switzerland)

    2006-04-14

    Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed. High-efficiency solar cells of efficiencies up to 12.5% have been developed on soda-lime glass substrates with a low-temperature (<450{sup o}C) process. This simple process is suitable for in-line production of large-area solar modules on glass as well as on flexible polymer films with a roll-to-roll deposition process. Flexible and lightweight CdTe solar cells with a record efficiency of 11.4% have been developed in a superstrate configuration, and 3.5% efficiency mini-modules have been realised in a preliminary development. Deposition of high-temperature stable ITO front contact layer on polyimide is important for high-efficiency cells, as the layer should withstand processing steps maintaining its high electrical conductivity and optical transparency. Another development is an application of a transparent conducting oxide (TCO) ITO as a back electrical contact on CdTe leading to first bifacial CdTe solar cells, which can be illuminated from either or both sides. Accelerated long-term stability tests show that light soaking improves the efficiency of CdTe solar cells with ITO back contacts and performance does not degrade. Stability of CdTe solar cells has been measured after irradiation with high-energy protons and electrons of different fluences. These solar cells exhibit superior radiation tolerance compared to conventional Si and GaAs solar cells for space applications. Because of extreme stability, and high specific power (kW/kg) of flexible solar cells, CdTe has a promising potential for space applications. (author)

  6. Evaporators

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  7. Solar Irradiance and Pan Evaporation Estimation from Meteorological Satellite Data

    Ming-Ren Syu

    2016-04-01

    Full Text Available Knowledge about spatial and temporal variations in surface global solar radiation (GSR and evaporative water loss from the ground are important issues to many researches and applications. In this study empirical relationships suitable for Taiwan were established for GSR retrieval from geostationary satellite images using the Heliosat method for the period from 2011 - 2013. The derived GSR data has been used to generate consecutive maps of 10-day averaged pan evaporation (Epan as the basis to produce regional ET estimation using a strategy that does not require remote sensed land surface temperatures (LST. The retrieved daily GSR and the derived 10-day averaged Epan were validated against pyranometer and class-A pan measurements at selected Central Weather Bureau (CWB stations spread across various climatic regions in Taiwan. Compared with the CWB observed data the overall relative mean bias deviations (MBD% and root mean square differences (RMSD% in daily solar irradiance retrieval were about 5 and 15%, respectively. Seasonally, the largest MBD% and RMSD% of retrieved daily solar irradiance occur in spring (9.5 and 21.3% on average, while the least MBD% (-0.3% on average and RMSD% (9.7% on average occur in autumn and winter, respectively. For 10-day averaged Epan estimation, the mean MBD% and RMSD% for stations located in the coastal plain areas were 0.1 and 16.9%, respectively. However, in mountainous areas the mean MBD% and RMSD% increased to 30.2 and 34.5%, respectively. This overestimation was due mainly to the large differences in surrounding micro-environments between the mountainous and plain areas.

  8. Solar Multi-stage Refrigeration Systems on the Basis of Absorber with the Internal Evaporative Cooling

    Doroshenko A.V.; Kirillov V.H.; Antonova A.R.; Liudnicky K.V.

    2015-01-01

    In the article, the developed schematics are presented for the alternative refrigeration systems and air-conditioning systems, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution. Multi-stage principle of construction of drying and cool contours of solar systems is used with growth of concentration of absorbent on the stages of cooler. An absorber with internal evaporative cooling, allowing to remove the separate evaporated cooler, usually included ...

  9. On the evaporation of solar dark matter: spin-independent effective operators

    Liang, Zheng-Liang(State Key Laboratory of Theoretical Physics (SKLTP), Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190, China); Wu, Yue-Liang; Yang, Zi-Qing; Zhou, Yu-Feng

    2016-01-01

    As a part of the effort to investigate the implications of dark matter (DM)-nucleon effective interactions on the solar DM detection, in this paper we focus on the evaporation of the solar DM for a set of the DM-nucleon spin-independent (SI) effective operators. In order to put the evaluation of the evaporation rate on a more reliable ground, we calculate the non-thermal distribution of the solar DM using the Monte Carlo methods, rather than adopting the Maxwellian approximation. We then spec...

  10. SOLAR REFRIGERATION SYSTEMS BASED ON THE ABSORBER WITH INTERNAL EVAPORATIVE COOLING

    Дорошенко, O.В.; Людницький, К.В.

    2015-01-01

    The paper presents the developed schematics for alternative refrigeration systems and air conditioning systems based on the use of heat-absorption cycle and solar energy for regeneration (recovery) of the absorbent solution. Cascade principle of construction of the drying and cooling circuits with absorbent concentration increasing on the steps of the cascade is used. The absorber with internal evaporative cooling that eliminates a separate evaporative cooler, typically comprised after the co...

  11. Dewatering and RCRA partial closure action on solar evaporation ponds, Rocky Flats Plant, Golden, Colorado

    The Department of Energy (DOE) has prepared an Environmental Assessment (DOE/EA-0487) on its proposal to partially close five solar evaporation ponds at the Rocky Flats Plant (RFP) pursuant to the requirements of the Resource Conservation and Recovery Act (RCRA). This proposal would be known as a RCRA partial closure and would be accomplished by dewatering the ponds, where necessary, and converting any remaining sludge or evaporator concentrate to a solid wasteform (pondcrete and saltcrete). The pond sites would be stabilized to prevent erosion or other disturbance to the soil and to prevent infiltration of rain or snowmelt. The solid wasteform would be transported offsite for disposal. The five solar ponds (designated 207-A, 207-B (north, center, and south), and 207-C), are the only solar evaporation ponds that exist at the RFP. A finding of no significant impact is included

  12. Studies on solar flat plate collector evaporation systems for tannery effluent (soak liquor)

    SRITHAR K.; MANIA.

    2006-01-01

    Heat and mass transfer analysis of an incompressible, laminar boundary layer over solar flat plate collector evaporation systems for tannery effluent (soak liquor) is investigated. The goveming equations are solved for various liquid to air velocity ratios. Profiles of velocity, temperature and concentration as well as their gradients are presented. The heat transfer and mass transfer coefficients thus obtained are used to evaluate mass of water evaporated for an inclined fibre-reinforced plastic (FRP)solar flat plate collector (FPC) with and without cover. Comparison of these results with the experimental performance shows encouraging trend of good agreement between them.

  13. On the evaporation of solar dark matter: spin-independent effective operators

    Liang, Zheng-Liang; Yang, Zi-Qing; Zhou, Yu-Feng

    2016-01-01

    As a part of the effort to investigate the implications of dark matter (DM)-nucleon effective interactions on the solar DM detection, in this paper we focus on the evaporation of the solar DM for a set of the DM-nucleon spin-independent (SI) effective operators. In order to put the evaluation of the evaporation rate on a more reliable ground, we calculate the non-thermal distribution of the solar DM using the Monte Carlo methods, rather than adopting the Maxwellian approximation. We then specify relevant signal parameter spaces for the solar DM detection for various SI effective operators. Based on the analysis, we determine the minimum DM masses for which the DM-nucleon coupling strengths can be probed from the solar neutrino observations. As an interesting application, our investigation also shows that evaporation effect can not be neglectd in a recent proposal aiming to solve the solar abundance problem by invoking the momentum-dependent asymmetric DM in the Sun.

  14. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  15. Relationship between chromospheric evaporation and magnetic field topology in M-class solar flare

    Sadykov, V M; Sharykin, I N; Zimovets, I V; Dominguez, S Vargas

    2016-01-01

    Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays one of key roles in dynamics and energetics of solar flares, however, its mechanism is still unknown. In this paper we present a detailed analysis of spatially-resolved multi-wavelength observations of chromospheric evaporation during an M 1.0 class solar flare (SOL2014-06-12T21:12) using data from the NASA's IRIS (Interface Region Imaging Spectrograph) and HMI/SDO (Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory) telescopes, and VIS/NST (Visible Imaging Spectrometer at New Solar Telescope) high-resolution observations, covering the temperature range from 10^4 K to 10^7 K. The results show that the averaged over the region Fe XXI blueshift of the hot evaporating plasma is delayed relative to the C II redshift of the relatively cold chromospheric plasma by about 1 min. The spatial distribution of the delays is not uniform across the region and can be as long as 2 min in several zones. Using vector magne...

  16. Solar Multi-stage Refrigeration Systems on the Basis of Absorber with the Internal Evaporative Cooling

    Doroshenko A.V.

    2015-08-01

    Full Text Available In the article, the developed schematics are presented for the alternative refrigeration systems and air-conditioning systems, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution. Multi-stage principle of construction of drying and cool contours of solar systems is used with growth of concentration of absorbent on the stages of cooler. An absorber with internal evaporative cooling, allowing to remove the separate evaporated cooler, usually included after the absorber of the proper stage, is developed. Heat-mass-transfer apparatus of film-type, entering in the complement of drying and cool contours compatible and executed on the basis of multichannel compositions from polymeric materials. The preliminary comparative analysis of possibilities of the solar refrigeration systems and air-conditioning systems is executed.

  17. Maintenance strategy for a salt gradient solar pond coupled with an evaporation pond

    Agha, K.R.; Abughres, S.M.; Ramadan, A.M. [CSES, Tripoli (Libya). Center for Solar Energy Studies

    2004-07-01

    In a previous study, the authors presented a simple mathematical model for predicting the ratio of the evaporation pond area to that of a salt gradient solar pond area. The evaporation pond idea provides a very attractive method of salt recycling by evaporation, especially in areas of high evaporation and low rates of rain as it is the case for North Africa. In this paper, the model was elaborated upon and applied to two types of surface water flushing (fresh water and seawater) under the prevailing conditions of Tripoli, Libya (latitude = 32.86{sup o}N). All the results presented were predicted for the first three years of operation. The daily variations of brine concentration in the of Tajoura's Experimental Solar pond and those based on different designs were predicted and discussed under different scenarios. The quantities of brine provided by the evaporation pond and that required by were predicted for both cases of surface water flushing (fresh water and seawater) under the different design conditions. It was predicted that the can provide 20-40% during the first year and 45-95% during the third year depending on the design selected. (author)

  18. Low-temperature multi-effect evaporation desalination systems coupled with salinity-gradient solar ponds

    Leblanc, Jimmy; Andrews, John [School of Aerospace, Mechanical and Mfg. Engineering, RMIT Univ., Bundoora, Vic. (Australia)

    2008-07-01

    As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the production of potable water from seawater or brackish water using desalination systems powered by low-temperature solar-thermal sources, including salinity-gradient solar ponds, has been studied. A Visual Basic computer model of solar-powered multi-effect evaporation (MEE) desalination processes was developed to determine the technical and economic feasibility of the system. A small-scale three-effect evaporation desalination system powered by a solar pond, capable of producing up to 2,300 litres of fresh water per day, has been designed using the model. The system has been manufactured and commissioned, and has operated effectively at a first-effect vapour temperature of about 68 C, which is ideal for heat delivery from a solar pond. The key design and operating parameters controlling the cost of fresh water - distillate production, recovery ratio, thermal energy and solar collection area-are determined from the computer simulation and compared with experimental results. (orig.)

  19. Design methodology for a salt gradient solar pond coupled with an evaporation pond

    Agha, K.R.; Ramadan, A.M. [Center for Solar Energy Studies, Tripoli (Libya); Abughres, S.M. [Center for Solar Energy Studies, Tripoli (Libya); Faculty of Engineering, Tripoli (Libya). Dept. of Mechanical and Industrial Engineering

    2002-05-01

    This paper presents the results of a simple mathematical model for predicting the ratio of the evaporation pond (EP) area to that of a Salt Gradient Solar Pond (SGSP) area. The EP idea provides a very attractive method of salt recycling by evaporation, especially in areas of high rates of evaporation and low rates of rain as it is the case for North Africa. The model is applied for two types of surface water flushing (fresh water and seawater) under the prevailing conditions of Tripoli-Libya (Lat.=32.68{sup o}N) and for measured evaporation rates. Under the summer conditions and for the case of surface flushing by fresh water, the area ratio was estimated at about 0.17. While for the case of using seawater this ratio increases enormously to about 14.4. The time required for the salt concentration to increase from seawater concentration to a high concentrated brine, which can be injected at the bottom of the solar pond, is also presented. It was estimated that the time required to increase the salt concentration from 3.5 to 35% is about 120 to 250 days during the summer months and about 200 to 220 days during the winter months. (author)

  20. Thin film solar cells made of sputtered and evaporated amorphous silicon

    Mueller, W.; Ruebel, H.; Iselborn, S.; Arenas, G.; Wagner, C.; Schroeder, B.; Geiger, J.

    1984-01-01

    In this paper we report on the results of a study about the fundamental properties of sputtered and evaporated a-Si:H as well as about the application of this material for the preparation of solar cells. Correlations have been found between the photoelectrical properties of the films and the amount and bonding configuration of the hydrogen incorporated both influencing the film structure. Optimum passivated sputtered material, which contains about 10 at% hydrogen has been deposited for preparation of Schottky and p-i-n type solar cells. In first tests conversion efficiencies eta larger than 2% have been measured. A possible conversion efficiency of eta=13.5 mA x 0.7 V x 0.54/100 mW=5% can be calculated taking the best values which were obtained for the parameters of numerous cells prepared till now. Great progress has been made in the defect passivation of reactively evaporated a-Si:H films.

  1. A comparison between evaporation ponds and evaporation surfaces as a source of the concentrated salt brine for salt gradient maintenance at Tajoura solar pond

    One of the main problems that negatively affect the operation of salt gradient solar ponds and influence its thermal stability is the maintenance of salt gradient profile. Evaporation pond (EP) is designed to generate the salt which lost upward salt diffusion from the lower convective zone (LCZ) of the solar pond. Another attractive method is the evaporation surface facility (ES). Regions with moderate to high precipitation favor Evaporation Surface over Evaporation Ponds. Dry climates will generally favor Evaporation Ponds for the brine re-concentration. In previous studies [1-3], the authors have shown that the (EP) of Tajoura's Experimental Solar Pond (TESP) is under sized and can provide only about 30% of the salt required by a Salt Gradient Solar Pond (SGSP). The anticipated size of (EP) was estimated and presented in those studies under different design conditions, including Summer, Autumn and Spring designs, while the winter design was excluded due to the low rates of net evaporation during the winter season. In addition, the results presented were predicted for the first three years of operation. The daily variations of brine concentration in the (EP) of (TESP) and those based on different designs were predicted and discussed under different scenarios. The quantities of brine provided by the evaporation pond and that required by SGSP were predicted for both cases of surface water flushing (fresh water and sea-water) under the different design conditions as shown in Table 1. This paper investigates the differences between (EP) and (ES) both as a source for salt brine generation by evaporation. The effect of (EP) depth on the area ratio and daily variations of salt concentrations for three years of operation is shown. Results show that evaporation can be a reasonable method for salt brine generation. Reducing the depth of (EP) improves the capability of (EP) for brine re-concentration. It also increases the (EP) surface area for the same quantity of

  2. Simulation study on a solar desalination system utilizing an evaporator/condenser chamber

    A solar desalination system consisting of a solar collector coupled to an evaporation/condensation chamber, all components fabricated from polymeric materials, has been developed and tested. A simulation model of the desalination system has been developed and validated by inter-comparison with experimental measurements on such a system. The simulation model employs a numerical solution to a set of differential equations describing the system. The validated simulation model was then utilized to perform parametric sensitivity studies to determine optimum design parameters and operation conditions. It was found that a solar desalination system, based upon the prototype studied, is capable of producing in excess of 11 kg m-2 d-1 of distillate on a sunny day when the gap between the evaporator and condenser surfaces is of the order of 2 cm, and the feedstock flow rate is within the range of 40-50 kg m-2 d-1. Such a corrosion resistant desalination system would be ideal for desalination of seawater. The results of the performance testing, simulation model validation and parametric sensitivity studies on the prototype module are reported

  3. Mathematical Simulation of Evaporating Brine by Solar Radiation for the Production of Salt

    Y.Z.Zhang; C.D.Li; 等

    1993-01-01

    A computer simulation model of salt pan is presented.The transient behavior and the effects of various parameters of the salt pans,such as the depth of the brine layer,the absorptance of the soil surface,the thermal properties of the soil beneath the brine layer and the depth of the underground water table,on the evaporation process of salt pans are discussed.The effects of extra insulation layer and the intensity of solar radiation are also examined.

  4. A simple model of chromospheric evaporation and condensation driven conductively in a solar flare

    Longcope, D. W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-11-01

    Magnetic energy released in the corona by solar flares reaches the chromosphere where it drives characteristic upflows and downflows known as evaporation and condensation. These flows are studied here for the case where energy is transported to the chromosphere by thermal conduction. An analytic model is used to develop relations by which the density and velocity of each flow can be predicted from coronal parameters including the flare's energy flux F. These relations are explored and refined using a series of numerical investigations in which the transition region (TR) is represented by a simplified density jump. The maximum evaporation velocity, for example, is well approximated by v{sub e} ≅ 0.38(F/ρ{sub co,} {sub 0}){sup 1/3}, where ρ{sub co,} {sub 0} is the mass density of the pre-flare corona. This and the other relations are found to fit simulations using more realistic models of the TR both performed in this work, and taken from a variety of previously published investigations. These relations offer a novel and efficient means of simulating coronal reconnection without neglecting entirely the effects of evaporation.

  5. Performance of a solar energy powered falling film evaporator with film promoter

    A solar energy powered falling film evaporator with film promoter was developed for concentrating diluted solutions (industrial effluents). The procedure proposed here does not emit CO2, making it a viable alternative to the method of concentrating solutions that uses vapor as a heat source and releases CO2 from burning fuel oil in a furnace, in direct opposition to the carbon reduction agreement established by the Kyoto protocol. This novel device consists of the following components: a flat plate solar collector with adjustable inclination, a film promoter (adhering to the collector), a liquid distributor, a concentrate collector, and accessories. The evaporation rate of the device was found to be affected both by the inclination of the collector and by the feed flow. The meteorological variables cannot be controlled, but were monitored constantly to ascertain the behavior of the equipment in response to the variations occurring throughout the day. Higher efficiencies were attained when the inclination of the collector was adjusted monthly, showing up to 36.4% higher values than when the collector remained in a fixed position

  6. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Mohamed M. El-Awad

    2011-03-01

    Full Text Available The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  7. Maintenance strategy for a salt gradient solar pond coupled with an evaporation pond

    Agha, K.R.; Aburghres, S.M.; Ramadan, A.M. [Center for Solar Energy Studies, Tripoli (Libya)

    2000-07-01

    In this paper, all the results presented were predicted for the first three years of operation. The daily variations of brine concentration in the Evaporation Pond (EP) of Tajouras Experimental Solar Pond (TESP) and those based on different designs were predicted and discussed under different scenarios. The quantities of brine provided by the evaporation pond and that required by SGSP were predicted for both cases of surface water flushing (fresh water and seawater) under the different design conditions. The quantities of salt that can be contributed by (EP) were predicted to be in the range of 20% to 40% during the first year and 45% to 95% during the third year depending on the design selected. Comparing the percentage of salt provided for different designs, it can be clearly seen that the Autumn design presents a favorable condition. It provides a reasonable percentage reaching 79% in the case of fresh water surface flushing and 93% in the case of seawater surface flushing. Under the prevailing weather conditions of Tripoli, the results have shown that in addition to the higher flushing quantity required during the Summer, flushing is needed more frequent. It was predicted that the number of flushing varies between five times per month during the summer to two or three times per month during winter. Also, the study predicted that the quantity of seawater surface flushing is bigger than that of fresh water. (au)

  8. Conceptual engineered cover design for the solar evaporation ponds at the Rocky Flats Plant

    The Rocky Flats Plant, located outside of Denver, Colorado, operated several lined Solar Evaporation Ponds (SEP) from 1953 until 1986 for the disposal of liquid radioactive and hazardous waste. The US Department of Energy (DOE) has signed an Interagency Agreement with the Colorado Department of Health and the US Environmental Protection Agency, agreeing to close the SEP through an Interim Measures/Interim Remedial Action accelerated program. The DOE is considered an alternative: to consolidate contaminated liner materials, debris, and soil media under an engineered cover. The regulatory agencies may approve this alternative if DOE demonstrates that it would protect human health and the environment for a 1,000-yr period as required by the Colorado hazardous landfill siting regulations. The DOE utilized research results from the Hanford and Los Alamos sites to design an engineered cover for the SEP that would fulfill the regulatory requirements. This paper presents the conceptual design of the engineered cover

  9. Evidence for Evaporation-incomplete Condensation Cycles in Warm Solar Coronal Loops

    Froment, C.; Auchère, F.; Bocchialini, K.; Buchlin, E.; Guennou, C.; Solomon, J.

    2015-07-01

    Quasi-constant heating at the footpoints of loops leads to evaporation and condensation cycles of the plasma: thermal non-equilibrium (TNE). This phenomenon is believed to play a role in the formation of prominences and coronal rain. However, it is often discounted as being involved in the heating of warm loops because the models do not reproduce observations. Recent simulations have shown that these inconsistencies with observations may be due to oversimplifications of the geometries of the models. In addition, our recent observations reveal that long-period intensity pulsations (several hours) are common in solar coronal loops. These periods are consistent with those expected from TNE. The aim of this paper is to derive characteristic physical properties of the plasma for some of these events to test the potential role of TNE in loop heating. We analyzed three events in detail using the six EUV coronal channels of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We performed both a differential emission measure (DEM) and a time-lag analysis, including a new method to isolate the relevant signal from the foreground and background emission. For the three events, the DEM undergoes long-period pulsations, which is a signature of periodic heating even though the loops are captured in their cooling phase, as is the bulk of the active regions. We link long-period intensity pulsations to new signatures of loop heating with strong evidence for evaporation and condensation cycles. We thus simultaneously witness widespread cooling and TNE. Finally, we discuss the implications of our new observations for both static and impulsive heating models.

  10. Solar thermal evaporation of human urine for nitrogen and phosphorus recovery in Vietnam

    Antonini, Samantha, E-mail: sam_antonini@uni-bonn.de; Nguyen, Phong Thanh; Arnold, Ute; Eichert, Thomas; Clemens, Joachim

    2012-01-01

    A No Mix sanitation system was installed in a dormitory at the University of Can Tho in Vietnam, with the objective of recycling nutrients from source separated urine. This paper presents a pilot scale evaporation technology, and investigates the feasibility of recovering nitrogen and phosphorus from human urine by solar still for use as fertilizer. After 26 days of sun exposure, 360 g of solid fertilizer material was recovered from 50 L undiluted urine. This urine-derived fertilizer was mainly composed of sodium chloride, and had phosphorus and nitrogen contents of almost 2%. When tested with maize and ryegrass, the urine fertilizer led to biomass yields and phosphorus and nitrogen uptakes comparable to those induced by a commercial mineral fertilizer. Urine acidification with sulfuric or phosphoric acid prior treatment reduced nitrogen losses, improved the nutrient content of the generated fertilizers, and induced higher biomass yields and nitrogen and phosphorus uptakes than the commercial mineral fertilizer. However, acidification is not recommended in developing countries due to additional costs and handling risks. The fate of micropollutants and the possibility of separating sodium chloride from other beneficial nutrients require further investigation. - Highlights: Black-Right-Pointing-Pointer 360 g of fertilizer was derived from 50 L urine by solar evaporative distillation. Black-Right-Pointing-Pointer The fertilizer contained 90% sodium chloride, 3% sulfur, 2% nitrogen, 2% phosphorus. Black-Right-Pointing-Pointer It induced biomass yields comparable to those produced by a commercial fertilizer. Black-Right-Pointing-Pointer Urine acidification improved the nutrient content of the generated fertilizers. Black-Right-Pointing-Pointer Acidification is not recommended for use in developing countries (costs, safety).

  11. IMAGING AND SPECTROSCOPIC OBSERVATIONS OF MAGNETIC RECONNECTION AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE

    Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfvén speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of a greatly redshifted (∼125 km s–1 along the line of sight) Fe XXI 1354.08 Å emission line with a ∼100 km s–1 nonthermal width at the reconnection site of a flare. The redshifted Fe XXI feature coincides spatially with the loop-top X-ray source observed by RHESSI. We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory also reveal the eruption and reconnection processes. Fast downward-propagating blobs along these loops are also found from cool emission lines (e.g., Si IV, O IV, C II, Mg II) and images of AIA and IRIS. Furthermore, the entire Fe XXI line is blueshifted by ∼260 km s–1 at the loop footpoints, where the cool lines mentioned above all exhibit obvious redshift, a result that is consistent with the scenario of chromospheric evaporation induced by downward-propagating nonthermal electrons from the reconnection site

  12. IMAGING AND SPECTROSCOPIC OBSERVATIONS OF MAGNETIC RECONNECTION AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE

    Tian, Hui; Reeves, Katharine K.; Raymond, John C.; Chen, Bin; Murphy, Nicholas A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Guo, Fan [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Liu, Wei, E-mail: hui.tian@cfa.harvard.edu [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3251 Hanover Street, Palo Alto, CA 94305 (United States)

    2014-12-20

    Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfvén speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of a greatly redshifted (∼125 km s{sup –1} along the line of sight) Fe XXI 1354.08 Å emission line with a ∼100 km s{sup –1} nonthermal width at the reconnection site of a flare. The redshifted Fe XXI feature coincides spatially with the loop-top X-ray source observed by RHESSI. We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory also reveal the eruption and reconnection processes. Fast downward-propagating blobs along these loops are also found from cool emission lines (e.g., Si IV, O IV, C II, Mg II) and images of AIA and IRIS. Furthermore, the entire Fe XXI line is blueshifted by ∼260 km s{sup –1} at the loop footpoints, where the cool lines mentioned above all exhibit obvious redshift, a result that is consistent with the scenario of chromospheric evaporation induced by downward-propagating nonthermal electrons from the reconnection site.

  13. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation

    Wang, Yuchao

    2016-01-22

    Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.

  14. Evidence for evaporation-incomplete condensation cycles in warm solar coronal loops

    Froment, Clara; Bocchialini, Karine; Buchlin, Eric; Guennou, Chloé; Solomon, Jacques

    2015-01-01

    Quasi-constant heating at the footpoints of loops leads to evaporation and condensation cycles of the plasma: thermal non-equilibrium (TNE). This phenomenon is believed to play a role in the formation of prominences and coronal rain. However, it is often discarded to be involved in the heating of warm loops as the models do not reproduce observations. Recent simulations have shown that these inconsistencies with observations may be due to oversimplifications of the geometries of the models. In addition, our recent observations reveal that long-period intensity pulsations (several hours) are common in solar coronal loops. These periods are consistent with those expected from TNE. The aim of this paper is to derive characteristic physical properties of the plasma for some of these events to test the potential role of TNE in loop heating. We analyzed three events in detail using the six EUV coronal channels of SDO/AIA. We performed both a Differential Emission Measure (DEM) and a time-lag analysis, including a n...

  15. Solar thermal evaporation of human urine for nitrogen and phosphorus recovery in Vietnam.

    Antonini, Samantha; Nguyen, Phong Thanh; Arnold, Ute; Eichert, Thomas; Clemens, Joachim

    2012-01-01

    A No Mix sanitation system was installed in a dormitory at the University of Can Tho in Vietnam, with the objective of recycling nutrients from source separated urine. This paper presents a pilot scale evaporation technology, and investigates the feasibility of recovering nitrogen and phosphorus from human urine by solar still for use as fertilizer. After 26 days of sun exposure, 360 g of solid fertilizer material was recovered from 50 L undiluted urine. This urine-derived fertilizer was mainly composed of sodium chloride, and had phosphorus and nitrogen contents of almost 2%. When tested with maize and ryegrass, the urine fertilizer led to biomass yields and phosphorus and nitrogen uptakes comparable to those induced by a commercial mineral fertilizer. Urine acidification with sulfuric or phosphoric acid prior treatment reduced nitrogen losses, improved the nutrient content of the generated fertilizers, and induced higher biomass yields and nitrogen and phosphorus uptakes than the commercial mineral fertilizer. However, acidification is not recommended in developing countries due to additional costs and handling risks. The fate of micropollutants and the possibility of separating sodium chloride from other beneficial nutrients require further investigation. PMID:22172663

  16. New surface solar radiation and evaporation datasets in Spain: in search of a better understating of the dimming/brightening

    Sanchez-Lorenzo, A.; Calbó, J.; Wild, M.

    2012-04-01

    Previous research on the dimming/brightening phenomena in Spain has been limited to the analysis of the long-term series of sunshine duration (Sanchez-Lorenzo et al., 2007) and cloud cover observations (Sanchez-Lorenzo et al., 2009). This work describes the development of a new dataset of surface radiation in Spain based on the 16 longest daily series provided by the Spanish Meteorology Agency, with the first series starting in the early 1970s, and providing global, diffuse and direct radiation. For the Madrid station an additional effort has been made to digitalize monthly records of global radiation since 1958, which provide the longest series available in Spain up to the present. The results of a temporal analysis of this dataset show an overall agreement with the trends observed using sunshine duration series, confirming the suitability of this latter variable to estimate surface radiation on decadal time scales. The important role of surface solar radiation to drive evaporation is well known, and consequently an agreement between the dimming/brightening phases and the trends in potential evaporation has been observed worldwide (Wild, 2009). Therefore, a dataset consisting of monthly series of potential evaporation has been generated by using records from tanks and Piche atmometers. The pan evaporation data consist of 13 series with records since 1981, meanwhile for Piche measurements there are around 100 series with more than 60 years of data, some of them starting in the beginning of the 20th century. The results show a decrease in pan evaporation (1981-2010 period) that cannot be explained by the observed increase in solar radiation, but may be linked to a decrease in the wind speed. On the other hand, evaporation trends estimated by the Piche evaporimeter provide a better agreement with solar radiation and sunshine time trends. This relationship needs special attention, as Piche evaporimeter is exposed inside a meteorological screen, especially regarding

  17. An economic optimization of evaporator and air collector area in a solar assisted heat pump drying system

    Highlights: • The optimum combination will provide around 89% of the total load. • The system has a savings during the life cycle with least payback period of 4.37 year. • The optimal system is insensitive to the variation in fuel inflation and discount rate. - Abstract: This paper presents an economic optimization of evaporator and air collector area of a solar assisted heat pump drying system. Economic viability of solar heating systems is usually made by comparing the cost flows recurring throughout the lifetime of the solar and conventional alternative systems. Therefore, identification of optimum variables by using a simulation program and an economic analysis based on payback period of the system are presented in this paper. FORTRAN language is used to run the simulation. Effect of load and different economic variables on payback period is also investigated. Economic analysis reveals that system has sufficient amount of savings during the life cycle with a minimum payback period of about 4 years

  18. Preparation and Properties of Evaporated CdTe and All Thin Film CdTe/CdS Solar Cells

    Shahzad, Naseem

    1991-05-01

    Cadmium telluride thin films were prepared by vacuum evaporation of CdTe powder in an attempt to fabricate all thin film solar cells of the type CdTe/CdS. Characterization of CdTe has shown it to have a band gap of 1.522 eV and a resistivity of 22Ω-cm. As prepared, solar cells exhibited low values of output parameters. Given quantity of copper was then deposited on top of the CdTe/CdS solar cells and the whole system was annealed at 350° C. This copper doping changed the output parameters favorably with a maximum efficiency of 1.9%.

  19. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  20. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    Qiu, Weiming

    2015-09-30

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can be easily controlled with this e-beam induced evaporation method, which enables the usage of different types of substrates. Here, Perovskite solar cells based on CH3NH3PbI3-xClx achieve power conversion efficiencies of 14.6% on glass and 13.5% on flexible plastic substrates. The relationship between the TiO2 layer thickness and the perovskite morphology is studied with scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Our results indicate that pinholes in thin TiO2 layer lead to pinholes in the perovskite layer. By optimizing the TiO2 thickness, perovskite layers with substantially increased surface coverage and reduced pinhole areas are fabricated, increasing overall device performance.

  1. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  2. Observation and numerical modeling of chromospheric evaporation during the impulsive phase of a solar flare

    Imada, Shinsuke, E-mail: shinimada@stelab.nagoya-u.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Murakami, Izumi, E-mail: murakami.izumi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University of Advanced Studies), Toki, Gifu 509-5292 (Japan); Watanabe, Tetsuya, E-mail: watanabe.tetsuya@nao.ac.jp [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Department of Astronomical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo 181-8588 (Japan)

    2015-10-15

    We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EUV Imaging Spectrometer observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient κ{sub 0} = classical value) and the enthalpy flux dominant regime (κ{sub 0} = 0.1 × classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is important to reproduce the strong downflows in Fe XII and Fe XV.

  3. Temporal evolution of multiple evaporating ribbon sources in a solar flare

    Graham, D.R.; Cauzzi, G.

    2015-01-01

    We present new results from the Interface Region Imaging Spectrograph showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire impulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 second cadence `sit-and-stare' mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individ...

  4. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare

    Dudík, Jaroslav; Polito, Vanessa; Janvier, Miho; Mulay, Sargam M.; Karlický, Marian; Aulanier, Guillaume; Del Zanna, Giulio; Dzifčáková, Elena; Mason, Helen E.; Schmieder, Brigitte

    2016-05-01

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. Slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions toward both ends of the ribbons. Velocities of 20–40 km s‑1 are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset of apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the Interface Region Imaging Spectrograph slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromospheric evaporation in the early flare phase. Finally, it is found that the precursor signatures, including localized EUV brightenings as well as nonthermal X-ray emission, are signatures of the flare itself, progressing from the early phase toward the impulsive phase, with the tether-cutting being provided by the slipping reconnection. The dynamics of both the flare and outlying coronal loops is found to be consistent with the predictions of the standard solar flare model in three dimensions.

  5. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  6. DESIGN, DEVELOPMENT AND TESTING OF MULTIEFFECT DISTILLER/EVAPORATOR USING SCHEFFLER SOLAR CONCENTRATORS

    AJAY CHANDAK

    2009-09-01

    Full Text Available Authors designed and experimented with multistage evaporation system for production of distilled water. Two Scheffler concentrators of 16 sqm each were used for generating steam in the first stage at 8 bar pressure and the pressure is gradually brought down to 1 bar, in four stage distillation unit. Total yield obtained in the project was 2.3 times that of single stage distillation. Temperature drop in every subsequent stage was designed to 25 degree centigrade. Heat of condensation in the last stage and also sensible heat of the condensate in all the stages were used for preheating of water in the next batch. The system has great potential in food processing industry for applications of juice thickening, sauces, jams, salt concentrating systems and distilled water applications, desalination etc. Results of the project are very encouraging for commercial scale application.

  7. Imaging and spectroscopic observations of magnetic reconnection and chromospheric evaporation in a solar flare

    Tian, Hui; Reeves, Katharine K; Raymond, John C; Guo, Fan; Liu, Wei; Chen, Bin; Murphy, Nicholas A

    2014-01-01

    Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfv\\'{e}n speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of greatly redshifted ($\\sim$125 km s$^{-1}$ along line of sight) Fe {\\sc{xxi}} 1354.08\\AA{} emission line with a $\\sim$100 km s$^{-1}$ nonthermal width at the reconnection site of a flare. The redshifted Fe {\\sc{xxi}} feature coincides spatially with the loop-top X-Ray source observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) also...

  8. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  9. Temporal evolution of multiple evaporating ribbon sources in a solar flare

    Graham, D R

    2015-01-01

    We present new results from the Interface Region Imaging Spectrograph showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire impulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 second cadence `sit-and-stare' mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individual pixels in both coronal and chromospheric lines. Each activation of a new footpoint displays the same initial coronal up-flows of up to ~300 km/s, and chromospheric downflows up to 40 km/s. Although the coronal flows can be delayed by over 1 minute with respect to those in the chromosphere, the temporal evolution of flows is strikingly similar between all pixels, and consistent with predictions from hydrodynamic flare models. Given the large sample of independent footpoints, we conclude that each flaring pixel can be c...

  10. Enhanced electrocatalytic activity of vacuum thermal evaporated CuxS counter electrode for quantum dot-sensitized solar cells

    Highlights: • Vacuum thermal evaporation (VTE) is used to fabricate CuxS counter electrode (CE). • QDSCs with VTE-CuxS CEs show a high efficiency of 3.16 ± 0.05% under one sun. • The electrocatalytic activity of VTE-CuxS CE is higher than Pt and Brass-Cu2S CEs. • VTE-CuxS CE exhibits good stability in polysulfide electrolyte. - Abstract: Vacuum thermal evaporated CuxS (VTE-CuxS) film on fluorine-doped tin oxide substrate has been investigated as counter electrode (CE) for quantum dot-sensitized solar cells (QDSCs) with polysulfide electrolyte. The photovoltaic parameters of QDSCs show an obvious dependence on the annealing time of CuxS film, and the maximum power conversion efficiency of 3.16 ± 0.05% under one sun illumination (100 mW cm−2, AM 1.5 G) was obtained when the VTE-CuxS CE was annealed at 270 °C for 300 s (VTE-CuxS-300s CE). Electrochemical impedance spectroscopy, Tafel polarization, and cyclic voltammetry measurements have been employed to investigate the electrocatalytic activity of VTE-CuxS-300s CE. The electrocatalytic activity of the VTE-CuxS-300s CE is much higher than that of Pt CE, and is slightly higher than that of Cu2S CE in situ prepared on brass sheet. In particular, VTE-CuxS-300s CE holds high diffusion velocity of S2−/Sn2− in polysulfide electrolyte, and the stability of its electrocatalytic activity in polysulfide electrolyte is better than that of Pt and Brass-Cu2S CEs obviously

  11. Preparation of Cu2ZnSnSe4 solar cells by low-temperature co-evaporation and following selenization

    Cu2ZnSnSe4 (CZTSe) thin films are prepared by a two-step method which involves co-evaporation of Cu, Zn, Sn, and Se on molybdenum-coated soda-lime glass at low substrate temperature and a following selenization. Solar cells with efficiencies of up to 6.5% can be achieved. The influence of the selenium deposition rates during co-evaporation and the nitrogen pressure during selenization on the properties of the CZTSe films are investigated. It is found that these two parameters can significantly affect the morphology and crystallinity of the CZTSe films. The possible reasons for the experimental results are discussed

  12. Preparation of Cu2ZnSnSe4 solar cells by low-temperature co-evaporation and following selenization

    Gao, Chao; Schnabel, Thomas; Abzieher, Tobias; Ahlswede, Erik; Powalla, Michael; Hetterich, Michael

    2016-01-01

    Cu2ZnSnSe4 (CZTSe) thin films are prepared by a two-step method which involves co-evaporation of Cu, Zn, Sn, and Se on molybdenum-coated soda-lime glass at low substrate temperature and a following selenization. Solar cells with efficiencies of up to 6.5% can be achieved. The influence of the selenium deposition rates during co-evaporation and the nitrogen pressure during selenization on the properties of the CZTSe films are investigated. It is found that these two parameters can significantly affect the morphology and crystallinity of the CZTSe films. The possible reasons for the experimental results are discussed.

  13. An Epidemiological Study of Symptomatic Morbidities in Localities around Solar Evaporation Ponds and Behind Union Carbide Factory, Bhopal

    Brajendra Mishra, Nalok Banerjee, Sushil Singh, S.C.Tiwari

    2013-01-01

    Full Text Available Background: Following Toxic gas leak in 1984 from Union Carbide Ltd. India’s Sevin manufacturing plant and resultant sudden closure, large number of chemicals were left unattended in plant premises. Concerned groups and population residing close by feared that these residual chemicals left over in plant and in solar evaporation ponds would percolate down to ground water and on consumption this toxic water would cause morbidities and may be mortalities among the population living in 14 localities settled around factory complex. Methods and Procedures: Hence, an epidemiological study was planned to establish the cause and effect relationship between the allegedly present toxicants in water and the observed symptomatic morbidities. Tools like visit to the area, secondary data review on water analysis and cross sectional morbidities survey in population were used for this purpose. Results: Through extensive review of literature it was found that there is no evidence to suggest that toxicants had reached either ground water or food chain in toxic doses. However, symptomatic morbidities survey did reveal statistically significant higher level of symptomatic morbidities among the resident living in affected localities in comparison to that of localities in control area. Conclusion: From analysis it can be concluded that the higher symptomatic morbidities could be due to earlier toxic gas exposure, confounding effect of aging, poor socio economic standards and bad environmental / sanitation conditions found in slums, poor water quality at provider and consumer end and repeated misleading propaganda resulting in to self perceived morbidities.

  14. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  15. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  16. Thermodynamic analysis and optimization of a novel dual-evaporator system powered by electrical and solar energy sources

    A novel dual-evaporator system with dual-source (renewable and electrical energies) is proposed to provide negative and positive evaporator temperatures. The system is a combination of the generator–absorber heat exchange (GAX), ejector-expansion transcritical CO2 refrigeration (EETC), Organic Rankin Cycle (ORC) and supercritical CO2 power cycles. The system is analyzed and optimized thermodynamically in detail. It is found that allocating the lower temperatures (−25 to −45 °C) for EETC evaporator and higher temperatures (5–10 °C) for GAX evaporator is more suitable. Detailed exergy analyses reveal that 19.89% and 5.92% of total input exergy, are useful in EETC evaporator and GAX evaporator, respectively. The ejector is found to be the highest source of irreversibility in the system. Moreover, the system performs better than dual-evaporator systems recently reported in literature. - Highlights: • A novel dual-evaporator dual-source system is proposed and analyzed, thermodynamically. • The system provides negative and positive evaporator temperatures, simultaneously. • The proposed refrigeration system energy source is two-fold; electrical and renewable energies

  17. Realization of single-phase BaSi2 films by vacuum evaporation with suitable optical properties and carrier lifetime for solar cell applications

    Hara, Kosuke O.; Nakagawa, Yoshihiko; Suemasu, Takashi; Usami, Noritaka

    2015-07-01

    We have realized BaSi2 films by a simple vacuum evaporation technique for solar cell applications. X-ray diffraction analysis shows that single-phase BaSi2 films are formed on alkali-free glass substrates at 500 and 600 °C while impurity phases coexist on quartz or soda-lime glass substrates or at a substrate temperature of 400 °C. The mechanism of film growth is discussed by analyzing the residue on the evaporation boat. An issue on the fabricated films is cracking due to thermal mismatch, as observed by secondary electron microscopy. Optical characterizations by transmittance and reflectance spectroscopy show that the evaporated films have high absorption coefficients, reaching 2 × 104 cm-1 for a photon energy of 1.5 eV, and have indirect absorption edges of 1.14-1.21 eV, which are suitable for solar cells. The microwave-detected photoconductivity decay measurement reveals that the carrier lifetime is approximately 0.027 µs, corresponding to the diffusion length of 0.84 µm, which suggests the potential effective usage of photoexcited carriers.

  18. Preparation of Cu{sub 2}ZnSnSe{sub 4} solar cells by low-temperature co-evaporation and following selenization

    Gao, Chao, E-mail: chao.gao@kit.edu; Hetterich, Michael [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Schnabel, Thomas; Abzieher, Tobias; Ahlswede, Erik [Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), 70565 Stuttgart (Germany); Powalla, Michael [Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW), 70565 Stuttgart (Germany); Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-01-04

    Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films are prepared by a two-step method which involves co-evaporation of Cu, Zn, Sn, and Se on molybdenum-coated soda-lime glass at low substrate temperature and a following selenization. Solar cells with efficiencies of up to 6.5% can be achieved. The influence of the selenium deposition rates during co-evaporation and the nitrogen pressure during selenization on the properties of the CZTSe films are investigated. It is found that these two parameters can significantly affect the morphology and crystallinity of the CZTSe films. The possible reasons for the experimental results are discussed.

  19. Effect of Annealing Temperature on CuInSe2/ZnS Thin-Film Solar Cells Fabricated by Using Electron Beam Evaporation

    H. Abdullah

    2013-01-01

    Full Text Available CuInSe2 (CIS thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD for crystallinity and field-emission scanning electron microscopy (FESEM for grain size and thickness. I-V measurements were used to measure the efficiency of the CuInSe2/ZnS solar cells. XRD results show that the crystallinity of the films improved as the temperature was increased. The temperature dependence of crystallinity indicates polycrystalline behaviour in the CuInSe2 films with (1 1 1, (2 2 0/(2 0 4, and (3 1 2/(1 1 6 planes at 27°, 45°, and 53°, respectively. FESEM images show the homogeneity of the CuInSe2 formed. I-V measurements indicated that higher annealing temperatures increase the efficiency of CuInSe2 solar cells from approximately 0.99% for the as-deposited films to 1.12% for the annealed films. Hence, we can conclude that the overall cell performance is strongly dependent on the annealing temperature.

  20. Estimate potential evaporation and solar radiation in the Yaqui valley, Sonora, Mexico, using data from satellite; Estimacion de evaporacion y radiacion solar en el valle del Yaqui, Sonora, usando datos de satelite

    J Watts, Christopher; Rodriguez, Julio Cesar [Instituto del Medio Ambiente y el Desarrollo sustentable del estado de Sonora (Mexico); Garatuza Payan, Jaime [Instituto Tecnologico de Sonora (Mexico); Henk de Bruin [Universidad Agricola de Wageningen (Netherlands); Stewart, John [Universidad de Southampton (United Kingdom)

    1999-12-01

    The data from tow automatic weather stations in the Yaqui valley were used to estimate potential evaporation using the Makkink formula, based on observed incoming solar radiation and climatological values of air temperature. The usefulness of this formula was assessed by comparison with the Penman-Monteith, Penman and Priestley-Taylor formula and measurements of net radiation. A methodology was presented for estimating incoming solar radiation using visible band data from the GOES satellite. Comparisons against ground-based measurements from two pyranometers installed in the Yaqui valley gave good results, particularly in months with low cloud cover. Images for August 1993 were used to produce a map of the spatial distribution of potential evaporation. [Spanish] Para calcular la evaporacion potencial en el valle del Yaqui, usando la formula de Makkink, se utilizaron datos de dos estaciones meteorologicas automaticas. La mencionada formula se basa en la radiacion solar incidente observada y en ciertos valores climatologicos de temperatura del aire. Se evaluo la utilidad de esta formula, comparandola con las de Penman-Monteith, Pennan y Priestley-Taylor, asi como con mediciones de radiacion neta. Se desarrollo una metodologia para estimar la radiacion solar incidente usando la banda visible del satelite GOES. Se hizo una comparacion con mediciones de dos piranometros instalados en el valla del Yaqui, obteniendose buenos resultados, principalmente en meses con poca nubosidad. Se utilizaron imagenes de agosto de 1993 para producir un mapa de la distribucion espacial de la evaporacion potencial.

  1. Effect of substrate temperatures on evaporated In2S3 thin film buffer layers for Cu(In,Ga)Se2 solar cells

    For the realization of vacuum in-line process in the fabrication of Cu(In,Ga)Se2 (CIGS) solar cells, In2S3 thin film buffer layers for CIGS have been deposited on glasses and CIGS layers with a thickness of about 650 Å by thermal evaporation process. During the thermal evaporation, the temperature of the substrate was varied from room temperature to 500 °C by heating and the grown In2S3 films were investigated and analyzed in terms of the optimized buffer layer for CIGS solar cells. From the results of scanning electron microscope and X-ray diffraction, the In2S3 thin film deposited at a higher substrate temperature showed the larger grain size and the films have amorphous structural characteristics. Although the structural characteristics such as the atomic ratio of In to S and transmittance of the In2S3 thin films were not proportional to temperature, it was possible to obtain the large optical band gap of In2S3 films of about 3.8–3.9 eV enough to be used as the buffer layer of CIGS. - Highlights: • In2S3 films were deposited at various substrate temperatures by thermal evaporation. • The atomic ratio of In to S in the In2S3 film has the highest value at 300 °C. • The In2S3 film has a band gap of about 3.8 eV because of its amorphous structure. • The In2S3 film is expected to be used as a buffer layer by in-line vacuum process

  2. What, no black hole evaporation

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  3. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    Dezfouli, M. M. S.; Mat, S.; G. Pirasteh; Sahari, K. S. M.; K. Sopian; M.H. Ruslan

    2014-01-01

    A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-st...

  4. Numerical simulation of evaporating two-phase flow: application to concentrated solar plants with direct steam generation

    Dinsenmeyer Rémi; Fourmigué Jean-François; Caney Nadia; Marty Philippe

    2014-01-01

    Numerical simulations using CFD are conducted on a boiling two-phase flow in order to study the changes in flow patterns during evaporation. A model for heat and mass transfer at the tube inner wall and at the liquid-gas interface is presented. Transport of two custom scalars is solved: one stands for the enthalpy fields in the flow, the other represents a new dispersed vapor phase in the liquid. A correlation is used to model heat and mass transfer at the tube inner wall. The dispersed phase...

  5. In-situ growth of a CdS window layer by vacuum thermal evaporation for CIGS thin film solar cell applications

    Highly crystalline and transparent CdS films are grown by utilizing the vacuum thermal evaporation (VTE) method. The structural, surface morphological, and optical properties of the films are studied and compared with those prepared by chemical bath deposition (CBD). It is found that the films deposited at a high substrate temperature (200 °C) have a preferential orientation along (002) which is consistent with CBD-grown films. Absorption spectra reveal that the films are highly transparent and the optical band gap values are found to be in a range of 2.44 eV–2.56 eV. CuIn1−xGaxSe2 (CIGS) solar cells with in-situ VTE-grown CdS films exhibit higher values of Voc together with smaller values of Jsc than those from CBD. Eventually the conversion efficiency and fill factor become slightly better than those from the CBD method. Our work suggests that the in-situ thermal evaporation method can be a competitive alternative to the CBD method, particularly in the physical- and vacuum-based CIGS technology. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Improving Efficiency of Evaporated Cu2ZnSnS4 Thin Film Solar Cells by a Thin Ag Intermediate Layer between Absorber and Back Contact

    Hongtao Cui

    2015-01-01

    Full Text Available A 20 nm Ag coating on Mo back contact was adopted to improve the back contact of evaporated Cu2ZnSnS4 (CZTS solar cells. The Ag layer helped reduce the thickness of MoS2 which improves fill factor (FF significantly; additionally, it reduced secondary phases ZnS and SnS2−x, which may help carrier transport; it was also involved in the doping of the absorber layer, which compensated the intrinsic p-type doping and therefore drags down the doping level. The doping involvement may enlarge the depletion region and improve lifetime of the absorber, which led to enhancing open circuit voltage (VOC, short circuit current density (JSC, and efficiency significantly. However, it degrades the crystallinity of the material slightly.

  7. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    M. M. S. Dezfouli

    2014-01-01

    Full Text Available A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-stage recirculation. These models were stimulated for 8,760 hr of operation under hot and humid weather in Malaysia. Several parameters (i.e., coefficient of performance or COP, room temperature and humidity ratio, and the solar fraction of each system were evaluated by detecting the temperature and humidity ratio of the different points of each configuration by TRNSYS simulation. The latent and sensible loads of the test room were 0.875 kW and 2.625 kW, respectively. By investigating the simulation results of the four systems, the ventilation modes were found to be higher than the recirculation modes in the one- and two-stage solar desiccant cooling systems. The isothermal dehumidification COP of the two-stage ventilation was higher than that of the two-stage recirculation. Hence, the two-stage ventilation mode desiccant cooling system in a hot and humid area has higher efficiency than the other configurations.

  8. Comparative study on systems of residual water treatment in the process industry by evaporation, using fossils fuels or solar energy; Estudio comparativo sobre sistemas de tratamiento de aguas residuales de la industria de procesamiento por evaporacion, utilizando combustibles fosiles o energia solar

    Landgrave Romero, Julio; Canseco Contreras, Jose [Facultad de Quimica, UNAM (Mexico)

    1996-07-01

    The residual water treatment of the process industry, nowadays is an imminent necessity in our country. In the present study two different forms are considered to concentrate residual waters: multiple effect evaporation and solar evaporation. The use of solar evaporation lagoons is a good possibility to conserving energy by means of the diminution of fossil fuel consumption. The design basis of the evaporation systems via multiple effect, as well as solar evaporation, the results of the respective sizing and the estimation of the corresponding costs are presented. A practical case is described on the cooking of cotton linters (flock) [Spanish] El tratamiento de aguas residuales de la industria de proceso, hoy en dia es una necesidad inminente en nuestro pais. En el presente trabajo se consideran dos formas distintas para concentrar las aguas residuales: evaporacion de multiple efecto y evaporacion solar. El empleo de lagunas de evaporacion solar es una buena posibilidad para conseguir el ahorro de energia mediante disminucion del consumo de combustibles fosiles. Se presentan las bases de diseno de los sistemas de evaporacion via multiple efecto, asi como solar, los resultados del dimensionamiento respectivo y la estimacion de los costos correspondientes. Se describe un caso practico sobre el cocido de linters de algodon (borra)

  9. Optical and Morphological Studies of Thermally Evaporated PTCDI-C8 Thin Films for Organic Solar Cell Applications

    Ronak Rahimi

    2013-01-01

    Full Text Available PTCDI-C8 due to its relatively high photosensitivity and high electron mobility has attracted much attention in organic semiconductor devices. In this work, thin films of PTCDI-C8 with different thicknesses were deposited on silicon substrates with native silicon dioxide using a vacuum thermal evaporator. Several material characterization techniques have been utilized to evaluate the structure, morphology, and optical properties of these films. Their optical constants (refractive index and extinction coefficient have been extracted from the spectroscopic ellipsometry (SE. X-ray reflectivity (XRR and atomic force microscopy (AFM were employed to determine the morphology and structure as well as the thickness and roughness of the PTCDI-C8 thin films. These films revealed a high degree of structural ordering within the layers. All the experimental measurements were performed under ambient conditions. PTCDI-C8 films have shown to endure ambient condition which allows pots-deposition characterization.

  10. Numerical simulation of evaporating two-phase flow: application to concentrated solar plants with direct steam generation

    Dinsenmeyer Rémi

    2014-01-01

    Full Text Available Numerical simulations using CFD are conducted on a boiling two-phase flow in order to study the changes in flow patterns during evaporation. A model for heat and mass transfer at the tube inner wall and at the liquid-gas interface is presented. Transport of two custom scalars is solved: one stands for the enthalpy fields in the flow, the other represents a new dispersed vapor phase in the liquid. A correlation is used to model heat and mass transfer at the tube inner wall. The dispersed phase is created at the surface in the liquid and flows up to the liquid-vapor interface. There, it is transformed into actual vapor phase. The multiphase VOF model is validated for the creation of slugs in an horizontal tube for an adiabatic flow. Results are presented for a subcooled boiling flow in a bend.

  11. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare

    Dudik, Jaroslav; Janvier, Miho; Mulay, Sargam M; Karlicky, Marian; Aulanier, Guillaume; Del Zanna, Giulio; Dzifcakova, Elena; Mason, Helen E; Schmieder, Brigitte

    2016-01-01

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. The slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions towards both ends of the ribbons. Velocities of 20--40 km\\,s$^{-1}$ are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset of apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the \\textit{IRIS} slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromosph...

  12. Evaporating firewalls

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  13. Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se2 for solar cells applications: Microstructure and Ga in-depth alloying

    The objective of this work is to study the influence of the maximum Cu content during the deposition of Cu(In,Ga)Se2 (CIGSe) by multi-stage co-evaporation on the phases present in the final film, the film structure and the electrical properties of resulting solar cell devices. The variation of the composition is controlled by the Cu content in stage 2 of the deposition process. The different phases are identified by Raman spectroscopy. The in-depth Ga gradient distribution is investigated by in-depth resolved Raman scattering and secondary neutral mass spectroscopy. The morphology of the devices is studied by scanning electron microscopy. Efficiencies of 9.2% are obtained for ordered-vacancy-compound-based cells with a Cu/(In + Ga) ratio = 0.35, showing the system's flexibility. This work supports the current growth model: a small amount of Cu excess during the absorber process is required to obtain a quality microstructure and high performance devices.

  14. Ultrathin CIGS solar cells from controlled chemical etching of state of the art co-evaporated absorbers

    Full text : This presentation will present the influence of reducing the CIGSe absorber layer thickness by highly controlled bromine etching on the electrical and optical solar cell properties. When going from the standard 2.5 micron thickness to 500 nm films we observe a decrease in efficiency which is mainly caused by a reduced short circuit current. Even without deliberate light trapping or anti-reflection coating, an efficiency of 10.3% has been obtained for a 0.5 micron thick CIGSe absorber. A smoothing of the absorber surface was observed during the etching, its influence on the cell parameters will be discussed. Furthermore we monitored the increase of the surface band-gap, induced by the etching, which causes a slight increase of the open circuit voltage for thin absorber layers. Besides fundamental interest, ultrathin CIGS layers represents a key option to reduce the consumption of indium for large scale development. Acknowlegements : This study is carried out with the ULTRACIS project supported by the French National Research Agency

  15. Group evaporation

    Shen, Hayley H.

    1991-01-01

    Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.

  16. Stimulated Black Hole Evaporation

    Spaans, Marco

    2016-01-01

    Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.

  17. Crop maize evapotranspiration; 2: ratios between the evapotranspiration to class A pan evaporation, to the reference evapotranspiration and to global solar radiation, at three sowing dates

    Water availability is the most limiting factor for growth and grain yield of maize in the State of Rio Grande do Sul, Brazil, reducing frequently this production. Therefore, studies involving the determination of the water requirements are important for irrigation management to minimize the water availability problem. The main objective of this study was to calculate ratios between the maize crop evapotranspiration (ETm) to the class A pan evaporation (Eo), to the reference evapotranspiration (ETo) and to global solar radiation (Rs), in order to obtain ralations between ETm/Eo, ETm/ETo and ETm/Rs, at different crop stages for three different sowing dates. Field experiments were carried out at the Experimental Station of Taquari/RS, 29°48’ of south latitude, 51°49’of west longitude, and 76m of altitude, from 1976/77 to 1988/89. ETm was measured using drainage lysimeters (Thornthwaite-Mather type). The average ratio between ETm and Eo for whole crop cycle (from sowing to physiological maturity) was 0.66, 0.72, and 0.68, respectively, in crops sown on September, October, and November. The average ratio between ETm and ETo for whole crop cycle was 0.74, 0.81, and 0.8, in crops sown on September, October, and November, while the average ratio between ETm and Rs was 0.45, 0.51, and 0.49 for the same sowing dates. The higher average values of crop coefficients occured from tasseling to the milk grain stage, when ETm/Eo was 0.81, 0.92, and 0.81; ETm/ETo was 0.97, 1.05, and 0.96, whereas ETm/Rs was 0.6, 0.68, and 0.6 for crops sown on September, October, and November, respectively

  18. Hybrid Solar Chimney and Evaporative Cooling System Used in Xinjiang%新疆地区太阳能烟囱复合蒸发冷却通风降温系统

    宣永梅; 马柱柱; 黄翔

    2013-01-01

    提出了太阳能烟囱复合蒸发冷却系统,对复合系统模型进行了理论分析及计算,得出通风量与烟囱高度、宽度及太阳辐射强度之间的关系。结果表明,太阳能烟囱的自然通风量随太阳能辐射强度及烟囱高度的增加而增加;在计算条件下,当宽度取1m 时通风量取得最大值。在此基础上分析得到太阳辐射照度400W/m2、烟囱高度3m、宽度1m 时,太阳能烟囱复合蒸发冷却系统应用于乌鲁木齐建筑时烟囱的理论通风量为0.21kg/s,该通风量基本满足乌鲁木齐夏季通风设计工况下,蒸发冷却降温时所需动力(0.23kg/s),且室内通风换气次数达到10次/h 以上,是一种节能环保的自然通风降温技术。%A hybrid system of solar chimney and evaporative cooling was proposed.The model of this hybrid system was studied by theoritical analysis and calculation.The relationships between air flow rate with chimney height,width and solar radiation were obtained.The calculation results indicated that the air flow rate of solar chimney increases with solar radiation and chimney height.Under design conditions,the air flow rate of solar chimney reaches its maximum value at solar chimney width of 1m. When applied to actual buildings in Urumqi,the obtained air mass flow rate (0.21kg/s)of solar chimney under optimum condi-tions (at chimney height of 3m,width of 1m,solar radiation of 400W/m2 )can approximately meet the ventilation requirements of evaporative cooling (0.23kg/s),and air changes more than 10 times per hour.The proposed hybrid system is an environmental friendly and energy efficient natural ventilation and free cooling technology.

  19. Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3

    Li, Zhiqiang; Zhu, Hongbing; Guo, Yuting; Niu, Xiaona; Chen, Xu; Zhang, Chong; Zhang, Wen; Liang, Xiaoyang; Zhou, Dong; Chen, Jingwei; Mai, Yaohua

    2016-05-01

    In this work, we present an alternative route to supply excessive selenium (Se) for the deposition of Sb2Se3 thin films by the co-evaporation of Se and Sb2Se3. Scanning electron microscopy (SEM) images showed that additional Se modified the growth process and surface morphology of Sb2Se3 thin films. X-ray diffraction (XRD) patterns confirmed that this co-evaporation process enhanced the beneficiary preferred orientations, and capacitance–voltage (C–V) measurement showed that the carrier concentration of the Sb2Se3 absorber increased with the additional evaporation of Se. Accordingly, the efficiency of the devices employing co-evaporated Sb2Se3 absorber layers increased significantly from 2.1 to 3.47% with a open-circuit voltage (V OC) of 364 mV, a short-circuit current density (J SC) of 23.14 mA/cm2, and a fill factor (FF) of 41.26%.

  20. Use of regenerative evaporative cooling to improve the performance of a novel one-rotor two-stage solar desiccant dehumidification unit

    Ongoing research and development works suggest that good system configurations have significant potential for improving the performance and reducing the cost and size of rotary desiccant dehumidification and air conditioning system. In this paper, a novel desiccant cooling system using regenerative evaporative cooling and a one-rotor two-stage desiccant cooling system are analyzed and compared under Air-conditioning and Refrigeration Institute (ARI) summer, ARI humid and Shanghai summer conditions. The objective of this paper is to compare the thermodynamic performance of the two systems and obtain useful data for practical application. It is found that compared with the conventional desiccant cooling system, the novel desiccant cooling system with regenerative evaporative cooling can handle air to a much lower temperature while maintaining good thermal performance. Under ARI summer, ARI humid and Shanghai summer conditions, the minimum attainable supply air temperatures are reduced from 13.5 °C to 7.9 °C, from 14.2 °C to 9.2 °C and from 18.0 °C to 13.0 °C respectively. It is suggested that the novel desiccant cooling system with regenerative evaporative cooling is beneficial to breaking the obstacle of limited temperature reduction encountered by conventional desiccant cooling system, especially in the case of extreme high humid conditions. - Highlights: ► Desiccant cooling system with regenerative evaporative cooling (REDC) has been studied. ► Comparison between REDC and conventional desiccant cooling system (DCS) has been performed. ► REDC is superior to conventional DCS in thermal utilization, air conditioning and energy saving. ► REDC has significant potential for breaking the obstacle of limited temperature reduction.

  1. Evaporation mitigation using floating modular devices

    Hassan, M. Mahmudul; Peirson, William Leslie; Neyland, Bryce M.; Fiddis, Nicholas McQuistan

    2015-11-01

    Reducing evaporation losses from open water storages is of paramount importance in the improvement of water security in arid countries, including Australia. Widespread adoption of evaporation mitigation techniques has been prevented by their high capital and maintenance or operating costs. The use of clean, floating recycled materials to mitigate evaporation technique has been investigated systematically at sites within both the coastal and semi-arid zones of Australia. Evaporation reduction systematically increases with the proportion of covered surface. Evaporation is reduced by 43% at coastal site and 37% at arid zone site at the maximum packing densities achievable for a single layer of floating devices. The study highlights the importance of both long-term investigations and the climatic influences in the robust quantification of evaporation mitigation. The effects of solar radiation, temperature, wind speed and relative humidity on the evaporation rate at both study sites have been determined in terms of both the classical Penman model and FAO Penman Monteith model with corresponding pan coefficients quantified. FAO Penman Monteith model better estimates evaporation from the open reference tank.

  2. Data Mining Approach for Estimation Evaporation from Free Water Surface

    Ozlem Terzi

    2007-01-01

    Full Text Available Evaporation is a fundamental parameter in the cycle of hydrology. In the present study, data mining method is used to developed evaporation models. Before modeling, air temperature, water temperature, solar radiation and relative humidity parameters are selected as parameters affecting evaporation. Decision Table, KStar, M5P, Pace Regression, M5’Rules, Neural Network, Regression, Simple Linear Regression and SMO Regression algorithms are used for modeling. Finally, the developed models are compared with measured daily pan evaporation values and Penman method. The comparisons show that there is a good agreement between results of M5P model and measured daily pan evaporation values.

  3. Trends in evaporation of a large subtropical lake

    Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui

    2016-03-01

    How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).

  4. Moisture-heat coupling behavior and evaporation effect of expansive soil in simulated solar%模拟日照条件下膨胀土的湿-热耦合性状及蒸发效应

    李雄威; 王爱军; 王勇; 王继果

    2013-01-01

    利用长弧氙灯模拟太阳辐射,通过调节灯罩与土样间的高度产生不同的辐射强度,通过控制光照时间模仿自然环境中的日照状态,通过设定恒温、恒湿环境获得单因素的控制条件,对阳光辐射下原状膨胀土的湿-热耦合性状及降雨蒸发效应进行分析。研究结果表明:当太阳辐射、降雨等气象现象发生后,膨胀土水分迁移和温度变化呈现不同的状态,随着土体水分的往复迁移,浅层土体趋于破碎,疏松,在太阳辐射作用下,土体含水率变化幅度增加,从而进一步加剧土体裂隙的拓展。对于膨胀土,裂隙性和膨胀性是它内在的秉性,而大气作用是诱因,在大气与土壤之间的水分和能量交换过程中,膨胀土的工程性质逐渐发生改变。采用自制的太阳辐射模拟装置,针对大气作用下原状膨胀土的湿热耦合性状以及降雨蒸发效应展开分析,相关经验也可应用到其他土类的研究。针对膨胀土工程性质,可进一步开展太阳辐射对膨胀土水分迁移机制影响的量化分析。%Xenon long-arc lamp is used to simulate solar radiation. Deferent radiation intensities are acquired by adjusting lampshade height. Sunshine state is acquired by controlling the illumination time. Single factor controlling condition is achieved by constant temperature and humidity environment. Then, moisture-heat coupling behavior and rainfall-evaporation effect of undisturbed expansive soil sample in solar radiation are studied. When solar radiation and rainfall occur, the moisture migration and temperature variation present different states. With the to-and-fro moisture migration, the shallow soil tends to the fractured and loosened. In the solar radiation, the amplitude of moisture content variation increases, which aggravates the fissure development. To expansive soil, the characteristics of swelling and fissure are inner being, and atmospheric

  5. 一体化太阳能热泵热水器运行特性的实验研究%Experimental Study on the Operating Characteristics of Solar Heat Pump Water Heater Integrated With Collector, Storage and Evaporation

    卫梁彦; 王玲珑; 吴薇

    2011-01-01

    A novel solar heat pump water heater integrated with collector, storage and evaporation (SHPWHICSE) is presented and analyzed. By adding phase-changing materials into the collector/storage/evaporator, the solar energy can be absorbed and storied as latent heat. Calculating the storied energy according to temperature variation of the phasechange material which is chosen as paraffin, the result is that the storied energy can meet the heat load of this system. Solar got efficiency of this system is defined and compared with the direct expansion solar heat pump water heater. Experimental studies of SHPWHICSE with 150L water heating capacity are done at typical weather conditions in spring. The results indicate the system's COP is 5.63 on sunny days. Although on overcast or rainy days, the system's COP can reach 4. 13. Moreover, solar radiation intensity's unstable change has little influerace on the solar got efficiency and COP. Therefore, SHPWHICSE can be operating highly efficiently and stably at various weather conditions for domestic hot water.%介绍并研究了一种新型集热/蓄能/蒸发一体化太阳能热泵热水器系统(SHPWHICSE).该装置将真空管集热器、蓄能容器和蒸发器集于一体,通过相变潜热吸收并储存大量太阳能.根据相变材料(石蜡)在吸、放热过程中温度的变化计算蓄热量,确定相变材料中储存的热量能够满足系统热负荷.定义了一体化太阳能热泵系统的得热效率,并和直膨式太阳能热泵热水器得热效率进行比较.在春季典型工况下对容量为150L的SHPWHICSE进行实验研究,结果表明:晴天工况下,系统COP可达5.63;即使阴雨天,COP也可达4.13;太阳辐射强度的不稳定变化对热泵系统得热效率和COP的影响不大.因此,该系统在各种天气条件下都可以高效稳定地制取生活热水.

  6. Performance analysis of functioned brackish water for lighting-induced evaporation type solar desalination system%聚光蒸发式太阳能苦咸水淡化系统水体光热性能分析

    侯静; 杨桔材; 郑宏飞; 常泽辉; 于苗苗; 马元波

    2015-01-01

    Fresh water demands are increasing day by day because of industrialization, motorization and increased life standards of mankind. Fresh water reserves available naturally are not capable of meeting the fresh water demands because of their less availability. Desalination is not only necessary to overcome the issue of fresh water shortage in the future, but also important for the oil-gas-coal industry which generates substantial amount of waste water during the production of oil, natural gas and coal. Compared to conventional water treatment technology, solar brackish water desalination has advantages of cleanness and sustainability. However, high cost and small scale have become the biggest obstacles for solar brackish water desalination technology, which is caused by the high-cost solar collector, the structural mismatch of the optimum working ranges between the solar collector system and the brackish water desalination system, and the large heat transfer resistance between them. To solve this problem, this paper has proposed a strong light-concentrating direct evaporationtype solar brackish water desalination system. It utilizes the concentrating solar energy which is directly shined into the functioned brackish water to produce steam for repeated usage. It should be noted that solar collector is introduced to collect much more solar energy and produce steam efficiently to improve the performance of solar desalination units. The light-induced evaporation type solardesalination units show small heat transfer resistance, heat capacity small and small cavity evaporation, which can largely reduce the cost and be beneficial for the economic performance of the solar desalination system. Generally, the functioned brackish water is in the boiling state during the system working. The transmissivity of the functioned brackish water in the boiling state was measured in optical darkroom. At the same time, thermal energy utilization efficiency of functioned brackish water was

  7. Measure Guideline: Evaporative Condensers

    German, A [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  8. Optical and structural analyses of evaporated thin films of Ga2Se3 and In2Se3 for solar cells

    Ga2Se3 and In2Se3 are used as precursor layers for Cu(In,Ga)Se2 thin films, which are applied as solar absorbers for photovoltaics. These precursor layers were deposited at various substrate temperatures ranging from 250 C to 450 C on pure glass substrates and on Mo-coated glass substrates. The composition and thickness of the Ga2Se3 and In2Se3 layers can be controlled in-situ by laser (LLS) and white light scattering (WLS). Controlling these parameters is essential since they affect the electrical properties of the Cu(In,Ga)Se2 layer and therefore the performance of the solar cell. The samples were analysed by optical transmission and reflection measurements in order to determine refractive indexes and band-gap energies complementary to the LLS and WLS results. Ga2Se3 and In2Se3 were also studied by means of X-ray diffraction (XRD), scanning and transmission electron microscopy, energy dispersive x-ray spectroscopy and grazing-incidence XRD in order to identify different phases and interdiffusion. The formation of a (Ga,In)2Se3 solid solution was detected and analysed

  9. Thermally evaporated fullerene (C70) to bridge the charge transport in between nanostructured zinc oxide and conjugated copolymer in hybrid solar cell

    We have investigated the effect of incorporating thin fullerene (C70) layer in between nanostructured ZnO and conjugated co-polymer PCDTBT (Poly [[9-(1-octylnonyl)-9H–carbazole-2,7-diyl]-2,5-thophenediyl-2,1, 3-benzothiadiazole- 4,7-diyl-2,5-thiophenediyl]) for photovoltaic device performance. The addition of the fullerene layer enhances the electron transfer at the heterojunction from polymer to the metal oxide. The reason for the enhanced performance is investigated and it is observed that the fullerene layer can improve charge transfer process thorough the reduction of the trap induced interfacial recombination. The fullerene introduction is also helping in effective charge transfer (CT) excitons dissociation and transport at the interface. Encouraging improvement of the device performance was observed with the incorporation of C70 in this kind of hybrid solar cells. (papers)

  10. Flash evaporator systems test

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  11. Performance potential of low-defect density silicon thin-film solar cells obtained by electron beam evaporation and laser crystallisation

    Kim K. H.

    2013-01-01

    Full Text Available A few microns thick silicon films on glass coated with a dielectric intermediate layer can be crystallised by a single pass of a line-focused diode laser beam. Under favorable process conditions relatively large linear grains with low defect density are formed. Most grain boundaries are defect-free low-energy twin-boundaries. Boron-doped laser crystallised films are processed into solar cells by diffusing an emitter from a phosphorous spin-on-dopant source, measuring up to 539 mV open-circuit voltage prior to metallisation. After applying a point-contact metallisation the best cell achieves 7.8% energy conversion efficiency, open-circuit voltage of 526 mV and short-circuit current of 26 mA/cm2. The efficiency is significantly limited by a low fill-factor of 56% due to the simplified metallisation approach. The internal quantum efficiency of laser crystallised cells is consistent with low front surface recombination. By improving cell metallisation and enhancing light-trapping the efficiencies of above 13% can be achieved.

  12. Measure Guideline: Evaporative Condensers

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  13. Boilers, evaporators, and condensers

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  14. Evaporation and reference evapotranspiration trends in Spain

    Sanchez-Lorenzo, Arturo; Vicente-Serrano, Sergio M.; Wild, Martin; Azorin-Molina, Cesar; Calbó, Josep; Revuelto, Jesús; López-Moreno, Juan I.; Moran-Tejeda, Enrique; Martín-Hernández, Natalia; Peñuelas, Josep

    2015-04-01

    Interest is growing in the trends of atmospheric evaporation demand, increasing the need for long-term time series. In this study, we first describe the development of a dataset on evaporation in Spain based on long-term series of Piché and pan measurement records. Piché measurements have been reported for >50 stations since the 1960s. Measurements of pan evaporation, which is a much more widely studied variable in the literature, are also available, but only since 1984 for 21 stations. Particular emphasis was placed on the homogenization of this dataset (for more details, we refer to Sanchez-Lorenzo et al., 2014, Clim Res, 61: 269-280). Both the mean annual Piché and pan series over Spain showed evaporative increases during the common study period (1985-2011). Furthermore, using the annual Piché records since the 1960s, an evaporation decline was detected from the 1960s to the mid-1980s, which resulted in a non-significant trend over the entire 1961-2011 period. Our results indicate agreement between the decadal variability of reference evapotranspiration (Vicente-Serrano et al., 2014, Glob Planet Chang, 121: 26-40) and surface solar radiation (Sanchez-Lorenzo et al., 2013, Glob Planet Chang, 100: 343-352) and the evaporation from Piché and pan measurements since the mid-1980s, especially during summer. Nevertheless, this agreement needs attention, as Piché evaporimeters are inside meteorological screens and not directly exposed to radiation. Thus, as Piché readings are mainly affected by the aerodynamic term in Penman's evaporation equation and pan records are affected by both the heat balance and aerodynamic terms, the results suggest that both terms must be highly and positively correlated in Spain. In order to check this hypothesis, the radiative and aerodynamic components were estimated using the Penman's equation. The results show that the relationship with the radiative components is weaker than that with the aerodynamic component for both pan and

  15. Passive evaporative cooling

    Tzoulis, A.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. Passive techniques for cooling are a great way to cope with the energy problem of the present day. This manual introduces passive cooling by evaporation. These methods have been used for many years in traditi

  16. Evaporation/Hadronization Correspondence

    Allahbakhshi, Davood

    2016-01-01

    A holographic duality is proposed between black hole evaporation in the bulk and hadronization (confinement) in dual field theory. Information paradox is discussed in this duality. We also propose that the recently introduced semi black brane solution is holographically dual to a mixed plasma of quarks, gluons and hadrons in global equilibrium.

  17. Evaporation of nebular fines during chondrule formation

    Wasson, John T.

    2008-06-01

    Studies of matrix in primitive chondrites provide our only detailed information about the fine fraction (diameter solar nebula. A minor fraction of the fines, the presolar grains, offers information about the kinds of materials present in the molecular cloud that spawned the Solar System. Although some researchers have argued that chondritic matrix is relatively unaltered presolar matter, meteoritic chondrules bear witness to multiple high-temperature events each of which would have evaporated those fines that were inside the high-temperature fluid. Because heat is mainly transferred into the interior of chondrules by conduction, the surface temperatures of chondrules were probably at or above 2000 K. In contrast, the evaporation of mafic silicates in a canonical solar nebula occurs at around 1300 K and FeO-rich, amorphous, fine matrix evaporates at still lower temperatures, perhaps near 1200 K. Thus, during chondrule formation, the temperature of the placental bath was probably >700 K higher than the evaporation temperatures of nebular fines. The scale of chondrule forming events is not known. The currently popular shock models have typical scales of about 10 km. The scale of nebular lightning is less well defined, but is certainly much smaller, perhaps in the range 1 to 1000 m. In both cases the temperature pulses were long enough to evaporate submicrometer nebular fines. This interpretation disagrees with common views that meteoritic matrix is largely presolar in character and CI-chondrite-like in composition. It is inevitable that presolar grains (both those recognized by their anomalous isotopic compositions and those having solar-like compositions) that were within the hot fluid would also have evaporated. Chondrule formation appears to have continued down to the temperatures at which planetesimals formed, possibly around 250 K. At temperatures >600 K, the main form of C is gaseous CO. Although the conversion of CO to CH 4 at lower temperatures is kinetically

  18. CHROMOSPHERIC EVAPORATION VIA ALFVEN WAVES

    This paper presents a scenario for the chromospheric evaporation during solar flares, which is inspired by the chain of events leading to the formation of auroral arcs and ionospheric evacuation during magnetospheric substorms. The plasma, ejected from high coronal altitudes during a flare reconnection event, accumulates at the tops of coronal loops by braking of the reconnection flow, possibly by fast shock formation. A high-beta layer forms and distorts the magnetic field. Energy contained in magnetic shear stresses is transported as Alfven waves from the loop-top toward the chromosphere. It is shown that under these conditions the Alfven waves carry enough energy to feed the chromospheric evaporation process. The second subject of this investigation is identification of the most effective energy dumping or wave dissipation process. Several processes are being analyzed: ion-neutral collisions, classical and anomalous field-aligned current dissipation, and critical velocity ionization. All of them are being discarded, either because they turn out to be insufficient or imply very unlikely physical properties of the wave modes. It is finally concluded that turbulent fragmentation of the Alfven waves entering the chromosphere can generate the required damping. The basic process would be phase mixing caused by a strongly inhomogeneous distribution of Alfvenic phase speed and laminar flow breakup by Kelvin-Helmholtz (K-H) instability. The filamentary (fibril) structure of the chromosphere thus appears to be essential for the energy conversion, in which the K-H instability is the first step in a chain of processes leading to ion thermalization, electron heating, and neutral particle ionization. Quantitative estimates suggest that a transverse structure with scales not far below 100 km suffices to produce strong wave damping within a few seconds. Nonthermal broadening of some metallic ion lines observed during the pre-impulsive rise phase of a flare might be a residue of

  19. Lake Evaporation: A Model Study

    Amayreh, Jumah

    1995-01-01

    Reliable evaporation data are an essential requirement in any water and/or energy budget studies. This includes operation and management of both urban and agricultural water resources. Evaporation from large, open water surfaces such as lakes and reservoirs may influence many agricultural and irrigation decisions. In this study evaporation from Bear Lake in the states of Idaho and Utah was measured using advanced research instruments (Bowen Ratio and Eddy Correlation). Actual over-lake evapor...

  20. Quantum Soliton Evaporation

    Villari, Leone Di Mauro; Biancalana, Fabio; Conti, Claudio

    2016-01-01

    We have very little experience of the quantum dynamics of the ubiquitous nonlinear waves. Observed phenomena in high energy physics are perturbations to linear waves, and classical nonlinear waves, like solitons, are barely affected by quantum effects. We know that solitons, immutable in classical physics, exhibit collapse and revivals according to quantum mechanics. However this effect is very weak and has never been observed experimentally. By predicting black hole evaporation Hawking first introduced a distinctly quantum effect in nonlinear gravitational physics.Here we show the existence of a general and universal quantum process whereby a soliton emits quantum radiation with a specific frequency content, and a temperature given by the number of quanta, the soliton Schwarzschild radius, and the amount of nonlinearity, in a precise and surprisingly simple way. This result may ultimately lead to the first experimental evidence of genuine quantum black hole evaporation. In addition, our results show that bla...

  1. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  2. Evaporated VOx Thin Films

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  3. Water Membrane Evaporator

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  4. Evaporation from the shallow Lake Massaciuccoli (Tuscany, Italy) studied using stable isotopes and evaporation pan data

    Baneschi, I.; Gonfiantini, R.; Guidi, M.

    2009-04-01

    Oxygen and hydrogen isotope variations monitored in Lake Massaciuccoli (7 km2, 2 m deep, seasonally variable water level) during summer 2008, were compared with those observed in a Class A evaporation pan (diameter 120.6 cm, depth 25.4 cm) placed on the lake eastern shore. Air temperature, pressure, relative humidity, wind speed and direction, solar radiation, water temperature in the lake and the pan were also measured. The pluviometer indicated that no precipitation occurred during the study period. The pan was initially filled with groundwater up to the level of 19.2 cm (219 L), depleted in heavy isotopes with respect to tha lake water. Sodium chloride was added up to the concentration of 1 g×L-1, which is assumed do not affect significantly the evaporation rate till the water volume is reduced to less than 10 %. The Cl- concentration was used to provide an estimation of the evaporated water fraction, in addition to the micrometer measuring the water level variations. The pan water was sampled every 2-3 days and Cl- and stable isotopes determined. The set of stable isotope and evaporation data enabled us to compute the parameters governing the evaporation process and the isotopic exchanges with the atmospheric moisture, according to the procedure proposed by Gonfiantini (1986). The values were applied to test three working hypotheses of water balance of Lake Massaciuccoli: (i) surface inflow and outflow of liquid water are negligible and only evaporation is important; (ii) the inflow is negligible and outflow and evaporation are both significant; (iii) the three terms of balance are all important but the losses by evaporation and outflow exceed inflow (as the lake water level was decreasing). Water exchanges with groundwater are considered negligible. The best agreement between lake and pan data was obtained with the second hypothesis, for which the fraction of water removed by evaporation was estimated to be about 40 % ot he total water losses. This residual

  5. Method of evaporation

    Dufresne, Eugene R.

    1987-01-01

    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

  6. Effect of black polyethylene shade covers on the evaporation rate of agricultural reservoirs

    Martínez Álvarez, Víctoriano; Baille, Alain Daniel; Molina Martínez, José Miguel; González Real, María Milagros

    2006-01-01

    [ENG] The potential use of shade covers to reduce evaporation from agricultural reservoirs motivated this study on the effect of black polyethylene shade on the evaporation rate from a small water body (Class-A pan) and of its driving variables. Evaporation was measured hourly in two pans during the summer in Cartagena (Spain), along with the measurements of air temperature and humidity, water temperature, solar radiation and wind speed. The first pan was uncovered whereas the sec...

  7. Modeling monthly pan evaporations using fuzzy genetic approach

    Kişi, Özgür; Tombul, Mustafa

    2013-01-01

    SummaryThis study investigates the ability of fuzzy genetic (FG) approach in estimation of monthly pan evaporations. Various monthly climatic data, that are, solar radiation, air temperature, relative humidity and wind speed from two stations, Antalya and Mersin, in Mediterranean Region of Turkey, were used as inputs to the FG technique so as to estimate monthly pan evaporations. In the first part of the study, FG models were compared with neuro-fuzzy (ANFIS), artificial neural networks (ANNs) and Stephens-Stewart (SS) methods in estimating pan evaporations of Antalya and Mersin stations, separately. Comparison of the models revealed that the FG models generally performed better than the ANFIS, ANN and SS models. In the second part of the study, models were compared to each other in two different applications. In the first application the input data of Antalya Station were used as inputs to the models to estimate pan evaporation data of Mersin Station. The pan evaporation data of Mersin Station were estimated using the input data of Antalya and Mersin stations in the second application. Comparison results indicated that the FG models performed better than the ANFIS and ANN models. Comparison of the accuracy of the applied models in estimating total pan evaporations showed that the FG model provided the closest estimate. It was concluded that monthly pan evaporations could be successfully estimated by the FG approach.

  8. 242-A evaporator hazards assessment

    This document establishes the technical basis in support of Emergency Planning activities for the 242-A Evaporator, on the Hanford Site. Through this document the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated. The evaporator sues a conventional, forced-circulation, vacuum evaporation system to concentrate radioactive waste solutions. This concentration results in the reduction in waste volume and reduces the number of double-shelled tanks required to store the waste

  9. Evaporation of hot jupiters and hot neptunes

    Ehrenreich D.

    2011-02-01

    Full Text Available Among the nearly five hundred extra-solar planets known, almost 30% orbit closer than 0.1 AU from their parent star. We will review the observations and the corresponding models of the evaporation of these ‘hot jupiters’. The observations started with the discovery made with HST that the planet orbiting HD 209458 has an extended atmosphere of escaping hydrogen. Subsequent observations obtained with HST/STIS and HST/ACS confirm the escape of the gas. Even more, oxygen and carbon have been shown to be present at very high altitude in the upper atmosphere. Observations of other targets like HD 189733 and WASP-12 show that evaporation is a general phenomenon which could contribute to the evolution of planets orbiting close to their parent stars. To interpret these observations, we developed models to quantify the escape rate from the measured occultation depths. Numerous models have also been published to investigate mechanisms which can lead to the estimated escape rate. In general, the high temperature of the upper atmosphere heated by the far and extreme UV combined with the tidal forces allow a very efficient evaporation of the upper atmosphere. We will review the different models and their implications.

  10. 降膜蒸发-凝结型闭式循环太阳能蒸馏系统的模拟实验研究%EXPERIMENTAL SIMULATION STUDY ON A CLOSED CIRCULATION SOLAR STILL WITH ENHANCED FALLING FILM EVAPORATION AND CONDENSATION

    郑宏飞; 葛新石

    2001-01-01

    An active regenerative solar still with 1.03m2 enabling to reusethe latent heat of condensation and sensible heat of brine wa s constructed and tested indoors,using a solar simulator for irradiation.In this still a considerable fraction of the latent and sensible heat was successfully recycled and utilized for preheating the feedstock and recycling air via a falli ng film evaporator/condenser.The forced thin layer evaporation and film condensa tion as an efficient enhanced processes for heat transfer were applied in this s ystem.As a result,the freshwater yield was about two to three times greater than that of a conventional basin-type solar still(single-effect).Finally,the prac ti cal measurements under sunlight were carried out and the results were compared with that of the indoor experiments.%建立了一套采光面积为1.07m2、主动回收蒸汽潜热及浓海水余热的降膜蒸发-凝结型闭式循环太阳能蒸馏系统,用4盏卤素灯作为太阳能模拟器,对该系统进行了模拟实验研究。实验结果表明,由于在本蒸馏系统中采用了强迫降膜蒸发及降膜凝结技术,使其中大部分的蒸汽潜热以及浓盐水的显热都得到了重复利用,单位采光面积的产水量相对于传统的盘式(单级)太阳能蒸馏器提高了2~3倍。

  11. Effect of substrate heating on the adhesion and humidity resistance of evaporated MgF{sub 2}/ZnS antireflection coatings and on the performance of high-efficiency silicon solar cells

    Zhang, Guangchun; Zhao, Jianhua; Green, Martin A. [Photovoltaics Special Research Centre, University of New South Wales, Sydney, NSW (Australia)

    1998-02-27

    This paper reports experimental results with substrate heating during thermal evaporation of MgF{sub 2}/ZnS DLAR (double-layer antireflection) coatings. The higher substrate temperature significantly improves the adhesion and humidity resistance of such coatings, while marginally reducing the performance of high-efficiency silicon PERL (passivated emitter, rear locally diffused) cells. The optimum substrate temperature for the evaporation of such DLAR coatings on the PERL cells is about 150C. At this temperature, the DLAR coatings have good durability, but give only slightly reduced PERL cell performance compared to the unheated substrate case. This reduction in the PERL cell performance is believed due to the partial removal of the hydrogen passivation, which was introduced through a standard `alneal` (aluminium anneal) process

  12. ABSORBTION DRYING-EVAPORATIVE HEAT USING SYSMEMS FOR COLD PRODUCTION WITH THE USE OF ALTERNATIVE ENERGY SOURCES

    Doroshenko A.V.

    2010-12-01

    Full Text Available Direct and indirect evaporative coolers with nozzles based on multi channel and multi layer polymeric structures are examined in the paper. Such coolers can be used in both independent and combined variants, as well as a part of solar drying-evaporative systems. Heat required for the regeneration of absorbent is provided with solar energy from flat solar collectors from polymeric materials.

  13. Characteristic Research on Evaporated Explosive Film

    2005-01-01

    The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The influence of substrate temperature on explosive was analyzed, the control method of substrate temperature was suggested. The influences of evaporation rate on formation of explosive film and mixed explosive film were confirmed. Optimum evaporation rate for evaporation explosive and the better method for evaporating mixed explosive were presented. The necessary characteristics of the evaporated explosive film were obtained by the research of the differences between the evaporated explosive and other materials.

  14. Surface-induced evaporative cooling

    Ke Min; Yan Bo; Cheng Feng; Wang Yu-Zhu

    2009-01-01

    The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is < 100 μm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is > 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.

  15. Evolutionary neural networks for monthly pan evaporation modeling

    Kişi, Özgür

    2013-08-01

    Estimating pan evaporation is very important for monitoring, survey and management of water resources. This study proposes the application evolutionary neural networks (ENN) for modeling monthly pan evaporations. Solar radiation, air temperature, relative humidity, wind speed and pan evaporation data from two stations, Antalya and Mersin, in Mediterranean Region of Turkey are used in the study. In the first part of the study, ENN models are compared with those of the fuzzy genetic (FG), neuro-fuzzy (ANFIS), artificial neural networks (ANN) and Stephens-Stewart (SS) methods in estimating pan evaporations of Antalya and Mersin stations, separately. Comparison results indicate that the ENN models generally perform better than the FG, ANFIS, ANN and SS models. In the second part of the study, models are compared with each other in estimating Mersin’s pan evaporations using input data of both stations. Results reveal that the ENN models performed better than the FG, ANFIS and ANN models. It was concluded that monthly pan evaporations can be successfully estimated by the ENN method. The performance of the ENN model with full weather data as inputs presents 0.749 and 0.759 mm of mean absolute error for the Antalya and Mersin stations, respectively.

  16. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has f

  17. Quantum black hole evaporation

    Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman

    1993-01-01

    We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...

  18. Rapid Evaporation of microbubbles

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  19. Control of black hole evaporation?

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  20. Switching off black hole evaporation

    The inclusion of the back-reaction in the Hawking effect leads to the result that, if vector boson fields predominate in nature, then black holes stop evaporating when their mass reaches a non-vanishing limiting value. (author)

  1. On evaporation of black holes

    The problem of isolated black holes (BH) evaporation is discussed. In the course of BH evaporation the process of particle radiation takes place before horizon formation as well as after its formation. For determining emitted particles energy distribution the probability of BH particles radiation through the probability of the reverse process is calculated. As a result of evaporation BH can be surrounded by a photon gas with the energy epsilon=epsilon0+ delta, where epsilon0 is average value of photon gas energy. The mean square value of photon gas energy fluctuation is obtained. Disappearance in the course of evaporation of astrophysical, relic and vacuum BH is considered as a phase transition from one vacuum domain to the other

  2. Pinch analysis of evaporation systems

    Westphalen D.L.

    2000-01-01

    Full Text Available Evaporation systems are separation processes widely used in chemical industries. Some guidelines can be found in the literature for the process integration of multiple effect evaporators. In the published methodologies some aspects are neglected as boiling point rise, effect of pressure on latent heat of water, sensible heat of liquid streams, heat of mixing, effects configuration and inclusion of accessories. In this work, a new graphical representation for the integration of multiple effect evaporators was developed, using rigorous physical properties. From this representation, an algorithm for optimization of bleed streams was conceived using the concepts of Pinch Analysis. As a case study, a crystal glucose plant was optimized using this new methodology. The optimization of bleed streams showed as result a steam consumption 16% smaller than a similar previous study. From energy and capital costs, it is shown that the integrated evaporator exhibits a total cost 14% smaller than the non-integrated configuration.

  3. Horst Meyer and Quantum Evaporation

    Balibar, S.

    2016-06-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  4. Black Hole Evaporation. A Survey

    Benachenhou, Farid

    1994-01-01

    This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...

  5. The sustainability of LNG evaporation

    Stougie, L.; Van der Kooi, H.J.

    2011-01-01

    Numerous LNG (Liquefied Natural Gas) import terminals are under construction to fulfil the growing demand for energy carriers. After storage in tanks, the LNG needs to be heated and evaporated, also called ‘regasified’, to the natural gas needed in households and industry. Several options exist for providing the required heat. In the interest of sustainable development it is important to decide carefully upon which technology to apply for LNG evaporation. In this research, three options for L...

  6. Controls on open water evaporation

    Granger, R.J.; N. Hedstrom

    2010-01-01

    The paper presents the initial results of a field study of boundary layer behaviour and open water evaporation carried out on two small- to medium-sized lakes in Western and Northern Canada. Meteorological and boundary layer measurements were made over the water surfaces and over the upwind land surface, allowing for an examination of the effect of lake-land contrasts of temperature on the wind speed over the open water and on the evaporation rates...

  7. Predicting Potential Evaporation in Topographically Complex Terrain

    Koohafkan, M.; Thompson, S. E.; Hamilton, M. P.

    2012-12-01

    Predicting and understanding the water cycle in topographically complex terrain poses challenges for upscaling point-scale measurements of water and energy balance and for downscaling observations made from remote sensing or predictions made via global circulation models. This study evaluates hydrologic and climate data drawn from a spatially-distributed wireless sensor network at the Blue Oak Ranch Reserve near San Jose, California to investigate the influence of topographic variation, landscape position, and local ecology (vegetation) on one core component of the water balance: potential evaporation. High-resolution observations of solar radiation, ambient temperature, wind speed, and relative humidity are combined with canopy maps generated from LiDAR flyovers to develop spatially-distributed predictions of potential evaporation. These data are compared to estimates of EP based on inverse modeling of surface soil moisture data. Preliminary results suggest that the spatial structure of microclimate at Blue Oak Ranch Reserve is dominated by variations around the elevation gradient, with strong nocturnal inversions hypothesized to reflect the influence of the coastal marine layer. Estimates of EP based on the Penman-Monteith equation suggest that EP could vary by up to a factor of 5 across the site, with differences in vapor pressure deficit and canopy height largely responsible for this variability. The results suggest that a) large differences in the timing and magnitude of water stress could arise in topographically complex terrain due to localized differences in energy balance, and b) both localized and regional effects need to be accounted for when downscaling climate data over topographically complex sites. 2) Color map showing preliminary estimates of annual EP incorporating canopy information (spatially-distributed values of aerodynamic resistance and LAI) drawn from LiDAR imagery. The effect of the resistance on the dynamics is striking in its ability to

  8. DWPF Recycle Evaporator Simulant Tests

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  9. Solar energy collector

    Knowles, G.W.; Sangesland, O.E.; Vroom, H.J.; Madey, R.W.

    1977-11-22

    A solar energy collector is described for collecting, concentrating, and utilizing solar energy. It includes a target for transferring solar energy into another useable energy form and a reflector positioned to increase the amount of solar energy reaching the target and prevent solar energy from escaping around the target. The target includes a transparent envelope and a heat pipe containing a heat transfer fluid. The heat pipe has an evaporator portion disposed within the transparent envelope and an emergent condenser portion with a flange forming a dry thermal interface with a manifold for conducting heat energy directly from the heat pipe to the manifold.

  10. Solar energy collector

    Knowles, G.W.; Sangesland, O.E.; Vroom, H.J.; Madey, R.W.

    1978-10-10

    A solar energy collector for collecting, concentrating, and utilizing solar energy is described including a target for transferring solar energy into another useable energy form and reflector positioned to increase the amount of solar energy reaching the target and prevent solar energy from escaping around the target, the target including in its preferred form a transparent envelope and a heat pipe containing a heat transfer fluid, the heat pipe having an evaporator portion disposed within the transparent envelope and an emergent condenser portion with a flange forming a dry thermal interface with a manifold for conducting heat energy directly from the heat pipe to the manifold.

  11. Use of satellite data to estimate radiation and evaporation for northwest Mexico

    Incoming solar radiation was estimated from visible band data obtained by the GOES satellite over northwest Mexico. Comparisons against ground-based measurements of incoming solar radiation showed good agreement, particularly in months with low cloud cover. The data from an automatic weather station installed within the Yaqui Valley Irrigation Scheme was used to estimate potential evaporation from a formula based on incoming solar radiation and climatological values of temperature. The success of this formula was assessed by comparison against potential evaporation estimated using the Penman and Penman–Monteith formulae and measurements of net radiation. (author)

  12. A mathematical model of pan evaporation under steady state conditions

    Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.

    2016-09-01

    In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.

  13. Monthly pan evaporation modeling using linear genetic programming

    Guven, Aytac; Kisi, Ozgur

    2013-10-01

    This study compares the accuracy of linear genetic programming (LGP), fuzzy genetic (FG), adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and Stephens-Stewart (SS) methods in modeling pan evaporations. Monthly climatic data including solar radiation, air temperature, relative humidity, wind speed and pan evaporation from Antalya and Mersin stations, in Turkey are used in the study. The study composed of two parts. First part of the study focuses the comparison of LGP models with those of the FG, ANFIS, ANN and SS models in estimating pan evaporations of Antalya and Mersin stations, separately. From the comparison results, the LGP models are found to be better than the other models. Comparison of LGP models with the other models in estimating pan evaporations of the Mersin Station by using both stations' inputs is focused in the second part of the study. The results indicate that the LGP models better accuracy than the FG, ANFIS, ANN and SS models. It is seen that the pan evaporations can be successfully estimated by the LGP method.

  14. Study of LNG evaporation phenomenon in aboveground storage tank

    Hariti, R.; Benbrik, A. [Boumerdes Univ., Boumerdes (Algeria). Physical Engineering of Hydrocarbons Laboratory; Lemonnier, D. [Poitiers Futuroscope Univ., Chasseneuil (France). National Engineering School for Mechanics and Aerotechnics, Laboratory of Thermal Studies

    2007-07-01

    Controlling the evaporation phenomenon of liquefied natural gas (LNG) in storage tanks is strongly related to heat transfer under ambient conditions. In the natural gas liquefaction complex of Skikda located in Algeria, control and follow-up in the exploitation of the LNG storage tanks is done only by observing a temperature profile of the internal wall of the tank, using thermocouples laid out according to the height. This practice is important to detect the defects of heat insulation in the tank wall and makes it possible to avoid all the risks of incidents due to excessive evaporation. This paper discussed the development of a simple numerical model that simulated the rate of evaporation of LNG in a storage tank under real storage conditions at a liquefaction complex in Skikda (Algeria). The paper presented the equations for the modelling of heat transfer in the storage tank taking into account all the modes of heat exchange between the ambient conditions and the stored LNG. The paper also discussed the method of resolution. It was concluded that the evaporation rates predicted by the model were in agreement with the configurations corresponding to the real operating conditions. In addition, the results demonstrated the sensitivity of the rate of evaporation to various parameters like the LNG liquid level in the tank, the atmospheric temperature, the emissivity coefficient or incidental solar flow. 6 refs., 1 tab., 12 figs.

  15. Lake Nasser evaporation reduction study

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  16. Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model

    J.-P. Lhomme

    1999-01-01

    Full Text Available In many experimental conditions, the evaporative fraction, defined as the ratio between evaporation and available energy, has been found stable during daylight hours. This constancy is investigated over fully covering vegetation by means of a land surface scheme coupled with a mixed-layer model, which accounts for entrainment of overlying air. The evaporation rate follows the Penman-Monteith equation and the surface resistance is given by a Jarvis type parameterization involving solar radiation, saturation deficit and leaf water potential. The diurnal course of the evaporative fraction is examined, together with the influence of environmental factors (soil water availability, solar radiation input, wind velocity, saturation deficit above the well-mixed layer. In conditions of fair weather, the curves representing the diurnal course of the evaporative fraction have a typical concave-up shape. Around midday (solar time these curves appear as relatively constant, but always lower that the daytime mean value. Evaporative fraction decreases when soil water decreases or when solar energy increases. An increment of saturation deficit above the mixed-layer provokes only a slight increase of evaporative fraction, and wind velocity has almost no effect. The possibility of estimation daytime evaporation from daytime available energy multiplied by the evaporative fraction at a single time of the day is also investigated. It appears that it is possible to obtain fairly good estimates of daytime evaporation by choosing adequately the time of the measurement of the evaporative fraction. The central hours of the day, and preferably about 3 hr before or after noon, are the most appropriate to provide good estimates. The estimation appears also to be much better when soil water availability (or evaporation is high than when it is low.

  17. Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau

    LIU Xiaomang; ZHENG Hongxing; ZHANG Minghua; LIU Changming

    2011-01-01

    Despite the observed increase in global temperature,observed pan evaporation in many regions has been decreasing over the past 50 years,which is known as the “pan evaporation paradox”.The “pan evaporation paradox” also exists in the Tibetan Plateau,where pan evaporation has decreased by 3.06 mm a-2 (millimeter per annum).It is necessary to explain the mechanisms behind the observed decline in pan evaporation because the Tibetan Plateau strongly influences climatic and environmental changes in China,Asia and even in the Northern Hemisphere.In this paper,a derivation based approach has been used to quantitatively assess the contribution rate of climate factors to the observed pan evaporation trend across the Tibetan Plateau.The results showed that,provided the other factors remain constant,the increasing temperature should have led to a 2.73 mm a-2 increase in pan evaporation annually,while change in wind speed,vapor pressure and solar radiation should have led to a decrease in pan evaporation by 2.81 mm a-2,1.96 mm a-2 and 1.11 mm a-2 respectively from 1970 to 2005.The combined effects of the four climate variables have resuited in a 3.15 mm a-2 decrease in pan evaporation,which is close to the observed pan evaporation trend with a relative error of 2.94%.A decrease in wind speed was the dominant factor for the decreasing pan evaporation,followed by an increasing vapor pressure and decreasing solar radiation,all of which offset the effect of increasing temperature across the Tibetan Plateau.

  18. Water Evaporation: A Transition Path Sampling Study

    Varilly, Patrick; Chandler, David

    2012-01-01

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. Based on thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the...

  19. 太阳能烟囱与露点间接蒸发冷却复合空调节能系统分析%Analysis of an Energy Saving Air Conditioning System Integrated with Solar Chimney and Dew-point Evaporative Cooling

    倪诚明

    2014-01-01

    太阳能烟囱是一种热压作用下的自然通风设备,它利用太阳辐射作为动力,为空气流动提供浮升力,将热能转化为动能。露点间接蒸发冷却技术利用空气的干球温度和不断降低的湿球温度之差进行换热,可以将空气温度冷却到低于环境湿球温度且接近露点温度。本文介绍了太阳能烟囱与露点间接蒸发冷却技术的研究现状,提出一套太阳能烟囱与露点间接蒸发冷却复合的空调节能系统。分析表明,该系统可合理的利用太阳能解决室内通风降温问题,投资和运行费用都很低,节能环保效果显著。%Solar chimney is a kind of natural ventilation application under the action of hot pressing, it using solar radiation as power, providing buoyancy lift for air flow, transfer the thermal energy into kinetic energy.The technol-ogy of dew-point evaporative cooling using the temperature difference of air between dry bulb temperature and low-ing wet bulb temperature to transfer heat.Its able to cool air to temperature below ambient wet bulb temperature and approaching dew-point temperature.This paper review the research status of solar chimney and dew-point evapora-tive cooling.The analysis results showed that the proposed system is a reasonable way to solve the indoor ventilation and cooling problems.its investment and operating cost is lower, and has a remarkable energy saving and environ-ment protection effect.

  20. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose

  1. Evaporation duct communication: Test Plan

    Anderson, K. D.

    1991-02-01

    The Evaporation Duct Communication (EDCOM) project is an effort to provide an alternative ship-to-ship communications channel using the natural environment. A microwave communication link can be used on an over-the-water, over-the-horizon path through the evaporation duct. This report shows how a microwave communication link, operating at a range separation of more than twice the line-of-sight range, can be constructed. This link can achieve about 80-percent availability at a transmission frequency of 14.5 GHz and can be constructed using off-the-shelf RF equipment. Operation of this link will provide the first set of measurements of channel capacity that can be critically dependent on the existence of an oceanic evaporation duct. Construction of this link presents a unique opportunity to study and evaluate an alternative communications channel that can be used to alleviate naval battlegroup communications load.

  2. Topics in black hole evaporation

    Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process

  3. Evaporation of primordial black holes

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  4. Energy storage in evaporated brine

    MacDonald, R. Ian

    2010-09-15

    We propose storage of electrical energy in brine solutions by using the energy to enhance natural evaporation. Using properties of existing industrial evaporation technologies and estimates of power regeneration from brine by pressure retarded osmosis, efficiency near 100% is calculated. Modelling indicates that systems ranging from 50kW to 50MW output may be practical, with storage capacities of hours to days. The method appears to have potential to be economically competitive with other technologies over a wide range of capacity. It may present a large new application area that could aid the development of salinity-based power generation technology.

  5. Evaporating Drops of Alkane Mixtures

    Gu'ena, G; Poulard, C; Cazabat, Anne-Marie; Gu\\'{e}na, Geoffroy; Poulard, Christophe

    2005-01-01

    Alkane mixtures are model systems where the influence of surface tension gradients during the spreading and the evaporation of wetting drops can be easily studied. The surface tension gradients are mainly induced by concentration gradients, mass diffusion being a stabilising process. Depending on the relative concentration of the mixture, a rich pattern of behaviours is obtained.

  6. Simulation of a refrigerant evaporator

    Vandermeer, Jakob Stefanus

    A computer model for the design and optimization of the compressor refrigeration cycle especially with respect to dynamic behavior was developed. A steady state version was also developed. The model describing the refrigerant is divided into the evaporation and superheating regions. A mechanism based on empirics corrects the model for the influence of transportation times in the evaporation region. The mass balance of the refrigerant in the superheat region is regarded as quasi-static, because of the small mass of the vapor. The energy balance accounts for a distributed model and is represented by the steady state solution of the partial differential equation which describes this area for the steady conditions. A correction for the dynamical effects was added to this solution, for all influencing parameters, according to the analytical dynamic solution for the case of the evaporation temperature as input parameter. The expansion device model was worked out for the usual type of device in combination with a dry evaporator, the thermostatic expansion valve. Validation tests are described.

  7. Membrane evaporator/sublimator investigation

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  8. Evaporative Condensers in Comfortable Air Conditioning System

    YIN Ying-de; ZHU Dong-sheng; DU Gui-mei; LI Yuan-xi; SUN He-jing; LIU Qing-ming

    2009-01-01

    The operating theory of an evaporative condenser was expatiated.The difference between an e-vaporative condensing refrigeration system and a general refrigeration system was analyzed.Compared with the air-cooled and the water-cooled,the virtues of energy-conservation and water-conservation of evaporative con-densers were analyzed.Some questions existing in the application of evaporative condensers were pointed out,the corresponding solving methods were analyzed accordingly,and the development trend of evaporative con-densing technique in mechanical refrigeration system field and the applied foreground of evaporative condensers in comfortable air conditioning were prospected.

  9. Open fibre reinforced plastic (FRP) flat plate collector (FPC) and spray network systems for augmenting the evaporation rate of tannery effluent (soak liquor)

    Presently, tanneries in Tamilnadu, India are required to segregate the effluent of soaking and pickling sections from other wastewater streams and send it to shallow solar pans for evaporation to avoid land pollution. A large area of solar pans is required for evaporating the water in the effluent at salt concentration in the range of 4-5%. An experimental study has been made by using fibre reinforced plastic flat plate collector (FRP-FPC) and spray system in a pilot plant with a capacity to handle 5000 l per day, which increases the evaporation rate. After increasing the salt concentration level to near saturation limit, the concentrated liquid was sent to conventional solar pans for its continued evaporation and recovery of salt. In this improved system, the rate of evaporation was found to be 30-40% more than that in the conventional solar pans. The performance is compared with the theoretically simulated performance. (author)

  10. Harnessing Potential Evaporation as a Renewable Energy Resource With Water-Saving Benefits

    Cavusoglu, A. H.; Chen, X.; Gentine, P.; Sahin, O.

    2015-12-01

    Water's large latent heat of vaporization makes evaporation a critical component of the energy balance at the Earth's surface. An immense amount of energy drives the hydrological cycle and is an important component of various weather and climate patterns. However, the potential of harnessing evaporation has received little attention as a renewable energy resource compared to wind and solar energy. Here, we investigate the potential of harvesting energy from naturally evaporating water. Using weather data across the contiguous United States and a modified model of potential evaporation, we estimate the power availability, intermittency, and the changes in evaporation rates imposed by energy conversion. Our results indicate that natural evaporation can deliver power densities similar to existing renewable energy platforms and require little to no energy storage to match the varying power demands of urban areas. This model also predicts additional, and substantial, water savings by reducing evaporative losses. These findings suggest that evaporative energy harvesting can address significant challenges with water/energy interactions that could be of interest to the hydrology community.

  11. SPATIAL AND TEMPORAL VARIATIONS OF EVAPORATION OVER SOUTH CHINA IN AUTUMN

    XIAO Wei-jun; LIANG Yu-qiong; HE Ju-xiong; CHEN Bing-hong

    2008-01-01

    The spatial and temporal variations of the instrument-based evaporation and actual evaporation in autumn during a 45-year period fi'om 1960 to 2004 are studied using the observation data from 66 stations over South China. The results reveal that there are two main anomalous centers of the instrument-based evaporation in autumn in the central and northwestern parts of South China respectively. The instrument-based evaporation over the central part of South China in autumn experiences not only a decreasing trend but also a main interdecadal variation. The solar radiation is best correlated with the instrument-based evaporation among all affecting factors. For the actual evaporation, two main anomalous centers are located at the central and western parts of the South China respectively. The actual evaporation over the two regions illustrates an interannual variation. Among the affecting factors, precipitation is the most remarkable. The actual evaporation is usually 40 percent of the instrument-based one, and the overall rate has a slightly increasing trend from the southern part to the northern part of the South China in autumn.

  12. Effect of DOC on evaporation from small Wisconsin lakes

    Watras, C. J.; Morrison, K. A.; Rubsam, J. L.

    2016-09-01

    Evaporation (E) dominates the loss of water from many small lakes, and the balance between precipitation and evaporation (P-E) often governs water levels. In this study, evaporation rates were estimated for three small Wisconsin lakes over several years using 30-min data from floating evaporation pans (E-pans). Measured E was then compared to the output of mass transfer models driven by local conditions over daily time scales. The three lakes were chosen to span a range of dissolved organic carbon (DOC) concentrations (3-20 mg L-1), a solute that imparts a dark, tea-stain color which absorbs solar energy and limits light penetration. Since the lakes were otherwise similar, we hypothesized that a DOC-mediated increase in surface water temperature would translate directly to higher rates of evaporation thereby informing climate response models. Our results confirmed a DOC effect on surface water temperature, but that effect did not translate to enhanced evaporation. Instead the opposite was observed: evaporation rates decreased as DOC increased. Ancillary data and prior studies suggest two explanatory mechanisms: (1) disproportionately greater radiant energy outflux from high DOC lakes, and (2) the combined effect of wind speed (W) and the vapor pressure gradient (es - ez), whose product [W(es - ez)] was lowest on the high DOC lake, despite very low wind speeds (lakes. Agreement between measured (E-pan) and modeled evaporation rates was reasonably good, based on linear regression results (r2: 0.6-0.7; slope: 0.5-0.7, for the best model). Rankings based on E were similar whether determined by measured or modeled criteria (high DOC lakes and 4 years, E averaged ∼3 mm d-1 (C.V. 9%), but statistically significant differences between lakes resulted in substantial differences in cumulative E that were consistent from year to year. Daily water budgets for these lakes show that inputs were dominated by P and outputs by E; and our findings indicate that subtle changes in

  13. Effect of DOC on evaporation from small Wisconsin lakes

    Watras, C. J.; Morrison, K. A.; Rubsam, J. L.

    2016-09-01

    Evaporation (E) dominates the loss of water from many small lakes, and the balance between precipitation and evaporation (P-E) often governs water levels. In this study, evaporation rates were estimated for three small Wisconsin lakes over several years using 30-min data from floating evaporation pans (E-pans). Measured E was then compared to the output of mass transfer models driven by local conditions over daily time scales. The three lakes were chosen to span a range of dissolved organic carbon (DOC) concentrations (3-20 mg L-1), a solute that imparts a dark, tea-stain color which absorbs solar energy and limits light penetration. Since the lakes were otherwise similar, we hypothesized that a DOC-mediated increase in surface water temperature would translate directly to higher rates of evaporation thereby informing climate response models. Our results confirmed a DOC effect on surface water temperature, but that effect did not translate to enhanced evaporation. Instead the opposite was observed: evaporation rates decreased as DOC increased. Ancillary data and prior studies suggest two explanatory mechanisms: (1) disproportionately greater radiant energy outflux from high DOC lakes, and (2) the combined effect of wind speed (W) and the vapor pressure gradient (es - ez), whose product [W(es - ez)] was lowest on the high DOC lake, despite very low wind speeds (<1.5 m s-1) and steep forested uplands surrounding all three lakes. Agreement between measured (E-pan) and modeled evaporation rates was reasonably good, based on linear regression results (r2: 0.6-0.7; slope: 0.5-0.7, for the best model). Rankings based on E were similar whether determined by measured or modeled criteria (high DOC < low DOC). Across the 3 lakes and 4 years, E averaged ∼3 mm d-1 (C.V. 9%), but statistically significant differences between lakes resulted in substantial differences in cumulative E that were consistent from year to year. Daily water budgets for these lakes show that inputs

  14. Black hole evaporation: a paradigm

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  15. 21 CFR 131.130 - Evaporated milk.

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  16. Thermogravimetric analysis of fuel film evaporation

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  17. Measurement and calculation of evaporation

    Plesničar, Leja

    2015-01-01

    The thesis presents three selected methods of measurement and calculation of the evapotranspiration on research plot at Hajdrihova 28 in Ljubljana. First method is measurement by evaporation pan type A and the other two methods are empirical equations for potential evapotranspiration calculation: FAO Penman-Monteith equation and Thornthwait equation. The results obtained for all three methods are compared with each other. Calculated results according to the FAO Penman-Monteith equation wer...

  18. Water Evaporation in Swimming Baths

    Hyldgård, Carl-Erik

    This paper is publishing measuring results from models and full-scale baths of the evaporation in swimming baths, both public baths and retraining baths. Moreover, the heat balance of the basin water is measured. In addition the full-scale measurements have given many experiences which are...... represented in instructions for carrying out and running swimming baths. If you follow the instructions you can achieve less investments, less heat consumption and a better comfort to the bathers....

  19. Improvements of evaporation drag model

    LI Xiao-Yan; XU Ji-Jun

    2004-01-01

    A special visible experiment facility has been designed and built, and an observable experiment is performed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang's evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and contributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle's temperature on the radiation absorption behavior of water.

  20. Improvements of evaporation drag model

    A special observable experiment facility has been established, and a series of experiments have been carried out on this facility by pouring one or several high-temperature particles into a water pool. The experiment has verified the evaporation drag model, which believe the non-symmetric profile of the local evaporation rate and the local density of the vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface and all of the radiation energy is deposited on the vapor-liquid interface, thus contributing to the vaporization rate and mass balance of the vapor film. So, the heat conduction and the heat convection are taken into account in improved model. At the same time, the improved model given by this paper presented calculations of the effect of hot particles temperature on the radiation absorption behavior of water

  1. Improvements of evaporation drag model

    A special visible experiment facility has been designed and built, and an observable experiment is performed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang's evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resists its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and contributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle's temperature on the radiation absorption behavior of water. (authors)

  2. Cosmological constraints from evaporation of primordial black holes

    A formula for the initial mass spectrum of primordial black holes (PBHs), which can be used for the general case of a scale dependent spectral index, and for a wide class of models of gravitational collapse, is derived. The derivation is based on the Press-Schechter formalism. A comparative analysis of different types of initial mass spectra used in concrete calculations is carried out. It is shown that densities of background radiation (ν, γ) from PBH evaporation depend rather strongly on the type of gravitational collapse and on taking into account the spread of horizon masses at which PBHs can form. Constraints on the parameters of the primordial density perturbation amplitudes based on PBH evaporation processes and on atmospheric and solar neutrino data are obtained

  3. Primordial Black Holes: Observational Characteristics of The Final Evaporation

    Ukwatta, T N; Linnemann, J T; MacGibbon, J H; Marinelli, S S; Yapici, T; Tollefson, K

    2015-01-01

    Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to $10^5$ solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation using the Standard Model of particle physics incorporating the most recent LHC results and calculate energy dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures relevant to very high energy gamma-ray observatories.

  4. Local behaviour of evaporating stars and black holes around the total evaporation event

    Many models in which the object under study loses all its mass have appeared in the literature. This can be found from evaporating stars to incipient black holes, all the way to evaporating black holes. In this paper we try a semiclassical study of these evaporating models centred on the evaporating event itself. We analyse their common properties, behaviours and possibilities. Specifically, we pay special attention to the evaporating models as a means of avoiding singularities during the collapse. In the case of any pre-existing non-spacelike curvature singularity, we show that these models tend to evaporate it. Finally, we introduce a new class of evaporating black holes.

  5. Modelling refrigerant distribution in microchannel evaporators

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...... mixed superheat out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels....

  6. Flash evaporation from turbulent water jets

    Bharathan, D.; Penney, T.

    1983-02-01

    Results of an experimental investigation of flash evaporation from turbulent planar and axisymmetric water jets are reported. In the range of jet thicknesses tested, for planar jets, due to shattering, evaporation is found to be nearly independent of the jet thickness. Evaporation from the planar jets was found to be dependent on the initial level of turbulence in the water supply manifold. An approximate analysis to model the evaporation process based on the physical phenomena and experimental observations is outlined. Comparisons between the experimental data and analytical predictions of the liquid temperature variation along the jet are included. Use of screens in the water jet are shown to be effective for enhancing evaporation.

  7. Flash evaporation from turbulent water jets

    Bharathan, D.; Penney, T.

    1984-05-01

    Results of an experimental investigation of flash evaporation from turbulent planar and axisymmetric water jets are reported. In the range of jet thicknesses tested, for planar jets, due to shattering, evaporation if found to be nearly independent of the jet thickness. Evaporation from the planar jets was found to be dependent on the initial level of turbulence in the water supply manifold. An approximate analysis to model the evaporation process based on the physical phenomena and experimental observations is outlined. Comparisons between the experimental data and analytical predictions of the liquid temperature variation along the jet are included. Use of screens in the water jet are shown to be effective for enhancing evaporation.

  8. Flash evaporation from turbulent water jets

    Results of an experimental investigation of flash evaporation from turbulent planar and axisymmetric water jets are reported. In the range of jet thicknesses tested, for planar jets, due to shattering, evaporation if found to be nearly independent of the jet thickness. Evaporation from the planar jets was found to be dependent on the initial level of turbulence in the water supply manifold. An approximate analysis to model the evaporation process based on the physical phenomena and experimental observations is outlined. Comparisons between the experimental data and analytical predictions of the liquid temperature variation along the jet are included. Use of screens in the water jet are shown to be effective for enhancing evaporation

  9. Local behaviour of evaporating stars and black holes around the total evaporation event

    Fayos Vallés, Francisco; Torres Herrera, Ramon

    2010-01-01

    Abstract Many models in which the object under study loses all its mass have appeared in the literature. One can find from evaporating stars to incipient black holes, all the way to evaporating black holes. In this article we try a semiclassical study of these evaporating models centered on the evaporating event itself. We analyze their common properties, behaviours and possibilities. Specifically, we pay special attention to the evaporating models as a means of avoiding singularities duri...

  10. Hydrothermal waves in evaporating sessile drops

    Brutin, D; Niliot, C Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the coupling by conduction with the heating substrate, the convection and conduction inside the drop and the convection and diffusion with the vapour phase. The coupling of heat transfer in the three phases induces complicated cases to solve even for numerical simulations. We present recent experimental fluid dynamics videos obtained using a FLIR SC-6000 coupled with a microscopic lens of 10 micron of resolution to observe the evaporation of sessile drops in infrared wavelengths. The range of 3 to 5 micron is adapted to the ...

  11. Does evaporation paradox exist in China?

    Z. T. Cong

    2009-03-01

    Full Text Available One expected consequence of global warming is the increase in evaporation. However, lots of observations show that the rate of evaporation from open pans of water has been steadily decreasing all over the world in the past 50 years. The contrast between expectation and observation is called "evaporation paradox". Based on data from 317 weather stations in China from 1956 to 2005, the trends of pan evaporation and air temperature were obtained and evaporation paradox was analyzed. The conclusions include: (1 From 1956 to 2005, pan evaporation paradox existed in China as a whole while pan evaporation kept decreasing and air temperature became warmer and warmer, but it does not apply to Northeast and Southeast China; (2 From 1956 to 1985, pan evaporation paradox existed narrowly as a whole with unobvious climate warming trend, but it does not apply to Northeast China; (3 From 1986 to 2005, in the past 20 years, pan evaporation paradox did not exist for the whole period while pan evaporation kept increasing, although it existed in South China. Furthermore, the trend of other weather factors including sunshine duration, windspeed, humidity and vapor pressure deficit, and their relations with pan evaporation are discussed. As a result, it can be concluded that pan evaporation decreasing is caused by the decreasing in radiation and wind speed before 1985 and pan evaporation increasing is caused by the decreasing in vapor pressure deficit due to strong warming after 1986. With the Budyko curve, it can be concluded that the actual evaporation decreased in the former 30 years and increased in the latter 20 year for the whole China.

  12. Putting the "vap" into evaporation

    2007-01-01

    Full Text Available In the spirit of the Special Issue of HESS to which it contributes, this paper documents the origin and development of the science of natural evaporation from land surfaces over the last 30–35 years, since the symposium A View from the Watershed was held to commemorate the opening of the new Institute of Hydrology (IH building in 1973. Important subsequent technical progress includes the ability to measure routinely the diurnal cycle of near-surface meteorological variables using automatic weather stations, and of surface energy and momentum exchanges using automated implementations of the Bowen Ratio/Energy Budget technique and the Eddy Correlation technique, along with the capability to estimate the "fetch" for which these measurements apply. These improvements have been complemented by new methods to measure the separate components of evaporation, including: the interception process using randomly relocated below-canopy gauges, transpiration fluxes from individual leaves/shoots using porometers and from plants/plant components using stem-flow gauges and soil evaporation using micro-lysimeters and soil moisture depletion methods. In recent years progress has been made in making theory-based area-average estimates of evaporation using scintillometers, and model-based area-average estimates by assembling many streams of relevant data into Land Data Assimilation Systems. Theoretical progress has been made in extending near-surface turbulence theory to accommodate the effect of the "excess" boundary layer resistance to leaf-to-air transfer of energy and mass fluxes relative to that for momentum, and to allow for observed shortcoming in stability factors in the transition layer immediately above vegetation. Controversy regarding the relative merits of multi-layer model and "big leaf" representations of whole-canopy exchanges has been resolved in favour of the latter approach. Important gaps in the theory of canopy-atmosphere interactions have

  13. Evaporative oxidation treatability test report

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment

  14. Mobile evaporator corrosion test results

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

  15. Introduction to Black Hole Evaporation

    Lambert, Pierre-Henry

    2013-01-01

    These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally some consequences such as thermodynamics of black holes and information loss paradox are discussed.

  16. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  17. Potential evaporation trends over land between 1983–2008: driven by radiative or turbulent fluxes?

    C. Matsoukas

    2011-04-01

    Full Text Available We model the Penman potential evaporation (PE over all land areas of the globe for the 25-year period 1983–2008, relying on radiation transfer models (RTMs for the shortwave and longwave fluxes. Penman's PE is determined by two factors: available energy for evaporation and ground to atmosphere vapour transfer. Input to the PE model and RTMs comprises satellite cloud and aerosol data, as well as data from reanalyses. PE is closely linked to pan evaporation, whose trends have sparked controversy in the community, since the factors responsible for the observed pan evaporation trends are not determined with consensus. Our particular interest is the temporal evolution of PE, and the provided insight to the observed trends of pan evaporation. We examine the interannual trends of PE and various related physical quantities, such as net solar flux, net longwave flux, water vapour saturation deficit and wind speed. Our findings are the following: Global warming has led to a larger water vapour saturation deficit. Global dimming/brightening cycles in the last 25 years slightly increased the available energy for evaporation. PE trends seem to follow closely the trends of energy availability and not the trends of the atmospheric capability for vapour transfer, almost everywhere on the globe, with trends in the Northern hemisphere significantly larger than in the Southern. These results support the hypothesis that secular changes in the radiation fluxes, and not vapour transfer considerations, are responsible for potential evaporation trends.

  18. New models for droplet heating and evaporation

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  19. Evaporating Black Holes and Long Range Scaling

    Salehi, Hadi

    2003-01-01

    For an effective treatment of the evaporation process of a large black hole the problem concerning the role played by the fluctuations of the (vacuum) stress tensor close to the horizon is addressed. We present arguments which establish a principal relationship between the outward fluctuations of the stress tensor close to the horizon and quantities describing the onset of the evaporation process. This suggest that the evaporation process may be described by a fluctuation-dissipation theorem ...

  20. Solar Desalination System by Humidification Dehumidification Method

    Sousi, Abdulla

    2013-01-01

    ABSTRACT: A humidification/dehumidification (HDH) solar desalination unit having combined solar water/air heater was designed constructed and experimentally investigated. The main components of the desalination system are the combined solar air/water heater collector with double glazing, humidifier (evaporator), dehumidifier (condenser), circulating pump, fan and a storage tank. Both air and saline (or brackish water) were heated in a single combined solar water/air heater. The effect of air ...

  1. Solar air-conditioning-active, hybrid and passive

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  2. Statistical evaporation of rotating clusters

    Calvo, F

    2003-01-01

    Unimolecular evaporation in rotating atomic clusters is investigated using phase space theory (PST) and molecular dynamics simulations. The rotational densities of states are calculated in the sphere+atom approximation, and analytical expressions are given for a radial interaction potential with the form -C/r^p. The vibrational densities of states are calculated using Monte Carlo simulations, and the average radial potential at finite temperature is obtained using a recent extension of the multiple range random-walk algorithm. These ideas are tested on simple argon clusters modelled with the Lennard-Jones (LJ) interaction potential, at several total energies and angular momenta of the parent cluster. Our results show that PST successfully reproduces the simulation data, not only the average KER but its probability distribution, for dissociations from LJ_14, for which the product cluster can effectively be considered as spherical. Even for dissociations from the nonspherical LJ_8, simulation results remain ver...

  3. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  4. Cosmic evolution during primordial black hole evaporation

    Zimdahl, Winfried; Pavón, Diego

    1998-01-01

    Primordial black holes with a narrow mass range are regarded as a nonrelativistic fluid component with an equation of state for dust. The impact of the black hole evaporation on the dynamics of the early universe is studied by resorting to a two-fluid model. We find periods of intense radiation reheating in the initial and final stages of the evaporation.

  5. Light geodesics near an evaporating black hole

    Guerreiro, Thiago; Monteiro, Fernando

    2015-10-01

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed.

  6. 242-A evaporator vacuum condenser system

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation

  7. Floating convection barrier for evaporation source

    A floating matrix of titanium in an uranium evaporation source, melted by an electron beam, serves as a barrier for preventing cooler material from reaching the evaporation area. This construction allows a big volume of melted uranium to be present and new uranium to be furnished in regulated intervals without manual intervention

  8. Advanced evaporator technology progress report FY 1992

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  9. New facility for simultaneous implantation and evaporation

    Voorthuysen, E.H.duMarchie van

    The Groningen isotope separator has been extended with a double uhv evaporation system. Implantation and evaporation can now be done at the same time under good vacuum conditions. Implanted systems with thicknesses up to 6.3..mu..m have been produced.

  10. New facility for simultaneous implantation and evaporation

    The Groningen isotope separator has been extended with a double uhv evaporation system. Implantation and evaporation can now be done at the same time under good vacuum conditions. Implanted systems with thicknesses up to 6.3μm have been produced. (author)

  11. Diffusion-driven evaporation of sessile drops

    The evaporation of wetting drops deposited on a substrate at thermal equilibrium under normal atmosphere is discussed. The evaporation rate appears to be controlled by the stationary diffusion of vapour molecules in the gas phase. Experiments with alkanes and water drops are fairly well accounted for by an isothermal model, taking into account the specific properties of thin films

  12. Structuring of polymer solutions upon solvent evaporation

    Schaefer, C.; van der Schoot, P.; Michels, J. J.

    2015-01-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench inv

  13. Estimating evaporation from a wet grassland

    2007-01-01

    Full Text Available Wet grasslands are being restored across the UK and Europe to reinstate their high biodiversity following over 50 years of drainage and conversion to arable agriculture. The water balance of many wet grasslands is dominated by precipitation and evaporation and it is essential to quantify evaporation rates to understand the hydrological functioning of wetlands and the implications for water resources in catchments where wetlands are being restored. This paper considers data from direct measurements of evaporation from the Pevensey Levels wet grassland using the eddy correlation method. Equations are derived to predict actual evaporation using meteorological data on the site or from standard meteorological station observations. It was found that evaporation could be estimated reliably from meteorological variables, such as wind speed, temperature and humidity and by water availability. It was also found that when water availability is high, evaporation is high and may exceed reference evaporation values, raising questions over the deployment of the two-step Penman-Monteith model unless reliable crop coefficients and relative evaporation figures can be determined.

  14. Drop evaporation and triple line dynamics

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  15. Modelling refrigerant distribution in minichannel evaporators

    Brix, Wiebke

    This thesis is concerned with numerical modelling of flow distribution in a minichannel evaporator for air-conditioning. The study investigates the impact of non-uniform airflow and non-uniform distribution of the liquid and vapour phases in the inlet manifold on the refrigerant mass flow...... distribution and on the cooling capacity of the evaporator. A one dimensional, steady state model of a minichannel evaporator is used for the study. An evaporator consisting of two multiport minichannels in parallel is used as a test case and two different refrigerants, R134a and R744 (CO2), are applied in the...... numerical experiments using the test case evaporator. The results show that the reduction in cooling capacity due to non-uniform airflow and non-uniform liquid and vapour distribution is generally larger when using R134a than when using CO2 as refrigerant. Comparing the capacity reductions with reductions...

  16. Quantifying nonisothermal subsurface soil water evaporation

    Deol, Pukhraj; Heitman, Josh; Amoozegar, Aziz; Ren, Tusheng; Horton, Robert

    2012-11-01

    Accurate quantification of energy and mass transfer during soil water evaporation is critical for improving understanding of the hydrologic cycle and for many environmental, agricultural, and engineering applications. Drying of soil under radiation boundary conditions results in formation of a dry surface layer (DSL), which is accompanied by a shift in the position of the latent heat sink from the surface to the subsurface. Detailed investigation of evaporative dynamics within this active near-surface zone has mostly been limited to modeling, with few measurements available to test models. Soil column studies were conducted to quantify nonisothermal subsurface evaporation profiles using a sensible heat balance (SHB) approach. Eleven-needle heat pulse probes were used to measure soil temperature and thermal property distributions at the millimeter scale in the near-surface soil. Depth-integrated SHB evaporation rates were compared with mass balance evaporation estimates under controlled laboratory conditions. The results show that the SHB method effectively measured total subsurface evaporation rates with only 0.01-0.03 mm h-1difference from mass balance estimates. The SHB approach also quantified millimeter-scale nonisothermal subsurface evaporation profiles over a drying event, which has not been previously possible. Thickness of the DSL was also examined using measured soil thermal conductivity distributions near the drying surface. Estimates of the DSL thickness were consistent with observed evaporation profile distributions from SHB. Estimated thickness of the DSL was further used to compute diffusive vapor flux. The diffusive vapor flux also closely matched both mass balance evaporation rates and subsurface evaporation rates estimated from SHB.

  17. Process of salt crystallization and strontium behaviour during evaporation of iodine-bromine production sewages

    To develop the rational technology of preparing strontium salts of industrial waters of South-West Turkmenistan under laboratory conditions, a process of solar evaporation of waste waters of Cheleken chemical plant and initial brine of Nebit-Dag iodine plant, is modelled. The evaporation process is carried out in a crystallizer with the periodic mixing of brine and at the temperature of 608-613 K. As brine concentrates, the solid phase is separated from the liquid one; the material balance of the evaporation process is calculated. Strontium content is found with the method of atomic absorption spectrometry. The results of investigations have shown that halite crystallizes along the whole way of figural point motion of Nebit-Dag plant brine. When waste water which contains 10 times sulfate ion more evaporates plaster is first solid phase. In the process of brine evaporation of iodobromic production, the following order of salt isolation is established: plaster, halite, tachhydrite, calcium chloride. As the brine evaporates, concentration in the liquid phase takes place. The increase in the concentration degree of Cheleken brine brings about the decrease of strontium /calcium ratio from 31.5 to 11.2

  18. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-11-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems.

  19. DESALINATION AND DEMINERALIZATION WITH SOLAR EVAPORATION ARRAY (SEA)

    Over the last year, we produced a hand-made SEA unit to test the feasibility of our initial research. Initial results encouraged us to produce a unit that would closely resemble a deployable, mass-produced SEA unit. This required full-sized industrial plastic molds and thermof...

  20. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Jie Zhang; Bo Long; Shuying Cheng; Weibo Zhang

    2013-01-01

    Copper zinc tin sulfur (CZTS) thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1), appropriate band gap (~1.5 eV), and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS). In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT) precursors were deposited by thermal evaporation and then s...

  1. Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations

    Ukwatta, T N; Parke, W C; Dhuga, K S; Eskandarian, A; Gehrels, N; Maximon, L; Morris, D C

    2009-01-01

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.

  2. Global water cycle and solar activity variations

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  3. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates

    Highlights: • Experimental performance of evaporative cooling in humid climate is investigated. • 5 working modes are studied in the greenhouse. • Vertical and horizontal temperature and relative humidity variations are analysed. • Indoor temperature can be kept in required level by proper working modes. - Abstract: To solve the overheating problem caused by the solar radiation and to keep the indoor temperature and humidity at a proper level for plants or crops, cooling technologies play vital role in greenhouse industry, and among which evaporative cooling is one of the most commonly-used methods. However, the main challenge of the evaporative cooling is its suitability to local climatic and agronomic condition. In this study, the performance of evaporative cooling pads was investigated experimentally in a 2304-m2 glass multi-span greenhouse in Shanghai in the southeast of China. Temperature and humidity distributions were measured and reported for different working modes, including the use of evaporative cooling alone and the use of evaporative cooling with shading or ventilation. These experiments were conducted in humid subtropical climates where were considered unfavourable for evaporative cooling pad systems. Quantified analyses from the energy perspective are also made based on the experimental results and the evaporative cooling fan–pad system is demonstrated to be an effective option for greenhouse cooling even in the humid climate. Suggestions and possible solutions for further improving the performance of the system are proposed. The results of this work will be useful for the optimisation of the energy management of greenhouses in humid climates and for the validation of the mathematical model in future work

  4. 242-A evaporator safety analysis report

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  5. 242-A evaporator safety analysis report

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  6. WTP Pilot-Scale Evaporation Tests

    This report documents the design, assembly, and operation of a Pilot-Scale Evaporator built and operated by SRTC in support of Waste Treatment Plant (WTP) Project at the DOE's Hanford Site. The WTP employs three identical evaporators, two for the Waste Feed and one for the Treated LAW. The Pilot-Scale Evaporator was designed to test simulants for both of these waste streams. The Pilot-Scale Evaporator is 1/76th scale in terms of evaporation rates. The basic configuration of forced circulation vacuum evaporator was employed. A detailed scaling analysis was performed to preserve key operating parameters such as basic loop configuration, system vacuum, boiling temperature, recirculation rates, vertical distances between important hardware pieces, reboiler heat transfer characteristics, vapor flux, configuration of demisters and water spray rings. Three evaporation test campaigns were completed. The first evaporation run used water in order to shake down the system. The water runs were important in identifying a design flaw that inhibited mixing in the evaporator vessel, thus resulting in unstable boiling operation. As a result the loop configuration was modified and the remaining runs were completed successfully. Two simulant runs followed the water runs. Test 1: Simulated Ultrafiltration Recycles with HLW SBS, and Test 2: Treated AN102 with Envelop C LAW. Several liquid and offgas samples were drawn from the evaporator facility for regulatory and non-regulatory analyses. During Test 2, the feed and the concentrate were spiked with organics to determine organic partitioning. The decontamination factor (DF) for Test 1 was measured to be 110,000 (more than the expected value of 100,000). Dow Corning Q2-3183A antifoam agent was tested during both Tests 1 and 2. It was determined that 500 ppm of this antifoam agent was sufficient to control the foaminess to less than 5 per cent of the liquid height. The long-term testing (around 100 hours of operation) did not show any

  7. Light geodesics near an evaporating black hole

    Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch

    2015-10-16

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.

  8. Light geodesics near an evaporating black hole

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox

  9. Towards a rational definition of potential evaporation

    J.-P. Lhommel

    1997-01-01

    Full Text Available The concept of potential evaporation is defined on the basis of the following criteria: (i it must establish an upper limit to the evaporation process in a given environment (the term 'environment' including meteorological and surface conditions, and (ii this upper limit must be readily calculated from measured input data. It is shown that this upper limit is perfectly defined and is given by the Penman equation, applied with the corresponding meteorological data (incoming radiation and air characteristics measured at a reference height and the appropriate surface characteristics (albedo, roughness length, soil heat flux. Since each surface has its own potential evaporation, a function of its own surface characteristics, it is useful to define a reference potential evaporation as a short green grass completely shading the ground. Although the potential evaporation from a given surface is readily calculated from the Penman equation, its physical significance or interpretation is not so straightforward, because it represents only an idealized situation, not a real one. Potential evaporation is the evaporation from this surface, when saturated and extensive enough to obviate any effect of local advection, under the same meteorological conditions. Due to the feedback effects of evaporation on air characteristics, it does not represent the 'real' evaporation (i.e. the evaporation which could be physically observed in the real world from such an extensive saturated surface in these given meteorological conditions (if this saturated surface were substituted for an unsaturated one previously existing. From a rigorous standpoint, this calculated potential evaporation is not physically observable. Nevertheless, an approximate representation can be given by the evaporation from a limited saturated area, the dimension of which depends on the height of measurement of the air characteristics used as input in the Penman equation. If they are taken at a height

  10. On the evaporation of ammonium sulfate solution

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  11. Plasma Etching Improves Solar Cells

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  12. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam

  13. Lattice-Boltzmann simulations of droplet evaporation

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  14. Blackhole evaporation model without information loss

    Villegas, Kristian Hauser A

    2016-01-01

    A simple model of a blackhole evaporation without information loss is given. In this model, the blackhole is \\textit{not} in a specific mass eigenstate as it evaporates but rather, is in a superposition of various mass eigenstates and is entangled with the radiation. For astrophysical blackhole, the mass distribution is sharply peak about its average value with a vanishingly small standard deviation, which is consistent with our intuition of a classical object. It is then shown that as the blackhole evaporates, the evolution of the closed blackhole-radiation system is unitary. This is done by showing that the full density matrix satisfies Tr$\\rho^2=1$ at all times. Finally, it is shown that the entanglement entropy, after an initial increase, decreases and approaches zero. These show that this model of blackhole evaporation has no infromation loss.

  15. Evaporation reduction from tritiated water pools

    Spent-fuel storage and disassembly basins at heavy water reactor facilities have maximum allowable temperature and tritium activity levels to protect personnel from exposure to radiation from the tritiated water vapor emanating from these basins. Means of reducing this exposure by suppressing basin water evaporation through the use of monolayer films are presented. The effect of tritiated water on the performance of the monolayer film has been experimentally examined, and tritiated water does not detrimentally affect the film's ability to reduce evaporation. Large-scale light water experiments have demonstrated that an octadecanol monolayer can reduce evaporation by ∼50%. A method for applying and maintaining a monolayer film over large areas with complex surface geometries has been developed. The results demonstrate the feasibility of using octadecanol monolayers to suppress evaporation from tritiated water pools

  16. Denton E-beam Evaporator #1

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 1 This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag,...

  17. Denton E-beam Evaporator #2

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 2 This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al,...

  18. 300 Area solvent evaporator closure plan

    This document describes activities for the closure of a dangerous waste treatment tank facility, owned and operated by the US Department of Energy-Richland Operations Office (DOE-RL) and co-operated by the Westinghouse Hanford Company (Westinghouse Hanford). This tank treatment facility is the 300 Area Solvent Evaporator (300 ASE), which was located in the 300 Area of the Hanford Site from 1975 to 1986, and was managed for the DOE-RL by UNC Nuclear Industries, Incorporated. The 300 ASE evaporator unit was a modified load lugger (dumpster) in which solvent wastes were evaporated, and the adjacent 333 East Concrete Pad, where 55-gallon barrels of waste solvents were temporarily stored while awaiting liquid transfers into the evaporator. 26 refs., 14 figs., 6 tabs

  19. New Directions for Evaporative Cooling Systems.

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  20. Spacesuit Evaporator-Absorber-Radiator (SEAR) Project

    National Aeronautics and Space Administration — This project builds from the work of the first year of effort that successfully integrated the Spacesuit  Water Membrane Evaporator (SWME), developed by the...

  1. Evaporation-limited tropical temperatures as a constraint on climate sensitivity

    Studies of paleoclimate and modern observations indicate that evaporative effects limit thermal response in equatorial regions. We develop a latitude-resolved, steady-state energy balance model which incorporates the effect of an evaporative constraint on the variation of equatorial temperature with solar luminosity. For a diffusive model of surface heat transport the constraint requires the diffusion coefficient to vary with insolation. We find that the movement of the iceline with insolation is four times larger than in standard energy balance models with a constant thermal diffusion coefficient. This is a consequence of the global energy blanace which forces temperature changes to occur at high latitudes when they are evaporatively buffered at the equator. Nonlinear temperature-ice albedo feedback at high latitudes then amplifies the response leading to greater sensitivity in the vicnity of current climate

  2. Qubit Models of Black Hole Evaporation

    Avery, Steven G.

    2011-01-01

    Recently, several simple quantum mechanical toy models of black hole evaporation have appeared in the literature attempting to illuminate the black hole information paradox. We present a general class of models that is large enough to describe both unitary and nonunitary evaporation, and study a few specific examples to clarify some potential confusions regarding recent results. We also generalize Mathur's bound on small corrections to black hole dynamics. Conclusions are then drawn about the...

  3. Evaporation duct communication: Test plan, part 2

    Anderson, K. D.; Rogers, L. T.

    1991-11-01

    This document is a continuation and expansion of an earlier study that examines the feasibility of using the evaporation duct to support an alternative high-speed communication system for Navy applications. This Evaporation Duct Communication (EDCOM) experiment is a unique opportunity to evaluate another communication channel that can alleviate Navy ship-to-ship communication problems. Therefore, it is strongly recommended to proceed with this measurement program.

  4. Estimating evaporation from a wet grassland

    Gasca-Tucker, D. L.; Acreman, M. C.; Agnew, C. T.; Thompson, J R

    2007-01-01

    Wet grasslands are being restored across the UK and Europe to reinstate their high biodiversity following over 50 years of drainage and conversion to arable agriculture. The water balance of many wet grasslands is dominated by precipitation and evaporation and it is essential to quantify evaporation rates to understand the hydrological functioning of wetlands and the implications for water resources in catchments where wetlands are being restored. This paper considers data from direct measure...

  5. Evaporation of Boric Acid from Sea Water

    Gast, James A.; Thompson, Thomas G.

    2011-01-01

    Previous investigators have shown that the boron-chlorinity ratios of rain waters are many times greater than the boron-chlorinity ratio of sea water. The presence of boron in the atmosphere has been attributed to sea spray, volcanic activity, accumulation in dust, evaporation from plants, and industrial pollution. In this paper data are presented to demonstrate that boric acid in sea water has a vapor pressure at ordinary temperatures of the sea and, when sea water evaporates, boric acid occ...

  6. Rate control for electron gun evaporation

    Principles for obtaining high-quality rate control for electron gun evaporation are discussed. The design criteria for rate controllers are derived from this analysis. Results are presented which have been obtained with e-guns whose evaporation rate is controlled by a Wehnelt electrode or by sweeping of the electron beam. Further improvements of rate stability can be obtained by improved design of e-guns and power supplies

  7. High-Capacity Heat-Pipe Evaporator

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  8. Water repellency diminishes peatland evaporation after wildfire

    Kettridge, Nick; Lukenbach, Max; Hokanson, Kelly; Devito, Kevin; Hopkinson, Chris; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This promotes high water table positions at a landscape scale which limit the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  9. Treatment of liquid radioactive waste: Evaporation

    About 10.000 m3 of low active liquid waste (LLW) arise in the Nuclear Research Center Karlsruhe. Chemical contents of this liquid waste are generally not declared. Resulting from experiments carried out in the Center during the early sixties, the evaporator facility was built in 1968 for decontamination of LLW. The evaporators use vapor compression and concentrate recirculation in the evaporator sump by pumps. Since 1971 the medium active liquid waste (MLW) from the Karlsruhe Reprocessing Plant (WAK) was decontaminated in this evaporator facility, too. By this time the amount of low liquid waste (LLW) had been decontaminated without mentionable interruptions. Afterwards a lot of interruptions of operations occurred, mainly due to leakages of pumps, valves and pipes. There was also a very high radiation level for the operating personnel. As a consequence of this experience a new evaporator facility for decontamination of medium active liquid waste was built in 1974. This facility started operation in 1976. The evaporator has natural circulation and is heated by steam through a heat exchanger. (orig./RW)

  10. Sheet Membrane Spacesuit Water Membrane Evaporator

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  11. Evaporation of petroleum products from contaminated soils

    Bioremediation can remove petroleum products from soil that has been contaminated by leaking underground storage tanks, but abiotic processes such as evaporation can contribute significantly to the overall removal process. The mathematical model described in this paper was developed to predict the evaporation rate of volatile liquids from petroleum-contaminated sand. The model is based on simple concepts relating to molecular diffusion embodied in the theory underlying the estimation of binary diffusivities using measurements made with an Arnold diffusion cell. The model in its simplified form indicates that the rate of evaporation for a particular volatile liquid is proportional to the square root of the product of diffusivity and partial pressure divided by the molecular weight of the liquid. This in part explains why evaporative losses from sand are so much higher for gasoline than for diesel fuel. The model also shows that the time for evaporation is directly proportional to the square of the depth dried out and inversely proportional to the vapor pressure of the volatile liquid. The model was tested using gravimetric measurements of the evaporation of n-heptane, unleaded gasoline, and diesel fuel from sand under laboratory conditions

  12. Increasing the capacity of an evaporation unit

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed a basic technological project for an evaporation unit for detergent zeolite production at "Zeolite Mira", Mira, Italy. The evaporation unit was for a capacity of 15,000 t/h of evaporated water per hour from 26,000 t/h of 11 % NaOH solution.The gained product meets all quality regulation, as well as environmental regulations. The evaporation process is fully automatized, and the product has uniform quality. There is no waste material in detergent zeolite production, because all products with unsatisfactory quality are returned to the process. The production process can be controlled manually, which is necessary during start-up, and repairs. A fully closed cycle of filtrate was achieved by installing an evaporation unit. 11% NaOH solution is produced in detergent zeolite filtration, which is dangerous waste. It is evaporated to 26% NaOH solution and afterwards returned to the wet hydrate dissolution plant. In this way environmental protection is achieved, as well as a highly economical process.

  13. Evaporation of nanofluid droplets on hydrophilic surfaces

    The main objective of this study is to investigate the evaporation characteristics and wetting dynamics of nanofluid droplets on hydrophilic surfaces. The evaporation processes of Al2O3 nanofluid droplets are visualized for different liquid volumes and particle concentrations, and the in-situ measured total evaporation time, contact radius, and contact angle are presented by using a digital image analysis technique. In addition, the measurements are compared with the theoretical estimation of total evaporation time and the edge shrinking velocities are measured for examining the formation of nanoparticles strains. It is found that the measured initial contact angles decreases as the volume fraction of nanofluid increases, resulting in the decrease in the center-height of droplet, and the total evaporation time decreases with increase in the volume fraction of nanofluid. In particular, the rapid increase in the droplet edge shrinking velocity near a last stage of evaporation can be observed, and it would affect some inward movement of nanoparticles suspended in a base fluid.

  14. Microdroplet evaporation in closed digital microfluidic biochips

    In this paper, microdroplet evaporation in the closed digital microfluidic systems is studied for hydrophobic and hydrophilic surfaces. The contact angle and contact radius are measured by an enhanced automated polynomial fitting approach. It is observed that the contact angle for both hydrophobic and hydrophilic surfaces remains constant during the evaporation process. However, a higher evaporation rate is observed for hydrophilic droplets compared to the hydrophobic droplets. Since no contact line pinning is observed, first, an analytical model based on the uniform vapor mass flux along the liquid–vapor interface is proposed. Interestingly, it is observed that in the hydrophobic case, the analytical model gives a higher evaporation rate, whereas for the hydrophilic case, the analytical model gives a lower evaporation rate. The discrepancy between the results of the analytical modeling and the experimental values is hypothesized to be due the constant flux assumption. To verify the hypothesis, a finite volume-based numerical model is developed to find the local flux along the liquid–vapor interface. The numerical modeling results confirm that for hydrophilic droplets, the evaporation flux increases very close to the three-phase contact line. In the case of the hydrophobic droplets, on the other hand, the flux decreases close to the contact line due to vapor saturation; as a result the uniform flux assumption overestimates the mass loss. (paper)

  15. Droplet evaporation on a soluble substrate

    Mailleur, Alexandra; Pirat, Christophe; Colombani, Jean; CNES Collaboration

    2015-11-01

    Stains left by evaporated droplets are ubiquitous in everyday life as well as in industrial processes. Whatever the composition of the evaporating liquid (colloidal suspensions, biological fluids...), the stains are mostly constituted by a deposit at the periphery of the dried drop, similar to a coffee stain (Deegan, 1997). All these studies have been carried with non-reacting solids. In this presentation, we focus on the behavior of a pure-water droplet evaporating on a soluble substrate which is more complex, since three phenomena are strongly interacting: the dissolution of the substrate, the diffusion/convection of the dissolved species into the drop and the evaporation of the liquid. NaCl and KCl single crystals have been chosen for this experimental study as they are fast-dissolving solids. We have observed that the dissolution induces a pinning of the triple line from the beginning of the evaporation, leading to a decrease of the contact angle in time. At the end of the evaporation, a peripheral deposit is always formed, proof of an outward flow inside the drop (coffee-ring effect). The authors would like to thank the CNES for the financial support.

  16. Evaporation Heat Transfer of Ammonia and Pressure Drop of Warm Water for Plate Type Evaporator

    Kushibe, Mitsuteru; Lkegami, Yasuyuki; Monde, Masanori; Uehara, Haruo

    The performance test of three types of plate type evaporators for spring thermal energy conversion and ocean thermal energy conversion carried out. Ammonia is utilized as working fluid and warm water is utilized as heat source. An empirical correlation is proposed in order to predict the mean evaporation heat transfer coefficient of ammonia and heat transfer coefficient of warm water for plate type evaporators. The mean heat transfer coefficient and friction factor of warm water were compared with other researches.

  17. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit for spatial resolution

  18. Primordial Black Holes: Observational characteristics of the final evaporation

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.; MacGibbon, J. H.; Marinelli, S. S.; Yapici, T.; Tollefson, K.

    2016-07-01

    Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. The implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5-10 TeV range.

  19. Modeling Evaporative Upflows Through a Flux Tube of Nonconstant Area

    Unverferth, John E.; Longcope, Dana

    2016-05-01

    Chromospheric evaporation is a long studied part of solar flares. Spectroscopic observations of flares typically show subsonic upflows. This contrasts with simulations which consistently predict supersonic evaporation flows. One possible explanation is that the actual flows occur though flux tubes which expand from confined photospheric sources to volume-filling coronal field. Very few flare simulations to date have accounted for this geometry, and run instead with flare loops of uniform cross section. It is well known that transonic flows are dramatically affected by their geoemetry, and can exhibit shocks under certain circumstances.To investigate this we created a simple model of the canopy of magnetic field. This exhibited the expected expansion but also showed some cases of over-expansion followed by constriction. The flow through those flux tubes will encounter a kind of chamber. We then used a one-dimensional isothermal hydrodynamics to model the flow of plasma through such a chamber. According to this simulation, there exists a set of inflow parameters that will generate a standing shock inside the chamber. This solution results in a sonic outflow from a supersonic inflow.

  20. A regional perspective on trends in continental evaporation

    Teuling, R.; Hirschi, M.; Ohmura, A.; Wild, M.; Seneviratne, S. I.

    2009-04-01

    Climate models suggest that enhanced greenhouse gas concentrations and aerosols have major impacts on the land energy and water cycles, and in particular on evapotranspiration (ET). Here we analyze how the main external drivers of ET (incident solar radiation and precipitation) vary regionally, using recent data from a eddy-covariance flux tower network (FLUXNET) and a multi-model re-analysis (GSWP-2). Trends in radiation (global ``dimming'' and ``brightening'') are expected to impact ET only in regions where ET correlates with radiation. In central Europe this correlation is particularly strong, and trends derived from weighing lysimeters and river-basin water budgets follow trends in radiation. In central North America the correlation is weak, and trends in precipitation rather than radiation explain trends in ET. Our results reconcile previous hypotheses by demonstrating the strongly regional and temporal differentiation of trends in evaporation.

  1. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry

    Highlights: • Electrochemical treatment of evaporated residue of soak liquor (ERSL) generated in Tannery. • Copper coating on electrode surface and horizontal mounting of electrodes for ERSL treatment. • Electrochemical oxidation of organic pollutants under high saline condition. • The treated solution may be evaporated to dryness to get NaCl salt for hide/skin preservation. -- Abstract: The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm−2 was 0.41 kWh m−3 for the removal of COD and 2.57 kWh m−3 for the removal of TKN

  2. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry

    Boopathy, R.; Sekaran, G., E-mail: ganesansekaran@gmail.com

    2013-09-15

    Highlights: • Electrochemical treatment of evaporated residue of soak liquor (ERSL) generated in Tannery. • Copper coating on electrode surface and horizontal mounting of electrodes for ERSL treatment. • Electrochemical oxidation of organic pollutants under high saline condition. • The treated solution may be evaporated to dryness to get NaCl salt for hide/skin preservation. -- Abstract: The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (k{sub m}) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm{sup −2} was 0.41 kWh m{sup −3} for the removal of COD and 2.57 kWh m{sup −3} for the removal of TKN.

  3. Changing Evaporative and ET Demands in the Lower Colorado River Basin Under Different Climate Scenarios

    Bunk, D. A.; Piechota, T. C.

    2011-12-01

    Observed and projected trends in free-water evaporation and evapotranspiration (ET) are examined to improve water demand forecasting for use in modeling of lower Colorado River system reservoir operations. While most research has focused on the impacts of climate change and climate variability on water supply, the impacts on water demand under changing climate conditions have not been adequately addressed (NRC, 2007 and Reclamation, 2009). Increases in temperatures and changes in wind patterns are expected to increase evaporative demands (Bates and others, 2008), potentially increasing free-water evaporation and ET from riparian vegetation; increasing infiltration rates; altering crop patterns; and changing the temporal and spatial distribution of water deliveries through agricultural-urban water transfers. This study uses observations and projections under different climate scenarios of hydroclimatic variables, such as temperature, wind, and precipitation, to analyze their impacts on free-water evaporation and riparian ET in the lower Colorado River basin. The projected changes in evaporative and ET demands may then accessed to determine their impacts on the reliability of water supplies and reservoir operations in the Colorado River basin under changing climate conditions. Finally, a discussion on the uncertainties in estimating key parameters, such as solar radiation, mean daily dewpoint, and atmospheric resistance, given limitations in the hydroclimatic dataset, will also be provided.

  4. Evaporative water loss from welded tuff

    Welded tuff is one of the many candidate rocks presently being considered as a host medium for the disposal of radioactive waste. In the case where the disposal site lies above the water table, the host rock will in general be only partially saturated. This condition leads to a number of mass transfer processes of interest, including evaporative drying, two-phase water flow due to pressure gradients, capillary movement, plus others. Although these processes have all been known about for decades, it is not clear at this time what the relative importance of each is with regard to geologic media in a waste disposal environment. In particular, there seems to be no data available for tuff that would allow an investigator to sort out mechanisms. This work is intended to be a start in that direction. This paper reports the measurement of water loss rate for welded tuff at various temperatures due to the action of evaporative drying. The initial saturation was unknown, but the average initial water content was found to be 7% by weight. The resulting data show that the water loss rate declines monotonically with time at a given temperature and increases with increasing temperature as expected. Somewhat surprising, however, is the fact that over 90% of the water from a sample was lost by evaporation at room temperature within 72 hours. All the water loss data, including that taken at temperatures as high as 1500C, are explained to within a factor of two by a simple evaporation front model. The latter assumes the water is lost by the molecular diffusion of water vapor from a receding evaporation front. The motion of the evaporation front seems to depend on mass balance rather than energy balance. Capillary forces and the resulting liquid diffusion are evidently not strong enough to wash out the evaporation front, since the front model seems to fit the data well

  5. Treated LAW Feed Evaporation: Physical and Solubility Determination (U)

    Evaporation is employed in several places in the Waste Treatment Plant pretreatment process to minimize the volume of waste that must be treated in down-stream vitrification processes. Evaporation is the first unit process in pretreatment (Waste Feed Evaporators), applied before LAW vitrification (Treated Feed Evaporator), and concentrates ion exchange eluate (Cs Eluate Evaporator) prior to HLW vitrification. The goal of the Treated Feed Evaporation process is removal of the maximum water content without producing additional insoluble solids. Prior testing of evaporation systems for process feed was completed to support compliance with regulatory permits and to prepare a model of the evaporation system. These tests also indicated a marked tendency for foaming in the WTP evaporators. To date, evaporation testing and modeling have focused on the Treated feed and Cs eluate evaporation systems. This has been the first work performed that investigates evaporation of secondary-waste recycle streams in the Treated LAW Feed Evaporator. Secondary-waste recycles from the LAW off- gas scrubbing system have been the major contributors to the overall Treated Feed Evaporator recycle volume. Experience from Savannah River Site operations suggests that the introduction of silica- laden recycles to an evaporator along with high-sodium treated LAW can significantly increase the likelihood of forming sodium-alumina-silicate precipitates upon concentration. Furthermore, there is considerable interest on the part of the WTP project to evaluate the potential of projected evaporator feed and concentrate blends to produce sodium aluminosilicate precipitates

  6. FIELD EVAPORATION OF IRON AND NIOBIUM IN NEON AND HYDROGEN

    Wada, M; Akaiwa, N.; Irumata, S.; Mori, T.

    1986-01-01

    Field evaporation of iron and niobium in neon and in hydrogen was examined between 20 K and 200 K with an FIM. From the temperature dependence of the evaporation field and the field dependence of the evaporation rate, the activation energy for the evaporation was estimated and the effect of hydrogen was discussed.

  7. Modeling in TRNSYS of a single effect evaporation system powered by a Rankine cycle

    Casimiro, Sergio; Ioakimidis, C.; Mendes, J. Farinha; Giestas, Margarida Canedo

    2012-01-01

    The paper presents an analysis of a Single Effect Evaporation (SEE) system as a pre-study to the feasibility of concentrated solar power plants (CSP) powering desalination units for cogeneration of water and electricity. An algorithm to model a SEE system in steady-state operation was made and is described in this work. This algorithm was implemented in TRNSYS environment, and a simple analysis was conducted of a SEE system powered by a Rankine cycle used in CSP plants.

  8. Characterisation of CdO thin films deposited by activated reactive evaporation

    Ramakrishna Reddy, K. T.; Sravani, C.; Miles, R. W.

    1998-02-01

    The paper describes the preparation of cadmium oxide thin films produced by "activated reactive evaporation" onto heated glass substrates. The structural, electrical and optical properties of the deposited films were investigated and the effect of substrate temperature on the different physical properties of the films investigated. Highly conducting, polycrystalline CdO films with good transmittances were prepared by controlling the deposition temperature. These layers can be used to produce CdO/CdTe solar cells with efficiencies > 7%.

  9. KEPLER PLANETS: A TALE OF EVAPORATION

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R⊕. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M⊕ and the

  10. Black hole evaporation as a Cosmic Censor

    Düztaş, Koray

    2015-01-01

    In a recent work we have shown that it is possible to overspin a nearly extremal Kerr black hole by using integer spin test fields at a frequency slightly above the superradiance limit. In this work we incorporate the quantum effect of evaporation into the problem. We consider a nearly extremal evaporating black hole interacting with challenging test fields. Evaporation refers to either Hawking radiation or the Zeldovich-Unruh effect, which agree in the limit the surface gravity (temperature) tending to zero. We note that evaporation acts as a cosmic censor since it carries away the angular momentum of the black hole, proportionally more than its mass. The relevant amount of angular momentum carried away depends on the initial mass of the black hole and the period of interaction with the test field. We evaluate the efficiency of evaporation to prevent overspinning of black holes of different masses, against the maximum effect due to challenging test fields. We make an order of magnitude estimate to show that ...

  11. Solar air-conditioning. Proceedings

    NONE

    2009-07-01

    Within the 3rd International Conference on solar air-conditioning in Palermo (Italy) at 30th September to 2nd October, 2009 the following lectures were held: (1) Removal of non-technological barriers to solar cooling technology across Southern European islands (Stefano Rugginenti); (2) The added economic and environmental value of solar thermal systems in microgrids with combined heat and power (Chris Marney); (3) Australian solar cooling interest group (Paul Kohlenbach); (4) Designing of a technology roadmap for solar assisted air conditioning in Austria (Hilbert Focke); (5) Solar cooling in the new context of renewable policies at European level (Raffaele Piria); (6) Prototype of a solar driven steam jet ejector chiller (Clemens Pollerberg); (7) New integrated solar air conditioning system (Joan Carlos Bruno); (8) Primary energy optimised operation of solar driven desiccant evaporative cooling systems through innovative control strategies; (9) Green chiller association (Uli Jakob); (10) Climate Well {sup registered} (Olof Hallstrom); (11) Low capacity absorption chillers for solar cooling applications (Gregor Weidner); (12) Solar cooling in residential, small scale commercial and industrial applications with adsorption technology (Walter Mittelbach); (13) French solar heating and cooling development programme based on energy performance (Daniel Mugnier); (14) Mirrox fresnel process heat collectors for industrial applications and solar cooling (Christian Zahler); (15) Modelling and analyzing solar cooling systems in polysun (Seyen Hossein Rezaei); (16) Solar cooling application in Valle Susa Italy (Sufia Jung); (17) Virtual case study on small solar cooling systems within the SolarCombi+Project (Bjoern Nienborg); (18) Design of solar cooling plants under uncertainty (Fernando Dominguez-Munoz); (19) Fast pre-design of systems using solar thermally driven chillers (Hans-Martin Henning); (20) Design of a high fraction solar heating and cooling plant in southern

  12. Pressure-Driven Evaporative Cooling in Atom Guides

    Olson, Spencer E.; Raithel, Georg; Andrew J. Christlieb

    2014-01-01

    We study steady-state evaporation in an atom guide via Monte Carlo simulations. The evaporation surface follows a specific profile as a function of longitudinal guide location. We demonstrate that the choice of evaporation profile significantly impacts the performance of the evaporation. Our simulations also demonstrate a significant performance boost in the evaporation when using a longitudinally compressed guide. We show that for a purely pressure-driven atom beam, it should be possible to ...

  13. Liquid pool evaporation study after industrial tank loss of containment

    Forestier, Serge

    2011-01-01

    This work belongs to a research project between CEA and ARMINE (LGEI center/ Ecole des Mines d’Alès). It aims at increasing comprehension of physical mechanism generating when a liquid pool (either flammable or toxic parked under atmospheric pressure) evaporates after loss of containment. An experimental design is realized in order to express some characteristics of evaporation phenomena (initial evaporation rate, steady evaporation rate and duration of unsteady evaporation rate) as a functio...

  14. Role of solar radiation factor in evapotranspiration

    The elaboration is comparative study of influence of total solar radiation and its components: diffuse and direct, against a background of other evaporating factors, on evapotranspiration of chosen corns, grass and root cultures. It verifies 3 basic hypothesis. The evaporation rank of solar radiation is essentially differential in particular growing phases of plant. Together with growth of vegetable culture evaporating significance of total radiation components changes in radical way. The decided factor becomes diffuse radiation. The full look-out of solar radiation role in evapotranspiration is possible only by a supplement of a short-term analysis, a mean- and a long-term perspective. The essay presents climatic model of evapotranspiration (ETR)

  15. Numerical analysis of black hole evaporation

    Black hole formation and/or evaporation in two-dimensional dilaton gravity can be described, in the limit where the number N of matter fields becomes large, by a set of second-order partial differential equations. In this paper we solve these equations numerically. It is shown that, contrary to some previous suggestions, black holes evaporate completely a finite time after formation. A boundary condition is required to evolve the system beyond the naked singularity at the evaporation end point. It is argued that this may be naturally chosen so as to restore the system to the vacuum. The analysis also applies to the low-energy scattering of S-wave fermions by four-dimensional extremal, magnetic, dilatonic black holes

  16. Evaporation of two dimensional black holes

    Hawking, Stephen William

    1992-01-01

    Callan, Giddings, Harvey and Strominger have proposed an interesting two dimensional model theory that allows one to consider black hole evaporation in the semi-classical approximation. They originally hoped the black hole would evaporate completely without a singularity. However, it has been shown that the semi-classical equations will give a singularity where the dilaton field reaches a certain critical value. Initially, it seems this singularity will be hidden inside a black hole. However, as the evaporation proceeds, the dilaton field on the horizon will approach the critical value but the temperature and rate of emission will remain finite. These results indicate either that there is a naked singularity, or (more likely) that the semi-classical approximation breaks down when the dilaton field approaches the critical value.

  17. Evaporative cooling of the dipolar radical OH

    Stuhl, Benjamin K; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-01-01

    Atomic physics was revolutionized by the development of forced evaporative cooling: it led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases, and ultracold optical lattice simulations of condensed matter phenomena. More recently, great progress has been made in the production of cold molecular gases, whose permanent electric dipole moment is expected to generate rich, novel, and controllable phases, dynamics, and chemistry in these ultracold systems. However, while many strides have been made in both direct cooling and cold-association techniques, evaporative cooling has not yet been achieved due to unfavorable elastic-to-inelastic ratios and impractically slow thermalization rates in the available trapped species. We now report the observation of microwave-forced evaporative cooling of hydroxyl (OH) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least an order of magnitude in tempera...

  18. An evaporation based digital microflow meter

    Nie, C.; Frijns, A. J. H.; Mandamparambil, R.; Zevenbergen, M. A. G.; den Toonder, J. M. J.

    2015-11-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes place. A proof-of-principle device of the digital flow meter was designed, fabricated, and tested. The device was built on foil-based technology. In the proof-of-principle experiments, good agreement was found between set flow rates and the evaporation rates estimated from reading the number of wetted pore structures. The measurement range of the digital flow meter can be tuned and extended in a straightforward manner by changing the pore structure of the device.

  19. Potential flow inside an evaporating cylindrical line.

    Petsi, A J; Burganos, V N

    2005-10-01

    An analytical solution to the problem of potential flow inside an evaporating line is obtained. The line is shaped as a half-cylinder lying on a substrate, and evaporates with either pinned or depinned contact lines. The solution is provided through the technique of separation of variables in the velocity potential and stream function formulations. Based on the flow field calculations, it is estimated that the coffee-stain phenomenon should be expected even for uniform evaporation flux throughout the cylindrical surface, provided that the contact lines remain anchored. A simple expression for the velocity potential is also suggested, which reproduces the local velocity vector with excellent accuracy. The vertically averaged velocity is calculated also for other contact line values, revealing for any value an outward liquid flow for pinned lines as opposed to inward flow for depinned lines. PMID:16383581

  20. CFD analysis of evaporation cooling experimental tests

    Falling film evaporation cooling is investigated by a CFD (computational fluid dynamics) code. The experimental activity, carried out at the University of Pisa using the EFFE facility, is aimed to contribute to the understanding of the heat and mass transfer mechanisms involved in cooling of a metallic wall by evaporation of falling water films in a countercurrent air flow. This problem is relevant for innovative nuclear reactor containment. The mathematical model, the governing equations and the boundary conditions implemented in the code are briefly described; a detailed description of the method adopted to account for mass transfer and the presence of the film follows. Then, the calculated results are analysed and compared with experimental data, highlighting the improvement in the cooling capabilities obtained owing to evaporation with respect to the case of pure convection. (authors)

  1. Structuring of polymer solutions upon solvent evaporation

    Schaefer, C.; van der Schoot, P.; Michels, J. J.

    2015-02-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench involving immiscible blends, the spinodal instability initially develops slowly and the associated length scale is not time invariant but decreases with time as t-1 /2. After a time lag, phase separation accelerates. Time lag and characteristic length exhibit power-law behavior as a function of the evaporation rate with exponents of -2 /3 and -1 /6 . Interestingly, at later stages the spinodal structure disappears completely while a second length scale develops. The associated structure coarsens but does not follow the usual Lifshitz-Slyozov-Wagner kinetics.

  2. CFD analysis of evaporation cooling experimental tests

    Ambrosini, W.; Forgione, N.; Mazzini, D.; Oriolo, F. [Pisa Univ., DIMNP (Italy); He, S. [British Energy Generation Ltd, Barnwood Gloucester (United Kingdom)

    2001-07-01

    Falling film evaporation cooling is investigated by a CFD (computational fluid dynamics) code. The experimental activity, carried out at the University of Pisa using the EFFE facility, is aimed to contribute to the understanding of the heat and mass transfer mechanisms involved in cooling of a metallic wall by evaporation of falling water films in a countercurrent air flow. This problem is relevant for innovative nuclear reactor containment. The mathematical model, the governing equations and the boundary conditions implemented in the code are briefly described; a detailed description of the method adopted to account for mass transfer and the presence of the film follows. Then, the calculated results are analysed and compared with experimental data, highlighting the improvement in the cooling capabilities obtained owing to evaporation with respect to the case of pure convection. (authors)

  3. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Zhiyong Yang; Li Zhu; Yiping Wang

    2011-01-01

    A solar assisted heat pump (SAHP) system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement resu...

  4. Black hole evaporations and their cosmological consequences

    This chapter discusses the possibility that primordial black holes (PBH's) did in fact form, and reviews the possible cosmological consequences of their evaporations. Topics considered include the contribution to the photon background, PBH explosions today, the generation of electrons and positrons, the contribution to cosmic ray antiprotons, the effect on cosmological nucleosynthesis, and the generation of baryon-asymmetry. It is shown that there are a wide variety of ways in which PBH evaporations could have affected the history of the Universe and that there are several cosmological problems which they could resolve. Includes a diagram

  5. Semiclassical approach to black hole evaporation

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two-dimensional black hole models. The first is the original Callan-Giddings-Harvey-Strominger (CGHS) model, the second is another two-dimensional dilaton-gravity model, but with properties much closer to physics in the real, four-dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are found to agree qualitatively with the exactly solved modified CGHS models, namely, that the semiclassical approximation breaks down just before a naked singularity appears

  6. Evaporation of two-dimensional black holes

    An interesting two-dimensional model theory has been proposed that allows one to consider black-hole evaporation in the semiclassical approximation. The semiclassical equations will give a singularity where the dilaton field reaches a certain critical value. This singularity will be hidden behind a horizon. As the evaporation proceeds, the dilaton field on the horizon will approach the critical value but the temperature and rate of emission will remain finite. These results indicate either that there is a naked singularity, or (more likely) that the semiclassical approximation breaks down

  7. Formation and Evaporation of Charged Black Holes

    Sorkin, Evgeny; Piran, Tsvi

    2001-01-01

    We investigate the dynamical formation and evaporation of a spherically symmetric charged black hole. We study the self-consistent one loop order semiclassical back-reaction problem. To this end the mass-evaporation is modeled by an expectation value of the stress-energy tensor of a neutral massless scalar field, while the charge is not radiated away. We observe the formation of an initially non extremal black hole which tends toward the extremal black hole $M=Q$, emitting Hawking radiation. ...

  8. Black hole evaporation by thermal bath removal

    Cruz Muñoz, José Luis; Navarro Salas, José

    1996-01-01

    We study the evaporation process of 2D black holes in thermal equilibrium when the incoming radiation is turned off. Our analysis is based on two different classes of 2D dilaton gravity models which are exactly solvable in the semiclassical aproximation including back-reaction. We consider a one parameter family of models interpolating between the Russo-Susskind-Thorlacius and Bose-Parker-Peleg models. We find that the end-state geometry is the same as the one coming from an evaporating black...

  9. Solar Indices - Solar Corona

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. Solar Indices - Solar Flares

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  11. Solar Indices - Solar Irradiance

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  12. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    Yao, Lan; Restrepo, Oscar D; Windl, Wolfgang; Marquis, Emmanuelle A

    2015-01-01

    Accurate three dimensional reconstructions of atomic positions, and full quantification of the information contained in atom probe tomography data relies on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe tomography has remained qualitative at best. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This new model reproduces key features observed experimentally in terms of sequence of evaporation, desorption maps, and depth resolution, and provides insights into the physical limit for spatial resolution.

  13. THREE -PHASE CIRCULATING FLUIDIZED BED EVAPORATOR FOR WHEAT STRAW BLACK LIQUOR EVAPORATION

    Yuan-yuanJia

    2004-01-01

    A novel vapor-liquid-solid circulating fluidized bed evaporator, meaning for enhancing heat transfer and preventing fouling, is applied to wheat straw black liquor, which is the primary pollutant in China's papermaking industry. It is treated by alkali recovery, in which evaporation is a key process. The experimental results show that the vapor-liquid-solid three-phase boiling heat transfer coefficient is enhanced by 20%-40% than that of vapor-liquid two-phase boiling flow, also, the novel evaporator exhibits an excellent function of fouling prevention.

  14. THREE -PHASE CIRCULATING FLUIDIZED BED EVAPORATOR FOR WHEAT STRAW BLACK LIQUOR EVAPORATION

    Yuan-yuan Jia

    2004-01-01

    A novel vapor-liquid-solid circulating fluidized bed evaporator, meaning for enhancing heat transfer and preventing fouling, is applied to wheat straw black liquor, which is the primary pollutant in China′s papermaking industry. It is treated by alkali recovery,in which evaporation is a key process. The experimental results show that the vapor-liquid-solid three-phase boiling heat transfer coefficient is enhanced by 20% ~40% than that of vapor-liquid two-phase boiling flow, also, the novel evaporator exhibits an excellent function of fouling prevention.

  15. Is black-hole evaporation predictable

    If black-hole formation and evaporation can be described by a superscattering operator which is CPT invariant, then it can be described by an S matrix which maps pure initial states into pure final states. Thus black holes may be in principle no more unpredictable than other quantum phenomena

  16. Evaporation of charged black holes near extremality

    Fabbri, A; Navarro, D. J.; Navarro-Salas, J.

    2000-01-01

    The AdS_2\\timesS^2 geometry of near-extremal Reissner-Nordstrom black holes can be described by an effective solvable model which allows to follow analytically the evaporation process including the backreaction. We find that an infinite amount of time is required for the black hole to decay to extremality.

  17. VOLATILE COMPONENT RECOVERY FROM SULFITE EVAPORATOR CONDENSATE

    This study is on the operation and modification of a demonstration unit to remove sulfur dioxide, methanol, furfural, and acetic acid from its sulfite evaporator condensate. This unit consisted of a steam stripper, vent tank SO2 recovery, activated carbon adsorption columns, and ...

  18. Soil water evaporation and crop residues

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  19. BLEVE blast by expansion-controlled evaporation

    Berg, A.C. van den; Voort, M.M. van der; Weerheijm, J.; Versloot, N.H.A.

    2006-01-01

    This report presents a new method to calculate the blast effects originating from an exploding vessel of liquefied gas. Adequate blast calculation requires full knowledge of the blast source characteristics, that is, the release and subsequent evaporation rate of the flashing liquid. Because the con

  20. Evaporation from an ionic liquid emulsion.

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion. PMID:17207810

  1. Experiments on Evaporative Emissions in Ventilated Rooms

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per;

    In many new buildings the indoor air quality is affected by emissions of volatile organic compounds (VOCs) from building materials. The emission process may be controlled either by diffusion inside the material or evaporation from the surface but it always involves mass transfer across the bounda...

  2. Localized Rayleigh Instability in Evaporation Fronts

    Diamant, Haim; Agam, Oded

    2009-01-01

    A qualitatively different manifestation of the Rayleigh instability is demonstrated, where, instead of the usual extended undulations and breakup of the liquid into many droplets, the instability is localized, leading to an isolated narrowing of the liquid filament. The localized instability, caused by a nonuniform curvature of the liquid domain, plays a key role in the evaporation of thin liquid films off solid surfaces.

  3. 95-1 Campaign evaporator boildown results

    Miller, G.L.

    1994-10-10

    The Process Chemistry Laboratories were requested to support the 242-A Evaporator restart as part of the overall 222-S laboratory effort. The net purpose of these studies is to determine the characteristics of double-shell tank materials as they are processed in the evaporator. The results for the boildown study (which includes pressure and temperature versus % waste volume reduction and density of final boildown residue) supporting the 242-A Evaporator restart are reported below. The boildown was performed in a vacuum distillation apparatus with an adjustable vacuum limiting manometer and an isolatable collection graduated cylinder. The boildown was conducted over a seven hour period. The evaporation was done at 60 torr (to avoid excessive foaming and bumping of solution) for approximately half of the boildown, the pressure then being reduced to 40 torr when the reduction in solution volume allowed this to be done. Percent waste volume reduction was measured by observing the amount of condensate collected in a graduated cylinder. As the graduated cylinder became full, it was isolated from the rest of the system and the condensate removed. Pressure was set using an electronic manometer with a low pressure limiter set at the desired level. Temperature was measured using a J-type thermocouple. The apparatus was calibrated by observing the pressure versus temperature response of pure water, and comparing the values thus obtained to published values.

  4. Evaporation Controlled Emission in Ventilated Rooms

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near the...

  5. Coating a Sphere With Evaporated Metal

    Strayer, D. M.; Jackson, H. W.; Gatewood, J. R.

    1986-01-01

    In vacuum coating apparatus, metal evaporated onto sphere from small source located some distance away. Sphere held in path of metal vapor while rotated about axis that rocks back and forth. One tilting motion particularly easy to produce is sinusoidal rocking with frequency much lower than rotational frequency. Apparatus developed for coating single-crystal sapphire spheres with niobium.

  6. Vaidya spacetime as an evaporating black hole

    The energy-momentum tensor for an evaporating black hole modeled by the Vaidya metric is examined. It is shown that the energy flux from a naked singularity which is formed when a black hole disappears is divergent even when the mass M disappears with the condition dM/dv → 0 as M → 0 (v the usual advanced time). (author)

  7. Acid evaporation property in chemically amplified resists

    Hashimoto, Shuichi; Itani, Toshiro; Yoshino, Hiroshi; Yamana, Mitsuharu; Samoto, Norihiko; Kasama, Kunihiko

    1997-07-01

    The lithographic performance of a chemically amplified resist system very much depends on the photo-generated acid structure. In a previous paper, we reported the molecular structure dependence of two typical photo-generated acids (aromatic sulfonic acid and alkyl sulfonic acid) from the viewpoints of lithographic performance and acid characteristics such as acid generation efficiency, acid diffusion behavior and acid evaporation property. In this paper, we evaluate the effect of the remaining solvent in a resist film on the acid evaporation property. Four types of two-component chemically amplified positive KrF resists were prepared consisting of tert-butoxycarbonyl (t-BOC) protected polyhydroxystyrene and sulfonic acid derivative photo-acid generator (PAG). Here, a different combination of two types of PAGs [2,4-dimethylbenzenesulfonic acid (aromatic sulfonic acid) derivative PAG and cyclohexanesulfonic acid (alkyl sulfonic acid) derivative PAG] and two types of solvents (propylene glycol monomethyl ether acetate; PGMEA and ethyl lactate; EL) were evaluated. The aromatic sulfonic acid was able to evaporate easily during post exposure bake (PEB) treatment, but the alkyl sulfonic acid was not. The higher evaporation property of aromatic sulfonic acid might be due to the higher vapor pressure and the longer acid diffusion length. Furthermore, the amount of aromatic sulfonic acid in the PGMEA resist was reduced by more than that in the EL resist. The amount of acid loss also became smaller at a higher prebake temperature. The concentration of the remaining solvent in the resist film decreased with the increasing prebake temperature. We think that the acid evaporation property was affected by the remaining solvent in the resist, film; the large amount of remaining solvent promoted the acid diffusion and eventually accelerated the acid evaporation from the resist film surface in the PGMEA resist. In summary, the acid evaporation property depends on both the acid

  8. Sustainable desalination using solar energy

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m2 of evaporator area. With the addition of a photovoltaic panel area of 6 m2, the system could produce up to 12 L/day of freshwater per m2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  9. Tank 26F-2F Evaporator Study

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  10. Evaporation characteristics of ETBE-blended gasoline

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  11. Tank 26F-2F Evaporator Study

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water

  12. Sessile Drop Evaporation and Leidenfrost Phenomenon

    A. K. Mozumder

    2010-01-01

    Full Text Available Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot metallic surface was measured and compared with a proposed correlation as well. With the time temperature plot of these experimental data, the Leidenfrost phenomena had been elucidated. In the pool boiling curve for liquid, just after the transition boiling region and before the film boiling region, the heat transfer approaches its minimum value. The corresponding temperature of this minimum value was termed as the Leidenfrost temperature and the phenomenon is known as Leidenfrost phenomena. According to the experimental data, the Leidenfrost temperature was within a range of 150-200°C for all the experimental conditions. Results: This revealed that Leidenfrost temperature was independent of thermo-physical properties of solid and liquid. Sessile drop evaporation time was the maximum for water, then decreases gradually for Nacl solution, methanol and was the minimum for ethanol for a particular solid material. On the other hand, this time was the highest for copper and the lowest for mild steel for a specific liquid. Conclusion: The experimental data for the evaporation time fairly agree with the proposed correlation within a certain range. The collected time and temperature data may be used as a good data bank for the researchers.

  13. Evaporation modeling with multiple linear regression techniques– a review

    Parameshwar Sidramappa Shirgure

    2013-01-01

    Full Text Available Evaporation is influenced by number of agro-meteorological parameters and one of the integral components of the hydrological cycle and. Usually, estimates of evaporation are needed in a wide array of problems in agriculture, hydrology, agronomy, forestry and land resources planning, such as water balance computation, irrigation management, crop yield forecasting model, river flow forecasting, ecosystem modeling. Irrigation can substantially increase crop yields, but again the scheduling of the water application is usually based on evaporation estimates. Numerous investigators developed models for estimation of evaporation. The interrelated meteorological factors having a major influence on evaporation have been incorporated into various formulae for estimating evaporation. Unfortunately, reliable estimates of evaporation are extremely difficult to obtain because of complex interactions between the components of the land-plant-atmosphere system. In hot climate, the loss of water by evaporation from rivers, canals and open-water bodies is a vital factor as evaporation takes a significant portion of all water supplies. Even in humid areas, evaporation loss is significant, although the cumulative precipitation tends to mask it due to which it is ordinarily not recognized except during rainless period. Therefore, the need for reliable models for quantifying evaporation losses from increasingly scarce water resources is greater than ever before. Accurate estimation of evaporation is fundamental for effective management of water resources. The evaporation models using MLR techniques is discussed her in details.

  14. Analysis of liquid evaporation system containing uranium and others chemical elements according to laws and standards in force

    Liquid evaporation has been world-wide sanctioned in the nuclear industry as a volume reduction technique for laboratory effluents or rad wastes. This fast technique has showed efficiency for non volatile chemical elements concentration. The resulting mud is chemically stable, physically homogeneous and biologically inhert. It is common that low radiation level liquids, containing uranium undergo evaporation, although its quantity in the mud can be not the limiting factor for the final deposition. It often occurs that depending on liquids to be evaporated other chemical elements as flour or heavy metals could avoid the deposition of the mud in the environment. The proposed evaporator works with solar heating, although electric energy could be used, and allow to evaporate 50 L of liquids per day. Volume reduction factor can reach 95% and the construction cost is very low. In this work there are analyzed evaporator characteristics and the limiting values established by Brazilian laws and standards, for those elements that are present in the resulting mud. The aim is to justify why zero discharge is preferred instead the deposition of the concentrate in the environment. (author)

  15. Effects of NaF evaporation during low temperature Cu(In,Ga)Se{sub 2} growth

    Bissig, B., E-mail: benjamin.bissig@empa.ch; Reinhard, P.; Pianezzi, F.; Hagendorfer, H.; Nishiwaki, S.; Buecheler, S.; Tiwari, A.N.

    2015-05-01

    Co-evaporation of NaF during the 3{sup rd} stage of the low temperature Cu(In,Ga)Se{sub 2} multi-stage process is compared to post-deposition treatment (PDT) with NaF in view of their influence on the electronic and structural properties. In case of NaF co-evaporation, quantum efficiency losses in the near infrared region and thus lower short circuit current density cause a reduced efficiency compared to solar cells prepared with NaF PDT. The formation of a deep defect with activation energy of ~ 250 meV is measured by capacitance spectroscopy and can explain the deteriorated performance in such devices. In addition, NaF co-evaporation during the 3{sup rd} stage causes reduced grain size in the top part of Cu(In,Ga)Se{sub 2} and altered In, Ga, and Cu distribution. - Highlights: • NaF was co-evaporated in a low temperature CIGS process during and after the 3rd stage. • CIGS grains size is reduced in the top 300 nm when NaF is co-evaporated. • C-f measurements indicate deep defect formation when NaF is co-evaporated.

  16. THE USE OF POROUS CERAMICS FOR EVAPORATIVE AND EVAPORATIVE – VAPOR –COMPRESSION SYSTEMS

    Cheban D.N.

    2013-04-01

    Full Text Available The use of natural evaporative cooling is one of technical solutions of problem of energy efficiency in air conditioning systems. The use of evaporative cooling in the first combined cooling stage allows reducing the load on the condenser of the cooling machine due to reducing of the condensing temperature. This combination allows the use of this type of system in any climatic conditions, including regions with small water resources. Multi-porous ceramic structure is used in evaporative air coolers and water coolers in this case. The objective of this paper is to show advantages of the using of porous ceramic as a working attachment, and to show advantages of the proposed scheme of compression-evaporation systems in comparison with standard vapor compression systems. Experimental research proved the fact, that in the film mode cooling efficiency of air flow is between EA=0,6÷0,7 and is slightly dependent of water flow. For countries with hot and dry climate where reserves of water are limited, it is recommended to use cyclical regime with EA≈0,65 value, or to use channel regime with a value of EA≈0,55. This leads to considerable energy savings. It has been determined, that combined air conditioning system is completely closed on the consumption of water at the parameters of the outside air equal to tA =32ºC and XA>13g/kg (in system with direct evaporative cooling machine, and tA=32ºC and XA>12g/kg (in system with indirect evaporative cooling machine. With these parameters, the cost of water in evaporative cooling stage can be fully compensated by condensate from the evaporator chiller.

  17. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  18. The Roles of Tidal Evolution and Evaporative Mass Loss in the Origin of CoRoT-7 b

    Jackson, Brian; Miller, Neil; Barnes, Rory; Raymond, Sean N.; Fortney, Jonathan; Greenberg, Richard

    2010-01-01

    CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semi-major axis of 0.0172 AU, its origins may be unlike any rocky planet in our solar system. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tida...

  19. Mechanisms of solvent evaporation encapsulation processes: prediction of solvent evaporation rate.

    Wang, J; Schwendeman, S P

    1999-10-01

    The mechanism of organic solvent evaporation during microencapsulation and its role during microsphere hardening has been investigated. Evaporation and encapsulation studies were carried out in a jacketed beaker, filled with aqueous hardening solution, which was maintained at constant temperature and constant stirring rate in the turbulent regime. Evaporation of dissolved methylene chloride (MC), ethyl acetate (EA), and acetonitrile (ACN) was examined by the decline in organic solvent concentration in the hardening bath, which was monitored by gas chromatography. The evaporation from the bath followed first-order kinetics under dilute conditions (e.g., MC hardening bath, V(-1/4), and the product of kinematic viscosity and diffusion coefficient, nu(-5/12)D (2/3)), and (2) illustrating that at constant temperature, the tendency of the evaporation system to obey liquid-side transport control follows the same order of increasing Henry's law constant (i.e., MC > EA > ACN). To establish the relationship of evaporation with microsphere hardening, the decline in MC concentration was determined in both the continuous and dispersed polymer phases during microencapsulation. By applying a mass balance with respect to MC in the hardening bath, the cumulative hardening profile of the microspheres was accurately predicted from the interpolating functions of the kinetics of MC loss from the bath with and without polymer added. These results have potential use for microsphere formulation, design of encapsulation apparatus, and scale up of microsphere production. PMID:10514360

  20. Production of high-quality amorphous silicon films by evaporative silane surface decomposition

    High-quality hydrogenated amorphous silicon films (a-Si:H) have been produced by decomposition of low-pressure silane gas on a very hot surface with deposition on a nearby, typically 210 0C substrate. A high-temperature tungsten filament provides the surface for heterogeneous thermal decomposition of the low-pressure silane and subsequent evaporation of atomic silicon and hydrogen. These evaporated species (primarily) induce a-Si:H growth on nearby substrates which are temperature controlled using a novel substrate holder. The light and dark conductivities, optical band gap, deposition rates, and light-soaking effects of preliminary films are reported. The decomposition-evaporation process has been examined using a mass spectrometer to directly detect the decomposition rate and the evaporated radical species. Based on this data and other information, a simplified model for the deposition process is suggested. The excellent film quality and the attributes of the deposition process make this technique, which was originally suggested by Wiessman, viable for the fast rate, large-area deposition of a-Si:H for solar cells and other applications

  1. Evaporation of elongated droplets on chemically stripe-patterned surfaces

    Jansen, H.P.; Zandvliet, H.J.W.; Kooij, E.S.

    2015-01-01

    We investigate the evaporation of elongated droplets on chemically striped patterned surfaces. Variation of elongation is achieved by depositing droplets on surfaces with varying ratios of hydrophobic and hydrophilic stripe widths. Elongated droplets evaporate faster than more spherical droplets. Bo

  2. Case Studies of Heat Integration of Evaporation Systems

    2001-01-01

    In this paper, through two case studies, evaporation systems are considered in the context of overall process, and then are optimized to obtain energy-saving effect. The possible evaporation schemes are given when integrated with the background process and how to optimize the evaporator is shown. From the case studies, it can be seen that sometimes incomplete integration and heat pump evaporation are better than complete integration so should be considered as candidate retrofit schemes.

  3. Solar building

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  4. Formation and evaporation of nonsingular black holes.

    Hayward, Sean A

    2006-01-27

    Regular (nonsingular) space-times are given that describe the formation of a (locally defined) black hole from an initial vacuum region, its quiescence as a static region, and its subsequent evaporation to a vacuum region. The static region is Bardeen-like, supported by finite density and pressures, vanishing rapidly at large radius and behaving as a cosmological constant at small radius. The dynamic regions are Vaidya-like, with ingoing radiation of positive-energy flux during collapse and negative-energy flux during evaporation, the latter balanced by outgoing radiation of positive-energy flux and a surface pressure at a pair creation surface. The black hole consists of a compact space-time region of trapped surfaces, with inner and outer boundaries that join circularly as a single smooth trapping horizon. PMID:16486679

  5. Evaporation duct assessment from meteorological buoys

    Hitney, Herbert V.

    2002-07-01

    The evaporation duct over the sea is usually assessed using bulk meteorological measurements. This paper investigates the utility of meteorological buoys as a source for these bulk measurements and compares evaporation duct assessments using two buoys in southern California waters separated by 128 km. A simple radio propagation experiment at 2.4 GHz between one of the buoys and the coast on an 18.2 km path is described. Observed propagation loss from this experiment is compared to modeled loss based on the meteorological measurements at each buoy. The purpose of this paper is to investigate radio propagation effects using established and accepted methods already described in the literature. Accordingly, no discussion of atmospheric surface layer meteorology affecting radio propagation is given.

  6. Front instabilities in evaporatively dewetting nanofluids

    Vancea, I.; Thiele, U.; Pauliac-Vaujour, E.; Stannard, A.; Martin, C. P.; Blunt, M. O.; Moriarty, P. J.

    2008-10-01

    Various experimental settings that involve drying solutions or suspensions of nanoparticles—often called nanofluids—have recently been used to produce structured nanoparticle layers. In addition to the formation of polygonal networks and spinodal-like patterns, the occurrence of branched structures has been reported. After reviewing the experimental results we use a modified version of the Monte Carlo model first introduced by Rabani [Nature 426, 271 (2003)] to study structure formation in evaporating films of nanoparticle solutions for the case that all structuring is driven by the interplay of evaporating solvent and diffusing nanoparticles. After introducing the model and its general behavior we focus on receding dewetting fronts which are initially straight but develop a transverse fingering instability. We analyze the dependence of the characteristics of the resulting branching patterns on the driving effective chemical potential, the mobility and concentration of the nanoparticles, and the interaction strength between liquid and nanoparticles. This allows us to understand the underlying instability mechanism.

  7. Black hole evaporation rates without spacetime.

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem. PMID:21902381

  8. Thermoelectric Integrated Membrane Evaporation Subsystem operational improvements

    Dehner, G. F.; Winkler, H. E.; Reysa, R. P.

    1984-01-01

    A three-man preprototype Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) has been developed to provide high quality water recovery from waste fluids on extended duration space flights. In the most recent effort, a number of improvements have been made to simplify subsystem operation and increase performance. These modifications include changes to the hollow fiber membrane evaporator, the condensing section of the thermoelectric heat pump, and the electronic controller logic and display. This paper describes the results of the test program that was conducted to evaluate the implemented improvements. In addition, an advanced design concept is discussed that will provide lower electrical power consumption, greater water production capacity, lower weight, and a smaller package than the present subsystem configuration.

  9. Thermoelectric integrated membrane evaporation water recovery technology

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  10. Reactive evaporation of anomalous blue VO2

    Thin films of vanadium dioxide exhibit a thermally induced semiconductor-to-metal phase transition near 670 C. In most deposition conditions, the transition is accompanied by large changes in optical properties at infrared wavelengths, but with only slight visible contrast. Recently, reactive evaporation at high temperatures and in stringent process conditions of so-called blue VO2 has been reported [G. A. Nyberg and R. A. Buhrman, J. Vac. Sci. Technol. A 2, 301 (1984)]. These films exhibit a striking blue-to-red transition in transmitted light. In this paper, a new technique for thin-film growth of anomalous vanadium dioxide will be presented. The primary steps in the process are the reactive evaporation of vanadium oxide at ambient temperature followed by anneal in flowing oxygen. Optical and microstructural data for material deposited on sapphire and fused quartz substrates will be compared to standard vanadium oxide

  11. Photovoltaic structures using thermally evaporated SnS and CdS thin films

    Polycrystalline tin sulfide thin films were prepared by thermal evaporation technique. The films grown at substrate temperature of 300 °C had an orthorhombic crystal structure with strong preferred orientation along (111) plane. Electrical resistivity of the deposited films was about 32.5 Ω cm with a direct optical band gap of 1.33 eV. Carrier concentration and mobility of charge carriers estimated from the Hall measurement were found to be 6.24 × 1015 cm−3 and 30.7 cm2V−1 s−1 respectively. Heterojunction solar cells were fabricated in superstrate configuration using thermally evaporated SnS as an absorber layer and CdS, In:CdS as window layer. The resistivity of pure CdS thin film of a thickness of 320 nm was about 1–2 Ω cm and was reduced to 40 × 10−3 Ω cm upon indium doping. The fabricated solar cells were characterized using solar simulator. The solar cells with indium doped CdS window layer showed improved performance as compared to pure CdS window layer. The best device had a conversion efficiency of 0.4% and a fill factor of 33.5%. - Highlights: • Solar cells fabricated using SnS absorber and CdS, indium-doped CdS window layer • Resistivity of CdS film is 1–2 Ω cm and reduced to 40 × 10−3 Ω cm by In doping (1.5 at.%). • Optical band gap increased from 2.42 eV for pure CdS to 2.51 eV for In:CdS thin films. • Efficiency increased from 0.31% to 0.4% for solar cells with In:CdS window layer

  12. Concentrating radioactive liquid with infra-red-heated evaporator

    The phenomena of Infra-Red-Heated Heater evaporation liquid and the test results of concentrating evaporating remain (salt content, without radioactivity) are presented. The advantages and prospects with Infra-Red-Heated evaporator system to treat radioactive liquid are also discussed

  13. Assessment of evaporative water loss from Dutch cities

    Jacobs, C.M.J.; Elbers, J.A.; Brolsma, R.; Hartogensis, O.K.; Moors, E.J.; Rodríguez-CarreteroMárquez, M.T.; Hove, van B.

    2015-01-01

    Reliable estimates of evaporative water loss are required to assess the urban water budget in support of division of water resources among various needs, including heat mitigation measures in cities relying on evaporative cooling. We report on urban evaporative water loss from Arnhem and Rotterdam i

  14. An Introduction to Black Hole Evaporation

    Traschen, Jennie

    2000-01-01

    Classical black holes are defined by the property that things can go in, but don't come out. However, Stephen Hawking calculated that black holes actually radiate quantum mechanical particles. The two important ingredients that result in back hole evaporation are (1) the spacetime geometry, in particular the black hole horizon, and (2) the fact that the notion of a "particle" is not an invariant concept in quantum field theory. These notes contain a step-by-step presentation of Hawking's calc...

  15. Evaporation of two-dimensional black holes

    We present a detailed analysis of results from a new study of the quantum evaporation of Callan-Giddings-Harvey-Strominger black holes within the mean-field approximation. This semiclassical theory incorporates backreaction. Our analytical and numerical calculations show that, while some of the assumptions underlying the standard evaporation paradigm are borne out, several are not. One of the anticipated properties we confirm is that the semiclassical space-time is asymptotically flat at right future null infinity IR+ yet incomplete in the sense that null observers reach a future Cauchy horizon in finite affine time. Unexpected behavior includes that the Bondi mass traditionally used in the literature can become negative even when the area of the horizon is macroscopic; an improved Bondi mass remains positive until the end of semiclassical evaporation, yet the final value can be arbitrarily large relative to the Planck mass; and the flux of the quantum radiation at IR+ is nonthermal even when the horizon area is large compared to the Planck scale. Furthermore, if the black hole is initially macroscopic, the evaporation process exhibits remarkable universal properties. Although the literature on Callan-Giddings-Harvey-Strominger black holes is quite rich, these features had escaped previous analyses, in part because of the lack of required numerical precision and in part due to misinterpretation of certain properties and symmetries of the model. Finally, our results provide support for the full quantum scenario recently developed by Ashtekar, Taveras, and Varadarajan and also offer a number of interesting problems to the mathematical relativity and geometric analysis communities.

  16. Quantum Evaporation of Liouville Black Holes

    Mann, R. B.

    1993-01-01

    The classical field equations of a Liouville field coupled to gravity in two spacetime dimensions are shown to have black hole solutions. Exact solutions are also obtained when quantum corrections due to back reaction effects are included, modifying both the ADM mass and the black hole entropy. The thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process. A scenario for the fina...

  17. Evaporation Time of Horava Gravity Black Holes

    Recently it has been a lot of interest in the theory proposed by Horava because is a remormalizable theory of gravity and may be a candidate for the UV completion of Einstein gravity. In the present work we study thermodynamical properties of black hole type solutions in this setup. In particular we are able to obtain times of evaporation for black hole solution in this formalism.

  18. Evaporation Analysis of Sintered Wick Microstructures

    Bodla, K. K.; Murthy, J. Y.; Garimella, S V

    2013-01-01

    Heat pipes offer passive transport of heat over long distances without incurring a significant drop in temperature. Topological and microstructural details of the wick material embedded in a heat pipe help determine its thermal performance. A good understanding of pore-scale transport phenomena is crucial to enhancing heat pipe performance. In this study, pore-scale analysis of thin-film evaporation through sintered copper wicks is performed. X-ray microtomography is employed to generate geom...

  19. Evaporation analysis in sintered wick microstructures

    Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.

    2013-01-01

    Heat pipes offer passive transport of heat over long distances without incurring a significant drop in temperature. Topological and microstructural details of the wick material embedded in a heat pipe help determine its thermal performance. A good understanding of pore-scale transport phenomena is crucial to enhancing heat pipe performance. In this study, pore-scale analysis of thin-film evaporation through sintered copper wicks is performed. X-ray microtomography is employed to generate geom...

  20. Fluid Flow in An Evaporating Droplet

    Hu, H.; Larson, R.

    1999-01-01

    Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.

  1. Evaporative cooling of the dipolar radical OH

    Stuhl, Benjamin K.; Hummon, Matthew T.; Yeo, Mark; Quéméner, Goulven; Bohn, John L.; Ye, Jun

    2012-01-01

    Atomic physics was revolutionized by the development of forced evaporative cooling: it led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases, and ultracold optical lattice simulations of condensed matter phenomena. More recently, great progress has been made in the production of cold molecular gases, whose permanent electric dipole moment is expected to generate rich, novel, and controllable phases, dynamics, and chemistry in these ultracold systems. Ho...

  2. Spin coating of an evaporating polymer solution

    Münch, Andreas

    2011-01-01

    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of a thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent mass fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system. The main practical interest is in controlling the appearance and development of a "skin" on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. In practice, a fast and uniform drying of the film is required. The critical parameters controlling this behaviour are found to be the ratio of the diffusion to advection time scales ε, the ratio of the evaporation to advection time scales δ and the ratio of the diffusivity of the pure polymer and the initial mixture exp(-1/γ). In particular, our analysis shows that for very small evaporation with δ

  3. SCC of stainless steel under evaporative conditions

    Andersen, H.; Arnvig, P.E.; Wasielewska, W.; Wegrelius, L.; Wolfe, C. [Avesta Sheffield AB, Avesta (Sweden)

    1998-12-31

    Three different test methods have been used to assess the susceptibility of different stainless steel grades to SCC under evaporative and immersed conditions. The methods employed were the drop evaporation test, the wick test and a high temperature, high pressure test simulating a feedwater heater tubing application in power plants. The alloys investigated were commercially produced austenitic and duplex stainless steels varying in chemical composition, plus one copper-nickel alloy. The resistance of austenitic stainless steels towards SCC increased by increasing the content of Ni, Mo and Cr, thus the super austenitic 654SMO{reg_sign} (uns32654) did not show any cracking in any of the three tests. The super austenitic 254SMO{reg_sign} (UNS31254) revealed only slight SCC in the simulated feed water heater tubing application while the equivalent N08367 revealed severe pitting and cracking. The drop evaporation test exhibited the most severe test conditions characterized by thermally induced fatigue effects, sensibility to onset of corrosion and severe acidic conditions generated under deposits on the test specimen. Some factors in stress corrosion cracking tests such as thermal fatigue, diffusion, heat transfer and stress condition, are discussed with regard to their influence on the test results.

  4. Relaxation-limited evaporation of globular clusters

    van Putten, Maurice H P M

    2011-01-01

    Evaporative evolution of stellar clusters is shown to be relaxation limited when the number of stars satisfies $N>>N_c$, where $N_c\\simeq 1600$. For a Maxwell velocity distribution that extends beyond the escape velocity, this process is {\\em bright} in that the Kelvin-Helmholtz time scale, $f_H^{-1}t_{relax}$, is shorter than the Ambartsumian-Spitzer time scale, $f_N^{-1}t_{relax}$, where $f_H>f_N$ denote the fractional changes in total energy and number of stars per relaxation time, $t_{relax}$. The resulting evaporative lifetime $t_{ev}\\simeq 20.5 t_{relax}$ for isolated clusters is consistent with Fokker-Planck and N-body simulations, where $t_{relax}$ is expressed in terms of the half-mass radius. We calculate the grey body factor by averaging over the anisotropic perturbation of the potential barrier across the tidal sphere, and derive the tidal sensitivity ${d\\ln t_{ev}}/{dy}\\simeq -1.9$ to -0.7 as a function of the ratio $y$ of the virial-to-tidal radius. Relaxation limited evaporation applies to the ...

  5. Evaporation of solids by pulsed laser irradiation

    Stafast, H.; Von Przychowski, M.

    The focused beam of a KrF laser (248 nm) has been applied to irradiate targets of Al 2O 3, SiC, graphite, Pb, Ni, Cr, quartz, and NaCl at variable laser energy flux is the range 0-13 J/cm 2. The amount of target material ejected into the vacuum (background pressure about 8 × 10 -4 Torr) was determined from the target weight before and after laser irradiation. The average number of particles (formula weight) evaporated per laser pulse and per unit of irradiated target area is non-linearly dependent on the laser energy flux. The evaporation of Al 2O 3, SiC, and graphite is showing a well-defined flux threshold while the vaporization of Pb, Ni and Cr is rising smoothly with increasing flux. With both groups of materials laser evaporation is monotonically increasing with the laser energy flux. NaCl and quartz, on the other hand, are showing an intermediate maximum in the laser vaporization efficiency.

  6. Dense spray evaporation as a mixing process

    de Rivas, A.; Villermaux, E.

    2016-05-01

    We explore the processes by which a dense set of small liquid droplets (a spray) evaporates in a dry, stirred gas phase. A dense spray of micron-sized liquid (water or ethanol) droplets is formed in air by a pneumatic atomizer in a closed chamber. The spray is conveyed in ambient air as a plume whose extension depends on the relative humidity of the diluting medium. Standard shear instabilities develop at the plume edge, forming the stretched lamellar structures familiar with passive scalars. Unlike passive scalars however, these lamellae vanish in a finite time, because individual droplets evaporate at their border in contact with the dry environment. Experiments demonstrate that the lifetime of an individual droplet embedded in a lamellae is much larger than expected from the usual d2 law describing the fate of a single drop evaporating in a quiescent environment. By analogy with the way mixing times are understood from the convection-diffusion equation for passive scalars, we show that the lifetime of a spray lamellae stretched at a constant rate γ is tv=1/γ ln(1/+ϕ ϕ ) , where ϕ is a parameter that incorporates the thermodynamic and diffusional properties of the vapor in the diluting phase. The case of time-dependent stretching rates is examined too. A dense spray behaves almost as a (nonconserved) passive scalar.

  7. Evaporative cycles - in theory and in practise

    Rosen, P.M.

    2000-08-01

    The thesis is based on applied research, rather closed to industrial development. The developed simulation model, for pre-design of evaporative gas turbine cycles, has been validated in a 600 kW pilot plant and in rebuilt turbo-charged diesel engines. Besides of the work with the thesis including theoretical modelling and hardware development concerning wet cycles, the work has also resulted in three patents dealing with the technique studied. The main feature of the evaporative cycles is the way the integration between the gas and liquid flows is executed, combined with using low-level heat gathered into the liquid phase which is later used to evaporate the liquid itself in a humidification tower. In this tower, the mass- and heat transfer take place under stable physical laws, and if the tower is properly designed, the distilling effect in the tower will also be high. Today the combined cycle has the best thermal efficiency to generate electricity from fuels. Every new power cycle, including the evaporative cycles, will therefore be compared with power stations based on combined cycles. In evaporative cycles, the steam bottoming cycle of the combined cycles has been eliminated. Instead the 'steam' cycle is integrated into the gas cycle. This action has a favourable effect on thermal efficiency and on NO{sub x} formation in the combustion zone. The major part of this thesis is about the EvGT-project. At Lund University, the major objective of this project was to develop, design, erect and operate the world's first evaporative gas turbine unit. The objective was accomplished in 1999, and in the process of reaching the objective, rather large modelling errors, both thermodynamic and dimensioning of the humidification tower, have been detected in the open literature. It seems as if the pressure dependency of the humidification process has been underestimated in the models used today. The EvGT-pilot plant at Lund University was built and taken into

  8. Powdering characteristics of thin film evaporator, 1

    Vertical thin film evaporators have been used to concentrate and dry solutions because their rotating swing blades prevent scale from being deposited on the heated surfaces. Powdering capacity of the vertical thin film evaporator was examined experimentally for drying applications of radioactive liquid waste generated from nuclear power plants. As a result, it was found that the powdering capacity increased with the blade rotation, changing significantly in the low ratational region and scarcely in the high rotational region. The powdering capacity in the high rotational region was restricted by the lack of heat flux which was theoretically evaluated for the concentrating process. As the critical factor in the low rotational region was not clear, a visual test apparatus was made to observe flow patterns in the evaporator, and a powdering model was obtained. This model showed that powdering process was obstructed when the liquid film lost its fluidity at high concentration. Based on this model, the powdering process was simulated theoretically with good agreement between calculated and experimental results. (author)

  9. An evaporation model of colloidal suspension droplets

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  10. An evaporation model of multicomponent solution drops

    Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.

    2010-11-01

    Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.

  11. Microbiology of solar salt ponds

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  12. Electrical and optical properties of vacuum evaporated CdS thin film

    The thin films of cadmium sulfide, CdS, prepared by vacuum evaporation were studied. The data of electrical and optical properties of the films were made on the as deposited samples as well as the one that have been exposed to IR and air, and subjected to thermal annealing. The IR exposure and thermal annealing produced the Cd riched films such as shown by the electrical and optical characteristics of the samples. The experiments show that the films experienced a major ageing process during the first week of air exposure. The band-gap, E sub g=2.44 eV of Cds produced by vacuum evaporation technique in the experiment is suitable for solar cell fabrication

  13. Optimization of Evaporative Demand Models for Seasonal Drought Forecasting

    McEvoy, D.; Huntington, J. L.; Hobbins, M.

    2015-12-01

    Providing reliable seasonal drought forecasts continues to pose a major challenge for scientists, end-users, and the water resources and agricultural communities. Precipitation (Prcp) forecasts beyond weather time scales are largely unreliable, so exploring new avenues to improve seasonal drought prediction is necessary to move towards applications and decision-making based on seasonal forecasts. A recent study has shown that evaporative demand (E0) anomaly forecasts from the Climate Forecast System Version 2 (CFSv2) are consistently more skillful than Prcp anomaly forecasts during drought events over CONUS, and E0 drought forecasts may be particularly useful during the growing season in the farming belts of the central and Midwestern CONUS. For this recent study, we used CFSv2 reforecasts to assess the skill of E0 and of its individual drivers (temperature, humidity, wind speed, and solar radiation), using the American Society for Civil Engineers Standardized Reference Evapotranspiration (ET0) Equation. Moderate skill was found in ET0, temperature, and humidity, with lesser skill in solar radiation, and no skill in wind. Therefore, forecasts of E0 based on models with no wind or solar radiation inputs may prove to be more skillful than the ASCE ET0. For this presentation we evaluate CFSv2 E0 reforecasts (1982-2009) from three different E0 models: (1) ASCE ET0; (2) Hargreaves and Samani (ET-HS), which is estimated from maximum and minimum temperature alone; and (3) Valiantzas (ET-V), which is a modified version of the Penman method for use when wind speed data are not available (or of poor quality) and is driven only by temperature, humidity, and solar radiation. The University of Idaho's gridded meteorological data (METDATA) were used as observations to evaluate CFSv2 and also to determine if ET0, ET-HS, and ET-V identify similar historical drought periods. We focus specifically on CFSv2 lead times of one, two, and three months, and season one forecasts; which are

  14. The experience of liquid radwaste evaporator performance improvement

    Ulchin NPP has only one monobloc evaporation column which treated all radwaste liquid for two units. Since commercial operation in 1988 the evaporator performance is very poor. I think that the bad condition of evaporator is because of the bad quality of liquid radwaste, the large volume of liquid radwaste to treated, the poor skill of operation and some mistake in equipment design. Because of above conditions the average released activity by liquid radwaste is 35.153mCi/year in last eight years(1988∼1995). So it is necessary that we have to improve the evaporator performance and to reduce the liquid radwaste volume to evaporate

  15. Design and operation of evaporators for radioactive wastes

    A manual dealing with the application of evaporators to the treatment of liquid radioactive wastes. This book is the second of three commissioned by the IAEA on the three on the three principal techniques for concentrating radioactive wastes, namely chemical precipitation, evaporation and ion-exchange. Informations on different types of evaporators and related equipment and their operational procedures are given in this document. It also gives different means of disposal of evaporator condensates and concentrates and a rough estimate of costs of radioactive waste evaporator plant and its operation. 58 refs, 43 figs, 5 tabs

  16. Absorber-evaporator unit for an absorption-refrigeration system

    Hallatt, R.J.; Rorschach, R.L.

    1965-01-26

    This low temperature absorption-refrigeration system uses an absorber-evaporator. A conduit is connected between the upper portion of the absorber and the lower portion of the evaporator to conduct inert gas from the absorber to the evaporator. A second conduit connects the upper portion of the evaporator to the lower portion of the absorber and a blower in this conduit circulates the inert gas through the closed system. By placing the blower between the evaporator ad the absorber, the pressure in the evaporator is maintained at a minimum so that the working temperature is as low as possible. The medium to be cooled by the refrigerant is circulated through a heat exchanger located within the evaporator, whereby the latent heat of vaporization of the liquid refrigerant is employed to cool the outside medium. (2 claims)

  17. Do Lipids Retard the Evaporation of the Tear Fluid?

    Rantamaki, A. H.; Javanainen, M.; Vattulainen, I.;

    2012-01-01

    PURPOSE. We examined in vitro the potential evaporation-retarding effect of the tear film lipid layer (TFLL). The artificial TFLL compositions used here were based on the present knowledge of TFLL composition. METHODS. A custom-built system was developed to measure evaporation rates at 35 degrees C....... Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar...... evaporation by 54% and 45%, respectively. The PC monolayer and the four-component mixtures did not retard evaporation. WE was the most important evaporation-retardant TFLL lipid (similar to 20% decrease). In PC/WE mixtures, an similar to 90% proportion of WE was required for evaporation retardation. Based on...

  18. THE FLAMMABILITY ANALYSIS AND TIME TO REACH LOWER FLAMMABILITY LIMIT CALCULATIONS ON THE WASTE EVAPORATION AT 242-A EVAPORATOR

    HU TA

    2007-10-31

    This document describes the analysis of the waste evaporation process on the flammability behavior. The evaluation calculates the gas generation rate, time to reach 25% and 100% of the lower flammability limit (LFL), and minimum ventilation rates for the 242-A Evaporator facility during the normal evaporation process and when vacuum is lost. This analysis performs flammability calculations on the waste currently within all 28 double-shell tanks (DST) under various evaporation process conditions to provide a wide spectrum of possible flammable gas behavior. The results of this analysis are used to support flammable gas control decisions and support and upgrade to Documented Safety Analysis for the 242-A Evaporator.

  19. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...... cost increasefor the climate zones arise mainly due to a varying number of operating hours.Absolute cost increase is considerable in the average and especially colder climate zoneand can only partly be reduced by enlarging the evaporator.© 2014 Elsevier Ltd and IIR. All rights reserved....

  20. The yearly amount and characteristics of deep-buried phreatic evaporation in hyper-arid areas

    Li, H.; Wang, W.; Zhan, H.; Qiu, F.; Wu, F.; Zhang, G.

    2015-12-01

    Water scarcity is the primary cause of land deterioration, so finding new available water resources is crucial to ecological restoration. We investigated a hyper-arid Gobi location in the Dunhuang Mogao Grottoes in this work wherein the burial depth of phreatic water is over 200 m. An air-conditioner was used in a closed greenhouse to condense and measure the yearly amount of phreatic evaporation (PE) from 2010 to 2015. The results show that the annual quantity of PE is 4.52 mm, and that the PE has sinusoidal characteristics. The average PE is 0.0183 mm d-1 from March to November. Accordingly, by monitoring the annual changes in soil-air temperature and humidity to a depth of 5.0 m, we analyzed the water migration mechanism in the heterothermozone (subsurface zone of variable temperature). The results show that, from March to November, the temperature and absolute humidity (AH) increase. This is due to the flow of solar heat entering the soil - the soil subsequently releases moisture and the soil is in a state of increasing AH so that evaporation occurs. From November to March, the temperature decreases. Now, the soil absorbs water vapor and AH is in a state of decline. Thus, it is temperature alternation in the heterothermozone - due to solar heat transfer - that provides the main driving power for PE. When it drives water vapor to move downwards in the heterothermozone, a small part is reversed upwards and evaporates. Solar radiation intensity dominates the annual sinusoidal PE characteristics.

  1. The yearly amount and characteristics of deep-buried phreatic evaporation in hyper-arid areas

    H. Li

    2015-12-01

    Full Text Available Water scarcity is the primary cause of land deterioration, so finding new available water resources is crucial to ecological restoration. We investigated a hyper-arid Gobi location in the Dunhuang Mogao Grottoes in this work wherein the burial depth of phreatic water is over 200 m. An air-conditioner was used in a closed greenhouse to condense and measure the yearly amount of phreatic evaporation (PE from 2010 to 2015. The results show that the annual quantity of PE is 4.52 mm, and that the PE has sinusoidal characteristics. The average PE is 0.0183 mm d-1 from March to November. Accordingly, by monitoring the annual changes in soil–air temperature and humidity to a depth of 5.0 m, we analyzed the water migration mechanism in the heterothermozone (subsurface zone of variable temperature. The results show that, from March to November, the temperature and absolute humidity (AH increase. This is due to the flow of solar heat entering the soil – the soil subsequently releases moisture and the soil is in a state of increasing AH so that evaporation occurs. From November to March, the temperature decreases. Now, the soil absorbs water vapor and AH is in a state of decline. Thus, it is temperature alternation in the heterothermozone – due to solar heat transfer – that provides the main driving power for PE. When it drives water vapor to move downwards in the heterothermozone, a small part is reversed upwards and evaporates. Solar radiation intensity dominates the annual sinusoidal PE characteristics.

  2. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  3. Multifunctional Solar Systems Based On Two-Stage Regeneration Absorbent Solution

    Doroshenko A.V.

    2015-04-01

    Full Text Available The concepts of multifunctional dehumidification solar systems, heat supply, cooling, and air conditioning based on the open absorption cycle with direct absorbent regeneration developed. The solar systems based on preliminary drainage of current of air and subsequent evaporated cooling. The solar system using evaporative coolers both types (direct and indirect. The principle of two-stage regeneration of absorbent used in the solar systems, it used as the basis of liquid and gas-liquid solar collectors. The main principle solutions are designed for the new generation of gas-liquid solar collectors. Analysis of the heat losses in the gas-liquid solar collectors, due to the mechanism of convection and radiation is made. Optimal cost of gas and liquid, as well as the basic dimensions and configuration of the working channel of the solar collector identified. Heat and mass transfer devices, belonging to the evaporative cooling system based on the interaction between the film and the gas stream and the liquid therein. Multichannel structure of the polymeric materials used to create the tip. Evaporative coolers of water and air both types (direct and indirect are used in the cooling of the solar systems. Preliminary analysis of the possibilities of multifunctional solar absorption systems made reference to problems of cooling media and air conditioning on the basis of experimental data the authors. Designed solar systems feature low power consumption and environmental friendliness.

  4. Long term measurement of lake evaporation using a pontoon mounted Eddy Covariance system

    McGowan, H. A.; McGloin, R.; McJannet, D.; Burn, S.

    2011-12-01

    Accurate quantification of evaporation from water storages is essential for design of water management and allocation policy that aims to balance demands for water without compromising the sustainability of future water resources, particularly during periods of prolonged and severe drought. Precise measurement of evaporation from lakes and dams however, presents significant research challenges. These include design and installation of measurement platforms that can withstand a range of wind and wave conditions; accurate determination of the evaporation measurement footprint and the influence of changing water levels. In this paper we present results from a two year long deployment of a pontoon mounted Eddy Covariance (EC) system on a 17.2ha irrigation reservoir in southeast Queensland, Australia. The EC unit included a CSAT-3 sonic anemometer (Campbell Scientific, Utah, United States) and a Li-Cor CS7500 open-path H2O/CO2 infrared gas analyzer (LiCor, Nebraska, United States) at a height of 2.2m, a net radiometer (CNR1, Kipp & Zonen, Netherlands) at a height of 1.2m and a humidity and temperature probe (HMP45C,Vaisala, Finland) at 2.3m. The EC unit was controlled by a Campbell Scientific CR3000 data logger with flux measurements made at 10 Hz and block averaged values logged every 15 minutes. Power to the EC system was from mounted solar panels that charged deep cycle lead-acid batteries while communication was via a cellphone data link. The pontoon was fitted with a weighted central beam and gimbal ring system that allowed self-levelling of the instrumentation and minimized dynamic influences on measurements (McGowan et al 2010; Wiebe et al 2011). EC measurements were corrected for tilt errors using the double rotation method for coordinate rotation described by Wilczak et al. (2001). High and low frequency attenuation of the measured co-spectrum was corrected using Massman's (2000) method for estimating frequency response corrections, while measurements were

  5. A linear approximation to black hole evaporation

    An evaporating Schwarzschild black hole is analysed including back reaction in a linear approximation. The analysis assumes a massless scalar field propagating in a spacetime consisting of two Vaidya metrics corresponding respectively to outgoing radiation and an infalling negative energy flux. For times late relative to the collapse but early relative to the lifetime of the hole, the standard rate is reproduced and has the correct time dependence. The event horizon shrinks at the expected rate. These results are independent of the exact location of the boundary between the regions. The magnitude of the quantum fluxes at various radii suggests that most of the pair production occurs far from the horizon

  6. Low evaporation helium cryostat with a refrigerator

    Improvement of a helium cryostat for a superconducting magnet is reported. A small refrigerator pre-cools the magnet and removes heat load. A gas filled thermal switch cools a helium vessel and thermally insulates the vessel when the refrigerator stops. Nb3Sn wires are used in the helium vessel to avoid resistive heating. The evaporation rate of the liquid helium is 1.0 - 1.7 1/day (with external current of 28A), when a magnet (maximum field 7T in 25mm bore) is set in the cryostat. (author)

  7. Radion clouds around evaporating black holes

    Morris, J. R.

    2009-01-01

    A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the h...

  8. Radion clouds around evaporating black holes

    Morris, J R

    2009-01-01

    A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.

  9. Evaporation and Step Edge Diffusion in MBE

    Schinzer, S.; Sokolowski, M.; Biehl, M.; Kinzel, W.

    1998-01-01

    Using kinetic Monte-Carlo simulations of a Solid-on-Solid model we investigate the influence of step edge diffusion (SED) and evaporation on Molecular Beam Epitaxy (MBE). Based on these investigations we propose two strategies to optimize MBE-growth. The strategies are applicable in different growth regimes: during layer-by-layer growth one can reduce the desorption rate using a pulsed flux. In three-dimensional (3D) growth the SED can help to grow large, smooth structures. For this purpose t...

  10. Study of falling-jet flash evaporators

    Kreith, F.; Olson, D.A.; Bharathan, D.; Green, H.J.

    1982-11-01

    Experimental results of flash evaporation from sheets of water, 3.2 mm and 6.3 mm thick and 27.9 cm wide, falling freely in the presence of their own vapor, are reported. With no flashing the jets fall in coherent sheets, but with flashing the jets were observed to spread and break up into droplets. Flashing was characterized by an effectiveness parameter, which was found to increase with increasing water temperature and jet length. Variations in water flow rate and heat flux did not influence the effectiveness appreciably.

  11. Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures

    Afshordi, N; McDonald, P; Spergel, D. N.

    2003-01-01

    We consider the possibility that massive primordial black holes are the dominant form of dark matter. Black hole formation generates entropy fluctuations that adds a Poisson noise to the matter power spectrum. We use Lyman-alpha forest observations to constrain this Poisson term in matter power spectrum, then we constrain the mass of black holes to be less than few times 10^4 solar mass. We also find that structures with less than ~ 10^3 primordial black holes evaporate by now.

  12. Potential evaporation trends over land between 1983–2008: driven by radiative fluxes or vapour-pressure deficit?

    C. Matsoukas

    2011-08-01

    Full Text Available We model the Penman potential evaporation (PE over all land areas of the globe for the 25-yr period 1983–2008, relying on radiation transfer models (RTMs for the shortwave and longwave fluxes. Penman's PE is determined by two factors: available energy for evaporation and ground to atmosphere vapour transfer. Input to the PE model and RTMs comprises satellite cloud and aerosol data, as well as data from reanalyses. PE is closely linked to pan evaporation, whose trends have sparked controversy in the community, since the factors responsible for the observed pan evaporation trends are not determined with consensus. Our particular interest is the temporal evolution of PE, and the provided insight to the observed trends of pan evaporation. We examine the decadal trends of PE and various related physical quantities, such as net solar flux, net longwave flux, water vapour saturation deficit and wind speed. Our findings are the following: Global warming has led to a larger water vapour saturation deficit. The periods 1983–1989, 1990–1999, and 2000–2008 were characterised by decreasing, increasing, and slightly decreasing PE, respectively. In these last 25 yr, global dimming/brightening cycles generally increased the available energy for evaporation. PE trends seem to follow more closely the trends of energy availability than the trends of the atmospheric capability for vapour transfer, at most locations on the globe, with trends in the Northern hemisphere significantly larger than in the Southern. These results support the hypothesis that global potential evaporation trends are attributed primarily to secular changes in the radiation fluxes, and secondarily to vapour transfer considerations.

  13. Solar geoengineering, atmospheric water vapor transport, and land plants

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  14. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  15. Diagnosing Evaporation of Icy Planetesimals in Protoplanetary Disks

    Nomura, Hideko; Ishimoto, Daiki; Nagasawa, Makiko; Tanaka, Kyoko K.; Miura, Hitoshi; Nakamoto, Taishi; Tanaka, Hidekazu; Yamamoto, Tetsuo

    2015-08-01

    It is thought that eccentricities of planetesimals are excited due to gravitational interaction with protoplanets in protoplanetary disks. As a result, bow shocks are formed around the icy planetesimals and the ice is evaporated via the shock heating. Evaporation rates and orbital evolution of such planetesimals have been investigated (Tanaka et al. 2013, Nagasawa et al. 2014). In this work, we examine a possibility of diagnosing the shock heating and evaporation of icy planetesimals, using ALMA observations of lines of molecules evaporated from the planetesimals.Evaporation of ice has been studied observationally and theoretically well, for example, at a shock front of outflows associated with young stellar objects. The evaporated molecules will be destroyed via chemical reactions with other species and/or depletion on dust grains. The evaporated molecules can survive in gas-phase for around 104years in the region hotter than their evaporation temperatures, while they freeze out immediately in the cold region. As parent species evaporated from ice, saturated nitrogen- or sulphur-bearing species and organic molecules are often considered.Our calculations show that evaporated H2S is destroyed via gas-phase reactions, and SO and then SO2 are produced via chemicalreactions. The timescale of these reactions is about 104years. Therefore, H2S and SO are good tracers of shock heating and evaporation of icy planetesimals if it occurs in the region hotter than the evaporation temperatures of H2S and SO. The evaporation temperature of SO2 is higher than those of H2S and SO.Molecular lines of H2S, SO, and SO2 have not yet been detected towards protoplanetary disks by the previous radio observations. ALMA observations with high sensitivity and high spatial resolution, however, will make it possible to detect the lines of these molecules. Conditions that molecular lines of H2S and SO becomes strong enough to be detected by ALMA observations will also be discussed.

  16. Analysis of a resistance-energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations

    Choudhury, B. J.; Idso, S. B.; Reginato, R. J.

    1986-01-01

    Accurate estimates of evaporation over field-scale or larger areas are needed in hydrologic studies, irrigation scheduling, and meteorology. Remotely sensed surface temperature might be used in a model to calculate evaporation. A resistance-energy balance model, which combines an energy balance equation, the Penman-Monteith (1981) evaporation equation, and van den Honert's (1948) equation for water extraction by plant roots, is analyzed for estimating daily evaporation from wheat using postnoon canopy temperature measurements. Additional data requirements are half-hourly averages of solar radiation, air and dew point temperatures, and wind speed, along with reasonable estimates of canopy emissivity, albedo, height, and leaf area index. Evaporation fluxes were measured in the field by precision weighing lysimeters for well-watered and water-stressed wheat. Errors in computed daily evaporation were generally less than 10 percent, while errors in cumulative evaporation for 10 clear sky days were less than 5 percent for both well-watered and water-stressed wheat. Some results from sensitivity analysis of the model are also given.

  17. Solar Features - Solar Flares

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  18. Notes on black-hole evaporation

    This paper examines various aspects of black-hole evaporation. A two-dimensional model is investigated where it is shown that using fermion-boson cancellation on the stress-energy tensor reduces the energy outflow to zero, while other noncovariant techniques give the Hawking result. A technique for replacing the collapse by boundary conditions on the past horizon is developed which retains the essential features of the collapse while eliminating some of the difficulties. This set of boundary conditions is also suggested as the most natural set for a preexistent black hole. The behavior of particle detectors under acceleration is investigated where it is shown that an accelerated detector even in flat spacetime will detect particles in the vacuum. The similarity of this case with the behavior of a detector near the black hole is brought out, and it is shown that a geodesic detector near the horizon will not see the Hawking flux of particles. Finally, the work of Berger, Chitre, Nutku, and Moncrief on scalar geons is corrected, and the spherically symmetric coupled scalar-gravitation Hamiltonian is presented in the hope that someone can apply it to the problem of black-hole evaporation

  19. Cosmic evolution and primordial black hole evaporation

    A cosmological model in which primordial black holes (PBHs) are present in the cosmic fluid at some instant t=t0 is investigated. The time t0 is naturally identified with the end of the inflationary period. The PBHs are assumed to be nonrelativistic in the comoving fluid, to have the same mass, and may be subject to evaporation for t>t0. Our present work is related to an earlier paper of Zimdahl and Pavon [Phys. Rev. D 58, 103506 (1998)], but in contradistinction to these authors we assume that the (negative) production rate of the PBHs is zero. This assumption appears to us to be more simple and more physical. The consequences of the formalism are worked out. In particular, the four-divergence of the entropy four-vector in combination with the second law of thermodynamics show in a clear way how the case of PBH evaporation corresponds to a production of entropy. Accretion of radiation onto the black holes is neglected. We consider both a model where two different subfluids interact, and a model involving one single fluid only. In the latter case an effective bulk viscosity naturally appears in the formalism

  20. The transient response above an evaporation duct

    Abo-Seliem, Adel A. S.

    1998-11-01

    The transient electromagnetic field generated by a vertical electric dipole above an evaporation duct is investigated theoretically. The evaporation duct model used is that previously described by Kahan and Eckart. A vertical electric dipole, above the surface layer, is taken as the source of the electromagnetic field. We determine the electrical field strength exactly at some fixed point above the duct layer, having chosen a certain polarization of the primary source whose moment is allowed to vary arbitrarily with time. A series expansion with respect to the images of the primary source permits us to apply the method first reported by Cagniard and later extended by de Hoop and Frankena to the case where the source is positioned in a medium of lesser permittivity. Hence, we can give a physically intuitive description of the polarization dependence of the time history of the electrical field strength. The distinction of different cases where the distances between the receiving and transmitting ends are greater or lesser than the total reflection distance is studied. The electrical field strength is evaluated for different excitation functions at some fixed but arbitrary positions of the point of observation in the half-space.

  1. Evaporation duct effects at millimeter wavelengths

    Anderson, K. D.

    1992-03-01

    The evaporation duct strongly influences low-altitude over-the-horizon propagation at millimeter wavelengths. Results from more than 2000 hours of propagation and meteorological measurements made at 94 GHz on a 40.6 km over-horizon, over-water path along the southern California coast show that the average received power was 63 dB greater than d for propagation in a nonducting, or standard, atmosphere; 90 percent of the measurements were at least 55 dB greater than diffraction. A numerical model of transmission loss based on the observed surface meteorology is discussed and results are compared to measured transmission loss. On average, modeling results underestimate observations by only 10 dB. In addition, results from modeling based on an independent climatology of evaporation duct heights for the area are shown to be adequate for most propagation assessment purposes. The reliability and reasonable accuracy of the numerical model provides a strong justification for utilizing the technique to assess millimeter wave communication and radar systems operating in many, if not all, ocean regions.

  2. Influence of Oil on Refrigerant Evaporator Performance

    Jong-Soo, Kim; Nagata, Katsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    To explore the quantitative effect of the lubrication oil on the thermal and hydraulic evaporator performance, the detailed structure of two-phase refrigerant (R11) and lubrication oil (Suniso 5GS) flow has been investigated. Experiment has been performed using a transparent tube 20mm in inner diameter and 2600mm in total length as main test section, which was heated by surrounding hot water bath. This water bath also functioned as the visual observation section of the transition of two-phase flow pattern. Oil mass concentration was controlled initially, and circulated into the system. The void fraction at the main test section was measured by direct volume measurement using so-called "Quick Closing Valve" method. Since the effect of oil on the transition of two-phase flow pattern is emphasized at the low flow rate, operation was made at relatively low mass velocity, 50 and 100 kg/m2·s, five different oil concentrations were taken. Throughout the experiment, the evaporation pressure was kept at 105 kPa. In general, when contamination of the lubrication oil happened, the void fraction was decreasing due to the change of viscosity and surface tension and the occurence of the foaming. To correlate the void fraction as function of quality, Zivi's expression was modified to include the effect of oil concentration. The agreement between the data and this proposed correlation was favorable. Finally, to take into account the effect of lubrication oil, the new flow pattern diagram was proposed.

  3. The lifetime of evaporating dense sprays

    de Rivas, Alois; Villermaux, Emmanuel

    2015-11-01

    We study the processes by which a set of nearby liquid droplets (a spray) evaporates in a gas phase whose relative humidity (vapor concentration) is controlled at will. A dense spray of micron-sized water droplets is formed in air by a pneumatic atomizer and conveyed through a nozzle in a closed chamber whose vapor concentration has been pre-set to a controlled value. The resulting plume extension depends on the relative humidity of the diluting medium. When the spray plume is straight and laminar, droplets evaporate at its edge where the vapor is saturated, and diffuses through a boundary layer developing around the plume. We quantify the shape and length of the plume as a function of the injecting, vapor diffusion, thermodynamic and environment parameters. For higher injection Reynolds numbers, standard shear instabilities distort the plume into stretched lamellae, thus enhancing the diffusion of vapor from their boundary towards the diluting medium. These lamellae vanish in a finite time depending on the intensity of the stretching, and relative humidity of the environment, with a lifetime diverging close to the equilibrium limit, when the plume develops in an medium saturated in vapor. The dependences are described quantitatively.

  4. How surfactants influence evaporation-driven flows

    Liepelt, Robert; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.

    2014-11-01

    Capillary flows appear spontaneously in sessile evaporating drops and give rise to particle accumulation around the contact lines, commonly known as coffee-stain effect (Deegan et al., Nature, 1997). On the other hand, out-of-equilibrium thermal effects may induce Marangoni flows in the droplet's surface that play an important role in the flow patterns and in the deposits left on the substrate. Some authors have argued that contamination or the presence of surfactants might reduce or eventually totally annul the Marangoni flow (Hu & Larson, J. Phys. Chem. B, 2006). On the contrary, others have shown an enhancement of the reverse surface flow (Sempels et al., Nat. Commun., 2012). In this work, we employ Astigmatic Particle Tracking Velocimetry (APTV) to obtain the 3D3C evaporation-driven flow in both bulk and droplet's surface, using surfactants of different ionic characters and solubility. Our conclusions lead to a complex scenario in which different surfactants and concentrations yield very different surface-flow patterns, which eventually might influence the colloidal deposition patterns.

  5. PROCESSES OF HEAT-MASS-TRANSFER IN APPARATUS OF SOLAR ABSORBING REFRIGERATION SYSTEMS

    Doroshenko A.V.; Ludnitsky K.V.

    2014-01-01

    Ideology of development of the solar refrigeration systems and systems of air-conditioning, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution, is presented in the article. The processes of joint heat-mass-transfer are considered in the direct and indirect types of evaporated coolers taking into account the phenomenon of re-condensation of aquatic steams at the low temperature evaporated cooling of environments. The pre-liminary analysis of possibi...

  6. Solar storms; Tormentas solares

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  7. Hydrothermal waves in evaporating sessile drops (APS 2009)

    Brutin, D; LeNiliot, C

    2009-01-01

    This fluid dynamics video was submitted to the Gallery of Fluid Motion for the 2009 APS Division of Fluid Dynamics Meeting in Minneapolis, Minnesota. Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the coupling by conduction with the heating substrate, the convection and conduction inside the drop and the convection and diffusion with the vapour phase. The coupling of heat transfer in the three phases induces complicated cases to solve even for numerical simulations. We present recent experimental fluid dynamics videos obtained using a FLIR SC-6000 coupled with a microsco...

  8. Probing loop quantum gravity with evaporating black holes.

    Barrau, A; Cailleteau, T; Cao, X; Diaz-Polo, J; Grain, J

    2011-12-16

    This Letter aims at showing that the observation of evaporating black holes should allow the usual Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints. PMID:22243065

  9. Near-extremal black hole evaporation in asymptotically flat spacetime

    We study black hole evaporation of near-extremal black holes in spherically reduced models with asymptotically Minkowskian spacetime, with the effects of the back reaction on the geometry included semiclassically. The stress-energy tensor is calculated for null in-falling observers. It is shown that the evaporation proceeds smoothly and there are no instabilities of the outer or inner apparent horizon before the end point of evaporation

  10. Quantum Cooling Evaporation Process in Regular Black Holes

    Myung, Yun Soo; Kim, Yong-Wan; Park, Young-Jai

    2007-01-01

    We investigate a universal behavior of thermodynamics and evaporation process for the regular black holes. We newly observe an important point where the temperature is maximum, the heat capacity is changed from negative infinity to positive infinity, and the free energy is minimum. Furthermore, this point separates the evaporation process into the early stage with negative heat capacity and the late stage with positive heat capacity. The latter represents the quantum cooling evaporation proce...

  11. Near-Extremal Black Hole Evaporation in Asymptotically Flat Spacetime

    Diba, Kamran; Lowe, David A.

    2002-01-01

    We study black hole evaporation of near-extremal black holes in spherically reduced models with asymptotically Minkowskian spacetime, with the effects of the back-reaction on the geometry included semi-classically. The stress-energy tensor is calculated for null in-falling observers. It is shown that the evaporation proceeds smoothly and there are no instabilities of the outer or inner apparent horizon before the endpoint of evaporation.

  12. Climate analysis of evaporation ducts in the South China Sea

    McKeon, Brian D.

    2013-01-01

    Approved for public release; distribution is unlimited. Evaporation ducts have important implications for U.S. Naval activities involving electromagnetic propagation. The presence of an evaporation duct can affect naval operations involving communications, surveillance, electronic warfare, and detection of low-flying missiles, surface ships, or submarine periscopes. We conducted a climate scale analysis of evaporation duct heights (EDH) in the northern South China Sea (SCS), including how ...

  13. Two phase flow instabilities in horizontal straight tube evaporator

    Liang, Nan; Shuangquan, Shao; Tian, Changqing; Yan, Y. Y.

    2010-01-01

    Abstract It is essential to ensure the stability of a refrigeration system if the oscillation in evaporation process is the primary cause for the whole system instability. This paper is concerned with an experimental investigation of two phase flow instabilities in a horizontal straight tube evaporator of a refrigeration system. The relationship between pressure drop and mass flow with constant heat flux and evaporation pressure is measured and determined. It is found that there is...

  14. An application of GLEAM to estimating global evaporation

    Miralles, D.G.; Jeu, R.A.M. de; Gash, J. H.; T. R. H. Holmes; A. J. Dolman

    2011-01-01

    A physics-based methodology is applied to estimate global land-surface evaporation from multi-satellite observations. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) combines a wide range of remotely sensed observations within a Priestley and Taylor-based framework. Daily actual evaporation is derived at quarter degree resolution over the world's land surface. A running water balance of the vertical profile of soil moisture in the root zone is used to estimate the ef...

  15. 18O + 12C fusion-evaporation reaction

    A study of the 18O + 12C fusion evaporation reaction has been undertaken for 2 reasons: to make a systematic study of the formation cross section for each individual evaporation residue over a broad excitation energy region in the compound nucleus 30Si:30 to 62 MeV; and to compare all results to fusion-evaporation calculations done in the framework of the Hauser-Feschbach statistical model

  16. Dynamic Models of Vacuum-Evaporator Plants for Dairy Industry

    G. M. Airapetiants

    2009-01-01

    Full Text Available The paper studies problems of linearized dynamic models intended for synthesis of automatic temperature control systems and vacuum depth in vacuum evaporators. А single-casing vacuum evaporator plant is considered as an object of automatic control. Disturbance input channels are discerned and transfer functions permitting to determine laws of temperature and vacuum regulation and optimum parameters for setting automatic regulators used for various operational modes of vacuum-evaporator plants are obtained on the basis of the executed analysis.

  17. Nonlinear Superheat and Evaporation Temperature Control of a Refrigeration Plant

    Rasmussen, Henrik; Thybo, Claus; Larsen, Lars F. S.

    2006-01-01

    This paper proposes novel control of the superheat of the evaporator in a refrigeration system. A new model of the evaporator is developed and based on this model the superheat is transferred to a referred variable. It is shown that control of this variable leads to a linear system independent of...... the working point. The model also gives a method for control of the evaporation temperature. The proposed method is validated by experimental results....

  18. Hydrodynamics and evaporation of a sessile drop of capillary size

    Barash, L. Yu.

    2010-01-01

    Fluid dynamics video of an evaporating sessile drop of capillary size is presented. The corresponding simulation represents the description taking into account jointly time dependent hydrodynamics, vapor diffusion and thermal conduction in an evaporating sessile drop. The fluid convection in the drop is driven by Marangoni forces associated with the temperature dependence of the surface tension. For the first time the evolution of the vortex structure in the drop during an evaporation process...

  19. Evaporation from a small water reservoir: Direct measurements and estimates

    Tanny, J.; Cohen, S.; Assouline, S.; Lange, F.; Grava, A.; Berger, D; Teltch, B.; Parlange, M.B.

    2008-01-01

    Summary Knowing the rate of evaporation from surface water resources such as chan¬nels and reservoirs is essential for precise management of the water balance. However, evaporation is difficult to measure experimentally over water surfaces and several tech¬niques and models have been suggested and used in the past for its determination. In this research, evaporation from a small water reservoir in northern Israel was measured and estimated using several experimental techniques and models durin...

  20. Determining the Inception and Magnitude of Subsurface Evaporation

    Deol, P. K.; Heitman, J.; Amoozegar, A.; Clayton Field Study Team

    2011-12-01

    Evaporation from an initially wet soil occurs at the soil surface but further drying of surface soil with time results in the formation of a dry surface layer. At this stage, the evaporation front moves from the surface to the subsurface. This phenomenon occurs in a highly dynamic near-surface zone making it very challenging to know the location/depth of the evaporation front and to quantify the subsurface evaporation rate. Recent studies show that subsurface evaporation can be measured using a sensible heat balance approach by accounting for the latent heat flux originating below soil surface which is not taken into account in the traditional surface energy balance equation. The soil sensible energy balance approach has been successfully tested against mass balance for estimating evaporation under steady-state controlled lab conditions, as well as to a limited extent in the field. Limitations of the approach for field conditions include inability of instrumentation to quantify evaporation during the initial shift between surface and subsurface evaporation (i.e. when evaporation occurs at depths shallower than approximately 3 mm). The objectives of this study are to 1) find indicators of the change in the location of the evaporation front from surface to subsurface, and 2) test the sensible heat balance approach for quantifying evaporation from the inception of the subsurface evaporation zone. Recently introduced multi-needle heat pulse probes were used to make continuous soil temperature and thermal property measurements in the near-surface zone at the mm scale in a bare surface soil. Preliminary results from this investigation will be presented.

  1. ZnS thin films deposition by thermal evaporation for photovoltaic applications

    ZnS thin films were deposited on glass substrates by thermal evaporation from millimetric crystals of ZnS. The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV–VIS spectroscopy. The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation. The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8. The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells. (paper)

  2. Quantum cooling evaporation process in regular black holes

    We investigate a universal behavior of thermodynamics and evaporation process for the regular black holes. We observe an important point where the temperature is maximum, the heat capacity is changed from negative infinity to positive infinity, and the free energy is minimum. Furthermore, this point separates the evaporation process into the early stage with negative heat capacity and the late stage with positive heat capacity. The latter represents the quantum cooling evaporation process. As a result, the whole evaporation process could be regarded as the inverse Hawking-Page phase transition

  3. Quantum Cooling Evaporation Process in Regular Black Holes

    Myung, Y S; Park, Y J; Kim, Yong-Wan; Myung, Yun Soo; Park, Young-Jai

    2007-01-01

    We investigate a universal behavior of thermodynamics and evaporation process for the regular black holes. We newly observe an important point where the temperature is maximum, the heat capacity is changed from negative infinity to positive infinity, and the free energy is minimum. Furthermore, this point separates the evaporation process into the early stage with negative heat capacity and the late stage with positive heat capacity. The latter represents the quantum cooling evaporation process. As a result, the whole evaporation process could be regarded as the inverse Hawking-Page phase transition.

  4. Evaporation of Sunscreen Films: How the UV Protection Properties Change.

    Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-06-01

    We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens. PMID:27167054

  5. A microscopic description of black hole evaporation via holography

    Berkowitz, Evan; Maltz, Jonathan

    2016-01-01

    We propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  6. INFLUENCE OF REFRIGERANT DISTRIBUTION ON HEAT TRANSFER IN EVAPORATORS

    高原; 田怀璋; 曾艳; 袁秀玲

    2003-01-01

    Objective To prevent the maldistribution of two-phase refrigerant in dry expansion evaporators composed of parallel coils, a distributor is needed to supply refrigerant into the coils. Methods A simplified model of dry expansion evaporator was proposed. The flow and heat transfer in distributing pipes and evaporator coils were simulated with a numerical method. Results The heat flow rate decreases while the refrigerant is distributed unequally to evaporator coils. Conclusion In order to maintain the heat flow rate, larger heat transfer area should be arranged to make up the effect of maldistribution. The larger the discrepancy of mass flow rate is, the more heat transfer area is needed.

  7. Distribution of Evaporating CO2 in Parallel Microchannels

    Brix, Wiebke; Elmegaard, Brian

    2008-01-01

    The impact on the heat exchanger performance due to maldistribution of evaporating CO2 in parallel channels is investigated numerically. A 1D steady state simulation model of a microchannel evaporator is built using correlations from the literature to calculate frictional pressure drop and heat...... results obtained using R134a as refrigerant, and it is found that the performance of the evaporator using CO2 is less affected by the maldistribution than the evaporator using R134a as refrigerant. For both cases studied, the impact of the maldistribution was very small for CO2....

  8. Evaporation and Thermal Balance of Tiny HI Clouds

    Slavin, Jonathan D.

    2006-01-01

    We discuss the thermal evaporation of tiny HI clouds in the interstellar medium. Cold neutral clouds will take ~10^6 - 10^7 yr to evaporate if they are embedded in warm neutral gas and about half as long if embedded in hot gas. Heat flux saturation effects severely reduce the evaporation rate of tiny cold neutral medium (CNM) clouds into hot gas. For CNM clouds embedded in warm neutral medium (WNM) the much lower conductivity results in slower evaporation. This mass loss rate could still be s...

  9. Clustered field evaporation of metallic glasses in atom probe tomography.

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. PMID:26724469

  10. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    Bunea, M.; Perers, Bengt; Eicher, S.;

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  11. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  12. 75 FR 20377 - Notice of Availability of the Draft Environmental Impact Statement for the Proposed Sonoran Solar...

    2010-04-19

    ... use parabolic trough solar thermal technology to produce electrical power using steam turbine... and infrastructure, including power blocks and solar trough arrays (2,300 acres), evaporation ponds... to the BLM. Boulevard is proposing to construct up to a 375 megawatt (MW) concentrated solar...

  13. Vacuum instability and black hole evaporation

    We pass in review the mechanisms of pair production in a static electric field and in black hole evaporation. New methods are developed in the electric case to show up the similarities with the black hole problem. The latter is then handled both through mode analysis and functional integration techniques wherin the situation of collapse is couched in terms of Eddington-Finkelstein coordinates. As in the electric case, the initial vacuum, identified with vacuum seen by a Schwarzschild observer before collapse, is unstable. We display in detail how it passes over to the Unruh vacuum, the quasi-stationary state which the Schwarzschild observer characterizes by the emitted thermal flux of Hawking. (orig.)

  14. Black hole evaporation with separated fermions

    In models with a low quantum gravity scale, fast proton decay can be avoided by localizing quarks and leptons to separated positions in an extra 1/TeV sized dimension with gauge and Higgs fields living throughout. Black holes with masses of the order of the quantum gravity scale are therefore expected to evaporate nonuniversally, preferentially radiating directly into quarks or leptons but not both. Should black holes be copiously produced at a future hadron collider, we find the ratio of final state jets to charged leptons to photons is 113:8:1, which differs from previous analyses that assumed all standard model fields live at the same point in the extra dimensional space

  15. Black hole evaporation and compact extra dimensions

    We study the evaporation of black holes in space-times with extra dimensions of size L by employing the microcanonical picture of Hawking's radiation. We show that the luminosity is greatly damped when the horizon becomes smaller than L and black holes born with an initial size smaller than L are almost stable. This effect is due to the strong dependence of both the occupation number density of Hawking quanta and the greybody factor of a black hole on the dimensionality of space. Although the picture of what happens when the horizon shrinks to a size L is still incomplete, we argue that there might occur an outburst of energy which leaves a quasistable remnant

  16. Black hole evaporation with separated fermions.

    Han, Tao; Kribs, Graham D; McElrath, Bob

    2003-01-24

    In models with a low quantum gravity scale, fast proton decay can be avoided by localizing quarks and leptons to separated positions in an extra 1/TeV sized dimension with gauge and Higgs fields living throughout. Black holes with masses of the order of the quantum gravity scale are therefore expected to evaporate nonuniversally, preferentially radiating directly into quarks or leptons but not both. Should black holes be copiously produced at a future hadron collider, we find the ratio of final state jets to charged leptons to photons is 113:8:1, which differs from previous analyses that assumed all standard model fields live at the same point in the extra dimensional space. PMID:12570482

  17. Polonium evaporation from dilute liquid metal solutions

    Rizzi, Matthias; Eichler, Robert; Türler, Andreas; Mendonça, Tania Melo; Stora, Thierry; Gonzalez Prieto, Borja; Aerts, Alexander; Schumann, Dorothea

    2014-01-01

    The evaporation behavior of polonium as one of the most hazardous radionuclides produced in spallation based neutron sources with liquid lead-bismuth targets has been quantified in this study. The normalized apparent vapor pressure, i.e. the Henry constant of polonium over liquid lead-bismuth eutectic was determined in the temperature range relevant for operation of such targets, i.e. 164-500 degrees C. For comparison and better fundamental understanding, the Henry constant of polonium over pure liquid bismuth was determined in a temperature range of 300-500 degrees C. The Henry constants of polonium in this temperature range were found to be orders of magnitude higher than expected from earlier studies at higher temperatures. Possible mechanisms responsible for this unexpected behavior are discussed.

  18. Analysing transfer phenomena in osmotic evaporation

    Freddy Forero Longas

    2011-12-01

    Full Text Available Osmotic evaporation is a modification of traditional processes using membranes; by means of a vapour pressure differential, produced by a highly concentrated extraction solution, water is transferred through a hydrophobic membrane as vapour. This technique has many advantages over traditional processes, allowing work at atmospheric pressure and low temperatures, this being ideal for heatsensitive products. This paper presents and synthetically analyses the phenomena of heat and mass transfer which occurs in the process and describes the models used for estimating the parameters of interest, such as flow, temperature, heat transfer rate and the relationships that exist amongst them when hollow fibre modules are used, providing a quick reference tool and specific information about this process.

  19. Sessile droplet evaporation on superheated superhydrophobic surfaces

    Hays, Robb C; Maynes, Daniel; Webb, Brent W

    2013-01-01

    This fluid dynamics video depicts the evaporation of sessile water droplets placed on heated superhydrophobic (SH) surfaces of varying cavity fraction, F_c, and surface temperature, T_s, above the saturation temperature, T_sat. Images were captured at 10,000 FPS and are played back at 30 FPS in this video. Teflon-coated silicon surfaces of F_c = 0, 0.5, 0.8, and 0.95 were used for these experiments. T_s ranging from 110{\\deg}C to 210{\\deg}C were studied. The video clips show how the boiling behavior of sessile droplets is altered with changes in surface microstructure. Quantitative results from heat transfer rate experiments conducted by the authors are briefly discussed near the end of the video.

  20. Anomalies in evaporative light scattering detection.

    Shock, D; Dennis, G R; Guiochon, G; Dasgupta, P K; Shalliker, R A

    2011-10-10

    A two-dimensional (2-D) "heart-cutting" HPLC system was used to fractionate oligostyrenes into the respective diastereoisomers. For samples of known composition, the response of an ultraviolet (UV) absorbance detector followed the anticipated pattern. The response of an evaporative light-scattering (ELSD) detector on the other hand indicated quite different concentrations for the two diastereoisomers, relative to what was anticipated and what was indicated by the UV detector. Whereas approximately the same concentration was indicated by UV, ELSD in some cases indicated no detection of the later eluting isomer. The magnitude of the errors depended on both the molecular weight and the tacticity of the diastereomers. These anomalies appear to be an artifact of power transform functions imbedded within the firmware processor of the ELSD, invisible to the user. PMID:21889641

  1. Evaporation-Cooled Protective Suits for Firefighters

    Weinstein, Leonard Murray

    2007-01-01

    Suits cooled by evaporation of water have been proposed as improved means of temporary protection against high temperatures near fires. When air temperature exceeds 600 F (316 C) or in the presence of radiative heating from nearby sources at temperatures of 1,200 F (649 C) or more, outer suits now used by firefighters afford protection for only a few seconds. The proposed suits would exploit the high latent heat of vaporization of water to satisfy a need to protect against higher air temperatures and against radiant heating for significantly longer times. These suits would be fabricated and operated in conjunction with breathing and cooling systems like those with which firefighting suits are now equipped

  2. Vacuum drying plant for evaporator concentrates

    Volume reduction systems applied to evaporator concentrates in PWR and BWR save a significant amount of drums. The concentration to dry product is a technique that reaches the maximum volume reduction, compared to conventional techniques (cementation, polymerisation). Four Spanish N.P.P. (3 PWR and 1 BWR) have selected ENSA's process by means of fixed ''in drum vacuum drying system''. A 130-litre steel drum is used for drying without any additional requirement except vacuum resistance. This steel drum is introduced into a standard 200-litre drum. Five centimeters concrete shielding cylinder exists between both drums. Final package is classified as 19 GO according to ENRESA's acceptance code (dry waste with 5 cm concrete between 130-l and 200-l drum). The generation of cemented waste in five N.P.P. versus dried waste will be reduced 83%. This reduction will save a considerable amount in disposal costs. (authors)

  3. Indirect evaporative coolers with enhanced heat transfer

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  4. Separation Efficiency of Thin-film Evaporators

    R.Billet

    2004-01-01

    The recovery of contaminants and useful substances from liquid wastes, the purification of production effluents and the separation of thermally instable mixtures are some of the multivarious applications of thin-film distillors in many processes of the chemical and allied industries and of the food industries. In a study carried out in pilot plants with distillation test systems there was found a good agreement between the experimental separation results and those obtained by computing with a theorectical model; the latter is based on the assumption of phase equilibrium between the vapour formed on an infinitely small element of area in a liquid film of any given concentric periphery of the vertically arranged evaporator. These tests were perfomed under various phase loads.

  5. Modeling and simulation of direct contact evaporators

    Campos F.B.

    2001-01-01

    Full Text Available A dynamic model of a direct contact evaporator was developed and coupled to a recently developed superheated bubble model. The latter model takes into account heat and mass transfer during the bubble formation and ascension stages and is able to predict gas holdup in nonisothermal systems. The results of the coupled model, which does not have any adjustable parameter, were compared with experimental data. The transient behavior of the liquid-phase temperature and the vaporization rate under quasi-steady-state conditions were in very good agreement with experimental data. The transient behavior of liquid height was only reasonably simulated. In order to explain this partial disagreement, some possible causes were analyzed.

  6. Micro Black Hole Production and Evaporation

    Nafooshe, Saeede; Garzelli, Maria Vittoria

    2013-01-01

    It has been conjectured that Micro Black Holes (MBH) may be formed in the presence of large extra dimensions. These MBHs have very small mass and they decay almost instantaneously. Taking into consideration quantum effects, they should Hawking radiate mainly to Standard Model particles, this radiation then gets modified by the non trivial geometry around the MBHs; the so called greybody factors which filter the Hawking radiation. To test the validity of MBH models, one needs to investigate it experimentally. A primary tool in this investigation is simulation of the MBH formation and evaporation, including all theoretical work that has been performed up to now. BlackMax and CHARYBDIS2 are the most modern and realistic simulators currently available. However they still suffer from a lack of important parameters. In this article we will discuss the primary work that we have done to study the possible changes that can be implemented in the simulations.

  7. Polonium evaporation from dilute liquid metal solutions

    The evaporation behavior of polonium as one of the most hazardous radionuclides produced in spallation based neutron sources with liquid lead–bismuth targets has been quantified in this study. The normalized apparent vapor pressure, i.e. the Henry constant of polonium over liquid lead–bismuth eutectic was determined in the temperature range relevant for operation of such targets, i.e. 164–500 °C. For comparison and better fundamental understanding, the Henry constant of polonium over pure liquid bismuth was determined in a temperature range of 300–500 °C. The Henry constants of polonium in this temperature range were found to be orders of magnitude higher than expected from earlier studies at higher temperatures. Possible mechanisms responsible for this unexpected behavior are discussed

  8. Preparation of Beryllium Targets by Vacuum Evaporation

    2001-01-01

    The apparatus is shown in Fig.1, which is mounted within a conventional metal bell jar 45 cm in diameter and 70 cm high. The boat source could be seen through the windows of the appratus and the bell jar.There was no straight-line exit from the apparatus to the interor of the bell jar for Be vapor originating at the boat.Tantalum boat, 13 mm wide, 28 mm long, and 0.1 mm thick, was used as evaporation source. The distance from the boat to the substrate was 15 cm. Microscope glass slide coated with betaine as substrate.The Be foils produced by resistance heating were removed from the glass by dissolving the

  9. Avalanche of particles in evaporating coffee drops

    Marin, Alvaro G; Snoeijer, Jacco; Lohse, Detlef

    2010-01-01

    The pioneering work of Deegan et al. [Nature 389, (1997)] showed how a drying sessile droplet suspension of particles presents a maximum evaporating flux at its contact line which drags liquid and particles creating the well known coffee stain ring. In this Fluid Dynamics Video, measurements using micro Particle Image Velocimetry and Particle Tracking clearly show an avalanche of particles being dragged in the last moments, for vanishing contact angles and droplet height. This explains the different characteristic packing of the particles in the layers of the ring: the outer one resembles a crystalline array, while the inner one looks more like a jammed granular fluid. Using the basic hydrodynamic model used by Deegan et al. [Phys. Rev. E 62, (2000)] it will be shown how the liquid radial velocity diverges as the droplet life comes to an end, yielding a good comparison with the experimental data.

  10. Current progress and future perspectives for organic/inorganic perovskite solar cells

    Boix, Pablo P.; Kazuteru Nonomura; Nripan Mathews; Subodh G. Mhaisalkar

    2014-01-01

    The recent emergence of efficient solar cells based on organic/inorganic lead halide perovskite absorbers promises to transform the fields of dye-sensitized, organic, and thin film solar cells. Solution processed photovoltaics incorporating perovskite absorbers have achieved efficiencies of 15% [1] in solid-state device configurations, superseding liquid dye sensitized solar cell (DSC), evaporated and tandem organic solar cells, as well as various thin film photovoltaics; thus establishing pe...

  11. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model

    Sutanto, S. J.; Wenninger, J.; Coenders-Gerrits, A. M. J.; Uhlenbrook, S.

    2012-08-01

    Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured) was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d-1 into 0.4 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.6 mm d-1 for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d-1 into 1 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.3 mm d-1 for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.

  12. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  13. Solar Energy.

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  14. Solar Combisystems

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  15. Solar energy

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  16. Forward-backward emission of target evaporated evaporated fragments at high energy nucleus-nucleus collisions

    Zhang, Zhi; Zhang, Dong-Hai

    2015-01-01

    The multiplicity distribution, multiplicity moment, scaled variance, entropy and reduced entropy of target evaporated fragment emitted in forward and backward hemispheres in 12 A GeV $^{4}$He, 3.7 A GeV $^{16}$O, 60 A GeV $^{16}$O, 1.7 A GeV $^{84}$Kr and 10.7 A GeV $^{197}$Au induced emulsion heavy targets (AgBr) interactions are investigated. It is found that the multiplicity distribution of target evaporated fragments emitted in forward and backward hemispheres can be fitted by a Gaussian distribution. The multiplicity moments of target evaporated particles emitted in forward and backward hemispheres increase with the order of the moment {\\em q}, and second-order multiplicity moment is energy independent over the entire energy for all the interactions in the forward and backward hemisphere respectively. The scaled variance, a direct measure of multiplicity fluctuations, is close to one for all the interactions which may be said that there is a feeble correlation among the produced particles. The entropy of...

  17. Treatment of landfill leachate using a solar destillar

    José Fernando Thomé Jucá

    2012-04-01

    Full Text Available The subject of this research was to build, develop, evaluate and optimize a system of natural evaporation of leachate, to reduce the organic loads. Physical and chemical microbiological parameters were monitored during the experiment to evaluate the system performance. The solar radiation and rainfall influence on the evaporator was investigated. The results showed 100% reduction of the turbidity, color and total solids. The values of BOD, COD, thermotolerants and total coliforms in the treated effluent had concentrations that meet the Brazilian Federal Environmental Council (CONAMA standards. Based on the results, it was concluded that the natural solar system was adequate for small landfills.

  18. Gauge theories, black hole evaporation and cosmic censorship

    Recent work of Linde, which suggests that gauge theories modify the effective gravitational constant, are applied to the theory of black hole evaporation. Considerable modification of the late stages of evaporation are predicted. Contrary to expectations, the black hole never attains a sufficient temperature to enter the antigravity regime, which would represent a failure of cosmic censorship. (orig.)

  19. Non-Equilibrium Universe and Black Hole Evaporation

    Vilja, I.

    1998-01-01

    The evaporation of the black holes during the very early universe is studied. Starting from black hole filled universe, the distiributions of particle species are calculated and showed, that they differ remarkably from the corresponding equilibrium distributions. This may have great impact to the physics of the very early universe. Also the evolution of the universe during the evaporation has been studied.

  20. Small Scale Evaporation Kinetics of a Binary Fluid Mixture

    Basdeo, Carl; Ye, Dezhuang; Kalonia, Devendra; Fan, Tai-Hsi; Mechanical Engineering Team; Pharmaceutical Sciences Collaboration

    2013-03-01

    Evaporation induces a concentrating effect in liquid mixtures. The transient process has significant influence on the dynamic behaviors of a complex fluid. To simultaneously investigate the fluid properties and small-scale evaporation kinetics during the transient process, the quartz crystal microbalance is applied to a binary mixture droplet of light alcohols including both a single volatile component (a fast evaporation followed by a slow evaporation) and a mixture of two volatile components with comparable evaporation rates. The density and viscosity stratification are evaluated by the shear wave, and the evaporation kinetics is measured by the resonant signature of the acoustic p-wave. The evaporation flux can be precisely determined by the resonant frequency spikes and the complex impedance. To predict the concentration field, the moving interface, and the precision evaporation kinetics of the mixture, a multiphase model is developed to interpret the complex impedance signals based on the underlying mass and momentum transport phenomena. The experimental method and theoretical model are developed for better characterizing and understanding of the drying process involving liquid mixtures of protein pharmaceuticals.

  1. Evaporation of Water in Association with Different Forms of Carbon

    S. P. Anand

    1979-04-01

    Full Text Available Evaporation of water in association with graphic, charcoal powder and lamp black in different states external coating, internal coating and in the spread-over-state was studied. Lamp black in the spread-over-state has been observed as the best accelerator to evaporation when compared to other two under similar conditions.

  2. PRODUCTION ENGINEERING AND MARKETING ANALYSIS OF THE ROTATING DISK EVAPORATOR

    Recent EPA-funded research into the onsite, mechanical evaporation of wastewater from single family homes revealed that a rotating disk evaporator (RDE) could function in a nondischarging mode. Such a device has potential use where site limitations preclude conventional methods o...

  3. Multilayer composite material and method for evaporative cooling

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  4. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan;

    allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using...

  5. Measured performance of falling-jet flash evaporators

    Green, H.J.; Olson, D.A.; Bharathan, D.; Johnson, D.H.

    1981-06-01

    The rates of heat transfer and approach to thermal equilibrium of flash evaporators operating at pressures of 2 to 4 kPa are investigated. Experiments were performed to measure heat and mass transfer rates from falling jet evaporators operating in the temperature range of 18/sup 0/ to 30/sup 0/C. The initial experimental results are given and the apparatus is described.

  6. Measured performance of falling-jet flash evaporators

    Green, H. J.; Olson, D. A.; Bharathan, D.; Johnson, D. H.

    1981-06-01

    The rates of heat transfer and approach to thermal equilibrium of flash evaporators operating at pressures of 2 to 4 kPa were investigated. Heat and mass transfer rates from falling jet evaporators operating in the temperature range of 18 to 30 C are measured. The initial experimental results are given and the apparatus is described.

  7. Impacts of Salinity on Soil Hydraulic Properties and Evaporation Fluxes

    Fierro, V.; Cristi Matte, F.; Suarez, F. I.; Munoz, J. F.

    2014-12-01

    Saline soils are common in arid zones, where evaporation from shallow groundwater is generally the main component of the water balance. Thus, to correctly manage water resources in these zones, it is important to quantify the evaporation fluxes. Evaporation from saline soils is a complex process that couples the movement of salts, heat, liquid water and water vapor, and strongly depends on the soil water content. Precipitation/dissolution reactions can change the soil structure and alter flow paths, modifying evaporation fluxes. We utilized the HYDRUS-1D model to investigate the effects of salinity on soil hydraulic properties and evaporation fluxes. HYDRUS-1D simulates the transport of liquid water, water vapor, and heat, and can incorporate precipitation/dissolution reactions of the major ions. To run the model, we determined the water retention curve for a soil with different salinities; and we used meteorological forcing from an experimental site from the Atacama Desert. It was found that higher sodium adsorption ratios in the soil increase the soil water retention capacity. Also, it was found that evaporation fluxes increase salts concentration near the soil surface, changing the soil's water retention capacity in that zone. Finally, movement of salts causes differences in evaporation fluxes. It is thus necessary to incorporate salt precipitation/dissolution reactions and its effects on the water retention curve to correctly simulate evaporation in saline soils

  8. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  9. Droplet Evaporator For High-Capacity Heat Transfer

    Valenzuela, Javier A.

    1993-01-01

    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  10. Solar thanksgiving; Solarer Erntedank

    Zehner, Mike; Doll, Andreas [Hochschule Muenchen (Germany). Arbeitsgruppe PV-Systeme; Hammer, Annette [Oldenburg Univ. (Germany). Arbeitsgruppe Energiemeteorologie; Heesen, Henrik te [Meteocontrol GmbH, Augsburg (Germany). Forschungsprojekt zur Analyse von Fernueberwachungsmessdaten; Herbort, Volker [Meteocontrol GmbH, Augsburg (Germany). Bereich Data-Mining-Vorhaben; Mariani, Marco [Meteocontrol GmbH, Augsburg (Germany). Abt. PV Ertragsgutachten und Prognosen

    2012-03-09

    While the 'felt' weather in 2011 was quite rainy, it was in fact one of the five hottest years since 1881, with many sunshine hours. This is reflected in photovoltaic power generation in 2011. Many owners of PV systems were surprised to find record solar power generation figures. In many cases, even the best case scenarios were topped.

  11. Falling film evaporators: organic solvent regeneration in nuclear fuel reprocessing

    The aim of this work was to improve knowledge about working of falling film evaporators used in nuclear fuel reprocessing plants for organic solvent regeneration. The first part deals with a non evaporation film. An original film thickness measuring technique was used; infrared thermography. It gave indications on hydrodynamics and wave amplitude and pointed out thermocapillary forces to be the cause of bad wetting of the heated wall. By another way we showed that a small slit spacing on the film distributor, an enhanced surface roughness and an important liquid flow rate favour a better wetting. The second part deals with evaporation of a binary solvent mixture. Experiments in an industrial evaporator corroborated the fact that it is essential for the efficiency of the apparatus to work at high flow rates. We propose an over-simple model which can be used to estimate performances of co-current falling film evaporators of the process

  12. A new evaporation duct climatology over the South China Sea

    Shi, Yang; Yang, Kunde; Yang, Yixin; Ma, Yuanliang

    2015-10-01

    The climatology of evaporation ducts is important for shipborne electromagnetic system design and application. The evaporation duct climatology that is currently used for such applications was developed in the mid 1980s; this study presents efforts to improve it over the South China Sea (SCS) by using a state-of-the-art evaporation duct model and an improved meteorology dataset. This new climatology provides better evaporation duct height (EDH) data over the SCS, at a higher resolution of 0.312°×0.313°. A comparison between the new climatology and the old one is performed. The monthly average EDH in the new climatology is between 10 and 12 m over the SCS, higher than that in the old climatology. The spatiotemporal characteristics of the evaporation duct over the SCS in different months are analyzed in detail, based on the new climatology.

  13. Evaporation and skin penetration characteristics of mosquito repellent formulations

    Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S.

    1989-03-01

    Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined, neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss.

  14. Evaporation from Banksia woodland on a groundwater mound

    Farrington, P.; Greenwood, E. A. N.; Bartle, G. A.; Beresford, J. D.; Watson, G. D.

    1989-01-01

    Annual evaporation from a site within a Banksia woodland on a groundwater mound near Perth, Western Australia, was estimated from measurements of daily evaporation by ventilated chambers on fourteen occasions during a 12-month period. The total evaporation for this period was estimated to be 666 mm (77% of annual rainfall). About two-thirds of the total evaporation came from the ground flora, one-fifth from Banksia trees, and the remainder from the tall shrub Adenanthos cygnorum. Depth to water table, which ranged from 4 to 12 m over the site, had little effect on total evaporation. This work suggests that regular reduction in ground flora foliage, for example, by controlled burning could increase recharge.

  15. Evaporation and skin penetration characteristics of mosquito repellent formulations

    Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined, neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss

  16. Ensemble Evaporation Predictions from Remote Sensing in the Nile Basin

    Bastiaanssen, W. G.; Hofste, R.; Senay, G. B.; Anderson, M. C.; van Dijk, A.; Pelgrum, H.; Seid, A. H.; Miralles, D.; Hurk, B. V. D.; Wada, Y.; Rebelo, L. M.; Smakhtin, V.

    2014-12-01

    Water scarcity is increasing globally and is most evident in arid zones. Most rainfall is evaporated and runoff coefficients of 5 to 10% are common in arid zone river basins. Evaporation is the most important hydrological process, not only because of its magnitude, but also because it can be managed and regulated by withdrawals, irrigation equipment, agricultural practices, land use changes and soil treatments. Hence, evaporation can be modified and the looming water crisis prompt us to think more careful on how water is consumed and the services and benefits we render on return in terms of agricultural production, ecosystem services, hydropower, leisure etc. Several lead research groups have developed global evaporation products, at least for the African continent. Most of these products have a pixel size varying between 1 to 3 km, and this is a reasonable tradeoff between what is technically preferred (evaporation by land use class) and what can be operationally inferred from the newest earth observation satellites (100 to 1000 m pixels with revisit time of 1 to 5 days). The evaporation variability from monthly SSEBop, ALEXI, CMRSET, NBI version of MOD16, GLEAM and LandSAF model outputs for the main land use classes of the Nile will be demonstrated for the period 2005 to 2012. For 2007, there is also an evaporation data set from ETLook available. The largest variabilities occur on irrigated land, open water bodies and flood plains. The evaporation predictions are compared against flux tower data, and the water balance of paired catchments in Ethiopia and Southern Sudan. It is proposed to use ensemble averages and spreads of actual evaporation values for applications in water management, rather than using one single value and one single model. Some first thoughts on ensemble averaging will be provided. Ensemble evaporation values will be applied in the Water Accounting Plus (WA+) system, being a new analytical framework for water resources assessment reporting

  17. Evaporation from young secondary vegetation in eastern Amazonia

    Hölscher, D.; de A. Sá, T. D.; Bastos, T. X.; Denich, M.; Fölster, H.

    1997-06-01

    The fallow vegetation of the slash and burn agriculture in eastern Amazonia is dominated by shrubs and trees. This study of evaporation from such secondary vegetation started when the above-ground parts of the vegetation were approximately 2.5 years old. The results are based mainly on a data set containing 231 days of micrometeorological observations in the period from April 1992 to April 1993. Evaporation values obtained with the Penman open water formula ranged from 1.1 to 7.2 mm d-1, with an overall mean of 4.6 mm d-1. Actual evaporation, calculated with the Bowen ratio approach, varied from 1.2 to 5.9 mm d-1, with an overall mean of 3.9 mm d-1. Due to the high net radiation and vapour pressure deficit, and the evenly distributed moderate rainfall, the actual evaporation was constantly high during the transition between the rainy and dry seasons. In a relatively dry period, water limitations were indicated by a decrease in the actual evaporation compared with the Penman open water evaporation. Day-to-day variability was pronounced in the rainy season. An overall average of 79% of the net radiation was converted to latent heat flux. The annual evaporation was calculated by an interpolation of missing data with the continuously observed net radiation. The total actual evaporation was estimated to be 1364 mm a-1, against rainfall of 1819 mm a-1; the remaining 455 mm were allocated to drainage. When actual evaporation exceeded rainfall during the dry season, there had to be access to water storage down to depths of more than 3 m. We conclude that the young secondary vegetation can re-evaporate an important part of the rainfall input in spite of the marked seasonal distribution of rainfall. Possible regional climatic changes due to deforestation may be less severe in areas where woody secondary vegetation plays an important role in land cover.

  18. Modeling solar radiation at the Earth's surface recent advances

    Badescu, Viorel

    2008-01-01

    Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; weather and climate prediction models; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research. Solar radiation data must be provided in a variety of f

  19. Teleporting entanglement during black hole evaporation

    Brustein, Ram

    2015-01-01

    The unitary evaporation of a black hole (BH) in an initially pure state must lead to the eventual purification of the emitted radiation. It follows that the late radiation has to be entangled with the early radiation and, as a consequence, the entanglement among the Hawking pair partners has to decrease continuously from maximal to vanishing during the BH's life span. Starting from the basic premise that both the horizon radius and the center of mass of a finite-mass BH are fluctuating quantum mechanically, we show how this process is realized. First, it is shown that the horizon fluctuations induce a small amount of variance in the total linear momentum of each created pair. This is in contrast to the case of an infinitely massive BH, for which the total momentum of the produced pair vanishes exactly on account of momentum conservation. This variance leads to a random recoil of the BH during each emission and, as a result, the center of mass of the BH undergoes a quantum random walk. Consequently, the uncert...

  20. Atmospheric impacts of evaporative cooling systems

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  1. Black hole evaporation without an event horizon

    Bardeen, James M

    2014-01-01

    A reformulation of the calculation of the semi-classical energy-momentum tensor on a Schwarzschild background, the Bousso covariant entropy bound, and the ER=EPR conjecture of Maldacena and Susskind taken together suggest a scenario for the evaporation of a large spherically symmetric black hole formed in gravitational collapse in which 1) the classical r = 0 singularity is replaced by an initially small non-singular core inside an inner apparent horizon, 2) the radius of the core grows with time due to the increasing entanglement between Hawking radiation quanta outside the black hole and the Hawking partner quanta in the core contributing to the quantum back-reaction, and 3) by the Page time the trapped surfaces disappear and all quantum information stored in the interior is free to escape. The scenario preserves unitarity without any need for a "firewall" in the vicinity of the outer apparent horizon. Qbits in the Hawking radiation are never mutually entangled, and their number never exceeds the Bekenstein...

  2. Quantum evaporation of flavor-mixed particles

    Medvedev, Mikhail V.

    2014-03-01

    Particles whose propagation (mass) and interaction (flavor) bases are misaligned are mixed, e.g., neutrinos, quarks, Kaons, etc. We show that interactions (elastic scattering) of individual mass-eigenstates can result in their inter-conversions. Most intriguing and counter-intuitive implication of this process is a new process, which we refer to as the ``quantum evaporation.'' Consider a mixed particle trapped in a gravitational potential. If such a particle scatters off something (e.g., from another mixed particle) elastically from time to time, this particle (or both particles, respectively) can eventually escape to infinity with no extra energy supplied. That is as if a ``flavor-mixed satellite'' hauled along a bumpy road puts itself in space without a rocket, fuel, etc. Of course, the process at hand is entirely quantum and has no counterpart in classical mechanics. It also has nothing to do with tunneling or other known processes. We discuss some implications to the dark matter physics, cosmology and cosmic neutrino background. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  3. Solar Systems at Last

    Villaver, Eva

    2015-12-01

    Planet host stars, the Sun among them, will eventually evolve into giants, through the Planetary Nebula phase to finally end their lives as white dwarfs. Planets will be engulfed along the giant phases, evaporated during the Planetary Nebula phase, and possibly destabilized when the star enters the white dwarf cooling track. A large number of planets will eventually be destroyed and there is a lot to be learned from that. The conditions on the planet surface of those that survive are expected to be modified as well as the result of the evolution of the star. I will discuss the new limits that the theoretical studies allow us to set on the survival and habitability of planets as the star runs out of its hydrogen fuel and the possibilities for the formation of second generation planets. Finally, I will present new results on the real consequences that the presence and destruction of these Extreme Solar systems have in the evolution of stars.

  4. Relationships between evaporation and moisture content in historical masonry

    López-González, Laura; Ortiz de Cosca, Raquel Otero; García-Morales, Soledad; Gomez-Heras, Miguel

    2016-04-01

    The "materiaĺs evaporative behaviour" describe how on site materials evaporate in real conditions, not only due to indoor conditions (air temperature and humidity ratio, etc), but also because it is influenced by multiple factors (building systems, materials, environmental conditions, etc), some of which can difficult the evaporation process, such as as hygroscopic salts presence. This evaporative behaviour may or may not have a direct relation to the actual moisture within the walls. This paper presents thermohygrometric data and a electrical resistivity survey from a half-buried wall of the Hermit of Humilladero (Ávila, Spain 16th century), a building that displays intense moisture-related decay in that wall. Thermohygrometric data allowed characterising the evaporative behaviour while the resistivity survey allowed inferring the moisture in the masonry. Salt's presence was also mapped. These sets of data were statistically analysed to observe the significance of the correlation, if any and characterise the evaporative behaviour by discerning the different information obtained from each technique. The different measurements obtained by these techniques were combined using GIS software. This allowed obtaining maps that combine evaporation and moisture data represented by "factors" (i.e. a global value obtained as a sum of different properties). The combination of these tests allowed a better characterization and understanding of wetting and drying cycles aiming to develop a correct diagnosis system. Research funded by Madrid's Regional Government project Geomateriales 2 S2013/MIT-2914

  5. Unsaturated Hydraulic Conductivity for Evaporation in Large scale Heterogeneous Soils

    Sun, D.; Zhu, J.

    2014-12-01

    In this study we aim to provide some practical guidelines of how the commonly used simple averaging schemes (arithmetic, geometric, or harmonic mean) perform in simulating large scale evaporation in a large scale heterogeneous landscape. Previous studies on hydraulic property upscaling focusing on steady state flux exchanges illustrated that an effective hydraulic property is usually more difficult to define for evaporation. This study focuses on upscaling hydraulic properties of large scale transient evaporation dynamics using the idea of the stream tube approach. Specifically, the two main objectives are: (1) if the three simple averaging schemes (i.e., arithmetic, geometric and harmonic means) of hydraulic parameters are appropriate in representing large scale evaporation processes, and (2) how the applicability of these simple averaging schemes depends on the time scale of evaporation processes in heterogeneous soils. Multiple realizations of local evaporation processes are carried out using HYDRUS-1D computational code (Simunek et al, 1998). The three averaging schemes of soil hydraulic parameters were used to simulate the cumulative flux exchange, which is then compared with the large scale average cumulative flux. The sensitivity of the relative errors to the time frame of evaporation processes is also discussed.

  6. Novel technology for hydrothermal treatment of NPP evaporator concentrates

    A novel technology was developed for treatment of evaporator concentrates produced as a result of operation of evaporation devices comprising the main component of special water purification systems of nuclear power plants (NPP). The developed technology includes a hydrothermal (T=250-300 deg. C and P=80-120 bar) processing of evaporator concentrates in oxidation medium in order to destruct stable organic complexes of cobalt radionuclides and remove these radionuclides by oxide materials formed during such a processing. The cesium radionuclides contained in evaporator concentrates are removed by a conventional method-through application of one of the developed composite sorbents with ferrocyanides of transition metals used as active agents. Extensive laboratory studies of the processes occurring in evaporator concentrates under hydrothermal conditions were performed. It was shown that hydrothermal oxidation of evaporator concentrates has a number of advantages as compared to traditional oxidation methods (ozonization, photo-catalytic, electrochemical and plasma oxidation). A laboratory installation was built for the flow-type hydrothermal oxidation of NPP evaporator concentrates. The obtained experimental results showed good prospects for the developed method application. On the basis of the results obtained, a pilot installation of productivity up to 15 l/hour was developed and built in order to work out the technology of evaporator concentrates hydrothermal treatment. The pilot tests of the hydrothermal technology for evaporator concentrates hydrothermal treatment were performed for 6 months in 2006 at the 1. reactor unit of the Novovoronezhskaya NPP (Voronezh Region, Russia). Optimal technological regimes were determined, and estimations of the economic soundness of the technology were made. The advantages of the presented technology in terms of management of concentrated liquid radioactive wastes (LRW) at nuclear cycle facilities, as compared to other methods

  7. MEMBRANOUS FLOWS IN GAS-LIQUID COLLECTORS-REGENERATORS OF SOLAR ABSORPTIVE SYSTEMS FEATURES

    Doroshenko А.V.

    2009-12-01

    Full Text Available Article is devoted to the creation of new generation of solar collectors of the gas-liquid type, intended for use in alternative refrigerating and conditioning systems of drying-evaporating type with direct solar regeneration of absorbent. Special attention is given to the study of membranous flows features on inclined surfaces, including questions of such flows stability.

  8. Solar Features

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  9. Solar Indices

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  10. Solar Imagery

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  11. Fate of Kaluza-Klein black holes: Evaporation or excision?

    We study the evaporation process of black strings which are typical examples of Kaluza-Klein black holes. Taking into account the backreaction of the Hawking radiation, we deduce the evolution equation for the radion field. By solving the evolution equation, we find that the shape of the internal space is necked by the Hawking radiation and the amount of the deformation becomes large as the evaporation proceeds. Based on this analysis, we speculate that the Kaluza-Klein black holes would be excised from the Kaluza-Klein spacetime before the onset of the Gregory-Laflamme instability and therefore before the evaporation

  12. Surprises in the evaporation of 2D black holes.

    Ashtekar, Abhay; Pretorius, Frans; Ramazanoğlu, Fethi M

    2011-04-22

    Quantum evaporation of Callan-Giddings-Harvey-Strominger black holes is analyzed in the mean-field approximation, incorporating backreaction. Detailed analytical and numerical calculations show that, while some of the assumptions underlying the standard evaporation paradigm are borne out, several are not. Furthermore, if the black hole is initially macroscopic, the evaporation process exhibits remarkable universal properties (which are distinct from the features observed in the simplified, exactly soluble models). Finally, our results provide support for the full quantum gravity scenario recently developed by Ashtekar, Taveras, and Varadarajan. PMID:21599354

  13. Millimetre-wave propagation in the evaporation duct

    Levy, M. F.; Craig, K. H.

    1990-03-01

    Recent developments in propagation modeling based on the Parabolic Equation Method allow the forecasting of two-dimensional antenna coverage diagrams at millimeter wavelengths, in a dispersive atmosphere with arbitrary two-dimensional variation of the refractive index. The model was applied successfully to mm-wave propagation in the evaporation duct. The evaporation duct height is not sufficient to characterize mm-wave propagation, and information on the water vapor content is essential for the correct modeling of atmospheric absorption. Turbulence simulations were carried out, showing marked scintillation, effects in the evaporation duct. The method can be applied to arbitrary refractivity spectra, and gives a complete numerical description of the field statistics.

  14. Experiments on high power EB evaporation of niobium

    Full text: The versatility of electron beam evaporation makes the deposition of many new and unusual materials possible. This technique offers freedom from contamination and precise control. High power electron guns are especially used for obtaining high evaporation rates for large area coatings. This paper deals with the coating experiments carried out on an indigenously developed high power strip electron gun with niobium as evaporant at 40 kW on S.S. substrate. The practical problems of conditioning the gun and venting the vacuum system after the high power operation are also discussed. The coating rate was calculated by weight difference method

  15. (Anti-)Evaporation of Schwarzschild-de Sitter Black Holes

    Bousso, R; Bousso, Raphael; Hawking, Stephen

    1998-01-01

    We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evaporate. However, there is a different perturbative mode that leads to evaporation. We show that this mode will always be excited when a pair of cosmological holes nucleates.

  16. (Anti-)evaporation of Schwarzschild-de Sitter black holes

    Bousso, Raphael; Hawking, Stephen W.

    1998-02-01

    We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evaporate. However, there is a different perturbative mode that leads to evaporation. We show that this mode will always be excited when a pair of cosmological holes nucleates.

  17. Impact, absorption and evaporation of raindrops on building facades

    Abuku, Masaru; Janssen, Hans; Poesen, Jean;

    2009-01-01

    In this paper, the impact, absorption and evaporation of raindrops oil building facades is investigated by experimental and numerical means. Laboratory experiments were carried Out to study the impact of water drops with different diameters, impact speeds and impact angles oil a porous building....... Finally, the experimental and numerical data were used in a more precise three-dimensional simulation of impact, absorption and evaporation of random and discrete wind-driven raindrops. This was compared With the common one-dimensional simulation of absorption and evaporation at the facade considering a...

  18. Modelling of a cross flow evaporator for CSP application

    Sørensen, Kim; Franco, Alessandro; Pelagotti, Leonardo;

    2016-01-01

    ) applications. Heat transfer and pressure drop prediction methods are an important tool for design and modelling of diabatic, two-phase, shell-side flow over a horizontal plain tubes bundle for a vertical up-flow evaporator. With the objective of developing a model for a specific type of cross flow evaporator...... influence on the analysis of the performance of the evaporator, their impact on significant design variables and the effective lifetime of critical components in different operating conditions, simulating the daily start-up procedures of the steam generator is evaluated. The importance of a good calibration...

  19. Modelling of boiler heating surfaces and evaporator circuits

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    Dynamic models for simulating boiler performance have been developed. Models for the flue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the...... circulation in the evaporator circuit. The models have been developed as Differential-Algebraic-Equations (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for the relatively stiff equation systems. Experimental verification is planned at a...... full scale plant equipped with instrumentation to verify heat transfer and circulation in the evaporator circuit....

  20. Evaporation residues by the formation of heavy nuclei

    The 16O+208Pb→224Th and 40Ar+208Pb→248Fm reactions are investigated in order to analyse the fusion - fission and fusion - evaporation competition, at energies below and above the fusion barrier. The dynamical effects on the fission process and the evaporation residue cross sections after xn emission are also evaluated. By studying the evaporation residue cross sections, after the (2-4)n emission from the compound system it is possible to investigate the 292114 superheavy formation by the 48Ca+244Pu reaction. (author)

  1. Modelline of oil evaporation by the Fingas approach

    Šaponja, Maja

    2014-01-01

    Evaporation is one of the most important processes during an oil spill and needs to be included into the oil spill models. The oil-spill models mostly employ either the Mackay or the Fingas method for description and simulations of evaporation. The Mackay method is a boundary-layer regulated method based on observations of water evaporation. The Fingas approach is not regulated with the boundary layer. NAFTA3d is a 3D Lagrangean numerical model for oil-spill simulations, developed at the UL F...

  2. Analysis of Evaporation Characteristics in Nanjing City during 1985-2010

    2011-01-01

    [Objective] The characteristics of the changes of evaporation in Nanjing City from 1985 to 2010 were expounded.[Method] By dint of the evaporation data of the E601B evaporator of Nanjing during 1985-2010,an investigation was performed to analyze the variation characteristics of Nanjing evaporation and the reasons based on linear regression,tendency analysis and anomaly analysis methods.[Result] Results showed that the annual and seasonal evaporation in Nanjing was increasing,especially the evaporation in sp...

  3. Black hole evaporation in an expanding universe

    We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order 10-5(M/106Mo-dot)1/3(t/14Gyr)-1/3 but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with the radiation from a moving mirror in a flat spacetime. For the significant accretion case, we consider the Sultana-Dyer solution, where a black hole tends to increase its mass in proportion to the cosmological scale factor. In this model, we find that the radiation power is apparently the same as the Hawking radiation from the Schwarzschild black hole of which mass is that of the growing mass at each moment. Hence, the energy loss rate decreases and tends to vanish as time proceeds. Consequently, the energy loss due to evaporation is insignificant compared to huge mass accretion onto the black hole. Based on this model, we propose a definition of quasi-equilibrium temperature for general conformal stationary black holes

  4. PROCESSES OF HEAT-MASS-TRANSFER IN APPARATUS OF SOLAR ABSORBING REFRIGERATION SYSTEMS

    Doroshenko A.V.

    2014-12-01

    Full Text Available Ideology of development of the solar refrigeration systems and systems of air-conditioning, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution, is presented in the article. The processes of joint heat-mass-transfer are considered in the direct and indirect types of evaporated coolers taking into account the phenomenon of re-condensation of aquatic steams at the low temperature evaporated cooling of environments. The pre-liminary analysis of possibilities of the solar systems is executed as it applies in relation to the tasks of cooling of envi-ronments and air-conditioning systems.

  5. Solar urticaria

    Srinivas C

    1995-01-01

    Full Text Available A 35-year-old female and a 41-year-old male presented with clinical features suggestive of solar urticaria. The diagnosis of solar urticaria and the effectiveness of a combination of H1 and H2 blocking antihistamines were confirmed by phototesting with a solar simulator

  6. Solar Equipment

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  7. Design and Simulation of an Absorption Diffusion Solar Refrigeration Unit

    Chaouachi, B; S. Gabsi

    2007-01-01

    The purpose of this study was the design and the simulation of an absorption diffusion refrigerator using solar as source of energy, for domestic use. The design holds account about the climatic conditions and the unit cost due to technical constraints imposed by the technology of the various components of the installation such as the solar generator, the condenser, the absorber and the evaporator. Mass and energy conservation equations were developed for each component of the cycle and solve...

  8. PERFORMANCE STUDY OF A TWO STAGE SOLAR ADSORPTION REFRIGERATION SYSTEM

    BAIJU. V; Muraleedharan, C.

    2011-01-01

    The present study deals with the performance of a two stage solar adsorption refrigeration system with activated carbon-methanol pair investigated experimentally. Such a system was fabricated and tested under the conditions of National Institute of Technology Calicut, Kerala, India. The system consists of a parabolic solar concentrator,two water tanks, two adsorbent beds, condenser, expansion device, evaporator and accumulator. In this particular system the second water tank is act as a sensi...

  9. Partitioning of evaporation into transpiration, soil evaporation and interception: a combination of hydrometric measurements and stable isotope analyses

    S. J. Sutanto

    2012-03-01

    Full Text Available Best practice agriculture is the key to overcome the food security problem through improvement of water use efficiency. Therefore, knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared four different methods to estimate evaporation fluxes during simulated summer conditions in a grassland lysimeter in the UNESCO-IHE laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation was measured and the Penman-Monteith equation were applied to determine total evaporation. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The average total evaporation was 3.2 mm d−1 calculated with the water balance, 3.4 mm d−1 for the Penman-Monteith equation, 3.4 mm d−1 calculated with HYDRUS-1D, and 3.1 mm d−1 with the isotope mass balance. By use of the isotopes, we separated the total evaporation on average into 2.4 mm d−1 transpiration (77.7%, 0.4 mm d−1 soil evaporation (12.2%, and 0.3 mm d−1 interception (10.1%.

  10. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model

    S. J. Sutanto

    2012-08-01

    Full Text Available Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d−1 into 0.4 mm d−1 for soil evaporation, 0.3 mm d−1 for interception and 2.6 mm d−1 for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d−1 into 1 mm d−1 for soil evaporation, 0.3 mm d−1 for interception and 2.3 mm d−1 for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.

  11. Solar Indices - Solar Radio Flux

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  12. Environmental isotope profiles and evaporation in shallow water table soils

    Environmental isotope methods have been employed to evaluate the processes of evaporation and soil salinisation in the Nile Delta. Stable isotope profiles (δ18O and δ2H) from three sites were analysed using a published isothermal model that analyses the steady-state isotopic profile in the unsaturated zone and provides an estimate of the evaporation rate. Evaporation rates estimated by this method at the three sites range between 60 and 98 mm y-1 which translates to an estimate of net water loss of one billion cubic meters per year from fallow soils on the Nile delta. Capillary rise of water through the root zone during the crop growing season is estimated to be three times greater than evaporation rate estimate and a modified water management strategy could be adopted in order to optimize water use and its management on the regional scale. (author)

  13. Evaporation of mercury impurity from liquid lead–bismuth eutectic

    The equilibrium evaporation of mercury from dilute solutions in liquid lead–bismuth eutectic (LBE) was studied in argon atmosphere. Mercury present as impurity in LBE was evaporated and detected by atomic fluorescence spectroscopy. A method which could accurately simulate the experimental data was developed. Coefficients of the Henry constant temperature correlation for mercury dissolved in LBE were determined. Experiments with samples from several different batches of LBE revealed that mercury at mole fractions between 10−6 and 10−12 and temperatures between 150 and 350 °C evaporated from liquid LBE close to ideal behavior. Evaporation of mercury from solid LBE on the other hand was unexpectedly high. These results are important for safety evaluations of LBE based spallation targets and accelerator driven systems

  14. Removal of Sulfate Ion From AN-107 by Evaporation

    Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid

  15. Thermodynamic performance testing of the orbiter flash evaporator system

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  16. Concentration by evaporation of low and medium activity radioactive effluents

    Evaporation is one of the radioactive effluent treatments used, enabling a purified distillate to be obtained and giving excellent decontamination factors for all the radionuclides present, if the pH conditions are correctly chosen and in the absence of volatile solvents. SGN has acquired a wide experience in the concentration of radioactive effluents and possesses a specific know-how in the field of droplet abatement and demisting for this application. The report describes the evaporation system optimized for the treatment of low and medium activity effluents, developed by SGN, which includes a special highly performant scrubbing column and, if necessary an additional lamella separator for droplet abatement. It also presents the ACEREN evaporator offered by SGN under CEA licence and based on the principle of a thin film natural evaporation at low temperature, without condensation of vapors

  17. Concentration by evaporation of low and medium activity radioactive effluents

    Evaporation is one of the radioactive effluent treatments used, enabling a purified distillate to be obtained and giving excellent decontamination factors for all the radionuclides present, if the pH conditions are correctly chosen and in the absence of volatile solvents. SGN has acquired a wide experience in the concentration of radioactive effluents and possesses a specific know-how in the field of droplet abatement and demisting for this application. The report describes the evaporation system optimized for the treatment of low and medium activity effluents, developed by SGN, which includes the combination of a special highly performant scrubbing column and a lamella separator for droplet abatement. It also present the ACEREN evaporator offered by SGN under CEA licence and based on the principle of a thin film natural evaporation at low temperature, without condensation of vapours

  18. Massive antigravity field and incomplete black hole evaporation

    Massa, Corrado

    2008-04-01

    If gravity is a mixture of the ordinary attractive force carried by the massless graviton, and of a repulsive force carried by a particle with nonzero mass, an evaporating black hole might leave a stable remnant.

  19. STUDY ON NANOMETER ZINC PARTICLES FABRICATED BY GAS EVAPORATION METHOD

    A.A.A. Saleh; X.J. Zhai; Y.C. Zhai; Y. Fu; A.L. Zhang

    2003-01-01

    Nanometer Zn particles with mean diameters 12-100nm made by evaporating its powders in argon gas were studied mainly by X-ray diffraction and electron microscopy.They are collected at various distances and those factors influencing the mean particle size were studied. The optimal synthetic conditions were obtained, i.e., evaporation temperature is 1200℃; argon flow rate is 0.4m3/h; amount of powder charged is 3g;distance from evaporation source is 10cm. It was found that the size of particles was governed by argon flow rate, evaporation temperature, amount of metal charged and distance from the source. The size increases remarkably with distance in the space where no metal vapor exists. This implies that the crystallites grow by coalescence.Electron micrographs and diffraction patterns are reproduced to show the size, shape and state of oxidations. Nanoparticles with definite crystal habits were sometimes observed among those with irregular ones.

  20. Modelling distribution of evaporating CO2 in parallel minichannels

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2010-01-01

    The effects of airflow non-uniformity and uneven inlet qualities on the performance of a minichannel evaporator with parallel channels, using CO2 as refrigerant, are investigated numerically. For this purpose a one-dimensional discretised steady-state model was developed, applying well-known empi......The effects of airflow non-uniformity and uneven inlet qualities on the performance of a minichannel evaporator with parallel channels, using CO2 as refrigerant, are investigated numerically. For this purpose a one-dimensional discretised steady-state model was developed, applying well...... maldistribution of the refrigerant and considerable capacity reduction of the evaporator. Uneven inlet ualities to the different channels show only minor effects on the refrigerant distribution and evaporator capacity as long as the channels are vertically oriented with CO2 flowing upwards. For horizontal...