WorldWideScience

Sample records for 15n chemical shifts

  1. Qualitative Study of Substituent Effects on NMR 15N and 17O Chemical Shifts

    Contreras, Rubén H.; Llorente, Tomás; Pagola, Gabriel I.; Bustamante, Manuel G.; Pasqualini, Enrique E.; Melo, Juan I.; Tormena, Cláudio F.

    2009-08-01

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-β substituent effects on both 15N and 17O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and σ-hyperconjugative interactions in saturated multicyclic compounds.

  2. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds. PMID:19685922

  3. Predicting 15N chemical shifts in proteins using the preceding residue-specific individual shielding surfaces from φ, ψi-1, and χ1torsion angles

    Empirical shielding surfaces are most commonly used to predict chemical shifts in proteins from known backbone torsion angles, φ and ψ. However, the prediction of 15N chemical shifts using this technique is significantly poorer, compared to that for the other nuclei such as 1Hα, 13Cα, and 13Cβ. In this study, we investigated the effects from the preceding residue and the side-chain geometry, χ1, on 15N chemical shifts by statistical methods. For an amino acid sequence XY, the 15N chemical shift of Y is expressed as a function of the amino acid types of X and Y, as well as the backbone torsion angles, φ and ψi-1. Accordingly, 380 empirical 'Preceding Residue Specific Individual (PRSI)' 15N chemical shift shielding surfaces, representing all the combinations of X and Y (except for Y=Pro), were built and used to predict 15N chemical shift from φ and ψi-1. We further investigated the χ1 effects, which were found to account for differences in 15N chemical shifts by ∼5 ppm for amino acids Val, Ile, Thr, Phe, His, Tyr, and Trp. Taking the χ1 effects into account, the χ1-calibrated PRSI shielding surfaces (XPRSI) were built and used to predict 15N chemical shifts for these amino acids. We demonstrated that 15N chemical shift predictions are significantly improved by incorporating the preceding residue and χ1 effects. The present PRSI and XPRSI shielding surfaces were extensively compared with three recently published programs, SHIFTX (Neal et al., 2003), SHIFTS (Xu and Case, 2001 and 2002), and PROSHIFT (Meiler, 2003) on a set of ten randomly selected proteins. A set of Java programs using XPRSI shielding surfaces to predict 15N chemical shifts in proteins were developed and are freely available for academic users at http://www.pronmr.com or by sending email to one of the authors Yunjun Wang

  4. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  5. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    The 1H, 13C, and 15N NMR spectra of 15N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1H-1H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13C-15N SSCC were determined for 5-trimethylsilylfurfural oxime

  6. Automated prediction of 15N, 13Cα, 13Cβ and 13C' chemical shifts in proteins using a density functional database

    A database of peptide chemical shifts, computed at the density functional level, has been used to develop an algorithm for prediction of 15N and 13C shifts in proteins from their structure; the method is incorporated into a program called SHIFTS (version 4.0). The database was built from the calculated chemical shift patterns of 1335 peptides whose backbone torsion angles are limited to areas of the Ramachandran map around helical and sheet configurations. For each tripeptide in these regions of regular secondary structure (which constitute about 40% of residues in globular proteins) SHIFTS also consults the database for information about sidechain torsion angle effects for the residue of interest and for the preceding residue, and estimates hydrogen bonding effects through an empirical formula that is also based on density functional calculations on peptides. The program optionally searches for alternate side-chain torsion angles that could significantly improve agreement between calculated and observed shifts. The application of the program on 20 proteins shows good consistency with experimental data, with correlation coefficients of 0.92, 0.98, 0.99 and 0.90 and r.m.s. deviations of 1.94, 0.97, 1.05, and 1.08 ppm for 15N, 13Cα, 13Cβ and 13C', respectively. Reference shifts fit to protein data are in good agreement with 'random-coil' values derived from experimental measurements on peptides. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement

  7. (1)H, (13)C, and (15)N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state.

    Lim, Sunghyuk; Yu, Qinhong; Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark; Ames, James B

    2016-04-01

    Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles. Atomic-level structural information for the photoproduct state in this subfamily is not known. Here, we report NMR backbone chemical shift assignments of the light-activated state of NpR6012g4 (BMRB no. 26577) as a first step toward determining its atomic resolution structure. PMID:26537963

  8. (1)H, (15)N and (13)C chemical shift assignment of the Gram-positive conjugative transfer protein TraHpIP501.

    Fercher, Christian; Keller, Walter; Zangger, Klaus; Helge Meyer, N

    2016-04-01

    Conjugative transfer of DNA represents the most important transmission pathway in terms of antibiotic resistance and virulence gene dissemination among bacteria. TraH is a putative transfer protein of the type IV secretion system (T4SS) encoded by the Gram-positive (G+) conjugative plasmid pIP501. This molecular machine involves a multi-protein core complex spanning the bacterial envelope thereby serving as a macromolecular secretion channel. Here, we report the near complete (1)H, (13)C and (15)N resonance assignment of a soluble TraH variant comprising the C-terminal domain. PMID:26559076

  9. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone {sup 15}N or {sup 13}C′ chemical shifts of multiple contiguous residues in highly resolved 3D spectra

    Yoshimura, Yuichi; Kulminskaya, Natalia V.; Mulder, Frans A. A., E-mail: fmulder@chem.au.dk [Aarhus University, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) (Denmark)

    2015-02-15

    Sequential resonance assignment strategies are typically based on matching one or two chemical shifts of adjacent residues. However, resonance overlap often leads to ambiguity in resonance assignments in particular for intrinsically disordered proteins. We investigated the potential of establishing connectivity through the three-bond couplings between sequentially adjoining backbone carbonyl carbon nuclei, combined with semi-constant time chemical shift evolution, for resonance assignments of small folded and larger unfolded proteins. Extended sequential connectivity strongly lifts chemical shift degeneracy of the backbone nuclei in disordered proteins. We show here that 3D (H)N(COCO)NH and (HN)CO(CO)NH experiments with relaxation-optimized multiple pulse mixing correlate up to seven adjacent backbone amide nitrogen or carbonyl carbon nuclei, respectively, and connections across proline residues are also obtained straightforwardly. Multiple, recurrent long-range correlations with ultra-high resolution allow backbone {sup 1}H{sup N}, {sup 15}N{sup H}, and {sup 13}C′ resonance assignments to be completed from a single pair of 3D experiments.

  10. Backbone and Ile-δ1, Leu, Val Methyl 1H, 13C and 15N NMR chemical shift assignments for human interferon-stimulated gene 15 protein

    Yin, Cuifeng; Aramini, James M.; Ma, LiChung; Cort, John R.; Swapna, G.V.T.; Krug, R. M.; Montelione, Gaetano

    2011-10-01

    Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13CO, and 13Ca, as well as side chain 13Cb, methyl (Ile-d1, Leu, Val), amide (Asn, Gln), and indole NH (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.

  11. Monitoring the refinement of crystal structures with 15N solid-state NMR shift tensor data

    The 15N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated 15N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2–3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X–Y and X–H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of 15N tensors at natural abundance is challenging and this limitation is overcome by improved 1H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental 15N tensors are at least 5 times more sensitive to crystal structure than 13C tensors due to nitrogen’s greater polarizability and larger range of chemical shifts

  12. Complete assignment of 1H, 13C and 15N chemical shifts for bovine β-lactoglobulin: Secondary structure and topology of the native state is retained in a partially unfolded form

    Although β-lactoglobulin (β-LG) has been studied extensively for more than 50 years, its physical properties in solution are not yet understood fully in terms of its three-dimensional (3D) structure. For example, despite a recent high-resolution crystal structure, it is still not clear why the two common variants of bovine β-LG which differ by just two residues have different aggregation properties during milk processing. We have conducted solution-state NMR studies on a recombinant form of the A variant of β-LG at low pH conditions where the protein is partially unfolded and exists as a monomer rather than a dimer. Using a13 C,15N-labelled sample, expressed in Pichia pastoris, we have employed the standard combination of 3D heteronuclear NMR techniques to obtain near complete assignments of proton, carbon and nitrogen resonances. Using a novel pulse sequence we were able to obtain additional assignments, in particular those of methyl groups in residues preceding proline within the sequence. From chemical shifts and on the basis of inter-residue NOEs, we have inferred the secondary structure and topology of monomeric β-LG A. It includes eight antiparallel β-strands arranged in a barrel, flanked by an α-helix, which is typical of a member of the lipocalin family. A detailed comparison with the crystal structure of the dimeric form (for a mixture of A and B variants) at pH 6.5 reveals a close resemblance in both secondary structure and overall topology. Both forms have a ninth β-strand which, at the higher pH, forms part of the dimer interface. These studies represent the first full NMR assignment of β-LG and will form the basis for a complete characterisation of the solution structure and dynamics of this protein and its variants

  13. Variation of natural 15N abundance (δ15N) in greenhouse tomato and available nitrogen in soil supplied with cow manure or chemical fertilizers

    Cow manure or chemical fertilizers applied to greenhouse-grown tomato changed N contents and natural 15N abundance (δ15N) in tomato plants and the δ15N values of available N in soil. Cow manure increased and chemical fertilizers decreased the δ15N values of tomato plants. In the early periods of tomato culture with cow manure, the δ15N values of nitrate nitrogen of soil were higher than those of whole cow manure N, and, thereafter, dropped to δ15N values between those of soil and cow manure. Application of chemical fertilizers to soil immediately raised the δ15N values of ammonium nitrogen in soil but they dropped quickly to δ15N values between those of soil and fertilizers. On the estimation of the soil-derived N, manure-derived N and fertilizer-derived N in tomato plants based on the δ15N values of sources, much caution should be paid concerning the isotopic variation caused by N sources and isotopic fractionation during N transformation in soil. (author)

  14. Protein Chemical Shift Prediction

    Larsen, Anders S

    2014-01-01

    The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...

  15. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic ??13C and ??15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes-resident and transient - collected across ???25?? of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in ??15N values of ???2.5% through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable ??15N and ??13C values throughout the remainder of their lives, whereas ??15N values of most (n = 11) increased by ???1.5%, suggestive of an ontogenetic increase in trophic level. Significant differences in mean ??13C and ??15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean. ?? Inter-Research 2009.

  16. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin.

    Radloff, Frans G T; Hobson, Keith A; Leslie, Alison J

    2012-09-01

    Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ(13) C) and nitrogen (δ(15) N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35-463 cm total length), we found prominent size-related changes in the scute keratin δ(13) C and δ(15) N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods. PMID:22462522

  17. Relative stability of soil carbon revealed by shifts in δ15N and C:N ratio

    C. Alewell

    2008-02-01

    Full Text Available Life on earth drives a continuous exchange of carbon between soils and the atmosphere. Some forms of soil carbon, or organic matter, are more stable and have a longer residence time in soil than others. Relative differences in stability have often been derived from shifts in δ13C (which is bound to a vegetation change from C3 to C4 type or through 14C-dating (which is bound to small sample numbers because of high measurement costs. Here, we propose a new concept based on the increase in δ15N and the decrease in C:N ratio with increasing stability. We tested the concept on grasslands at different elevations in the Swiss Alps. Depending on elevation and soil depth, it predicted mineral-associated organic carbon to be 3 to 73 times more stable than particulate organic carbon. Analysis of 14C-ages generally endorsed these predictions.

  18. Relative stability of soil carbon revealed by shifts in δ15N and C:N ratio

    C. Alewell

    2007-08-01

    Full Text Available Life on earth drives a continuous exchange of carbon between soils and the atmosphere. Some forms of soil carbon, or organic matter, are more stable and have a longer residence time in soil than others. Relative differences in stability have often been derived from shifts in δ13C (which is bound to a vegetation change from C3 to C4 type or through 14C-dating (which is bound to small sample numbers because of high measurement costs. Here, we propose a new concept based on the increase in δ15N and the decrease in C:N ratio with increasing stability. We tested the concept on grasslands at different elevations in the Swiss Alps. Depending on elevation and soil depth, it predicted mineral-associated organic carbon to be 3 to 73 times more stable than particulate organic carbon. Analysis of 14C-ages generally endorsed these predictions.

  19. pH dependence of 15N NMR shifts and coupling constants in aqueous imidazole and 1-methylimidazole. Comments on estimation of tautomeric equilibrium constants for aqueous histidine

    15N, 1H and 13C NMR spectra for [15N2]imidazole and [15N2]-1-methylimidazole in aqueous solution as functions of pH provide shift and coupling-constant information useful in characterizing the protonated and unprotonated forms of these compounds and as background for determining N binding to other species, such as metal ions. When combined with similar data for the imidazole-ring atoms in histidine, these data give more reliable estimates of tautomeric equilibrium constants for the amphionic and anionic forms of histidine than possible from the histidine data alone

  20. Real-time pure shift {sup 15}N HSQC of proteins: a real improvement in resolution and sensitivity

    Kiraly, Peter; Adams, Ralph W.; Paudel, Liladhar; Foroozandeh, Mohammadali [University of Manchester, School of Chemistry (United Kingdom); Aguilar, Juan A. [Durham University, Department of Chemistry (United Kingdom); Timári, István [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Cliff, Matthew J. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Nilsson, Mathias [University of Manchester, School of Chemistry (United Kingdom); Sándor, Péter [Agilent Technologies R& D and Marketing GmbH & Co. KG (Germany); Batta, Gyula [University of Debrecen, Department of Organic Chemistry (Hungary); Waltho, Jonathan P. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Morris, Gareth A., E-mail: g.a.morris@manchester.ac.uk [University of Manchester, School of Chemistry (United Kingdom)

    2015-05-15

    Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here. Both resolution and sensitivity are improved, without any increase in experiment time. In these experiments, free induction decays are collected in short bursts of data acquisition, with durations short on the timescale of J-evolution, interspersed with suitable refocusing elements. The net effect is real-time (t{sub 2}) broadband homodecoupling, suppressing the multiplet structure caused by proton–proton interactions. The key feature of the refocusing elements is that they discriminate between the resonances of active (observed) and passive (coupling partner) spins. This can be achieved either by using band-selective refocusing or by the BIRD element, in both cases accompanied by a nonselective 180° proton pulse. The latter method selects the active spins based on their one-bond heteronuclear J-coupling to {sup 15}N, while the former selects a region of the {sup 1}H spectrum. Several novel pure shift experiments are presented, and the improvements in resolution and sensitivity they provide are evaluated for representative samples: the N-terminal domain of PGK; ubiquitin; and two mutants of the small antifungal protein PAF. These new experiments, delivering improved sensitivity and resolution, have the potential to replace the current standard HSQC experiments.

  1. Separation of 15N by chemical exchange in NO, NO2 - HNO3 system under pressure

    The basic isotopic exchange reaction is responsible for the separation of 15N in the Nitrox system that between gaseous nitrogen oxides and aqueous nitric acid with a single stage separation factor α = 1.055 for 10M nitric acid, at 25 deg C and atmospheric pressure takes place. In order to know what happens in 15N separation at higher pressure, when the isotopic transport between two phases is improved, a stainless steel laboratory experimental plant with a 1000 mm long x 18 mm i.d. column, packed with triangular wire springs 1.8 x 1.8 x 0.2 mm2, was utilised. At 1.5 atm (absolute), and 2.36 ml x cm-2 x min-1 flow rate HETP was 7% smaller than at atmospheric pressure and 1.5 times smaller flow rate. HETP at 3.14 ml x cm-2 x min-1 flow rate and 1.8 atm is practically equal with that obtained at atmospheric pressure and 2 times smaller flow rate. The operation of the 15N separation plant at 1.8 atm (absolute), instead of atmospheric pressure, will permit doubling of the 10M nitric acid flow rate and of 15N production of the given column. (author)

  2. A Short History of Three Chemical Shifts

    Nagaoka, Shin-ichi

    2007-01-01

    A short history of chemical shifts in nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA) and Mossbauer spectroscopy, which are useful for chemical studies, is described. The term chemical shift is shown to have originated in the mistaken assumption that nuclei of a given element would all undergo resonance at the…

  3. Geometric effects on carbon-13 chemical shifts

    In the course of our investigations on carbon-13 chemical shifts of tetracyclic dodecanes, we managed to show that a large number of chemical shift differences between members of the series and models provided by bicyclic analogs could be attributed to steric effects. There are examples, however, where this is clearly not the case. In order to investigate apparent anomalies we calculated structures of interest and looked into the relationships between molecular geometry and chemical shifts. As the assignment of some of the key structures in these analysis were made by comparison with model compounds and crucial experiments that could remove ambiguities were missing, we prepared and interpreted two spectra which are presented

  4. MR chemical shift imaging of human atheroma

    The lipid content of atheromatous plaques has been measured with chemical shift MR imaging by taking advantage of the different resonance frequencies of protons in lipid and water. Fifteen postmortem aortic specimens of the human descending aorta and the aortae of seven patients with documented peripheral vascular disease were studied at 0.5 T. Spin-echo images were used to localize the lesions before acquisition of the chemical shift images. The specimens were examined histologically, and the lipid distribution in the plaque showed good correlation with the chemical shift data. Validation in vivo and clinical applications remain to be established

  5. Applications of the 18O-isotope shift on 13C and 15N nuclear magnetic resonance spectroscopy to the study of bioorganic reaction mechanisms

    The study of reactions involving the formation and cleavage of carbon-oxygen or nitrogen-oxygen bonds has been significantly aided by recent demonstrations of the generality and characteristics of the 18O-isotope shift in 13C and 15N nuclear magnetic resonance spectroscopy. In many instances, the magnitudes of the 18O-induced isotopic shifts are sufficiently large as to permit the use of even modest NMR instrumentation and natural abundance 13C. Studies involving less soluble compounds, higher molecular weight materials or relatively rapid reactions may often be carried out using 13C enrichment. Because NMR spectroscopy is non-destructive, it has proven to be extremely useful in the study of natural product biosynthetic pathways. Another area where important applications are being made is in the study of enzymatic and non-enzymatic reaction mechanisms. The characteristics of the 18O isotope shift in 13C NMR spectroscopy are reviewed. Several examples from the work of other groups in the area of natural product biosynthesis are briefly mentioned. This is followed by a number of illustrative applications in the area of bioorganic and enzymatic reaction mechanism that have been examined in our laboratory. The enzymatic examples include acid phosphatases, epoxide hydratase, acetylcholinesterase and asparaginase. 20 refs.; 1 figure

  6. Enhanced conformational space sampling improves the prediction of chemical shifts in proteins.

    Markwick, Phineus R L; Cervantes, Carla F; Abel, Barrett L; Komives, Elizabeth A; Blackledge, Martin; McCammon, J Andrew

    2010-02-01

    A biased-potential molecular dynamics simulation method, accelerated molecular dynamics (AMD), was combined with the chemical shift prediction algorithm SHIFTX to calculate (1)H(N), (15)N, (13)Calpha, (13)Cbeta, and (13)C' chemical shifts of the ankyrin repeat protein IkappaBalpha (residues 67-206), the primary inhibitor of nuclear factor kappa-B (NF-kappaB). Free-energy-weighted molecular ensembles were generated over a range of acceleration levels, affording systematic enhancement of the conformational space sampling of the protein. We have found that the predicted chemical shifts, particularly for the (15)N, (13)Calpha, and (13)Cbeta nuclei, improve substantially with enhanced conformational space sampling up to an optimal acceleration level. Significant improvement in the predicted chemical shift data coincides with those regions of the protein that exhibit backbone dynamics on longer time scales. Interestingly, the optimal acceleration level for reproduction of the chemical shift data has previously been shown to best reproduce the experimental residual dipolar coupling (RDC) data for this system, as both chemical shift data and RDCs report on an ensemble and time average in the millisecond range. PMID:20063881

  7. RefDB: A database of uniformly referenced protein chemical shifts

    RefDB is a secondary database of reference-corrected protein chemical shifts derived from the BioMagResBank (BMRB). The database was assembled by using a recently developed program (SHIFTX) to predict protein 1H, 13C and 15N chemical shifts from X-ray or NMR coordinate data of previously assigned proteins. The predicted shifts were then compared with the corresponding observed shifts and a variety of statistical evaluations performed. In this way, potential mis-assignments, typographical errors and chemical referencing errors could be identified and, in many cases, corrected. This approach allows for an unbiased, instrument-independent solution to the problem of retrospectively re-referencing published protein chemical shifts. Results from this study indicate that nearly 25% of BMRB entries with 13C protein assignments and 27% of BMRB entries with 15N protein assignments required significant chemical shift reference readjustments. Additionally, nearly 40% of protein entries deposited in the BioMagResBank appear to have at least one assignment error. From this study it evident that protein NMR spectroscopists are increasingly adhering to recommended IUPAC 13C and 15N chemical shift referencing conventions, however, approximately 20% of newly deposited protein entries in the BMRB are still being incorrectly referenced. This is cause for some concern. However, the utilization of RefDB and its companion programs may help mitigate this ongoing problem. RefDB is updated weekly and the database, along with its associated software, is freely available at http://redpoll.pharmacy.ualberta.ca and the BMRB website

  8. NMR spectroscopic studies of 15N labelled geminally disubstituted cyclotriphosphazenes

    It is demonstrated by means of some selected 15N labelled geminally disubstituted cyclotriphosphazenes, 15N3P3X4Y2 (X = Cl; Y = F, NH2, or SEt), as an example, that the coupling constants 1Jsub(PN) may be of different signs. The absolute value of 1Jsub(PN) is significantly influenced only by those substituents, which are bonded to the phosphorus nucleus directly concerned in the coupling. Also the 15N chemical shifts are only changed by substituents on directly bonded phosphorus atoms. (author)

  9. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology

    Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in φ/ψ/χ1 torsion angles and sequence similarity to the query triplet of interest. The database contains 15N, 1HN, 1Hα, 13Cα, 13Cβ and 13C' chemical shifts for 200 proteins for which a high resolution X-ray (≤2.4 A) structure is available. The relative importance of the weighting factors for the φ/ψ/χ1 angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for 15N, 1HN, 1Hα, 13Cα, 13Cβ and 13C', respectively, including outliers

  10. Accessible surface area from NMR chemical shifts

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  11. Accessible surface area from NMR chemical shifts

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation

  12. Random coil chemical shift for intrinsically disordered proteins

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical....... Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series...

  13. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    We introduce a Python-based program that utilizes the large database of 13C and 15N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13C–13C, 15N–13C, or 3D 15N–13C–13C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13C–13C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  14. Protein Structure Determination Using Chemical Shifts

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes che...... residues. For Rhodopsin (225 residues) a structure is found at 2.5 Å CA-RMSD from the experimental X-ray structure, and a structure is determined for the Savinase protein (269 residues) with 2.9 Å CA-RMSD from the experimental X-ray structure....

  15. Hyperpolarized 15N-pyridine Derivatives as pH-Sensitive MRI Agents

    Weina Jiang; Lloyd Lumata; Wei Chen; Shanrong Zhang; Zoltan Kovacs; A. Dean Sherry; Chalermchai Khemtong

    2015-01-01

    Highly sensitive MR imaging agents that can accurately and rapidly monitor changes in pH would have diagnostic and prognostic value for many diseases. Here, we report an investigation of hyperpolarized 15N-pyridine derivatives as ultrasensitive pH-sensitive imaging probes. These molecules are easily polarized to high levels using standard dynamic nuclear polarization (DNP) techniques and their 15N chemical shifts were found to be highly sensitive to pH. These probes displayed sharp 15N resona...

  16. Chemical shift MR imaging of the skin

    MR imaging with conventional spin-echo pulse sequences has not found wide application in the evaluation of skin pathology. This paper reports that this study was designed to determine the value of chemical shift imaging (CSI) compared with conventional pulse sequences for the noninvasive evaluation of connective tissue and neoplastic disease of the skin and underlying fascia. The studies were acquired in patients and volunteers on a whole-body system at 1.5 T and small surface coils. Comparisons were made between T1- and T2-weighted gradient-echo, spin-echo, and hybrid lipid and water-suppressed CSI series (Chopper-Dixon combined with frequency-selective pulse). CSI improves detail in the hypodermis by eliminating unwanted (lipid) signal and chemical shift misregistration artifact. The detail of water-based signal is improved in the deeper layers of the skin by improved tissue contrast and elimination of the disturbing adjacent dominant fat-based signal. MR imaging has the potential to provide information that can complement skin biopsy. A more optimal choice of pulse sequences can improve the sensitivity of MR imaging to water-based pathology and allow noninvasive visualization of deep layers. The CSI sequences may be useful in the evaluation of infiltrative and neoplastic disease of the skin, particularly as they are adapted into microimaging methods with local gradient coils

  17. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  18. Probabilistic Approach to Determining Unbiased Random-coil Carbon-13 Chemical Shift Values from the Protein Chemical Shift Database

    We describe a probabilistic model for deriving, from the database of assigned chemical shifts, a set of random coil chemical shift values that are 'unbiased' insofar as contributions from detectable secondary structure have been minimized (RCCSu). We have used this approach to derive a set of RCCSu values for 13Cα and 13Cβ for 17 of the 20 standard amino acid residue types by taking advantage of the known opposite conformational dependence of these parameters. We present a second probabilistic approach that utilizes the maximum entropy principle to analyze the database of 13Cα and 13Cβ chemical shifts considered separately; this approach yielded a second set of random coil chemical shifts (RCCSmax-ent). Both new approaches analyze the chemical shift database without reference to known structure. Prior approaches have used either the chemical shifts of small peptides assumed to model the random coil state (RCCSpeptide) or statistical analysis of chemical shifts associated with structure not in helical or strand conformation (RCCSstruct-stat). We show that the RCCSmax-ent values are strikingly similar to published RCCSpeptide and RCCSstruct-stat values. By contrast, the RCCSu values differ significantly from both published types of random coil chemical shift values. The differences (RCCSpeptide-RCCSu) for individual residue types show a correlation with known intrinsic conformational propensities. These results suggest that random coil chemical shift values from both prior approaches are biased by conformational preferences. RCCSu values appear to be consistent with the current concept of the 'random coil' as the state in which the geometry of the polypeptide ensemble samples the allowed region of (φ,ψ)-space in the absence of any dominant stabilizing interactions and thus represent an improved basis for the detection of secondary structure. Coupled with the growing database of chemical shifts, this probabilistic approach makes it possible to refine

  19. (H)N(COCA)NH and HN(COCA)NH experiments for 1H-15N backbone assignments in 13C/15N-labeled proteins

    Bracken, Clay; Palmer, Arthur G. III [Columbia University, Department of Biochemistry and Molecular Biophysics (United States); Cavanagh, John [New York State Department of Health, NMR Structural Biology Facility, Wadsworth Center (United States)

    1997-01-15

    Triple resonance HN(COCA)NH pulse sequences for correlating 1H(i), 15N(i),1H(i-1), and 15N(i-1) spins that utilize overlapping coherence transfer periods provide increased sensitivity relative to pulse sequences that utilize sequential coherence transfer periods. Although the overlapping sequence elements reduce the overall duration of the pulse sequences, the principal benefit derives from a reduction in the number of 180 deg. pulses. Two versions of the technique are presented: a 3D (H)N(COCA)NH experiment that correlates 15N(i),1H(i-1), and 15N(i-1) spins, and a 3D HN(COCA)NH experiment that correlates 1H(i), 15N(i),1H(i-1), and 15N(i-1) spins by simultaneously encoding the 1H(i) and 15N(i) chemical shifts during the t1 evolution period. The methods are demonstrated on a 13C/15N-enriched sample of the protein ubiquitin and are easily adapted for application to 2H/13C/15N-enriched proteins.

  20. Probabilistic validation of protein NMR chemical shift assignments

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/

  1. Probabilistic validation of protein NMR chemical shift assignments

    Dashti, Hesam [University of Wisconsin-Madison, Graduate Program in Biophysics, Biochemistry Department (United States); Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States); Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Biochemistry Department (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu, E-mail: jmarkley@wisc.edu [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States)

    2016-01-15

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/.

  2. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria.

    Fritzsching, Keith J; Hong, Mei; Schmidt-Rohr, Klaus

    2016-02-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  3. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2010-09-15

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and {sup 13}C{sup {beta}} chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and {sup 13}C{sup {beta}} atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for {delta}{sup 15}N, {delta}{sup 13}C', {delta}{sup 13}C{sup {alpha}}, {delta}{sup 13}C{sup {beta}}, {delta}{sup 1}H{sup {alpha}} and {delta}{sup 1}H{sup N}, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  4. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13Cβ chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13Cβ atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ15N, δ13C', δ13Cα, δ13Cβ, δ1Hα and δ1HN, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  5. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts

    The realization that a protein can be fully functional even in the absence of a stable three-dimensional structure has motivated a large number of studies describing the conformational behaviour of these proteins at atomic resolution. Here, we review recent advances in the determination of local structural propensities of intrinsically disordered proteins (IDPs) from experimental NMR chemical shifts. A mapping of the local structure in IDPs is of paramount importance in order to understand the molecular details of complex formation, in particular, for IDPs that fold upon binding or undergo structural transitions to pathological forms of the same protein. We discuss experimental strategies for the spectral assignment of IDPs, chemical shift prediction algorithms and the generation of representative structural ensembles of IDPs on the basis of chemical shifts. Additionally, we highlight the inherent degeneracies associated with the determination of IDP sub-state populations from NMR chemical shifts alone. (authors)

  6. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  7. An evaluation of chemical shift index-based secondary structure determination in proteins: Influence of random coil chemical shifts

    Mielke, S.P.; Krishnan, V.V. [Biophysics Graduate Group, University of California, Davis (United States)], E-mail: krish@llnl.gov

    2004-10-15

    Random coil chemical shifts are commonly used to detect protein secondary structural elements in chemical shift index (CSI) calculations. Though this technique is widely used and seems reliable for folded proteins, the choice of reference random coil chemical shift values can significantly alter the outcome of secondary structure estimation. In order to evaluate these effects, we present a comparison of secondary structure content calculated using CSI, based on five different reference random coil chemical shift value sets, to that derived from three-dimensional structures. Our results show that none of the reference random coil data sets chosen for evaluation fully reproduces the actual secondary structures. Among the reference values generally available to date, most tend to be good estimators only of helices. Based on our evaluation, we recommend the experimental values measured by Schwarzinger et al. (2000), and statistical values obtained by Lukin et al. (1997), as good estimators of both helical and sheet content.

  8. Bayesian inference of protein structure from chemical shift data

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim; Jensen, Jan Halborg

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...... chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the......, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction....

  9. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C (15)N HSQC-IMPEACH and (13)C (15)N HMBC-IMPEACH correlation spectra.

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. PMID:17729230

  10. Counterion influence on chemical shifts in strychnine salts

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  11. Counterion influence on chemical shifts in strychnine salts.

    Metaxas, Athena E; Cort, John R

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on (1)H and (13)C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD), and chloroform-d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. PMID:23495106

  12. Bayesian inference of protein structure from chemical shift data

    Lars A. Bratholm

    2015-03-01

    Full Text Available Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction.

  13. Combined solid state and solution NMR studies of {alpha},{epsilon}-{sup 15}N labeled bovine rhodopsin

    Werner, Karla; Lehner, Ines [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Dhiman, Harpreet Kaur [University of Pittsburgh School of Medicine, Department of Structural Biology (United States); Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de; Klein-Seetharaman, Judith [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Khorana, H. Gobind [Massachusetts Institute of Technology, Departments of Biology and Chemistry (United States)], E-mail: khorana@mit.edu

    2007-04-15

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of {alpha},{epsilon}-{sup 15}N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state {sup 13}C,{sup 15}N-REDOR and HETCOR experiments of all possible {sup 13}C'{sub i-1} carbonyl/{sup 15}N{sub i}-tryptophan isotope labeled amide pairs, and H/D exchange {sup 1}H,{sup 15}N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone {sup 15}N nuclei and partially to their bound protons. {sup 1}H,{sup 15}N chemical shift assignment was achieved for indole side chains of Trp35{sup 1.30} and Trp175{sup 4.65}. {sup 15}N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175{sup 4.65} at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin.

  14. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations (13C–13C, 15N–13C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the 13C NMR data and almost all 15N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  15. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra

  16. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (KD) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the KD value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1H–15N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (koff). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, koff ∼ 3,000 s−1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for koff from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise koff values over a wide range, from 100 to 15,000 s−1. The validity of line shape analysis for koff values approaching intermediate exchange (∼100 s−1), may be facilitated by more accurate KD measurements from NMR-monitored chemical shift

  17. Data requirements for reliable chemical shift assignments in deuterated proteins

    The information required for chemical shift assignments in large deuterated proteins was investigated using a Monte Carlo approach (Hitchens et al., 2002). In particular, the consequences of missing amide resonances on the reliability of assignments derived from Cα and CO or from Cα and Cβ chemical shifts was investigated. Missing amide resonances reduce both the number of correct assignments as well as the confidence in these assignments. More significantly, a number of undetectable errors can arise when as few as 9% of the amide resonances are missing from the spectra. However, the use of information from residue specific labeling as well as local and long-range distance constraints improves the reliability and extent of assignment. It is also shown that missing residues have only a minor effect on the assignment of protein-ligand complexes using Cα and CO chemical shifts and Cα inter-residue connectivity, provided that the known chemical shifts of the unliganded protein are utilized in the assignment process

  18. 15N NMR spectroscopy of Pseudomonas cytochrome c-551

    15N-1H correlation spectroscopy with detection at the 1H frequency has been used at natural abundance to detect nitrogen nuclei bonded to protons in the ferrocytochrome c-551 from Pseudomonas aeruginosa (ATCC 19429). Side-chain aromatic nitrogen, main-chain amides, and side-chain amides have been assigned to specific residues by comparison to previous proton assignments. Assignment ambiguities arising from overlap in the proton dimension have been resolved by examining spectra as a function of temperature and pH. Nitrogen chemical shifts are reported at pH 4.6 and 9.4 and three temperatures, 32, 50, and 60 degree C. Significant differences arise from the observed protein shifts and expected shifts in the random coil polypeptide

  19. Improving 3D structure prediction from chemical shift data

    Schot, Gijs van der [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Zhang, Zaiyong [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany); Vernon, Robert [University of Washington, Department of Biochemistry (United States); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vranken, Wim F. [VIB, Department of Structural Biology (Belgium); Baker, David [University of Washington, Department of Biochemistry (United States); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany)

    2013-09-15

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50-100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 A RMSD from the reference)

  20. Anisotropy of the fluorine chemical shift tensor in UF6

    An 19F magnetic resonance study of polycrystalline UF6 is presented. The low temperature complex line can be analyzed as the superposition of two distinct lines, which is attributed to a distortion of the UF6 octahedron in the solid. The shape of the two components is studied. Their width is much larger than the theoretical dipolar width, and must be explained by large anisotropies of the fluorine chemical shift tensors. The resulting shape functions of the powder spectra are determined. The values of the parameters of the chemical shift tensors yield estimates of the characters of the U-F bonds, and this gives some information on the ground state electronic wave function of the UF6 molecule in the solid. (author)

  1. Improving 3D structure prediction from chemical shift data

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50–100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 Å RMSD from the reference)

  2. Calculations of NMR chemical shifts with APW-based methods

    Laskowski, Robert; Blaha, Peter

    2012-01-01

    We present a full potential, all electron augmented plane wave (APW) implementation of first-principles calculations of NMR chemical shifts. In order to obtain the induced current we follow a perturbation approach [Pickard and Mauri, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.63.245101 63, 245101 (2001)] and extended the common APW + local orbital (LO) basis by several LOs at higher energies. The calculated all-electron current is represented in traditional APW manner as Fourier series in the interstitial region and with a spherical harmonics representation inside the nonoverlapping atomic spheres. The current is integrated using a “pseudocharge” technique. The implementation is validated by comparison of the computed chemical shifts with some “exact” results for spherical atoms and for a set of solids and molecules with available published data.

  3. Magnetic shift of the chemical freezeout and electric charge fluctuations

    Fukushima, Kenji

    2016-01-01

    We discuss the effect of a strong magnetic field on the chemical freezeout points in the ultra-relativistic heavy-ion collision. As a result of the inverse magnetic catalysis or the magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freezeout. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced especially at high baryon density. The charge conservation partially cancels the enhancement but our calculation shows that the electric charge fluctuation could serve as a magnetometer.

  4. Estimation of optical chemical shift in nuclear spin optical rotation

    Highlights: • Analytical theory of nuclear spin optical rotation (NSOR) is further developed. • Derive formula of NSOR ratio R between different nuclei in a same molecule. • Calculated results of R agree with the experiments. • Analyze influence factors on R and chemical distinction by NSOR. - Abstract: A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed

  5. Chemical-shift MRI of exogenous lipoid pneumonia

    Cox, J.E.; Choplin, R.H.; Chiles, C. [Wake Forest Univ., Winston-Salem, NC (United States)

    1996-05-01

    Exogenous lipoid pneumonia results from the aspiration or inhalation of fatty substances, such as mineral oil found in laxatives or nasal medications containing liquid paraffin. We present standard and lipid-sensitive (chemical-shift) MR findings in a patient with histologically confirmed lipoid pneumonia. The loss of signal intensity in an area of airspace disease on opposed-phase imaging was considered specific for the presence of lipid. 14 refs., 3 figs.

  6. 15N magnetic resonance of aqueous imidazole and zinc(II)-imidazole complexes. Evidence for hexacoordination

    15N NMR chemical shifts of doubly labeled [15N)imidazole permit evaluation of hydrogen bonding, proton association, and Zn(II) complex formation in homogeneous solution. The 15N resonant frequency in aqueous solutions of imidazole at pH 9-12 is independent of imidazole concentration, suggesting insignificant self-association via hydrogen bonding involving the N3 lone pair and the N1 proton of a neighboring molecule. Protonation at N3 (pH less than 5) produces a 31.2-ppM diamagnetic shift and deprotonation at N1 (pH greater than 13) an approximately20-ppM paramagnetic shift relative to neutral aqueous imidazole. Those shifts are very large compared to the approximately +-0.5-ppM uncertainty in the 15N shift measurements. In solutions of Zn2+ and imidazole the 15N resonance in ZnIm/sub i/2+ complexes (Im = imidazole) is diamagnetically shifted by 10 to 20 ppM relative to neutral aqueous imidazole. Over a range of ratios of total imidazole to total zinc such that the average number of complexed imidazole molecules per Zn2+ (anti ν) is approximately 3.5, or less, the shift data are well interpreted by a four-species model (i = 1-4) using stepwise formation constants from the literature. Significant deviations from that model at anti ν greater than 3.5 require that higher species (e.g., ZnIm52+ and ZnIm62+) be considered. A six-species model with reasonable formation constants for the fifth and sixth complexes provides satisfactory interpretation of all data. Implications of those observations with respect to biologically active zinc(II) proteins are considered. 2 tables, 4 figures

  7. Substituent effects on 61Ni NMR chemical shifts

    Bühl, Michael; Peters, Dietmund; Herges, Rainer

    2009-01-01

    Ni-61 chemical shifts of Ni(all-trans-cdt) L (cdt = cyclododecatriene, L = none, CO, PMe3), Ni(CO)(4), Ni(C2H4)(2)(PMe3), Ni(cod)(2) (cod = cyclooctadiene) and Ni(PX3)(4) (X = Me, F, Cl) are computed at the GIAO (gauge-including atomic orbitals), BPW91, B3LYP and BHandHLYP levels, using BP86-optimised geometries and an indirect referencing scheme. For this set of compounds, substituent effects on delta(Ni-61) are better described with hybrid functionals than with the pure BPW91 functional. On...

  8. Evolution of the chemical (NH4) and isotopic (δ15N-NH4) composition of pig manure stored in an experimental deep pit

    during eight months, from November 2001 to July 2002 at atmospheric conditions. Ammonium concentration and its nitrogen isotopic composition were analysed weekly during the first six months and every ten days during the last two months. Ammonium concentration oscillates between 3000 and 4000 ppm, with no progressive decrease in time as it would be expected in a volatilisation process. This is caused by the loss of manure volume due to evaporation (50 % in eight months) which compensates the ammonia volatilisation and keeps the ammonium concentration stable. The nitrogen isotopic composition of the ammonium is controlled by the volatilisation process. During the first ten days, the pig manure has an isotopic composition between +8 and +10 per mille, and after eight months, it raises up to +25 per mille. However, the pig manure is not stored in the deep pits more than six months; consequently, the range of δ15NNH4 values to be considered for pig manure as an input of nitrogen contamination should be from +8 to +15 per mille. Still, this isotopic composition can be higher if manure is stored during the summer time since the higher temperatures may increase the volatilisation rate and raise the ammonium isotopic composition in a shorter period of time. Unlike synthetic fertilisers, which are characterised by a δ15N close to the 0 per mille, the organic fertilisers (pig manure) are enriched in 15N15N from +8 to +15 per mille). Therefore the nitrogen isotopic composition is a valuable tool to evaluate the origin of nitrate agricultural contaminations. As an example, nitrate nitrogen isotopic composition has been used in some areas in Catalonia to confirm that pig manure is the main contributor to the nitrate pollution in groundwaters

  9. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  10. 15N-{1H} NOE experiment at high magnetic field strengths

    The heteronuclear 15N-{1H} NOE values are typically determined by taking the ratio of 15N signal intensities recorded in the presence and absence of 1H saturation prior to evolution of 15N magnetization. Since the intensity ratio of two independent experiments is taken, complete recovery of 15N magnetization during the scan repetition delay is critical to obtain reliable NOE values. Because it may not be practical to wait for the complete recovery of magnetization at high magnetic fields, Solomon equations may be used to correct measured NOE values. Here, based on experiments and simulations, we show that since the cross-correlation between 1H-15N dipole and 15N chemical shift anisotropy becomes significant at high fields for small or deuterated proteins, measured NOE values can not be accurately corrected based on the Solomon equations. We also discuss ranges of rotational correlation times and proton spin-flip rate, in which the NOE values can be corrected by the equations

  11. Computational Assignment of Chemical Shifts for Protein Residues

    Bratholm, Lars A

    2013-01-01

    Fast and accurate protein structure prediction is one of the major challenges in structural biology, biotechnology and molecular biomedicine. These fields require 3D protein structures for rational design of proteins with improved or novel properties. X-ray crystallography is the most common approach even with its low success rate, but lately NMR based approaches have gained popularity. The general approach involves a set of distance restraints used to guide a structure prediction, but simple NMR triple-resonance experiments often provide enough structural information to predict the structure of small proteins. Previous protein folding simulations that have utilised experimental data have weighted the experimental data and physical force field terms more or less arbitrarily, and the method is thus not generally applicable to new proteins. Furthermore a complete and near error-free assignment of chemical shifts obtained by the NMR experiments is needed, due to the static, or deterministic, assignment. In this ...

  12. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  13. Alterations in chemical shifts and exchange broadening upon peptide boronic acid inhibitor binding to α-lytic protease

    α-Lytic protease, a bacterial serine protease of 198 aminoacids (19800 Da), has been used as a model system for studies of catalytic mechanism, structure-function relationships, and more recently for studies of pro region-assisted protein folding. We have assigned the backbones of the enzyme alone, and of its complex with the tetrahedral transition state mimic N-tert-butyloxycarbonyl-Ala-Pro-boroVal, using double- and triple-resonance 3D NMR spectroscopy on uniformly15N- and 13C/15N-labeled protein.Changes in backbone chemical shifts between the uncomplexed and inhibited form of the protein are correlated with distance from the inhibitor, the displacement of backbone nitrogens, and change in hydrogen bond strength upon inhibitor binding (derived from previously solved crystal structures).A comparison of the solution secondary structure of the uninhibited enzyme with that of the X-ray structure reveals no significant differences.Significant line broadening, indicating intermediate chemical exchange, was observed in many of the active site amides (including three broadened to invisibility), and in a majority of cases the broadening was reversed upon addition of the inhibitor. Implications and possible mechanisms of this line broadening are discussed

  14. 15N analysis in nutritional and metabolic research of infancy

    Investigation of protein metabolism in nutritional pediatric research by means of 15N tracer techniques has been relatively seldom used up to now. 15N-labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on 15N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover, and the reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters were performed in infants on breast milk, formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the 15N-D-phenylalanine retention of parenteral nutrition was found to be 33% of the applied dosis at an average. An oral 15N-glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormone. 15N tracer technique was also tested in utilizing 15N-urea for bacterial protein synthesis of the intestinal flora and by incorporation of 15N from 15N-glycine and 15N-lysine into the jejunal mucosa for measuring the enterocyte regeneration. (author)

  15. Methods of 15N tracer research in biological systems

    The application of the stable isotope 15N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15N tracer technique. On the basis of the latest results of 15N tracer research in life sciences and agriculture methods of 15N tracer research in biological systems are compiled. The 15N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15N analysis and aspects of 15N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15N tracer experiments are made. (author)

  16. Random coil chemical shifts in acidic 8 M urea: Implementation of random coil shift data in NMRView

    Studies of proteins unfolded in acid or chemical denaturant can help in unraveling events during the earliest phases of protein folding. In order for meaningful comparisons to be made of residual structure in unfolded states, it is necessary to use random coil chemical shifts that are valid for the experimental system under study. We present a set of random coil chemical shifts obtained for model peptides under experimental conditions used in studies of denatured proteins. This new set, together with previously published data sets, has been incorporated into a software interface for NMRView, allowing selection of the random coil data set that fits the experimental conditions best

  17. Diagnostic value of chemical shift artifact in distinguishing benign lymphadenopathy

    Purpose: Today, distinguishing metastatic lymph nodes from secondary benign inflammatory ones via using non-invasive methods is increasingly favorable. In this study, the diagnostic value of chemical shift artifact (CSA) in magnetic resonance imaging (MRI) was evaluated to distinguish benign lymphadenopathy. Subjects and methods: A prospective intraindividual internal review board-approved study was carried out on 15 men and 15 women having lymphadenopathic lesions in different locations of the body who underwent contrast-enhanced dynamic MR imaging at 1.5 T. Then, the imaging findings were compared with pathology reports, using the statistics analyses. Results: Due to the findings of the CSA existence in MRI, a total of 56.7% of the studied lesions (17 of 30) were identified as benign lesions and the rest were malignant, whereas the pathology reports distinguished twelve malignant and eighteen benign cases. Furthermore, the CSA findings comparing the pathology reports indicated that CSA, with confidence of 79.5%, has a significant diagnostic value to differentiate benign lesions from malignant ones. Conclusion: Our study demonstrated that CSA in MR imaging has a suitable diagnostic potential nearing readiness for clinical trials. Furthermore, CSA seems to be a feasible tool to differentiate benign lymph nodes from malignant ones; however, further studies including larger numbers of patients are required to confirm our results.

  18. Pitfalls of adrenal imaging with chemical shift MRI

    Chemical shift (CS) MRI of the adrenal glands exploits the different precessional frequencies of fat and water protons to differentiate the intracytoplasmic lipid-containing adrenal adenoma from other adrenal lesions. The purpose of this review is to illustrate both technical and interpretive pitfalls of adrenal imaging with CS MRI and emphasize the importance of adherence to strict technical specifications and errors that may occur when other imaging features and clinical factors are not incorporated into the diagnosis. When performed properly, the specificity of CS MRI for the diagnosis of adrenal adenoma is over 90%. Sampling the in-phase and opposed-phase echoes in the correct order and during the same breath-hold are essential requirements, and using the first echo pair is preferred, if possible. CS MRI characterizes more adrenal adenomas then unenhanced CT but may be non-diagnostic in a proportion of lipid-poor adenomas; CT washout studies may be able to diagnose these lipid-poor adenomas. Other primary and secondary adrenal tumours and supra-renal disease entities may contain lipid or gross fat and mimic adenoma or myelolipoma. Heterogeneity within an adrenal lesion that contains intracytoplasmic lipid could be due to myelolipoma, lipomatous metaplasia of adenoma, or collision tumour. Correlation with previous imaging, other imaging features, clinical history, and laboratory investigations can minimize interpretive errors

  19. Applications of Chemical Shift Imaging to Marine Sciences

    Haakil Lee

    2010-08-01

    Full Text Available The successful applications of magnetic resonance imaging (MRI in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT or positron emission (PET scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS. MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H including carbon (13C or phosphorus (31P. In vivo MR spectra can be obtained from single region ofinterest (ROI or voxel or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI. Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism.

  20. 19-Fluorine nuclear magnetic resonance chemical shift variability in trifluoroacetyl species

    Sloop, Joseph

    2013-01-01

    Joseph C SloopSchool of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USAAbstract: This review examines the variability of chemical shifts observed in 19-fluorine (19F) nuclear magnetic resonance spectra for the trifluoroacetyl (TFA) functional group. The range of 19F chemical shifts reported spectra for the TFA group varies generally from −85 to −67 ppm relative to CFCl3. The literature revealed several factors that impact chemical shifts of the TFA...

  1. Synthesis of 15N labeled glyphosate

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of 15N labeled glyphosate. The 15N-herbicide was undertaken by phosphometilation with the phosphit dialquil and 15N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  2. Detection of organic sulfur by [sup 15]N and [sup 19]F NMR via formation of iminosulfuranes

    Franz, J.A.; Linehan, J.C.; Lamb, C.N.

    1992-08-01

    We have synthesized new iminosulfuranes from a variety of diaryl-and dialkyl sulfides and dibenzothiophene. The pattern of [sup 15]N chemical shifts indicates that functional groups attached to sulfur are not simply resolved into aryl and alkyl groups. Thus, resolution of sulfur functional groups using [sup 15]N NMR via iminosulfurane does not appear practicable. However, iminosulfurane formation, together with the N-haloamide reaction and the Pummerer rearrangement, provides pathways for chemical discrimination of different sulfur substituents using unique [sup 15]N- or, [sup 19]F-labelled fragments for different categories of sulfur functional groups. In efforts currently underway, we are applying these reactions to methylated extracts and conversion products of the high-organic-sulfur containing Yugoslavian Rasa and Spanish Mequinenza lignites. 1 tab, 14 refs.

  3. Detection of organic sulfur by {sup 15}N and {sup 19}F NMR via formation of iminosulfuranes

    Franz, J.A.; Linehan, J.C.; Lamb, C.N.

    1992-08-01

    We have synthesized new iminosulfuranes from a variety of diaryl-and dialkyl sulfides and dibenzothiophene. The pattern of {sup 15}N chemical shifts indicates that functional groups attached to sulfur are not simply resolved into aryl and alkyl groups. Thus, resolution of sulfur functional groups using {sup 15}N NMR via iminosulfurane does not appear practicable. However, iminosulfurane formation, together with the N-haloamide reaction and the Pummerer rearrangement, provides pathways for chemical discrimination of different sulfur substituents using unique {sup 15}N- or, {sup 19}F-labelled fragments for different categories of sulfur functional groups. In efforts currently underway, we are applying these reactions to methylated extracts and conversion products of the high-organic-sulfur containing Yugoslavian Rasa and Spanish Mequinenza lignites. 1 tab, 14 refs.

  4. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of 13C NMR data of RNAs. Our procedure uses five 13C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the 13C calibration and detect errors or inconsistencies in RNA 13C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure–13C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable 13C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure–chemical shift relationships with this improved list of 13C chemical shift data. This is demonstrated by a clear relationship between ribose 13C shifts and the sugar pucker, which can be used to predict a C2′- or C3′-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

  5. 15N Solid-State NMR as a Probe of Flavin H-bonding

    Cui, Dongtao; Koder, Ronald L.; Dutton, P. Leslie; Miller, Anne-Frances

    2011-01-01

    Flavins mediate a wide variety of different chemical reactions in biology. To learn how one cofactor can be made to execute different reactions in different enzymes, we are developing solid-state NMR (SSNMR) to probe the flavin electronic structure, via the 15N chemical shift tensor principal values (δii). We find that SSNMR has superior responsiveness to H-bonds, compared to solution NMR. H-bonding to a model of the flavodoxin active site produced an increase of 10 ppm in the δ11 of N5 altho...

  6. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  7. Carbon-13 magnetic resonance chemical shift additivity relationships of clinically used furocoumarins and furchromones

    The natural abundance carbon-13 nuclear magnetic resonance spectra of various clinically used furocoumarins and furochromones have been studied. The assignments of carbon chemical shift values were based on the theory of chemical shift, additivity rules, SFORD spectra and model compounds. (author)

  8. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  9. Method of evaluating chemical shifts of X-ray emission lines in molecules and solids

    Lomachuk, Yuriy V.; Titov, Anatoly V.

    2013-01-01

    Method of evaluating chemical shifts of X-ray emission lines for sufficiently heavy atoms (beginning from period 4 elements) in chemical compounds is developed. This method is based on the pseudopotential model and one-center restoration method (to reconstruct the proper electronic structure in heavy-atom cores). The approximations of instantaneous transition and frozen inner core spinors of the atom are used for derivation of an expression for chemical shift as a difference between mean valu...

  10. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder

  11. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca

  12. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  13. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  14. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...... QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift...

  15. Mineral Moessbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters

    The variety of coordination numbers, symmetries, distortions and ligand environments in thermally-stable iron-bearing minerals provide wide ranges of chemical shift (δ) and quadrupole splitting (Δ) parameters, which serve to characterize the crystal chemistries and site occupancies of Fe2+ and Fe3+ ions in minerals of terrestrial and extraterrestrial origins. Correlations between ferrous and ferric chemical shifts enable thermally-induced electron delocalization behavior in mixed-valence Fe2+-Fe3+ minerals to be identified, while chemical shift versus quadrupole splitting correlations serve to identify nanophase ferric oxides and oxyhydroxides in oxidized minerals and in meteorites subjected to aqueous oxidation before and after they arrived on Earth. (orig.)

  16. Prediction of proton chemical shifts in RNA - Their use in structure refinement and validation

    An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct.,76, 81-92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341-346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1H chemical shifts revealing their physical origin. For example, a down-field shift of either H2' or H3' or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5'-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings

  17. Combined Effects of Noise and Shift Work on Workers’ Physiological Parameters in a Chemical Industry

    M. Motamedzade; S. Ghazaiee

    2003-01-01

    This study was conducted to determine the combined effects of noise and shift work on physiological parameters including body temperature, heart rate and blood pressure. This study was performed in a chemical industry in Tehran in 1993. The workers’ physiological parameters was recorded at the beginning and at the end of all work shifts. Groups under study included : day workers (n=115) , day workers with continuous noise exposure (n=44) , two-shift workers without...

  18. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    Kobayashi, Takeshi [Ames Laboratory; Gupta, Shalabh [Ames Laboratory; Caporini, Marc A [Bruker BioSpin Corporation; Pecharsky, Vitalij K [Ames Laboratory; Pruski, Marek [Ames Laboratory

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  19. PPM-One: a static protein structure based chemical shift predictor

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs

  20. PPM-One: a static protein structure based chemical shift predictor

    Li, Dawei; Brüschweiler, Rafael, E-mail: bruschweiler.1@osu.edu [The Ohio State University, Campus Chemical Instrument Center (United States)

    2015-07-15

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs.

  1. Chemical shifts and coupling constants of C8H10N4O2

    Jain, M.

    This document is part of Subvolume D3 `Chemical Shifts and Coupling Constants for Carbon-13: Heterocycles' of Volume 35 `Nuclear Magnetic Resonance (NMR) Data' of Landolt-Börnstein Group III `Condensed Matter'

  2. Quantitative chemical-shift MR imaging cutoff value: Benign versus malignant vertebral compression – Initial experience

    Dalia Z. Zidan

    2014-09-01

    Conclusion: Quantitative chemical shift MR imaging could be a valuable addition to standard MR imaging techniques and represent a rapid problem solving tool in differentiating benign from malignant vertebral compression, especially in patients with known primary malignancies.

  3. Synthesis of {sup 15}N labeled glyphosate; Sintese do glifosato enriquecido com {sup 15}N

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Tavares, Glauco Arnold; Rossete, Alexssandra L.R.M.; Tagliassachi, Romulo Barbieri; Prestes, Cleuber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of {sup 15}N labeled glyphosate. The {sup 15}N-herbicide was undertaken by phosphometilation with the phosphit dialquil and {sup 15}N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  4. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal...

  5. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  6. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input

  7. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the 1H NMR and 13C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and 1H and 13C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA 1H and 13C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides

  8. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.

    Brown, Joshua D; Summers, Michael F; Johnson, Bruce A

    2015-09-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides. PMID:26141454

  9. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules

    Swails, Jason [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States); Zhu, Tong; He, Xiao, E-mail: xiaohe@phy.ecnu.edu.cn [East China Normal University, State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science (China); Case, David A., E-mail: case@biomaps.rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States)

    2015-10-15

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input.

  10. Nitrogen-15 labeled 5S RNA. Identification of uridine base pairs in Escherichia coli 5S RNA by 1H-15N multiple quantum NMR

    Escherichia coli 5S RNA labeled with 15N at N3 of the uridines was isolated from the Sφ-187 uracil auxotroph grown on a minimal medium supplemented with [3-15N]uracil. 1H-15N multiple quantum filtered and 2D chemical shift correlated spectra gave resonances for the uridine imino 1H-15N units whose protons were exchanging slowly with solvent. Peaks with 1H/15N shifts at 11.6/154.8, 11.7/155.0, 11.8/155.5, 12.1/155.0, and 12.2/155.0 ppm were assigned to GU interactions. Two labile high-field AU resonances at 12.6/156.8 and 12.8/157.3 ppm typical of Au pairs in a shielded environment at the end of a helix were seen. Intense AU signals were also found at 13.4/158.5 and 13.6/159.2 ppm where 1H-15N units in normal Watson-Crick pairs resonate. 1H resonances at 10.6 and 13.8 ppm were too weak, presumably because of exchange with water, to give peaks in chemical shift correlated spectra. 1H chemical shifts suggest that the resonance at 13.8 ppm represents a labile AU pair, while the resonance at 10.6 ppm is typical of a tertiary interaction between U and a tightly bound water or a phosphate residue. The NMR data are consistent with proposed secondary structures for 5S RNA

  11. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    Douis, H. [University Hospital Birmingham, Department of Radiology, Birmingham (United Kingdom); Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Davies, A.M. [Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Jeys, L. [Royal Orthopaedic Hospital, Department of Orthopaedic Oncology, Birmingham (United Kingdom); Sian, P. [Royal Orthopaedic Hospital, Department of Spinal Surgery and Spinal Oncology, Birmingham (United Kingdom)

    2016-04-15

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  12. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  13. From NMR chemical shifts to amino acid types: Investigation of the predictive power carried by nuclei

    An approach to automatic prediction of the amino acid type from NMR chemical shift values of its nuclei is presented here, in the frame of a model to calculate the probability of an amino acid type given the set of chemical shifts. The method relies on systematic use of all chemical shift values contained in the BioMagResBank (BMRB). Two programs were designed, one (BMRB stats) for extracting statistical chemical shift parameters from the BMRB and another one (RESCUE2) for computing the probabilities of each amino acid type, given a set of chemical shifts. The Bayesian prediction scheme presented here is compared to other methods already proposed: PROTYP (Grzesiek and Bax, J. Biomol. NMR, 3, 185-204, 1993) RESCUE (Pons and Delsuc, J. Biomol. NMR, 15, 15-26, 1999) and PLATON (Labudde et al., J. Biomol. NMR, 25, 41-53, 2003) and is found to be more sensitive and more specific. Using this scheme, we tested various sets of nuclei. The two nuclei carrying the most information are Cβ and Hβ, in agreement with observations made in Grzesiek and Bax, 1993. Based on four nuclei: Hβ, Cβ, Cα and C', it is possible to increase correct predictions to a rate of more than 75%. Taking into account the correlations between the nuclei chemical shifts has only a slight impact on the percentage of correct predictions: indeed, the largest correlation coefficients display similar features on all amino acids

  14. Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis

    Anthony J. SAVIOLA, David CHISZAR, Stephen P. MACKESSY

    2012-08-01

    Full Text Available Snakes often have specialized diets that undergo a shift from one prey type to another depending on the life stage of the snake. Crotalus viridis viridis (prairie rattlesnake takes different prey at different life stages, and neonates typically prey on ectotherms, while adults feed almost entirely on small endotherms. We hypothesized that elevated rates of tongue flicking to chemical stimuli should correlate with particular prey consumed, and that this response shifts from one prey type to another as individuals age. To examine if an ontogenetic shift in response to chemical cues occurred, we recorded the rate of tongue flicking for 25 neonate, 20 subadult, and 20 adult (average SVL = 280.9, 552, 789.5 mm, respectively wild-caught C. v. viridis to chemical stimuli presented on a cotton-tipped applicator; water-soluble cues from two ectotherms (prairie lizard, Sceloporus undulatus, and house gecko, Hemidactylus frenatus, two endotherms (deer mouse, Peromyscus maniculatus and lab mouse, Mus musculus, and water controls were used. Neonates tongue flicked significantly more to chemical cues of their common prey, S. undulatus, than to all other chemical cues; however, the response to this lizard’s chemical cues decreased in adult rattlesnakes. Subadults tongue flicked with a higher rate of tongue flicking to both S. undulatus and P. maniculatus than to all other treatments, and adults tongue flicked significantly more to P. maniculatus than to all other chemical cues. In addition, all three sub-classes demonstrated a greater response for natural prey chemical cues over chemical stimuli of prey not encountered in the wild (M. musculus and H. frenatus. This shift in chemosensory response correlated with the previously described ontogenetic shifts in C. v. viridis diet. Because many vipers show a similar ontogenetic shift in diet and venom composition, we suggest that this shift in prey cue discrimination is likely a general phenomenon among viperid

  15. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  16. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    Harris, R.K. [University of Durham, Durham (United Kingdom). Dept. of Chemistry; Becker, E.D. [National Institutes of Health, Bethesda, MD (United States); Menezes, S.M. Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Granger, P. [University Louis Pasteur, Strasbourg (France). Inst. of Chemistry; Hoffman, R.E. [The Hebrew University of Jerusalem, Safra Campus, Jerusalem (Israel). Dept. of Organic Chemistry; Zilm, K.W., E-mail: r.k.harris@durham.ac.uk [Yale University, New Haven, CT (United States). Dept. of Chemistry

    2008-07-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the {sup 1}H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating {sup 13}C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  17. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the 1H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating 13C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  18. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh

    Khandakar Showkat Osman; M. Jashimuddin; S. M. Sirajul Haque; Sohag Miah

    2013-01-01

    This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti-cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly (p≤0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.

  19. Method of evaluating chemical shifts of X-ray emission lines in molecules and solids

    Lomachuk, Yuriy V

    2013-01-01

    Method of evaluating chemical shifts of X-ray emission lines for sufficiently heavy atoms (beginning from period 4 elements) in chemical compounds is developed. This method is based on the pseudopotential model and one-center restoration method (to reconstruct the proper electronic structure in heavy-atom cores). The approximations of instantaneous transition and frozen inner core spinors of the atom are used for derivation of an expression for chemical shift as a difference between mean values of some effective operator. The method allows one to avoid evaluating small values (chemical shifts ~ 0.01{\\div}1 eV) as differences of very large values (transition energies ~ 1{\\div}100 keV in various compounds). The results of our calculations of chemical shifts for the K_{\\alpha1,2} and L transitions of the group 14 metal cations with respect to neutral atoms are presented. The calculations of chemical shift of K_{\\alpha1}-line in the Pb-core transition within PbO and PbF_2 with respect to the neutral Pb are also p...

  20. Method for evaluating chemical shifts of x-ray emission lines in molecules and solids

    Lomachuk, Yuriy V.; Titov, Anatoly V.

    2013-12-01

    A method of evaluating chemical shifts of x-ray emission lines for period four and heavier elements is developed. This method is based on the relativistic pseudopotential model and one-center restoration approach [Int. J. Quantum Chem.IJQCB20020-760810.1002/qua.20418 104, 223 (2005)] to recover a proper electronic structure in heavy-atom cores after the pseudopotential simulation of chemical compounds. The approximations of instantaneous transition and frozen core are presently applied to derive an expression for chemical shift as a difference between mean values of certain effective operator. The method allows one to avoid evaluation of small quantities (chemical shifts ˜0.01-1 eV) as differences of very large values (transition energies ˜1-100 keV in various compounds). The results of our calculations of chemical shifts for the Kα1, Kα2, and L transitions of group-14 metal cations with respect to neutral atoms are presented. Calculations of Kα1-line chemical shifts for the Pb core transitions in PbO and PbF2 with respect to those in the Pb atom are also performed and discussed. The accuracy of approximations used is estimated and the quality of the calculations is analyzed.

  1. Synthesis of 15 N double labelled urea

    Synthesis of double 15 N labelled urea by reacting 15 N - ammonia with elemental sulfur and carbon monoxide in a pressure vessel is presented. 15 NH3 was produced by H15 NO3 reduction with Dewarda alloy in alkaline solution, or by nitric monoxide reduction with hydrogen on metallic manganese. An average yield of 85% tacking into account 15 N - urea and 15 N ammonium sulfate, produced in the same time, and 99% urea purity (checked by I.R. spectroscopy and mass spectrometry) were obtained. (authors)

  2. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics.

    Anders S Christensen

    Full Text Available We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts--sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94. ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond ((h3J(NC' spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding.

  3. Differential diagnosis of adrenal masses by chemical shift and dynamic gadolinium enhanced MR imaging

    Chemical shift MRI is widely used for identifying adenomas, but it is not a perfect method. We determined whether combined dynamic MRI methods can lead to improved diagnostic accuracy. Fifty-seven adrenal masses were examined by chemical shift and dynamic MR imaging using 2 MR systems. The masses included 38 adenomas and 19 non-adenomas. In chemical shift MRI studies, the signal intensity index (SI) was calculated, and the lesions classified into 5 types in the dynamic MRI studies. Of the 38 adenomas studied, 37 had an SI greater than 0. In the dynamic MRI, 34 of 38 adenomas showed a benign pattern (type 1). If the SI for the adenomas in the chemical shift MRI was considered to be greater than 0, the positive predictive value was 0.9, and the negative predictive value was 0.94 and κ=0.79. If type 1 was considered to indicate adenomas in the dynamic MRI, the corresponding values were 0.94, 0.81 and κ=0.77 respectively. The results obtained when the 2 methods were combined were 1, 0.95 and κ=0.96 respectively. The chemical shift MRI was found to be useful for identifying adenomas in most cases. If the adrenal mass had a low SI (0< SI<5), dynamic MRI was also found to be helpful for making a differential diagnosis. (author)

  4. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

    Labudde, D.; Leitner, D.; Krueger, M.; Oschkinat, H. [Forschungsinstitut fuer Molekulare Pharmakologie (Germany)], E-mail: oschkinat@fmp-berlin.de

    2003-01-15

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the {alpha}-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely {alpha}-helix, {beta}-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  5. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    Christensen, Anders S; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this...

  6. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the α-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely α-helix, β-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time

  7. Measurement of {sup 15}N relaxation in deuterated amide groups in proteins using direct nitrogen detection

    Vasos, Paul R.; Hall, Jennifer B. [University of Maryland, Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization (United States); Kuemmerle, Rainer [Bruker Biospin AG, NMR Division (Switzerland); Fushman, David [University of Maryland, Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization (United States)], E-mail: fushman@umd.edu

    2006-09-15

    {sup 15}N chemical shielding tensors contain useful structural information, and their knowledge is essential for accurate analysis of protein backbone dynamics. The anisotropic component (CSA) of {sup 15}N chemical shielding can be obtained from {sup 15}N relaxation measurements in solution. However, the predominant contribution to nitrogen relaxation from {sup 15}N-{sup 1}H dipolar coupling in amide groups limits the sensitivity of these measurements to the actual CSA values. Here we present nitrogen-detected NMR experiments for measuring {sup 15}N relaxation in deuterated amide groups in proteins, where the dipolar contribution to {sup 15}N relaxation is significantly reduced by the deuteration. Under these conditions nitrogen spin relaxation becomes a sensitive probe for variations in {sup 15}N chemical shielding tensors. Using the nitrogen direct-detection experiments we measured the rates of longitudinal and transverse {sup 15}N relaxation for backbone amides in protein G in D{sub 2}O at 11.7 T. The measured relaxation rates are validated by comparing the overall rotational diffusion tensor obtained from these data with that from the conventional {sup 15}N relaxation measurements in H{sub 2}O. This analysis revealed a 17-24{sup o} angle between the NH-bond and the unique axis of the {sup 15}N chemical shielding tensor.

  8. Measurement of 15N relaxation in deuterated amide groups in proteins using direct nitrogen detection

    15N chemical shielding tensors contain useful structural information, and their knowledge is essential for accurate analysis of protein backbone dynamics. The anisotropic component (CSA) of 15N chemical shielding can be obtained from 15N relaxation measurements in solution. However, the predominant contribution to nitrogen relaxation from 15N-1H dipolar coupling in amide groups limits the sensitivity of these measurements to the actual CSA values. Here we present nitrogen-detected NMR experiments for measuring 15N relaxation in deuterated amide groups in proteins, where the dipolar contribution to 15N relaxation is significantly reduced by the deuteration. Under these conditions nitrogen spin relaxation becomes a sensitive probe for variations in 15N chemical shielding tensors. Using the nitrogen direct-detection experiments we measured the rates of longitudinal and transverse 15N relaxation for backbone amides in protein G in D2O at 11.7 T. The measured relaxation rates are validated by comparing the overall rotational diffusion tensor obtained from these data with that from the conventional 15N relaxation measurements in H2O. This analysis revealed a 17-24o angle between the NH-bond and the unique axis of the 15N chemical shielding tensor

  9. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2013-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into l...

  10. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static......” and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary...... and primary isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles...

  11. Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis

    Modig, K.; Jürgensen, Vibeke Würtz; Lindorff-Larsen, K.;

    2007-01-01

    A simple alternative method for obtaining "random coil" chemical shifts by intrinsic referencing using the protein's own peptide sequence is presented. These intrinsic random coil backbone shifts were then used to calculate secondary chemical shifts, that provide important information on the resi...

  12. Pulse NMR in solids: chemical shift, lead fluoride, and thorium hydride

    The fluorine chemical shift of a single crystal CaF2 was measured up to 4 kilobar at room temperature using multiple pulse NMR. The pressure dependence of the shift is found to be --1.7 +- 1 ppM/kbar, while an overlap model predicts a shift of --0.46 ppM/kbar.The chemical shift tensor is separated into ''geometrical'' and ''chemical'' contributions, and comparison of the proposed model calculations with recent data on hydroxyl proton chemical shift tensors shows that the geometrical portion accounts for the qualitative features of the measured tensors. A study of fluoride ion motion in β-PbF2 doped with NaF was conducted by measurement of the 19F transverse relaxation time (T2), spin lattice relaxation time (T1) and the spin lattice relaxation time in the rotating frame (T/sub 1r). Two samples of Th4H15, prepared under different conditions but both having the proper ratio of H/Th (to within 1 percent), were studied. The structure of the Th4H15 suggested by x-ray measurements is confirmed through a moment analysis of the rigid lattice line shape

  13. What can we learn by computing 13Cα chemical shifts for X-ray protein models?

    The room-temperature X-ray structures of two proteins, solved at 1.8 and 1.9 Å resolution, are used to investigate whether a set of conformations, rather than a single X-ray structure, provides better agreement with both the X-ray data and the observed 13Cα chemical shifts in solution. The room-temperature X-ray structures of ubiquitin and of the RNA-binding domain of nonstructural protein 1 of influenza A virus solved at 1.8 and 1.9 Å resolution, respectively, were used to investigate whether a set of conformations rather than a single X-ray structure provides better agreement with both the X-ray data and the observed 13Cα chemical shifts in solution. For this purpose, a set of new conformations for each of these proteins was generated by fitting them to the experimental X-ray data deposited in the PDB. For each of the generated structures, which show R and Rfree factors similar to those of the deposited X-ray structure, the 13Cα chemical shifts of all residues in the sequence were computed at the DFT level of theory. The sets of conformations were then evaluated by their ability to reproduce the observed 13Cα chemical shifts by using the conformational average root-mean-square-deviation (ca-r.m.s.d.). For ubiquitin, the computed set of conformations is a better representation of the observed 13Cα chemical shifts in terms of the ca-r.m.s.d. than a single X-ray-derived structure. However, for the RNA-binding domain of nonstructural protein 1 of influenza A virus, consideration of an ensemble of conformations does not improve the agreement with the observed 13Cα chemical shifts. Whether an ensemble of conformations rather than any single structure is a more accurate representation of a protein structure in the crystal as well as of the observed 13Cα chemical shifts is determined by the dispersion of coordinates, in terms of the all-atom r.m.s.d. among the generated models; these generated models satisfy the experimental X-ray data with accuracy as good as

  14. Sequence-specific assignment of histidine and tryptophan ring 1H, 13C and 15N resonances in 13C/15N- and 2H/13C/15N-labelled proteins

    Methods are described to correlate aromatic 1Hδ2/13Cδ2 or 1Hε1/15Nε1 with aliphatic 13Cβ chemical shifts of histidine and tryptophan residues, respectively. The pulse sequences exclusively rely on magnetization transfers via one-bond scalar couplings and employ [15N, 1H]- and/or [13C, 1H]-TROSY schemes to enhance sensitivity. In the case of histidine imidazole rings exhibiting slow HN-exchange with the solvent, connectivities of these proton resonances with β-carbons can be established as well. In addition, their correlations to ring carbons can be detected in a simple [15N, 1H]-TROSY-H(N)Car experiment, revealing the tautomeric state of the neutral ring system. The novel methods are demonstrated with the 23-kDa protein xylanase and the 35-kDa protein diisopropylfluorophosphatase, providing nearly complete sequence-specific resonance assignments of their histidine δ-CH and tryptophan ε-NH groups

  15. Resolution of the 15N balance enigma?

    The enigma of soil nitrogen balance sheets has been discussed for over 40 years. Many reasons have been considered for the incomplete recovery of 15N applied to soils, including sampling uncertainty, gaseous N losses from plants, and entrapment of soil gases. The entrapment of soil gases has been well documented for rice paddy and marshy soils but little or no work appears to have been done to determine entrapment in drained pasture soils. In this study 15N-labelled nitrate was applied to a soil core in a gas-tight glovebox. Water was applied, inducing drainage, which was immediately collected. Dinitrogen and N-2 were determined in the flux through the soil surface, and in the gases released into the glovebox as a result of irrigation or physical destruction of the core. Other components of the N balance were also measured, including soil inorganic-N and organic-N. Quantitative recovery of the applied 15N was achieved when the experiment was terminated 484 h after the 15N-labelled material was applied. Nearly 23% of the 15N was recovered in the glovebox atmosphere as N2 and N2O due to diffusion from the base of the soil core, convective flow after irrigation, and destructive soil sampling. This 15N would normally be unaccounted for using the sampling methodology typically employed in 15N recovery experiments. Copyright (2001) CSIRO Publishing

  16. Proton Magnetic Resonance and Human Thyroid Neoplasia III. Ex VivoChemical-Shift Microimaging

    Rutter, Allison; Künnecke, Basil; Dowd, Susan; Russell, Peter; Delbridge, Leigh; Mountford, Carolyn E.

    1996-03-01

    Magnetic-resonance chemical-shift microimaging, with a spatial resolution of 40 × 40 μm, is a modality which can detect alterations to cellular chemistry and hence markers of pathological processes in human tissueex vivo.This technique was used as a chemical microscope to assess follicular thyroid neoplasms, lesions which are unsatisfactorily investigated using standard histopathological techiques or water-based magnetic-resonance imaging. The chemical-shift images at the methyl frequency (0.9 ppm) identify chemical heterogeneity in follicular tumors which are histologically homogeneous. The observed changes to cellular chemistry, detectable in foci of approximately 100 cells or less, support the existence of a preinvasive state hitherto unidentified by current pathological techniques.

  17. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including 1H, 13C and 15N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001–2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

  18. Synthesis and NMR characterization of (15N)taurine [2-(15N)aminoethanesulfonic acid

    The title compound was prepared in three steps with 55% overall yield starting from potassium (15N)phthalimide. The synthetic route involved reaction with 1,2-dibromoethane, hydrolysis of the resulting N-(2-bromoethyl) (15N)phthalimide with HBr and treatment of the 2-bromoethyl(15N)amine thus formed with sodium sulphite. The product was characterized by 13C, 1H and 15N NMR spectroscopy. The absolute coupling constants of 15N with the 13C nuclei and the non-exchanging protons were determined and an unambiguous assignment of the proton signals obtained. (author)

  19. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    this study, we use random coil peptides containing glutamine instead of glycine to determine the random coil chemical shifts and the neighbor correction factors. The resulting correction factors correlate to changes in the populations of the major wells in the Ramachandran plot, which demonstrates that...... changes in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets......Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues...

  20. Database proton NMR chemical shifts for RNA signal assignment and validation

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the 1H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson–Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 43 possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA 1H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  1. Chemical shifts in transition metal dithiocarbamates from infrared and X-ray photoelectron spectroscopies

    Payne, R.; Magee, R. J.; Liesegang, J.

    1982-11-01

    Measurements of the IR stretching frequencies of the NC and MS bonds in transition-metal (M) dithiocarbamates show significant correlation with measurement of core level XPS chemical shifts. This is believed to be the first demonstration of such a correlation for a series of solid-phase compounds.

  2. Parameter-free calculation of K alpha chemical shifts for Al, Si, and Ge oxides

    Lægsgaard, Jesper

    2001-01-01

    The chemical shifts of the K alpha radiation line from Al, Si, and Ge ions between their elemental and oxide forms are calculated within the framework of density functional theory using ultrasoft pseudopotentials. It is demonstrated that this theoretical approach yields quantitatively accurate re...... implanted in silica are found to be in excellent agreement with experimental data, providing support for the proposed atomic geometry....

  3. Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins

    Tamiola, Kamil; Mulder, Frans A. A.

    2012-01-01

    NMR spectroscopy offers the unique possibility to relate the structural propensities of disordered proteins and loop segments of folded peptides to biological function and aggregation behaviour. Backbone chemical shifts are ideally suited for this task, provided that appropriate reference data are a

  4. Identification of helix capping and {beta}-turn motifs from NMR chemical shifts

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and {sup 13}C{sup {beta}} chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of {beta}-turns: I, II, I Prime , II Prime and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and {beta}-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7-0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  5. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me...

  6. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δiso) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δiso. This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σMC and π*MC orbitals under the action of the magnetic field, is analogous to that resulting from coupling σCC and π*CC in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δiso in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σMC and π*MC vs this between σCC and π*CC in ethylene. This effect also explains why the highest value of δiso is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to πMX) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δiso. PMID:26787258

  7. Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins

    Panchal, Sanjay C.; Bhavesh, Neel S.; Hosur, Ramakrishna V. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2001-06-15

    Two triple resonance experiments, HNN and HN(C)N, are presented which correlate H{sup N} and {sup 15}N resonances sequentially along the polypeptide chain of a doubly ({sup 13}C, {sup 15}N) labeled protein. These incorporate several improvements over the previously published sequences for a similar purpose and have several novel features. The spectral characteristics enable direct identification of certain triplets of residues, which provide many starting points for the sequential assignment procedure. The experiments are sensitive and their utility has been demonstrated with a 22 kDa protein under unfolding conditions where most of the standard triple resonance experiments such as HNCA, CBCANH etc. have limited success because of poor amide, C{sup {alpha}} and C{sup {beta}} chemical shift dispersions.

  8. Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins

    Two triple resonance experiments, HNN and HN(C)N, are presented which correlate HN and 15N resonances sequentially along the polypeptide chain of a doubly (13C, 15N) labeled protein. These incorporate several improvements over the previously published sequences for a similar purpose and have several novel features. The spectral characteristics enable direct identification of certain triplets of residues, which provide many starting points for the sequential assignment procedure. The experiments are sensitive and their utility has been demonstrated with a 22 kDa protein under unfolding conditions where most of the standard triple resonance experiments such as HNCA, CBCANH etc. have limited success because of poor amide, Cα and Cβ chemical shift dispersions

  9. Noninvasive Temperature Mapping With MRI Using Chemical Shift Water-Fat Separation

    Soher, Brian J.; Wyatt, Cory; Reeder, Scott B.; MacFall, James R.

    2010-01-01

    Tissues containing both water and lipids, e.g., breast, confound standard MR proton reference frequency-shift methods for mapping temperatures due to the lack of temperature-induced frequency shift in lipid protons. Generalized Dixon chemical shift–based water-fat separation methods, such as GE’s iterative decomposition of water and fat with echo asymmetry and least-squares estimation method, can result in complex water and fat images. Once separated, the phase change over time of the water s...

  10. CO{sub H}(N)CACB experiments for assigning backbone resonances in {sup 13}C/{sup 15}N-labeled proteins

    Astrof, Nathan; Bracken, Clay; Cavanagh, John; Palmer, Arthur G

    1998-05-15

    A triple resonance NMR experiment, denoted CO{sub H}(N)CACB, correlates{sup 1}H{sup N} and {sup 13}CO spins with the{sup 13}C{sup {alpha}} and{sup 13}C{sup {beta}} spins of adjacent amino acids. The pulse sequence is an 'out-and-back' design that starts with{sup 1}H{sup N} magnetization and transfers coherence via the {sup 15}N spin simultaneously to the {sup 13}CO and{sup 13}C{sup {alpha}} spins, followed by transfer to the{sup 13}C{sup {beta}} spin. Two versions of the sequence are presented: one in which the {sup 13}CO spins are frequency labeled during an incremented t{sub 1} evolution period prior to transfer of magnetization from the {sup 13}C{sup {alpha}} to the{sup 13}C{sup {beta}} resonances, and one in which the{sup 13}CO spins are frequency labeled in a constant-time manner during the coherence transfer to and from the{sup 13}C{sup {beta}} resonances. Because {sup 13}COand {sup 15}N chemical shifts are largely uncorrelated, the technique will be especially useful when degeneracy in the{sup 1}H{sup N}-{sup 15}N chemical shifts hinders resonance assignment. The CO{sub H}(N)CACB experiment is demonstrated using uniformly {sup 13}C/{sup 15}N-labeled ubiquitin.

  11. The effect of organic matter and nitrification inhibitor on 15 N H4 and 15 N O3 absorption by the maize

    The effect of the forms 15 N H4 and 15 N O3 in presence or absence of organic matter and of the nitrification inhibitor AM (2-amino-4-chloro-6-methyl-pyrimidine) in dry matter weight and nitrogen content of the plant derived from soil and form fertilizer is studied. The experiment was carried out in greenhouse and the test plant was the hybrid Maize Centralmex . The fertilizers (15 N H4)2 S O4 and Na15 N O3, were added in two levels: 40 and 120 Kg N/ha, with 1,02% of N and 1,4% of 15 N in excess, respectively. Three soils of different physical and chemical characteristics were used; Regosol intergrade, Latosol Roxo and Podzolized de Lins e Marilia var. Marilia. (M.A.C.)

  12. Fields of application and results of analytic procedures with 15N in pediatric alimentary research

    Investigation of protein metabolism in nutritional pediatric research by means of 15N tracer techniques has been relatively seldom used up to now. 15N labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on 15N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover and reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters was performed in infants on mother's milk and formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the 15N-D-phenylalanin retention on parenteral nutrition was found to be 33% of the applied dosis at an average. An oral 15N glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormon in numerous types of dwarfism. Further application of 15N tracer technique dealt with utilisation of 15N urea for bacterial protein synthesis of the intestinal flora and with incorporation of 15N from 15N glycine and 15N lysine into the jejunal mucosa for measuring the enterocyte regeneration. (author)

  13. Effects of growth and change of food on the δ15N in marine fishes

    Information is limited concerning variation of the δ15N with growth in marine organisms and consequently the effect of growth of marine biota on the δ15N is not yet well understood. The δ15N in 26 species of marine fishes taken from Japanese coastal waters together with 4664 stomach contents of these fishes were examined to investigate the effects of food habits and growth on the δ15N. The mean δ15N for two species that fed mainly on large-size fishes and six species that fed mainly on small-size fishes were 14.5±1.0per mille and 12.8±0.7per mille, respectively. For five species that fed mainly on decapod crustaceans, two species that fed mainly on zooplankton, and three species that fed mainly on benthos (mainly Polychaeta), the δ15N were 13.0±0.7, 9.7±0.9, and 12.2±1.2per mille, respectively. The mean δ15N in the species whose prey were mainly fish or decapod crustaceans was about 3-5per mille higher than the species whose prey was mainly zooplankton. Within the four species that shift their food habits with growth to higher trophic level, the δ15N significantly increased with growth in one species (Pacific cod), while not significant increase in the δ15N with growth in the remaining species. (author)

  14. Secondary structural analysis of proteins based on 13C chemical shift assignments in unresolved solid-state NMR spectra enhanced by fragmented structure database

    Magic-angle-spinning solid-state 13C NMR spectroscopy is useful for structural analysis of non-crystalline proteins. However, the signal assignments and structural analysis are often hampered by the signal overlaps primarily due to minor structural heterogeneities, especially for uniformly-13C,15N labeled samples. To overcome this problem, we present a method for assigning 13C chemical shifts and secondary structures from unresolved two-dimensional 13C–13C MAS NMR spectra by spectral fitting, named reconstruction of spectra using protein local structures (RESPLS). The spectral fitting was conducted using databases of protein fragmented structures related to 13Cα, 13Cβ, and 13C′ chemical shifts and cross-peak intensities. The experimental 13C–13C inter- and intra-residue correlation spectra of uniformly isotope-labeled ubiquitin in the lyophilized state had a few broad peaks. The fitting analysis for these spectra provided sequence-specific Cα, Cβ, and C′ chemical shifts with an accuracy of about 1.5 ppm, which enabled the assignment of the secondary structures with an accuracy of 79 %. The structural heterogeneity of the lyophilized ubiquitin is revealed from the results. Test of RESPLS analysis for simulated spectra of five different types of proteins indicated that the method allowed the secondary structure determination with accuracy of about 80 % for the 50–200 residue proteins. These results demonstrate that the RESPLS approach expands the applicability of the NMR to non-crystalline proteins exhibiting unresolved 13C NMR spectra, such as lyophilized proteins, amyloids, membrane proteins and proteins in living cells.

  15. Substituent Chemical Shifts of (E)-1-Aryl-3-thienylpropen-1-ones

    Substituent chemical shifts were examined for the 2- and 3-thiophene derivatives of chalcone and compared to the thiophene series of derivatives with the phenyl series. The chemical shift values for the α-carbons of the enones showed and inverse correlation with the Hammett σ values, but the correlation coefficients were moderate (r = 0.836 - 0.878). On the other hand, the β-carbons showed a normal correlation with excellent correlation coefficients (r = 0.994). The absolute magnitude of the ρ values for the α-carbon are about half of those of the β-carbon. The observation may be the result of a through-space transition of the electronic effect of the substituents in addition to the through bond transition

  16. PACSY, a relational database management system for protein structure and chemical shift analysis

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  17. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  18. 1H chemical shift imaging characterization of human brain tumor and edema

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) 1H chemical shift imaging results at different repetition times (TR=1500 and 5000 ms; T1: n=19) and echo times (TE=135 and 270 ms; T2: n=7). Metabolite T1 and T2 relaxation times in unaffected brain tissue corresponded with those published for healthy volunteers. T2 relaxation times were reduced in tumor (choline, N-acetyl aspartate) and edema (choline, creatine) compared with unaffected brain tissue (p1H chemical shift imaging is most suited in the use of choline elevation as tumor marker. (orig.)

  19. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ1 rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts

  20. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  1. Four-Component Relativistic DFT Calculations of (13)C Chemical Shifts of Halogenated Natural Substances.

    Casella, Girolamo; Bagno, Alessandro; Komorovsky, Stanislav; Repisky, Michal; Saielli, Giacomo

    2015-12-14

    We have calculated the (13)C NMR chemical shifts of a large ensemble of halogenated organic molecules (81 molecules for a total of 250 experimental (13)C NMR data at four different levels of theory), ranging from small rigid organic compounds, used to benchmark the performance of various levels of theory, to natural substances of marine origin with conformational degrees of freedom. Carbon atoms bonded to heavy halogen atoms, particularly bromine and iodine, are known to be rather challenging when it comes to the prediction of their chemical shifts by quantum methods, due to relativistic effects. In this paper, we have applied the state-of-the-art four-component relativistic density functional theory for the prediction of such NMR properties and compared the performance with two-component and nonrelativistic methods. Our results highlight the necessity to include relativistic corrections within a four-component description for the most accurate prediction of the NMR properties of halogenated organic substances. PMID:26541625

  2. Relationship between electrophilicity index, Hammett constant and nucleus-independent chemical shift

    M Elango; R Parthasarathi; G Karthik Narayanan; A Md Sabeelullah; U Sarkar; N S Venkatasubramaniyan; V Subramanian; P K Chattaraj

    2005-01-01

    Inter-relationships between the electrophilicity index (), Hammett constant (ó) and nucleusindependent chemical shift (NICS (1) - NICS value one å ngstrom above the ring centre) have been investigated for a series of meta- and para-substituted benzoic acids. Good linear relationships between Hammett constant vs electrophilicity and Hammett constant vs NICS (1) values have been observed. However, the variation of NICS (1) against shows only a low correlation coefficient.

  3. Chemical shifts and EXAFS in some rare-earth metals and compounds

    The positions of the Lsub(111) absorption edge and accompanying Kossel and EXAFS oscillations of terbium, dysprosium and holmium in metals and compounds (acetate, carbonate, chloride, fluoride, nitrate, oxalate, oxide, phosphate and sulphate) have been measured. The chemical shifts of the main edge range from about 1 eV to about 10 eV and the EXAFS are observed up to about 150 eV. (author)

  4. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  5. 15N in biological nitrogen fixation studies

    A bibliography with 298 references on the use of the stable nitrogen isotope 15N in the research on the biological fixation of dinitrogen is presented. The literature pertaining to this bibliography covers the period from 1975 to the middle of 1985. (author)

  6. NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: Application to the human prion protein hPrP(23-230)

    A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15N, 13C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15N relaxation rates of unfolded polypeptides in high resolution constant-time [1H, 15N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence

  7. Changes in Rhodospirillum rubrum cytochrome c2 and subsequent renaturation: An 15N NMR study

    The 15N-enriched ferrocytochrome c2from Rhodospirillum rubrum was studied by 15N NMR at different solvent pH values. The mobility and chemical shift to the N-terminal glutamic acid (335.4 ppm at pH 5.1) were found to depend on pH. It was least mobile between pH 8 and 9.0, which is explained in terms of pH-dependent conformational changes and formation of salt linkages and/or hydrogen bonds. The resonances of the lysine side chains are centered around 341.7 ppm at low pH and move upfield with pH by about 8.4 ppm with pH/sub a/ values of 10.8. The exchange rates of the εNH protons are lowest near the pK/sub a/ values. The protein is very stable in the pH range between 4.9 and 10.0 but unfolds abruptly at pH 10.5-11. Denaturation was verified by the measurement of several parameters by NMR. The renaturation of the protein demonstrates that the folding begins with reformation of home coordination and establishment of a hydrophobic core, followed by positioning of side chains and peptide backbones linking the nucleation centers. The repositioning processes had time scales of minutes to hours in contrast to the reported values of seconds in some studies

  8. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  9. 15N2 incorporation by rhizosphere soil

    Heterotrophic nitrogen fixation by rhizosphere soil samples from 20 rice cultivars grown under uniform field conditions was estimated employing 15N-tracer technique. Rhizosphere soil samples from different rice cultivars showed striking differences with regard to their ability to incorporate 15N2. Rhizosphere samples from rice straw-amended (3 and 6 tons/ha) soil exhibited more pronounced nitrogen-fixing activity than the samples form unamended soil; while the activity of the rhizosphere samples from soil receiving combined nitrogen (40 and 80 kg N/ha) was relatively low. However, the inhibitory effect of combined nitrogen was not expressed in the presence of rice straw at 6 tons/ha. Results suggest that plant variety, application of combined nitrogen and organic matter influence the rhizosphere nitrogen fixation. (orig.)

  10. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  11. Model analysis of influences of the high-temperature reactor on location shifting in chemical industry

    An analysis is presented of the influences of High-Temperature Reactor on probable location shifting of big chemical plants, in the future. This is done by a spatial location model, that includes an investigation on 116 industrial locations within the first six countries of Common Market. The results of a computerized program show differences in location qualities when furnished either with traditional or with nuclear energy systems. In addition to location factor energy some other important factors, as subventions, taxes, labour, and transport costs are analysed, and their influence on industrial location is quantified. (orig.)

  12. Simulations of Xe-129 NMR chemical shift of atomic xenon dissolved in liquid benzene

    Standara, Stanislav; Kulhánek, P.; Marek, R.; Horníček, Jan; Bouř, Petr; Straka, Michal

    2011-01-01

    Roč. 129, 3/5 (2011), s. 677-684. ISSN 1432-881X R&D Projects: GA ČR GA203/09/2037; GA ČR GAP208/11/0105 Grant ostatní: AV ČR(CZ) M200550902; European Reintegration Grant(XE) 230955; European Community(XE) 205872 Institutional research plan: CEZ:AV0Z40550506 Keywords : Xe-129 NMR chemical shift * dynamical averaging * density functional theory * Breit-Pauli perturbation theory * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.162, year: 2011

  13. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  14. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  15. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy

    The solution structure of d(CGCGAATTCGCG)2 has been determined on the basis of an exceptionally large set of residual dipolar couplings. In addition to the heteronuclear 13C-1H and 15N-1H and qualitative homonuclear 1H-1H dipolar couplings, previously measured in bicelle medium, more than 300 quantitative 1H-1H and 22 31P-1H dipolar restraints were obtained in liquid crystalline Pf1 medium, and 22 31P chemical shift anisotropy restraints. High quality DNA structures can be obtained solely on the basis of these new restraints, and these structures are in close agreement with those calculated previously on the basis of 13C-1H and 15N-1H dipolar couplings. In the newly calculated structures, 31P-1H dipolar and 3JsubH3'Psub couplings and 31P CSA data restrain the phosphodiester backbone torsion angles. The final structure represents a quite regular B-form helix with a modest bending of ∼10 deg., which is essentially independent of whether or not electrostatic terms are used in the calculation. Combined, the number of homo- and heteronuclear dipolar couplings significantly exceeds the number of degrees of freedom in the system. Results indicate that the dipolar coupling data cannot be fit by a single structure, but are compatible with the presence of rapid equilibria between C2'-endo and C3'-endo deoxyribose puckers (sugar switching). The C2'-H2'/H2'' dipolar couplings in B-form DNA are particularly sensitive to sugar pucker and yield the largest discrepancies when fit to a single structure. To resolve these discrepancies, we suggest a simplified dipolar coupling analysis that yields N/S equilibria for the ribose sugar puckers, which are in good agreement with previous analyses of NMR JHH couplings, with a population of the minor C3'-endo form higher for pyrimidines than for purines

  16. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A;

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...

  17. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs

    Highlights: → Green macroalgae exposed to nutrient solutions exhibited changes in tissue 15N signatures. → Macroalgae exhibited no fractionation with NO3 and slight fractionation with NH4. → Algae exposed to cruise ship waste water had increased tissue δ15N indicating a heavy N source. → Field bioassays exhibited decreased δ15N indicating isotopically light riverine δ15N-NO3 was likely the dominant N source. → Algal bioassays could not detect a δ15N cruise ship waste water signal in this system. - Abstract: Green macroalgae bioassays were used to determine if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5 per mille in δ15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  18. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    differences are due to different conformational behavior of the OH and OCH3 groups; while the ortho-disubstituted OH group remains planar in polyphenols due to hydrogen bonding and conjugative stabilization, the steric congestion in ortho-disubstituted anisoles outweighs the conjugative effects and forces the......Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2) to...... Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent...

  19. Sources and transformations of N in reclaimed coastal tidelands: evidence from soil δ15N data

    Kwak, Jin-Hyeob; Choi, Woo-Jung; Lim, Sang-Sun; Lee, Seung-Heon; Lee, Sang-Mo; Chang, Scott X.; Jung, Jae-Woon; Yoon, Kwang-Sik; Choi, Soo-Myung

    2008-01-01

    Electrical conductivity of saturated soil extracts (ECe) in three reclaimed tideland (RTL) soils on the west coast of Korea decreased with time since reclamation, indicating natural desalinization through leaching of salts by precipitation water. Soil N concentration increased with decreasing ECe. With the increase in soil N concentration, the δ15N decreased, likely caused by the input of 15N-depleted N sources. As N2-fixing plant species were found in the oldest RTL, atmospheric N2 fixation likely contributed to the increase in soil N concentration in the oldest RTL. Negative δ15N (-7.1 to -2.0‰) of total inorganic N (NH4 ++NO3 -) and published data on N deposition near the study area indicate that atmospheric N deposition might be another source of N in the RTLs. Meanwhile, the consistently negative δ15N of soil NO3 - excluded N input from chemical fertilizer through groundwater flow as a potential N source, since NO3 - in groundwater generally have a positive δ15N. The patterns of δ15N of NH4 + (+2.3 to +5.1‰) and NO3 - (-9.2 to -5.0‰) suggested that nitrification was an active process that caused 15N enrichment in NH4 + but denitrification was probably minimal which would otherwise have caused 15N enrichment in NO3 -. A quantitative approach on N budget would provide a better understanding of soil N dynamics in the studied RTLs.

  20. 15N-labed glycine synthesis

    Claudinéia R. O. Tavares; José A. Bendassolli; Fernando Coelho; Carlos R. Sant Ana Filho; Clelber V. Prestes

    2006-01-01

    This work describes a method for 15N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of alpha-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia (15NH3). Special care was taken to avoid possible 15NH3 losses, since its production cost is high. In that respect, although the purchase cost of the 13N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an i...

  1. Water-fat imaging and general chemical shift imaging with spectrum modeling

    An, Li

    Water-fat chemical shift imaging (CSI) has been an active research area in magnetic resonance imaging (MRI) since the early 1980's. There are two main reasons for water- fat imaging. First, water-fat imaging can serve as a fat- suppression method. Removing the usually bright fatty signals not only extends the useful dynamic range of an image, but also allows better visualization of lesions or injected contrast, and removes chemical shift artifacts, which may contribute to improved diagnosis. Second, quantification of water and fat provides useful chemical information for characterizing tissues such as bone marrow, liver, and adrenal masses. A milestone in water- fat imaging is the Dixon method that can produce separate water and fat images with only two data acquisitions. In practice, however, the Dixon method is not always successful due to field inhomogeneity problems. In recent years, many variations of the Dixon method have been proposed to overcome the field inhomogeneity problem. In general, these methods can at best separate water and fat without identifying the two because the water and fat magnetization vectors are sampled symmetrically, only parallel and anti-parallel. Furthermore, these methods usually depend on two-dimensional phase unwrapping which itself is sensitive to noise and artifacts, and becomes unreliable when the images have disconnected tissues in the field-of-view (FOV). We will first introduce the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in chapter 1, and briefly review the existing water-fat imaging techniques in chapter 2. In chapter 3, we will introduce a new method for water-fat imaging. With three image acquisitions, a general direct phase encoding (DPE) of the chemical shift information is achieved, which allows an unambiguous determination of water and fat on a pixel by pixel basis. Details of specific implementations and noise performance will be discussed. Representative results

  2. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Nagamura, Naoka; Kitada, Yuta; Tsurumi, Junto; Matsui, Hiroyuki; Horiba, Koji; Honma, Itaru; Takeya, Jun; Oshima, Masaharu

    2015-06-01

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying -30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  3. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping

  4. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Nagamura, Naoka, E-mail: NAGAMURA.Naoka@nims.go.jp; Kitada, Yuta; Honma, Itaru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tsurumi, Junto; Matsui, Hiroyuki; Takeya, Jun [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Horiba, Koji [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Oshima, Masaharu [Synchrotron Radiation Research Organization, The University of Tokyo, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  5. Fuzzy logic control of 15 N separation plant

    The process of 15 N separation by chemical exchange in Nitrox system is automatically maintained in the optimal operation conditions using a computerized control. The automatic control leads to a maximum production of 15 N with a minimum of raw materials and energy consumption.. The control objective was achieved by considering two forms of knowledge: 1. objective knowledge, which uses the control engineering based on mathematical model of the separation process; 2. subjective knowledge, which represents linguistic information, very difficult to quantify using classical mathematics - e.g., the rule of HNO3 solution and SO2 flow rates adjustment in order to maintain a proper height and position of chemical reaction zone in the product refluxer. The above mentioned two types of knowledge were coordinated in a logical way using fuzzy logic control system which has the possibility to handle simultaneously numerical data and linguistic knowledge. In order to map input data vector into a scalar output, i.e., numbers to numbers a front-end 'fuzzifier' and a rear-end 'defuzzifier' was added to the usual fuzzy logic model. The inference engine of the control system maps the input fuzzy set into the output one. The inferential procedure maintains the isotope separation process in the optimal operation conditions. (author)

  6. Effect of protein restriction on (15)N transfer from dietary [(15)N]alanine and [(15)N]Spirulina platensis into urea.

    Hamadeh, M J; Hoffer, L J

    2001-08-01

    Six normal men consumed a mixed test meal while adapted to high (1.5 g. kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [(15)N]alanine ([(15)N]Ala) and when they included 30 mg/kg of intrinsically labeled [(15)N]Spirulina platensis ([(15)N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [(15)N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of (15)N enrichment in serum amino acids for a given tracer. When [(15)N]Ala was included in the test meal, (15)N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [(15)N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary (15)N in [(15)N]Ala or [(15)N]SPI into [(15)N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [(15)N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer. PMID:11440912

  7. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  8. Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins

    Bermel, Wolfgang [Bruker BioSpin GmbH (Germany); Bruix, Marta [Consejo Superior de Investigaciones Cientificas, Instituto de Quimica Fisica ' ' Rocasolano' ' (Spain); Felli, Isabella C., E-mail: felli@cerm.unifi.it [University of Florence, Department of Chemistry ' Ugo Shiff' (Italy); Kumar, M.V. Vasantha [University of Florence, Magnetic Resonance Center (Italy); Pierattelli, Roberta, E-mail: pierattelli@cerm.unifi.it [University of Florence, Department of Chemistry ' Ugo Shiff' (Italy); Serrano, Soraya [Consejo Superior de Investigaciones Cientificas, Instituto de Quimica Fisica ' ' Rocasolano' ' (Spain)

    2013-03-15

    Intrinsically disordered proteins (IDPs) have recently attracted the attention of the scientific community challenging the well accepted structure-function paradigm. In the characterization of the dynamic features of proteins nuclear magnetic resonance spectroscopy (NMR) is a strategic tool of investigation. However the peculiar properties of IDPs, with the lack of a unique 3D structure and their high flexibility, have a strong impact on NMR observables (low chemical shift dispersion, efficient solvent exchange broadening) and thus on the quality of NMR spectra. Key aspects to be considered in the design of new NMR experiments optimized for the study of IDPs are discussed. A new experiment, based on direct detection of {sup 13}C{sup {alpha}}, is proposed.

  9. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Sweany, M; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, M

    2011-01-01

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $\\pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $\\pm$ 0.03 for Carbostyril-124, and 1.20 $\\pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modele...

  10. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  11. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultraviolet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as 1.88±0.02 for 4-Methylumbelliferone, stable within 0.5% over 50 days, 1.37±0.03 for Carbostyril-124, and 1.20±0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  12. Clinical application of 1H-chemical-shift imaging (CSI) to brain diseases

    An H-1 chemical shift imaging (CSI) was developed as part of the clinical MRI system, by which magnetic resonance spectra (MRS) can be obtained from multiple small voxels and metabolite distribution in the brain can be visualized. The present study was to determine the feasibility and clinical potential of using an H-1 CSI. The device used was a Magnetom H 15 apparatus. The study population was comprised of 25 healthy subjects, 20 patients with brain tumor, 4 with ischemic disease, and 6 with miscellaneous degenerative disease. The H-1 CSI was obtained by the 3-dimensional Fourier transformation. After suppressing the lipid signal by the inversion-recovery method and the water signal by the chemical-shift selective pulse with a following dephasing gradient, 2-directional 16 x 16 phase encodings were applied to the 16 x 16∼18 x 18 cm field of view, in which a 8 x 8 x 2∼10 x 10 x 2 cm area was selected by the stimulated echo or spin-echo method. The metabolite mapping and its contour mapping were created by using the curve-fitted area, with interpolation to the 256 x 256 matrix. In the healthy group, high resolution spectra for N-acetyl aspartate (NAA), creatine, choline (Cho), and glutamine/glutamate were obtained from each voxel; and metabolite mapping and contour mapping also clearly showed metabolite distribution in the brain. In the group of brain tumor, an increased Cho and lactate and loss of NAA were observed, along with heterogeneity within the tumor and changes in the surrounding tissue; and there was a good correlation between lactate peak and tumor malignancy. The group of ischemic and degenerative disease had a decreased NAA and increased lactate on both spectra and metabolite mapping, depending on disease stage. These findings indicated that H-1 CSI is helpful for detecting spectra over the whole brain, as well as for determining metabolite distribution. (N.K.)

  13. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Díaz, Francisca P.; Matías Frugone; Gutiérrez, Rodrigo A.; Claudio Latorre

    2016-01-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N va...

  14. A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory.

    Shaghaghi, Hoora; Ebrahimi, Hossein Pasha; Fathi, Fariba; Bahrami Panah, Niloufar; Jalali-Heravi, Mehdi; Tafazzoli, Mohsen

    2016-05-30

    The dependency of amino acid chemical shifts on φ and ψ torsion angle is, independently, studied using a five-residue fragment of ubiquitin and ONIOM(DFT:HF) approach. The variation of absolute deviation of (13) C(α) chemical shifts relative to φ dihedral angle is specifically dependent on secondary structure of protein not on amino acid type and fragment sequence. This dependency is observed neither on any of (13) C(β) , and (1) H(α) chemical shifts nor on the variation of absolute deviation of (13) C(α) chemical shifts relative to ψ dihedral angle. The (13) C(α) absolute deviation chemical shifts (ADCC) plots are found as a suitable and simple tool to predict secondary structure of protein with no requirement of highly accurate calculations, priori knowledge of protein structure and structural refinement. Comparison of Full-DFT and ONIOM(DFT:HF) approaches illustrates that the trend of (13) C(α) ADCC plots are independent of computational method but not of basis set valence shell type. © 2016 Wiley Periodicals, Inc. PMID:26940760

  15. Change of 15N natural abundance (δ15N) in a forest soil receiving elevated N deposition

    Natural abundance of 15N15N) has been used to interpret N mineralization in forest ecosystems. Forest litter typically has depleted δ15N values ranging from -8 to 0 per mille and δ15N values of organic N in forest soil profiles become more enriched with depth. This study investigated (1) the change of δ15N and total N with depth, and (2) the relation between the change of δ15N within the 0 to 10, 10 to 20 and 20 to 30 cm intervals of the mineral layer and the N mineralization rates in these layers

  16. The 15N-enrichment in dark clouds and Solar System objects

    Hily-Blant, Pierre; Faure, Alexandre; Quirico, Eric

    2013-01-01

    The line intensities of the fundamental rotational transitions of H13CN and HC15N were observed towards two prestellar cores, L183 and L1544, and lead to molecular isotopic ratios 140 6 14N/15N 6 250 and 140 6 14N/15N 6 360, respectively. The range of values reflect genuine spatial variations within the cores. A comprehensive analysis of the available measurements of the nitrogen isotopic ratio in prestellar cores show that molecules carrying the nitrile functional group appear to be systematically 15N-enriched com- pared to those carrying the amine functional group. A chemical origin for the differential 15N-enhance- ment between nitrile- and amine-bearing interstellar molecules is proposed. This sheds new light on several observations of Solar System objects: (i) the similar N isotopic fractionation in Jupiter's NH3 and solar wind N+; (ii) the 15N-enrichments in cometary HCN and CN (that might represent a direct inter- stellar inheritance); and (iii) 15N-enrichments observed in organics in primitive cosmoma...

  17. Inhibition of alanine racemase by alanine phosphonate: detection of an imine linkage to pyridoxal 5'-phosphate in the enzyme-inhibitor complex by solid-state 15N nuclear magnetic resonance

    Inhibition of alanine racemase from the Gram-positive bacterium Bacillus stearothermophilus by (1-aminoethyl)phosphonic acid (Ala-P) proceeds via a two-step reaction pathway in which reactivation occurs very slowly. In order to determine the mechanism of inhibition, the authors have recorded low-temperature, solid-state 15N NMR spectra from microcrystals of the [15N]Ala-P-enzyme complex, together with spectra of a series of model compounds that provide the requisite database for the interpretation of the 15N chemical shifts. Proton-decoupled spectra of the microcrystals exhibit a line at ∼ 150 ppm, which conclusively demonstrates the presence of a protonated Ala-P-PLP aldimine and thus clarifies the structure of the enzyme-inhibitor complex. They also report the pH dependence of Ala-P binding to alanine racemase

  18. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.

    Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits. PMID:26374002

  19. Fragment-based 13C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits

  20. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds. PMID:25614975

  1. Attainable entanglement of unitary transformed thermal states in liquid-state nuclear magnetic resonance with the chemical shift

    Ota, Y; Ohba, I; Yoshida, N; Mikami, Shuji; Ohba, Ichiro; Ota, Yukihiro; Yoshida, Noriyuki

    2006-01-01

    Recently, Yu, Brown, and Chuang [Phys. Rev. A {\\bf 71}, 032341 (2005)] investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave an insight into the role of the entanglement in a liquid-state NMR quantum computer. Moreover, they attempted to reveal the role of mixed-state entanglement in quantum computing. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with the chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by the positive partial transposition (PPT) criterion with respect to any bipartition. We examine the effect of the chemical shifts on the boundary between the separability and the nonseparability, and find it is negligible.

  2. Chemical shifts of the X-ray L3 absorption edge of europium in its trivalent halides

    Position of the Eu-L3 absorption edge has been studied in pure metal and in its trivalent halides, EuF3, EuCl3, EuBr3, and EuI3, employing a simple X-ray spectrometer with an LiF single crystal as the analyser. A linear relationship was established between the chemical shift and the effective charge on the absorbing rare earth atom. The chemical shifts have also been correlated to Moessbauer isomer shifts. The results have been discussed in terms of nature of chemical bonding, effective atomic charge on the absorbing atom and some other parameters relevant to the immediate local environment of the absorbing atom. (author)

  3. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak.

    Webster, Nicole S; Xavier, Joana R; Freckelton, Marnie; Motti, Cherie A; Cobb, Rose

    2008-12-01

    The microbial community composition in affected and unaffected portions of diseased sponges and healthy control sponges of Aplysina aerophoba was assessed to ascertain the role of microbes in the disease process. Sponge secondary metabolites were also examined to assess chemical shifts in response to infection. The microbial profile and aplysinimine levels in unaffected tissue near the lesions closely reflected those of healthy sponge tissue, indicating a highly localized disease process. DGGE detected multiple sequences that were exclusively present in diseased sponges. Most notably, a Deltaproteobacteria sequence with high homology to a coral black band disease strain was detected in all sponge lesions and was absent from all healthy and unaffected regions of diseased sponges. Other potential pathogens identified by DGGE include an environmental Cytophaga strain and a novel Epsilonproteobacteria strain with no known close relatives. The disease process also caused a major shift in prokaryote community structure at a very high taxonomic level. Using 16S rRNA gene sequence analysis, only the diseased sponges were found to contain sequences belonging to the Epsilonproteobacteria and Firmicutes, and there was a much greater number of Bacteroidetes sequences within the diseased sponges. In contrast, only the healthy sponges contained sequences corresponding to the cyanobacteria and 'OP1' candidate division, and the healthy sponges were dominated by Chloroflexi and Gammaproteobacteria sequences. Overall bacterial diversity was found to be considerably higher in diseased sponges than in healthy sponges. These results provide a platform for future cultivation-based experiments to isolate the putative pathogens from A. aerophoba and perform re-infection trials to define the disease aetiology. PMID:18783385

  4. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.

    Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A

    2011-07-28

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. PMID:21806118

  5. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  6. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-01-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values. PMID:26956399

  7. 15N fractionation in star-forming regions and Solar System objects

    Wirström, Eva; Milam, Stefanie; Adande, Gilles; Charnley, Steven B.; Cordiner, Martin A.

    2015-08-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristine molecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N/15N ~ 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N/15N natal molecular cloud core and the outer protosolar nebula. Indeed, early chemical models of gas-phase ion-molecule nitrogen fractionation showed that HCN and HNC (nitriles) can hold significant 15N enrichments in cold dark clouds where CO is depleted onto dust grains. In addition, 15N fractionation in nitriles and amines (NH2, NH3) follow different chemical pathways. More recently we have shown that once the spin-state dependence in rates of reactions with H2 is included in the models, amines can either be enhanced or depleted in 15N, depending on the core’s evolutionary stage. Observed 15N fractionation in amines and nitriles therefore cannot be expected to be the same, instead their ratio is a potential chemical clock.Observations of molecular isotope ratios in dark cores are challenging. Limited published results in general show higher 15N/14N ratios in HCN and HNC than ammonia, but more measurements are necessary to confirm these trends. We will present recent results from our ongoing observing campaign of 14N/15N isotopic ratios in HCN, HNC and NH3 in dense cores and protostars which seem consistent with significant fractionation in nitriles as compared to other molecules in each object. The few 14N/15N ratios observed in N2H+ are similar to those in NH3, contrary to our model results which predict a significant 15N enhancement in N2 and N2H+. Model upgrades which may address this discrepancy will be

  8. Study of protein metabolism and cell proliferation using 15N

    Investigations of nitrogen and protein metabolism with the stable isotope 15N were carried out in 11 patients with arteriosclerosis and 7 healthy controls. After oral application of 3 g 15NH4Cl (95 At% 15N) per 70 kg body weight the incorporation of the isotope 15N in plasma proteins and blood cells and the 15N elimination in urine were followed up. Retardations of 15N elimination, an accelerated incorporation of 15N in fibrin and a retarded 15N incorporation in platelet protein were observed in patients with arteriosclerosis. The described method enables complex assertions about protein metabolism of the whole body and so represents a possibility to evaluate objectively the influence of an intervention on metabolism. (author)

  9. Comparison of Computed Tomography Histogram Analysis and Chemical-Shift Magnetic Resonance Imaging for Adrenal Mass Characterization

    Background: Computed tomography (CT) histogram analysis and chemical-shift magnetic resonance imaging (MRI) are currently used modalities for adrenal mass characterization. However, it is not yet clear which modality can be regarded as most sensitive in terms of adrenal mass characterization. Purpose: To prospectively compare CT histogram analysis and chemical-shift MRI in the characterization of adrenal masses. Material and Methods: Between May 2007 and November 2008, 93 patients (45 males, 48 females; mean age 56.7 years, range 22-85 years) with 109 adrenal masses prospectively underwent both unenhanced CT and chemical-shift MRI examinations. These masses consisted of 67 adenomas and 42 metastases. Histogram analysis was applied with a circular region of interest (ROI) that recorded mean attenuation, total number of pixels, number of negative pixels, and the percentage of negative pixels on unenhanced CT images for each adrenal mass. In the CT histogram analysis, a 10% negative pixel threshold for unenhanced CT was calculated. In chemical-shift MRI, signal intensity drop between in-phase and opposed-phase images was quantitatively calculated so that adrenal-to-spleen chemical-shift ratios and adrenal signal intensity indexes were determined for each of the adrenal masses. A mass was regarded as an adenoma if it contained more than 10% negative pixels by CT histogram analysis, showed an adrenal-to-spleen chemical-shift ratio of less than 0.71, and had an adrenal signal intensity index of more than 16.5% by chemical-shift MRI. The results were compared to reveal which method was most sensitive in the diagnosis of adrenal masses and whether or not a correlation exists between these two modalities. Final diagnoses were based on imaging follow-up of minimum 6 months, biopsy, surgery, and adrenal washout study. Results: On unenhanced CT examinations, all of the 67 adenomas and 21 out of 42 metastases exhibited negative pixels. None of the metastases showed more than 10

  10. Comparison of Computed Tomography Histogram Analysis and Chemical-Shift Magnetic Resonance Imaging for Adrenal Mass Characterization

    Halefoglu, A.M.; Yasar, A.; Bas, N.; Ozel, A.; Erturk, S.M.; Basak, M. (Dept. of Radiology, Sisli Etfal Training and Research Hospital, Sisli, Istanbul (Turkey))

    2009-11-15

    Background: Computed tomography (CT) histogram analysis and chemical-shift magnetic resonance imaging (MRI) are currently used modalities for adrenal mass characterization. However, it is not yet clear which modality can be regarded as most sensitive in terms of adrenal mass characterization. Purpose: To prospectively compare CT histogram analysis and chemical-shift MRI in the characterization of adrenal masses. Material and Methods: Between May 2007 and November 2008, 93 patients (45 males, 48 females; mean age 56.7 years, range 22-85 years) with 109 adrenal masses prospectively underwent both unenhanced CT and chemical-shift MRI examinations. These masses consisted of 67 adenomas and 42 metastases. Histogram analysis was applied with a circular region of interest (ROI) that recorded mean attenuation, total number of pixels, number of negative pixels, and the percentage of negative pixels on unenhanced CT images for each adrenal mass. In the CT histogram analysis, a 10% negative pixel threshold for unenhanced CT was calculated. In chemical-shift MRI, signal intensity drop between in-phase and opposed-phase images was quantitatively calculated so that adrenal-to-spleen chemical-shift ratios and adrenal signal intensity indexes were determined for each of the adrenal masses. A mass was regarded as an adenoma if it contained more than 10% negative pixels by CT histogram analysis, showed an adrenal-to-spleen chemical-shift ratio of less than 0.71, and had an adrenal signal intensity index of more than 16.5% by chemical-shift MRI. The results were compared to reveal which method was most sensitive in the diagnosis of adrenal masses and whether or not a correlation exists between these two modalities. Final diagnoses were based on imaging follow-up of minimum 6 months, biopsy, surgery, and adrenal washout study. Results: On unenhanced CT examinations, all of the 67 adenomas and 21 out of 42 metastases exhibited negative pixels. None of the metastases showed more than 10

  11. Repeatability of long and short echo-time in vivo proton chemical-shift imaging

    We carried out long (145 ms) and short (25 ms) echo time spectroscopic imaging of the brain (chemical-shift imaging, CSI) on two occasions 1 week apart on 15 healthy individuals. We found coefficients of variation (CVs) generally in the range 10-25% for long and 15-30% for short echo-time measurements. The CVs of metabolite ratios were higher by about 5-10%. Limits of agreement (defined as mean±2 SD of the week 1-week 2 differences) were wider at the shorter echo time. The modest repeatability may be due in part to the difficulty of repositioning spectroscopic voxels at a scale of 1 mm. The generally higher CVs and wider limits of agreement at TE25 ms suggest that the increased spectral complexity more than offsets the theoretical advantage of increased signal at short echo-times. Analysis of variance general linear modelling of metabolites and metabolite ratios showed that, in general, the subject, region of the brain and hemisphere were more important than the occasion in explaining the variability of results. Unless information on short-T2 metabolites is specifically required, better results can probably be achieved with longer echo-times. The magnitude of the CVs needs to be taken into account in the calculation of sample size for cross-sectional or linear studies. (orig.)

  12. Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates

    Diagnosis of brain lesions after birth anoxia-ischemia is essential for appropriate management. Clinical evaluation is not sufficient. MRI has been proven to provide useful information. To compare abnormalities observed with MRI, including diffusion-weighted imaging (DWI), localised magnetic resonance spectroscopy (MRS) and chemical shift imaging (CSI) and correlate these findings with the clinical outcome. Fourteen full-term neonates with birth asphyxia were studied. MRI, MRS and CSI were performed within the first 4 days of life. Lesions observed with DWI were correlated with outcome, but the apparent diffusion coefficient (ADC) did improve diagnostic confidence. The mean value of Lac/Cr for the neonates with a favourable outcome was statically lower than for those who died (0.22 vs 1.04; P = 0.01). The same results were observed for the Lac/NAA ratio (0.21 vs 1.23; P = 0.01). Data obtained with localised MRS and CSI were correlated for the ratio N-acetyl-aspartate/choline, but not for the other metabolites. No correlation was found between the ADC values and the metabolite ratios. Combination of these techniques could be helpful in our understanding of the physiopathological events occurring in neonates with asphyxia. (orig.)

  13. Clinical evaluation of the cerebral energy metabolism with 31P chemical shift imaging in neurosurgical disorders

    Cerebral energy metabolism was evaluated by means of 31P chemical shift imaging (CSI) using the 2.0 T whole-body MRIS system. 31P CSI was carried out by means of Spectroscopic Imaging by Dephasing Amplitude Changing method, four-dimensional CSI, and three-dimensional CSI. Twenty three patients with cerebral infarction and 21 patients with hypertensive intracerebral hemorrhage were examined. In cerebral infarction, an acute infarction was seen as a low-signal area in the PCr and ATP images and as a high-signal area in the Pi image. A subacute and chronic infarction was seen as a low-signal area in all the images -- 31P, PCr, ATP, Pi, PDE and PME. Intracellular acidosis was noticed within 2 days after onset. The intracellular pH became alkaline at the subacute and chronic stages of infarction. The chronological changes in the phosphorus metabolites were evaluated by means of these methods. In hypertensive intracerebral hemorrhage, hematoma and perifocal edema in the acute stage were seen as low-signal areas in the 31P, PCr, and ATP images, and as high-signal areas in the Pi image. In the chronic stage, a hematoma was seen as a low-signal area in all the images -- 31P, PCr, ATP and Pi. 31P CSI is thus a practical tool for studying phosphate metabolites clinically. Changes in the phosphorus metabolism relative to the anatomy of interest were detected by the use of these methods. (author)

  14. On the use of pseudocontact shifts in the structure determination of metalloproteins

    Jensen, Marlene R; Hansen, D. Flemming; Ayna, Umit; Dagil, Robert; Hass, Matthias A. S.; Christensen, Hans Erik Mølager; Led, Jens Jørgen

    2006-01-01

    paramagnetic metal ion is investigated using the WEFT pulse sequence in combination with the conventional TOCSY and 1H-15N HSQC sequences. Second, the importance of the electrical charge of the metal ion for the determination of correct pseudocontact shifts from the obtained chemical shifts is evaluated. Thus......, using both the Cu+ plastocyanin and Cd2+-substituted plastocyanin as the diamagnetic references, it is found that the Cd2+-substituted protein with the same electrical charge of the metal ion as the paramagnetic Cu2+ plastocyanin provides the most appropriate diamagnetic reference signals. Third, it is...... found that reliable pseudocontact shifts cannot be obtained from the chemical shifts of the 15N nuclei in plastocyanin, most likely because these shifts are highly dependent on even minor differences in the structure of the paramagnetic and diamagnetic proteins. Finally, the quality of the obtained 1H...

  15. Correlation of 1H NMR Chemical Shift for Aqueous Solutions by Statistical Associating Fluid Theory Association Model

    许波; 李浩然; 王从敏; 许映杰; 韩世钧

    2005-01-01

    1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAFT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.

  16. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A; Spielman, D.M.

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...... concentration error (<15%). Magn Reson Med 44:10-18, 2000....

  17. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  18. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  19. {sup 1}H MR chemical shift imaging detection of phenylalanine in patients suffering from phenylketonuria (PKU)

    Sijens, Paul E.; Oudkerk, Matthijs [University Hospital Groningen, Department of Radiology, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Reijngoud, Dirk-Jan; Spronsen, Francjan J. van [University Hospital Groningen, Department of Pediatrics, Groningen (Netherlands); Leenders, Klaas L. [University Hospital Groningen, Department of Neurology, Groningen (Netherlands); Valk, Harold W. de [University Medical Centre of Utrecht, Department of Internal Medicine, Utrecht (Netherlands)

    2004-10-01

    Short echo time single voxel methods were used in previous MR spectroscopy studies of phenylalanine (Phe) levels in phenylketonuria (PKU) patients. In this study, apparent T{sub 2} relaxation time of the 7.3-ppm Phe multiplet signal in the brain of PKU patients was assessed in order to establish which echo time would be optimal. {sup 1}H chemical shift imaging (CSI) examinations of a transverse plain above the ventricles of the brain were performed in 10 PKU patients and 11 persons not suffering from PKU at 1.5 T, using four echo times (TE 20, 40, 135 and 270 ms). Phe was detectable only when the signals from all CSI voxels were summarized. In patients suffering from PKU the T{sub 2} relaxation times of choline, creatine and N-acetyl aspartate (NAA) were similar to those previously reported for healthy volunteers (between 200 and 325 ms). The T{sub 2} of Phe in brain tissue was 215{+-}120 ms (standard deviation). In the PKU patients the brain tissue Phe concentrations were 141{+-}69 {mu}M as opposed to 58{+-}23 {mu}M in the persons not suffering from PKU. In the detection of Phe, MR spectroscopy performed at TE 135 or 270 ms is not inferior to that performed at TE 20 or 40 ms (all previous studies). Best results were obtained at TE=135 ms, relating to the fact that at that particular TE, the visibility of a compound with a T{sub 2} of 215 ms still is good, while interfering signals from short-TE compounds are negligible. (orig.)

  20. Quantification of fat using chemical shift imaging and 1H-MR spectroscopy in phantom model

    Objective: To evaluate the accuracy of chemical shift imaging (CSI) and MR spectroscopy (MRS) for fat quantification in phantom model. Methods: Eleven phantoms were made according to the volume percentage of fat ranging from 0 to 100% with an interval of 10%. The fat concentration in the phantoms were measured respectively by CSI and MRS and compared using one-sample t test. The correlation between the two methods was also analyzed. The concentration of saturated fatty acids (FS), unsaturated fatty acids (FU) and the poly, unsaturation degree (PUD) were calculated by using MRS. Results: The fat concentration was (48.0±1.0)%, (57.0±0.5)%, (67.3±0.6)%, (77.3± 0.6)%, (83.3±0.6)% and (91.0±1.0)% respectively with fat volume of 50% to 100% by CSI. The fat concentration was (8.3±0.6)%, (16.3±0.7)%, (27.7±0.6)%, (36.0±1.0)%, (43.5± 0.6)% and (56.5±1.0)% respectively with fat volume of 10% to 60% by MRS, the fat concentration were underestimated by CSI and MRS (P<0.05), and had high linear correlation with the real concentration in phantoms (CSI: r=0.998, MRS: r=0.996, P<0.01). There was also a linear correlation between two methods (r=0.992, P<0.01) but no statistically significant difference (paired- samples t test, t=-0.125, P=0.903). By using MRS, the relative ratio of FS and FU in fat were 0. 15 and 0.85, the PUD was 0.0325, respectively, and highly consistent with these in phantoms. Conclusion: Both CSI and MRS are efficient and accurate methods in fat quantification at 7.0 T MR. (authors)

  1. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  2. Synthesis of [α-15N]-dl-tryptophan

    [α-15N]-dl-tryptophan was synthesized by the use of Al-Ni alloy catalytic hydrogenation from 15N-glycine via several steps. The overall yield of the final product was 46.9% and the abundance of 15N was about 93%. The physicochemical properties of the synthetic compound obtained were the same as those of the standard tryptophan. Its structure were confirmed by the elemental analyses, MS, UV and paper chromatography

  3. Anomalous chemical shifts in X-ray photoelectron spectra of sulfur-containing compounds of silver (I) and (II)

    Highlights: • Ag 3d5/2 binding energy for Ag(II)SO4 is as large as 370.1 eV. • This is the largest value ever measured for a silver (II) compound. • Large shift is connected with the extreme oxidizing nature of Ag(II) species. • Ag(I)2S2O7 exhibits both positive and negative shifts with respect to metallic Ag. • Two distinct Ag(I) sites are responsible for large BE difference of 3.6 eV. - Abstract: Anomalous chemical shifts, i.e. cases when binding energy decreases with the increase of the oxidation state, have been well-documented for selected compounds of silver, and well understood based on analysis of initial- and final-state effects in the XPS spectra. Here we report two examples of even more exotic behaviour of chemical shifts for two silver compounds. The first one is Ag2S2O7 which exhibits both positive and negative substantial shifts with respect to metallic Ag for two distinct Ag(I) sites in its crystal structure, which differ by as much as 3.6 eV. Another is AgSO4, a rare example of oxo silver (II) salt, which exhibits “normal” chemical shift but the Ag 3d5/2 binding energy takes the largest value measured for a silver (II) compound (370.1 eV). This property is connected predominantly with the extremely strongly oxidizing nature of Ag(II) species

  4. Anomalous chemical shifts in X-ray photoelectron spectra of sulfur-containing compounds of silver (I) and (II)

    Grzelak, A. [Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw (Poland); Jaroń, T. [Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland); Mazej, Z. [Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Michałowski, T. [Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw (Poland); Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland); Szarek, P. [Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland); Grochala, W., E-mail: w.grochala@cent.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw (Poland); Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland)

    2015-07-15

    Highlights: • Ag 3d{sub 5/2} binding energy for Ag(II)SO{sub 4} is as large as 370.1 eV. • This is the largest value ever measured for a silver (II) compound. • Large shift is connected with the extreme oxidizing nature of Ag(II) species. • Ag(I){sub 2}S{sub 2}O{sub 7} exhibits both positive and negative shifts with respect to metallic Ag. • Two distinct Ag(I) sites are responsible for large BE difference of 3.6 eV. - Abstract: Anomalous chemical shifts, i.e. cases when binding energy decreases with the increase of the oxidation state, have been well-documented for selected compounds of silver, and well understood based on analysis of initial- and final-state effects in the XPS spectra. Here we report two examples of even more exotic behaviour of chemical shifts for two silver compounds. The first one is Ag{sub 2}S{sub 2}O{sub 7} which exhibits both positive and negative substantial shifts with respect to metallic Ag for two distinct Ag(I) sites in its crystal structure, which differ by as much as 3.6 eV. Another is AgSO{sub 4}, a rare example of oxo silver (II) salt, which exhibits “normal” chemical shift but the Ag 3d{sub 5/2} binding energy takes the largest value measured for a silver (II) compound (370.1 eV). This property is connected predominantly with the extremely strongly oxidizing nature of Ag(II) species.

  5. 15N-ammonium test in clinical research

    By use of the 15N-ammonium test the liver function is investigated under influence of hormonal contraceptives in women and in liver diseases in children. With the described noninvasive nonradioactive isotope test the ammonia detoxification capability and the urea synthesis capacity of the liver is determined by measuring of the 15N excretion in ammonia and urea in urine after oral administering of 15N-ammonium chloride. The 15N-ammonium test shows a significant influence of the hormonal contraceptives on the liver function and gives diagnostic evidence for liver diseases in children. (author)

  6. 15N tracer methodology for absorption studies in nutrition research

    Proceeding from 15N analyses, 15N tracer methods, and a model of protein metabolism it is shown that the nitrogen balance is a useful concept for expressing the relationship between the overall nitrogen intake of the body and the nitrogen excretion. After admistering low doses of 15N-labelled substances like protein and amino acids, the kinetics of digestion and absorption can be followed by measuring the 15N abundance in serum and urine of patients. A significant delay in the nitrogen absorption indicates gastrointestinal disorders

  7. Studies with 15N-lysine in colostomized hens. 1

    0.2% L-lysine with an atom-% 15N excess (15N') of 48% were given per day through a throat probe to three colostomized laying hybrids in addition to a pelleted ration of 120 g per animal and day. In the following 4 days unlabelled L-lysine was given. As the labelled lysine was given three times a day, the development of 15N' excretion could be pursued. 80 minutes after the 15N'-lysine dose a distinct atom-% 15N' could be detected in urine. 6 hours after the 15N' application 2.9%, 4.2% and 2.7%, resp. of the applied 15N' amount in urine were found. 8 days after the beginning of the experiment the excretion of 15N' in urine was 17.5% on the average of the consumed 15N' amount. 44% of the nitrogen in the ration, however, was excreted in urine. The results show that the lysine N is excreted to a considerably lower extent in urine than the nitrogen in the remaining ration. (author)

  8. 15N balance in wheat-moong-soybean cropping sequence

    Field experiments were conducted to study the effect of FYM and S on fertilizer 15N balance in wheat-moong-soybean cropping sequence, with the main emphasis on partial substitution of chemical fertilizer N through FYM. Response to partial substitution of N was observed in the first crop of the sequence. FYM substitution at higher level (50%) resulted in reduction of wheat yield, but 25% substitution of recommended N through FYM increased wheat yield. Total fertilizer N recovery by three crops wheat, moong and soybean grown in sequence ranged between 39 to 55 per cent of which 35 to 41 per cent was utilized by the first crop and 4 to 14 per cent by the second and third crops together while 21 to 36 per cent of the fertilizer N applied to wheat was present in soil after growing three crops. Fertilizer N recovery in soil plant system was 61 to 91 per cent. Higher fertilizer N recovery was associated with higher rate of substitution of FYM for chemical fertilizer. FYM boosted fertilizer N recovery and higher soil retentivity. Sulphur application had no significant effect on per cent residual fertilizer N retention in soil. (author)

  9. Studies with 15N-lysine in colostomized hens. 6

    3 colostomized laying hybrides received 91.40 mg L-lysine-15N-excess (15N') each over a period of 4 days in a metabolism experiment with 15N-lysine. After another 4 days, during which the hens received the same rations supplemented by commercial L-lysine, the animals were butchered and divided into individual fractions. After hydrochloric hydrolysis of organs and tissues the heavy nitrogen of lysine, histidine and arginine were separated, quantitatively evaluated, processed and measured with an emission spectrometer. Atom-% 15N' on an average amounted to 0.20 in the liver, 0.16 in the kidneys, 0.06 in the flesh and 0.05 in the bones. Of the rediscovered 15N' applied, feces contained 8.1 %, urine 18.3 %, the eggs 24.3 %, the blood 4.9 %, the flesh 20.5 %, the bones 5.2 %, the gastrointestinal tract with its contents 4.5 %, the liver 3.5 %, the kidneys 0.9 %, the reproductive organs 3.7 %, and the rest 6.1 %. The quota of rediscovery of the 15N' applied was 95.7 %. 62 % of the total 15N' was rediscovered in eggs, body and feces as lysine 15N'. There was significantly more 15N' in all arginine fractions than in histidine. The quota of the lysine-15N' of the total 15N' differed considerably in the fractions: < 40 % bones and blood; 48-56 % gastrointestinal tract, feces, oviduct, kidneys; 62-63 % remaining ovary, rest; 69-71 % eggs, flesh, liver. It could be proved that the α-amino group of lysine is to a large extent incorporated into other amino acids. Further proof that the amino acid metabolism proceeds in two phases was submitted, i.e. higher amounts of amino acids previously deposited in the body are used for egg synthesis. (author)

  10. Evaluation of vertebral bone marrow fat content by chemical-shift MRI in osteoporosis

    To quantitatively evaluate vertebral bone marrow fat content and investigate its association with osteoporosis with chemical-shift magnetic resonance imaging (CS-MRI). Fifty-six female patients (age range 50-65 years) with varying bone mineral densities as documented with dual x-ray absorptiometry (DXA) were prospectively included in the study. According to the DXA results, the patients were grouped as normal bone density, osteopenic, or osteoporotic. In order to calculate fat content, the lumbar region was visualized in the sagittal plane by CS-MRI sequence. ''Region of interest'' (ROI)s were placed within L3 vertebral bodies and air (our reference point) at different time points by different radiologists. Fat content was calculated through ''signal intensity (SI) suppression rate'' and ''SI Index''. The quantitative values were compared statistically with those obtained from DXA examinations. Kruskal-Wallis, and Mann-Whitney U tests were used for comparisons between groups. The reliability of the measurements performed by two radiologists was evaluated with the ''intraclass correlation coefficient''. This study was approved by an institutional review board and all participants provided informed consent to participate in the study. Eighteen subjects with normal bone density (mean T score, 0.39 ± 1.3 [standard deviation]), 20 subjects with osteopenia (mean T score, -1.79 ± 0.38), and 18 subjects with osteoporosis (mean T score, -3 ± 0.5) were determined according to DXA results. The median age was 55.9 (age range 50-64 years) in the normal group, 55.5 (age range 50-64 years) in the osteopenic group, and 55.1 (age range 50-65 years) in the osteoporotic group (p = 0.872). In the CS-MRI examination, the values of ''SI suppression ratio'' and ''SI Index'' (median [min:max]) were calculated by the first and second reader, independently. There was no statistically significant difference between the groups with regard to vertebral bone marrow fat content (p > 0

  11. Multinuclear NMR of 15 N labelled organic molecules

    The paper presents the application of multinuclear NMR techniques to the study of 15 N labeled organic molecules. There are some important points of great interest in such type of research, namely, structure determination, i.e. location of the 15 N in molecule and determination of 15 N concentration in order to obtain quantitative results about the intramolecular short and long range interaction. Different NMR techniques were used in the study of 13 C, 1 H and 15 N. Obtaining the 15 N NMR signal imposes some special preparation of the spectrometer. First, we had to manage a very large spectral window (-400 to +1200 ppm) which makes difficult finding the signal. Secondly, in the condition of proton decoupling, in a very large band, a decrease of the signal can occur due to the NOE negative effect. To avoid this effect, other decoupling method, called 'inverse gated 1 H decoupling' was used. As a reference, for 15 N, we used CH3NO2, fixed at 0 ppm. In order to find the suitable spectral window we used the formamide (15 N). The results of obtaining the 15 N-labeled procaine are presented. (author)

  12. 15N Fractionation in Star-Forming Regions and Solar System Objects

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  13. 15N2 incorporation and acetylene reduction by azospirillum isolated from rice roots and soils

    Nitrogen fixation by strains of Azospirillum isolated from several rice soils and rice cultivars was investigated by 15N2 incorporation and C2H2 reduction. C2H2 reducing ability markedly varied among the strains obtained from soils differing widely in their physico-chemical properties. Large variations in 15N2 incorporation by Azospirillum isolated from the roots of several rice cultivars were also noticed. The present study reveals that rice cultivars harbour Azospirillum with differential N2-fixing ability and that plant genotype is of importance for optimal associations. (orig.)

  14. 1H, 13C and 15N NMR spectral and X-ray structural studies of 2-arylsulfonylamino-5-chlorobenzophenones

    Six 2-(4-R-phenylsulfonylamino)-5-chlorobenzophenones were prepared and their 1H, 13C and 15N NMR spectra recorded and assigned. The dependence between the chemical shift of the amide proton and Hammett σ substituent constants is of the V type. Substituent effect on the chemical shift of the amide nitrogen atom was found insignificant. X-ray analysis shows that the terminal benzene rings in 2-(4-nitro-phenylsulfonylamino)-5-chlorobenzophenones are located close to each other. They are not, however, parallel, dihedral angle between them being equal to 10.86 deg (MP2/6-31G**//HF/6-31G** ab initio calculations show this to be 20.44 deg). This shows that the mutual orientation of two benzene rings in the molecule of this compound is caused by the π-π stacking. It is additionally reinforced by the intramolecular NH...O=C hydrogen bond. Except the dihedral angle between the benzene rings, X-ray determined structure of 2-(4-nitro-phenylsulfonylamino)-5-chlorobenzophenones is very similar to this optimized by the ab initio calculations. (author)

  15. A Paradigm Shift: Supply Chain Collaboration and Competition in and between Europe’s Chemical Clusters

    Wassenhove, Luk; Lebreton, Baptiste; Letizia, Paolo

    2007-01-01

    textabstractWith the attention of the chemical industry focused on exploiting the low cost feedstocks in the Middle East and the growth markets of Brazil, Russia, India, China and South East Asia, this report provides a timely reminder to policy makers, chemical companies and logistics service providers of the significant opportunities for improving business potential in Europe’s chemical clusters. Europe is still the largest, most sophisticated global market for chemical products, with a wel...

  16. Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups

    Fenzke, Dieter; Hunger, Michael; Pfeifer, Harry

    A procedure is described which allows a separate determination of the proton-aluminum distance and of the chemical-shift anisotropy for the bridging OH groups of crystalline molecular sieves from their 'H MAS NMR sideband patterns. For the bridging OH groups which point into the 6-rings of the framework (line "c"), the 1H- 27Al distance could be determined to be 0.237 ± 0.004 and 0.234 ± 0.004 nm for molecular sieves of type H-Y and SAPO-5, respectively. In contrast, for the bridging OH groups of the 12-rings (line "b"), the corresponding distances are equal and distinctly larger, 0.248 ± 0.004 nm. Within the limits of error, the values of the chemical-shift anisotropy are equal (about 19 ± 2 ppm) except for line b of SAPO-5, which exhibits a much smaller value of 14.5 ± 2 ppm.

  17. Multiple pancreatic metastases from clear cell renal carcinoma: diagnosis with chemical shift magnetic resonance imaging before surgery

    We present a case in which multiple pancreatic tumours were diagnosed as metastatic clear cell renal carcinomas with chemical shift MRI (CSI) before surgery. Radiologists may be unable to recognize the loss of intensity on CSI macroscopically. We believe that it is useful to make subtraction images and calculate signal intensity on CSI, even if the lesions are multiple metastatic tumours Copyright (2005) Blackwell Publishing Asia Pty Ltd

  18. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  19. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  20. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts.

    Kumar, Arun V; Ali, Rehana F M; Cao, Yu; Krishnan, V V

    2015-10-01

    The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for protein structural information that is directly related to function. Nuclear magnetic resonance (NMR) provides powerful means to determine three-dimensional structures of proteins in the solution state. However, translation of the NMR spectral parameters to even low-resolution structural information such as protein class requires multiple time consuming steps. In this paper, we present an unorthodox method to predict the protein structural class directly by using the residue's averaged chemical shifts (ACS) based on machine learning algorithms. Experimental chemical shift information from 1491 proteins obtained from Biological Magnetic Resonance Bank (BMRB) and their respective protein structural classes derived from structural classification of proteins (SCOP) were used to construct a data set with 119 attributes and 5 different classes. Twenty four different classification schemes were evaluated using several performance measures. Overall the residue based ACS values can predict the protein structural classes with 80% accuracy measured by Matthew correlation coefficient. Specifically protein classes defined by mixed αβ or small proteins are classified with >90% correlation. Our results indicate that this NMR-based method can be utilized as a low-resolution tool for protein structural class identification without any prior chemical shift assignments. PMID:25758094

  1. Distinguishing between cystic teratomas and endometriomas of the ovary using chemical shift gradient echo magnetic resonance imaging

    Ishijima Hideyuki; Ishizaka Hiroshi; Inoue Tomio [Gunma University Hospital, Gunma (Japan). Depts. of Diagnostic Radiaology and Nuclear Medicine

    1996-02-01

    The purpose of this study was to evaluate the efficacy of chemical shift gradient echo magnetic resonance imaging (MRI) in distinguishing between cystic teratomas and endometriomas of the ovary, using a 1.5 T magnet. The study included 22 patients with 31 ovarian lesions (15 cystic teratomas and 16 endometriomas), which showed high signal intensity on T1-weighted spin echo images. Chemical shift gradient echo images with three different echo times (TE = 2.5, 4.5 and 6.5 ms) were obtained in all cases. Indices were calculated on the basis of the signal intensities of lesions on the chemical shift gradient echo images. All endometriomas had signal intensity indices of less than 2.1, while all cystic teratomas had signal intensity indices of 18.1 or greater. It was concluded that the method used in this study presents the following advantages: the acquisition time is short; it needs no special software; and it does not depend on magnetic field homogeneity. 11 refs., 4 figs.

  2. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation

    D Joseph; A K Yadav; S N Jha; D Bhattacharyya

    2013-11-01

    Mn and Cr K X-ray absorption edges were measured in various compounds containing Mn in Mn2+, Mn3+ and Mn4+ oxidation states and Cr in Cr3+ and Cr6+ oxidation states. Few compounds possess tetrahedral coordination in the 1st shell surrounding the cation while others possess octahedral coordination. Measurements have been carried out at the energy dispersive EXAFS beamline at INDUS-2 Synchrotron Radiation Source at Raja Ramanna Centre for Advanced Technology, Indore. Energy shifts of ∼8–16 eV were observed for Mn K edge in the Mn-compounds while a shift of 13–20 eV was observed for Cr K edge in Cr-compounds compared to values in elementalMn and Cr, respectively. The different chemical shifts observed for compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Mn and Cr cations in the above compounds.

  3. Application of 15N in biochemistry, agriculture and medicine

    The compendium on application of 15N in the biosciences comprises 7 chapters. The 1st chapter comprehends introductory remarks on isotopes in general and on nitrogen isotopes in particular. In the 2nd chapter fundamentals of 15N tracer techniques are discussed. The 3rd chapter deals with experiment programs and the evaluation of experiments. The methodology of sample preparation as well as of isotope analysis is treated in chapter 4. The chapters 5 to 7 deal with the application of 15N as tracer in biochemistry, agricultural research and medicine, resp. Relevant literature is added to each chapter

  4. Pion elastic and inelastic scattering from 15N

    Data were obtained on the Clinton P. Anderson Los Alamos Meson Physics Facility Energetic Pion Channel and Spectrometer for elastic and inelastic pion scattering from ground state 15N nuclei. States observed here included those of 0.0, 5.27, 6.32, 7.16, 7.30, 7.57, 8.31, 8.57, 9.15, 9.76, 9.9, 10.7, 11.3, 11.9, 12.5, 12.9, 13.1, 14.1, 14.4, 14.6, 15.0, 16.5, 16.9, 17.2, 17.6, 18.3, 18.7, and 18.9 MeV excitation energies. Angular distributions were obtained for scattering at angles from 25 degree to 90 degree in 5 degree increments with an incident pion energy of 164 MeV. Optical model analyses of the elastic (0 MeV) angular distributions with equal point proton and neutron densities in both momentum and coordinate space formulations accurately predict the data, although the two formulations require different energy shifts to do so. This difference is thought to be a result of the more accurate nonlocal representation of the nuclear potential in the momentum space code. Additional spectra were obtained for scattering at constant momentum transfers of .94 and 1.57 fm-1 in order to generate constant momentum transfer excitation functions. Use of these excitation functions, σ(π+)/σ(π-) ratios, and shell model DWIA calculations allowed identification of several excited states having shell-model-like, single particle-hole, pure spin-flip excitations. Shell model and collective model DWIA calculations, as well as the q = .94 and 1.57 fm-1 excitation functions and the σ(π+)/σ(π-) ratios indicate that the other states are generally well represented by a shell model description with collective enhancements

  5. Struktur- und Bindungsuntersuchungen nichtextrahierbarer 15 N- und 14 C-Simazinrückstände im Boden

    Berns, Anne Elisabeth

    2003-01-01

    The aim of the presented study was the characterization of the structure and binding modes of non-extractable residues (NER) of the triazine herbicide simazine. The chemical environments of unaltered as well as metabolized simazine compounds can be observed directly in soil or compost matrix by 15N-NMR spectroscopy. As the 15N-isotope has a very low sensitivity and natural abundance 15N-labeled simazine was used. To further enhance the signal to noise ratio and sensitivity of the NMR experime...

  6. Phosphorus-31, 15N, and 13C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    The herbicidal dead-end ternary complex (ES3PGlyph) of glyphosate [N-(phosphonomethyl)glycine] with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by 31P, 15N, and 13C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts (δ) for each of the three nuclei. By 31P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The 13C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The 15N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the 31P δ and the C-P-O bond angle, and the 13C and 15N δ values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield 31P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P 31P δ vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the ES3P binary complex, while the ES3PGlyph complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle

  7. Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using δ15N and δ13C

    Greenwood, N. D. W.; Sweeting, C. J.; Polunin, N. V. C.

    2010-09-01

    Size-related diet shifts are important characteristics of fish trophodynamics. Here, body size-related changes in muscle δ15N and δ13C of four coral reef fishes, Acanthurus nigrofuscus (herbivore), Chaetodon lunulatus (corallivore) , Chromis xanthura (planktivore) and Plectropomus leopardus (piscivore) were investigated at two locations in the Solomon Islands. All four species occupied distinct isotopic niches and the concurrent δ13C' values of C. xanthura and P. leopardus suggested a common planktonic production source. Size-related shifts in δ15N, and thus trophic level, were observed in C. xanthura, C. lunulatus and P. leopardus, and these trends varied between location, indicating spatial differences in trophic ecology. A literature review of tropical fishes revealed that positive δ15N-size trends are common while negative δ15N-size trends are rare. Size-δ15N trends fall into approximately equal groups representing size-based feeding within a food chain, and that associated with a basal resource shift and occurs in conjunction with changes in production source, indicated by δ13C. The review also revealed large scale differences in isotope-size trends and this, combined with small scale location differences noted earlier, highlights a high degree of plasticity in the reef fishes studied. This suggests that trophic size analysis of reef fishes would provide a productive avenue to identify species potentially vulnerable to reef impacts as a result of constrained trophic behaviour.

  8. The absorption, utilization and distribution of nitrate 15N and ammonium 15N in Populus Tomentosa seedlings

    Effects of different nitrogen sources (NO3-, NH4+) on the absorption, distribution and utilization of nitrogen on Populus tenement's seedlings (clone 50) was studied by using the 15N trace technique. Results showed that the Populus tenement's seedlings had the same nitrogen take up pattern: tissue nitrogen content grew up after fertilization, remarkbaly rising up after one week and reached peak after 28 days. Although the treatments are different, the tissue N content was about the same between 0.6g · plant-1. The maximum absorption of NO3-15N and NH4-15N was 0.26g · plant-1 and 0.12g · plant -1, which accounted for 39.15% and 19.95% of total nitrogen, respectively. The nitrogen use efficiency (NUE) of two nitrogen sources varied gignificantly. The maximum NUE of NO3-15N reached 25.83%, nearly twice of that of NH4-15N (12.03%). Hence we conclude that Populus tomentosa seedlings (clone 50) prefer to absorb NO3-. Nitrogen distribution rate changed obviously among different organs and the trend was leaf>root>stem. In the leaf, the distribution of NO3-15N was higher than that of NH4-15N. (authors)

  9. Study on synthesis of 15N-hydrazine hydrate

    The 15N labeled hydrazine hydrate is a strong reducing agent in the synthesis procedure of stable isotope labeled compounds, and it has been widely used in the isotope-labeled pharmaceutical synthesis. The reaction conditions of 15N labeled hydrazine hydrate were mainly investigated by single-factor design, and the following optimized conditions were obtained: the concentration of available chlorine was 115-120 g/L, the chlorination re- action time was 30∼40 min, the reflux time was 7 min, and the mass ratio of material was m(catalyst) : m (urea) = 1.0 : 10.0, and the yield of 15N labeled hydrazine hydrate was 76.1%, the abundance of 15N was 99.20%. (authors)

  10. Studies with 15N-Lysine in colostomized hens. 4

    Each of 3 colostomized laying hens received per os 0.2% L-lysine with 48 atom-% 15N excess (15N') labelled in α-position in addition to a pelleted laying hen ration of 120 g over a period of 4 days. On the following 4 days they received equal amounts of unlabelled lysine. The eggs laid during the 8 days of the experiment were separated into the egg white, the yolk and the eggshell, and the total and heavy nitrogen in the individual fractions were determined. Above that, 17 amino acids and their atom-%15N' were determined in the 19 samples of the white and yolk of egg. Of the total 15N' from the lysine fed in the 4 days, 10.1% were found in the yolk, 10.5% in the egg white and 1.1% in the eggshells of the eggs laid during the 8 days of the experiment. 85% of the total amino acid 15N' of the yolk and 86% of the egg white detected to be lysine 15N'. The 15N' amount of the other 16 amino acids was mainly concentrated in the two acid and basic amino acids. Approximately 50% of the non-lysine 15N' in the egg are contained in aspartic acid, glutamic acid, histidine and arginine. A very low incorporation of the labelled lysine only could be detected in the aromatic and sulphur-containing amino acids from both the yolk and the egg white 43% of the 15N' was detected in the 10 essential and semi-essential (except lysine) and 57% in the 6 non-essential amino acids of the yolk and 52% and 48% resp. of the egg white. One can summarise that the incorporation of 15N' into the egg shows the same development as that of the labelled amino acids of the wheat protein and that 15% of the lysine 15N' could be detected in the 16 other amino acids. (author)