WorldWideScience

Sample records for 15n chemical shifts

  1. Qualitative Study of Substituent Effects on NMR 15N and 17O Chemical Shifts

    Contreras, Rubén H.; Llorente, Tomás; Pagola, Gabriel I.; Bustamante, Manuel G.; Pasqualini, Enrique E.; Melo, Juan I.; Tormena, Cláudio F.

    2009-08-01

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-β substituent effects on both 15N and 17O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and σ-hyperconjugative interactions in saturated multicyclic compounds.

  2. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds. PMID:19685922

  3. Predicting 15N chemical shifts in proteins using the preceding residue-specific individual shielding surfaces from φ, ψi-1, and χ1torsion angles

    Empirical shielding surfaces are most commonly used to predict chemical shifts in proteins from known backbone torsion angles, φ and ψ. However, the prediction of 15N chemical shifts using this technique is significantly poorer, compared to that for the other nuclei such as 1Hα, 13Cα, and 13Cβ. In this study, we investigated the effects from the preceding residue and the side-chain geometry, χ1, on 15N chemical shifts by statistical methods. For an amino acid sequence XY, the 15N chemical shift of Y is expressed as a function of the amino acid types of X and Y, as well as the backbone torsion angles, φ and ψi-1. Accordingly, 380 empirical 'Preceding Residue Specific Individual (PRSI)' 15N chemical shift shielding surfaces, representing all the combinations of X and Y (except for Y=Pro), were built and used to predict 15N chemical shift from φ and ψi-1. We further investigated the χ1 effects, which were found to account for differences in 15N chemical shifts by ∼5 ppm for amino acids Val, Ile, Thr, Phe, His, Tyr, and Trp. Taking the χ1 effects into account, the χ1-calibrated PRSI shielding surfaces (XPRSI) were built and used to predict 15N chemical shifts for these amino acids. We demonstrated that 15N chemical shift predictions are significantly improved by incorporating the preceding residue and χ1 effects. The present PRSI and XPRSI shielding surfaces were extensively compared with three recently published programs, SHIFTX (Neal et al., 2003), SHIFTS (Xu and Case, 2001 and 2002), and PROSHIFT (Meiler, 2003) on a set of ten randomly selected proteins. A set of Java programs using XPRSI shielding surfaces to predict 15N chemical shifts in proteins were developed and are freely available for academic users at http://www.pronmr.com or by sending email to one of the authors Yunjun Wang

  4. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  5. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    The 1H, 13C, and 15N NMR spectra of 15N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1H-1H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13C-15N SSCC were determined for 5-trimethylsilylfurfural oxime

  6. Automated prediction of 15N, 13Cα, 13Cβ and 13C' chemical shifts in proteins using a density functional database

    A database of peptide chemical shifts, computed at the density functional level, has been used to develop an algorithm for prediction of 15N and 13C shifts in proteins from their structure; the method is incorporated into a program called SHIFTS (version 4.0). The database was built from the calculated chemical shift patterns of 1335 peptides whose backbone torsion angles are limited to areas of the Ramachandran map around helical and sheet configurations. For each tripeptide in these regions of regular secondary structure (which constitute about 40% of residues in globular proteins) SHIFTS also consults the database for information about sidechain torsion angle effects for the residue of interest and for the preceding residue, and estimates hydrogen bonding effects through an empirical formula that is also based on density functional calculations on peptides. The program optionally searches for alternate side-chain torsion angles that could significantly improve agreement between calculated and observed shifts. The application of the program on 20 proteins shows good consistency with experimental data, with correlation coefficients of 0.92, 0.98, 0.99 and 0.90 and r.m.s. deviations of 1.94, 0.97, 1.05, and 1.08 ppm for 15N, 13Cα, 13Cβ and 13C', respectively. Reference shifts fit to protein data are in good agreement with 'random-coil' values derived from experimental measurements on peptides. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement

  7. (1)H, (13)C, and (15)N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state.

    Lim, Sunghyuk; Yu, Qinhong; Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark; Ames, James B

    2016-04-01

    Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles. Atomic-level structural information for the photoproduct state in this subfamily is not known. Here, we report NMR backbone chemical shift assignments of the light-activated state of NpR6012g4 (BMRB no. 26577) as a first step toward determining its atomic resolution structure. PMID:26537963

  8. (1)H, (15)N and (13)C chemical shift assignment of the Gram-positive conjugative transfer protein TraHpIP501.

    Fercher, Christian; Keller, Walter; Zangger, Klaus; Helge Meyer, N

    2016-04-01

    Conjugative transfer of DNA represents the most important transmission pathway in terms of antibiotic resistance and virulence gene dissemination among bacteria. TraH is a putative transfer protein of the type IV secretion system (T4SS) encoded by the Gram-positive (G+) conjugative plasmid pIP501. This molecular machine involves a multi-protein core complex spanning the bacterial envelope thereby serving as a macromolecular secretion channel. Here, we report the near complete (1)H, (13)C and (15)N resonance assignment of a soluble TraH variant comprising the C-terminal domain. PMID:26559076

  9. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone {sup 15}N or {sup 13}C′ chemical shifts of multiple contiguous residues in highly resolved 3D spectra

    Yoshimura, Yuichi; Kulminskaya, Natalia V.; Mulder, Frans A. A., E-mail: fmulder@chem.au.dk [Aarhus University, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) (Denmark)

    2015-02-15

    Sequential resonance assignment strategies are typically based on matching one or two chemical shifts of adjacent residues. However, resonance overlap often leads to ambiguity in resonance assignments in particular for intrinsically disordered proteins. We investigated the potential of establishing connectivity through the three-bond couplings between sequentially adjoining backbone carbonyl carbon nuclei, combined with semi-constant time chemical shift evolution, for resonance assignments of small folded and larger unfolded proteins. Extended sequential connectivity strongly lifts chemical shift degeneracy of the backbone nuclei in disordered proteins. We show here that 3D (H)N(COCO)NH and (HN)CO(CO)NH experiments with relaxation-optimized multiple pulse mixing correlate up to seven adjacent backbone amide nitrogen or carbonyl carbon nuclei, respectively, and connections across proline residues are also obtained straightforwardly. Multiple, recurrent long-range correlations with ultra-high resolution allow backbone {sup 1}H{sup N}, {sup 15}N{sup H}, and {sup 13}C′ resonance assignments to be completed from a single pair of 3D experiments.

  10. Backbone and Ile-δ1, Leu, Val Methyl 1H, 13C and 15N NMR chemical shift assignments for human interferon-stimulated gene 15 protein

    Yin, Cuifeng; Aramini, James M.; Ma, LiChung; Cort, John R.; Swapna, G.V.T.; Krug, R. M.; Montelione, Gaetano

    2011-10-01

    Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13CO, and 13Ca, as well as side chain 13Cb, methyl (Ile-d1, Leu, Val), amide (Asn, Gln), and indole NH (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.

  11. Monitoring the refinement of crystal structures with 15N solid-state NMR shift tensor data

    The 15N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated 15N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2–3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X–Y and X–H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of 15N tensors at natural abundance is challenging and this limitation is overcome by improved 1H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental 15N tensors are at least 5 times more sensitive to crystal structure than 13C tensors due to nitrogen’s greater polarizability and larger range of chemical shifts

  12. Complete assignment of 1H, 13C and 15N chemical shifts for bovine β-lactoglobulin: Secondary structure and topology of the native state is retained in a partially unfolded form

    Although β-lactoglobulin (β-LG) has been studied extensively for more than 50 years, its physical properties in solution are not yet understood fully in terms of its three-dimensional (3D) structure. For example, despite a recent high-resolution crystal structure, it is still not clear why the two common variants of bovine β-LG which differ by just two residues have different aggregation properties during milk processing. We have conducted solution-state NMR studies on a recombinant form of the A variant of β-LG at low pH conditions where the protein is partially unfolded and exists as a monomer rather than a dimer. Using a13 C,15N-labelled sample, expressed in Pichia pastoris, we have employed the standard combination of 3D heteronuclear NMR techniques to obtain near complete assignments of proton, carbon and nitrogen resonances. Using a novel pulse sequence we were able to obtain additional assignments, in particular those of methyl groups in residues preceding proline within the sequence. From chemical shifts and on the basis of inter-residue NOEs, we have inferred the secondary structure and topology of monomeric β-LG A. It includes eight antiparallel β-strands arranged in a barrel, flanked by an α-helix, which is typical of a member of the lipocalin family. A detailed comparison with the crystal structure of the dimeric form (for a mixture of A and B variants) at pH 6.5 reveals a close resemblance in both secondary structure and overall topology. Both forms have a ninth β-strand which, at the higher pH, forms part of the dimer interface. These studies represent the first full NMR assignment of β-LG and will form the basis for a complete characterisation of the solution structure and dynamics of this protein and its variants

  13. Variation of natural 15N abundance (δ15N) in greenhouse tomato and available nitrogen in soil supplied with cow manure or chemical fertilizers

    Cow manure or chemical fertilizers applied to greenhouse-grown tomato changed N contents and natural 15N abundance (δ15N) in tomato plants and the δ15N values of available N in soil. Cow manure increased and chemical fertilizers decreased the δ15N values of tomato plants. In the early periods of tomato culture with cow manure, the δ15N values of nitrate nitrogen of soil were higher than those of whole cow manure N, and, thereafter, dropped to δ15N values between those of soil and cow manure. Application of chemical fertilizers to soil immediately raised the δ15N values of ammonium nitrogen in soil but they dropped quickly to δ15N values between those of soil and fertilizers. On the estimation of the soil-derived N, manure-derived N and fertilizer-derived N in tomato plants based on the δ15N values of sources, much caution should be paid concerning the isotopic variation caused by N sources and isotopic fractionation during N transformation in soil. (author)

  14. Protein Chemical Shift Prediction

    Larsen, Anders S

    2014-01-01

    The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...

  15. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic ??13C and ??15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes-resident and transient - collected across ???25?? of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in ??15N values of ???2.5% through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable ??15N and ??13C values throughout the remainder of their lives, whereas ??15N values of most (n = 11) increased by ???1.5%, suggestive of an ontogenetic increase in trophic level. Significant differences in mean ??13C and ??15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean. ?? Inter-Research 2009.

  16. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin.

    Radloff, Frans G T; Hobson, Keith A; Leslie, Alison J

    2012-09-01

    Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ(13) C) and nitrogen (δ(15) N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35-463 cm total length), we found prominent size-related changes in the scute keratin δ(13) C and δ(15) N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods. PMID:22462522

  17. Relative stability of soil carbon revealed by shifts in δ15N and C:N ratio

    C. Alewell

    2008-02-01

    Full Text Available Life on earth drives a continuous exchange of carbon between soils and the atmosphere. Some forms of soil carbon, or organic matter, are more stable and have a longer residence time in soil than others. Relative differences in stability have often been derived from shifts in δ13C (which is bound to a vegetation change from C3 to C4 type or through 14C-dating (which is bound to small sample numbers because of high measurement costs. Here, we propose a new concept based on the increase in δ15N and the decrease in C:N ratio with increasing stability. We tested the concept on grasslands at different elevations in the Swiss Alps. Depending on elevation and soil depth, it predicted mineral-associated organic carbon to be 3 to 73 times more stable than particulate organic carbon. Analysis of 14C-ages generally endorsed these predictions.

  18. Relative stability of soil carbon revealed by shifts in δ15N and C:N ratio

    C. Alewell

    2007-08-01

    Full Text Available Life on earth drives a continuous exchange of carbon between soils and the atmosphere. Some forms of soil carbon, or organic matter, are more stable and have a longer residence time in soil than others. Relative differences in stability have often been derived from shifts in δ13C (which is bound to a vegetation change from C3 to C4 type or through 14C-dating (which is bound to small sample numbers because of high measurement costs. Here, we propose a new concept based on the increase in δ15N and the decrease in C:N ratio with increasing stability. We tested the concept on grasslands at different elevations in the Swiss Alps. Depending on elevation and soil depth, it predicted mineral-associated organic carbon to be 3 to 73 times more stable than particulate organic carbon. Analysis of 14C-ages generally endorsed these predictions.

  19. pH dependence of 15N NMR shifts and coupling constants in aqueous imidazole and 1-methylimidazole. Comments on estimation of tautomeric equilibrium constants for aqueous histidine

    15N, 1H and 13C NMR spectra for [15N2]imidazole and [15N2]-1-methylimidazole in aqueous solution as functions of pH provide shift and coupling-constant information useful in characterizing the protonated and unprotonated forms of these compounds and as background for determining N binding to other species, such as metal ions. When combined with similar data for the imidazole-ring atoms in histidine, these data give more reliable estimates of tautomeric equilibrium constants for the amphionic and anionic forms of histidine than possible from the histidine data alone

  20. Real-time pure shift {sup 15}N HSQC of proteins: a real improvement in resolution and sensitivity

    Kiraly, Peter; Adams, Ralph W.; Paudel, Liladhar; Foroozandeh, Mohammadali [University of Manchester, School of Chemistry (United Kingdom); Aguilar, Juan A. [Durham University, Department of Chemistry (United Kingdom); Timári, István [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Cliff, Matthew J. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Nilsson, Mathias [University of Manchester, School of Chemistry (United Kingdom); Sándor, Péter [Agilent Technologies R& D and Marketing GmbH & Co. KG (Germany); Batta, Gyula [University of Debrecen, Department of Organic Chemistry (Hungary); Waltho, Jonathan P. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Morris, Gareth A., E-mail: g.a.morris@manchester.ac.uk [University of Manchester, School of Chemistry (United Kingdom)

    2015-05-15

    Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here. Both resolution and sensitivity are improved, without any increase in experiment time. In these experiments, free induction decays are collected in short bursts of data acquisition, with durations short on the timescale of J-evolution, interspersed with suitable refocusing elements. The net effect is real-time (t{sub 2}) broadband homodecoupling, suppressing the multiplet structure caused by proton–proton interactions. The key feature of the refocusing elements is that they discriminate between the resonances of active (observed) and passive (coupling partner) spins. This can be achieved either by using band-selective refocusing or by the BIRD element, in both cases accompanied by a nonselective 180° proton pulse. The latter method selects the active spins based on their one-bond heteronuclear J-coupling to {sup 15}N, while the former selects a region of the {sup 1}H spectrum. Several novel pure shift experiments are presented, and the improvements in resolution and sensitivity they provide are evaluated for representative samples: the N-terminal domain of PGK; ubiquitin; and two mutants of the small antifungal protein PAF. These new experiments, delivering improved sensitivity and resolution, have the potential to replace the current standard HSQC experiments.

  1. Separation of 15N by chemical exchange in NO, NO2 - HNO3 system under pressure

    The basic isotopic exchange reaction is responsible for the separation of 15N in the Nitrox system that between gaseous nitrogen oxides and aqueous nitric acid with a single stage separation factor α = 1.055 for 10M nitric acid, at 25 deg C and atmospheric pressure takes place. In order to know what happens in 15N separation at higher pressure, when the isotopic transport between two phases is improved, a stainless steel laboratory experimental plant with a 1000 mm long x 18 mm i.d. column, packed with triangular wire springs 1.8 x 1.8 x 0.2 mm2, was utilised. At 1.5 atm (absolute), and 2.36 ml x cm-2 x min-1 flow rate HETP was 7% smaller than at atmospheric pressure and 1.5 times smaller flow rate. HETP at 3.14 ml x cm-2 x min-1 flow rate and 1.8 atm is practically equal with that obtained at atmospheric pressure and 2 times smaller flow rate. The operation of the 15N separation plant at 1.8 atm (absolute), instead of atmospheric pressure, will permit doubling of the 10M nitric acid flow rate and of 15N production of the given column. (author)

  2. A Short History of Three Chemical Shifts

    Nagaoka, Shin-ichi

    2007-01-01

    A short history of chemical shifts in nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA) and Mossbauer spectroscopy, which are useful for chemical studies, is described. The term chemical shift is shown to have originated in the mistaken assumption that nuclei of a given element would all undergo resonance at the…

  3. Geometric effects on carbon-13 chemical shifts

    In the course of our investigations on carbon-13 chemical shifts of tetracyclic dodecanes, we managed to show that a large number of chemical shift differences between members of the series and models provided by bicyclic analogs could be attributed to steric effects. There are examples, however, where this is clearly not the case. In order to investigate apparent anomalies we calculated structures of interest and looked into the relationships between molecular geometry and chemical shifts. As the assignment of some of the key structures in these analysis were made by comparison with model compounds and crucial experiments that could remove ambiguities were missing, we prepared and interpreted two spectra which are presented

  4. MR chemical shift imaging of human atheroma

    The lipid content of atheromatous plaques has been measured with chemical shift MR imaging by taking advantage of the different resonance frequencies of protons in lipid and water. Fifteen postmortem aortic specimens of the human descending aorta and the aortae of seven patients with documented peripheral vascular disease were studied at 0.5 T. Spin-echo images were used to localize the lesions before acquisition of the chemical shift images. The specimens were examined histologically, and the lipid distribution in the plaque showed good correlation with the chemical shift data. Validation in vivo and clinical applications remain to be established

  5. Applications of the 18O-isotope shift on 13C and 15N nuclear magnetic resonance spectroscopy to the study of bioorganic reaction mechanisms

    The study of reactions involving the formation and cleavage of carbon-oxygen or nitrogen-oxygen bonds has been significantly aided by recent demonstrations of the generality and characteristics of the 18O-isotope shift in 13C and 15N nuclear magnetic resonance spectroscopy. In many instances, the magnitudes of the 18O-induced isotopic shifts are sufficiently large as to permit the use of even modest NMR instrumentation and natural abundance 13C. Studies involving less soluble compounds, higher molecular weight materials or relatively rapid reactions may often be carried out using 13C enrichment. Because NMR spectroscopy is non-destructive, it has proven to be extremely useful in the study of natural product biosynthetic pathways. Another area where important applications are being made is in the study of enzymatic and non-enzymatic reaction mechanisms. The characteristics of the 18O isotope shift in 13C NMR spectroscopy are reviewed. Several examples from the work of other groups in the area of natural product biosynthesis are briefly mentioned. This is followed by a number of illustrative applications in the area of bioorganic and enzymatic reaction mechanism that have been examined in our laboratory. The enzymatic examples include acid phosphatases, epoxide hydratase, acetylcholinesterase and asparaginase. 20 refs.; 1 figure

  6. Enhanced conformational space sampling improves the prediction of chemical shifts in proteins.

    Markwick, Phineus R L; Cervantes, Carla F; Abel, Barrett L; Komives, Elizabeth A; Blackledge, Martin; McCammon, J Andrew

    2010-02-01

    A biased-potential molecular dynamics simulation method, accelerated molecular dynamics (AMD), was combined with the chemical shift prediction algorithm SHIFTX to calculate (1)H(N), (15)N, (13)Calpha, (13)Cbeta, and (13)C' chemical shifts of the ankyrin repeat protein IkappaBalpha (residues 67-206), the primary inhibitor of nuclear factor kappa-B (NF-kappaB). Free-energy-weighted molecular ensembles were generated over a range of acceleration levels, affording systematic enhancement of the conformational space sampling of the protein. We have found that the predicted chemical shifts, particularly for the (15)N, (13)Calpha, and (13)Cbeta nuclei, improve substantially with enhanced conformational space sampling up to an optimal acceleration level. Significant improvement in the predicted chemical shift data coincides with those regions of the protein that exhibit backbone dynamics on longer time scales. Interestingly, the optimal acceleration level for reproduction of the chemical shift data has previously been shown to best reproduce the experimental residual dipolar coupling (RDC) data for this system, as both chemical shift data and RDCs report on an ensemble and time average in the millisecond range. PMID:20063881

  7. RefDB: A database of uniformly referenced protein chemical shifts

    RefDB is a secondary database of reference-corrected protein chemical shifts derived from the BioMagResBank (BMRB). The database was assembled by using a recently developed program (SHIFTX) to predict protein 1H, 13C and 15N chemical shifts from X-ray or NMR coordinate data of previously assigned proteins. The predicted shifts were then compared with the corresponding observed shifts and a variety of statistical evaluations performed. In this way, potential mis-assignments, typographical errors and chemical referencing errors could be identified and, in many cases, corrected. This approach allows for an unbiased, instrument-independent solution to the problem of retrospectively re-referencing published protein chemical shifts. Results from this study indicate that nearly 25% of BMRB entries with 13C protein assignments and 27% of BMRB entries with 15N protein assignments required significant chemical shift reference readjustments. Additionally, nearly 40% of protein entries deposited in the BioMagResBank appear to have at least one assignment error. From this study it evident that protein NMR spectroscopists are increasingly adhering to recommended IUPAC 13C and 15N chemical shift referencing conventions, however, approximately 20% of newly deposited protein entries in the BMRB are still being incorrectly referenced. This is cause for some concern. However, the utilization of RefDB and its companion programs may help mitigate this ongoing problem. RefDB is updated weekly and the database, along with its associated software, is freely available at http://redpoll.pharmacy.ualberta.ca and the BMRB website

  8. NMR spectroscopic studies of 15N labelled geminally disubstituted cyclotriphosphazenes

    It is demonstrated by means of some selected 15N labelled geminally disubstituted cyclotriphosphazenes, 15N3P3X4Y2 (X = Cl; Y = F, NH2, or SEt), as an example, that the coupling constants 1Jsub(PN) may be of different signs. The absolute value of 1Jsub(PN) is significantly influenced only by those substituents, which are bonded to the phosphorus nucleus directly concerned in the coupling. Also the 15N chemical shifts are only changed by substituents on directly bonded phosphorus atoms. (author)

  9. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology

    Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in φ/ψ/χ1 torsion angles and sequence similarity to the query triplet of interest. The database contains 15N, 1HN, 1Hα, 13Cα, 13Cβ and 13C' chemical shifts for 200 proteins for which a high resolution X-ray (≤2.4 A) structure is available. The relative importance of the weighting factors for the φ/ψ/χ1 angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for 15N, 1HN, 1Hα, 13Cα, 13Cβ and 13C', respectively, including outliers

  10. Accessible surface area from NMR chemical shifts

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  11. Accessible surface area from NMR chemical shifts

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation

  12. Random coil chemical shift for intrinsically disordered proteins

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical....... Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series...

  13. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    We introduce a Python-based program that utilizes the large database of 13C and 15N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13C–13C, 15N–13C, or 3D 15N–13C–13C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13C–13C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  14. Hyperpolarized 15N-pyridine Derivatives as pH-Sensitive MRI Agents

    Weina Jiang; Lloyd Lumata; Wei Chen; Shanrong Zhang; Zoltan Kovacs; A. Dean Sherry; Chalermchai Khemtong

    2015-01-01

    Highly sensitive MR imaging agents that can accurately and rapidly monitor changes in pH would have diagnostic and prognostic value for many diseases. Here, we report an investigation of hyperpolarized 15N-pyridine derivatives as ultrasensitive pH-sensitive imaging probes. These molecules are easily polarized to high levels using standard dynamic nuclear polarization (DNP) techniques and their 15N chemical shifts were found to be highly sensitive to pH. These probes displayed sharp 15N resona...

  15. Protein Structure Determination Using Chemical Shifts

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes che...... residues. For Rhodopsin (225 residues) a structure is found at 2.5 Å CA-RMSD from the experimental X-ray structure, and a structure is determined for the Savinase protein (269 residues) with 2.9 Å CA-RMSD from the experimental X-ray structure....

  16. Chemical shift MR imaging of the skin

    MR imaging with conventional spin-echo pulse sequences has not found wide application in the evaluation of skin pathology. This paper reports that this study was designed to determine the value of chemical shift imaging (CSI) compared with conventional pulse sequences for the noninvasive evaluation of connective tissue and neoplastic disease of the skin and underlying fascia. The studies were acquired in patients and volunteers on a whole-body system at 1.5 T and small surface coils. Comparisons were made between T1- and T2-weighted gradient-echo, spin-echo, and hybrid lipid and water-suppressed CSI series (Chopper-Dixon combined with frequency-selective pulse). CSI improves detail in the hypodermis by eliminating unwanted (lipid) signal and chemical shift misregistration artifact. The detail of water-based signal is improved in the deeper layers of the skin by improved tissue contrast and elimination of the disturbing adjacent dominant fat-based signal. MR imaging has the potential to provide information that can complement skin biopsy. A more optimal choice of pulse sequences can improve the sensitivity of MR imaging to water-based pathology and allow noninvasive visualization of deep layers. The CSI sequences may be useful in the evaluation of infiltrative and neoplastic disease of the skin, particularly as they are adapted into microimaging methods with local gradient coils

  17. Automated assignment of NMR chemical shifts based on a known structure and 4D spectra.

    Trautwein, Matthias; Fredriksson, Kai; Möller, Heiko M; Exner, Thomas E

    2016-08-01

    Apart from their central role during 3D structure determination of proteins the backbone chemical shift assignment is the basis for a number of applications, like chemical shift perturbation mapping and studies on the dynamics of proteins. This assignment is not a trivial task even if a 3D protein structure is known and needs almost as much effort as the assignment for structure prediction if performed manually. We present here a new algorithm based solely on 4D [(1)H,(15)N]-HSQC-NOESY-[(1)H,(15)N]-HSQC spectra which is able to assign a large percentage of chemical shifts (73-82 %) unambiguously, demonstrated with proteins up to a size of 250 residues. For the remaining residues, a small number of possible assignments is filtered out. This is done by comparing distances in the 3D structure to restraints obtained from the peak volumes in the 4D spectrum. Using dead-end elimination, assignments are removed in which at least one of the restraints is violated. Including additional information from chemical shift predictions, a complete unambiguous assignment was obtained for Ubiquitin and 95 % of the residues were correctly assigned in the 251 residue-long N-terminal domain of enzyme I. The program including source code is available at https://github.com/thomasexner/4Dassign . PMID:27484442

  18. (H)N(COCA)NH and HN(COCA)NH experiments for 1H-15N backbone assignments in 13C/15N-labeled proteins

    Bracken, Clay; Palmer, Arthur G. III [Columbia University, Department of Biochemistry and Molecular Biophysics (United States); Cavanagh, John [New York State Department of Health, NMR Structural Biology Facility, Wadsworth Center (United States)

    1997-01-15

    Triple resonance HN(COCA)NH pulse sequences for correlating 1H(i), 15N(i),1H(i-1), and 15N(i-1) spins that utilize overlapping coherence transfer periods provide increased sensitivity relative to pulse sequences that utilize sequential coherence transfer periods. Although the overlapping sequence elements reduce the overall duration of the pulse sequences, the principal benefit derives from a reduction in the number of 180 deg. pulses. Two versions of the technique are presented: a 3D (H)N(COCA)NH experiment that correlates 15N(i),1H(i-1), and 15N(i-1) spins, and a 3D HN(COCA)NH experiment that correlates 1H(i), 15N(i),1H(i-1), and 15N(i-1) spins by simultaneously encoding the 1H(i) and 15N(i) chemical shifts during the t1 evolution period. The methods are demonstrated on a 13C/15N-enriched sample of the protein ubiquitin and are easily adapted for application to 2H/13C/15N-enriched proteins.

  19. Probabilistic Approach to Determining Unbiased Random-coil Carbon-13 Chemical Shift Values from the Protein Chemical Shift Database

    We describe a probabilistic model for deriving, from the database of assigned chemical shifts, a set of random coil chemical shift values that are 'unbiased' insofar as contributions from detectable secondary structure have been minimized (RCCSu). We have used this approach to derive a set of RCCSu values for 13Cα and 13Cβ for 17 of the 20 standard amino acid residue types by taking advantage of the known opposite conformational dependence of these parameters. We present a second probabilistic approach that utilizes the maximum entropy principle to analyze the database of 13Cα and 13Cβ chemical shifts considered separately; this approach yielded a second set of random coil chemical shifts (RCCSmax-ent). Both new approaches analyze the chemical shift database without reference to known structure. Prior approaches have used either the chemical shifts of small peptides assumed to model the random coil state (RCCSpeptide) or statistical analysis of chemical shifts associated with structure not in helical or strand conformation (RCCSstruct-stat). We show that the RCCSmax-ent values are strikingly similar to published RCCSpeptide and RCCSstruct-stat values. By contrast, the RCCSu values differ significantly from both published types of random coil chemical shift values. The differences (RCCSpeptide-RCCSu) for individual residue types show a correlation with known intrinsic conformational propensities. These results suggest that random coil chemical shift values from both prior approaches are biased by conformational preferences. RCCSu values appear to be consistent with the current concept of the 'random coil' as the state in which the geometry of the polypeptide ensemble samples the allowed region of (φ,ψ)-space in the absence of any dominant stabilizing interactions and thus represent an improved basis for the detection of secondary structure. Coupled with the growing database of chemical shifts, this probabilistic approach makes it possible to refine

  20. Probabilistic validation of protein NMR chemical shift assignments

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/

  1. Probabilistic validation of protein NMR chemical shift assignments

    Dashti, Hesam [University of Wisconsin-Madison, Graduate Program in Biophysics, Biochemistry Department (United States); Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States); Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Biochemistry Department (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu, E-mail: jmarkley@wisc.edu [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States)

    2016-01-15

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/.

  2. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria.

    Fritzsching, Keith J; Hong, Mei; Schmidt-Rohr, Klaus

    2016-02-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  3. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    Shen Yang; Bax, Ad, E-mail: bax@nih.go [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2010-09-15

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and {sup 13}C{sup {beta}} chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and {sup 13}C{sup {beta}} atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for {delta}{sup 15}N, {delta}{sup 13}C', {delta}{sup 13}C{sup {alpha}}, {delta}{sup 13}C{sup {beta}}, {delta}{sup 1}H{sup {alpha}} and {delta}{sup 1}H{sup N}, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  4. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network

    NMR chemical shifts provide important local structural information for proteins and are key in recently described protein structure generation protocols. We describe a new chemical shift prediction program, SPARTA+, which is based on artificial neural networking. The neural network is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-ray structures and nearly complete backbone and 13Cβ chemical shifts are available. The neural network is trained to establish quantitative relations between chemical shifts and protein structures, including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects. The trained neural network yields rapid chemical shift prediction for backbone and 13Cβ atoms, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ15N, δ13C', δ13Cα, δ13Cβ, δ1Hα and δ1HN, respectively, between the SPARTA+ predicted and experimental shifts for a set of eleven validation proteins. These results represent a modest but consistent improvement (2-10%) over the best programs available to date, and appear to be approaching the limit at which empirical approaches can predict chemical shifts.

  5. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts

    The realization that a protein can be fully functional even in the absence of a stable three-dimensional structure has motivated a large number of studies describing the conformational behaviour of these proteins at atomic resolution. Here, we review recent advances in the determination of local structural propensities of intrinsically disordered proteins (IDPs) from experimental NMR chemical shifts. A mapping of the local structure in IDPs is of paramount importance in order to understand the molecular details of complex formation, in particular, for IDPs that fold upon binding or undergo structural transitions to pathological forms of the same protein. We discuss experimental strategies for the spectral assignment of IDPs, chemical shift prediction algorithms and the generation of representative structural ensembles of IDPs on the basis of chemical shifts. Additionally, we highlight the inherent degeneracies associated with the determination of IDP sub-state populations from NMR chemical shifts alone. (authors)

  6. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  7. An evaluation of chemical shift index-based secondary structure determination in proteins: Influence of random coil chemical shifts

    Mielke, S.P.; Krishnan, V.V. [Biophysics Graduate Group, University of California, Davis (United States)], E-mail: krish@llnl.gov

    2004-10-15

    Random coil chemical shifts are commonly used to detect protein secondary structural elements in chemical shift index (CSI) calculations. Though this technique is widely used and seems reliable for folded proteins, the choice of reference random coil chemical shift values can significantly alter the outcome of secondary structure estimation. In order to evaluate these effects, we present a comparison of secondary structure content calculated using CSI, based on five different reference random coil chemical shift value sets, to that derived from three-dimensional structures. Our results show that none of the reference random coil data sets chosen for evaluation fully reproduces the actual secondary structures. Among the reference values generally available to date, most tend to be good estimators only of helices. Based on our evaluation, we recommend the experimental values measured by Schwarzinger et al. (2000), and statistical values obtained by Lukin et al. (1997), as good estimators of both helical and sheet content.

  8. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C (15)N HSQC-IMPEACH and (13)C (15)N HMBC-IMPEACH correlation spectra.

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. PMID:17729230

  9. Bayesian inference of protein structure from chemical shift data

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim; Jensen, Jan Halborg

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...... chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the......, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction....

  10. Bayesian inference of protein structure from chemical shift data

    Lars A. Bratholm

    2015-03-01

    Full Text Available Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction.

  11. Counterion influence on chemical shifts in strychnine salts

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  12. Counterion influence on chemical shifts in strychnine salts.

    Metaxas, Athena E; Cort, John R

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on (1)H and (13)C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD), and chloroform-d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. PMID:23495106

  13. Combined solid state and solution NMR studies of {alpha},{epsilon}-{sup 15}N labeled bovine rhodopsin

    Werner, Karla; Lehner, Ines [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Dhiman, Harpreet Kaur [University of Pittsburgh School of Medicine, Department of Structural Biology (United States); Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de; Klein-Seetharaman, Judith [Johann Wolfgang Goethe-Universitaet Frankfurt, Center for Biomolecular Magnetic Resonance (Germany); Khorana, H. Gobind [Massachusetts Institute of Technology, Departments of Biology and Chemistry (United States)], E-mail: khorana@mit.edu

    2007-04-15

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of {alpha},{epsilon}-{sup 15}N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state {sup 13}C,{sup 15}N-REDOR and HETCOR experiments of all possible {sup 13}C'{sub i-1} carbonyl/{sup 15}N{sub i}-tryptophan isotope labeled amide pairs, and H/D exchange {sup 1}H,{sup 15}N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone {sup 15}N nuclei and partially to their bound protons. {sup 1}H,{sup 15}N chemical shift assignment was achieved for indole side chains of Trp35{sup 1.30} and Trp175{sup 4.65}. {sup 15}N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175{sup 4.65} at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin.

  14. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra

  15. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations (13C–13C, 15N–13C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the 13C NMR data and almost all 15N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  16. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (KD) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the KD value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1H–15N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (koff). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, koff ∼ 3,000 s−1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for koff from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise koff values over a wide range, from 100 to 15,000 s−1. The validity of line shape analysis for koff values approaching intermediate exchange (∼100 s−1), may be facilitated by more accurate KD measurements from NMR-monitored chemical shift

  17. Data requirements for reliable chemical shift assignments in deuterated proteins

    The information required for chemical shift assignments in large deuterated proteins was investigated using a Monte Carlo approach (Hitchens et al., 2002). In particular, the consequences of missing amide resonances on the reliability of assignments derived from Cα and CO or from Cα and Cβ chemical shifts was investigated. Missing amide resonances reduce both the number of correct assignments as well as the confidence in these assignments. More significantly, a number of undetectable errors can arise when as few as 9% of the amide resonances are missing from the spectra. However, the use of information from residue specific labeling as well as local and long-range distance constraints improves the reliability and extent of assignment. It is also shown that missing residues have only a minor effect on the assignment of protein-ligand complexes using Cα and CO chemical shifts and Cα inter-residue connectivity, provided that the known chemical shifts of the unliganded protein are utilized in the assignment process

  18. 15N NMR spectroscopy of Pseudomonas cytochrome c-551

    15N-1H correlation spectroscopy with detection at the 1H frequency has been used at natural abundance to detect nitrogen nuclei bonded to protons in the ferrocytochrome c-551 from Pseudomonas aeruginosa (ATCC 19429). Side-chain aromatic nitrogen, main-chain amides, and side-chain amides have been assigned to specific residues by comparison to previous proton assignments. Assignment ambiguities arising from overlap in the proton dimension have been resolved by examining spectra as a function of temperature and pH. Nitrogen chemical shifts are reported at pH 4.6 and 9.4 and three temperatures, 32, 50, and 60 degree C. Significant differences arise from the observed protein shifts and expected shifts in the random coil polypeptide

  19. Improving 3D structure prediction from chemical shift data

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50–100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 Å RMSD from the reference)

  20. Calculations of NMR chemical shifts with APW-based methods

    Laskowski, Robert; Blaha, Peter

    2012-01-01

    We present a full potential, all electron augmented plane wave (APW) implementation of first-principles calculations of NMR chemical shifts. In order to obtain the induced current we follow a perturbation approach [Pickard and Mauri, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.63.245101 63, 245101 (2001)] and extended the common APW + local orbital (LO) basis by several LOs at higher energies. The calculated all-electron current is represented in traditional APW manner as Fourier series in the interstitial region and with a spherical harmonics representation inside the nonoverlapping atomic spheres. The current is integrated using a “pseudocharge” technique. The implementation is validated by comparison of the computed chemical shifts with some “exact” results for spherical atoms and for a set of solids and molecules with available published data.

  1. Improving 3D structure prediction from chemical shift data

    Schot, Gijs van der [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Zhang, Zaiyong [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany); Vernon, Robert [University of Washington, Department of Biochemistry (United States); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vranken, Wim F. [VIB, Department of Structural Biology (Belgium); Baker, David [University of Washington, Department of Biochemistry (United States); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany)

    2013-09-15

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50-100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 A RMSD from the reference)

  2. Anisotropy of the fluorine chemical shift tensor in UF6

    An 19F magnetic resonance study of polycrystalline UF6 is presented. The low temperature complex line can be analyzed as the superposition of two distinct lines, which is attributed to a distortion of the UF6 octahedron in the solid. The shape of the two components is studied. Their width is much larger than the theoretical dipolar width, and must be explained by large anisotropies of the fluorine chemical shift tensors. The resulting shape functions of the powder spectra are determined. The values of the parameters of the chemical shift tensors yield estimates of the characters of the U-F bonds, and this gives some information on the ground state electronic wave function of the UF6 molecule in the solid. (author)

  3. Magnetic shift of the chemical freezeout and electric charge fluctuations

    Fukushima, Kenji

    2016-01-01

    We discuss the effect of a strong magnetic field on the chemical freezeout points in the ultra-relativistic heavy-ion collision. As a result of the inverse magnetic catalysis or the magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freezeout. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced especially at high baryon density. The charge conservation partially cancels the enhancement but our calculation shows that the electric charge fluctuation could serve as a magnetometer.

  4. Estimation of optical chemical shift in nuclear spin optical rotation

    Highlights: • Analytical theory of nuclear spin optical rotation (NSOR) is further developed. • Derive formula of NSOR ratio R between different nuclei in a same molecule. • Calculated results of R agree with the experiments. • Analyze influence factors on R and chemical distinction by NSOR. - Abstract: A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed

  5. Chemical-shift MRI of exogenous lipoid pneumonia

    Cox, J.E.; Choplin, R.H.; Chiles, C. [Wake Forest Univ., Winston-Salem, NC (United States)

    1996-05-01

    Exogenous lipoid pneumonia results from the aspiration or inhalation of fatty substances, such as mineral oil found in laxatives or nasal medications containing liquid paraffin. We present standard and lipid-sensitive (chemical-shift) MR findings in a patient with histologically confirmed lipoid pneumonia. The loss of signal intensity in an area of airspace disease on opposed-phase imaging was considered specific for the presence of lipid. 14 refs., 3 figs.

  6. 15N magnetic resonance of aqueous imidazole and zinc(II)-imidazole complexes. Evidence for hexacoordination

    15N NMR chemical shifts of doubly labeled [15N)imidazole permit evaluation of hydrogen bonding, proton association, and Zn(II) complex formation in homogeneous solution. The 15N resonant frequency in aqueous solutions of imidazole at pH 9-12 is independent of imidazole concentration, suggesting insignificant self-association via hydrogen bonding involving the N3 lone pair and the N1 proton of a neighboring molecule. Protonation at N3 (pH less than 5) produces a 31.2-ppM diamagnetic shift and deprotonation at N1 (pH greater than 13) an approximately20-ppM paramagnetic shift relative to neutral aqueous imidazole. Those shifts are very large compared to the approximately +-0.5-ppM uncertainty in the 15N shift measurements. In solutions of Zn2+ and imidazole the 15N resonance in ZnIm/sub i/2+ complexes (Im = imidazole) is diamagnetically shifted by 10 to 20 ppM relative to neutral aqueous imidazole. Over a range of ratios of total imidazole to total zinc such that the average number of complexed imidazole molecules per Zn2+ (anti ν) is approximately 3.5, or less, the shift data are well interpreted by a four-species model (i = 1-4) using stepwise formation constants from the literature. Significant deviations from that model at anti ν greater than 3.5 require that higher species (e.g., ZnIm52+ and ZnIm62+) be considered. A six-species model with reasonable formation constants for the fifth and sixth complexes provides satisfactory interpretation of all data. Implications of those observations with respect to biologically active zinc(II) proteins are considered. 2 tables, 4 figures

  7. Substituent effects on 61Ni NMR chemical shifts

    Bühl, Michael; Peters, Dietmund; Herges, Rainer

    2009-01-01

    Ni-61 chemical shifts of Ni(all-trans-cdt) L (cdt = cyclododecatriene, L = none, CO, PMe3), Ni(CO)(4), Ni(C2H4)(2)(PMe3), Ni(cod)(2) (cod = cyclooctadiene) and Ni(PX3)(4) (X = Me, F, Cl) are computed at the GIAO (gauge-including atomic orbitals), BPW91, B3LYP and BHandHLYP levels, using BP86-optimised geometries and an indirect referencing scheme. For this set of compounds, substituent effects on delta(Ni-61) are better described with hybrid functionals than with the pure BPW91 functional. On...

  8. Evolution of the chemical (NH4) and isotopic (δ15N-NH4) composition of pig manure stored in an experimental deep pit

    during eight months, from November 2001 to July 2002 at atmospheric conditions. Ammonium concentration and its nitrogen isotopic composition were analysed weekly during the first six months and every ten days during the last two months. Ammonium concentration oscillates between 3000 and 4000 ppm, with no progressive decrease in time as it would be expected in a volatilisation process. This is caused by the loss of manure volume due to evaporation (50 % in eight months) which compensates the ammonia volatilisation and keeps the ammonium concentration stable. The nitrogen isotopic composition of the ammonium is controlled by the volatilisation process. During the first ten days, the pig manure has an isotopic composition between +8 and +10 per mille, and after eight months, it raises up to +25 per mille. However, the pig manure is not stored in the deep pits more than six months; consequently, the range of δ15NNH4 values to be considered for pig manure as an input of nitrogen contamination should be from +8 to +15 per mille. Still, this isotopic composition can be higher if manure is stored during the summer time since the higher temperatures may increase the volatilisation rate and raise the ammonium isotopic composition in a shorter period of time. Unlike synthetic fertilisers, which are characterised by a δ15N close to the 0 per mille, the organic fertilisers (pig manure) are enriched in 15N15N from +8 to +15 per mille). Therefore the nitrogen isotopic composition is a valuable tool to evaluate the origin of nitrate agricultural contaminations. As an example, nitrate nitrogen isotopic composition has been used in some areas in Catalonia to confirm that pig manure is the main contributor to the nitrate pollution in groundwaters

  9. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  10. 15N-{1H} NOE experiment at high magnetic field strengths

    The heteronuclear 15N-{1H} NOE values are typically determined by taking the ratio of 15N signal intensities recorded in the presence and absence of 1H saturation prior to evolution of 15N magnetization. Since the intensity ratio of two independent experiments is taken, complete recovery of 15N magnetization during the scan repetition delay is critical to obtain reliable NOE values. Because it may not be practical to wait for the complete recovery of magnetization at high magnetic fields, Solomon equations may be used to correct measured NOE values. Here, based on experiments and simulations, we show that since the cross-correlation between 1H-15N dipole and 15N chemical shift anisotropy becomes significant at high fields for small or deuterated proteins, measured NOE values can not be accurately corrected based on the Solomon equations. We also discuss ranges of rotational correlation times and proton spin-flip rate, in which the NOE values can be corrected by the equations

  11. Computational Assignment of Chemical Shifts for Protein Residues

    Bratholm, Lars A

    2013-01-01

    Fast and accurate protein structure prediction is one of the major challenges in structural biology, biotechnology and molecular biomedicine. These fields require 3D protein structures for rational design of proteins with improved or novel properties. X-ray crystallography is the most common approach even with its low success rate, but lately NMR based approaches have gained popularity. The general approach involves a set of distance restraints used to guide a structure prediction, but simple NMR triple-resonance experiments often provide enough structural information to predict the structure of small proteins. Previous protein folding simulations that have utilised experimental data have weighted the experimental data and physical force field terms more or less arbitrarily, and the method is thus not generally applicable to new proteins. Furthermore a complete and near error-free assignment of chemical shifts obtained by the NMR experiments is needed, due to the static, or deterministic, assignment. In this ...

  12. Accurate calculation of (31)P NMR chemical shifts in polyoxometalates.

    Pascual-Borràs, Magda; López, Xavier; Poblet, Josep M

    2015-04-14

    We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group. PMID:25738630

  13. Alterations in chemical shifts and exchange broadening upon peptide boronic acid inhibitor binding to α-lytic protease

    α-Lytic protease, a bacterial serine protease of 198 aminoacids (19800 Da), has been used as a model system for studies of catalytic mechanism, structure-function relationships, and more recently for studies of pro region-assisted protein folding. We have assigned the backbones of the enzyme alone, and of its complex with the tetrahedral transition state mimic N-tert-butyloxycarbonyl-Ala-Pro-boroVal, using double- and triple-resonance 3D NMR spectroscopy on uniformly15N- and 13C/15N-labeled protein.Changes in backbone chemical shifts between the uncomplexed and inhibited form of the protein are correlated with distance from the inhibitor, the displacement of backbone nitrogens, and change in hydrogen bond strength upon inhibitor binding (derived from previously solved crystal structures).A comparison of the solution secondary structure of the uninhibited enzyme with that of the X-ray structure reveals no significant differences.Significant line broadening, indicating intermediate chemical exchange, was observed in many of the active site amides (including three broadened to invisibility), and in a majority of cases the broadening was reversed upon addition of the inhibitor. Implications and possible mechanisms of this line broadening are discussed

  14. 15N analysis in nutritional and metabolic research of infancy

    Investigation of protein metabolism in nutritional pediatric research by means of 15N tracer techniques has been relatively seldom used up to now. 15N-labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on 15N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover, and the reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters were performed in infants on breast milk, formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the 15N-D-phenylalanine retention of parenteral nutrition was found to be 33% of the applied dosis at an average. An oral 15N-glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormone. 15N tracer technique was also tested in utilizing 15N-urea for bacterial protein synthesis of the intestinal flora and by incorporation of 15N from 15N-glycine and 15N-lysine into the jejunal mucosa for measuring the enterocyte regeneration. (author)

  15. Methods of 15N tracer research in biological systems

    The application of the stable isotope 15N is of increasing importance in different scientific disciplines, especially in medicine, agriculture, and the biosciences. The close correlation between the growing interest and improvements of analytical procedures resulted in remarkable advances in the 15N tracer technique. On the basis of the latest results of 15N tracer research in life sciences and agriculture methods of 15N tracer research in biological systems are compiled. The 15N methodology is considered under three headings: Chemical analysis with a description of methods of sample preparation (including different separation and isolation methods for N-containing substances of biological and agricultural origin) and special procedures converting ammonia to molecular nitrogen. Isotopic analysis with a review on the most important methods of isotopic analysis of nitrogen: mass spectrometry (including the GC-MS technique), emission spectrometry, NMR spectroscopy, and other analytical procedures. 15N-tracer techniques with a consideration of the role of the isotope dilution analysis as well as different labelling techniques and the mathematical interpretation of tracer data (modelling, N turnover experiments). In these chapters also sources of errors in chemical and isotopic analysis, the accuracy of the different methods and its importance on tracer experiments are discussed. Procedures for micro scale 15N analysis and aspects of 15N analysis on the level of natural abundance are considered. Furthermore some remarks on isotope effects in 15N tracer experiments are made. (author)

  16. Random coil chemical shifts in acidic 8 M urea: Implementation of random coil shift data in NMRView

    Studies of proteins unfolded in acid or chemical denaturant can help in unraveling events during the earliest phases of protein folding. In order for meaningful comparisons to be made of residual structure in unfolded states, it is necessary to use random coil chemical shifts that are valid for the experimental system under study. We present a set of random coil chemical shifts obtained for model peptides under experimental conditions used in studies of denatured proteins. This new set, together with previously published data sets, has been incorporated into a software interface for NMRView, allowing selection of the random coil data set that fits the experimental conditions best

  17. Pitfalls of adrenal imaging with chemical shift MRI

    Chemical shift (CS) MRI of the adrenal glands exploits the different precessional frequencies of fat and water protons to differentiate the intracytoplasmic lipid-containing adrenal adenoma from other adrenal lesions. The purpose of this review is to illustrate both technical and interpretive pitfalls of adrenal imaging with CS MRI and emphasize the importance of adherence to strict technical specifications and errors that may occur when other imaging features and clinical factors are not incorporated into the diagnosis. When performed properly, the specificity of CS MRI for the diagnosis of adrenal adenoma is over 90%. Sampling the in-phase and opposed-phase echoes in the correct order and during the same breath-hold are essential requirements, and using the first echo pair is preferred, if possible. CS MRI characterizes more adrenal adenomas then unenhanced CT but may be non-diagnostic in a proportion of lipid-poor adenomas; CT washout studies may be able to diagnose these lipid-poor adenomas. Other primary and secondary adrenal tumours and supra-renal disease entities may contain lipid or gross fat and mimic adenoma or myelolipoma. Heterogeneity within an adrenal lesion that contains intracytoplasmic lipid could be due to myelolipoma, lipomatous metaplasia of adenoma, or collision tumour. Correlation with previous imaging, other imaging features, clinical history, and laboratory investigations can minimize interpretive errors

  18. Diagnostic value of chemical shift artifact in distinguishing benign lymphadenopathy

    Purpose: Today, distinguishing metastatic lymph nodes from secondary benign inflammatory ones via using non-invasive methods is increasingly favorable. In this study, the diagnostic value of chemical shift artifact (CSA) in magnetic resonance imaging (MRI) was evaluated to distinguish benign lymphadenopathy. Subjects and methods: A prospective intraindividual internal review board-approved study was carried out on 15 men and 15 women having lymphadenopathic lesions in different locations of the body who underwent contrast-enhanced dynamic MR imaging at 1.5 T. Then, the imaging findings were compared with pathology reports, using the statistics analyses. Results: Due to the findings of the CSA existence in MRI, a total of 56.7% of the studied lesions (17 of 30) were identified as benign lesions and the rest were malignant, whereas the pathology reports distinguished twelve malignant and eighteen benign cases. Furthermore, the CSA findings comparing the pathology reports indicated that CSA, with confidence of 79.5%, has a significant diagnostic value to differentiate benign lesions from malignant ones. Conclusion: Our study demonstrated that CSA in MR imaging has a suitable diagnostic potential nearing readiness for clinical trials. Furthermore, CSA seems to be a feasible tool to differentiate benign lymph nodes from malignant ones; however, further studies including larger numbers of patients are required to confirm our results.

  19. Applications of Chemical Shift Imaging to Marine Sciences

    Haakil Lee

    2010-08-01

    Full Text Available The successful applications of magnetic resonance imaging (MRI in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT or positron emission (PET scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS. MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H including carbon (13C or phosphorus (31P. In vivo MR spectra can be obtained from single region ofinterest (ROI or voxel or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI. Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism.

  20. 19-Fluorine nuclear magnetic resonance chemical shift variability in trifluoroacetyl species

    Sloop, Joseph

    2013-01-01

    Joseph C SloopSchool of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USAAbstract: This review examines the variability of chemical shifts observed in 19-fluorine (19F) nuclear magnetic resonance spectra for the trifluoroacetyl (TFA) functional group. The range of 19F chemical shifts reported spectra for the TFA group varies generally from −85 to −67 ppm relative to CFCl3. The literature revealed several factors that impact chemical shifts of the TFA...

  1. Synthesis of 15N labeled glyphosate

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of 15N labeled glyphosate. The 15N-herbicide was undertaken by phosphometilation with the phosphit dialquil and 15N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  2. Detection of organic sulfur by [sup 15]N and [sup 19]F NMR via formation of iminosulfuranes

    Franz, J.A.; Linehan, J.C.; Lamb, C.N.

    1992-08-01

    We have synthesized new iminosulfuranes from a variety of diaryl-and dialkyl sulfides and dibenzothiophene. The pattern of [sup 15]N chemical shifts indicates that functional groups attached to sulfur are not simply resolved into aryl and alkyl groups. Thus, resolution of sulfur functional groups using [sup 15]N NMR via iminosulfurane does not appear practicable. However, iminosulfurane formation, together with the N-haloamide reaction and the Pummerer rearrangement, provides pathways for chemical discrimination of different sulfur substituents using unique [sup 15]N- or, [sup 19]F-labelled fragments for different categories of sulfur functional groups. In efforts currently underway, we are applying these reactions to methylated extracts and conversion products of the high-organic-sulfur containing Yugoslavian Rasa and Spanish Mequinenza lignites. 1 tab, 14 refs.

  3. Detection of organic sulfur by {sup 15}N and {sup 19}F NMR via formation of iminosulfuranes

    Franz, J.A.; Linehan, J.C.; Lamb, C.N.

    1992-08-01

    We have synthesized new iminosulfuranes from a variety of diaryl-and dialkyl sulfides and dibenzothiophene. The pattern of {sup 15}N chemical shifts indicates that functional groups attached to sulfur are not simply resolved into aryl and alkyl groups. Thus, resolution of sulfur functional groups using {sup 15}N NMR via iminosulfurane does not appear practicable. However, iminosulfurane formation, together with the N-haloamide reaction and the Pummerer rearrangement, provides pathways for chemical discrimination of different sulfur substituents using unique {sup 15}N- or, {sup 19}F-labelled fragments for different categories of sulfur functional groups. In efforts currently underway, we are applying these reactions to methylated extracts and conversion products of the high-organic-sulfur containing Yugoslavian Rasa and Spanish Mequinenza lignites. 1 tab, 14 refs.

  4. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of 13C NMR data of RNAs. Our procedure uses five 13C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the 13C calibration and detect errors or inconsistencies in RNA 13C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure–13C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable 13C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure–chemical shift relationships with this improved list of 13C chemical shift data. This is demonstrated by a clear relationship between ribose 13C shifts and the sugar pucker, which can be used to predict a C2′- or C3′-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

  5. 15N Solid-State NMR as a Probe of Flavin H-bonding

    Cui, Dongtao; Koder, Ronald L.; Dutton, P. Leslie; Miller, Anne-Frances

    2011-01-01

    Flavins mediate a wide variety of different chemical reactions in biology. To learn how one cofactor can be made to execute different reactions in different enzymes, we are developing solid-state NMR (SSNMR) to probe the flavin electronic structure, via the 15N chemical shift tensor principal values (δii). We find that SSNMR has superior responsiveness to H-bonds, compared to solution NMR. H-bonding to a model of the flavodoxin active site produced an increase of 10 ppm in the δ11 of N5 altho...

  6. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  7. Carbon-13 magnetic resonance chemical shift additivity relationships of clinically used furocoumarins and furchromones

    The natural abundance carbon-13 nuclear magnetic resonance spectra of various clinically used furocoumarins and furochromones have been studied. The assignments of carbon chemical shift values were based on the theory of chemical shift, additivity rules, SFORD spectra and model compounds. (author)

  8. Method of evaluating chemical shifts of X-ray emission lines in molecules and solids

    Lomachuk, Yuriy V.; Titov, Anatoly V.

    2013-01-01

    Method of evaluating chemical shifts of X-ray emission lines for sufficiently heavy atoms (beginning from period 4 elements) in chemical compounds is developed. This method is based on the pseudopotential model and one-center restoration method (to reconstruct the proper electronic structure in heavy-atom cores). The approximations of instantaneous transition and frozen inner core spinors of the atom are used for derivation of an expression for chemical shift as a difference between mean valu...

  9. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  10. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder

  11. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  12. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca

  13. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  14. Mineral Moessbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters

    The variety of coordination numbers, symmetries, distortions and ligand environments in thermally-stable iron-bearing minerals provide wide ranges of chemical shift (δ) and quadrupole splitting (Δ) parameters, which serve to characterize the crystal chemistries and site occupancies of Fe2+ and Fe3+ ions in minerals of terrestrial and extraterrestrial origins. Correlations between ferrous and ferric chemical shifts enable thermally-induced electron delocalization behavior in mixed-valence Fe2+-Fe3+ minerals to be identified, while chemical shift versus quadrupole splitting correlations serve to identify nanophase ferric oxides and oxyhydroxides in oxidized minerals and in meteorites subjected to aqueous oxidation before and after they arrived on Earth. (orig.)

  15. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...... QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift...

  16. Prediction of proton chemical shifts in RNA - Their use in structure refinement and validation

    An analysis is presented of experimental versus calculated chemical shifts of the non-exchangeable protons for 28 RNA structures deposited in the Protein Data Bank, covering a wide range of structural building blocks. We have used existing models for ring-current and magnetic-anisotropy contributions to calculate the proton chemical shifts from the structures. Two different parameter sets were tried: (i) parameters derived by Ribas-Prado and Giessner-Prettre (GP set) [(1981) J. Mol. Struct.,76, 81-92.]; (ii) parameters derived by Case [(1995) J. Biomol. NMR, 6, 341-346]. Both sets lead to similar results. The detailed analysis was carried using the GP set. The root-mean-square-deviation between the predicted and observed chemical shifts of the complete database is 0.16 ppm with a Pearson correlation coefficient of 0.79. For protons in the usually well-defined A-helix environment these numbers are, 0.08 ppm and 0.96, respectively. As a result of this good correspondence, a reliable analysis could be made of the structural dependencies of the 1H chemical shifts revealing their physical origin. For example, a down-field shift of either H2' or H3' or both indicates a high-syn/syn χ-angle. In an A-helix it is essentially the 5'-neighbor that affects the chemical shifts of H5, H6 and H8 protons. The H5, H6 and H8 resonances can therefore be assigned in an A-helix on the basis of their observed chemical shifts. In general, the chemical shifts were found to be quite sensitive to structural changes. We therefore propose that a comparison between calculated and observed 1H chemical shifts is a good tool for validation and refinement of structures derived from NOEs and J-couplings

  17. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    Kobayashi, Takeshi [Ames Laboratory; Gupta, Shalabh [Ames Laboratory; Caporini, Marc A [Bruker BioSpin Corporation; Pecharsky, Vitalij K [Ames Laboratory; Pruski, Marek [Ames Laboratory

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  18. Combined Effects of Noise and Shift Work on Workers’ Physiological Parameters in a Chemical Industry

    M. Motamedzade; S. Ghazaiee

    2003-01-01

    This study was conducted to determine the combined effects of noise and shift work on physiological parameters including body temperature, heart rate and blood pressure. This study was performed in a chemical industry in Tehran in 1993. The workers’ physiological parameters was recorded at the beginning and at the end of all work shifts. Groups under study included : day workers (n=115) , day workers with continuous noise exposure (n=44) , two-shift workers without...

  19. Synthesis of {sup 15}N labeled glyphosate; Sintese do glifosato enriquecido com {sup 15}N

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Tavares, Glauco Arnold; Rossete, Alexssandra L.R.M.; Tagliassachi, Romulo Barbieri; Prestes, Cleuber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of {sup 15}N labeled glyphosate. The {sup 15}N-herbicide was undertaken by phosphometilation with the phosphit dialquil and {sup 15}N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  20. PPM-One: a static protein structure based chemical shift predictor

    Li, Dawei; Brüschweiler, Rafael, E-mail: bruschweiler.1@osu.edu [The Ohio State University, Campus Chemical Instrument Center (United States)

    2015-07-15

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs.

  1. Chemical shifts and coupling constants of C8H10N4O2

    Jain, M.

    This document is part of Subvolume D3 `Chemical Shifts and Coupling Constants for Carbon-13: Heterocycles' of Volume 35 `Nuclear Magnetic Resonance (NMR) Data' of Landolt-Börnstein Group III `Condensed Matter'

  2. Quantitative chemical-shift MR imaging cutoff value: Benign versus malignant vertebral compression – Initial experience

    Dalia Z. Zidan

    2014-09-01

    Conclusion: Quantitative chemical shift MR imaging could be a valuable addition to standard MR imaging techniques and represent a rapid problem solving tool in differentiating benign from malignant vertebral compression, especially in patients with known primary malignancies.

  3. PPM-One: a static protein structure based chemical shift predictor

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs

  4. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal...

  5. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input

  6. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the 1H NMR and 13C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and 1H and 13C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA 1H and 13C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides

  7. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.

    Brown, Joshua D; Summers, Michael F; Johnson, Bruce A

    2015-09-01

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the (1)H NMR and (13)C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and (1)H and (13)C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA (1)H and (13)C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides. PMID:26141454

  8. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  9. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules

    Swails, Jason [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States); Zhu, Tong; He, Xiao, E-mail: xiaohe@phy.ecnu.edu.cn [East China Normal University, State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science (China); Case, David A., E-mail: case@biomaps.rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States)

    2015-10-15

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input.

  10. Nitrogen-15 labeled 5S RNA. Identification of uridine base pairs in Escherichia coli 5S RNA by 1H-15N multiple quantum NMR

    Escherichia coli 5S RNA labeled with 15N at N3 of the uridines was isolated from the Sφ-187 uracil auxotroph grown on a minimal medium supplemented with [3-15N]uracil. 1H-15N multiple quantum filtered and 2D chemical shift correlated spectra gave resonances for the uridine imino 1H-15N units whose protons were exchanging slowly with solvent. Peaks with 1H/15N shifts at 11.6/154.8, 11.7/155.0, 11.8/155.5, 12.1/155.0, and 12.2/155.0 ppm were assigned to GU interactions. Two labile high-field AU resonances at 12.6/156.8 and 12.8/157.3 ppm typical of Au pairs in a shielded environment at the end of a helix were seen. Intense AU signals were also found at 13.4/158.5 and 13.6/159.2 ppm where 1H-15N units in normal Watson-Crick pairs resonate. 1H resonances at 10.6 and 13.8 ppm were too weak, presumably because of exchange with water, to give peaks in chemical shift correlated spectra. 1H chemical shifts suggest that the resonance at 13.8 ppm represents a labile AU pair, while the resonance at 10.6 ppm is typical of a tertiary interaction between U and a tightly bound water or a phosphate residue. The NMR data are consistent with proposed secondary structures for 5S RNA

  11. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    Douis, H. [University Hospital Birmingham, Department of Radiology, Birmingham (United Kingdom); Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Davies, A.M. [Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Jeys, L. [Royal Orthopaedic Hospital, Department of Orthopaedic Oncology, Birmingham (United Kingdom); Sian, P. [Royal Orthopaedic Hospital, Department of Spinal Surgery and Spinal Oncology, Birmingham (United Kingdom)

    2016-04-15

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  12. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  13. From NMR chemical shifts to amino acid types: Investigation of the predictive power carried by nuclei

    An approach to automatic prediction of the amino acid type from NMR chemical shift values of its nuclei is presented here, in the frame of a model to calculate the probability of an amino acid type given the set of chemical shifts. The method relies on systematic use of all chemical shift values contained in the BioMagResBank (BMRB). Two programs were designed, one (BMRB stats) for extracting statistical chemical shift parameters from the BMRB and another one (RESCUE2) for computing the probabilities of each amino acid type, given a set of chemical shifts. The Bayesian prediction scheme presented here is compared to other methods already proposed: PROTYP (Grzesiek and Bax, J. Biomol. NMR, 3, 185-204, 1993) RESCUE (Pons and Delsuc, J. Biomol. NMR, 15, 15-26, 1999) and PLATON (Labudde et al., J. Biomol. NMR, 25, 41-53, 2003) and is found to be more sensitive and more specific. Using this scheme, we tested various sets of nuclei. The two nuclei carrying the most information are Cβ and Hβ, in agreement with observations made in Grzesiek and Bax, 1993. Based on four nuclei: Hβ, Cβ, Cα and C', it is possible to increase correct predictions to a rate of more than 75%. Taking into account the correlations between the nuclei chemical shifts has only a slight impact on the percentage of correct predictions: indeed, the largest correlation coefficients display similar features on all amino acids

  14. Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis

    Anthony J. SAVIOLA, David CHISZAR, Stephen P. MACKESSY

    2012-08-01

    Full Text Available Snakes often have specialized diets that undergo a shift from one prey type to another depending on the life stage of the snake. Crotalus viridis viridis (prairie rattlesnake takes different prey at different life stages, and neonates typically prey on ectotherms, while adults feed almost entirely on small endotherms. We hypothesized that elevated rates of tongue flicking to chemical stimuli should correlate with particular prey consumed, and that this response shifts from one prey type to another as individuals age. To examine if an ontogenetic shift in response to chemical cues occurred, we recorded the rate of tongue flicking for 25 neonate, 20 subadult, and 20 adult (average SVL = 280.9, 552, 789.5 mm, respectively wild-caught C. v. viridis to chemical stimuli presented on a cotton-tipped applicator; water-soluble cues from two ectotherms (prairie lizard, Sceloporus undulatus, and house gecko, Hemidactylus frenatus, two endotherms (deer mouse, Peromyscus maniculatus and lab mouse, Mus musculus, and water controls were used. Neonates tongue flicked significantly more to chemical cues of their common prey, S. undulatus, than to all other chemical cues; however, the response to this lizard’s chemical cues decreased in adult rattlesnakes. Subadults tongue flicked with a higher rate of tongue flicking to both S. undulatus and P. maniculatus than to all other treatments, and adults tongue flicked significantly more to P. maniculatus than to all other chemical cues. In addition, all three sub-classes demonstrated a greater response for natural prey chemical cues over chemical stimuli of prey not encountered in the wild (M. musculus and H. frenatus. This shift in chemosensory response correlated with the previously described ontogenetic shifts in C. v. viridis diet. Because many vipers show a similar ontogenetic shift in diet and venom composition, we suggest that this shift in prey cue discrimination is likely a general phenomenon among viperid

  15. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  16. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    Harris, R.K. [University of Durham, Durham (United Kingdom). Dept. of Chemistry; Becker, E.D. [National Institutes of Health, Bethesda, MD (United States); Menezes, S.M. Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Granger, P. [University Louis Pasteur, Strasbourg (France). Inst. of Chemistry; Hoffman, R.E. [The Hebrew University of Jerusalem, Safra Campus, Jerusalem (Israel). Dept. of Organic Chemistry; Zilm, K.W., E-mail: r.k.harris@durham.ac.uk [Yale University, New Haven, CT (United States). Dept. of Chemistry

    2008-07-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the {sup 1}H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating {sup 13}C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  17. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the 1H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating 13C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  18. Synthesis of 15 N double labelled urea

    Synthesis of double 15 N labelled urea by reacting 15 N - ammonia with elemental sulfur and carbon monoxide in a pressure vessel is presented. 15 NH3 was produced by H15 NO3 reduction with Dewarda alloy in alkaline solution, or by nitric monoxide reduction with hydrogen on metallic manganese. An average yield of 85% tacking into account 15 N - urea and 15 N ammonium sulfate, produced in the same time, and 99% urea purity (checked by I.R. spectroscopy and mass spectrometry) were obtained. (authors)

  19. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh

    Khandakar Showkat Osman; M. Jashimuddin; S. M. Sirajul Haque; Sohag Miah

    2013-01-01

    This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti-cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly (p≤0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.

  20. Method for evaluating chemical shifts of x-ray emission lines in molecules and solids

    Lomachuk, Yuriy V.; Titov, Anatoly V.

    2013-12-01

    A method of evaluating chemical shifts of x-ray emission lines for period four and heavier elements is developed. This method is based on the relativistic pseudopotential model and one-center restoration approach [Int. J. Quantum Chem.IJQCB20020-760810.1002/qua.20418 104, 223 (2005)] to recover a proper electronic structure in heavy-atom cores after the pseudopotential simulation of chemical compounds. The approximations of instantaneous transition and frozen core are presently applied to derive an expression for chemical shift as a difference between mean values of certain effective operator. The method allows one to avoid evaluation of small quantities (chemical shifts ˜0.01-1 eV) as differences of very large values (transition energies ˜1-100 keV in various compounds). The results of our calculations of chemical shifts for the Kα1, Kα2, and L transitions of group-14 metal cations with respect to neutral atoms are presented. Calculations of Kα1-line chemical shifts for the Pb core transitions in PbO and PbF2 with respect to those in the Pb atom are also performed and discussed. The accuracy of approximations used is estimated and the quality of the calculations is analyzed.

  1. Method of evaluating chemical shifts of X-ray emission lines in molecules and solids

    Lomachuk, Yuriy V

    2013-01-01

    Method of evaluating chemical shifts of X-ray emission lines for sufficiently heavy atoms (beginning from period 4 elements) in chemical compounds is developed. This method is based on the pseudopotential model and one-center restoration method (to reconstruct the proper electronic structure in heavy-atom cores). The approximations of instantaneous transition and frozen inner core spinors of the atom are used for derivation of an expression for chemical shift as a difference between mean values of some effective operator. The method allows one to avoid evaluating small values (chemical shifts ~ 0.01{\\div}1 eV) as differences of very large values (transition energies ~ 1{\\div}100 keV in various compounds). The results of our calculations of chemical shifts for the K_{\\alpha1,2} and L transitions of the group 14 metal cations with respect to neutral atoms are presented. The calculations of chemical shift of K_{\\alpha1}-line in the Pb-core transition within PbO and PbF_2 with respect to the neutral Pb are also p...

  2. Differential diagnosis of adrenal masses by chemical shift and dynamic gadolinium enhanced MR imaging

    Chemical shift MRI is widely used for identifying adenomas, but it is not a perfect method. We determined whether combined dynamic MRI methods can lead to improved diagnostic accuracy. Fifty-seven adrenal masses were examined by chemical shift and dynamic MR imaging using 2 MR systems. The masses included 38 adenomas and 19 non-adenomas. In chemical shift MRI studies, the signal intensity index (SI) was calculated, and the lesions classified into 5 types in the dynamic MRI studies. Of the 38 adenomas studied, 37 had an SI greater than 0. In the dynamic MRI, 34 of 38 adenomas showed a benign pattern (type 1). If the SI for the adenomas in the chemical shift MRI was considered to be greater than 0, the positive predictive value was 0.9, and the negative predictive value was 0.94 and κ=0.79. If type 1 was considered to indicate adenomas in the dynamic MRI, the corresponding values were 0.94, 0.81 and κ=0.77 respectively. The results obtained when the 2 methods were combined were 1, 0.95 and κ=0.96 respectively. The chemical shift MRI was found to be useful for identifying adenomas in most cases. If the adrenal mass had a low SI (0< SI<5), dynamic MRI was also found to be helpful for making a differential diagnosis. (author)

  3. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

    Labudde, D.; Leitner, D.; Krueger, M.; Oschkinat, H. [Forschungsinstitut fuer Molekulare Pharmakologie (Germany)], E-mail: oschkinat@fmp-berlin.de

    2003-01-15

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the {alpha}-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely {alpha}-helix, {beta}-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  4. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics.

    Anders S Christensen

    Full Text Available We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts--sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94. ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond ((h3J(NC' spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding.

  5. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    Christensen, Anders S; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this...

  6. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the α-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely α-helix, β-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time

  7. Measurement of {sup 15}N relaxation in deuterated amide groups in proteins using direct nitrogen detection

    Vasos, Paul R.; Hall, Jennifer B. [University of Maryland, Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization (United States); Kuemmerle, Rainer [Bruker Biospin AG, NMR Division (Switzerland); Fushman, David [University of Maryland, Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization (United States)], E-mail: fushman@umd.edu

    2006-09-15

    {sup 15}N chemical shielding tensors contain useful structural information, and their knowledge is essential for accurate analysis of protein backbone dynamics. The anisotropic component (CSA) of {sup 15}N chemical shielding can be obtained from {sup 15}N relaxation measurements in solution. However, the predominant contribution to nitrogen relaxation from {sup 15}N-{sup 1}H dipolar coupling in amide groups limits the sensitivity of these measurements to the actual CSA values. Here we present nitrogen-detected NMR experiments for measuring {sup 15}N relaxation in deuterated amide groups in proteins, where the dipolar contribution to {sup 15}N relaxation is significantly reduced by the deuteration. Under these conditions nitrogen spin relaxation becomes a sensitive probe for variations in {sup 15}N chemical shielding tensors. Using the nitrogen direct-detection experiments we measured the rates of longitudinal and transverse {sup 15}N relaxation for backbone amides in protein G in D{sub 2}O at 11.7 T. The measured relaxation rates are validated by comparing the overall rotational diffusion tensor obtained from these data with that from the conventional {sup 15}N relaxation measurements in H{sub 2}O. This analysis revealed a 17-24{sup o} angle between the NH-bond and the unique axis of the {sup 15}N chemical shielding tensor.

  8. Measurement of 15N relaxation in deuterated amide groups in proteins using direct nitrogen detection

    15N chemical shielding tensors contain useful structural information, and their knowledge is essential for accurate analysis of protein backbone dynamics. The anisotropic component (CSA) of 15N chemical shielding can be obtained from 15N relaxation measurements in solution. However, the predominant contribution to nitrogen relaxation from 15N-1H dipolar coupling in amide groups limits the sensitivity of these measurements to the actual CSA values. Here we present nitrogen-detected NMR experiments for measuring 15N relaxation in deuterated amide groups in proteins, where the dipolar contribution to 15N relaxation is significantly reduced by the deuteration. Under these conditions nitrogen spin relaxation becomes a sensitive probe for variations in 15N chemical shielding tensors. Using the nitrogen direct-detection experiments we measured the rates of longitudinal and transverse 15N relaxation for backbone amides in protein G in D2O at 11.7 T. The measured relaxation rates are validated by comparing the overall rotational diffusion tensor obtained from these data with that from the conventional 15N relaxation measurements in H2O. This analysis revealed a 17-24o angle between the NH-bond and the unique axis of the 15N chemical shielding tensor

  9. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2013-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into l...

  10. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static......” and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary...... and primary isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles...

  11. Detection of initiation sites in protein folding of the four helix bundle ACBP by chemical shift analysis

    Modig, K.; Jürgensen, Vibeke Würtz; Lindorff-Larsen, K.;

    2007-01-01

    A simple alternative method for obtaining "random coil" chemical shifts by intrinsic referencing using the protein's own peptide sequence is presented. These intrinsic random coil backbone shifts were then used to calculate secondary chemical shifts, that provide important information on the resi...

  12. Pulse NMR in solids: chemical shift, lead fluoride, and thorium hydride

    The fluorine chemical shift of a single crystal CaF2 was measured up to 4 kilobar at room temperature using multiple pulse NMR. The pressure dependence of the shift is found to be --1.7 +- 1 ppM/kbar, while an overlap model predicts a shift of --0.46 ppM/kbar.The chemical shift tensor is separated into ''geometrical'' and ''chemical'' contributions, and comparison of the proposed model calculations with recent data on hydroxyl proton chemical shift tensors shows that the geometrical portion accounts for the qualitative features of the measured tensors. A study of fluoride ion motion in β-PbF2 doped with NaF was conducted by measurement of the 19F transverse relaxation time (T2), spin lattice relaxation time (T1) and the spin lattice relaxation time in the rotating frame (T/sub 1r). Two samples of Th4H15, prepared under different conditions but both having the proper ratio of H/Th (to within 1 percent), were studied. The structure of the Th4H15 suggested by x-ray measurements is confirmed through a moment analysis of the rigid lattice line shape

  13. What can we learn by computing 13Cα chemical shifts for X-ray protein models?

    The room-temperature X-ray structures of two proteins, solved at 1.8 and 1.9 Å resolution, are used to investigate whether a set of conformations, rather than a single X-ray structure, provides better agreement with both the X-ray data and the observed 13Cα chemical shifts in solution. The room-temperature X-ray structures of ubiquitin and of the RNA-binding domain of nonstructural protein 1 of influenza A virus solved at 1.8 and 1.9 Å resolution, respectively, were used to investigate whether a set of conformations rather than a single X-ray structure provides better agreement with both the X-ray data and the observed 13Cα chemical shifts in solution. For this purpose, a set of new conformations for each of these proteins was generated by fitting them to the experimental X-ray data deposited in the PDB. For each of the generated structures, which show R and Rfree factors similar to those of the deposited X-ray structure, the 13Cα chemical shifts of all residues in the sequence were computed at the DFT level of theory. The sets of conformations were then evaluated by their ability to reproduce the observed 13Cα chemical shifts by using the conformational average root-mean-square-deviation (ca-r.m.s.d.). For ubiquitin, the computed set of conformations is a better representation of the observed 13Cα chemical shifts in terms of the ca-r.m.s.d. than a single X-ray-derived structure. However, for the RNA-binding domain of nonstructural protein 1 of influenza A virus, consideration of an ensemble of conformations does not improve the agreement with the observed 13Cα chemical shifts. Whether an ensemble of conformations rather than any single structure is a more accurate representation of a protein structure in the crystal as well as of the observed 13Cα chemical shifts is determined by the dispersion of coordinates, in terms of the all-atom r.m.s.d. among the generated models; these generated models satisfy the experimental X-ray data with accuracy as good as

  14. Resolution of the 15N balance enigma?

    The enigma of soil nitrogen balance sheets has been discussed for over 40 years. Many reasons have been considered for the incomplete recovery of 15N applied to soils, including sampling uncertainty, gaseous N losses from plants, and entrapment of soil gases. The entrapment of soil gases has been well documented for rice paddy and marshy soils but little or no work appears to have been done to determine entrapment in drained pasture soils. In this study 15N-labelled nitrate was applied to a soil core in a gas-tight glovebox. Water was applied, inducing drainage, which was immediately collected. Dinitrogen and N-2 were determined in the flux through the soil surface, and in the gases released into the glovebox as a result of irrigation or physical destruction of the core. Other components of the N balance were also measured, including soil inorganic-N and organic-N. Quantitative recovery of the applied 15N was achieved when the experiment was terminated 484 h after the 15N-labelled material was applied. Nearly 23% of the 15N was recovered in the glovebox atmosphere as N2 and N2O due to diffusion from the base of the soil core, convective flow after irrigation, and destructive soil sampling. This 15N would normally be unaccounted for using the sampling methodology typically employed in 15N recovery experiments. Copyright (2001) CSIRO Publishing

  15. Sequence-specific assignment of histidine and tryptophan ring 1H, 13C and 15N resonances in 13C/15N- and 2H/13C/15N-labelled proteins

    Methods are described to correlate aromatic 1Hδ2/13Cδ2 or 1Hε1/15Nε1 with aliphatic 13Cβ chemical shifts of histidine and tryptophan residues, respectively. The pulse sequences exclusively rely on magnetization transfers via one-bond scalar couplings and employ [15N, 1H]- and/or [13C, 1H]-TROSY schemes to enhance sensitivity. In the case of histidine imidazole rings exhibiting slow HN-exchange with the solvent, connectivities of these proton resonances with β-carbons can be established as well. In addition, their correlations to ring carbons can be detected in a simple [15N, 1H]-TROSY-H(N)Car experiment, revealing the tautomeric state of the neutral ring system. The novel methods are demonstrated with the 23-kDa protein xylanase and the 35-kDa protein diisopropylfluorophosphatase, providing nearly complete sequence-specific resonance assignments of their histidine δ-CH and tryptophan ε-NH groups

  16. Proton Magnetic Resonance and Human Thyroid Neoplasia III. Ex VivoChemical-Shift Microimaging

    Rutter, Allison; Künnecke, Basil; Dowd, Susan; Russell, Peter; Delbridge, Leigh; Mountford, Carolyn E.

    1996-03-01

    Magnetic-resonance chemical-shift microimaging, with a spatial resolution of 40 × 40 μm, is a modality which can detect alterations to cellular chemistry and hence markers of pathological processes in human tissueex vivo.This technique was used as a chemical microscope to assess follicular thyroid neoplasms, lesions which are unsatisfactorily investigated using standard histopathological techiques or water-based magnetic-resonance imaging. The chemical-shift images at the methyl frequency (0.9 ppm) identify chemical heterogeneity in follicular tumors which are histologically homogeneous. The observed changes to cellular chemistry, detectable in foci of approximately 100 cells or less, support the existence of a preinvasive state hitherto unidentified by current pathological techniques.

  17. Synthesis and NMR characterization of (15N)taurine [2-(15N)aminoethanesulfonic acid

    The title compound was prepared in three steps with 55% overall yield starting from potassium (15N)phthalimide. The synthetic route involved reaction with 1,2-dibromoethane, hydrolysis of the resulting N-(2-bromoethyl) (15N)phthalimide with HBr and treatment of the 2-bromoethyl(15N)amine thus formed with sodium sulphite. The product was characterized by 13C, 1H and 15N NMR spectroscopy. The absolute coupling constants of 15N with the 13C nuclei and the non-exchanging protons were determined and an unambiguous assignment of the proton signals obtained. (author)

  18. An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database

    Biomolecular NMR chemical shift data are key information for the functional analysis of biomolecules and the development of new techniques for NMR studies utilizing chemical shift statistical information. Structural genomics projects are major contributors to the accumulation of protein chemical shift information. The management of the large quantities of NMR data generated by each project in a local database and the transfer of the data to the public databases are still formidable tasks because of the complicated nature of NMR data. Here we report an automated and efficient system developed for the deposition and annotation of a large number of data sets including 1H, 13C and 15N resonance assignments used for the structure determination of proteins. We have demonstrated the feasibility of our system by applying it to over 600 entries from the internal database generated by the RIKEN Structural Genomics/Proteomics Initiative (RSGI) to the public database, BioMagResBank (BMRB). We have assessed the quality of the deposited chemical shifts by comparing them with those predicted from the PDB coordinate entry for the corresponding protein. The same comparison for other matched BMRB/PDB entries deposited from 2001–2011 has been carried out and the results suggest that the RSGI entries greatly improved the quality of the BMRB database. Since the entries include chemical shifts acquired under strikingly similar experimental conditions, these NMR data can be expected to be a promising resource to improve current technologies as well as to develop new NMR methods for protein studies.

  19. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    this study, we use random coil peptides containing glutamine instead of glycine to determine the random coil chemical shifts and the neighbor correction factors. The resulting correction factors correlate to changes in the populations of the major wells in the Ramachandran plot, which demonstrates that...... changes in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict (13)C chemical shifts of intrinsically disordered proteins compared to existing datasets......Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues...

  20. Parameter-free calculation of K alpha chemical shifts for Al, Si, and Ge oxides

    Lægsgaard, Jesper

    2001-01-01

    The chemical shifts of the K alpha radiation line from Al, Si, and Ge ions between their elemental and oxide forms are calculated within the framework of density functional theory using ultrasoft pseudopotentials. It is demonstrated that this theoretical approach yields quantitatively accurate re...... implanted in silica are found to be in excellent agreement with experimental data, providing support for the proposed atomic geometry....

  1. Database proton NMR chemical shifts for RNA signal assignment and validation

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the 1H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson–Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 43 possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA 1H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  2. Chemical shifts in transition metal dithiocarbamates from infrared and X-ray photoelectron spectroscopies

    Payne, R.; Magee, R. J.; Liesegang, J.

    1982-11-01

    Measurements of the IR stretching frequencies of the NC and MS bonds in transition-metal (M) dithiocarbamates show significant correlation with measurement of core level XPS chemical shifts. This is believed to be the first demonstration of such a correlation for a series of solid-phase compounds.

  3. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me...

  4. Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins

    Tamiola, Kamil; Mulder, Frans A. A.

    2012-01-01

    NMR spectroscopy offers the unique possibility to relate the structural propensities of disordered proteins and loop segments of folded peptides to biological function and aggregation behaviour. Backbone chemical shifts are ideally suited for this task, provided that appropriate reference data are a

  5. Identification of helix capping and {beta}-turn motifs from NMR chemical shifts

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and {sup 13}C{sup {beta}} chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of {beta}-turns: I, II, I Prime , II Prime and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and {beta}-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7-0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  6. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δiso) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δiso. This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σMC and π*MC orbitals under the action of the magnetic field, is analogous to that resulting from coupling σCC and π*CC in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δiso in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σMC and π*MC vs this between σCC and π*CC in ethylene. This effect also explains why the highest value of δiso is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to πMX) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δiso. PMID:26787258

  7. Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins

    Panchal, Sanjay C.; Bhavesh, Neel S.; Hosur, Ramakrishna V. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2001-06-15

    Two triple resonance experiments, HNN and HN(C)N, are presented which correlate H{sup N} and {sup 15}N resonances sequentially along the polypeptide chain of a doubly ({sup 13}C, {sup 15}N) labeled protein. These incorporate several improvements over the previously published sequences for a similar purpose and have several novel features. The spectral characteristics enable direct identification of certain triplets of residues, which provide many starting points for the sequential assignment procedure. The experiments are sensitive and their utility has been demonstrated with a 22 kDa protein under unfolding conditions where most of the standard triple resonance experiments such as HNCA, CBCANH etc. have limited success because of poor amide, C{sup {alpha}} and C{sup {beta}} chemical shift dispersions.

  8. Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins

    Two triple resonance experiments, HNN and HN(C)N, are presented which correlate HN and 15N resonances sequentially along the polypeptide chain of a doubly (13C, 15N) labeled protein. These incorporate several improvements over the previously published sequences for a similar purpose and have several novel features. The spectral characteristics enable direct identification of certain triplets of residues, which provide many starting points for the sequential assignment procedure. The experiments are sensitive and their utility has been demonstrated with a 22 kDa protein under unfolding conditions where most of the standard triple resonance experiments such as HNCA, CBCANH etc. have limited success because of poor amide, Cα and Cβ chemical shift dispersions

  9. Noninvasive Temperature Mapping With MRI Using Chemical Shift Water-Fat Separation

    Soher, Brian J.; Wyatt, Cory; Reeder, Scott B.; MacFall, James R.

    2010-01-01

    Tissues containing both water and lipids, e.g., breast, confound standard MR proton reference frequency-shift methods for mapping temperatures due to the lack of temperature-induced frequency shift in lipid protons. Generalized Dixon chemical shift–based water-fat separation methods, such as GE’s iterative decomposition of water and fat with echo asymmetry and least-squares estimation method, can result in complex water and fat images. Once separated, the phase change over time of the water s...

  10. CO{sub H}(N)CACB experiments for assigning backbone resonances in {sup 13}C/{sup 15}N-labeled proteins

    Astrof, Nathan; Bracken, Clay; Cavanagh, John; Palmer, Arthur G

    1998-05-15

    A triple resonance NMR experiment, denoted CO{sub H}(N)CACB, correlates{sup 1}H{sup N} and {sup 13}CO spins with the{sup 13}C{sup {alpha}} and{sup 13}C{sup {beta}} spins of adjacent amino acids. The pulse sequence is an 'out-and-back' design that starts with{sup 1}H{sup N} magnetization and transfers coherence via the {sup 15}N spin simultaneously to the {sup 13}CO and{sup 13}C{sup {alpha}} spins, followed by transfer to the{sup 13}C{sup {beta}} spin. Two versions of the sequence are presented: one in which the {sup 13}CO spins are frequency labeled during an incremented t{sub 1} evolution period prior to transfer of magnetization from the {sup 13}C{sup {alpha}} to the{sup 13}C{sup {beta}} resonances, and one in which the{sup 13}CO spins are frequency labeled in a constant-time manner during the coherence transfer to and from the{sup 13}C{sup {beta}} resonances. Because {sup 13}COand {sup 15}N chemical shifts are largely uncorrelated, the technique will be especially useful when degeneracy in the{sup 1}H{sup N}-{sup 15}N chemical shifts hinders resonance assignment. The CO{sub H}(N)CACB experiment is demonstrated using uniformly {sup 13}C/{sup 15}N-labeled ubiquitin.

  11. The effect of organic matter and nitrification inhibitor on 15 N H4 and 15 N O3 absorption by the maize

    The effect of the forms 15 N H4 and 15 N O3 in presence or absence of organic matter and of the nitrification inhibitor AM (2-amino-4-chloro-6-methyl-pyrimidine) in dry matter weight and nitrogen content of the plant derived from soil and form fertilizer is studied. The experiment was carried out in greenhouse and the test plant was the hybrid Maize Centralmex . The fertilizers (15 N H4)2 S O4 and Na15 N O3, were added in two levels: 40 and 120 Kg N/ha, with 1,02% of N and 1,4% of 15 N in excess, respectively. Three soils of different physical and chemical characteristics were used; Regosol intergrade, Latosol Roxo and Podzolized de Lins e Marilia var. Marilia. (M.A.C.)

  12. Fields of application and results of analytic procedures with 15N in pediatric alimentary research

    Investigation of protein metabolism in nutritional pediatric research by means of 15N tracer techniques has been relatively seldom used up to now. 15N labelled compounds for these purposes are not injurious to health. The technique is based on oral or intravenous application of the tracer substances and on 15N analysis of the urine fractions. The subsequent calculation of protein synthesis and breakdown rate, turnover and reutilisation of amino acids from protein breakdown as well as the size of the metabolic pool offers detailed information of protein metabolism. Determination of these parameters was performed in infants on mother's milk and formula feeding and on chemically defined diet. As an example of utilisation of D-amino acids for protein synthesis the 15N-D-phenylalanin retention on parenteral nutrition was found to be 33% of the applied dosis at an average. An oral 15N glycine loading test proved to be of value for the prediction of the therapeutic effect of human growth hormon in numerous types of dwarfism. Further application of 15N tracer technique dealt with utilisation of 15N urea for bacterial protein synthesis of the intestinal flora and with incorporation of 15N from 15N glycine and 15N lysine into the jejunal mucosa for measuring the enterocyte regeneration. (author)

  13. Effects of growth and change of food on the δ15N in marine fishes

    Information is limited concerning variation of the δ15N with growth in marine organisms and consequently the effect of growth of marine biota on the δ15N is not yet well understood. The δ15N in 26 species of marine fishes taken from Japanese coastal waters together with 4664 stomach contents of these fishes were examined to investigate the effects of food habits and growth on the δ15N. The mean δ15N for two species that fed mainly on large-size fishes and six species that fed mainly on small-size fishes were 14.5±1.0per mille and 12.8±0.7per mille, respectively. For five species that fed mainly on decapod crustaceans, two species that fed mainly on zooplankton, and three species that fed mainly on benthos (mainly Polychaeta), the δ15N were 13.0±0.7, 9.7±0.9, and 12.2±1.2per mille, respectively. The mean δ15N in the species whose prey were mainly fish or decapod crustaceans was about 3-5per mille higher than the species whose prey was mainly zooplankton. Within the four species that shift their food habits with growth to higher trophic level, the δ15N significantly increased with growth in one species (Pacific cod), while not significant increase in the δ15N with growth in the remaining species. (author)

  14. Secondary structural analysis of proteins based on 13C chemical shift assignments in unresolved solid-state NMR spectra enhanced by fragmented structure database

    Magic-angle-spinning solid-state 13C NMR spectroscopy is useful for structural analysis of non-crystalline proteins. However, the signal assignments and structural analysis are often hampered by the signal overlaps primarily due to minor structural heterogeneities, especially for uniformly-13C,15N labeled samples. To overcome this problem, we present a method for assigning 13C chemical shifts and secondary structures from unresolved two-dimensional 13C–13C MAS NMR spectra by spectral fitting, named reconstruction of spectra using protein local structures (RESPLS). The spectral fitting was conducted using databases of protein fragmented structures related to 13Cα, 13Cβ, and 13C′ chemical shifts and cross-peak intensities. The experimental 13C–13C inter- and intra-residue correlation spectra of uniformly isotope-labeled ubiquitin in the lyophilized state had a few broad peaks. The fitting analysis for these spectra provided sequence-specific Cα, Cβ, and C′ chemical shifts with an accuracy of about 1.5 ppm, which enabled the assignment of the secondary structures with an accuracy of 79 %. The structural heterogeneity of the lyophilized ubiquitin is revealed from the results. Test of RESPLS analysis for simulated spectra of five different types of proteins indicated that the method allowed the secondary structure determination with accuracy of about 80 % for the 50–200 residue proteins. These results demonstrate that the RESPLS approach expands the applicability of the NMR to non-crystalline proteins exhibiting unresolved 13C NMR spectra, such as lyophilized proteins, amyloids, membrane proteins and proteins in living cells.

  15. PACSY, a relational database management system for protein structure and chemical shift analysis

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.eduhttp://pacsy.nmrfam.wisc.edu.

  16. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  17. Substituent Chemical Shifts of (E)-1-Aryl-3-thienylpropen-1-ones

    Substituent chemical shifts were examined for the 2- and 3-thiophene derivatives of chalcone and compared to the thiophene series of derivatives with the phenyl series. The chemical shift values for the α-carbons of the enones showed and inverse correlation with the Hammett σ values, but the correlation coefficients were moderate (r = 0.836 - 0.878). On the other hand, the β-carbons showed a normal correlation with excellent correlation coefficients (r = 0.994). The absolute magnitude of the ρ values for the α-carbon are about half of those of the β-carbon. The observation may be the result of a through-space transition of the electronic effect of the substituents in addition to the through bond transition

  18. 1H chemical shift imaging characterization of human brain tumor and edema

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) 1H chemical shift imaging results at different repetition times (TR=1500 and 5000 ms; T1: n=19) and echo times (TE=135 and 270 ms; T2: n=7). Metabolite T1 and T2 relaxation times in unaffected brain tissue corresponded with those published for healthy volunteers. T2 relaxation times were reduced in tumor (choline, N-acetyl aspartate) and edema (choline, creatine) compared with unaffected brain tissue (p1H chemical shift imaging is most suited in the use of choline elevation as tumor marker. (orig.)

  19. Four-Component Relativistic DFT Calculations of (13)C Chemical Shifts of Halogenated Natural Substances.

    Casella, Girolamo; Bagno, Alessandro; Komorovsky, Stanislav; Repisky, Michal; Saielli, Giacomo

    2015-12-14

    We have calculated the (13)C NMR chemical shifts of a large ensemble of halogenated organic molecules (81 molecules for a total of 250 experimental (13)C NMR data at four different levels of theory), ranging from small rigid organic compounds, used to benchmark the performance of various levels of theory, to natural substances of marine origin with conformational degrees of freedom. Carbon atoms bonded to heavy halogen atoms, particularly bromine and iodine, are known to be rather challenging when it comes to the prediction of their chemical shifts by quantum methods, due to relativistic effects. In this paper, we have applied the state-of-the-art four-component relativistic density functional theory for the prediction of such NMR properties and compared the performance with two-component and nonrelativistic methods. Our results highlight the necessity to include relativistic corrections within a four-component description for the most accurate prediction of the NMR properties of halogenated organic substances. PMID:26541625

  20. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ1 rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts

  1. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  2. Using Neural Networks for 13C NMR Chemical Shift Prediction-Comparison with Traditional Methods

    Meiler, Jens; Maier, Walter; Will, Martin; Meusinger, Reinhard

    2002-08-01

    Interpretation of 13C chemical shifts is essential for structure elucidation of organic molecules by NMR. In this article, we present an improved neural network approach and compare its performance to that of commonly used approaches. Specifically, our recently proposed neural network ( J. Chem. Inf. Comput. Sci. 2000, 40, 1169-1176) is improved by introducing an extended hybrid numerical description of the carbon atom environment, resulting in a standard deviation (std. dev.) of 2.4 ppm for an independent test data set of ˜42,500 carbons. Thus, this neural network allows fast and accurate 13C NMR chemical shift prediction without the necessity of access to molecule or fragment databases. For an unbiased test dataset containing 100 organic structures the accuracy of the improved neural network was compared to that of a prediction method based on the HOSE code ( hierarchically ordered spherical description of environment) using S PECI NFO. The results show the neural network predictions to be of quality (std. dev.=2.7 ppm) comparable to that of the HOSE code prediction (std. dev.=2.6 ppm). Further we compare the neural network predictions to those of a wide variety of other 13C chemical shift prediction tools including incremental methods (C HEMD RAW, S PECT OOL), quantum chemical calculation (G AUSSIAN, C OSMOS), and HOSE code fragment-based prediction (S PECI NFO, ACD/CNMR, P REDICTI T NMR) for the 47 13C-NMR shifts of Taxol, a natural product including many structural features of organic substances. The smallest standard deviations were achieved here with the neural network (1.3 ppm) and S PECI NFO (1.0 ppm).

  3. Relationship between electrophilicity index, Hammett constant and nucleus-independent chemical shift

    M Elango; R Parthasarathi; G Karthik Narayanan; A Md Sabeelullah; U Sarkar; N S Venkatasubramaniyan; V Subramanian; P K Chattaraj

    2005-01-01

    Inter-relationships between the electrophilicity index (), Hammett constant (ó) and nucleusindependent chemical shift (NICS (1) - NICS value one å ngstrom above the ring centre) have been investigated for a series of meta- and para-substituted benzoic acids. Good linear relationships between Hammett constant vs electrophilicity and Hammett constant vs NICS (1) values have been observed. However, the variation of NICS (1) against shows only a low correlation coefficient.

  4. Chemical shifts and EXAFS in some rare-earth metals and compounds

    The positions of the Lsub(111) absorption edge and accompanying Kossel and EXAFS oscillations of terbium, dysprosium and holmium in metals and compounds (acetate, carbonate, chloride, fluoride, nitrate, oxalate, oxide, phosphate and sulphate) have been measured. The chemical shifts of the main edge range from about 1 eV to about 10 eV and the EXAFS are observed up to about 150 eV. (author)

  5. 15N in biological nitrogen fixation studies

    A bibliography with 298 references on the use of the stable nitrogen isotope 15N in the research on the biological fixation of dinitrogen is presented. The literature pertaining to this bibliography covers the period from 1975 to the middle of 1985. (author)

  6. NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: Application to the human prion protein hPrP(23-230)

    A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15N, 13C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15N relaxation rates of unfolded polypeptides in high resolution constant-time [1H, 15N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence

  7. Changes in Rhodospirillum rubrum cytochrome c2 and subsequent renaturation: An 15N NMR study

    The 15N-enriched ferrocytochrome c2from Rhodospirillum rubrum was studied by 15N NMR at different solvent pH values. The mobility and chemical shift to the N-terminal glutamic acid (335.4 ppm at pH 5.1) were found to depend on pH. It was least mobile between pH 8 and 9.0, which is explained in terms of pH-dependent conformational changes and formation of salt linkages and/or hydrogen bonds. The resonances of the lysine side chains are centered around 341.7 ppm at low pH and move upfield with pH by about 8.4 ppm with pH/sub a/ values of 10.8. The exchange rates of the εNH protons are lowest near the pK/sub a/ values. The protein is very stable in the pH range between 4.9 and 10.0 but unfolds abruptly at pH 10.5-11. Denaturation was verified by the measurement of several parameters by NMR. The renaturation of the protein demonstrates that the folding begins with reformation of home coordination and establishment of a hydrophobic core, followed by positioning of side chains and peptide backbones linking the nucleation centers. The repositioning processes had time scales of minutes to hours in contrast to the reported values of seconds in some studies

  8. 15N2 incorporation by rhizosphere soil

    Heterotrophic nitrogen fixation by rhizosphere soil samples from 20 rice cultivars grown under uniform field conditions was estimated employing 15N-tracer technique. Rhizosphere soil samples from different rice cultivars showed striking differences with regard to their ability to incorporate 15N2. Rhizosphere samples from rice straw-amended (3 and 6 tons/ha) soil exhibited more pronounced nitrogen-fixing activity than the samples form unamended soil; while the activity of the rhizosphere samples from soil receiving combined nitrogen (40 and 80 kg N/ha) was relatively low. However, the inhibitory effect of combined nitrogen was not expressed in the presence of rice straw at 6 tons/ha. Results suggest that plant variety, application of combined nitrogen and organic matter influence the rhizosphere nitrogen fixation. (orig.)

  9. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  10. Simulations of Xe-129 NMR chemical shift of atomic xenon dissolved in liquid benzene

    Standara, Stanislav; Kulhánek, P.; Marek, R.; Horníček, Jan; Bouř, Petr; Straka, Michal

    2011-01-01

    Roč. 129, 3/5 (2011), s. 677-684. ISSN 1432-881X R&D Projects: GA ČR GA203/09/2037; GA ČR GAP208/11/0105 Grant ostatní: AV ČR(CZ) M200550902; European Reintegration Grant(XE) 230955; European Community(XE) 205872 Institutional research plan: CEZ:AV0Z40550506 Keywords : Xe-129 NMR chemical shift * dynamical averaging * density functional theory * Breit-Pauli perturbation theory * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.162, year: 2011

  11. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  12. Calculation of NMR chemical shifts. 7. Gauge-invariant INDO method

    Fukui, H.; Miura, K.; Hirai, A.

    A gauge-invariant INDO method based on the coupled Hartree-Fuck perturbation theory is presented and applied to the calculation of 1H and 13C chemical shifts of hydrocarbons including ring compounds. Invariance of the diamagnetic and paramagnetic shieldings with respect to displacement of the coordinate origin is discussed. Comparison between calculated and experimental results exhibits fairly good agreement, provided that the INDO parameters of Ellis et al. (J. Am. Chem. Soc.94, 4069 (1972)) are used with the inclusion of all multicenter one-electron integrals.

  13. Model analysis of influences of the high-temperature reactor on location shifting in chemical industry

    An analysis is presented of the influences of High-Temperature Reactor on probable location shifting of big chemical plants, in the future. This is done by a spatial location model, that includes an investigation on 116 industrial locations within the first six countries of Common Market. The results of a computerized program show differences in location qualities when furnished either with traditional or with nuclear energy systems. In addition to location factor energy some other important factors, as subventions, taxes, labour, and transport costs are analysed, and their influence on industrial location is quantified. (orig.)

  14. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  15. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy

    The solution structure of d(CGCGAATTCGCG)2 has been determined on the basis of an exceptionally large set of residual dipolar couplings. In addition to the heteronuclear 13C-1H and 15N-1H and qualitative homonuclear 1H-1H dipolar couplings, previously measured in bicelle medium, more than 300 quantitative 1H-1H and 22 31P-1H dipolar restraints were obtained in liquid crystalline Pf1 medium, and 22 31P chemical shift anisotropy restraints. High quality DNA structures can be obtained solely on the basis of these new restraints, and these structures are in close agreement with those calculated previously on the basis of 13C-1H and 15N-1H dipolar couplings. In the newly calculated structures, 31P-1H dipolar and 3JsubH3'Psub couplings and 31P CSA data restrain the phosphodiester backbone torsion angles. The final structure represents a quite regular B-form helix with a modest bending of ∼10 deg., which is essentially independent of whether or not electrostatic terms are used in the calculation. Combined, the number of homo- and heteronuclear dipolar couplings significantly exceeds the number of degrees of freedom in the system. Results indicate that the dipolar coupling data cannot be fit by a single structure, but are compatible with the presence of rapid equilibria between C2'-endo and C3'-endo deoxyribose puckers (sugar switching). The C2'-H2'/H2'' dipolar couplings in B-form DNA are particularly sensitive to sugar pucker and yield the largest discrepancies when fit to a single structure. To resolve these discrepancies, we suggest a simplified dipolar coupling analysis that yields N/S equilibria for the ribose sugar puckers, which are in good agreement with previous analyses of NMR JHH couplings, with a population of the minor C3'-endo form higher for pyrimidines than for purines

  16. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A;

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...

  17. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs

    Highlights: → Green macroalgae exposed to nutrient solutions exhibited changes in tissue 15N signatures. → Macroalgae exhibited no fractionation with NO3 and slight fractionation with NH4. → Algae exposed to cruise ship waste water had increased tissue δ15N indicating a heavy N source. → Field bioassays exhibited decreased δ15N indicating isotopically light riverine δ15N-NO3 was likely the dominant N source. → Algal bioassays could not detect a δ15N cruise ship waste water signal in this system. - Abstract: Green macroalgae bioassays were used to determine if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5 per mille in δ15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  18. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    differences are due to different conformational behavior of the OH and OCH3 groups; while the ortho-disubstituted OH group remains planar in polyphenols due to hydrogen bonding and conjugative stabilization, the steric congestion in ortho-disubstituted anisoles outweighs the conjugative effects and forces the......Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2) to...... Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent...

  19. 15N-labed glycine synthesis

    Claudinéia R. O. Tavares; José A. Bendassolli; Fernando Coelho; Carlos R. Sant Ana Filho; Clelber V. Prestes

    2006-01-01

    This work describes a method for 15N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of alpha-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia (15NH3). Special care was taken to avoid possible 15NH3 losses, since its production cost is high. In that respect, although the purchase cost of the 13N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an i...

  20. Sources and transformations of N in reclaimed coastal tidelands: evidence from soil δ15N data

    Kwak, Jin-Hyeob; Choi, Woo-Jung; Lim, Sang-Sun; Lee, Seung-Heon; Lee, Sang-Mo; Chang, Scott X.; Jung, Jae-Woon; Yoon, Kwang-Sik; Choi, Soo-Myung

    2008-01-01

    Electrical conductivity of saturated soil extracts (ECe) in three reclaimed tideland (RTL) soils on the west coast of Korea decreased with time since reclamation, indicating natural desalinization through leaching of salts by precipitation water. Soil N concentration increased with decreasing ECe. With the increase in soil N concentration, the δ15N decreased, likely caused by the input of 15N-depleted N sources. As N2-fixing plant species were found in the oldest RTL, atmospheric N2 fixation likely contributed to the increase in soil N concentration in the oldest RTL. Negative δ15N (-7.1 to -2.0‰) of total inorganic N (NH4 ++NO3 -) and published data on N deposition near the study area indicate that atmospheric N deposition might be another source of N in the RTLs. Meanwhile, the consistently negative δ15N of soil NO3 - excluded N input from chemical fertilizer through groundwater flow as a potential N source, since NO3 - in groundwater generally have a positive δ15N. The patterns of δ15N of NH4 + (+2.3 to +5.1‰) and NO3 - (-9.2 to -5.0‰) suggested that nitrification was an active process that caused 15N enrichment in NH4 + but denitrification was probably minimal which would otherwise have caused 15N enrichment in NO3 -. A quantitative approach on N budget would provide a better understanding of soil N dynamics in the studied RTLs.

  1. Water-fat imaging and general chemical shift imaging with spectrum modeling

    An, Li

    Water-fat chemical shift imaging (CSI) has been an active research area in magnetic resonance imaging (MRI) since the early 1980's. There are two main reasons for water- fat imaging. First, water-fat imaging can serve as a fat- suppression method. Removing the usually bright fatty signals not only extends the useful dynamic range of an image, but also allows better visualization of lesions or injected contrast, and removes chemical shift artifacts, which may contribute to improved diagnosis. Second, quantification of water and fat provides useful chemical information for characterizing tissues such as bone marrow, liver, and adrenal masses. A milestone in water- fat imaging is the Dixon method that can produce separate water and fat images with only two data acquisitions. In practice, however, the Dixon method is not always successful due to field inhomogeneity problems. In recent years, many variations of the Dixon method have been proposed to overcome the field inhomogeneity problem. In general, these methods can at best separate water and fat without identifying the two because the water and fat magnetization vectors are sampled symmetrically, only parallel and anti-parallel. Furthermore, these methods usually depend on two-dimensional phase unwrapping which itself is sensitive to noise and artifacts, and becomes unreliable when the images have disconnected tissues in the field-of-view (FOV). We will first introduce the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in chapter 1, and briefly review the existing water-fat imaging techniques in chapter 2. In chapter 3, we will introduce a new method for water-fat imaging. With three image acquisitions, a general direct phase encoding (DPE) of the chemical shift information is achieved, which allows an unambiguous determination of water and fat on a pixel by pixel basis. Details of specific implementations and noise performance will be discussed. Representative results

  2. Fuzzy logic control of 15 N separation plant

    The process of 15 N separation by chemical exchange in Nitrox system is automatically maintained in the optimal operation conditions using a computerized control. The automatic control leads to a maximum production of 15 N with a minimum of raw materials and energy consumption.. The control objective was achieved by considering two forms of knowledge: 1. objective knowledge, which uses the control engineering based on mathematical model of the separation process; 2. subjective knowledge, which represents linguistic information, very difficult to quantify using classical mathematics - e.g., the rule of HNO3 solution and SO2 flow rates adjustment in order to maintain a proper height and position of chemical reaction zone in the product refluxer. The above mentioned two types of knowledge were coordinated in a logical way using fuzzy logic control system which has the possibility to handle simultaneously numerical data and linguistic knowledge. In order to map input data vector into a scalar output, i.e., numbers to numbers a front-end 'fuzzifier' and a rear-end 'defuzzifier' was added to the usual fuzzy logic model. The inference engine of the control system maps the input fuzzy set into the output one. The inferential procedure maintains the isotope separation process in the optimal operation conditions. (author)

  3. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Nagamura, Naoka; Kitada, Yuta; Tsurumi, Junto; Matsui, Hiroyuki; Horiba, Koji; Honma, Itaru; Takeya, Jun; Oshima, Masaharu

    2015-06-01

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying -30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  4. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO2 (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping

  5. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    Nagamura, Naoka, E-mail: NAGAMURA.Naoka@nims.go.jp; Kitada, Yuta; Honma, Itaru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tsurumi, Junto; Matsui, Hiroyuki; Takeya, Jun [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Horiba, Koji [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Oshima, Masaharu [Synchrotron Radiation Research Organization, The University of Tokyo, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift corresponding to band bending by the field effect, resulting in p-type doping.

  6. Effect of protein restriction on (15)N transfer from dietary [(15)N]alanine and [(15)N]Spirulina platensis into urea.

    Hamadeh, M J; Hoffer, L J

    2001-08-01

    Six normal men consumed a mixed test meal while adapted to high (1.5 g. kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [(15)N]alanine ([(15)N]Ala) and when they included 30 mg/kg of intrinsically labeled [(15)N]Spirulina platensis ([(15)N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [(15)N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of (15)N enrichment in serum amino acids for a given tracer. When [(15)N]Ala was included in the test meal, (15)N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [(15)N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary (15)N in [(15)N]Ala or [(15)N]SPI into [(15)N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [(15)N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer. PMID:11440912

  7. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  8. Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins

    Bermel, Wolfgang [Bruker BioSpin GmbH (Germany); Bruix, Marta [Consejo Superior de Investigaciones Cientificas, Instituto de Quimica Fisica ' ' Rocasolano' ' (Spain); Felli, Isabella C., E-mail: felli@cerm.unifi.it [University of Florence, Department of Chemistry ' Ugo Shiff' (Italy); Kumar, M.V. Vasantha [University of Florence, Magnetic Resonance Center (Italy); Pierattelli, Roberta, E-mail: pierattelli@cerm.unifi.it [University of Florence, Department of Chemistry ' Ugo Shiff' (Italy); Serrano, Soraya [Consejo Superior de Investigaciones Cientificas, Instituto de Quimica Fisica ' ' Rocasolano' ' (Spain)

    2013-03-15

    Intrinsically disordered proteins (IDPs) have recently attracted the attention of the scientific community challenging the well accepted structure-function paradigm. In the characterization of the dynamic features of proteins nuclear magnetic resonance spectroscopy (NMR) is a strategic tool of investigation. However the peculiar properties of IDPs, with the lack of a unique 3D structure and their high flexibility, have a strong impact on NMR observables (low chemical shift dispersion, efficient solvent exchange broadening) and thus on the quality of NMR spectra. Key aspects to be considered in the design of new NMR experiments optimized for the study of IDPs are discussed. A new experiment, based on direct detection of {sup 13}C{sup {alpha}}, is proposed.

  9. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Sweany, M; Bernstein, A; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, S M

    2011-09-21

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 {+-} 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 {+-} 0.03 for Carbostyril-124, and 1.20 {+-} 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  10. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultraviolet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as 1.88±0.02 for 4-Methylumbelliferone, stable within 0.5% over 50 days, 1.37±0.03 for Carbostyril-124, and 1.20±0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  11. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    Sweany, M; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, M

    2011-01-01

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $\\pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $\\pm$ 0.03 for Carbostyril-124, and 1.20 $\\pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modele...

  12. Clinical application of 1H-chemical-shift imaging (CSI) to brain diseases

    An H-1 chemical shift imaging (CSI) was developed as part of the clinical MRI system, by which magnetic resonance spectra (MRS) can be obtained from multiple small voxels and metabolite distribution in the brain can be visualized. The present study was to determine the feasibility and clinical potential of using an H-1 CSI. The device used was a Magnetom H 15 apparatus. The study population was comprised of 25 healthy subjects, 20 patients with brain tumor, 4 with ischemic disease, and 6 with miscellaneous degenerative disease. The H-1 CSI was obtained by the 3-dimensional Fourier transformation. After suppressing the lipid signal by the inversion-recovery method and the water signal by the chemical-shift selective pulse with a following dephasing gradient, 2-directional 16 x 16 phase encodings were applied to the 16 x 16∼18 x 18 cm field of view, in which a 8 x 8 x 2∼10 x 10 x 2 cm area was selected by the stimulated echo or spin-echo method. The metabolite mapping and its contour mapping were created by using the curve-fitted area, with interpolation to the 256 x 256 matrix. In the healthy group, high resolution spectra for N-acetyl aspartate (NAA), creatine, choline (Cho), and glutamine/glutamate were obtained from each voxel; and metabolite mapping and contour mapping also clearly showed metabolite distribution in the brain. In the group of brain tumor, an increased Cho and lactate and loss of NAA were observed, along with heterogeneity within the tumor and changes in the surrounding tissue; and there was a good correlation between lactate peak and tumor malignancy. The group of ischemic and degenerative disease had a decreased NAA and increased lactate on both spectra and metabolite mapping, depending on disease stage. These findings indicated that H-1 CSI is helpful for detecting spectra over the whole brain, as well as for determining metabolite distribution. (N.K.)

  13. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Díaz, Francisca P.; Matías Frugone; Gutiérrez, Rodrigo A.; Claudio Latorre

    2016-01-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N va...

  14. Change of 15N natural abundance (δ15N) in a forest soil receiving elevated N deposition

    Natural abundance of 15N15N) has been used to interpret N mineralization in forest ecosystems. Forest litter typically has depleted δ15N values ranging from -8 to 0 per mille and δ15N values of organic N in forest soil profiles become more enriched with depth. This study investigated (1) the change of δ15N and total N with depth, and (2) the relation between the change of δ15N within the 0 to 10, 10 to 20 and 20 to 30 cm intervals of the mineral layer and the N mineralization rates in these layers

  15. A simple graphical approach to predict local residue conformation using NMR chemical shifts and density functional theory.

    Shaghaghi, Hoora; Ebrahimi, Hossein Pasha; Fathi, Fariba; Bahrami Panah, Niloufar; Jalali-Heravi, Mehdi; Tafazzoli, Mohsen

    2016-05-30

    The dependency of amino acid chemical shifts on φ and ψ torsion angle is, independently, studied using a five-residue fragment of ubiquitin and ONIOM(DFT:HF) approach. The variation of absolute deviation of (13) C(α) chemical shifts relative to φ dihedral angle is specifically dependent on secondary structure of protein not on amino acid type and fragment sequence. This dependency is observed neither on any of (13) C(β) , and (1) H(α) chemical shifts nor on the variation of absolute deviation of (13) C(α) chemical shifts relative to ψ dihedral angle. The (13) C(α) absolute deviation chemical shifts (ADCC) plots are found as a suitable and simple tool to predict secondary structure of protein with no requirement of highly accurate calculations, priori knowledge of protein structure and structural refinement. Comparison of Full-DFT and ONIOM(DFT:HF) approaches illustrates that the trend of (13) C(α) ADCC plots are independent of computational method but not of basis set valence shell type. © 2016 Wiley Periodicals, Inc. PMID:26940760

  16. The 15N-enrichment in dark clouds and Solar System objects

    Hily-Blant, Pierre; Faure, Alexandre; Quirico, Eric

    2013-01-01

    The line intensities of the fundamental rotational transitions of H13CN and HC15N were observed towards two prestellar cores, L183 and L1544, and lead to molecular isotopic ratios 140 6 14N/15N 6 250 and 140 6 14N/15N 6 360, respectively. The range of values reflect genuine spatial variations within the cores. A comprehensive analysis of the available measurements of the nitrogen isotopic ratio in prestellar cores show that molecules carrying the nitrile functional group appear to be systematically 15N-enriched com- pared to those carrying the amine functional group. A chemical origin for the differential 15N-enhance- ment between nitrile- and amine-bearing interstellar molecules is proposed. This sheds new light on several observations of Solar System objects: (i) the similar N isotopic fractionation in Jupiter's NH3 and solar wind N+; (ii) the 15N-enrichments in cometary HCN and CN (that might represent a direct inter- stellar inheritance); and (iii) 15N-enrichments observed in organics in primitive cosmoma...

  17. Inhibition of alanine racemase by alanine phosphonate: detection of an imine linkage to pyridoxal 5'-phosphate in the enzyme-inhibitor complex by solid-state 15N nuclear magnetic resonance

    Inhibition of alanine racemase from the Gram-positive bacterium Bacillus stearothermophilus by (1-aminoethyl)phosphonic acid (Ala-P) proceeds via a two-step reaction pathway in which reactivation occurs very slowly. In order to determine the mechanism of inhibition, the authors have recorded low-temperature, solid-state 15N NMR spectra from microcrystals of the [15N]Ala-P-enzyme complex, together with spectra of a series of model compounds that provide the requisite database for the interpretation of the 15N chemical shifts. Proton-decoupled spectra of the microcrystals exhibit a line at ∼ 150 ppm, which conclusively demonstrates the presence of a protonated Ala-P-PLP aldimine and thus clarifies the structure of the enzyme-inhibitor complex. They also report the pH dependence of Ala-P binding to alanine racemase

  18. Oligomeric complexes of some heteroaromatic ligands and aromatic diamines with rhodium and molybdenum tetracarboxylates: 13C and 15N CPMAS NMR and density functional theory studies.

    Leniak, Arkadiusz; Kamieński, Bohdan; Jaźwiński, Jarosław

    2015-05-01

    Seven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The (15)N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex  - δligand). This parameter ranged from around -40 to -90 ppm in the case of heteroaromatic ligands, from around -12 to -22 ppm for diamines and from -16 to -31 ppm for the complexes of molybdenum tetracarboxylates with 4,4'-bipyridine. The experimental results have been supported by a density functional theory computation of (15)N NMR chemical shifts and complexation shifts at the non-relativistic Becke, three-parameter, Perdew-Wang 91/[6-311++G(2d,p), Stuttgart] and GGA-PBE/QZ4P levels of theory and at the relativistic scalar and spin-orbit zeroth order regular approximation/GGA-PBE/QZ4P level of theory. Nucleus-independent chemical shifts have been calculated for the selected compounds. PMID:25614975

  19. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.

    Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits. PMID:26374002

  20. Fragment-based 13C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits

  1. Chemical shifts of the X-ray L3 absorption edge of europium in its trivalent halides

    Position of the Eu-L3 absorption edge has been studied in pure metal and in its trivalent halides, EuF3, EuCl3, EuBr3, and EuI3, employing a simple X-ray spectrometer with an LiF single crystal as the analyser. A linear relationship was established between the chemical shift and the effective charge on the absorbing rare earth atom. The chemical shifts have also been correlated to Moessbauer isomer shifts. The results have been discussed in terms of nature of chemical bonding, effective atomic charge on the absorbing atom and some other parameters relevant to the immediate local environment of the absorbing atom. (author)

  2. Attainable entanglement of unitary transformed thermal states in liquid-state nuclear magnetic resonance with the chemical shift

    Ota, Y; Ohba, I; Yoshida, N; Mikami, Shuji; Ohba, Ichiro; Ota, Yukihiro; Yoshida, Noriyuki

    2006-01-01

    Recently, Yu, Brown, and Chuang [Phys. Rev. A {\\bf 71}, 032341 (2005)] investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave an insight into the role of the entanglement in a liquid-state NMR quantum computer. Moreover, they attempted to reveal the role of mixed-state entanglement in quantum computing. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with the chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by the positive partial transposition (PPT) criterion with respect to any bipartition. We examine the effect of the chemical shifts on the boundary between the separability and the nonseparability, and find it is negligible.

  3. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak.

    Webster, Nicole S; Xavier, Joana R; Freckelton, Marnie; Motti, Cherie A; Cobb, Rose

    2008-12-01

    The microbial community composition in affected and unaffected portions of diseased sponges and healthy control sponges of Aplysina aerophoba was assessed to ascertain the role of microbes in the disease process. Sponge secondary metabolites were also examined to assess chemical shifts in response to infection. The microbial profile and aplysinimine levels in unaffected tissue near the lesions closely reflected those of healthy sponge tissue, indicating a highly localized disease process. DGGE detected multiple sequences that were exclusively present in diseased sponges. Most notably, a Deltaproteobacteria sequence with high homology to a coral black band disease strain was detected in all sponge lesions and was absent from all healthy and unaffected regions of diseased sponges. Other potential pathogens identified by DGGE include an environmental Cytophaga strain and a novel Epsilonproteobacteria strain with no known close relatives. The disease process also caused a major shift in prokaryote community structure at a very high taxonomic level. Using 16S rRNA gene sequence analysis, only the diseased sponges were found to contain sequences belonging to the Epsilonproteobacteria and Firmicutes, and there was a much greater number of Bacteroidetes sequences within the diseased sponges. In contrast, only the healthy sponges contained sequences corresponding to the cyanobacteria and 'OP1' candidate division, and the healthy sponges were dominated by Chloroflexi and Gammaproteobacteria sequences. Overall bacterial diversity was found to be considerably higher in diseased sponges than in healthy sponges. These results provide a platform for future cultivation-based experiments to isolate the putative pathogens from A. aerophoba and perform re-infection trials to define the disease aetiology. PMID:18783385

  4. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.

    Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A

    2011-07-28

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. PMID:21806118

  5. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  6. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-01-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values. PMID:26956399

  7. 15N fractionation in star-forming regions and Solar System objects

    Wirström, Eva; Milam, Stefanie; Adande, Gilles; Charnley, Steven B.; Cordiner, Martin A.

    2015-08-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristine molecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N/15N ~ 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N/15N natal molecular cloud core and the outer protosolar nebula. Indeed, early chemical models of gas-phase ion-molecule nitrogen fractionation showed that HCN and HNC (nitriles) can hold significant 15N enrichments in cold dark clouds where CO is depleted onto dust grains. In addition, 15N fractionation in nitriles and amines (NH2, NH3) follow different chemical pathways. More recently we have shown that once the spin-state dependence in rates of reactions with H2 is included in the models, amines can either be enhanced or depleted in 15N, depending on the core’s evolutionary stage. Observed 15N fractionation in amines and nitriles therefore cannot be expected to be the same, instead their ratio is a potential chemical clock.Observations of molecular isotope ratios in dark cores are challenging. Limited published results in general show higher 15N/14N ratios in HCN and HNC than ammonia, but more measurements are necessary to confirm these trends. We will present recent results from our ongoing observing campaign of 14N/15N isotopic ratios in HCN, HNC and NH3 in dense cores and protostars which seem consistent with significant fractionation in nitriles as compared to other molecules in each object. The few 14N/15N ratios observed in N2H+ are similar to those in NH3, contrary to our model results which predict a significant 15N enhancement in N2 and N2H+. Model upgrades which may address this discrepancy will be

  8. Study of protein metabolism and cell proliferation using 15N

    Investigations of nitrogen and protein metabolism with the stable isotope 15N were carried out in 11 patients with arteriosclerosis and 7 healthy controls. After oral application of 3 g 15NH4Cl (95 At% 15N) per 70 kg body weight the incorporation of the isotope 15N in plasma proteins and blood cells and the 15N elimination in urine were followed up. Retardations of 15N elimination, an accelerated incorporation of 15N in fibrin and a retarded 15N incorporation in platelet protein were observed in patients with arteriosclerosis. The described method enables complex assertions about protein metabolism of the whole body and so represents a possibility to evaluate objectively the influence of an intervention on metabolism. (author)

  9. Comparison of Computed Tomography Histogram Analysis and Chemical-Shift Magnetic Resonance Imaging for Adrenal Mass Characterization

    Background: Computed tomography (CT) histogram analysis and chemical-shift magnetic resonance imaging (MRI) are currently used modalities for adrenal mass characterization. However, it is not yet clear which modality can be regarded as most sensitive in terms of adrenal mass characterization. Purpose: To prospectively compare CT histogram analysis and chemical-shift MRI in the characterization of adrenal masses. Material and Methods: Between May 2007 and November 2008, 93 patients (45 males, 48 females; mean age 56.7 years, range 22-85 years) with 109 adrenal masses prospectively underwent both unenhanced CT and chemical-shift MRI examinations. These masses consisted of 67 adenomas and 42 metastases. Histogram analysis was applied with a circular region of interest (ROI) that recorded mean attenuation, total number of pixels, number of negative pixels, and the percentage of negative pixels on unenhanced CT images for each adrenal mass. In the CT histogram analysis, a 10% negative pixel threshold for unenhanced CT was calculated. In chemical-shift MRI, signal intensity drop between in-phase and opposed-phase images was quantitatively calculated so that adrenal-to-spleen chemical-shift ratios and adrenal signal intensity indexes were determined for each of the adrenal masses. A mass was regarded as an adenoma if it contained more than 10% negative pixels by CT histogram analysis, showed an adrenal-to-spleen chemical-shift ratio of less than 0.71, and had an adrenal signal intensity index of more than 16.5% by chemical-shift MRI. The results were compared to reveal which method was most sensitive in the diagnosis of adrenal masses and whether or not a correlation exists between these two modalities. Final diagnoses were based on imaging follow-up of minimum 6 months, biopsy, surgery, and adrenal washout study. Results: On unenhanced CT examinations, all of the 67 adenomas and 21 out of 42 metastases exhibited negative pixels. None of the metastases showed more than 10

  10. Comparison of Computed Tomography Histogram Analysis and Chemical-Shift Magnetic Resonance Imaging for Adrenal Mass Characterization

    Halefoglu, A.M.; Yasar, A.; Bas, N.; Ozel, A.; Erturk, S.M.; Basak, M. (Dept. of Radiology, Sisli Etfal Training and Research Hospital, Sisli, Istanbul (Turkey))

    2009-11-15

    Background: Computed tomography (CT) histogram analysis and chemical-shift magnetic resonance imaging (MRI) are currently used modalities for adrenal mass characterization. However, it is not yet clear which modality can be regarded as most sensitive in terms of adrenal mass characterization. Purpose: To prospectively compare CT histogram analysis and chemical-shift MRI in the characterization of adrenal masses. Material and Methods: Between May 2007 and November 2008, 93 patients (45 males, 48 females; mean age 56.7 years, range 22-85 years) with 109 adrenal masses prospectively underwent both unenhanced CT and chemical-shift MRI examinations. These masses consisted of 67 adenomas and 42 metastases. Histogram analysis was applied with a circular region of interest (ROI) that recorded mean attenuation, total number of pixels, number of negative pixels, and the percentage of negative pixels on unenhanced CT images for each adrenal mass. In the CT histogram analysis, a 10% negative pixel threshold for unenhanced CT was calculated. In chemical-shift MRI, signal intensity drop between in-phase and opposed-phase images was quantitatively calculated so that adrenal-to-spleen chemical-shift ratios and adrenal signal intensity indexes were determined for each of the adrenal masses. A mass was regarded as an adenoma if it contained more than 10% negative pixels by CT histogram analysis, showed an adrenal-to-spleen chemical-shift ratio of less than 0.71, and had an adrenal signal intensity index of more than 16.5% by chemical-shift MRI. The results were compared to reveal which method was most sensitive in the diagnosis of adrenal masses and whether or not a correlation exists between these two modalities. Final diagnoses were based on imaging follow-up of minimum 6 months, biopsy, surgery, and adrenal washout study. Results: On unenhanced CT examinations, all of the 67 adenomas and 21 out of 42 metastases exhibited negative pixels. None of the metastases showed more than 10

  11. Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates

    Diagnosis of brain lesions after birth anoxia-ischemia is essential for appropriate management. Clinical evaluation is not sufficient. MRI has been proven to provide useful information. To compare abnormalities observed with MRI, including diffusion-weighted imaging (DWI), localised magnetic resonance spectroscopy (MRS) and chemical shift imaging (CSI) and correlate these findings with the clinical outcome. Fourteen full-term neonates with birth asphyxia were studied. MRI, MRS and CSI were performed within the first 4 days of life. Lesions observed with DWI were correlated with outcome, but the apparent diffusion coefficient (ADC) did improve diagnostic confidence. The mean value of Lac/Cr for the neonates with a favourable outcome was statically lower than for those who died (0.22 vs 1.04; P = 0.01). The same results were observed for the Lac/NAA ratio (0.21 vs 1.23; P = 0.01). Data obtained with localised MRS and CSI were correlated for the ratio N-acetyl-aspartate/choline, but not for the other metabolites. No correlation was found between the ADC values and the metabolite ratios. Combination of these techniques could be helpful in our understanding of the physiopathological events occurring in neonates with asphyxia. (orig.)

  12. Repeatability of long and short echo-time in vivo proton chemical-shift imaging

    We carried out long (145 ms) and short (25 ms) echo time spectroscopic imaging of the brain (chemical-shift imaging, CSI) on two occasions 1 week apart on 15 healthy individuals. We found coefficients of variation (CVs) generally in the range 10-25% for long and 15-30% for short echo-time measurements. The CVs of metabolite ratios were higher by about 5-10%. Limits of agreement (defined as mean±2 SD of the week 1-week 2 differences) were wider at the shorter echo time. The modest repeatability may be due in part to the difficulty of repositioning spectroscopic voxels at a scale of 1 mm. The generally higher CVs and wider limits of agreement at TE25 ms suggest that the increased spectral complexity more than offsets the theoretical advantage of increased signal at short echo-times. Analysis of variance general linear modelling of metabolites and metabolite ratios showed that, in general, the subject, region of the brain and hemisphere were more important than the occasion in explaining the variability of results. Unless information on short-T2 metabolites is specifically required, better results can probably be achieved with longer echo-times. The magnitude of the CVs needs to be taken into account in the calculation of sample size for cross-sectional or linear studies. (orig.)

  13. Clinical evaluation of the cerebral energy metabolism with 31P chemical shift imaging in neurosurgical disorders

    Cerebral energy metabolism was evaluated by means of 31P chemical shift imaging (CSI) using the 2.0 T whole-body MRIS system. 31P CSI was carried out by means of Spectroscopic Imaging by Dephasing Amplitude Changing method, four-dimensional CSI, and three-dimensional CSI. Twenty three patients with cerebral infarction and 21 patients with hypertensive intracerebral hemorrhage were examined. In cerebral infarction, an acute infarction was seen as a low-signal area in the PCr and ATP images and as a high-signal area in the Pi image. A subacute and chronic infarction was seen as a low-signal area in all the images -- 31P, PCr, ATP, Pi, PDE and PME. Intracellular acidosis was noticed within 2 days after onset. The intracellular pH became alkaline at the subacute and chronic stages of infarction. The chronological changes in the phosphorus metabolites were evaluated by means of these methods. In hypertensive intracerebral hemorrhage, hematoma and perifocal edema in the acute stage were seen as low-signal areas in the 31P, PCr, and ATP images, and as high-signal areas in the Pi image. In the chronic stage, a hematoma was seen as a low-signal area in all the images -- 31P, PCr, ATP and Pi. 31P CSI is thus a practical tool for studying phosphate metabolites clinically. Changes in the phosphorus metabolism relative to the anatomy of interest were detected by the use of these methods. (author)

  14. On the use of pseudocontact shifts in the structure determination of metalloproteins

    Jensen, Marlene R; Hansen, D. Flemming; Ayna, Umit; Dagil, Robert; Hass, Matthias A. S.; Christensen, Hans Erik Mølager; Led, Jens Jørgen

    2006-01-01

    paramagnetic metal ion is investigated using the WEFT pulse sequence in combination with the conventional TOCSY and 1H-15N HSQC sequences. Second, the importance of the electrical charge of the metal ion for the determination of correct pseudocontact shifts from the obtained chemical shifts is evaluated. Thus......, using both the Cu+ plastocyanin and Cd2+-substituted plastocyanin as the diamagnetic references, it is found that the Cd2+-substituted protein with the same electrical charge of the metal ion as the paramagnetic Cu2+ plastocyanin provides the most appropriate diamagnetic reference signals. Third, it is...... found that reliable pseudocontact shifts cannot be obtained from the chemical shifts of the 15N nuclei in plastocyanin, most likely because these shifts are highly dependent on even minor differences in the structure of the paramagnetic and diamagnetic proteins. Finally, the quality of the obtained 1H...

  15. Correlation of 1H NMR Chemical Shift for Aqueous Solutions by Statistical Associating Fluid Theory Association Model

    许波; 李浩然; 王从敏; 许映杰; 韩世钧

    2005-01-01

    1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAFT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.

  16. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A; Spielman, D.M.

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...... concentration error (<15%). Magn Reson Med 44:10-18, 2000....

  17. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  18. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  19. {sup 1}H MR chemical shift imaging detection of phenylalanine in patients suffering from phenylketonuria (PKU)

    Sijens, Paul E.; Oudkerk, Matthijs [University Hospital Groningen, Department of Radiology, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Reijngoud, Dirk-Jan; Spronsen, Francjan J. van [University Hospital Groningen, Department of Pediatrics, Groningen (Netherlands); Leenders, Klaas L. [University Hospital Groningen, Department of Neurology, Groningen (Netherlands); Valk, Harold W. de [University Medical Centre of Utrecht, Department of Internal Medicine, Utrecht (Netherlands)

    2004-10-01

    Short echo time single voxel methods were used in previous MR spectroscopy studies of phenylalanine (Phe) levels in phenylketonuria (PKU) patients. In this study, apparent T{sub 2} relaxation time of the 7.3-ppm Phe multiplet signal in the brain of PKU patients was assessed in order to establish which echo time would be optimal. {sup 1}H chemical shift imaging (CSI) examinations of a transverse plain above the ventricles of the brain were performed in 10 PKU patients and 11 persons not suffering from PKU at 1.5 T, using four echo times (TE 20, 40, 135 and 270 ms). Phe was detectable only when the signals from all CSI voxels were summarized. In patients suffering from PKU the T{sub 2} relaxation times of choline, creatine and N-acetyl aspartate (NAA) were similar to those previously reported for healthy volunteers (between 200 and 325 ms). The T{sub 2} of Phe in brain tissue was 215{+-}120 ms (standard deviation). In the PKU patients the brain tissue Phe concentrations were 141{+-}69 {mu}M as opposed to 58{+-}23 {mu}M in the persons not suffering from PKU. In the detection of Phe, MR spectroscopy performed at TE 135 or 270 ms is not inferior to that performed at TE 20 or 40 ms (all previous studies). Best results were obtained at TE=135 ms, relating to the fact that at that particular TE, the visibility of a compound with a T{sub 2} of 215 ms still is good, while interfering signals from short-TE compounds are negligible. (orig.)

  20. Quantification of fat using chemical shift imaging and 1H-MR spectroscopy in phantom model

    Objective: To evaluate the accuracy of chemical shift imaging (CSI) and MR spectroscopy (MRS) for fat quantification in phantom model. Methods: Eleven phantoms were made according to the volume percentage of fat ranging from 0 to 100% with an interval of 10%. The fat concentration in the phantoms were measured respectively by CSI and MRS and compared using one-sample t test. The correlation between the two methods was also analyzed. The concentration of saturated fatty acids (FS), unsaturated fatty acids (FU) and the poly, unsaturation degree (PUD) were calculated by using MRS. Results: The fat concentration was (48.0±1.0)%, (57.0±0.5)%, (67.3±0.6)%, (77.3± 0.6)%, (83.3±0.6)% and (91.0±1.0)% respectively with fat volume of 50% to 100% by CSI. The fat concentration was (8.3±0.6)%, (16.3±0.7)%, (27.7±0.6)%, (36.0±1.0)%, (43.5± 0.6)% and (56.5±1.0)% respectively with fat volume of 10% to 60% by MRS, the fat concentration were underestimated by CSI and MRS (P<0.05), and had high linear correlation with the real concentration in phantoms (CSI: r=0.998, MRS: r=0.996, P<0.01). There was also a linear correlation between two methods (r=0.992, P<0.01) but no statistically significant difference (paired- samples t test, t=-0.125, P=0.903). By using MRS, the relative ratio of FS and FU in fat were 0. 15 and 0.85, the PUD was 0.0325, respectively, and highly consistent with these in phantoms. Conclusion: Both CSI and MRS are efficient and accurate methods in fat quantification at 7.0 T MR. (authors)

  1. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  2. Synthesis of [α-15N]-dl-tryptophan

    [α-15N]-dl-tryptophan was synthesized by the use of Al-Ni alloy catalytic hydrogenation from 15N-glycine via several steps. The overall yield of the final product was 46.9% and the abundance of 15N was about 93%. The physicochemical properties of the synthetic compound obtained were the same as those of the standard tryptophan. Its structure were confirmed by the elemental analyses, MS, UV and paper chromatography

  3. 15N tracer methodology for absorption studies in nutrition research

    Proceeding from 15N analyses, 15N tracer methods, and a model of protein metabolism it is shown that the nitrogen balance is a useful concept for expressing the relationship between the overall nitrogen intake of the body and the nitrogen excretion. After admistering low doses of 15N-labelled substances like protein and amino acids, the kinetics of digestion and absorption can be followed by measuring the 15N abundance in serum and urine of patients. A significant delay in the nitrogen absorption indicates gastrointestinal disorders

  4. Studies with 15N-lysine in colostomized hens. 1

    0.2% L-lysine with an atom-% 15N excess (15N') of 48% were given per day through a throat probe to three colostomized laying hybrids in addition to a pelleted ration of 120 g per animal and day. In the following 4 days unlabelled L-lysine was given. As the labelled lysine was given three times a day, the development of 15N' excretion could be pursued. 80 minutes after the 15N'-lysine dose a distinct atom-% 15N' could be detected in urine. 6 hours after the 15N' application 2.9%, 4.2% and 2.7%, resp. of the applied 15N' amount in urine were found. 8 days after the beginning of the experiment the excretion of 15N' in urine was 17.5% on the average of the consumed 15N' amount. 44% of the nitrogen in the ration, however, was excreted in urine. The results show that the lysine N is excreted to a considerably lower extent in urine than the nitrogen in the remaining ration. (author)

  5. 15N-ammonium test in clinical research

    By use of the 15N-ammonium test the liver function is investigated under influence of hormonal contraceptives in women and in liver diseases in children. With the described noninvasive nonradioactive isotope test the ammonia detoxification capability and the urea synthesis capacity of the liver is determined by measuring of the 15N excretion in ammonia and urea in urine after oral administering of 15N-ammonium chloride. The 15N-ammonium test shows a significant influence of the hormonal contraceptives on the liver function and gives diagnostic evidence for liver diseases in children. (author)

  6. Anomalous chemical shifts in X-ray photoelectron spectra of sulfur-containing compounds of silver (I) and (II)

    Highlights: • Ag 3d5/2 binding energy for Ag(II)SO4 is as large as 370.1 eV. • This is the largest value ever measured for a silver (II) compound. • Large shift is connected with the extreme oxidizing nature of Ag(II) species. • Ag(I)2S2O7 exhibits both positive and negative shifts with respect to metallic Ag. • Two distinct Ag(I) sites are responsible for large BE difference of 3.6 eV. - Abstract: Anomalous chemical shifts, i.e. cases when binding energy decreases with the increase of the oxidation state, have been well-documented for selected compounds of silver, and well understood based on analysis of initial- and final-state effects in the XPS spectra. Here we report two examples of even more exotic behaviour of chemical shifts for two silver compounds. The first one is Ag2S2O7 which exhibits both positive and negative substantial shifts with respect to metallic Ag for two distinct Ag(I) sites in its crystal structure, which differ by as much as 3.6 eV. Another is AgSO4, a rare example of oxo silver (II) salt, which exhibits “normal” chemical shift but the Ag 3d5/2 binding energy takes the largest value measured for a silver (II) compound (370.1 eV). This property is connected predominantly with the extremely strongly oxidizing nature of Ag(II) species

  7. Anomalous chemical shifts in X-ray photoelectron spectra of sulfur-containing compounds of silver (I) and (II)

    Grzelak, A. [Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw (Poland); Jaroń, T. [Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland); Mazej, Z. [Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Michałowski, T. [Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw (Poland); Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland); Szarek, P. [Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland); Grochala, W., E-mail: w.grochala@cent.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw (Poland); Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw (Poland)

    2015-07-15

    Highlights: • Ag 3d{sub 5/2} binding energy for Ag(II)SO{sub 4} is as large as 370.1 eV. • This is the largest value ever measured for a silver (II) compound. • Large shift is connected with the extreme oxidizing nature of Ag(II) species. • Ag(I){sub 2}S{sub 2}O{sub 7} exhibits both positive and negative shifts with respect to metallic Ag. • Two distinct Ag(I) sites are responsible for large BE difference of 3.6 eV. - Abstract: Anomalous chemical shifts, i.e. cases when binding energy decreases with the increase of the oxidation state, have been well-documented for selected compounds of silver, and well understood based on analysis of initial- and final-state effects in the XPS spectra. Here we report two examples of even more exotic behaviour of chemical shifts for two silver compounds. The first one is Ag{sub 2}S{sub 2}O{sub 7} which exhibits both positive and negative substantial shifts with respect to metallic Ag for two distinct Ag(I) sites in its crystal structure, which differ by as much as 3.6 eV. Another is AgSO{sub 4}, a rare example of oxo silver (II) salt, which exhibits “normal” chemical shift but the Ag 3d{sub 5/2} binding energy takes the largest value measured for a silver (II) compound (370.1 eV). This property is connected predominantly with the extremely strongly oxidizing nature of Ag(II) species.

  8. 15N balance in wheat-moong-soybean cropping sequence

    Field experiments were conducted to study the effect of FYM and S on fertilizer 15N balance in wheat-moong-soybean cropping sequence, with the main emphasis on partial substitution of chemical fertilizer N through FYM. Response to partial substitution of N was observed in the first crop of the sequence. FYM substitution at higher level (50%) resulted in reduction of wheat yield, but 25% substitution of recommended N through FYM increased wheat yield. Total fertilizer N recovery by three crops wheat, moong and soybean grown in sequence ranged between 39 to 55 per cent of which 35 to 41 per cent was utilized by the first crop and 4 to 14 per cent by the second and third crops together while 21 to 36 per cent of the fertilizer N applied to wheat was present in soil after growing three crops. Fertilizer N recovery in soil plant system was 61 to 91 per cent. Higher fertilizer N recovery was associated with higher rate of substitution of FYM for chemical fertilizer. FYM boosted fertilizer N recovery and higher soil retentivity. Sulphur application had no significant effect on per cent residual fertilizer N retention in soil. (author)

  9. Studies with 15N-lysine in colostomized hens. 6

    3 colostomized laying hybrides received 91.40 mg L-lysine-15N-excess (15N') each over a period of 4 days in a metabolism experiment with 15N-lysine. After another 4 days, during which the hens received the same rations supplemented by commercial L-lysine, the animals were butchered and divided into individual fractions. After hydrochloric hydrolysis of organs and tissues the heavy nitrogen of lysine, histidine and arginine were separated, quantitatively evaluated, processed and measured with an emission spectrometer. Atom-% 15N' on an average amounted to 0.20 in the liver, 0.16 in the kidneys, 0.06 in the flesh and 0.05 in the bones. Of the rediscovered 15N' applied, feces contained 8.1 %, urine 18.3 %, the eggs 24.3 %, the blood 4.9 %, the flesh 20.5 %, the bones 5.2 %, the gastrointestinal tract with its contents 4.5 %, the liver 3.5 %, the kidneys 0.9 %, the reproductive organs 3.7 %, and the rest 6.1 %. The quota of rediscovery of the 15N' applied was 95.7 %. 62 % of the total 15N' was rediscovered in eggs, body and feces as lysine 15N'. There was significantly more 15N' in all arginine fractions than in histidine. The quota of the lysine-15N' of the total 15N' differed considerably in the fractions: < 40 % bones and blood; 48-56 % gastrointestinal tract, feces, oviduct, kidneys; 62-63 % remaining ovary, rest; 69-71 % eggs, flesh, liver. It could be proved that the α-amino group of lysine is to a large extent incorporated into other amino acids. Further proof that the amino acid metabolism proceeds in two phases was submitted, i.e. higher amounts of amino acids previously deposited in the body are used for egg synthesis. (author)

  10. Evaluation of vertebral bone marrow fat content by chemical-shift MRI in osteoporosis

    To quantitatively evaluate vertebral bone marrow fat content and investigate its association with osteoporosis with chemical-shift magnetic resonance imaging (CS-MRI). Fifty-six female patients (age range 50-65 years) with varying bone mineral densities as documented with dual x-ray absorptiometry (DXA) were prospectively included in the study. According to the DXA results, the patients were grouped as normal bone density, osteopenic, or osteoporotic. In order to calculate fat content, the lumbar region was visualized in the sagittal plane by CS-MRI sequence. ''Region of interest'' (ROI)s were placed within L3 vertebral bodies and air (our reference point) at different time points by different radiologists. Fat content was calculated through ''signal intensity (SI) suppression rate'' and ''SI Index''. The quantitative values were compared statistically with those obtained from DXA examinations. Kruskal-Wallis, and Mann-Whitney U tests were used for comparisons between groups. The reliability of the measurements performed by two radiologists was evaluated with the ''intraclass correlation coefficient''. This study was approved by an institutional review board and all participants provided informed consent to participate in the study. Eighteen subjects with normal bone density (mean T score, 0.39 ± 1.3 [standard deviation]), 20 subjects with osteopenia (mean T score, -1.79 ± 0.38), and 18 subjects with osteoporosis (mean T score, -3 ± 0.5) were determined according to DXA results. The median age was 55.9 (age range 50-64 years) in the normal group, 55.5 (age range 50-64 years) in the osteopenic group, and 55.1 (age range 50-65 years) in the osteoporotic group (p = 0.872). In the CS-MRI examination, the values of ''SI suppression ratio'' and ''SI Index'' (median [min:max]) were calculated by the first and second reader, independently. There was no statistically significant difference between the groups with regard to vertebral bone marrow fat content (p > 0

  11. Multinuclear NMR of 15 N labelled organic molecules

    The paper presents the application of multinuclear NMR techniques to the study of 15 N labeled organic molecules. There are some important points of great interest in such type of research, namely, structure determination, i.e. location of the 15 N in molecule and determination of 15 N concentration in order to obtain quantitative results about the intramolecular short and long range interaction. Different NMR techniques were used in the study of 13 C, 1 H and 15 N. Obtaining the 15 N NMR signal imposes some special preparation of the spectrometer. First, we had to manage a very large spectral window (-400 to +1200 ppm) which makes difficult finding the signal. Secondly, in the condition of proton decoupling, in a very large band, a decrease of the signal can occur due to the NOE negative effect. To avoid this effect, other decoupling method, called 'inverse gated 1 H decoupling' was used. As a reference, for 15 N, we used CH3NO2, fixed at 0 ppm. In order to find the suitable spectral window we used the formamide (15 N). The results of obtaining the 15 N-labeled procaine are presented. (author)

  12. 15N Fractionation in Star-Forming Regions and Solar System Objects

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  13. 15N2 incorporation and acetylene reduction by azospirillum isolated from rice roots and soils

    Nitrogen fixation by strains of Azospirillum isolated from several rice soils and rice cultivars was investigated by 15N2 incorporation and C2H2 reduction. C2H2 reducing ability markedly varied among the strains obtained from soils differing widely in their physico-chemical properties. Large variations in 15N2 incorporation by Azospirillum isolated from the roots of several rice cultivars were also noticed. The present study reveals that rice cultivars harbour Azospirillum with differential N2-fixing ability and that plant genotype is of importance for optimal associations. (orig.)

  14. 1H, 13C and 15N NMR spectral and X-ray structural studies of 2-arylsulfonylamino-5-chlorobenzophenones

    Six 2-(4-R-phenylsulfonylamino)-5-chlorobenzophenones were prepared and their 1H, 13C and 15N NMR spectra recorded and assigned. The dependence between the chemical shift of the amide proton and Hammett σ substituent constants is of the V type. Substituent effect on the chemical shift of the amide nitrogen atom was found insignificant. X-ray analysis shows that the terminal benzene rings in 2-(4-nitro-phenylsulfonylamino)-5-chlorobenzophenones are located close to each other. They are not, however, parallel, dihedral angle between them being equal to 10.86 deg (MP2/6-31G**//HF/6-31G** ab initio calculations show this to be 20.44 deg). This shows that the mutual orientation of two benzene rings in the molecule of this compound is caused by the π-π stacking. It is additionally reinforced by the intramolecular NH...O=C hydrogen bond. Except the dihedral angle between the benzene rings, X-ray determined structure of 2-(4-nitro-phenylsulfonylamino)-5-chlorobenzophenones is very similar to this optimized by the ab initio calculations. (author)

  15. A Paradigm Shift: Supply Chain Collaboration and Competition in and between Europe’s Chemical Clusters

    Wassenhove, Luk; Lebreton, Baptiste; Letizia, Paolo

    2007-01-01

    textabstractWith the attention of the chemical industry focused on exploiting the low cost feedstocks in the Middle East and the growth markets of Brazil, Russia, India, China and South East Asia, this report provides a timely reminder to policy makers, chemical companies and logistics service providers of the significant opportunities for improving business potential in Europe’s chemical clusters. Europe is still the largest, most sophisticated global market for chemical products, with a wel...

  16. Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups

    Fenzke, Dieter; Hunger, Michael; Pfeifer, Harry

    A procedure is described which allows a separate determination of the proton-aluminum distance and of the chemical-shift anisotropy for the bridging OH groups of crystalline molecular sieves from their 'H MAS NMR sideband patterns. For the bridging OH groups which point into the 6-rings of the framework (line "c"), the 1H- 27Al distance could be determined to be 0.237 ± 0.004 and 0.234 ± 0.004 nm for molecular sieves of type H-Y and SAPO-5, respectively. In contrast, for the bridging OH groups of the 12-rings (line "b"), the corresponding distances are equal and distinctly larger, 0.248 ± 0.004 nm. Within the limits of error, the values of the chemical-shift anisotropy are equal (about 19 ± 2 ppm) except for line b of SAPO-5, which exhibits a much smaller value of 14.5 ± 2 ppm.

  17. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  18. Multiple pancreatic metastases from clear cell renal carcinoma: diagnosis with chemical shift magnetic resonance imaging before surgery

    We present a case in which multiple pancreatic tumours were diagnosed as metastatic clear cell renal carcinomas with chemical shift MRI (CSI) before surgery. Radiologists may be unable to recognize the loss of intensity on CSI macroscopically. We believe that it is useful to make subtraction images and calculate signal intensity on CSI, even if the lesions are multiple metastatic tumours Copyright (2005) Blackwell Publishing Asia Pty Ltd

  19. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts.

    Kumar, Arun V; Ali, Rehana F M; Cao, Yu; Krishnan, V V

    2015-10-01

    The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for protein structural information that is directly related to function. Nuclear magnetic resonance (NMR) provides powerful means to determine three-dimensional structures of proteins in the solution state. However, translation of the NMR spectral parameters to even low-resolution structural information such as protein class requires multiple time consuming steps. In this paper, we present an unorthodox method to predict the protein structural class directly by using the residue's averaged chemical shifts (ACS) based on machine learning algorithms. Experimental chemical shift information from 1491 proteins obtained from Biological Magnetic Resonance Bank (BMRB) and their respective protein structural classes derived from structural classification of proteins (SCOP) were used to construct a data set with 119 attributes and 5 different classes. Twenty four different classification schemes were evaluated using several performance measures. Overall the residue based ACS values can predict the protein structural classes with 80% accuracy measured by Matthew correlation coefficient. Specifically protein classes defined by mixed αβ or small proteins are classified with >90% correlation. Our results indicate that this NMR-based method can be utilized as a low-resolution tool for protein structural class identification without any prior chemical shift assignments. PMID:25758094

  20. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  1. Distinguishing between cystic teratomas and endometriomas of the ovary using chemical shift gradient echo magnetic resonance imaging

    Ishijima Hideyuki; Ishizaka Hiroshi; Inoue Tomio [Gunma University Hospital, Gunma (Japan). Depts. of Diagnostic Radiaology and Nuclear Medicine

    1996-02-01

    The purpose of this study was to evaluate the efficacy of chemical shift gradient echo magnetic resonance imaging (MRI) in distinguishing between cystic teratomas and endometriomas of the ovary, using a 1.5 T magnet. The study included 22 patients with 31 ovarian lesions (15 cystic teratomas and 16 endometriomas), which showed high signal intensity on T1-weighted spin echo images. Chemical shift gradient echo images with three different echo times (TE = 2.5, 4.5 and 6.5 ms) were obtained in all cases. Indices were calculated on the basis of the signal intensities of lesions on the chemical shift gradient echo images. All endometriomas had signal intensity indices of less than 2.1, while all cystic teratomas had signal intensity indices of 18.1 or greater. It was concluded that the method used in this study presents the following advantages: the acquisition time is short; it needs no special software; and it does not depend on magnetic field homogeneity. 11 refs., 4 figs.

  2. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation

    D Joseph; A K Yadav; S N Jha; D Bhattacharyya

    2013-11-01

    Mn and Cr K X-ray absorption edges were measured in various compounds containing Mn in Mn2+, Mn3+ and Mn4+ oxidation states and Cr in Cr3+ and Cr6+ oxidation states. Few compounds possess tetrahedral coordination in the 1st shell surrounding the cation while others possess octahedral coordination. Measurements have been carried out at the energy dispersive EXAFS beamline at INDUS-2 Synchrotron Radiation Source at Raja Ramanna Centre for Advanced Technology, Indore. Energy shifts of ∼8–16 eV were observed for Mn K edge in the Mn-compounds while a shift of 13–20 eV was observed for Cr K edge in Cr-compounds compared to values in elementalMn and Cr, respectively. The different chemical shifts observed for compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Mn and Cr cations in the above compounds.

  3. Application of 15N in biochemistry, agriculture and medicine

    The compendium on application of 15N in the biosciences comprises 7 chapters. The 1st chapter comprehends introductory remarks on isotopes in general and on nitrogen isotopes in particular. In the 2nd chapter fundamentals of 15N tracer techniques are discussed. The 3rd chapter deals with experiment programs and the evaluation of experiments. The methodology of sample preparation as well as of isotope analysis is treated in chapter 4. The chapters 5 to 7 deal with the application of 15N as tracer in biochemistry, agricultural research and medicine, resp. Relevant literature is added to each chapter

  4. Pion elastic and inelastic scattering from 15N

    Data were obtained on the Clinton P. Anderson Los Alamos Meson Physics Facility Energetic Pion Channel and Spectrometer for elastic and inelastic pion scattering from ground state 15N nuclei. States observed here included those of 0.0, 5.27, 6.32, 7.16, 7.30, 7.57, 8.31, 8.57, 9.15, 9.76, 9.9, 10.7, 11.3, 11.9, 12.5, 12.9, 13.1, 14.1, 14.4, 14.6, 15.0, 16.5, 16.9, 17.2, 17.6, 18.3, 18.7, and 18.9 MeV excitation energies. Angular distributions were obtained for scattering at angles from 25 degree to 90 degree in 5 degree increments with an incident pion energy of 164 MeV. Optical model analyses of the elastic (0 MeV) angular distributions with equal point proton and neutron densities in both momentum and coordinate space formulations accurately predict the data, although the two formulations require different energy shifts to do so. This difference is thought to be a result of the more accurate nonlocal representation of the nuclear potential in the momentum space code. Additional spectra were obtained for scattering at constant momentum transfers of .94 and 1.57 fm-1 in order to generate constant momentum transfer excitation functions. Use of these excitation functions, σ(π+)/σ(π-) ratios, and shell model DWIA calculations allowed identification of several excited states having shell-model-like, single particle-hole, pure spin-flip excitations. Shell model and collective model DWIA calculations, as well as the q = .94 and 1.57 fm-1 excitation functions and the σ(π+)/σ(π-) ratios indicate that the other states are generally well represented by a shell model description with collective enhancements

  5. Struktur- und Bindungsuntersuchungen nichtextrahierbarer 15 N- und 14 C-Simazinrückstände im Boden

    Berns, Anne Elisabeth

    2003-01-01

    The aim of the presented study was the characterization of the structure and binding modes of non-extractable residues (NER) of the triazine herbicide simazine. The chemical environments of unaltered as well as metabolized simazine compounds can be observed directly in soil or compost matrix by 15N-NMR spectroscopy. As the 15N-isotope has a very low sensitivity and natural abundance 15N-labeled simazine was used. To further enhance the signal to noise ratio and sensitivity of the NMR experime...

  6. Phosphorus-31, 15N, and 13C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    The herbicidal dead-end ternary complex (ES3PGlyph) of glyphosate [N-(phosphonomethyl)glycine] with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by 31P, 15N, and 13C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts (δ) for each of the three nuclei. By 31P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The 13C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The 15N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the 31P δ and the C-P-O bond angle, and the 13C and 15N δ values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield 31P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P 31P δ vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the ES3P binary complex, while the ES3PGlyph complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle

  7. The absorption, utilization and distribution of nitrate 15N and ammonium 15N in Populus Tomentosa seedlings

    Effects of different nitrogen sources (NO3-, NH4+) on the absorption, distribution and utilization of nitrogen on Populus tenement's seedlings (clone 50) was studied by using the 15N trace technique. Results showed that the Populus tenement's seedlings had the same nitrogen take up pattern: tissue nitrogen content grew up after fertilization, remarkbaly rising up after one week and reached peak after 28 days. Although the treatments are different, the tissue N content was about the same between 0.6g · plant-1. The maximum absorption of NO3-15N and NH4-15N was 0.26g · plant-1 and 0.12g · plant -1, which accounted for 39.15% and 19.95% of total nitrogen, respectively. The nitrogen use efficiency (NUE) of two nitrogen sources varied gignificantly. The maximum NUE of NO3-15N reached 25.83%, nearly twice of that of NH4-15N (12.03%). Hence we conclude that Populus tomentosa seedlings (clone 50) prefer to absorb NO3-. Nitrogen distribution rate changed obviously among different organs and the trend was leaf>root>stem. In the leaf, the distribution of NO3-15N was higher than that of NH4-15N. (authors)

  8. Elucidating the trophodynamics of four coral reef fishes of the Solomon Islands using δ15N and δ13C

    Greenwood, N. D. W.; Sweeting, C. J.; Polunin, N. V. C.

    2010-09-01

    Size-related diet shifts are important characteristics of fish trophodynamics. Here, body size-related changes in muscle δ15N and δ13C of four coral reef fishes, Acanthurus nigrofuscus (herbivore), Chaetodon lunulatus (corallivore) , Chromis xanthura (planktivore) and Plectropomus leopardus (piscivore) were investigated at two locations in the Solomon Islands. All four species occupied distinct isotopic niches and the concurrent δ13C' values of C. xanthura and P. leopardus suggested a common planktonic production source. Size-related shifts in δ15N, and thus trophic level, were observed in C. xanthura, C. lunulatus and P. leopardus, and these trends varied between location, indicating spatial differences in trophic ecology. A literature review of tropical fishes revealed that positive δ15N-size trends are common while negative δ15N-size trends are rare. Size-δ15N trends fall into approximately equal groups representing size-based feeding within a food chain, and that associated with a basal resource shift and occurs in conjunction with changes in production source, indicated by δ13C. The review also revealed large scale differences in isotope-size trends and this, combined with small scale location differences noted earlier, highlights a high degree of plasticity in the reef fishes studied. This suggests that trophic size analysis of reef fishes would provide a productive avenue to identify species potentially vulnerable to reef impacts as a result of constrained trophic behaviour.

  9. Study on synthesis of 15N-hydrazine hydrate

    The 15N labeled hydrazine hydrate is a strong reducing agent in the synthesis procedure of stable isotope labeled compounds, and it has been widely used in the isotope-labeled pharmaceutical synthesis. The reaction conditions of 15N labeled hydrazine hydrate were mainly investigated by single-factor design, and the following optimized conditions were obtained: the concentration of available chlorine was 115-120 g/L, the chlorination re- action time was 30∼40 min, the reflux time was 7 min, and the mass ratio of material was m(catalyst) : m (urea) = 1.0 : 10.0, and the yield of 15N labeled hydrazine hydrate was 76.1%, the abundance of 15N was 99.20%. (authors)

  10. Studies with 15N-Lysine in colostomized hens. 4

    Each of 3 colostomized laying hens received per os 0.2% L-lysine with 48 atom-% 15N excess (15N') labelled in α-position in addition to a pelleted laying hen ration of 120 g over a period of 4 days. On the following 4 days they received equal amounts of unlabelled lysine. The eggs laid during the 8 days of the experiment were separated into the egg white, the yolk and the eggshell, and the total and heavy nitrogen in the individual fractions were determined. Above that, 17 amino acids and their atom-%15N' were determined in the 19 samples of the white and yolk of egg. Of the total 15N' from the lysine fed in the 4 days, 10.1% were found in the yolk, 10.5% in the egg white and 1.1% in the eggshells of the eggs laid during the 8 days of the experiment. 85% of the total amino acid 15N' of the yolk and 86% of the egg white detected to be lysine 15N'. The 15N' amount of the other 16 amino acids was mainly concentrated in the two acid and basic amino acids. Approximately 50% of the non-lysine 15N' in the egg are contained in aspartic acid, glutamic acid, histidine and arginine. A very low incorporation of the labelled lysine only could be detected in the aromatic and sulphur-containing amino acids from both the yolk and the egg white 43% of the 15N' was detected in the 10 essential and semi-essential (except lysine) and 57% in the 6 non-essential amino acids of the yolk and 52% and 48% resp. of the egg white. One can summarise that the incorporation of 15N' into the egg shows the same development as that of the labelled amino acids of the wheat protein and that 15% of the lysine 15N' could be detected in the 16 other amino acids. (author)

  11. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated. PMID:27335085

  12. Performance of a neural-network-based determination of amino acid class and secondary structure from 1H-15N NMR data

    A neural network which can determine both amino acid class and secondary structure using NMR data from 15N-labeled proteins is described. We have included nitrogen chemical shifts,3JHNHα coupling constants, α-proton chemical shifts, and side-chain proton chemical shifts as input to a three-layer feed-forward network. The network was trained with 456 spin systems from several proteins containing various types of secondary structure, and tested on human ubiquitin, which has no sequence homology with any of the proteins in the training set. A very limited set of data,representative of those from a TOCSY-HSQC and HNHA experiment, was used.Nevertheless, in 60% of the spin systems the correct amino acid class was among the top two choices given by the network, while in 96% of the spin systems the secondary structure was correctly identified. The performance of this network clearly shows the potential of the neural network algorithm in the automation of NMR spectral analysis

  13. Linear correlation of the barriers to pyramidal inversion of phosphorus with the 31P chemical shifts of acylphosphines

    The dependence of the inversion barriers (ΔG) of phosphorus compounds directly on a parameter of the inversion center, i.e., the chemical shift of the nucleus (delta31 P) were studied. The possibility of such an approach was justified by the correlation both of ΔG, and of delta31 P for phosphorus compounds with one and the same characteristics (the bond angles and electronegativities of the substituent). The acylphosphines (I-IX) were investigated in the range of variation of ΔG, accessible to dynamic NMR and in a fairly wide range of delta31 P

  14. Gradient-echo in-phase and opposed-phase chemical shift imaging: Role in evaluating bone marrow

    Chemical shift imaging (CSI) provides valuable information for assessing the bone marrow, while adding little to total examination time. In this article, we review the uses of CSI for evaluating bone marrow abnormalities. CSI can be used for differentiating marrow-replacing lesions from a range of non-marrow-replacing processes, although the sequence is associated with technical limitations and pitfalls. Particularly at 3 T, susceptibility artefacts are prevalent, and optimal technical parameters must be implemented with appropriate choices for echo times

  15. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites. PMID:26963288

  16. Balance study of the fate of 15N fertilizer

    An interim report is presented on a series of experiments with wooden box-type lysimeters (60 cm x 60 cm x 70 cm) loaded with a sandy soil, a loess soil and straw-amended soil. The lysimeters support crops rotated over a five-year period to be studied - potato, barley, sugar-beet, barley (with winter rape) and finally (1979) potato. Each lysimeter received split applications of urea at total rates of 0, 50 or 100 kg.ha-1. The effects of soil residues of the herbicide monolinuron were also studied. The report deals with data collected during the first three years of the planned experiments (1975 - 1977 inclusive). 15N-labelled urea (47 atom 15N% excess) was initially used but in some experiments this was followed by applications of unlabelled urea in order to study the fate of the residual 15N in the subsequent years. The results to date indicated that in the first year highest recoveries in the plant of the applied 15N obtained on the sandy soil. The low recoveries of 15N in the subsequent years when unlabelled urea was supplied also indicated significant storage by soil or root organic matter of the applied 15N. Compared with the control (zero application of urea nitrogen), potato took up more total nitrogen in the presence of fertilizer including more of the unlabelled soil pool nitrogen. Analyses of the soil profiles in terms of total soil nitrogen and fertilizer-derived nitrogen (on the basis of 15N assays) indicated leaching of the labelled nitrogen down the soil profile in all cases during the three-year period. Analysis of NO3-N in leachates confirmed the presence of labelled urea-derived nitrogen. (author)

  17. HN-NCA heteronuclear TOCSY-NH experiment for {sup 1}H{sup N} and {sup 15}N sequential correlations in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Leibniz Institute for Age Research, Fritz Lipmann Institute, Research Group Biomolecular NMR Spectroscopy (Germany)

    2015-10-15

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue ‘i’ with that of residues ‘i−1’ and ‘i+1’ in ({sup 13}C, {sup 15}N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of {sup 1}J{sub CαN} and {sup 2}J{sub CαN} couplings to transfer the {sup 15}N{sub x} magnetisation from amino acid residue ‘i’ to adjacent residues via the application of a band-selective {sup 15}N–{sup 13}C{sup α} heteronuclear cross-polarisation sequence of ∼100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described.

  18. Effects of compost application on fruits yields, sugar and mineral contents and δ15N values of tomato fruits

    We examined the effects of chemical fertilizer and compost application on the yields and sugar and mineral content of tomato (Lycopersicon esculentum Mill. Saturn) in an isolated bed. Five treatments were conducted within a two-year period of 4 continuous croppings. CDU and LSR (Low-sulfate slow-release fertilizer) were used for the chemical fertilizer plots. A mixture of cattle manure and CDU (CM + CDU), a mixture of poultry manure and CDU (PM + CDU), and mixture of cattle and poultry manure (PM + CM) plots were arranged as compost-using plots. We also measured the δ15N values of tomatoes and the soils of each treatment, and estimated the correlation of the δ15N values between fruits and soil to certify compost applied products. We did not find any reproductive differences in the yield or sugar content among the treatments. As to inorganic content of tomatoes, there were no significant differences except for Mg content among the plots. These results showed that it is difficult to assay regular benefit of organic fertilizer application to tomato yields and quality. On the other hand, δ15N values of tomato fruits showed significant differences among fertilizer applications. δ15N values of the chemical fertilizer were +1.6 per mille and -1.1% for CDU and LSR, respectively. Those of mixture of chemical and compost were +12.2 per mille and +11.2 per mille for CM + CDU and PM + CDU, respectively. The mixture of PM and CM showed the highest δ15N values (17.9 per mille) among the treatments. δ15N values of the soils and fruits reflected those of the fertilizers and were positively correlated (R2 = 0.89). It may be possible to use δ15N values as an indicator of organic products by setting the threshold point, e.g. +5.0 per mille, to distinguish them from the products cultivated with chemical fertilizer. (author)

  19. Mechanism of the bisphosphatase reaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by (1)H-(15)N NMR spectroscopy.

    Okar, D A; Live, D H; Devany, M H; Lange, A J

    2000-08-15

    The histidines in the bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were labeled with (15)N, both specifically at N1' and globally, for use in heteronuclear single quantum correlation (HSQC) NMR spectroscopic analyses. The histidine-associated (15)N resonances were assigned by correlation to the C2' protons which had been assigned previously [Okar et al., Biochemistry 38, 1999, 4471-79]. Acquisition of the (1)H-(15)N HSQC from a phosphate-free sample demonstrated that the existence of His-258 in the rare N1' tautomeric state is dependent upon occupation of the phosphate binding site filled by the O2 phosphate of the substrate, fructose-2,6-bisphosphate, and subsequently, the phosphohistidine intermediate. The phosphohistidine intermediate is characterized by two hydrogen bonds involving the catalytic histidines, His-258 and His-392, which are directly observed at the N1' positions of the imidazole rings. The N1' of phospho-His-258 is protonated ((1)H chemical shift, 14.0 ppm) and hydrogen bonded to the backbone carbonyl of Gly-259. The N1' of cationic His-392 is hydrogen bonded ((1)H chemical shift, 13.5 ppm) to the phosphoryl moiety of the phosphohistidine. The existence of a protonated phospho-His-258 intermediate and the observation of a fairly strong hydrogen bond to the same phosphohistidine implies that hydrolysis of the covalent intermediate proceeds without any requirement for an "activated" water. Using the labeled histidines as probes of the catalytic site mutation of Glu-327 to alanine revealed that, in addition to its function as the proton donor to fructose-6-phosphate during formation of the transient phosphohistidine intermediate at the N3' of His-258, this residue has a significant role in maintaining the structural integrity of the catalytic site. The (1)H-(15)N HSQC data also provide clear evidence that despite being a surface residue, His-446 has a very acidic pK(a), much less than 6.0. On the basis of

  20. Investigating patterns of symbiotic nitrogen fixation during vegetation change from grassland to woodland using fine scale δ(15) N measurements.

    Soper, Fiona M; Boutton, Thomas W; Sparks, Jed P

    2015-01-01

    Biological nitrogen fixation (BNF) in woody plants is often investigated using foliar measurements of δ(15) N and is of particular interest in ecosystems experiencing increases in BNF due to woody plant encroachment. We sampled δ(15) N along the entire N uptake pathway including soil solution, xylem sap and foliage to (1) test assumptions inherent to the use of foliar δ(15) N as a proxy for BNF; (2) determine whether seasonal divergences occur between δ(15) Nxylem sap and δ(15) Nsoil inorganic N that could be used to infer variation in BNF; and (3) assess patterns of δ(15) N with tree age as indicators of shifting BNF or N cycling. Measurements of woody N-fixing Prosopis glandulosa and paired reference non-fixing Zanthoxylum fagara at three seasonal time points showed that δ(15) Nsoil inorganic N varied temporally and spatially between species. Fractionation between xylem and foliar δ(15) N was consistently opposite in direction between species and varied on average by 2.4‰. Accounting for these sources of variation caused percent nitrogen derived from fixation values for Prosopis to vary by up to ∼70%. Soil-xylem δ(15) N separation varied temporally and increased with Prosopis age, suggesting seasonal variation in N cycling and BNF and potential long-term increases in BNF not apparent through foliar sampling alone. PMID:24890575

  1. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  2. ~(15)N Isotope Used for Study of Groundwater Nitrogen Pollution in Shijiazhuang City, China

    2004-01-01

    Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ~(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...

  3. Utilization of 15N-urea in laying hens. 3

    In 3 colostomized laying hens the incorporation of heavy nitrogen from urea into the amino acids of the 21 eggs laid during the 8-day experiment was determined. In these eggs the content of 15 amino acids was ascertained separately in white and yolk of the eggs and their atom-% 15N excess (15N') was determined. The heavy nitrogen could be detected in all amino acids investigated. The incorporation of 15N' into the essential amino acids of the white and yolk of eggs is very low. Of the 15N' amount of the urea applied 0.18% could be detected in the 9 essential amino acids of the white of egg and 0.12% in those of the yolk. For the 6 analyzed nonessential amino acids the rediscovery quota of 15N' in the white of egg was 0.50% and in the yolk 0.81% is that the NPN-source urea is insignificant for egg protein synthesis. (author)

  4. 15N-labelled pyrazines of triterpenic acids

    Triterpenoid pyrazines from our research group were found selectively cytotoxic on several cancer cell lines with IC50 in low micromolar range. This sparked our interest in preparing their labeled analogs for metabolic studies. In this work, we prepared a set of non-labeled pyrazines from seven triterpenoid skeletal types along with their 15N labelled analogs. In this work, we present the synthesis and characterization of the target 15N labelled pyrazines. Currently, these compounds are being studied in complex metabolic studies. (author)

  5. The 15N ground state studied with elastic electron scattering

    The C0 elastic electron scattering form factor of 15N has been measured over a momentum transfer range q = 0.4-3.2 fm-1. From these form factor data the ground state charge density and its RMS radius (2.612±0.009 fm) were determined. This charge density as well as its difference with that of 16O were compared to recent large-basis shell-model calculations. Although these calculations describe the individual charge density reasonably, the difference between 16O and 15N cannot be reproduced satisfactorily. (orig.)

  6. Anisotropy of the Chemical Shift Tensor for Fluorines in UF6 : Application to the Fluorine Atom Movement Model

    R. Blinc et al. have made an initial study of polycrystalline uranium hexafluoride using the magnetic resonance of fluorine at 40 Mc/s. The low-temperattire spectrum (t 6 octahedron has one long axis and two short axes, the fluorine atoms are divided among two different types of site. The change in the spectrum with temperature (coalescence of the two lines) suggests movement of the fluorine atoms between the two types of site. By repeating these experiments at 56.4 Mc/s and 94 Mc/s, we have been able to demonstrate the existence of considerable axial anisotropy of the chemical shift tensor (about 650 ppm). The absorption line obtained for a powder in these conditions is complex, and to study it we must envisage a line-shape function f(h), which is the probability that a grain of powder is so orientated that it resonates for the value h of the field. In the absence of movement (low-temperature spectrum) the line-shape function for each of the two lines (corresponding to the two types of site) is of the form obtained for equivalent atoms. It is known that the parameters of chemical shift tensors give information on chemical bond character. We are thus led, for example, to attribute a considerable ionic character (I ≃ 1/2) to the bonds between the uranium and the two most distant fluorine atoms. In the presence of movement the line-shape function is very different, and depends on the type of movement. For UF6, study of the shape of the single line (t > 20°C) in cases where we have anisotropy, shows that the fluorine atoms of the same molecule interchange with each other, each atom remaining in each of the positions for about 5 μsec at 30°C, with an activation energy of about 0.5 eV. (author)

  7. Liver fat quantification: Comparison of dual-echo and triple-echo chemical shift MRI to MR spectroscopy

    Satkunasingham, Janakan; Besa, Cecilia [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Bane, Octavia [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Shah, Ami [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Oliveira, André de; Gilson, Wesley D.; Kannengiesser, Stephan [Siemens AG, Healthcare Sector, Erlangen (Germany); Taouli, Bachir, E-mail: bachir.taouli@mountsinai.org [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States)

    2015-08-15

    Highlights: • We present a large cohort of patients who underwent dual and triple echo chemical shift imaging against multi-echo T{sub 2} corrected MR spectroscopy (MRS) for liver fat quantification. • Our data suggests that a triple-echo sequence is highly accurate for detection of liver fat, even in the presence of T{sub 2}{sup *} shortening, with minor discrepancies when compared with the advanced fat quantification method. - Abstract: Purpose: To assess the diagnostic value of MRI using dual-echo (2PD) and triple-echo (3PD) chemical shift imaging for liver fat quantification against multi-echo T{sub 2} corrected MR spectroscopy (MRS) used as the reference standard, and examine the effect of T{sub 2}{sup *} imaging on accuracy of MRI for fat quantification. Materials and methods: Patients who underwent 1.5 T liver MRI that incorporated 2PD, 3PD, multi-echo T{sub 2}{sup *} and MRS were included in this IRB approved prospective study. Regions of interest were placed in the liver to measure fat fraction (FF) with 2PD and 3PD and compared with MRS-FF. A random subset of 25 patients with a wide range of MRS-FF was analyzed with an advanced FF calculation method, to prove concordance with the 3PD. The statistical analysis included correlation stratified according to T{sub 2}{sup *}, Bland-Altman analysis, and calculation of diagnostic accuracy for detection of MRS-FF > 6.25%. Results: 220 MRI studies were identified in 217 patients (mean BMI 28.0 ± 5.6). 57/217 (26.2%) patients demonstrated liver steatosis (MRS-FF > 6.25%). Bland-Altman analysis revealed strong agreement between 3PD and MRS (mean ± 1.96 SD: −0.5% ± 4.6%) and weaker agreement between 2PD and MRS (4.7% ± 16.0%). Sensitivity of 3PD for diagnosing FF> 6.25% was higher than that of 2PD. 3PD-FF showed minor discrepancies (coefficient of variation <10%) from FF measured with the advanced method. Conclusion: Our large series study validates the use of 3PD chemical shift sequence for detection of

  8. Liver fat quantification: Comparison of dual-echo and triple-echo chemical shift MRI to MR spectroscopy

    Highlights: • We present a large cohort of patients who underwent dual and triple echo chemical shift imaging against multi-echo T2 corrected MR spectroscopy (MRS) for liver fat quantification. • Our data suggests that a triple-echo sequence is highly accurate for detection of liver fat, even in the presence of T2* shortening, with minor discrepancies when compared with the advanced fat quantification method. - Abstract: Purpose: To assess the diagnostic value of MRI using dual-echo (2PD) and triple-echo (3PD) chemical shift imaging for liver fat quantification against multi-echo T2 corrected MR spectroscopy (MRS) used as the reference standard, and examine the effect of T2* imaging on accuracy of MRI for fat quantification. Materials and methods: Patients who underwent 1.5 T liver MRI that incorporated 2PD, 3PD, multi-echo T2* and MRS were included in this IRB approved prospective study. Regions of interest were placed in the liver to measure fat fraction (FF) with 2PD and 3PD and compared with MRS-FF. A random subset of 25 patients with a wide range of MRS-FF was analyzed with an advanced FF calculation method, to prove concordance with the 3PD. The statistical analysis included correlation stratified according to T2*, Bland-Altman analysis, and calculation of diagnostic accuracy for detection of MRS-FF > 6.25%. Results: 220 MRI studies were identified in 217 patients (mean BMI 28.0 ± 5.6). 57/217 (26.2%) patients demonstrated liver steatosis (MRS-FF > 6.25%). Bland-Altman analysis revealed strong agreement between 3PD and MRS (mean ± 1.96 SD: −0.5% ± 4.6%) and weaker agreement between 2PD and MRS (4.7% ± 16.0%). Sensitivity of 3PD for diagnosing FF> 6.25% was higher than that of 2PD. 3PD-FF showed minor discrepancies (coefficient of variation <10%) from FF measured with the advanced method. Conclusion: Our large series study validates the use of 3PD chemical shift sequence for detection of liver fat in the clinical environment, even in the presence of

  9. Characterization of interface abruptness and material properties in catalytically grown III-V nanowires: exploiting plasmon chemical shift

    We have studied the assessment of chemical composition changes in III-V heterostructured semiconductor nanowires (NWs) with nanometric spatial resolution using transmission electron microscopy methods. These materials represent a challenge for conventional spectroscopy techniques due to their high sensitivity to electron beam irradiation. Radiation damage strongly limits the exposure time to a few (5-10) s, which reduces the sensitivity of the traditionally used x-ray spectroscopy. The rather low counting statistics results in significant errors bars for EDS chemical quantification (5-10%) and interface width determination (few nanometers). Plasmon chemical shift is ideal in this situation, as its measurement requires very short exposure times (∼100 ms) and the plasmon peak energy can be measured with high precision (∼20 meV in this work). This high sensitivity allows the detection of subtle changes (1-2%) in composition or even the detection of a small plasmon energy (33 ± 7) meV change along usually assumed pure and homogeneous InAs segments. We have applied this approach to measure interface widths in heterostructure InAs/InP NWs grown using metal catalysts and also to determine the timescale (∼10 s) in which beam irradiation induces material damage in these wires. In particular, we have detected small As concentrations (4.4 ± 0.5)% in the final InP segment close to the Au catalyst, which leads to the conclusion that As diffuses through the metal nanoparticle during growth.

  10. Molecular structure and vibrational bands and 13C chemical shift assignments of both enmein-type diterpenoids by DFT study

    Wang, Tao; Wu, Yi fang; Wang, Xue liang

    2014-01-01

    We report here theoretical and experimental studies on the molecular structure and vibrational and NMR spectra of both natural enmein type diterpenoids molecule (6, 7-seco-ent-kaurenes enmein type), isolated from the leaves of Isodon japonica (Burm.f.) Hara var. galaucocalyx (maxin) Hara. The optimized geometry, total energy, NMR chemical shifts and vibrational wavenumbers of epinodosinol and epinodosin have been determined using B3LYP method with 6-311G (d,p) basis set. A complete vibrational assignment is provided for the observed IR spectra of studied compounds. The calculated wavenumbers and 13C c.s. are in an excellent agreement with the experimental values. Quantum chemical calculations at the B3LYP/6-311G (d,p) level of theory have been carried out on studied compounds to obtain a set of molecular electronic properties (MEP,HOMO, LUMO and gap energies ΔEg). Electrostatic potential surfaces have been mapped over the electron density isosurfaces to obtain information about the size, shape, charge density distribution and chemical reactivity of the molecules.

  11. Acetylcholinesterase(AChE)-catalyzed hydrolysis of long-chain thiocholine esters:shift to a new chemical mechanism

    The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthio-choline(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. (Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477-10482) The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-Rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site

  12. Acetylcholinesterase(AChE)-catalyzed hydrolysis of long-chain thiocholine esters:shift to a new chemical mechanism

    Jung, Dai Il; Shin, Young Ju [Donga Univ., Busan (Korea, Republic of); Lee, Eun Seok; Lee, Bong Ho [Hanbat National Univ., Daejon (Korea, Republic of); Moon, Tae Sung; Yoon, Chang No [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2003-01-01

    The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthio-choline(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. (Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477-10482) The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-Rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.

  13. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    Jang, Richard

    2012-03-21

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  14. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3

    Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé

    2016-01-01

    Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian

  15. Chemical structure elucidation from ¹³C NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms.

    Koichi, Shungo; Arisaka, Masaki; Koshino, Hiroyuki; Aoki, Atsushi; Iwata, Satoru; Uno, Takeaki; Satoh, Hiroko

    2014-04-28

    Computer-assisted chemical structure elucidation has been intensively studied since the first use of computers in chemistry in the 1960s. Most of the existing elucidators use a structure-spectrum database to obtain clues about the correct structure. Such a structure-spectrum database is expected to grow on a daily basis. Hence, the necessity to develop an efficient structure elucidation system that can adapt to the growth of a database has been also growing. Therefore, we have developed a new elucidator using practically efficient graph algorithms, including the convex bipartite matching, weighted bipartite matching, and Bron-Kerbosch maximal clique algorithms. The utilization of the two matching algorithms especially is a novel point of our elucidator. Because of these sophisticated algorithms, the elucidator exactly produces a correct structure if all of the fragments are included in the database. Even if not all of the fragments are in the database, the elucidator proposes relevant substructures that can help chemists to identify the actual chemical structures. The elucidator, called the CAST/CNMR Structure Elucidator, plays a complementary role to the CAST/CNMR Chemical Shift Predictor, and together these two functions can be used to analyze the structures of organic compounds. PMID:24655374

  16. NMR chemical shift analysis of the conformational transition between the monomer and tetramer of melittin in an aqueous solution.

    Miura, Yoshinori

    2016-05-01

    It is known that melittin in an aqueous solution undergoes a conformational transition between the monomer and tetramer by variation in temperature. The transition correlates closely with isomers of the proline residue; monomeric melittin including a trans proline peptide bond (trans-monomer) is involved directly in the transition, whereas monomeric melittin having a cis proline peptide bond (cis-monomer) is virtually not. The transition has been explored by using nuclear magnetic resonance spectroscopy in order to clarify the stability of the tetrameric conformation and the cooperativity of the transition. In the light of temperature dependence of chemical shifts of resonances from the isomeric monomers, we qualitatively estimate the temperature-, salt-, and concentration-dependence of the relative equilibrium populations of the trans-monomer and tetramer, and show that the tetramer has a maximum conformational stability at 30-45 °C and that the transition cooperativity is very low. PMID:26658745

  17. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W. PMID:24496608

  18. Microscopic structures of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate in water probed by the relative chemical shift

    2010-01-01

    The relative chemical shifts (△δ) △δwere put forward to investigate the microscopic structure of 1-ethyl-3-methyl-imidazolium tetrafluoroborate (EmimBF4) during the dilution process with water.The concentration-dependent △δ(C2)H-(C4)H,△δ(C2)H-(C5)H and △δ(C4)H-(C5)H were analyzed.The results reveal that the variations of the microscopic structures of three aromatic protons are inconsistent.The strength of the H-bond between water and three aromatic protons follows the order:(C2)H···O > (C4)H···O > (C5)H···O.The concentration-dependent △δ(C6)H-(C7)H and △δ(C6)H-(C8)H indicate the formation of the H-bonds of (Calkyl)H···O is impossible,and more water is located around (C6)H than around (C7)H or (C8)H.The concentration-dependent △δ(C2)H-(C4)H and △δ(C2)H-(C5)H both increase rapidly when xwater > 0.9 or so,suggesting the ionic pairs of EmimBF4 are dissociated rapidly.The turning points of concentration-dependent △δ(C2)H-(C4)H and △δ(C2)H-(C5)H indicate that some physical properties of the EmimBF4/water mixtures also change at the corresponding concentration point.The microscopic structures of EmimBF4 in water could be clearly detected by the relative chemical shifts.

  19. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water–fat separation

    Aim: To investigate the feasibility of assessing vertebral marrow adipose tissue using a magnetic resonance imaging (MRI) chemical shift-based water–fat separation technique at 3 T. Material and methods: A modified Dixon technique was performed to obtain the vertebral marrow fat fraction (FF) in a study of 58 postmenopausal females (age range 49.2–77.4 years), including 24 normal bone density, 19 osteopaenia, and 15 osteoporosis as documented with dual-energy X-ray absorptiometry. The reliability of FF measurements performed by two radiologists independently was evaluated with the intraclass correlation coefficient (ICC). Ten participants were scanned twice to assess the reproducibility of FF measurements. FF values were compared between each vertebral level and between groups. Results: The mean coefficient of variation of FF measurements was 2.1%. According to the ICC, the measurements were reliable (ICC = 0.900 for normal bone density, ICC = 0.937 for osteopaenia and ICC = 0.909 for osteoporosis, p < 0.001 for all). There was an inverse association between mean FF at L1–L4 vertebrae and lumbar spine BMD (r = −0.459, p = 0.006), which remained significant even after controlling for confounders (age, height, and body weight). FF values at different vertebral levels were significantly correlated to each other (r = 0.703–0.921, p < 0.05 for all). There was a general trend toward increased marrow adiposity for more inferior vertebral bodies. Patients with osteopaenia and osteoporosis had a higher marrow fat content compared with normal bone mass after adjusting for confounders, although no significant differences in each vertebral level and average marrow fat content were found between the osteopaenia and osteoporosis groups. Conclusion: Chemical shift-based water–fat separation enables the quantitation of vertebral marrow adiposity with excellent reproducibility, which appears to be a useful method to provide complementary information to osteoporosis

  20. Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition.

    Lin, Yu-Kai; Chen, Ruei-San; Chou, Tsu-Chin; Lee, Yi-Hsin; Chen, Yang-Fang; Chen, Kuei-Hsien; Chen, Li-Chyong

    2016-08-31

    The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts. PMID:27488185

  1. Chemical shift measurements of chlorine K X-ray spectra using a high-resolution PIXE system

    A high-efficiency high-resolution wavelength-dispersive spectrograph with a von-Hamos configuration was developed for chemical state identification of elements in environmental samples using PIXE analysis. To evaluate the performance of this system, chlorine K X-ray spectra for NaCl, NH4Cl and polyvinylchloride (PVC) targets were measured and compared. Also, to study the applicability to environmental mixed samples, mixtures of NaCl and NH4Cl with different mixing ratios were measured. Through observation of Cl Kα1 X-ray from NaCl, the energy resolution of the system was determined to be 1.1 eV. For the NaCl sample, a Kβx line was observed at an energy, which is higher than that of the Kβ main peak by 2 eV, whereas no Kβx emission was observed for the NH4Cl sample. The chemical shift of the Kβ main peak for PVC relative to that for NaCl was about 1.2 eV. For NaCl-NH4Cl mixture targets, the relative intensity of Kβx satellite to the Kβ main line provided an indication of mixing ratio. Energies and relative intensity of Cl Kβ X-ray satellites for NaCl and NH4Cl samples calculated by a simple molecular-orbital method agreed only qualitatively with the experimental results

  2. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents

  3. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  4. Isotopic enrichment of 15N by ionic exchange cromatography

    The ionic exchange chromatographic method in columns of resin which is employed in the study of isotopic enrichment of 15N is presented. Determinations are made of the isotopic separation constant for the exchange of isotopes 15N and 14N in the equilibrium involving ammonium hidroxide in the solution phase and ions NH4+ adsorbed in cationic resins: Dowex 50W-X8 and X12, 100-200 mesh. Experiments are also conducted for determination of height of theoretical plates for situations of equilibrium of the NH4+ band in two systems of resin's columns aimed at estimating the experimental conditions used. The isotopic analyses of nitrogen are carried out by mass spectrometry

  5. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed. PMID:26470275

  6. Geomorphic control on the δ15N of mountain forests

    R. G. Hilton

    2013-03-01

    Full Text Available Mountain forests are subject to high rates of physical erosion which can export particulate nitrogen from ecosystems. However, the impact of geomorphic processes on nitrogen budgets remains poorly constrained. We have used the elemental and isotopic composition of soil and plant organic matter to investigate nitrogen cycling in the mountain forest of Taiwan, from 24 sites with distinct geomorphic (topographic slope and climatic (precipitation, temperature characteristics. The organic carbon to nitrogen ratio of soil organic matter decreased with soil 14C age, providing constraint on average rates of nitrogen loss using a mass balance model. Model predictions suggest that present day estimates of nitrogen deposition exceed contemporary and historic nitrogen losses. We found ∼6‰ variability in the stable isotopic composition (δ15N of soil and plants which was not related to soil 14C age or climatic conditions. Instead, δ15N was significantly, negatively correlated with topographic slope. Using the mass balance model, we demonstrate that the correlation can be explained by an increase in nitrogen loss by non-fractioning pathways on steeper slopes, where physical erosion most effectively removes particulate nitrogen. Published data from forests on steep slopes are consistent with the correlation. Based on our dataset and these observations, we hypothesise that variable physical erosion rates can significantly influence soil δ15N, and suggest particulate nitrogen export is a major, yet underappreciated, loss term in the nitrogen budget of mountain forests.

  7. Absorption of ammonium sulphate 15N by coffee plants

    The objective of this study was to quantify the absorption of ammonium sulphate 15N by coffee plants. Treatments consisted of five sub-plots of 9 plants, of which the three central ones received 280 kg ha-1 of 15N, applied at four times: 1/4 on 01 Set 03; 1/4 on 03 Nov 03; 1/4 on 15 Dec 03 and 1/4 on 30 Jan 04. The isotopic enrichment was 2,072 ± 0,001 atom % 15N. The dry matter of the shoot was evaluated every 60 days, using one plant per replicate, collected outside the sub-plot. They were as similar as possible to the labeled plants, which were used only for isotopic and Total N analysis, after being dried at 65 deg C until constant weight. At harvest, plants had absorbed 42,88% of the fertilizer N. Leaves accumulated the largest amount of fertilizer N, and were also the compartments that received most N from other parts of the plant. The following partition of the fertilizer N was found at harvest: 23.01% in young leaves, 6.23% in old leaves, 4,46% in stem, 3.46% in fruits, 3.10% in young branches and 2.63% in old branches. (author)

  8. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    Evidence is presented for the covalent binding ofbiologically reduced metabolites of 2,4,6-15N3-trinitrotoluene(TNT) to different soil fractions (humic acids, fulvicacids, and humin) using liquid 15N NMR spectroscopy. Asilylation p...

  9. Variation of natural sup 15 N abundance of crops and soils in Japan with special reference to the effect of soil conditions and fertilizer application

    Yoneyama, Tadakatsu (National Agriculture Research Center, Tsukuba, Ibaraki (Japan). Dept. of Soils and Fertilizers); Kouno, Kazumi; Yazaki, Jinya

    1990-12-01

    The natural {sup 15}N abundance ({delta}{sup 15}N) of the crops subjected to long-term fertilizer treatments under paddy and upland conditions in the different experimental stations throughout Japan were analyzed. The {delta}{sup 15}N values of the grains of paddy rice which were +6.3 per mille on the average in the fields without application of chemical fertilizers decreased by the treatment with chemical fertilizers. The average {delta}{sup 15}N values of the upland crops were lower than those of paddy rice without application of N fertilizers. The {delta}{sup 15}N values of upland crops decreased with the dose of chemical fertilizer N, but increased with the application of composts containing animal feces. The pot experiments using three soils showed that the {delta}{sup 15}N values of paddy rice were higher than those of upland rice and sorghum and that these values were comparable to the {delta}{sup 15}N values of ammonium and nitrate produced in the incubated soils, respectively. The {delta}{sup 15}N values of fertilizer N absorbed by paddy rice were higher than those of fertilizer N, whereas the {delta}{sup 15}N values of the fertilizer N in upland rice and sorghum were increased in the alluvial soils but decreased in Andosols as compared to those of fertilizer N applied. The {delta}{sup 15}N values of the Andosols in Japan showed small variations, with an average value of +6.5 per mille, whereas those of alluvial soils in Japan showed large variations with an average value lower than that of Andosols. (author).

  10. Variation of natural 15N abundance of crops and soils in Japan with special reference to the effect of soil conditions and fertilizer application

    The natural 15N abundance (δ15N) of the crops subjected to long-term fertilizer treatments under paddy and upland conditions in the different experimental stations throughout Japan were analyzed. The δ15N values of the grains of paddy rice which were +6.3 per mille on the average in the fields without application of chemical fertilizers decreased by the treatment with chemical fertilizers. The average δ15N values of the upland crops were lower than those of paddy rice without application of N fertilizers. The δ15N values of upland crops decreased with the dose of chemical fertilizer N, but increased with the application of composts containing animal feces. The pot experiments using three soils showed that the δ15N values of paddy rice were higher than those of upland rice and sorghum and that these values were comparable to the δ15N values of ammonium and nitrate produced in the incubated soils, respectively. The δ15N values of fertilizer N absorbed by paddy rice were higher than those of fertilizer N, whereas the δ15N values of the fertilizer N in upland rice and sorghum were increased in the alluvial soils but decreased in Andosols as compared to those of fertilizer N applied. The δ15N values of the Andosols in Japan showed small variations, with an average value of +6.5 per mille, whereas those of alluvial soils in Japan showed large variations with an average value lower than that of Andosols. (author)

  11. An optimized buffer system for NMR-based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization.

    Xiao, Chaoni; Hao, Fuhua; Qin, Xiaorong; Wang, Yulan; Tang, Huiru

    2009-05-01

    NMR-based metabonomics has been widely employed to understand the stressor-induced perturbations to mammalian metabolism. However, inter-sample chemical shift variations for metabolites remain an outstanding problem for effective data mining. In this work, we systematically investigated the effects of pH and ionic strength on the chemical shifts for a mixture of 9 urinary metabolites. We found that the chemical shifts were decreased with the rise of pH but increased with the increase of ionic strength, which probably resulted from the pH- and ionic strength-induced alteration to the ionization equilibrium for the function groups. We also found that the chemical shift variations for most metabolites were reduced to less than 0.004 ppm when the pH was 7.1-7.7 and the salt concentration was less than 0.15 M. Based on subsequent optimization to minimize chemical shift variation, sample dilution and maximize the signal-to-noise ratio, we proposed a new buffer system consisting of K(2)HPO(4) and NaH(2)PO(4) (pH 7.4, 1.5 M) with buffer-urine volume ratio of 1 : 10 for human urinary metabonomic studies; we suggest that the chemical shifts for the proton signals of citrate and aromatic signals of histidine be corrected prior to multivariate data analysis especially when high resolution data were employed. Based on these, an optimized sample preparation method has been developed for NMR-based urinary metabonomic studies. PMID:19381385

  12. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 - Proof of concept.

    Hoffman, Roy E; Darmon, Eliezer; Aserin, Abraham; Garti, Nissim

    2016-02-01

    In microemulsions, changes in droplet size and shape and possible transformations occur under various conditions. They are difficult to characterize by most analytical tools because of their nano-sized structure and dynamic nature. Several methods are usually combined to obtain reliable information, guiding the scientist in understanding their physical behavior. We felt that there is a need for a technique that complements those in use today in order to provide more information on the microemulsion behavior, mainly as a function of dilution with water. The improvement of NMR chemical shift measurements independent of bulk magnetization effects makes it possible to study the very weak intermolecular chemical shift effects. In the present study, we used NMR high resolution magic angle spinning to measure the chemical shift very accurately, free of bulk magnetization effects. The chemical shift of microemulsion components is measured as a function of the water content in order to validate the method in an interesting and promising, U-type dilutable microemulsion, which had been previously studied by a variety of techniques. Phase transition points of the microemulsion (O/W, bicontinuous, W/O) and changes in droplet shape were successfully detected using high-accuracy chemical shift measurements. We analyzed the results and found them to be compatible with the previous studies, paving the way for high-accuracy chemical shifts to be used for the study of other microemulsion systems. We detected two transition points along the water dilution line of the concentrate (reverse micelles) corresponding to the transition from swollen W/O nano-droplets to bicontinuous to the O/W droplets along with the changes in the droplets' sizes and shapes. The method seems to be in excellent agreement with other previously studied techniques and shows the advantage of this easy and valid technique. PMID:25113928

  13. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 9. Chemical shifts of 13C in isological series of unsaturated ethers, sulfides, selenides and tellurides

    The effects of heteroatoms Eh(Eh=O, S, Se, Te) on 13C chemical shifts in eleven isological series of R1-Eh-R2 unsaturated compounds are compared. A linear relation between 13C nuclei screening and tEh electronegativity is observed. An assumption is suggested that both likeness of the effects of 6A and 7A group elements on 13C chemical shifts of R1 and R2 substituents and their difference for elements of the 4A group are caused by unbonded interactions of the substituents with unshared electron pairs of heteroatoms

  14. Sedimentary records of δ13C, δ15N and organic matter accumulation in lakes receiving nutrient-rich mine waters

    Organic C and total N concentrations, C/N ratios, δ15N and δ13C values in 210Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15–20% and 20–35%, respectively, since ∼ 1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ15N ∼ + 9‰ to + 19‰) were clearly shifted from the primary signal in explosives (δ15N–NO3 = + 3.4 ± 0.3‰; δ15N–NH4 = − 8.0 ± 0.3‰) and NaCN (δ15N = + 1.1 ± 0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. - Highlights: • Historical mining-related changes in organic matter accumulation were revealed. • Macrophyte and

  15. Sedimentary records of δ{sup 13}C, δ{sup 15}N and organic matter accumulation in lakes receiving nutrient-rich mine waters

    Widerlund, Anders, E-mail: Anders.Widerlund@ltu.se; Chlot, Sara; Öhlander, Björn

    2014-07-01

    Organic C and total N concentrations, C/N ratios, δ{sup 15}N and δ{sup 13}C values in {sup 210}Pb-dated sediment cores were used to reconstruct historical changes in organic matter (OM) accumulation in three Swedish lakes receiving nutrient-rich mine waters. Ammonium-nitrate-based explosives and sodium cyanide (NaCN) used in gold extraction were the major N sources, while lesser amounts of P originated from apatite and flotation chemicals. The software IsoSource was used to model the relative contribution of soil, terrestrial and littoral vegetation, and phytoplankton detritus in the lake sediments. In one lake the IsoSource modelling failed, suggesting the presence of additional, unknown OM sources. In two of the lakes sedimentary detritus of littoral vegetation and phytoplankton had increased by 15–20% and 20–35%, respectively, since ∼ 1950, when N- and P-rich mine waters began to reach the lakes. Today, phytoplankton is the dominating OM component in these lake sediments, which appears to be a eutrophication effect related to mining operations. Changes in the N isotopic composition of biota, lake water, and sediments related to the use of ammonium-nitrate-based explosives and NaCN were evident in the two studied systems. However, N isotope signals in the receiving waters (δ{sup 15}N ∼ + 9‰ to + 19‰) were clearly shifted from the primary signal in explosives (δ{sup 15}N–NO{sub 3} = + 3.4 ± 0.3‰; δ{sup 15}N–NH{sub 4} = − 8.0 ± 0.3‰) and NaCN (δ{sup 15}N = + 1.1 ± 0.5‰), and direct tracing of the primary N isotope signals in mining chemicals was not possible in the receiving waters. Systems where mine waters with a well known discharge history are a major point source of N with well-defined isotopic composition should, however, be suitable for further studies of processes controlling N isotope signatures and their transformation in aquatic systems receiving mine waters. - Highlights: • Historical mining-related changes in organic

  16. A novel method for trapping and analyzing 15N in NO for tracing NO sources

    Kang, Ronghua; Mulder, Jan; Dörsch, Peter

    2016-04-01

    15N isotope tracing is an effective and direct approach to investigate the biological and chemical sources of nitric oxide (NO) in soil. However, NO is highly reactive and rapidly converted to nitrogen dioxide (NO2) in the presence of ozone. Various chemical conversions of NO to the more stable solutes nitrite (NO2-) and nitrate (NO3-) have been proposed, which allow analysing the 15N abundance without major fractionation. However, NO emissions from soils are usually small, posing major challenges to conversion efficiency and background contamination. Here we present a novel method in which NO is oxidized to NO2- by chromium trioxide (CrO3) prior to conversion to NO2- and NO3- in an alkaline hydrogen peroxide (H2O2) solution. Immediately following trapping, manganese dioxide (MnO2) and 5M HCl are added to remove excess H2O2, and to adjust the pH to around 6.0-7.0, respectively. The resulting solution can be stored until analysis and is none-toxic, allowing to use a modified denitrifier method (Zhu et al., submitted), where NO2- and NO3- are reduced quantitatively to nitrous oxide (N2O). Optimum NO conversion rates of > 90% even at extremely low initial NO concentration were obtained with 4% H2O2, 0.5 M NaOH, and 0.5 L min-1 gas flow rate. In a laboratory test, using NO gas with different 15N signals produced from unlabelled and labelled NO2-, we found an overall precision of 0.4‰ for unlabelled and 49.7‰ for NO enriched with 1.0 atom% 15N, respectively. This indicates that this method can be used for both natural abundance studies of NO, as well as in labelling studies tracing NO sources. Zhu J, Yu L, Bakken LR, Mørkved PT, Mulder J, Dörsch P. Controlled induction of denitrification in Pseudomonas aureofaciens: a modified denitrifier method for 15N and 18O analysis in NO3- from natural water samples by IRMS. Submitted.

  17. Dynamic of N fertilizers: urea (15 N) and aqua ammonia (15 N) incorporated to the sugar cane soil. Final report

    The dynamic of N fertilizers, urea and aqua ammonia, in the soil of sugar cane crops are studied with an emphasis on the horizontal and vertical moving. The nitrogen routing from urea and aqua ammonia sources, by isotopic technique with 15 N in relation to the leaching, volatilization and extraction by the cultivation and residue of N immobilized manure in the soil with sugar cane plantation is also analysed. (C.G.C.)

  18. Simple, efficient protocol for enzymatic synthesis of uniformly 13C, 15N-labeled DNA for heteronuclear NMR studies.

    Masse, J.E.; Bortmann, P; Dieckmann, T.; Feigon, J

    1998-01-01

    The use of uniformly 13C,15N-labeled RNA has greatly facilitated structural studies of RNA oligonucleotides by NMR. Application of similar methodologies for the study of DNA has been limited, primarily due to the lack of adequate methods for sample preparation. Methods for both chemical and enzymatic synthesis of DNA oligonucleotides uniformly labeled with 13C and/or 15N have been published, but have not yet been widely used. We have developed a modified procedure for preparing uniformly 13C,...

  19. /sup 15/N/sub 2/ incorporation and acetylene reduction by azospirillum isolated from rice roots and soils

    Nayak, D.N.; Charyulu, P.B.B.; Rajaramamohan Rao, V. (Central Rice Research Inst., Cuttack (India). Dept. of Soil Microbiology)

    1981-01-01

    Nitrogen fixation by strains of Azospirillum isolated from several rice soils and rice cultivars was investigated by /sup 15/N/sub 2/ incorporation and C/sub 2/H/sub 2/ reduction. C/sub 2/H/sub 2/ reducing ability markedly varied among the strains obtained from soils differing widely in their physico-chemical properties. Large variations in /sup 15/N/sub 2/ incorporation by Azospirillum isolated from the roots of several rice cultivars were also noticed. The present study reveals that rice cultivars harbour Azospirillum with differential N/sub 2/-fixing ability and that plant genotype is of importance for optimal associations.

  20. 1H, 15N and 13C NMR resonance assignment, secondary structure and global fold of the FMN-binding domain of human cytochrome P450

    The FMN-binding domain of human NADPH-cytochrome P450 reductase,corresponding to exons 3-;7, has been expressed at high level in an active form and labelled with 13C and 15N. Most of the backbone and aliphatic side-chain 1H, 15Nand 13C resonances have been assigned using heteronuclear double- and triple-resonance methods, together with a semiautomatic assignment strategy. The secondary structure as estimated from the chemical shift index and NOE connectivities consists of six α-helices and fiveβ-strands. The global fold was deduced from the long-range NOE sun ambiguously assigned in a 4D 13C-resolved HMQC-NOESY-HMQC spectrum. The fold is of the alternating α/β type, with the fiveβ-strands arranged into a parallel β-sheet. The secondary structure and global fold are very similar to those of the bacterial flavodoxins, but the FMN-binding domain has an extra short helix in place of a loop, and an extra helix at the N-terminus (leading to the membrane anchordomain in the intact P450 reductase). The experimental constraints were combined with homology modelling to obtain a structure of the FMN-bindingdomain satisfying the observed NOE constraints. Chemical shift comparisons showed that the effects of FMN binding and of FMN reduction are largely localised at the binding site

  1. Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA

    Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.

    2013-01-01

    Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on

  2. Effect of spectra recording conditions on the example of chemical shifts calculation in CMR spectra of 1-pentylbenzoylformate

    Mizyuk, Volodymyr; Shibanov, Volodymyr

    2011-01-01

    The concept of "compatible" and "incompatible" CMR spectra has been introduced. Application of compatibility increments (IC) allows to calculate the chemical shifts of C and C3 atoms of pentyloxyl fragment in 1-pentylbenzoylformate with a sufficiently good accuracy. Введено поняття "сумісних " і "несумісних " ЯМР спектрів. Застосування "інкрементів узгодження " дало можливість з достатньою точністю розрахувати хімічні зсуви атомів С2 і С пентилоксильного фрагменту в 1-пентилбензоїлформіаті....

  3. Cytoplasmic fat detection utilizing chemical shift gradient. Echo MR imaging in cases of clear cell renal cell carcinoma

    We investigated whether cytoplasmic fat in clear cell renal cell carcinoma (CCC) can be identified by chemical shift gradient-echo magnetic resonance imaging (CSI). CSI was performed for 22 cases of CCC and 30 cases of other renal tumors (including 16 cases of non-CCC), all of which were surgically proven. Signal reduction in out-of-phase images of these tumors was retrospectively evaluated and compared. The signal loss ratio (SLR) was defined and calculated. Fat staining of specimens from 16 tumors was performed and correlated with SLR. SLR was found to be significantly higher in CCC than in non-CCC (p<0.002). There was a significant correlation between the degree of fat staining positively of the specimens and SLR (p<0.01). When signal reduction in out-of-phase images suggested a diagnosis of CCC, a correct diagnosis of this entity was made in the resected renal tumors with a sensitivity, specificity, and accuracy of 82%, 93%, and 88%, respectively. CSI can demonstrate cytoplasmic fat in CCC, which helps to differentiate this entity from other renal tumors. (author)

  4. Quantitative evaluation of norcholesterol scintigraphy, CT attenuation value, and chemical-shift MR imaging for characterizing adrenal adenomas

    The objective of our study was to evaluate diagnostic ability and features of quantitative indices of three modalities: uptake rate on norcholesterol scintigraphy, computed tomography (CT) attenuation value, and fat suppression on chemical-shift magnetic resonance imaging (MRI) for characterizing adrenal adenomas. Image findings of norcholesterol scintigraphy, CT, and MRI were reviewed for 78 patients with functioning (n=48) or nonfunctioning (n=30) adrenal masses. The norcholesterol uptake rate, attenuation value on unenhanced CT, and suppression on in-phase to opposed-phase MRI were measured for adrenal masses. The norcholesterol uptake rate, CT attenuation value, and MR suppression index showed the sensitivity of 60%, 82%, and 100%, respectively, for functioning adenomas of <2.0 cm, and 96%, 79%, and 67%, respectively, for those of ≥2.0 cm. A statistically significant correlation was observed between size and norcholesterol uptake, and between CT attenuation value and MR suppression index. Regarding norcholesterol uptake, the adenoma-to-contralateral gland ratio was significantly higher in cortisol releasing than in aldosterone-releasing adenomas. The norcholesterol uptake rate was reliable for characterization of adenomas among adrenal masses of ≥2.0 cm. CT attenuation value and MR suppression index were well correlated with each other, and were useful regardless of mass size. (author)

  5. The study on temporal lobe epilepsy with single-voxel proton MR spectroscopy and chemical shift imaging

    Objective: To investigate the value of different proton MR spectroscopy techniques including single-voxel spectroscopy (SVS) and chemical shift imaging (CSI) in diagnosing patients with temporal lobe epilepsy. Methods: Sixty cases (40 normal, 20 temporal lobe epilepsy) experienced SVS and CSI. The volume of interest (VOI) of SVS was placed over the anterior hippocampus formation (HF) region, including part of the head and body of the HF. The VOI of CSI encompassed bilateral HF and the head, body and tail of HF. The VOI was divided into 5 voxels from anterior to posterior. The metabolite data of both SVS and CSI were obtained and the ratios of NAA/Cr and NAA/(Cho+Cr) were recorded or calculated. Results: The ipsilateral hippocampus to the seizure of TLE patients had lower ratios of NAA/(Cho+Cr) and NAA/Cr, and the differences compared with those of the normal group and contralateral subgroup were statistically significant (F=41.958, P1HMRS study improved the diagnostic yield of MR evaluation in TLE patients. There was a correlation between the ratio of NAA/(Cho+Cr) and the location of HF. Regional variation must be considered when interpreting proton spectra of the HF. (author)

  6. Solid state NMR chemical shift assignment and conformational analysis of a cellulose binding protein facilitated by optimized glycerol enrichment.

    Ivanir, Hadar; Goldbourt, Amir

    2014-07-01

    Magic-angle spinning solid-state NMR has been applied to study CBM3b-Cbh9A (CBM3b), a cellulose binding module protein belonging to family 3b. It is a 146-residue protein having a unique nine-stranded β-sandwich fold, in which 35% of the structure is in a β-sheet conformation and the remainder of the protein is composed of loops and unstructured regions. Yet, the protein can be crystalized and it forms elongated needles. Close to complete chemical shift assignment of the protein was obtained by combining two- and three-dimensional experiments using a fully labeled sample and a glycerol-labeled sample. The use of an optimized protocol for glycerol-based sparse labeling reduces sample preparation costs and facilitates the assignment of the large number of aromatic signals in this protein. Conformational analysis shows good correlation between the NMR-predicted secondary structure and the reported X-ray crystal structure, in particular in the structured regions. Residues which show high B-factor values are situated mainly in unstructured regions, and are missing in our spectra indicating conformational flexibility rather than heterogeneity. Interestingly, long-range contacts, which could be clearly detected for tyrosine residues, could not be observed for aromatic phenylalanine residues pointing into the hydrophobic core, suggesting possible high ring mobility. These studies will allow us to further investigate the cellulose-bound form of CBM proteins. PMID:24824437

  7. Molecular structure and vibrational and chemical shift assignments of 3‧-chloro-4-dimethylamino azobenzene by DFT calculations

    Toy, Mehmet; Tanak, Hasan

    2016-01-01

    In the present work, a combined experimental and theoretical study on ground state molecular structure, spectroscopic and nonlinear optical properties of azo compound 3‧-chloro-4-dimethlamino azobenzene are reported. The molecular geometry, vibrational wavenumbers and the first order hyperpolarizability of the title compound were calculated with the help of density functional theory computations. The optimized geometric parameters obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The vibrational transitions were identified based on the recorded FT-IR spectra in the range of 4000-400 cm-1 for solid state. The 1H isotropic chemical shifts with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and good agreement is determined with the experimental ones. To investigate the NLO properties of the title compound, the polarizability and the first hyperpolarizability were calculated using the density functional B3LYP method with the 6-311++G(d,p) basis set. According to results, the title compound exhibits non-zero first hyperpolarizability value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential and frontier molecular orbitals were also performed at 6-311++G(d,p) level of theory.

  8. Recent advances in the application of 13C and 15N NMR spectroscopy to soil organic matter studies

    Nuclear magnetic resonance (NMR) spectroscopy has been applied to many studies in soil science, geochemistry, and environmental science. In recent years, the study of soil organic matter (SOM) using NMR techniques has progressed rapidly. NMR spectroscopy has been used to study chemical changes of SOM during decomposition, and also of soil extract fractions such as humic acid and fulvic acid. NMR spectroscopy of soils has improved rapidly in recent years with the introduction of pre-treatment and particle-size fractionation. In addition to routine liquid- and solid-state 13C NMR applications, 15N NMR spectra of natural abundant samples have been reported, but 15N-enriched material is more convenient to use due to the low natural abundance of 15N. Some newly developed NMR techniques have also been utilised, such as 2-dimensional NMR spectroscopy and improved 1H NMR techniques. These are reviewed and commented on in this paper. Copyright (2000) CSIRO Publishing

  9. Isotope 15N for agronomic research: an overview

    Fertilizer N recovery determined by isotope labelling technique using 15N enriched fertilizer was compared with apparent recovery of N obtained by the difference method and the extent of error associated with it was compared in six vegetable crops. In the difference method, fertilizer N recovery was overestimated and the error ranged from 3 per cent in tomato to 94 per cent in chilli, whereas uptake of soil N by the difference method was underestimated and the error ranged from 2 per cent in tomato to 64 per cent in chilli. One of the main reasons for the error was the degree of response to N due to increase in dry matter yield

  10. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {l_brace}in-phase and out-of phase{r_brace} MR imaging

    Ragab, Yasser [Radiology Department, Faculty of Medicine, Cairo University (Egypt); Radiology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yragab61@hotmail.com; Emad, Yasser [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt); Rheumatology and Rehabilitation Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: yasseremad68@yahoo.com; Gheita, Tamer [Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University (Egypt)], E-mail: gheitamer@yahoo.com; Mansour, Maged [Oncology Department, Faculty of Medicine, Cairo University (Egypt); Oncology Department, Dr Erfan and Bagedo General Hospital (Saudi Arabia)], E-mail: magedmansour@yahoo.com; Abou-Zeid, A. [Public Health Department, Faculty of Medicine, Cairo University, Cairo (Egypt)], E-mail: alaabouzeid@yahoo.com; Ferrari, Serge [Division of Bone Diseases, Department of Rehabilitation and Geriatrics, and WHO, Collaborating Center for Osteoporosis Prevention, Geneva University Hospital (Switzerland)], E-mail: serge.ferrari@medecine.unige.ch; Rasker, Johannes J. [Rheumatologist University of Twente, Enschede (Netherlands)], E-mail: j.j.rasker@utwente.nl

    2009-10-15

    Objective: The objective of this study was to establish the cut-off value of the signal intensity drop on chemical shift magnetic resonance imaging (MRI) with appropriate sensitivity and specificity to differentiate osteoporotic from neoplastic wedging of the spine. Patients and methods: All patients with wedging of vertebral bodies were included consecutively between February 2006 and January 2007. A chemical shift MRI was performed and signal intensity after (in-phase and out-phase) images were obtained. A DXA was performed in all. Results: A total of 40 patients were included, 20 with osteoporotic wedging (group 1) and 20 neoplastic (group 2). They were 21 males and 19 females. Acute vertebral collapse was observed in 15 patients in group 1 and subacute collapse in another 5 patients, while in group 2, 11 patients showed acute collapse and 9 patients (45%) showed subacute vertebral collapse. On the chemical shift MRI a substantial reduction in signal intensity was found in all lesions in both groups. The proportional changes observed in signal intensity of bone marrow lesions on in-phase compared with out-of-phase images showed significant differences in both groups (P < 0.05). At a cut-off value of 35%, the observed sensitivity of out-of-phase images was 95%, specificity was 100%, positive predictive value was 100% and negative predictive value was 95.2%. Conclusion: A chemical shift MRI is useful in order to differentiate patients with vertebral collapse due to underlying osteoporosis or neoplastic process.

  11. Phosphorus Chemical Shifts in Drew-Dickerson Dodecamer and DNA Hairpin from MD-DFT Calculations: NMR Based Force Field Validation

    Přecechtělová, J.; Munzarová, M. L.; Vaara, J.; Novák, P.; Dračínský, Martin; Sklenář, V.

    Ireland : University College Dublin, 2012. s. 72-72. [EUROMAR 2012. Magnetic Resonance Conference. 01.07.2012-05.07.2012, Dublin] Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR spectroscopy * phosphorus chemical shift * DFT calculations Subject RIV: CC - Organic Chemistry

  12. Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution.

    Truflandier, Lionel A; Autschbach, Jochen

    2010-03-17

    Ab initio molecular dynamics (aiMD) simulations based on density functional theory (DFT) were performed on a set of five anionic platinum complexes in aqueous solution. (195)Pt nuclear magnetic shielding constants were computed with DFT as averages over the aiMD trajectories, using the two-component relativistic zeroth-order regular approximation (ZORA) in order to treat relativistic effects on the Pt shielding tensors. The chemical shifts obtained from the aiMD averages are in good agreement with experimental data. For Pt(II) and Pt(IV) halide complexes we found an intermediate solvent shell interacting with the complexes that causes pronounced solvent effects on the Pt chemical shifts. For these complexes, the magnitude of solvent effects on the Pt shielding constant can be correlated with the surface charge density. For square-planar Pt complexes the aiMD simulations also clearly demonstrate the influence of closely coordinated non-equatorial water molecules on the Pt chemical shift, relating the structure of the solution around the complex to the solvent effects on the metal NMR chemical shift. For the complex [Pt(CN)(4)](2-), the solvent effects on the Pt shielding constant are surprisingly small. PMID:20166712

  13. An electron-scattering study of 15N

    An electron scattering experiment on 15N was performed in order to test the results of two different shell-model approaches, both performed in a full (0+2)ℎω space, one employing a phenomenologic interaction which is valid throughout the 1p shell, the other an interaction whose parameters were adjusted to fit the excitation energies of a number of states. The experiment was carried out at the high-energy electron-scattering facility of NIKHEF-k. A room temperature gas target was employed. Data were taken at forward angles in the range q=0.35 - 3.17 fm-1. Results are presented for negative-parity states up to an excitation energy of 13 MeV. The differences in groundstate charge density between 15N and the neighbouring nuclei 16O and 14N are compared with results of shell-model calculations. In ch. 5 the transition charge-densities to the excited negative-parity states are presented and compared with shell model calculations. 52 refs.; 18 figs.; 5 tabs

  14. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution's experience

    Kohl, Chad A. [Mayo Clinic, Department of Radiology, Phoenix, AZ (United States); Radiology Ltd., Tucson, AZ (United States); Chivers, F.S.; Lorans, Roxanne; Roberts, Catherine C.; Kransdorf, Mark J. [Mayo Clinic, Department of Radiology, Phoenix, AZ (United States)

    2014-08-15

    To re-assess the accuracy of chemical shift imaging in diagnosing indeterminate bone marrow lesions as benign or malignant. We retrospectively reviewed our experience with MR imaging of the pelvis to assess the accuracy of chemical shift imaging in distinguishing benign from malignant bone lesions. Two musculoskeletal radiologists retrospectively reviewed all osseous lesions biopsied since 2006, when chemical shift imaging was added to our routine pelvic imaging protocol. Study inclusion criteria required (1) MR imaging of an indeterminate bone marrow lesion about the pelvis and (2) subsequent histologic confirmation. The study group included 50 patients (29 male, 21 female) with an average age of 67 years (range, 41-89 years). MR imaging results were evaluated using biopsy results as the ''gold standard.'' There were 27 malignant and 23 benign lesions. Chemical shift imaging using an opposed-phase signal loss criteria of less than 20 % to indicate a malignant lesion, correctly diagnosed 27/27 malignant lesions and 14/23 benign lesions, yielding a 100 % sensitivity, 61 % specificity, 75 % PPV, 100 % NPV, and 82 % accuracy. The area under the receiver operator characteristic (ROC) curve was 0.88. The inter-rater and intra-rater agreement K values were both 1.0. Chemical shift imaging is a useful adjunct MR technique to characterize focal and diffuse marrow abnormalities on routine non-contrast pelvic imaging. It is highly sensitive in identifying malignant disease. Despite its lower specificity, the need for biopsy could be eliminated in more than 60 % of patients with benign disease. (orig.)

  15. Diffusion-weighted imaging of the liver at 3 T using section-selection gradient reversal: emphasis on chemical shift artefacts and lesion conspicuity

    Aim: To assess the value of section-selection gradient reversal (SSGR) in liver diffusion-weighted imaging (DWI) by comparing it to conventional DWI with an emphasis on chemical shift artefacts and lesion conspicuity. Materials and methods: Forty-eight patients (29 men and 19 women; age range 33–80 years) with 48 liver lesions underwent two DWI examinations using spectral presaturation with inversion recovery fat suppression with and without SSGR at 3 T. Two reviewers evaluated each DWI (b = 100 and b = 800 image) with respect to chemical shift artefacts and liver lesion conspicuity using five-point scales and performed pairwise comparisons between the two DWIs. The signal-to-noise ratio (SNR) of the liver and the lesion and the lesion–liver contrast-to-noise ratio (CNR) were also calculated. Results: SSGR-DWI was significantly better than conventional DWI with respect to chemical shift artefacts and lesion conspicuity in both separate reviews and pairwise comparisons (p < 0.05). There were significant differences in the SNR of the liver (b = 100 and b = 800 images) and lesion (b = 800) between SSGR-DWI and conventional DWI (p < 0.05). Conclusion: Applying the SSGR method to DWI using SPIR fat suppression at 3 T could significantly reduce chemical shift artefacts without incurring additional acquisition time or SNR penalties, which leads to increased conspicuity of focal liver lesions. - Highlights: • Chemical shift artefact in liver DWI is markedly decreased by applying SSGR. • Liver lesion conspicuity is improved by applying SSGR to DWI. • In SNR of the liver, SSGR-DWI is better than conventional DWI

  16. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution's experience

    To re-assess the accuracy of chemical shift imaging in diagnosing indeterminate bone marrow lesions as benign or malignant. We retrospectively reviewed our experience with MR imaging of the pelvis to assess the accuracy of chemical shift imaging in distinguishing benign from malignant bone lesions. Two musculoskeletal radiologists retrospectively reviewed all osseous lesions biopsied since 2006, when chemical shift imaging was added to our routine pelvic imaging protocol. Study inclusion criteria required (1) MR imaging of an indeterminate bone marrow lesion about the pelvis and (2) subsequent histologic confirmation. The study group included 50 patients (29 male, 21 female) with an average age of 67 years (range, 41-89 years). MR imaging results were evaluated using biopsy results as the ''gold standard.'' There were 27 malignant and 23 benign lesions. Chemical shift imaging using an opposed-phase signal loss criteria of less than 20 % to indicate a malignant lesion, correctly diagnosed 27/27 malignant lesions and 14/23 benign lesions, yielding a 100 % sensitivity, 61 % specificity, 75 % PPV, 100 % NPV, and 82 % accuracy. The area under the receiver operator characteristic (ROC) curve was 0.88. The inter-rater and intra-rater agreement K values were both 1.0. Chemical shift imaging is a useful adjunct MR technique to characterize focal and diffuse marrow abnormalities on routine non-contrast pelvic imaging. It is highly sensitive in identifying malignant disease. Despite its lower specificity, the need for biopsy could be eliminated in more than 60 % of patients with benign disease. (orig.)

  17. Reproducibility of 31P MR spectroscopy detection in human liver with two-dimensional chemical shift imaging

    Objective: To study the reproducibility of relative quantification of phosphorus metabolites in human liver with two-dimensional chemical shift imaging(2D CSI). Methods: Using 2D CSI with FOV 200 mm and average times 40, 500 ml phosphate (NaH2PO4) solution phantom with 0.05 mol/L concentration was scanned 6 times, changing FOV to 280 mm, five healthy volunteers were scanned 6 times under respiration gating. The relative quantification of metabolites was derived from the integral values of peaks on the spectra, and then the errors of metabolite detection were obtained through data analysis. Results: (1) With FOV 200 mm and average times 40, phosphate solution phantom had a good reproducibility with the error less than 5.38%. Under respiration gating, the largest detection error of metabolites within five volunteers was phosphomonoesters (PME) 39.5%, inorganic phosphate (Pi) 40.4%, phosphodiesters (PDE) 23.2%, adenosine triphosphate; γ-ATP 24.3%, α-ATP 20.1%, β-ATP 24.9%, respectively. (2) The baseline of spectra was smoother and the error was less with respiration gating than that without respiration gating. (3) During the phantom test, with average times 40, change FOV to 280 mm and 400 mm, the detection errors were 4.96% and 4.47%. With FOV 200 mm and average times 20, 40, 80, the detection errors were 8.86%, 5.38% and 4.40%, corresponding acquisition time were 1.27 min, 2.53 min and 5.06 min. Conclusion: Detection of phosphorus metabolites in human liver with 2D CSI is a stable and useful technique. Scan parameters should be carefully selected, and other influencing factors of detection must be also noticed during examination. (authors)

  18. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use.

    Rocio I Ruiz-Cooley

    Full Text Available Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS documents for the first time multiple geographic origins and migration. Phe δ(15N values, a proxy for habitat baseline δ(15N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15N values in gladii for squid at small sizes (60 cm converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure.

  19. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use.

    Ruiz-Cooley, Rocio I; Ballance, Lisa T; McCarthy, Matthew D

    2013-01-01

    Coincident with climate shifts and anthropogenic perturbations, the highly voracious jumbo squid Dosidicus gigas reached unprecedented northern latitudes along the NE Pacific margin post 1997-98. The physical or biological drivers of this expansion, as well as its ecological consequences remain unknown. Here, novel analysis from both bulk tissues and individual amino acids (Phenylalanine; Phe and Glutamic acid; Glu) in both gladii and muscle of D. gigas captured in the Northern California Current System (NCCS) documents for the first time multiple geographic origins and migration. Phe δ(15)N values, a proxy for habitat baseline δ(15)N values, confirm at least three different geographic origins that were initially detected by highly variable bulk δ(15)N values in gladii for squid at small sizes (60 cm) converged, indicating feeding in a common ecosystem. The strong latitudinal gradient in Phe δ(15)N values from composite muscle samples further confirmed residency at a point in time for large squid in the NCCS. These results contrast with previous ideas, and indicate that small squid are highly migratory, move into the NCCS from two or more distinct geographic origins, and use this ecosystem mainly for feeding. These results represent the first direct information on the origins, immigration and habitat use of this key "invasive" predator in the NCCS, with wide implications for understanding both the mechanisms of periodic D. gigas population range expansions, and effects on ecosystem trophic structure. PMID:23527242

  20. Chemical shift of U L3 edges in different uranium compounds obtained by X-ray absorption spectroscopy with synchrotron radiation

    D Joseph; C Nayak; P Venu Babu; S N Jha; D Bhattacharyya

    2014-05-01

    Uranium L3 X-ray absorption edge was measured in various compounds containing uranium in U4+, U5+ and U6+ oxidation states. The measurements have been carried out at the Energy Dispersive EXAFS beamline (BL-08) at INDUS-2 synchrotron radiation source at RRCAT, Indore. Energy shifts of ∼ 2–3 eV were observed for U L3 edge in the U-compounds compared to their value in elemental U. The different chemical shifts observed for the compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on U cation in the above compounds.

  1. Natural abundance of /sup 15/N in soil organic matter with special reference to paddy soils in Japan. Biogeochemical implications on the nitrogen cycle

    Wada, Eitaro; Imaizumi, Reiko (Mitsubishi Chemical Industries Ltd., Tokyo (Japan)); Takai, Yasuo

    1984-01-01

    In order to explain the general principle which controls the /sup 15/N content of soil organic nitrogen, experimental rice fields which were fertilized for long term were investigated. The /sup 15/N abundance values of rice plants vary according to the kinds of fertilizer, e.g., chemical fertilizer and green manure. The significant difference of /sup 15/N abundance was recognized between rice plants and fertilizers. Nitrification and denitrification seemed to be responsible for the difference. But these have minor effect on the variation of /sup 15/N abundance of soil because rice plants assimilate all available nitrogen and are removed from paddy fields by harvest. Consequently, the effects of nitrification-denitrification and ammonia volatilization are observed only in biological process such as the growth of rice plants and hydrophytes. A long term addition of fertilizers clearly increased the amount of soil organic nitrogen in paddy fields. Based on isotope mass balance, nitrogen isotope fractionation factor of 0.9942 was estimated in the process of epidiagenesis which indicates the selective decomposition of heavy isotopic species. An addition of ammonium sulfate with low /sup 15/N abundance decreased the /sup 15/N content of soil nitrogen in the paddy fields with the depletion of soil organic nitrogen. OrgC/clay ratio was demonstrated as an important factor which controls the /sup 15/N abundance value in paddy soil. The relation between the /sup 15/N abundance value in soil organic nitrogen and OrgC/clay ratio was able to be presented by hyperbola for the paddy soild so far examined. The /sup 15/N abundance of source and plant nitrogen two isotopic fractionation associated with the epidiagenesis of soil organic matter and the adsorption of ammonia by clay minerals are the three major factors determining the /sup 15/N abundance of soil organic nitrogen.

  2. Phosphorus-31 nuclear magnetic resonance of double- and triple-helical nucleic acids. Phosphorus-31 chemical shifts as a probe of phosphorus-oxygen ester bond torsional angles

    The temperature dependence to the 31P NMR spectra of poly[d(GC)]-poly[d(GC)], d(GC)4, phenylalanine tRNA (yeast) and mixtures of poly(A) + oligo(U) is presented. The 31P NMR spectra of mixtures of complementary RNA and of the poly d(GC) self-complementary DNA provide torsional information on the phosphate ester conformation in the double, triple, and ''Z'' helix. The increasing downfield shift with temperature for the single-strand nucleic acids provides a measure of the change in the phosphate ester conformation in the single helix to coil conversion. A seperate upfield peak (20-26% of the total phosphates) is observed at lower temperatures in the oligo(U)-poly(A) mixtures which is assigned to the double helix/triple helix. Proton NMR and UV spectra confirm the presence of the multistrand forms. The 31P chemical shift for the double helix/triple helix is 0.2-0.5 ppm upfield from the chemical shift for the single helix which in turn is 1.0 ppm upfield from the chemical shift for the random coil conformation

  3. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Kayler, Z.E.; Kaiser, M; Gessler, A.; Ellerbrock, R. H.; M. Sommer

    2011-01-01

    Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of δ13C and δ15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the δ13C and δ15N isotopic signatures from two organic matter (OM) fractio...

  4. Effect of fed-batch on synthesis of 15N-L-tryptophan from precursor fermentation

    Using Candida utilis AS60 as 15N-L-tryptophan producing strain, the influence by different feeding modes of glucose, 15N-(NH4)2SO4 and 15N-anthranilic acid was studied. The results of these experiments show that the yield of 15N-L-tryptophan was 3.073 g/L by addition of 50 g/L of glucose, 2.1 g/L of 15N-(NH4)2SO4 and 1.5 g/L of 15N-anthranilic acid after 36 h of fermentation. (authors)

  5. Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high ON/OFF ratio

    Wu, Chong-Rong; Chang, Xiang-Rui; Chang, Shu-Wei; Chang, Chung-En; Wu, Chao-Hsin; Lin, Shih-Yen

    2015-11-01

    We show that multilayer molybdenum disulfide (MoS2) grown with the chemical vapor deposition (CVD) may exhibit quite distinct behaviors of Raman shifts from those of exfoliated ones. The anomalous Raman shifts depend on CVD growth modes and are attributed to the modified dielectric screening and interlayer coupling of MoS2 in various growth conditions. With repeated CVD growths, we demonstrated the precise control over the layer number of MoS2. A decently large drain current, high ON/OFF ratio of 105, and enhanced field-effect mobility can be achieved in transistors fabricated on the six-layer MoS2.

  6. Raman and I.R. spectra of the NH and ND stretching region in polycristalline imidazole, 15N and D substituted analogs

    I.R. and Raman Spectra of imidazole and eleven 15N and D substituted analogs have been analysed, in the region 3300-1800 cm-1. The broad bands with fine structure observed correspond to two spectral features: a) The overall broad bands are attributed to associated NH(D)...N stretching vibrations. Observed νNH 15N shifts are 10 to 15 cm-1 in I.R. which is more than expected for pure νNH. This is probably due to νNH coupling with external modes. b) The fine structure is interpreted as due to interactions by Fermi resonance of νNH(D) with overtones and combinations of internal modes. Considering the temperature and 15N shifts, transmission windows or Evans holes rather than band maximum are found to correspond to overtone and combination values

  7. Investigation of the metabolism of colostomized laying hens with 15N-labelled wheat. 6

    Three colostomized laving hens received 40 g 15N-labelled wheat with 20.13 atom-% 15N excess (15N'), 19.18 atom-% 15N'-lysine, 18.17 atom-% 15N'-histidine and 20.43 atom-% 15N'-arginine per day over a period of four days. After having received the same non-labelled feed ration on the following four days, the hens were slaughtered. The incorporation and distribution of 15N' in the total nitrogen and the nitrogen of the basic amino acids was determined in liver, kidneys, muscles, bones and the remaining carcass (excluding blood, digestive tract and genital organs). The quota of nitrogen of natural isotope frequency (14N) of the total 14N of the hens' carcasses was 47% in the muscles, 14% in the bones and 20% in the feathers; the relative 15N' values were 37%, 8% and 1%, resp. The atom-% 15N' in the kidneys was twice as much as in the liver four days after the last 15N' application. The average percentage of the nitrogen in the three basic amino acids of the total nitrogen in the tissues and organs (excluding feathers) is 25% concerning both 14N and 15N'. The 15N' balance revealed that in hen 1 100%, in hen 2 102% and in hen 3 101% of the consumed wheat 15N' were found. (author)

  8. Determination of 15N nitrates in water samples using mass spectrometry

    The nitrogen element (Z = 7) has two stable isotopes, whose relative quantities are 99.64% for 14N and 0.36% for 15N. Nitrogen is part of many processes and reactions that are important to life and that affect the quality of the water. Within the nitrogen cycle there are kinetic and thermodynamic fractionation processes, which are potentially important for tracing its sources and demands. Water contamination due to nitrates is a serious problem that is affecting large parts of the biosphere. Surface water contamination can be remedied by prevention and control measures, but the problem becomes acute when the contamination penetrates to groundwater water. Contaminated groundwater can remain in the aquifers for centuries, even milleniums, and decontamination is very difficult, if not impossible. Isotopic techniques can help to evaluate how vulnerable the groundwater is to contamination from the surface when its displacement speed and extra load area are determined. Then the sources of surface contamination (natural, industrial, agricultural, domestic) can be identified. Isotopic techniques can also describe an incipient contamination, and they can provide an early alert when chemical or biological indicators do not reveal any signs for concern. The isotopic fractionation of several nitrogen compounds provide the basis for using 15N as a hydrological isotope tool. There are three main sources of nitrogen contamination in water, these are: organic nitrogen in the soil, nitrogenized fertilizers, domestic, industrial and animal wastes. The following technical procedure describes the method for determining the isotopic ration 15N/14N in nitrates in water. The nitrate is separated from the water using ion exchange columns through a resin, which is eluded with HCI and with the addition of silver oxide becomes silver nitrate. This solution is freeze-dried and submitted to combustion at 850 in a sealed quartz tube, using copper/copper oxide for the nitrogen reduction and

  9. First-principles calculation of spectral features, chemical shift and absolute threshold of ELNES and XANES using a plane wave pseudopotential method

    Spectral features, chemical shifts, and absolute thresholds of electron energy loss near-edge structure (ELNES) and x-ray absorption near-edge structure (XANES) for selected compounds, i.e. TiO2 (rutile), TiO2 (anatase), SrTiO3, Ti2O3, Al2O3, AlN and β-Ga2O3, were calculated by a plane wave pseudopotential method. Experimental ELNES/XANES of those compounds were well reproduced when an excited pseudopotential, which includes a core hole, was used. In addition to the spectral features, it was found that chemical shifts among different compounds were also reproduced by correcting the contribution of the excited pseudopotentials to the energy of the core orbital.

  10. Deciphering Noncovalent Interactions Accompanying 7,7,8,8-Tetracyanoquinodimethane Encapsulation within Biphene[n]arenes: Nucleus-Independent Chemical Shifts Approach.

    Lande, Dipali N; Rao, Soniya S; Gejji, Shridhar P

    2016-07-18

    Binding of novel biphene[n]arene hosts to antiaromatic 7,7,8,8-tetracyanoquinodimethane (TCNQ) are investigated by DFT. Biphene[4]arene favors the inclusion complex through noncovalent interactions, such as hydrogen bonding, π-π stacking, C-H⋅⋅⋅π, and C-H⋅⋅⋅H-C dihydrogen bonding. Donor-acceptor complexation renders aromatic character to the guest through charge transfer. The formation of TCNQ anionic radicals through supramolecular π stacking significantly influences its chemical and photophysical behavior. Electron density reorganization consequent to encapsulation of TCNQ reflects in the shift of characteristic vibrations in the IR spectra. The accompanying aromaticities arising from the induced ring currents are analyzed by employing nucleus-independent chemical shifts based profiles. PMID:27028656

  11. Correlation between 1H NMR chemical shifts of hydroxyl protons in n-hexanol/cyclohexane and molecular association properties investigated using density functional theory

    Flores, Mario E.; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2016-01-01

    Association of n-hexanol molecules in cyclohexane forming clusters is studied by DFT and 1H NMR. Geometry optimization, corrected binding energies, charge distributions, charge transfer energies, and 1H NMR chemical shifts have been obtained. The calculated chemical shifts of hydroxyl protons have been correlated to experimental data obtained in the range of n-hexanol molar fraction between 0.002 and 0.2, showing that n-hexanol molecules at a molar fraction around 0.1, where well-structured hydrogen bond networks are observed, tend to form linear pentamers and hexamers. The experimental data are consistent with the continuous linear association thermodynamic model, showing a dimensionless association constant of 284.

  12. Use of Bio-Organic Fertilizers to Develop N Uptake Using 15N Technique

    Experimental work either in field scale or in green house conditions were conducted using 15N technique to evaluate the role of different bio fertilizers and different plant residues as organic amendments on enhancement of plant N nutrition. Nitrogen fixation by a symbiotic bacteria has been observed in greenhouse and field experiments under dry land cropping systems. Biological N2 fixation associated with crop residues (legumes or cereals) was investigated in pot experiments with wheat and chickpea cultivars. In these experiments, labelled wheat and rice straw were used as organic N sources in comparison with either 15N-labelled ammonium sulfate or ammonium nitrate as chemical nitrogen fertilizers. Rhizobium inoculation extended to be used with wheat gave the best results of N uptake and N2 fixation when combined with Azospirillum brasilense as heterotrophic diazotrophs. The nitrogen uptake by wheat plants was significantly increased by application of soybean residues and inoculation with Azospirillum brasilense. From the field trial we can conclude that soybean residue as enriched N material, and Azospirillum brasilense inoculation enhanced N yields of wheat cultivars grown in poor fertile sandy soil

  13. Metabolic studies in colostomized laying hens using 15N-labelled wheat. 4

    3 colostomized laying hybrids received over 4 days a dosage of 672 mg 15N excess (15N'), 20.3 mg lysine 15N', 23.0 mg histidine 15N' and 66.7 mg arginine 15N' with a ration customary in production. After feeding the same unlabelled ration for another 4 days the hens were killed and the N content of the blood as well as of its fractions (cells, plasma, free amino acids of the plasma) was determined. The 15N' was determined in the total blood, the corpuscles, the plasma, the nonprotein-N (NPN) fraction as well as in the amino acids lysine, histidine and arginine. The average amount of the blood cell N in the total blood N was 58.5% and that of the plasma 40.3%; the corresponding 15N' values amounted to 66.1% and 33.9%, respectively. The sum of the 15N' of the basic amino acids of the blood cells, on an average, amounted to 39.7% of the total cell 15N'; the corresponding average value for the total 15N' in lysine, histidine and arginine of the blood plasma 15N' was 23.6.% and the quota of the three free amino acids of the total NP15N' of the plasma was 6.2%. (author)

  14. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches

    Vícha, J.; Novotný, J.; Straka, Michal; Repisky, M.; Ruud, K.; Komorovsky, S.; Marek, R.

    2015-01-01

    Roč. 17, č. 38 (2015), s. 24944-24955. ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : NMR chemical shifts * transition metal complexes * relativistic effects * method calibration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04214c

  15. Orientational constraints as three-dimensional structural constraints from chemical shift anisotropy: the polypeptide backbone of gramicidin A in a lipid bilayer.

    Mai, W.; Hu, W; Wang, C; Cross, T A

    1993-01-01

    Chemical shifts observed from samples that are uniformly aligned with respect to the magnetic field can be used as very high-resolution structural constraints. This constraint takes the form of an orientational constraint rather than the more familiar distance constraint. The accuracy of these constraints is dependent upon the quality of the tensor characterization. Both tensor element magnitudes and tensor orientations with respect to the molecular frame need to be considered. Here these con...

  16. Utilization of natural variations in the isotopic abundance of 15N to trace the source of aquifer pollution by nitrates

    The validity of using the natural isotope nitrogen-15 to trace the source of nitrates contained in aquifers is discussed with reference to experimental devices (lysimeters and experimental plots) and for examples chosen from the Paris area. There are a number of sources of nitrates: (1) industrially synthesized nitrates (fertilizers); (2) nitrates produced by oxidation of organic matter associated with human, agricultural or urban activities; (3) nitrates synthesized in the soil by the decay of organic matter. In the examples studied these sources differ in their 15N content: (1) fertilizers have a delta15N close to zero (atmospheric nitrogen); (2) the nitrates originating from organic pollution have high delta15N (above 10-12 per mille) and this 15N enrichment is associated with the volatilization of ammonia during the ammonia stage of mineralization; (3) the isotopic characterization of the nitrates produced by organic matter in the soil is less evident. Citing several examples, the author demonstrates that these three sources are diffentiated isotopically. Consideration of the parameters nitrate concentration/isotopic composition reveals simple mixture curves. In the most complicated cases - where there is association with other isotopic (3H) or chemical parameters - it is possible qualitatively to trace the sources of nitrogen pollution

  17. FAO/IAEA - interregional training course on the use of 15N in soil science and plant nutrition

    This training manual provides an introduction for the basic methodology and principles of application of the stable isotope 15N. After preliminary remarks on stable isotope terminology fundamentals, experimental problems and methods of quantitative nitrogen determination in soil and plant studies are reported in the main part of the manual. An appendix with a compilation of different parameters such as natural abundance of stable isotopes, selected atomic weights and multiples of them conversion factors of chemical compounds, and much more concludes the manual

  18. Fate of 15N-urea and 15N-ammonium sulphate applied in different periods to cica-8 rice culture in greenhouse conditions

    The fate of nitrogen fertilizers in rice cultivars (Cica-8) is studied. Urea (1.973% at of 15N) and ammonium sulfate (1.826% at of 15N) are used. The fertilizers are applied in four levels (0,100,200 and 300 Kg N/ha) in shadow coditions and after 30 days of germination. (M.A.C.)

  19. Precision and sensitivity of the measurement of 15N enrichment in D-alanine from bacterial cell walls using positive/negative ion mass spectrometry

    Tunlid, A.; Odham, G.; Findlay, R. H.; White, D. C.

    1985-01-01

    Sensitive detection of cellular components from specific groups of microbes can be utilized as 'signatures' in the examination of microbial consortia from soils, sediments or biofilms. Utilizing capillary gas chromatography/mass spectrometry and stereospecific derivatizing agents, D-alanine, a component localized in the prokaryotic (bacterial) cell wall, can be detected reproducibly. Enrichments of D-[15N]alanine determined in E. coli grown with [15N]ammonia can be determined with precision at 1.0 atom%. Chemical ionization with methane gas and the detection of negative ions (M - HF)- and (M - F or M + H - HF)- formed from the heptafluorobutyryl D-2 butanol ester of D-alanine allowed as little as 8 pg (90 fmol) to be detected reproducibly. This method can be utilized to define the metabolic activity in terms of 15N incorporation at the level of 10(3)-10(4) cells, as a function of the 15N-14N ratio.

  20. Utilization of 15N-labelled urea in laying hens. 4

    In order to study the utilization of urea in poultry, 3 colostomized laying hybrids were orally supplied with a traditional ration supplemented with 1% 15N'-labelled urea with a 15N excess (15N') of 96.06 atom-% over a period of 6 days. After another 2 days on which the hens received the same ration with unlabelled urea, they were killed. The atom-% 15N' of the blood on an average of the 3 hens was 0.64, of the plasma 1.40 and of the corpuscles 0.47. The TCA-soluble fraction of the blood had an average 15N' of 1.14 atom-%; the 15N amount was 9.7% of the total amount of 15N in the blood. The amount of 15N' in the urea in the blood was 6.8 atom-%. This shows that the absorbed urea is decomposed very slowly. The quota of 15N' in the basic amino acids from the total 15N' of the blood plasma was only 0.3% and that of the corpuscles 2.2%. The average 15N' of the mature follicles was 2.39 atom-% whereas the smallest and the remaining ovary contain 1.12 atom-%. The labelling level of lysine in mature egg cells was, in contrast to this, only 0.08 atom-% 15N' and in infantile follicles 0.04 atom-% 15N'. 1% of the 15N' quota was in the follicles and the remaining ovary. Of the basic amino acids, histidine is most strongly labelled. The lower incorporation of the 15N' from urea into the basic amino acids shows that the nitrogen of this compound can be used for the synthesis of the essential amino acids to a low degree only. (author)

  1. Reproducibility and influencing factors of 31P MR spectroscopy in rabbit liver with two-dimensional chemical shift imaging

    Objective: To investigate the reproducibility and influencing factors of relative quantification of phosphorus metabolites with two-dimensional chemical shift imaging (2D CSI) in rabbit liver. Methods: Using 2D CSI MRS, 500 ml phosphate (NaH2PO4) solution phantom with 0.05 mol/L concentration and one healthy rabbit were scanned 30 times respectively in one day and rescanned 30 times in the next day, and the stability of MR scanner and reproducibility of within-run and between-days in the same individual were analyzed. Each of thirty rabbits was scanned and rescanned one time respectively in different days, and the reproducibility of between-days in one group was analyzed. The data were statistically analyzed with t tests. Results: (1) Phosphate solution phantom had a good reproducibility of within-run with the coefficient variation (CV) of 4.92% and 5.12% respectively in different two days. No significant change of phosphorus metabolites was detected in between-days, which was 16.68±0.82 and 16.56± 0.85 respectively (t=0.665, P>0.05). (2) The CV of metabolites in one healthy rabbit ranged from 8.04% to 34.13%. Among the metabolites, β-ATP had the best reproducibility with the CV less than 10%. PME was 0.88±0.28 and 0.88±0.30, PDE was 4.35±0.66 and 4.35±0.66, Pi was 0.95±0.30 and 0.97±0.28, α-ATP was 5.58±0.60 and 5.61±0.61, β-ATP was 2.70±0.22 and 2.71± 0.22, γ-ATP was 2.20±0.63 and 2.18±0.44 respectively, no significant changes of metabolites were detected in between-days (P>0.05). (3) The CV of metabolites in 30 healthy rabbits ranged from 8.48% to 36.21%. Among the metabolites, β-ATP had the best reproducibility with CV less than 10%. PME was 0.84±0.30 and 0.79±0.28, PDE was 4.29±0.72 and 3.94±0.84, Pi was 0.91±0.28 and 0.92± 0.31, α-ATP was 5.65±0.66 and 5.36±0.60, β-ATP was 2.71±0.23 and 2.66±0.25, γ-ATP was 2.07±0.29 and 1.99±0.37 respectively, no significant changes of metabolites were detected in between-days (P>0

  2. The synthesis of barbituric acid and some of its derivatives isotopically labelled with 15N

    Full text: Barbituric acid is the parent compound of a large class of barbiturates that have central nervous system depressant properties, although barbituric acid itself is not pharmacologically active. In recent years, barbituric acid derivatives have been studied as antitumor, anticancer and anti-osteoporosis agents. The aim of this paper is to present the synthesis of barbituric acid-15N, 5,5-diethylbarbituric acid-15N (Veronal-15N) and 5-ethyl-5-phenylbarbituric acid- 15N (Phenobarbitone-15N) . As isotopically labelled material we used urea-15N2, 99 at.% 15N produced at National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. All compounds were fully characterized by Mass Spectrometry analyses, by FT-IR Spectroscopy and RX Diffraction, and the isotopic label was determined by MS on the molecular compounds. (author)

  3. Studies with 15N-labelled lysine in colostomized laying hens. 5

    3 colostomized laying hens received, together with a commercial ration of 120 g, 0.2 % 15N-labelled L-lysine with an atom-% 15N excess (15N') of 48 %; subsequently the same ration was fed over a period od 4 days with 0.2 % unlabelled L-lysine. After the end of the experiment the hens were slaughtered. The atom-% 15N' was determined in total, in the lysine, histidine and arginine N of blood cells, plasma, NPN fraction of the blood, stomach, small intestine, cecum and rectum. 15N' in the blood cells was 0.11 atom-% in the blood plasma 0.17 atom-%, in the NPN fraction of the blood 0.09 atom-%, in the tissues of the gastrointestinal tract 0.11 atom-% and in its contents 0.12 atom-%. On the average the blood contained per hen 77.9 % lysine-15N', 16.4 % arginine-15N' and 5.7 % histidine-15N' of the basic amino acid-15N'. For the gastrointestinal tract 78.7 % lysine-15N', 19.0 % arginine-15N' and 2.3 % histidine-15N' of the 15N' of the basic amino acids were ascertained. In comparison to histidine the α-amino-N of lysine is incorporated to a considerably higher degree into arginine. For lysine and arginine the atom-% 15N' in the contents of the gastrointestinal tract is 4 days after the end of the supplementation of labelled lysine 8 to 10 times higher than in the feces of the last day of the experiment. This indicates a considerable secretion of the 2 amino acids in the gastrointestinal tract and their reabsorption to a large extent. (author)

  4. Individual protein balance strongly influences δ15N and δ13C values in Nile tilapia, Oreochromis niloticus

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing δ15N and δ13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on δ15N and δ13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. δ15N and δ13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  5. 15N tracer kinetic studies on the validity of various 15N tracer substances for determining whole-body protein parameters in very small preterm infants

    Reliable 15N tracer substances for tracer kinetic determination of whole-body protein parameters in very small preterm infants are still a matter of intensive research, especially after some doubts have been raised about the validity of [15N]glycine, a commonly used 15N tracer. Protein turnover, synthesis, breakdown, and further protein metabolism data were determined by a paired comparison in four preterm infants. Their post-conceptual age was 32.2 +/- 0.8 weeks, and their body weight was 1670 +/- 181 g. Tracer substances applied in this study were a [15N]amino acid mixture (Ia) and [15N]glycine (Ib). In a second group of three infants with a post conceptual age of 15N-labeled 32.0 +/- 1.0 weeks and a body weight of 1,907 +/- 137 g, yeast protein hydrolysate (II) was used as a tracer substance. A three-pool model was employed for the analysis of the data. This model takes into account renal and fecal 15N losses after a single 15N pulse. Protein turnovers were as follows: 11.9 +/- 3.1 g kg-1 d-1 (Ia), 16.2 +/- 2.5 g kg-1 d-1 (Ib), and 10.8 +/- 3.0 g kg-1 d-1 (II). We were able to demonstrate an overestimation of the protein turnover when Ib was used. There was an expected correspondence in the results obtained from Ia and II. The 15N-labeled yeast protein hydrolysate is a relatively cheap tracer that allows reliable determination of whole-body protein parameters in very small preterm infants

  6. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  7. Use of 15N Label in Organic Synthesis and Spectroscopy. Part I: Preparation of 15N-Labeled tert-Butylamine

    Talaty, Erach R.; Boese, Christopher A.; Adewale, Sanni M.; Ismail, Mohammed S.; Provenzano, Frank A.; Utz, Melissa J.

    2002-02-01

    The preparation of 15N-labeled tert-butylamine involves the conversion of the correspondingly labeled potassium cyanide into the 15N-labeled tert-butylformamide via the Ritter reaction in 85% yield, followed by hydrolysis with either aqueous sodium hydroxide or hydrochloric acid. The NMR spectra of the compounds provide a valuable opportunity for discussing several important topics in NMR spectroscopy, such as cis-trans isomerism due to restricted rotation and 15N coupling. Comparison of the IR spectra of the labeled and unlabeled compounds permits a forum for discussing the theory of vibrational frequencies.

  8. Studies with 15N-labelled lysine in colostomized hens. 3

    In a metabolism experiment with 15N-labelled lysine 3 colostomized laying hybrids received over 4 days 0.2% L-lysine with 48 at% 15N excess (15N') in addition to a ration conventionally produced and, subsequent to this, unlabelled lysine for four days. At the end of the experiment the hens were killed and the individual organs and tissues were prepared for 15N analysis. The incorporation of the lysine-15N' into the further amino acids of follicles, ovary and oviduct is described. The at% 15N' of the complete range of amino acids was analyzed in the individual follicles. Various levels of heavy nitrogen could be detected in all essential and non-essential amino acids. Of the total amount of 15N' detected in the follicles 64.0%, 65.0% and 61.2%, resp., could be detected in lysine and 25.2%, 25.4% and 28.7%, resp., in the other amino acids (hens 1 to 3). In the ovary on average 61.6% and in the oviduct 54.2% of the respective 15N' amount was detected in lysine. In the ovary 10.9% and in the oviduct 8.4% 15N' of the total 15N' of these samples were incorporated into the arginine molecules. (author)

  9. Alanine flux in obese and healthy humans as evaluated by 15N- and 2H3-labeled alanines

    Estimates of plasma alanine flux as measured in humans using L-[15N]-alanine or L-[3,3,3-2H3]alanine were compared by simultaneous intravenous infusion of both tracers. Plasma isotope enrichments were measured by chemical ionization gas chromatography-mass spectrometry. In 16 obese women before and during a hypocaloric diet and in 4 normal men in the postabsorptive and fed states, the fluxes were highly correlated (r2 = 0.93) although plasma alanine flux with the 2H tracer was two to three times greater than that obtained with [15N]alanine. The fluxes decreased with the hypocaloric diet in obese subjects and increased during the fed state in healthy adults. Thus, although the estimates of alanine flux differed according to the tracer used, both appear to give equivalent information about changes in alanine kinetics induced by the nutritional conditions examined

  10. Utilization of 15N-labelled urea in laying hens. 7

    3 colostomized laying hybrids received 1% 15N-labelled urea with 96.06 atom-% 15N excess (15N') with a commercial ration over a period of 6 days. After the application of the same ration with unlabelled urea on the following 2 days the animals were butchered. In the muscles of breast, legs and heart, the labelling of total nitrogen and the incorporation of urea 15N' into 15 amino acids of the 3 different kinds of muscles were ascertained. On average, significant differences could be ascertained between the atom-% 15N of the muscles was 0.25 and 0.34 atom-%, resp.; that of the cardial proteins 0.71 atom-% 15N'. The incorporation of urea 15N into the basic amino acids is low and varies both between the kinds of muscles and between the amino acids. On average the highest level of labelling was found among the essential amino acids valine, isoleucine and leucine; the average atom-% 15N' for the muscles of the breast is 0.13, of the leg 0.17, and of the heart 0.27; the 15N' quota of branched Chain amino acids in the total 15N' of the respective muscle is accordingly 6.0%, 5.0% and 4.5%. The non-essential amino acids, particularly glutamic acid, are more highly labelled in the muscles than the essential ones. A 15N' for glutamic acid of 0.24 atom-% in the breast muscles, of 0.27 atom-% in those of the legs and of 0.64 atom-% in the heart muscle could be detected. The average quota of the 15N' of these acid amino acids in the 15N' for breast, leg and heart muscles is 7.4, 6.2 and 6.7, resp. The quota of the 15N' in the 6 non-essential amino acids in the total 15N' in all 3 kinds of muscles is approximately two thirds and in the 9 essential ones one third of the total 15N'. Although the results show that there is a certain incorporation of 15N' from urea into the amino acids of the muscle proteins, their contribution to meeting the demands is irrelevant. (author)

  11. The Use Of 15N in the Study of Nitrogen Uptake and Metabolism in Plants

    Some forty years ago Mattson attempted to represent soil solutions as ionic states. Later on, he further developed his theory with the aid of the latest achievements in physical chemistry. In 1955 Schoffield applied chemical thermodynamics to make the interrelations between the solid and liquid phases of the soil even more precise. Nitrogen occupies a special position among the plant nutrients. The greatest success in nitrogen uptake and metabolism studies, however, has been achieved only recently after the development of isotope techniques. The study of nitrogen metabolism using isotope techniques has been carried out for some years at the N. Poushkarov Institute of Soil Science using optical methods of isotope detection. Certain of the results obtained recently point to the great opportunities offered by the use of the optical method. Greenhouse and field experiments were carried out with wheat, oats and lucerne. Ammonium sulphate with 11.50 at.%, 15N,andurea 5.55 at % were used as sources of nitrogen. Depending on the conditions, the nitrogen introduced with fertilizers was utilized by the plants in amounts ranging from 47 to 56% in the greenhouses, and from 38 to 45% m the field. It was established that the soil was the source of nearly half the nitrogen of the plants. Fertilized plants took up more of the soil nitrogen than the unfertilized plants. The nitrogen introduced into the soil was found in all fractions of the plants after 24 h and was in the non-protein organic nitrogen, constitution proteins, chlorophyll and reserve proteins of the plants. The highest amounts of 15N were found in the following free amino acids: arginine, histidine, lysine and the amide aspargine. In the bound amino acids, alanine, threonine, serine and glycine were highest in 15N. Phosphorus application increased the amounts of nitrogen in the amino acids. It was established that nitrogen turnover was greatest in chlorophyll and the constitution proteins. In the study of the quality

  12. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    Min, Ji Hye [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Young Kon, E-mail: jmyr@dreamwiz.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lim, Sanghyeok [Department of Radiology, Guri Hospital, Hanyang University College of Medicine, Guri (Korea, Republic of); Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain.

  13. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images

    Highlights: • Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC. • Alfa-fetoprotein, tumor size, and fat component were associated with MVI of HCC. • Chemical shift MRI should be considered for the evaluation of HCC. - Abstract: Purpose: To investigate the impact of intra-tumoral fat detected by chemical-shift MR imaging in predicting the MVI of HCC. Materials and methods: Gadoxetic acid-enhanced MR imaging of 365 surgically proven HCCs from 365 patients (306 men, 59 women; mean age, 55.6 years) were evaluated. HCCs were classified into two groups, fat-containing and non-fat-containing, based on the presence of fat on chemical-shift images. Fat-containing HCCs were subdivided into diffuse or focal fatty change groups. Logistic regression analyses were used to identify clinical and MR findings associated with MVI. Results: Based on MR imaging, 66 tumors were classified as fat-containing HCCs and 299 as non-fat-containing HCCs. Among the 66 fat-containing HCCs, 38 (57.6%) showed diffuse fatty changes and 28 (42.4%) showed focal fatty changes. MVI was present in 18 (27.3%) fat-containing HCCs and in 117 (39.1%) non-fat-containing HCCs (P = 0.07). Univariate analysis revealed that serum alpha-fetoprotein (AFP) and tumor size were significantly associated with MVI (P < 0.001). A multiple logistic regression analysis showed that log AFP (odds ratio 1.178, P = 0.0016), tumor size (odds ratio 1.809, P < 0.001), and intra-tumoral fat (odds ratio 0.515, P = 0.0387) were independent variables associated with MVI. Conclusion: Intra-tumoral fat detected with MR imaging may suggest lower risk for MVI of HCC and, therefore, a possibly more favorable prognosis, but the clinical value of this finding is uncertain

  14. Pseudo 5D HN(C)N experiment to facilitate the assignment of backbone resonances in proteins exhibiting high backbone shift degeneracy

    Kumar, Dinesh, E-mail: dineshcbmr@gmail.com [Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014 (India); Raikwal, Nisha [Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014 (India); Shukla, Vaibhav Kumar; Pandey, Himanshu; Arora, Ashish [Molecular and Structural Biology Division, CSIR, Central Drug Research Institute, Lucknow 226031 (India); Guleria, Anupam, E-mail: anuguleriaphy@gmail.com [Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow 226014 (India)

    2014-09-30

    Graphical abstract: - Highlights: • A reduced dimensionality experiment – referred as pseudo 5D HN(C)N- is presented. • Encodes highly resolved 5D spectral information in a 3D spectrum. • Superior in terms of peak dispersion. • Facilitates assignment of crowded HSQC spectra of moderately sized proteins. • Modulated {sup 15}N chemical shifts are used to break the amide shift degeneracy. - Abstract: Assignment of protein backbone resonances is most routinely carried out using triple resonance three-dimensional NMR experiments involving amide {sup 1}H/{sup 15}N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high-degree of backbone shift degeneracy. In this backdrop, a novel reduced-dimensionality (RD) experiment –(5, 3)D-hNCO-CANH- is presented to facilitate/validate the sequential backbone resonance assignment in such proteins. The proposed 3D NMR experiment makes use of the modulated amide {sup 15}N chemical shifts (resulting from the joint sampling along both its indirect dimensions) to resolve the ambiguity involved in connecting the neighboring amide resonances (i.e. H{sub i}N{sub i} and H{sub i−1}N{sub i−1}) for overlapping amide-NH peaks. The experiment -in combination with routine triple resonance 3D-NMR experiments involving backbone amide ({sup 1}H/{sup 15}N) and carbon ({sup 13}C{sup α}/{sup 13}C′) chemical shifts- will serve as a powerful complementary tool to achieve the nearly complete assignment of protein backbone resonances in a time efficient manner.

  15. Acetylene inhibition of N2O reduction in laboratory soil and groundwater denitrification assays: evaluation by 15N tracer and 15N site preference of N2O

    Weymann, Daniel; Well, Reinhard; Lewicka-Szczebak, Dominika; Rohe, Lena

    2013-01-01

    Acetylene inhibition of N2O reduction in laboratory soil and groundwaterdenitrification assays: evaluation by 15N tracer and 15N site preference ofN2ODaniel Weymann (1), Reinhard Well (2), Dominika Lewicka-Szczebak (2,3), and Rohe Lena (2)(1) Forschungszentrum Juelich, Agrosphere Institute (IBG-3), Juelich, Germany (), (2)Thünen-Institute of Climate-Smart Agriculture, Braunschweig, Germany, (3) University of Wroclaw, PolandThe measurement of denitrification in soils and...

  16. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  17. Other compounds isolated from Simira glaziovii and the 1H and 13C NMR chemical shift assignments of new 1-epi-castanopsol

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D 1H, 13C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of 1H and 13C NMR chemical shift assignments. (author)

  18. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. 129Xe-NMR of xenon adsorbed on zeolites: determination of the dimensions of the void space from the chemical shift δ(129Xe)

    The chemical shift δS of xenon adsorbed on zeolite and extrapolated to zero concentration depends only on the internal void space of the solid. The smaller the channels or cavities, or the more restricted the diffusion, the greater δS becomes. We have calculated the theoretical values of the mean free path l-bar of xenon adsorbed in various zeolites. We deduce from them the dependence of the δS on l-bar. It is now possible to determine the dimensions of any void space in which xenon can be adsorbed. 4 refs.; 2 figs.; 3 tabs

  20. Investigation into endogenous N metabolism in 15N-labelled pigs. 1

    4 male castrated pigs (55-65 kg) either received a wheat-fish meal diet (1 and 2) or a wheat-horse bean diet (3 and 4) without straw meal supplement (1 and 3) or with a supplement of 20% dry matter (2 and 4). In order to investigate whether a 15N labelling of the pigs is also possible with a protein excess in the ration, the animals received 24.8 g (1 and 2) and 11.6 g crude protein/kg/sup 0.75/ live weight (3 and 4). During a 10-day 15N-labelling 385 mg 15N excess (15N') per kg/sup 0.75/ were applied with 15N labelling the following quotas of the applied 15N amount were incorporated: 1 = 10.2%, 2 = 7.2%, 3 = 18.7%, 4 = 14.4%. 15N excretion in both TCA fractions of feces showed a highly significant positive correlation to the increasing content of crude fibre in the 4 diets. The immediate 15N incorporation into the TCA-precipitable fraction of feces proves that 15N enters the large intestine endogenously and serves bacterial protein synthesis. 3 days after the last 15 application the pigs were killed. The values of atom-% 15N' were determined in the TCA-precipitable blood plasma and in the TCA-precipitable fraction of the liver. The other examined organs and tissues showed smaller differences between the test animals. The results show that the 15N labelling of tissues and organs of pigs is also possible at a high level of protein supply by means of an oral application of [15N] ammonia salts. (author)

  1. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical s...

  2. Direct measurement of the 15N CSA/dipolar relaxation interference from coupled HSQC spectra

    Here we propose a method for the measurement of the 15N CSA/dipolar relaxation interference based on direct comparison of the 15N doublet components observed in a 1H-coupled 1H-15N HSQC-type spectrum. This allows the determination of the cross-correlation rates with no need for correction factors associated with other methods. The signal overlap problem of coupled HSQC spectra is addressed here by using the IPAP scheme (Ottiger et al., 1998). The approach is applied to the B3 domain of protein G to show that the method provides accurate measurements of the 15N CSA/dipolar cross-correlation rates

  3. Investigation of the metabolism of colostomized laying hens with 15N-labelled wheat. 5

    In an experiment with 3 colostomized laying hybrids each animal received 80 g pelleted mixed feed and 40 g 15N-labelled wheat with 20.13 atom-% 15N excess (15N') over a period of four days. On the following four days the hens received rations composed in the same way with unlabelled wheat, however in the tissues and organs of the slaughtered hens 15N' was determined in the total N and the amino acids lysine, histidine and arginine in both the segments of the gastro intestinal tract and in its content. The amount of 15N' stomach, small intestine and colon was 43.7%, 27.2% and 29.1%, respectively. The tissue of the small intestine contained, on an average, the highest 15N' in lysine of all the basic amino acids. It was 0.82 atom-% 15N' for lysine, 0.55% for histidine and 0.63% for arginine. The percentage of the 15N' of the basic amino acids from the corresponding total 15N' amount of the charges was 20.5% in the contents of the gastrointestinal tract, 28.0% in the stomach tissue and in the tissues of the small intestine 24.4% of the cecum 21.5% and of the rectum 25.7%. (author)

  4. Utilization of 15N-labelled urea in laying hens. 6

    3 colostomized laying hybrids received a normal ration containing 1% 15N-labelled urea with 96.06% atom-% 15N excess (15N') over six days. Subsequently the same ration with unlabelled urea was given over 2 days, after which the animals were butchered. In the kidneys the 15N' amounted to 1.1 atom-% and 1.8 atom-% in the liver. The TCA soluble N fraction and the ammonia were more highly labelled than the total N. Lysine, histidine and arginine were lowly labelled in the kidneys. This also applies to the liver with the exception of histidine. In the branch-chained and aromatic amino acids of the liver the 15N' was between 0.2 and 0.3 atom-%. The highest labelling of non-essential amino acids was found in glutamic acid with 0.9 atom-% 15N' and aspartic acid with 1.1 atom-% 15 N'. The evaluation of the amino acid in the liver showed that the 6 non-essential amino acids account for two thirds of the total amino acid 15N' whereas the 9 essential ones account for one third of the amino acid 15N' only. (author)

  5. Nitrogen (15N) recovery from ammonium and nitrate applied to the soil by sugar cane

    An experiment was developed in a field aimed to compare the recovery of the ammonium-15 N and nitrate-15 N by the sugar cane plants harvested mechanically without burning. A rate of 70 kg ha-1 of N was applied as ammonium nitrate, in strip, onto cultural residues. Two lineal meters micropots were used. They received the fertilizer labeled with 15 N. Two treatments were established using labeled ammonium (NH4+-15 N) or nitrate (NO3-15 N). Two months after fertilization, four samples of the aerial part (two lineal meters) for treatment in the portions that did not receive the fertilizer-15 N, were taken in order to evaluated the fitomass production (Mg ha-1) and N-total accumulated (kg ha-1). This evaluation was repeated every two months up to complete five of them. Two leaves (leaves with 3 deg C visible auricle) were collected from plants that were in a middle of the micropots (15 N) and in corresponding positions in the adjacent rows, to evaluated the concentration of 15 N. There was a larger absorption of the nitrate-N (30.5%) than of the ammonium-N (21.2%). On the other hand, in the soil the results showed larger ammonium-15 N residual effect concentration, probably due to microorganism immobilization. (author)

  6. DFT Studies on Thermal Stabilities,Electronic Structures, and 13C Chemical Shifts of C24O2 Based on Fullerene C24(D6)

    WANG Zhen; ZHANG Jing

    2011-01-01

    Quantum chemical calculations on some possible equilibrium geometries of C2402 isomers derived from C24 (D6) and C240 have been performed using density functional theory (DFT) method. The geometric and electronic structures as well as the relative energies and thermal stabilities of various C2402 isomers at the ground state have been calculated at the B3LYP/6-31G(d) level of theory. And the 1,4,2,5-C2402 isomer was found to be the most stable geometry where two oxygen atoms were added to the longest carbon-carbon bonds in the same pentagon from a thermodynamic point of view. Based on the optimized neutral geometries, the vertical ionization potential and vertical electron affinity have been obtained. Meanwhile, the vibrational frequencies,IR spectrum, and 13C chemical shifts of various C2402 isomers have been calculated and analyzed.

  7. Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees.

    Wiggins, Natasha L; Forrister, Dale L; Endara, María-José; Coley, Phyllis D; Kursar, Thomas A

    2016-01-01

    Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few-week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment

  8. Simultaneous acquisition of {sup 13}C{sup {alpha}}-{sup 15}N and {sup 1}H-{sup 15}N-{sup 15}N sequential correlations in proteins: application of dual receivers in 3D HNN

    Chakraborty, Swagata; Paul, Subhradip; Hosur, Ramakrishna V., E-mail: hosur@tifr.res.in [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2012-01-15

    We describe here, adaptation of the HNN pulse sequence for multiple nuclei detection using two independent receivers by utilizing the detectable {sup 13}C{sup {alpha}} transverse magnetization which was otherwise dephased out in the conventional HNN experiment. It enables acquisition of 2D {sup 13}C{sup {alpha}}-{sup 15}N sequential correlations along with the standard 3D {sup 15}N-{sup 15}N-{sup 1}H correlations, which provides directionality to sequential walk in HNN, on one hand, and enhances the speed of backbone assignment, on the other. We foresee that the implementation of dual direct detection opens up new avenues for a wide variety of modifications that would further enhance the value and applications of the experiment, and enable derivation of hitherto impossible information.

  9. Final Technical Report: A Paradigm Shift in Chemical Processing: New Sustainable Chemistries for Low-VOC Coatings

    Smith, Kenneth F.

    2006-07-26

    The project employed new processes to make emulsion polymers from reduced levels of petroleum-derived chemical feedstocks. Most waterborne paints contain spherical, emulsion polymer particles that serve as the film-forming binder phase. Our goal was to make emulsion polymer particles containing 30 percent feedstock that would function as effectively as commercial emulsions made from higher level feedstock. The processes developed yielded particles maintained their film formation capability and binding capacity while preserving the structural integrity of the particles after film formation. Rohm and Haas Company (ROH) and Archer Daniels Midland Company (ADM) worked together to employ novel polymer binders (ROH) and new, non-volatile, biomass-derived coalescing agents (ADM). The University of Minnesota Department of Chemical Engineering and Material Science utilized its unique microscopy capabilities to characterize films made from the New Emulsion Polymers (NEP).

  10. Comparative molecular field analysis and comparative molecular similarity index analysis studies on 1H NMR chemical shift of NH group of diaryl triazene derivatives.

    Rofouie, M K; Salahinejad, M; Ghasemi, J B; Aghaei, A

    2013-05-01

    Comparative molecular field analysis (CoMFA), comparative molecular field analysis region focusing (CoMFA-RF) for optimizing the region for the final partial least square analysis, and comparative molecular similarity indices analysis (CoMSIA) methods were employed to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) models of (1)H NMR chemical shift of NH proton of diaryl triazene derivatives. The best orientation was searched by all-orientation search (AOS) strategy to minimize the effect of the initial orientation of the structures. The predictive abilities of CoMFA-RF and CoMSIA models were determined using a test set of ten compounds affording predictive correlation coefficients of 0.721 and 0.754, respectively, indicating good predictive power. For further model validation, cross validation (leave one out), progressive scrambling, and bootstrapping were also applied. The accuracy and speed of obtained 3D-QSAR models for the prediction of (1)H NMR chemical shifts of NH group of diaryl triazene derivatives were greater compared to some computational well-known procedures. PMID:23456682

  11. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  12. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N of Lipids in Marine Animals.

    Elisabeth Svensson

    Full Text Available Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete, as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰. Importantly, the total lipid extract (TLE was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰. The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰ than the TLE (-7 ‰, possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.

  13. (15)N NMR spectroscopy unambiguously establishes the coordination mode of the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) in Ru(ii) complexes.

    Battistin, Federica; Balducci, Gabriele; Demitri, Nicola; Iengo, Elisabetta; Milani, Barbara; Alessio, Enzo

    2015-09-21

    We investigated the reactivity of three Ru(ii) precursors -trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization. By virtue of the new complexes described here, together with the others previously reported by us, we successfully recorded {(1)H,(15)N}-HMBC NMR spectra at natural abundance of the (15)N isotope on a consistent number of fully characterized Ru(ii)-cppH/mpp compounds, most of them being stereoisomers and/or linkage isomers. Thus, we found that (15)N NMR chemical shifts unambiguously establish the binding mode of cppH and mpp - either through N(o) or N(p)- and can be conveniently applied also in the absence of the X-ray structure. In fact, coordination of cppH to Ru(ii) induces a marked upfield shift for the resonance of the N atoms directly bound to the metal, with coordination induced shifts (CIS) ranging from ca.-45 to -75 ppm, depending on the complex, whereas the unbound N atom resonates at a frequency similar to that of the free ligand. Similar results were found for the complexes of mpp. This work confirmed our previous finding that cppH has no binding preference, whereas mpp binds exclusively through N(p). Interestingly, the two cppH linkage isomers trans,cis-[RuCl2(CO)2(cppH-κN(p))] (5) and trans,cis-[RuCl2(CO)2(cppH-κN(o))] (6) were easily obtained in pure form by exploiting their different

  14. Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent

    Coman, Daniel; Trubel, Hubert K.; Rycyna, Robert E.; Hyder, Fahmeed

    2009-01-01

    Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly due to lack of precise and non-invasive methods. At 11.7T, we demonstrate that a thulium-based macrocyclic complex infused through the blood stream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical...

  15. Turnover of 15N labelled nitrate with special emphasis on denitrification in the field

    This study establishes a mass balance for 15N-labelled nitrate added to soil planted with a nitrogen-fixing crop (pea) and a non-fixing crop (barley). The results indicate that 15N unaccounted for in a mass balance is not necessarily lost by denitrification. Processes such as volatilization of ammonia should also be considered. 1 fig

  16. Synthesis and isotope-ratio analysis of methyl nitrite-15N

    Methyl nitrite-15N was synthesised on a 0.1 mole scale by the esterification of methanol by aqueous H15NO2. The method is simple and efficient, and provides analytically pure CH3O15NO. A method for determining the 15N enrichment of CH3O15NO is described. (author)

  17. Improvement of differential diagnostics in pseudohermaphroditismus masculinus by means of 15N-labelled amino acids

    In 7 children with male hermaphroditism the N retention test was performed using 15N-glycine (13.5 mg/kg body weight). On testosterone therapy the protein synthesis rate increased significantly while there was a significant decrease in the cumulative 15N excretion

  18. Increased Plant Uptake of Nitrogen from 15N Depleted Fertilizer Using Plant Growth-Promoting Rhizobacteria

    The techniques of 15N isotope have been very useful for determining the behavior and fate of N in soil, including the use efficiency of applied N fertilizers by plants. Our objective in this study was to use 15N isotope techniques to demonstrate that a model plant growth-promoting rhizobacteria (PGP...

  19. Application of 15N amino acid absorption in chronic enteropathy and hepatic diseases in infants

    The aim of this study was to estimate malabsorption status in humans using a 15N stable isotope tracer technique. [15N]-glycine, 98.98 atom %, was synthesized in our institute and was administered orally as a single bolus dose to twelve patients. Six of the 12 subjects studied were healthy and 6 were suspected of having malabsorption. Blood, urine and faecal samples were obtained, proteins in the samples were precipitated with sulphosalicylic acid (5%), the eluate was purified with Dowex 50W-X8 (40mm x 2mm column), and derivatised to form the trifluoroacetyl-butyl esters using standard techniques. Gas chromatographic separation was performed on a glass column 2m X 3mm i.d. packed with EGA 1% on Chromosorb W AW 80-100 mesh. An isotope dilution GC/MS method and Kjeldahl digestion followed by MS analysis of nitrogen gas was performed. 15N isotopomer was used as internal standard. [15N]-Gly elimination in faeces was compared with total 15N elimination in faeces to distinguish artefacts caused by intestinal bacteria. Significant differences in the amount of [15N]-Gly eliminated in urine and faeces between malabsorption and control patients were obtained. It was concluded that more emphasis should be given to the faeces data than to urine because 15N elimination in urine is competitive with 15N incorporation into protein. 12 refs, 4 figs, 4 tabs

  20. Utilization of 15N-labelled urea in laying hens. 8

    3 colostomized laying hybrids received orally with a conventional ration 1% urea with 96.06 atom-% 15N excess (15N') over a period of 6 days. In the period of the experiment every hen consumed 2.87 g 15N'. After another 2 days, on which they received conventional feed urea, the animals were butchered. 15N' was determined in the total N and in 15 amino acids of the oviduct. Of the 15 amino acids the labelling of glutamic acid, glycine and serine was highest and on average amounted to 0.80, 0.66 and 0.67 atom-% 15N', resp. In lysine and arginine only 0.10 and 0.11 atom-% 15N' could be detected. The amino acid N with natural isotopic frequency amounted to a quarter for the basic amino acids, a tenth for the branched chain ones and for the non-essential ones (glutamic acid, aspartic acid, serine, glycine, alanine, proline) a third of the total oviduct 14N. The average quota of 15N' is only 3.6%, that of the branched chain amino acids 4.5 and that of the non-essential ones 21.1%. Consequently, the 15N' of the urea is mainly used for the synthesis of the non-essential amino acids of the oviduct. (author)

  1. Utilization of 15N-labelled urea in laying hens. 2

    In an N metabolism experiment 3 colostomized laying hybrids received 2870 mg 15N excess (15N') per animal in 6 days in the form of urea with their conventional feed rations. During the 8-day experiment the 21 eggs laid were separated into egg-shell, white of egg and yolk. Weight, N content and 15N' of the individual fractions of the eggs were determined. On an average 4.6% of the heavy nitrogen was in the egg-shells, 50% in the white of egg and 45.5% in the yolk. 2.8%, 4.5% and 5.5% (hens 1 - 3) of the 15N' consumed were detected in the eggs. The maximum 15N' output in the white of egg was reached on the 6th day, whereas 15N' output in the yolk showed a nearly linear increase in the time of the experiment. The results show that labelled nitrogen from urea is incorporated into the egg to a lower degree than after the feeding of 15N-labelled proteins and that the development of its incorporation into the white of egg and the yolk differ from that after the feeding of 15N-labelled native proteins. (author)

  2. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  3. Assignment of 1HN, 15N, 13Cα, 13CO and 13Cβ resonances in a 67 kDa p53 dimer using 4D-TROSY NMR spectroscopy

    The p53 tumor suppressor is a transcription factor that plays a crucial role in the activation of genes in response to DNA damage. As a first step towards detailed structural studies of the molecule aimed at understanding its regulation, we have used 4D-TROSY triple resonance NMR spectroscopy to obtain nearly complete 1HN, 15N, 13Cα, 13CO and 13Cβ resonance assignments of a dimeric form of the protein comprising DNA-binding and oligomerization domains (67 kDa). A simple comparison of 4D spectra recorded on p53 molecules consisting of DNA-binding and oligomerization domains with and without the regulatory domain establishes that both constructs have essentially identical chemical shifts. Although the affinity of p53 for target DNA is decreased in constructs containing the regulatory domain, the chemical shift results reported here suggest that this decrease is not due to specific domain interactions involving the regulatory portion of the molecule, or alternatively, that such interactions require the presence of DNA

  4. Utilization of fertilizer and stored nitrogen by asparagus and kiwifruit estimated using 15N

    The efficiency of recovery of 15N enriched nitrogen fertilizer was examined in field trials on two contrasting mature perennial crops: a vegetable (asparagus) and a woody deciduous vine (kiwifruit). In the asparagus experiment, 50 kg N/ha were applied either prior to fern growth (early summer) or pre-harvest (early spring). In the former treatment, 15N uptake was rapid during the period of fern growth (summer and autumn) and by early winter most 15N had been stored in crown and root material. In contrast, uptake of 15N applied pre-harvest was slow, indicating that most of the N for spear production was from remobilization of stored N. Removal of added 15N in produce over two harvest years was small. 8 refs, 3 tabs

  5. Syntheses of 15N-labeled pre-queuosine nucleobase derivatives

    Jasmin Levic

    2014-08-01

    Full Text Available Pre-queuosine or queuine (preQ1 is a guanine derivative that is involved in the biosynthetic pathway of the hypermodified tRNA nucleoside queuosine (Que. The core structure of preQ1 is represented by 7-(aminomethyl-7-deazaguanine (preQ1 base. Here, we report the synthesis of three preQ1 base derivatives with complementary 15N-labeling patterns, utilizing [15N]-KCN, [15N]-phthalimide, and [15N3]-guanidine as cost-affordable 15N sources. Such derivatives are required to explore the binding process of the preQ1 base to RNA targets using advanced NMR spectroscopic methods. PreQ1 base specifically binds to bacterial mRNA domains and thereby regulates genes that are required for queuosine biosynthesis.

  6. Standardized 15N tracer methods for the evaluation of the plasma protein turnover in clinical practice. 1

    Methods for quantitative isolation of plasma proteins or groups of proteins (total plasma or serum proteins, fibrin, total globulines, α, β, γ-globolines, albumin) are described based on combination of chromatography with precipitation and extraction techniques. These methods are adapted to the special requirements of 15N analysis. They can be performed in clinic-chemical standard laboratories without special apparatuses or devices. The described procedures are the biochemico-analytical basis for the quantitative evaluation of tracer kinetics data by means of mathematic modelling. (author)

  7. Utilization of 15N-labelled urea in laying hens. 9

    For studying the incorporation of the 15N labelled urea into individual organs and tissues 3 colostomized laying hens were butchered after they had received 1% urea (96.06 atom-% 15N excess) with a high quality ration over a period of six days and after receiving conventional urea for another two days. Nitrogen and atom-% 15N excess (15N') were determined in the bones, the feathers and the remaining body (skin, lungs and windpipe, head with comb and wattle, lower leg without bones and with skin, pancreas and fatty tissue). In the remaining body the atom-% 15N' was determined in 15 amino acids. The labelling in the remaining body and the bones was approximately the same and averaged 0.37 atom-% 15N'. A significantly lower relative frequency could be detected in the feathers. The lysine of the remaining body contained only 0.04 atom-% 15N', tyrosine 0.06, histidine and arginine 0.07. The phenylalanine and proline molecules were labelled with 0.11 atom-% 15N'. Most 15N' was incorporated in serine and glutamic acid with over 0.30 atom-%. In the six non-essential amino acids out of the 15 amino acids studied, 48.6 of the non-isotopic nitrogen of the total N of the remaining body and 70.7% of the isotopic nitrogen of total 15N' could be detected. Consequently the urea N is mainly used for the synthesis of the non-essential amino acids, with its utilization being very low. (author)

  8. Labelling of sewage with 13C and 15N isotopes

    Treatment of sewage water varies with the type and level of technology applied. As a result, sewage sludges vary in composition. In Western Europe, a combination of mechanical, biological, and chemical treatments is commonly applied. The biological treatment of sewage water - the activated sludge process - results in removal of carbon and nitrogen through immobilization in microbes. With strong aeration of the wastewater, energy-rich substrates and nutrients are assimilated by aerobic microbes and a large microbial biomass results. The biomass consists mainly of living microbial cells and components of dying and dead cells, but also of colloidal particles and metal ions bound to the surfaces of the microbes. The organic matter produced during aeration - the biological sludge - is removed by settlement. The biological treatment of wastewater was the starting point for the labelling procedure of sewage sludge. Labelling of waste products with stable tracer isotopes can be done in two ways: (i) labelling of the original material from which wastes are generated, e.g. by labelling of the diet fed to animals; and (ii) labelling during the biological turnover through addition of nitrogen or carbon compounds to wastes. In this study, tracers were added to wastewater during biological treatment

  9. Detection of (15)NNH+ in L1544: non-LTE modelling of dyazenilium hyperfine line emission and accurate (14)N/(15)N values

    Bizzocchi, Luca; Leonardo, Elvira; Dore, Luca

    2013-01-01

    Samples of pristine Solar System material found in meteorites and interplanetary dust particles are highly enriched in (15)N. Conspicuous nitrogen isotopic anomalies have also been measured in comets, and the (14)N/(15)N abundance ratio of the Earth is itself larger than the recognised pre-solar value by almost a factor of two. Ion--molecules, low-temperature chemical reactions in the proto-solar nebula have been repeatedly indicated as responsible for these (15)N-enhancements. We have searched for (15)N variants of the N2H+ ion in L1544, a prototypical starless cloud core which is one of the best candidate sources for detection owing to its low central core temperature and high CO depletion. The goal is the evaluation of accurate and reliable (14)N/(15)N ratio values for this species in the interstellar gas. A deep integration of the (15)NNH+ (1-0) line at 90.4 GHz has been obtained with the IRAM 30 m telescope. Non-LTE radiative transfer modelling has been performed on the J=1-0 emissions of the parent and ...

  10. Variable δ15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    Olin, Jill A.; Hussey, Nigel E.; Alice Grgicak-Mannion; Mark W Fritts; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for lar...

  11. Nitrogen fertilizer (15N leaching in a central pivot fertigated coffee crop

    Rafael Pivotto Bortolotto

    2012-08-01

    Full Text Available Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009 were established: i rainfall + irrigation the full year, ii rainfall only; and iii rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0 with a water table located several meters below soil surface (capillary rise = 0. The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.

  12. Bromine recovery in residual solutions generated in the 15 N isotopic determination methodology (Rittenberg, 1946)

    The isotopic determination of 15 N (Rittenberg, 1946) is a methodology used in the Laboratory of Isotope Stable (CENA/USP). In this procedure, in the oxidation of nitrogen species for N2, solution of Li Br O is used, generating as residue 50 L y-1 of solution contends Li Br and Li Br O. Seeking to recover the bromine contained in that residue, very toxic substance, a special line was built composed by reaction balloons (1 and 2 liters), addition funnel, gas flow regulator and connections in glass. In the system proposed, after the acidification (sulfuric acid) of the alkaline residual solution, the liberated bromine (Br2) it was then dragged by flow of nitrogen and reacted with solution of LiOH. That reaction facilitated the production of Li Br O in solution (Efficiency = 82±2%), that was reused later on same analytic procedure. The high cost of the liquid bromine is another attractiveness that corroborates the employment of the developed procedure. They took place isotopic determinations using the recovered solutions and prepared, and the observed values didn't show statistical difference (T test of Student). The presented procedure is part of the Management Program of Chemical Residues of CENA/USP, which seeks to destine the residues of responsibility of the institution appropriately, forming professionals to the practices of environmental management. (author)

  13. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek;

    2016-01-01

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...... corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the 4-component Dirac-Coulomb Hamiltonian using Dyall’s acv4z basis sets. The relativistic corrections to the nuclear magnetic...... shieldings and chemical shifts are combined with non-relativistic CCSD(T) calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr and the AQZP basis set for Xe. For the dimers also zero-point vibrational corrections obtained at the CCSD...

  14. The interplay between transient a-helix formation and side chain rotamer distributions in disordered proteins probed by methyl chemical shifts

    Kjærgaard, Magnus; Iesmantavicius, Vytautas; Poulsen, Flemming M

    2011-01-01

    shifts can in principle report the conformations of aliphatic side chains in disordered proteins and in order to examine this two model systems were chosen: the acid denatured state of acyl-CoA binding protein (ACBP) and the intrinsically disordered activation domain of the activator for thyroid hormone...... allow a quantitative analysis of the ensemble of ¿(2)-angles of especially leucine residues in disordered proteins. The changes in the rotamer distributions upon denaturation correlate to the changes upon helix induction by the co-solvent trifluoroethanol, suggesting that the side chain conformers are......The peptide backbones of disordered proteins are routinely characterized by NMR with respect to transient structure and dynamics. Little experimental information is, however, available about the side chain conformations and how structure in the backbone affects the side chains. Methyl chemical...

  15. 1H chemical shift imaging of the brain in guanidino methyltransferase deficiency, a creatine deficiency syndrome; guanidinoacetate accumulation in the gray matter

    MR spectroscopy results in a mild case of guanidinoacetate methyltransferase (GAMT) deficiency are presented. The approach differs from previous MRS studies in the acquisition of a chemical shift imaging spectral map showing gray and white matter with the corresponding spectra in one overview. MR spectroscopy revealed guanidinoacetate (GAA) in the absence of creatine. New is that GAA signals are more prominent in gray matter than in white. In the prevailing view, that enzyme deficiency is localized in liver and pancreas and that all GAA is transported into the brain from the blood and the cerebrospinal fluid, this would be compatible with a more limited uptake and/or better clearance of GAA from the white matter compared to the grey matter. (orig.)

  16. Chemical shifts of 17O, 183W NMR and state of [ZW10O36]n-heteropolyanions in aqueous solutions

    By 17O, 183W NMR aqueous solutions of Na- and K-salts of heteropolyanions (HPA) [ZW10O36]n-, where Z = La3+-Er3+, Ce3+, Th4+, U4+, have been studied. HPA in aqueous solution exist as inert in the NMR time scale (1-100 ms) complexes, moreover, coordination sphere of Z is filled with O atoms of oxotungstate ligands, as in crystal state. The character of paramagnetic shifts (LIS) of all HPA atoms has been defined - in O and W atoms nearest to Z in LIS contact contribution prevails, for W-O-W bridge atoms and internal O atom dipole contribution prevails, for the rest atoms the dipole and contact contributions are comparable. The change in chemical shifts in lanthanide series depends not only on magnetic properties of element, but also on structural change in HPA. The width of 17O NMR lines for HPA studied (except HPA containing gadolinium) is determined by quadrupole mechanism of nuclear magnetic relaxation. 24 refs., 2 figs., 3 tabs

  17. δ15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems

    In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;≥1.0 μM) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and δ15N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical δ15N values were found in seagrass leaves of several species at each site. The correlations between δ15N and nutrient concentrations and between δ15N and molar ratios of nutrients suggested that nutrient availability did not affect the δ15N value of seagrass leaves by altering the physiological condition of the plants. Increases in δ15N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that δ15N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water

  18. 15N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon

    Legumes as green manure are alternative sources of nitrogen (N) for crops and can supplement or even replace mineral nitrogen fertilization due to their potential for biological nitrogen fixation (BNF). The utilization of nitrogen by sugarcane (Saccharum spp.) fertilized with sunn hemp (Crotalaria juncea L.) and ammonium sulfate (AS) was evaluated using the 15N tracer technique. N was added at the rate of 196 and 70 kg ha-1 as 15N-labeled sunn hemp green manure (SH) and as ammonium sulfate (AS), respectively. Treatments were: (I) Control; (II) AS15N; (III) SH15N + AS; (IV) SH15N; and (V) AS15N + SH. Sugarcane was cultivated for five years and was harvested three times. 15N recovery was evaluated in the two first harvests. In the sum of the three harvests, the highest stalk yields were obtained with a combination of green manure and inorganic N fertilizer; however, in the second cutting the yields were higher where SH was used than in plots with AS. The recovery of N by the first two consecutive harvests accounted for 19 to 21% of the N applied as leguminous green manure and 46 to 49% of the N applied as AS. The amounts of inorganic N, derived from both N sources, present in the 0-0.4 m layer of soil in the first season after N application and were below 1 kg ha-1. (author)

  19. Determination of nitrogenase activity of induced cucumber nodules by 15N Trace method

    The author reports the determination results of nitrogenase activity of induced cucumber root nodules by 15N trace method. The root systems bearing induced nodules of cucumber were exposed to a gas mixture containing 15N2 for 48 h and partial root systems soaked in free-nitrogen culture solution simultaneously. After exposure the 15N content in the modulated root systems of cucumber is 0.431 Atom % 15N by mass spectrometric analysis, whereas in the contrast samples without exposure to 15N is 0.369 Atom % 15N. The statistical t test for the results of 15N trace experiments is: t = 3.15 > t0.01 = 2.819. It has been demonstrated that the nitrogenase activity in cucumber nodules is at a remarkable level of 99.9%. The nitrogenase activity in detached nodules of cucumber was also determined by conventional acetylene reduction method. In both methods clear evidences of nitrogenase activity were obtained for the induced nodules of cucumber

  20. Alkaline Hydrolysis/Polymerization of 2,4,6-Trinitrotoluene: Characterization of Products by 13C and 15N NMR

    Thorn, K.A.; Thorne, P.G.; Cox, L.G.

    2004-01-01

    Alkaline hydrolysis has been investigated as a nonbiological procedure for the destruction of 2,4,6-trinitrotoluene (TNT) in explosives contaminated soils and munitions scrap. Nucleophilic substitutions of the nitro and methyl groups of TNT by hydroxide ion are the initial steps in the alkaline degradation of TNT. Potential applications of the technique include both in situ surface liming and ex situ alkaline treatment of contaminated soils. A number of laboratory studies have reported the formation of an uncharacterized polymeric material upon prolonged treatment of TNT in base. As part of an overall assessment of alkaline hydrolysis as a remediation technique, and to gain a better understanding of the chemical reactions underlying the hydrolysis/polymerization process, the soluble and precipitate fractions of polymeric material produced from the calcium hydroxide hydrolysis of unlabeled and 15N-labeled TNT were analyzed by elemental analysis and 13C and 15N nuclear magnetic resonance spectroscopy. Spectra indicated that reactions leading to polymerization included nucleophilic displacement of nitro groups by hydroxide ion, formation of ketone, carboxyl, alcohol, ether, and other aliphatic carbons, conversion of methyl groups to diphenyl methylene carbons, and recondensation of aromatic amines and reduced forms of nitrite, including ammonia and possibly hydroxylamine, into the polymer. Compared to the distribution of carbons in TNT as 14% sp 3- and 86% sp2-hybridized, the precipitate fraction from hydrolysis of unlabeled TNT contained 33% sp3- and 67% sp 2-hybridized carbons. The concentration of nitrogen in the precipitate was 64% of that in TNT. The 15N NMR spectra showed that, in addition to residual nitro groups, forms of nitrogen present in the filtrate and precipitate fractions include aminohydroquinone, primary amide, indole, imine, and azoxy, among others. Unreacted nitrite was recovered in the filtrate fraction. The toxicities and susceptibilities to

  1. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative (1)H and (13)C NMR chemical shifts.

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Idrissi, Abdenacer

    2015-09-21

    Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested. PMID:26278514

  2. 31P-MR spectroscopy of all regions of the human heart at 1.5 T with acquisition-weighted chemical shift imaging

    Aim: Aim of this study was to show whether or not acquisition-weighted chemical shift imaging (AW-CSI) allows the determination of PCr and ATP in the lateral and posterior wall of the human heart at 1.5 T. Methods: 12 healthy volunteers were examined using a conventional chemical shift imaging (CSI) and an AW-CSI. The sequences differed only in the number of repetitions for each point in k space. A hanning function was used as filter function leading to 7 repetitions in the center of the k space and 0 in the corners. Thus, AW-CSI had the same resolution as the CSI sequence. The results for both sequences were analyzed using identically positioned voxels in the septal, anterior, lateral and posterior wall. Results: The determined averaged AW-CSI signal to noise ratios were higher for PCr by a factor of 1.3 and for ATP by 1.4 than those of CSI. The PCr/ATP ratios were higher by a factor of 1.2 - 1.3 and showed a smaller standard deviation in all locations for AW-CSI. The mean PCr/ATP ratios determined by AW-CSI of septal, lateral and posterior wall were almost identical (1.72 - 1.76), while it was higher in the anterior wall (1.9). Conclusions: The reduced contamination in AW-CSI improves the signal to noise ratio and the determination of the PCr/ATP ratio in cardiac 31P spectroscopy compared to CSI with the same resolution. The results in volunteers indicate that AW-CSI renders 31P spectroscopy of the lateral and posterior wall of the human heart feasible for patient studies at 1.5 T. (orig.)

  3. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  4. Utilization of 15N-Diammonium Phosphate by Ruminants to Produce Milk and Meat Proteins

    The authors investigated the alimentary role of diammonium phosphate (DAP) in ruminants. For this study DAP labelled with 15N was used; analysis of the 15N atomic per cent excess was made with an Italelettronica mass spectrophotometer (model SP 21 F) and the amino acid determination by a Beckman-Spinco amino acid analyser (model 120B) fitted with a preparative column. For the experiment 7 g of DAP at 15 and 20 at. % excess 15N were administered once to mature lactating and non-lactating sheep, respectively. The measurement of 15N in the protein and isolated amino acids of milk and meat showed: (1) The milk protein produced in the first 24 h contained the highest atomic per cent excess of 15SN, 0.093; (2) That the supplemental 15N was found in all the amino acids of milk proteins except tryptophane. The atomic per cent excess of 15N was observed to vary between the various amino acids. These results confirmed previous observations on bacterial protein synthesized from DAP. (3) Muscle protein 15N maximized on the third day after administration of the 15N-DAP, with an atomic per cent excess of 0.040; (4) The atomic per cent excess of 15N in the individual amino acids of muscle protein is significant in only two amino' acids, serine and cystine; and (5) That after 8 d of adaptation there are no traces of DAP in milk or meat proteins, urine or faeces. The authors conclude that the ruminant, after a period of adaptation and through the mediation of ruminant microorganisms, is able to use the nitrogen of diammonium phosphate for the synthesis of milk and meat proteins. (author)

  5. Absorption and metabolization of orally administered D-[α-15N]lysine and L-[α-15N]lysine with regard to the metabolism of intestinal bacteria

    Absorption of D-[α-15N]lysine and L-[α-15N]lysine following oral single pulse-labelling at a dosage of 5 mg 15N'/kg body weight was compared in four subjects aged 4 to 14 months. The wastages of 15N' in the feces ranged from 0.3 to 5% of the input implying comparably high absorption rates of both the lysine enantiomers. Only about 7.6% of the 15N from the α-amino groups were found in the urine after loading with L-[α-15N]lysine. In contrast, about 80.2% of the 15N' dose from D-[α-15N]lysine were eliminated renally. However, 18.5% of the 15N' dose on an average were retained after D-[α-15N]lysine administration. This is certainly due to a partial desamination of D-lysine. The fecal bacteria isolated from the feces contained no or only small amounts of 15N' after D-[α-15N]lysine loading. Following L-[α-15N]lysine administration a measurable 15N enrichment of the fecal bacteria of up to 0.09 at.% excess was achieved in almost all cases. (author)

  6. Radiative p 15N Capture in the Region of Astrophysical Energies

    Dubovichenko, S. B.; Burtebaev, N.; Dzhazairov-Kakhramanov, A. V.; Alimov, D. K.

    2016-06-01

    Within the framework of the modified potential cluster model with classification of orbital states according to the Young schemes, the possibility of describing experimental data for the astrophysical S-factor of p 15N radiative capture at energies from 50 to 1500 keV is considered. It is shown that on the basis of M1 and E1 transitions from various p 15N scattering states to the ground state of the 16O nucleus in the p 15N channel it is entirely possible to successfully explain the overall behavior of the S-factor in the considered energy region in the presence of two resonances.

  7. Nitrogen distribution a 15 N fertilizer in different soil fractions of a barley cultivation

    A culture of barley in the open fields has been fertilized on 9 m2 with Ca(NO3)2 containing 20,8% 15N excess. At the crop, 15 N distribution shows that half of the fertilized nitrogen which is exported by the crop has become organic in the Ap horizon. The use of different methods of fractionation of the soil, shows the biological character of this reorganization, in which the biomass appears to be the main 15 N nitrogen stock

  8. Pseudo 5D HN(C)N Experiment to Facilitate the Assignment of Backbone Resonances in Proteins Exhibiting High Backbone Shift Degeneracy

    Kumar, Dinesh; Shukla, Vaibhav Kumar; Pandey, Himanshu; Arora, Ashish; Guleria, Anupam

    2014-01-01

    Assignment of protein backbone resonances is most routinely carried out using triple resonance three dimensional NMR experiments involving amide 1H and 15N resonances. However for intrinsically unstructured proteins, alpha-helical proteins or proteins containing several disordered fragments, the assignment becomes problematic because of high degree of backbone shift degeneracy. In this backdrop, a novel reduced dimensionality (RD) experiment -(5,3)D-hNCO-CANH- is presented to facilitate (and/or to validate) the sequential backbone resonance assignment in such proteins. The proposed 3D NMR experiment makes use of the modulated amide 15N chemical shifts (resulting from the joint sampling along both its indirect dimensions) to resolve the ambiguity involved in connecting the neighboring amide resonances (i.e. HiNi and Hi-1Ni-1) for overlapping amide NH peaks. The experiment -encoding 5D spectral information- leads to a conventional 3D spectrum with significantly reduced spectral crowding and complexity. The impr...

  9. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  10. Effects of lipid and urea extraction on δ15N values of deep-sea sharks and hagfish: Can mathematical correction factors be generated?

    Churchill, Diana A.; Heithaus, Michael R.; Dean Grubbs, R.

    2015-05-01

    Stable isotope analysis is broadly employed to investigate diverse ecological questions. In order to make appropriate comparisons among multiple taxa, however, it is necessary to standardize values to account for interspecific differences in factors that affect isotopic ratios. For example, varying concentrations of soluble nitrogen compounds, such as urea or trimethylamine oxide, can affect the analysis and interpretation of δ15N values of sharks or hagfish. The goal of this study was to assess the effects of a standard chloroform/methanol extraction on the stable isotope values of muscle tissue obtained from 10 species of sharks and three species of hagfish collected from poorly-known deep-water (>200 m) communities. We detected significant differences in δ15N, %N, and C:N values as a result of extractions in 8 of 10 shark and all three hagfish species. We observed increased δ15N values, but shifts in %N and C:N values were not unidirectional. Mathematical normalizations for δ15N values were successfully created for four shark and two hagfish species. However, they were not successful for two shark species. Therefore, performing extractions of all samples is recommended.

  11. Nitrogen retention across a gradient of 15N additions to an unpolluted temperate forest soil in Chile

    Perakis, Steven S.; Compton, J.E.; Hedin, L.O.

    2005-01-01

    Accelerated nitrogen (N) inputs can drive nonlinear changes in N cycling, retention, and loss in forest ecosystems. Nitrogen processing in soils is critical to understanding these changes, since soils typically are the largest N sink in forests. To elucidate soil mechanisms that underlie shifts in N cycling across a wide gradient of N supply, we added 15NH415NO3 at nine treatment levels ranging in geometric sequence from 0.2 kg to 640 kg NA? ha-1A? yr-1 to an unpolluted old-growth temperate forest in southern Chile. We recovered roughly half of tracers in 0-25 cm of soil, primarily in the surface 10 cm. Low to moderate rates of N supply failed to stimulate N leaching, which suggests that most unrecovered 15N was transferred from soils to unmeasured sinks above ground. However, soil solution losses of nitrate increased sharply at inputs > 160 kg NA? ha-1A? yr-1, corresponding to a threshold of elevated soil N availability and declining 15N retention in soil. Soil organic matter (15N in soils at the highest N inputs and may explain a substantial fraction of the 'missing N' often reported in studies of fates of N inputs to forests. Contrary to expectations, N additions did not stimulate gross N cycling, potential nitrification, or ammonium oxidizer populations. Our results indicate that the nonlinearity in N retention and loss resulted directly from excessive N supply relative to sinks, independent of plant-soil-microbial feedbacks. However, N additions did induce a sharp decrease in microbial biomass C:N that is predicted by N saturation theory, and which could increase long-term N storage in soil organic matter by lowering the critical C:N ratio for net N mineralization. All measured sinks accumulated 15N tracers across the full gradient of N supply, suggesting that short-term nonlinearity in N retention resulted from saturation of uptake kinetics, not uptake capacity, in plant, soil, and microbial pools.

  12. Measurement of marine productivity using 15N and 13C tracers: Some methodological aspects

    Naveen Gandhi; Sanjeev Kumar; S Prakash; R Ramesh; M S Sheshshayee

    2011-02-01

    Various experiments involving the measurement of new, regenerated and total productivity using 15N and 13C tracers were carried out in the Bay of Bengal (BOB) and in the Arabian Sea. Results from 15N tracer experiments indicate that nitrate uptake can be underestimated by experiments with incubation time > 4 hours. Indirect evidence suggests pico- and nano-phytoplankton, on their dominance over microphytoplankton, can also influence the f-ratios. Difference in energy requirement for assimilation of different nitrogen compounds decides the preferred nitrogen source during the early hours of incubation. Variation in light intensity during incubation also plays a significant role in the assimilation of nitrogen. Results from time course experiments with both 15N and 13C tracers suggest that photoinhibition appears significant in BOB and the Arabian Sea during noon. A significant correlation has been found in the productivity values obtained using 15N and 13C tracers.

  13. Direct measurement of the {sup 15}N CSA/dipolar relaxation interference from coupled HSQC spectra

    Hall, Jennifer B. [University of Maryland, Department of Chemistry and Biochemistry, Center of Biomolecular Structure and Organization (United States); Dayie, Kwaku T. [Lerner Research Institute, Cleveland Clinic Foundation, Department of Molecular Biology, Center for Structural Biology (United States); Fushman, David [University of Maryland, Department of Chemistry and Biochemistry, Center of Biomolecular Structure and Organization (United States)], E-mail: fushman@wam.umd.edu

    2003-06-15

    Here we propose a method for the measurement of the {sup 15}N CSA/dipolar relaxation interference based on direct comparison of the {sup 15}N doublet components observed in a {sup 1}H-coupled {sup 1}H-{sup 15}N HSQC-type spectrum. This allows the determination of the cross-correlation rates with no need for correction factors associated with other methods. The signal overlap problem of coupled HSQC spectra is addressed here by using the IPAP scheme (Ottiger et al., 1998). The approach is applied to the B3 domain of protein G to show that the method provides accurate measurements of the {sup 15}N CSA/dipolar cross-correlation rates.

  14. Evaluation of the protein metabolism during hepatic coma evidenced by 15N tracer data

    In patients in coma hepaticum as well as in pigs with experimental hepatic coma the protein metabolism was studied under conditions of parenteral application of an amino acid diet using 15N-glycine as tracer

  15. 14N and 15N imaging by SIMS microscopy in soybean leaves

    The distribution of 15N and 14N compounds in cryofixed and resin embedded sections of soybean (Glycine max L) leaves was studied by SIMS microscopy. The results indicate that, with a mass resolution M/ΔM higher than 6000, images of the nitrogen distribution can be obtained from the mapping of the two secondary cluster ions 12C14N− and 12C15N−, in samples of both control and 15N-labeled leaves. The ionic images were clearly related to the histological structure of the organ, and allow the detection of 14N and 15N at the subcellular level. Furthermore, relative measurements of the 12C14N− and 12C15N− beams made possible the quantification of the 15N atom% in the various tissues of the leaf. (author)

  16. Metabolic studies in colostomized laying hens using 15N-labelled wheat. 3

    In colostomized laying hens fed with 15N-labelled wheat protein the atomic percentage 15N excess (15N') was determined in the total, lysine, histidine, and arginine N, respectively, of isolated ovarian follicles of the residual ovary and of the oviduct. The labelling of the basic amino acids became smaller with decreasing size of the follicles. The proportions between the 3 amino acids were inconsistent and typical for the individual hens, whereas in the yolk a constant ratio of the amino acids was found. The 15N' in the 3 amino acids of the residual ovary and of the oviduct revealed greater differences between the individual hens. In the lysine, histidine and arginine 21.2% of the labelled N of the follicles was demonstrated

  17. Synthesis of nitric oxide releasing, vasodilating and platelet aggregation inhibiting S-[15N]nitroso compounds

    [15N]Nitric oxide (15NO) was produced in a ''gastight'' flask from [15N]nitrite by reaction with iodide in acetic acid acidified water and purged for 60 min by a continuous nitrogen gas stream applied through an uncoated polytetrafluoroethylene flate membrane into a second flask which contained a methanolic solution of N-acetyl-L-cysteine or N-acetyl-DL-penicillamine. Analysis of these solutions by UV spectroscopy, reversed-phase high-performance liquid chromatography and capillary isotachophoresis showed formation of the corresponding S-nitroso compounds. Gas chromatographic-mass spectrometric analysis for [15N]nitrite which was formed by dissolving these compounds in aqueous buffered solutions gave an isotopic purity higher than 95% at 15N. The S-nitroso compounds were shown to inhibit ADP-induced platelet aggregation. (author)

  18. Methodical investigation of the endogenous N excretion in feces by 15N-labelled rats

    Wistar rats (approximately 100g live weight, n = 8) received a wheat diet and were labelled over a period of 7 days with 15N-ammonium acetate. From day 1 - 5 of the experiment after the end of the labelling feces and urine were collected and analysed. After the animals were killed (day 5 of the experiment) the atom-% 15N excess (15N') in the contents of the digestive tract as well as in the tissues of stomach wall, intestinal wall, liver, pancreas and blood plasma was determined. The TCA-soluble fraction of the blood plasma showed 0.44 atom-% 15N' on day 5 after the end of 15N labelling. 3 hours before the killing fecal N also showed 0.44 and during the last collection period (24 hours before) an average of 0.51 atom-% 15N'. Urine decreased in the same period from 0.71 to 0.59 atom-% 15N'. The endogenous fecal N is calculated to 88%. As the tissues of the digestive tract are likely to supply the biggest part of the endogenous fecal protein, the values of atom-% 15N' from the TCA-precipitable fraction of the intestinal wall and of the pancreas gland was calculed to an average of 0.526. According to this the calculation endogenous fecal N is 84%. It is probable that the quota of endogenous fecal N in the total amount of fecal N varies in dependence on the fermentable crude fiber in the diet as well as on the age of the test animals and thus the bacterial protein synthesis in the colon. As the N used by the bacteria is likely to come from the TCA-soluble fraction of the blood, the calculation formula suggested, which uses the TCA-soluble fraction of the blood plasma, achieves good approximate values also for higher bacterial protein synthesis in the colon. (author)

  19. λ cro repressor complex with O/sub R/3 DNA: 15N NMR observations

    15N NMR studies of the coliphage λ cro repressor are presented. The protein has been uniformly labeled with 15N, and individual amino acids have been incorporated. Although the four C-terminal residues (63-66) were not located in the original crystallographic studies of the protein it has been proposed that the C-terminus is involved in DNA binding. These experiments give direct verification of that proposal. [15N] Amide resonances are assigned for residues 56, 62, 63, and 66 in the C-terminus by enzymatic digestion and by 13C-15N double-labeling experiments. 15N{1H} nuclear Overhauser effects show that the C-terminus is mobile on a nanosecond time scale. Exchange experiments using distortionless enhancement via polarization transfer, which is sensitive to proton exchange on the 1/J/sub NH/(10 ms) time scale, indicate that the amide protons in the C-terminus are freely accessible to solvent. It is thus a flexible arm in solution. The binding of both specific operator and nonspecific DNA is shown to reduce both the mobility and the degree of solvent exposure of this arm. Two-dimensional 15N-1H correlation experiments using 15N-labeled cro reveal inconsistencies with previously reported 1H NMR assignments for the lysine amides. This result suggests that those assignments require reexamination, illustrating the utility of 15N labeling for obtaining 1H resonance assignments of biomolecules. Furthermore, isomerization of the peptide bond of Pro-59, which has been previously suggested and which would significantly affect the properties of the C-terminal arm, is shown to not occur

  20. Temperature {sup 1}H, {sup 13}C, {sup 15}N NMR and CP/MAS {sup 15}N NMR spectra of benzotriazole derivatives - prototropic tautomerism; Widma temperaturowe {sup 1}H, {sup 13}C, {sup 15}N NMR oraz CP/MAS {sup 15}N NMR pochodnych benzotriazolu - tautomeria prototropowa

    Wiench, J.W.; Stefaniak, L. [Inst. Chemii Organicznej, Polska Akademia Nauk, Warsaw (Poland)

    1994-12-31

    The prototropic tautomerism in benzotriazole derivatives solutions has been investigated in different temperatures by means of {sup 1}H, {sup 13}C and {sup 15}N NMR and {sup 15}N CP/MAS NMR spectra. The ratio of different tautomeric forms and kinetics of proton exchange have been measured for the systems studied on the base of observed spectroscopic factors. 5 refs, 2 figs, 3 tabs.

  1. 15N abundance in Antarctica: origin of soil nitrogen and ecological implications

    The results of an investigation of the nitrogen cycle in Antartica are reported which show that nitrate in Antarctic soils is extremely depleted in 15N compared with biogenic nitrogen and that algae collected from a nitrate-rich saline pond and from a penguin rookery exhibit, respectively, the lowest and the highest 15N/14N ratios among terrestrial biogenic nitrogen so far observed. The possible causes of these extreme nitrogen isotopic compositions are discussed. (U.K.)

  2. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  3. Denitrification by intact soybean nodules in relation to natural 15N enrichment of nodules

    The natural 15N abundance of nodules of soybeans (Glycine max (L.) Merrill) which are actively fixing N2 is considerably higher than other tissues. To investigate the question of whether isotopic fractionation associated with denitrification by bacteroids causes this 15N enrichment, we inoculated soybeans with two strains of Rhizobium japonicum. Free-living cultures of one of these (strain USDA 33) were unable to denitrify or respire NO3-, while free-living cultures of the second (strain USDA 138) were capable of denitrification. USDA 138 formed nodules which fixed N2 very efficiently. The N of these nodules was enriched in 15N and the nodules reduced a substantial amount of NO3- to NO2- and N2O. Nodules infected with USDA 33 fixed about half as much N2 as those infected with USDA 138. The former nodules were enriched in 15N (although less so than nodules infected with USDA 138), despite the fact that the nodules formed by USDA 33 did not reduce NO3-. Clearly denitrification could not have been the cause of 15N enrichment of nodules infected with strain USDA 33. Alternative causes of 15N enrichment of soybean nodules and their possible metabolic significance are discussed

  4. Use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations

    The use of 15N to measure the flux of nitrogen compounds has become increasingly popular as the techniques and instrumentation for stable isotope analysis have become more widely available. Questions concerning equations for calculating uptake, effect of isotope dilution (in the case of ammonium), duration of incubation, and relationship between disappearance of a nitrogen compound and the 15N uptake measurement have arisen, especially for the research conducted in oligotrophic regions. Fewer problems seem to have occurred ineutrophic areas. However, sufficient literature now exists to allow some generally accepted experimental procedures for 15N studies in eutrophic regions to be laid down. Incubation periods of 2-6 h appear to avoid problems related to isotope dilution and to overcome the bias introduced in some cases by initial high rate or surge uptake. During such incubation periods, assimilation is measured rather than uptake or transport into the cell. Incorporation of 15N into the particulate fraction is usually linear with time over the periods currently used. The 15N method provides a better estimate of incorporation into phytoplankton than 14N disappearance, but a small fraction appears to be lost. Although most workers suggest the loss to be a result of dissolved organic nitrogen production, direct evidence is lacking. If the considerations discussed here are applied with the 15N techniques currently available, reliable estimates of phytoplankton nitrogen flux in eutrophic areas can be obtained

  5. Synthesis of methotrexate-1-15N and methotrexate-4-15NH2

    This paper describes an application of the pterin synthesis of methotrexate specifically labelled at the N1-ring nitrogen and at the 4-amino group with 99 atom percent 15N. Oximination of ethyl cyanoacetate-15N followed by reduction afforded ethyl 2-aminocyanoacetate-C15N. Condensation with 3-bromopyruvaldoxime and 4-methylamino-benzoic acid afforded 2-amino-3-carbethoxy-5-N-methyl-p-carboxy-anilinomethylpyrazine-1-oxide-2-15NH2. Treatment with ammonium hydroxide at room temperature gave the 3-carboxamide. Reduction of the N-oxide (Pl3), esterification, and dehydration of the amide (POCl3) afforded the 2-amino-3-cyano-pyrazine benzoate ester. Ring closure with guanidine followed by benzoate ester hydrolysis, glutamate coupling and hydrolysis of the glutamate diester yielded methotrexate-1-15N. Animation of the unlabeled 2-amino-3-carbethoxy pyrazine intermediate with 15N-labelled ammonium hydroxide gave the 15N-carboxamide which was carried through the process described above to afford methotrexate-4-15NH2. (author)

  6. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus

    Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [15N]alanine. Short-term exposure of mycelial discs to [15N]alanine showed that the greatest flow of 15N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [15N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon. (author)

  7. Quantifying below-ground nitrogen of legumes: Optimizing procedures for 15N shoot-labelling

    Quantifying below-ground nitrogen (N) of legumes is fundamental to understanding their effects on soil mineral N fertility and on the N economies of following or companion crops in legume-based rotations. Methodologies based on 15N-labelling of whole plants with subsequent measurement of 15N in recovered plant parts and in the root-zone soil have proved promising. We report four glasshouse experiments with objectives to develop appropriate protocols for in situ 15N labelling of four pulses, faba bean (Vicia faba), chickpea (Cicer arietinum), mung bean (Vigna radiata) and pigeon pea (Cajanus cajan). Treatments included 15N-urea concentration, feeding technique, leaflet/petiole position, and frequency of feeding. Nitrogen-15-labelling via the leaf-flap was best for faba bean, mung and pigeon pea, whilst petiole feeding was best for chickpea, in all cases using 0.2-mL volumes of 0.5% urea (98 atom% 15N excess). The implications of uneven enrichment of the nodulated roots because of effects of the 15N-depleted nodules when calculating root-derived N in soil are discussed. (author)

  8. Nitrogen dynamics in a Western Boundary Upwelling System (Cabo Frio, Brazil) based on δ15N-nitrate and δ15N of sinking particle signals

    Fontana, L.; Belem, A. L.; Venancio, I.; Duarte, C.; Chiara, S. D.; Albuquerque, A. L.

    2014-12-01

    To improve the efficiency of upwelling to control nitrogen dynamic in the ocean, better understanding of the occurring processes is necessary. This research explores δ15N of nitrate and sinking particles on a western boundary upwelling System (Cabo Frio, Brazil). The Continental Shelf of southeastern Brazil is dominated by the oligotrophic Brazil Current, whose instabilities promote the coastal upwelling of South Atlantic Central Water (SACW), and consequently increases of primary productivity. The coastal upwelling system plays an important role in the nitrogen dynamics on the Cabo Frio Upwelling System (CFUS). However, the interactions between biological induced processes, including biological N-fixation and nitrate inputs from upwelled waters in CFUS still have not been well explored. Then, this study aims clarify N-dynamics on CFUS based on a cross-shelf approach. δ15N-nitrate was characterized for each water masses present on the shelf (South Atlantic Central Water, Tropical Water and Coastal Water) and associated with physicochemical parameters (T/S, nutrients), as well as the δ15N of sinking particles at different depths (from surface to the bottom water). Samples were collected in a time interval of 1 month during ~4 years (2011 to 2014). Cross-shelf gradients of nitrogen species concentration (ammonium + nitrite + nitrate) and stable isotopes were observed. The δ15N of nitrate and sinking particles were interpreted according to the prevailing processes of the N-transformations. Considering the region as N-limited (N:P global average of deep ocean (5-6‰) characterizing the inner and mid-shelf conditions, where the input of new nitrate from upwelling is rapidly used by organisms in the euphotic zone without any fractionation. On the other hands, the dominance of N-limited Tropical Waters on the outer shelf provide a δ15N-nitrate and δ15N-sinking particles signals (-2.0 to 3.0‰) lower than the global average of deep ocean range indicating the

  9. Revision of the 15N(p, γ)16O reaction rate and oxygen abundance in H-burning zones

    Caciolli, A.; Mazzocchi, C.; Capogrosso, V.; Bemmerer, D.; Broggini, C.; Corvisiero, P.; Costantini, H.; Elekes, Z.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Lemut, A.; Marta, M.; Menegazzo, R.; Palmerini, S.; Prati, P.; Roca, V.; Rolfs, C.; Rossi Alvarez, C.; Somorjai, E.; Straniero, O.; Strieder, F.; Terrasi, F.; Trautvetter, H. P.; Vomiero, A.

    2011-09-01

    Context. The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T ≃ 30 × 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the red giant branch (RGB) phase of the star or to the pollution of the primordial gas by an early population of massive asymptotic giant branch (AGB) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. Aims: The activation of this cycle depends on the rate of the 15N(p, γ)16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. Methods: We present a new measurement of the 15N(p, γ)16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 × 106 K and 780 × 106 K. This range includes the 15N(p, γ)16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. Results: With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level.

  10. Acetylene inhibition of N2O reduction in laboratory soil and groundwater denitrification assays: evaluation by 15N tracer and 15N site preference of N2O

    Weymann, Daniel; Well, Reinhard; Lewicka-Szczebak, Dominika; Lena, Rohe

    2013-04-01

    The measurement of denitrification in soils and aquifers is still challenging and often enough associated with considerable experimental effort and high costs. Against this background, the acetylene inhibition technique (AIT) applied in laboratory soil and groundwater denitrification assays is by far the most effective approach. However, this method has been largely criticized, as it is susceptible to underestimate denitrification rates and adds an additional carbon source to the substrates to be investigated. Here we provide evidence that the AIT is not necessarily an inappropriate approach to measure denitrification, that its reliability depends on the drivers governing the process, and that the 15N site preference of N2O (SP) may serve as a tool to assess this reliability. Two laboratory batch experiments were conducted, where sandy aquifer material and a peat soil were incubated as slurries. We established (i) a standard anaerobic treatment by adding KNO3 (10 mg N L-1), (ii) an oxygen treatment by adding KNO3 and O2 (5 mg L-1), and (iii) a glucose treatment by adding KNO3 supplemented with glucose (200 mg C L-1). Both experiments were run under 10 % (v/v) acetylene atmosphere and as 15N tracer treatments using labeled K15NO3 (60 atom % 15N). In the case of the standard anaerobic treatments, we found a very good agreement of denitrification potential obtained by the AIT and 15N tracer methods. SP of N2O of the AIT samples from this treatment ranged between -4.8 and 2.6 ‰ which is indicative for N2O production during bacterial denitrification but not for N2O reduction to N2. In contrast, we observed substantial underestimation of denitrification by AIT for the glucose treatments compared to the 15N method, i.e. denitrification was underestimated by 36 % (sandy aquifer material) and 47 % (peat soil). SP of N2O of the AIT samples from this treatment ranged between 4.5 and 9.6 ‰, which suggests occurrence of bacterial N2O reduction. In the case of the oxygen

  11. Stickstoffausnutzungseffizienz von 15N-markierter Schafsgülle und 15N-markiertem Mineraldünger in biologisch und konventionell bewirtschafteten Anbausystemen

    Bosshard, Christine; Sorensen, Peter; Frossard, Emmanuel; Mayer, Jochen; Mäder, Paul; Nanzer, Simone; Oberson, Astrid

    2009-01-01

    Nitrogen (N) utilisation by crops has to be improved to minimize losses to the environment. We investigated N use efficiency of animal manure and mineral fertiliser and fate of fertiliser N not taken up by crops in a bio-organic (BIOORG) and a conventional (CONMIN) cropping system of a long-term experiment over three vegetation periods (wheat-soybean-maize). Microplots received a single application of 15N-labelled slurries or mineral fertiliser. At the end of each vegetation pe...

  12. evaluation of biological nitrogen fixation process by chickpea using 15N tracer techniques

    the effect of gradual increase in fertilizer-N rates added to chickpea plants that cultivated in pots packed with light textured soil collected from surrounding area of biotechnology research center, libya was examined in pot experiment. seeds were inoculated with rhizobium strain as peat-based inocula or in liquid culture. Also, un inoculated treatment was included. 15 N-labelled urea(5% atom excess) was applied as N-fertilizer source at rates of 0,20, 40,60,80 and 100 Kg N ha-1. growth parameters of chickpea plants were positively affected by N-fertilizer but bacterial inoculation did not reflected significant difference with levels of 40,60 and 80 kg ha-1..dry matter accumulation was increased with increasing N fertilizer levels up to 80 Kg N ha-1 as compared to the unfertilized control then decreased at the level of 100 kg N ha-1. this holds true under inoculated and un inoculated treatments. similar trend was noticed with nitrogen uptake by chickpea shoots.accordingly, portion of N derived from fertilizer had been increased. nitrogen fixation (% N dfa), as estimated using isotope dilution approach, was increased with increasing N rates up to moderate additions (60 kg N ha-1) , then tended to decrease. Rhizobium inoculation has an important effect on enhancement of plant growth and N acquisition when low to moderate levels of fertilizer was added. The results obtained in this work suggests application of bio fertilization technology in combination with chemical fertilizers under field conditions to get advanced to generalize the data released from such investigations

  13. Absorption of ammonium sulphate {sup 15}N by coffee plants; Recuperacao do {sup 15}N do sulfato de amonio por plantas de cafe

    Fenilli, Tatiele Anete Bergamo; Reichardt, Klaus; Bacchi, Osny Oliveira Santos [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fisica do Solo]. E-mail: tatiele@cena.usp.br; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis; Dourado Neto, Durval [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Producao Vegetal

    2005-07-01

    The objective of this study was to quantify the absorption of ammonium sulphate {sup 15}N by coffee plants. Treatments consisted of five sub-plots of 9 plants, of which the three central ones received 280 kg ha{sup -1} of {sup 15}N, applied at four times: 1/4 on 01 Set 03; 1/4 on 03 Nov 03; 1/4 on 15 Dec 03 and 1/4 on 30 Jan 04. The isotopic enrichment was 2,072 {+-} 0,001 atom % {sup 15}N. The dry matter of the shoot was evaluated every 60 days, using one plant per replicate, collected outside the sub-plot. They were as similar as possible to the labeled plants, which were used only for isotopic and Total N analysis, after being dried at 65 deg C until constant weight. At harvest, plants had absorbed 42,88% of the fertilizer N. Leaves accumulated the largest amount of fertilizer N, and were also the compartments that received most N from other parts of the plant. The following partition of the fertilizer N was found at harvest: 23.01% in young leaves, 6.23% in old leaves, 4,46% in stem, 3.46% in fruits, 3.10% in young branches and 2.63% in old branches. (author)

  14. Barley Benefits from Organic Nitrogen in Plant Residues Applied to Soil using 15N Isotope Dilution

    The experiment was carried out in pots (sandy soil cultivated with Barley plant) under greenhouse conditions, at Inshas, Egypt. The aim was to evaluate the transformation of nitrogen applied either as mineral form (15NH4)2SO4, or as organic-material-N (plant residues) .Basal recommended doses of P and K were applied. Labeled 15N as(15NH4)2SO4 (5 % a.e) or plant residues (ground leuceana forage, compost, and mixture of them) were applied at a rate of 20 kg N/ ha). 15N technique was used to evaluate N-uptake and fertilizer use efficiency. The treatments were arranged in a completely randomized block design under greenhouse conditions. The obtained results showed that the dry weight of barley shoots was positively affected by reinforcement of mineral- N with organic-N. On the other hand, the highest dry weight was estimated with leuceana either applied alone or reinforced with mineral N. Similar trend was noticed with N uptake but only with organic N, while with treatment received 50% organic-N. plus 50% mineral- N. the best value of N uptake was recorded with mixture of leuceana and compost. The amount of Ndff was lowest where fertilizer 15N was applied alone. Comparing Ndff for the three organic treatments which received a combination of fertilizer-15N+organic-material-N, results showed that the highest Ndff was occurred with mixture of leuceana and compost, whereas the lowest was induced with individual leuceana treatment. 15N recovery in shoots of barley ranged between 22.14 % to 82.16 %. The lowest occurred with application of mineral 15N alone and; the highest occurred where mineral 15N was mixed with compost or leucaena-compost mixture

  15. High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla

    Rao, Madhwesha; Stewart, Neil J.; Norquay, Graham; Griffiths, Paul D.

    2016-01-01

    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27080441

  16. Revision of the 15N(p,{\\gamma})16O reaction rate and oxygen abundance in H-burning zones

    Caciolli, A; Capogrosso, V; Bemmerer, D; Broggini, C; Corvisiero, P; Costantini, H; Elekes, Z; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Lemut, A; Marta, M; Menegazzo, R; Palmerini, S; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2011-01-01

    The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\\simeq} 30 {\\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,{\\gamma})16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,{\\gamma})16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures...

  17. Continuous field measurement of N2O isotopologues using FTIR spectroscopy following 15N addition

    Phillips, R. L.; Griffith, D. W.; Dijkstra, F. A.; Lugg, G.; Lawrie, R.; Macdonald, B.

    2012-12-01

    Anthropogenic additions of fertilizer nitrogen (N) have significantly increased the mole fraction of nitrous oxide (N2O) in the troposphere. Tracking the fate of fertilizer N and its transformation to N2O is important to advance knowledge of greenhouse gas emissions from soils. Transport and transformations are frequently studied using 15N labeling experiments, but instruments capable of continuous measurements of 15N-N2O at the surface of soil have only recently come to the fore. Our primary aim was to quantify emissions of N2O and the fraction of 15N emitted as N2O from an agricultural soil following 15N addition using a mobile Fourier Transform Infrared (FTIR) spectrometer. We set up a short-term field experiment on a coastal floodplain site near Nowra, New South Wales. We deployed an automated chamber system connected to a multi-pass cell (optical pathlength 24 m) and low resolution FTIR spectrometer to measure fluxes of all N2O isotopologues collected from five 0.25 m2 chambers every three hours. We measured N2O fluxes pre and post-application of 15N-labeled substrate as potassium nitrate (KNO3) or urea [CO(NH2)2] to the soil surface. Root mean square uncertainties for all isotopologue measurements were less than 0.3 nmol mol-1 for 1 minute average concentration measurements, and minimum detectable fluxes for each isotopologue were isotope ratio mass spectrometry. Approximately 1% (range 0.7 - 1.9%) of the total amount of 15N applied was emitted as N2O. Average fractions of 15N recovered in soil, root, shoot, and microbial biomass pools varied between trials but were approximately 0.4, 0.08, 0.1 and 0.03, respectively. The results indicate that the portable FTIR spectroscopic technique can effectively trace transfer of 15N to the atmosphere as N2O after 15N addition, allowing for powerful quantification of N2O emissions under field conditions.

  18. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. PMID:26845204

  19. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  20. Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR.

    Komatsu, Takanori; Kikuchi, Jun

    2013-09-17

    A multidimensional solution NMR method has been developed using various pulse programs including HCCH-COSY and (13)C-HSQC-NOESY for the structural characterization of commercially available (13)C labeled lignocellulose from potatoes (Solanum tuberosum L.), chicory (Cichorium intybus), and corn (Zea mays). This new method allowed for 119 of the signals in the (13)C-HSQC spectrum of lignocelluloses to be assigned and was successfully used to characterize the structures of lignocellulose samples from three plants in terms of their xylan and xyloglucan structures, which are the major hemicelluloses in angiosperm. Furthermore, this new method provided greater insight into fine structures of lignin by providing a high resolution to the aromatic signals of the β-aryl ether and resinol moieties, as well as the diastereomeric signals of the β-aryl ether. Finally, the (13)C chemical shifts assigned in this study were compared with those from solid-state NMR and indicated the presence of heterogeneous dynamics in the polysaccharides where rigid cellulose and mobile hemicelluloses moieties existed together. PMID:24010724

  1. Hepatic steatosis assessment with {sup 1}H-spectroscopy and chemical shift imaging at 3.0 T before hepatic surgery: Reliable enough for making clinical decisions?

    Koelblinger, Claus, E-mail: claus.koelblinger@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Krssak, Martin, E-mail: martin.krssak@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Maresch, Judith, E-mail: judith.maresch@meduniwien.ac.at [Department of Pathology, Medical University of Vienna (Austria); Wrba, Fritz, E-mail: fritz.wrba@meduniwien.ac.at [Department of Pathology, Medical University of Vienna (Austria); Kaczirek, Klaus, E-mail: klaus.kaczirek@meduniwien.ac.at [Department of Surgery, Medical University of Vienna (Austria); Gruenberger, Thomas, E-mail: thomas.gruenberger@meduniwien.ac.at [Department of Surgery, Medical University of Vienna (Austria); Tamandl, Dietmar, E-mail: dietmar.tamandl@meduniwien.ac.at [Department of Surgery, Medical University of Vienna (Austria); Ba-Ssalamah, Ahmed, E-mail: ahmed.ba-ssalamah@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Berger-Kulemann, Vanessa, E-mail: vanessa.berger-kulemann@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Weber, Michael, E-mail: michael.weber@meduniwien.ac.at [Department of Radiology, Medical University of Vienna (Austria); Schima, Wolfgang, E-mail: wolfgang.schima@khgh.at [Department of Radiology, KH Goettlicher Heiland and Herz-Jesu Krankenhaus, Dornbacher Strasse 20-28, 1170 Vienna (Austria)

    2012-11-15

    Purpose: To compare the accuracy of liver fat quantification using chemical shift imaging (CSI) and H1 MR-spectroscopy (MRS) at 3.0 T in patients undergoing liver resection. Methods: Totally 35 patients were included in this prospective IRB approved study. The histopathologically assessed liver fat was compared to the hepatic fat fractions calculated with CSI (with and without spleen correction) and MRS. Spearman's rank correlation and Fisher z-test were used for correlation analysis. Sensitivity and specificity regarding the detection of marked steatosis were calculated for the different modalities and compared using the McNemar test. Results: MRS (r = .85) and CSI with spleen correction (r = .85) showed a significantly better correlation (p = .03) with histology compared to CSI without spleen correction (r = .67). Sensitivity and specificity for the detection of marked steatosis was 100% (12/12) and 87% (20/23) for MRS and 92% (11/12) and 83% (19/23) for CSI with spleen correction (p > .12). Conclusion: For the assessment of hepatic steatosis both CSI with spleen correction and MRS at 3.0 T, show a good correlation with histology. CSI without spleen correction should not be used. Sensitivity and specificity for the detection of marked steatosis are high with both modalities. However, results that are scattered around the cut-off values are not reliable enough for clinical decisions.

  2. The value of 15-minute delayed contrast-enhanced CT to differentiate hyperattenuating adrenal masses compared with chemical shift MR imaging

    To investigate the diagnostic performance of 15-min delayed contrast-enhanced computed tomography (15-DECT) compared with that of chemical shift magnetic resonance (CSMR) imaging in differentiating hyperattenuating adrenal masses and to perform subgroup analysis in underlying malignancy and non-malignancy. This study included 478 adrenal masses in 453 patients examined with 15-DECT and 235 masses in 217 patients examined with CSMR. Relative percentage washout (RPW) and absolute percentage washout (APW) on 15-DECT, and signal intensity index (SII) and adrenal-to-spleen ratio (ASR) on CSMR were measured. Sensitivity, specificity and accuracy of 15-DECT and CSMR were analysed for characterisation of adrenal adenoma. Subgroup analyses were performed in patients with and without underlying malignancy. Attenuation and size of the masses on unenhanced CT correlated with the risk of non-adenoma. RPW calculated from 15-DECT showed the highest diagnostic performance for characterising hyperattenuating adrenal masses regardless of underlying malignancy, and the sensitivity, specificity and accuracy were 91.7 %, 74.8 % and 88.1 %, respectively in all patients. The risk of non-adenoma increased approximately threefold as mass size increased 1 cm or as its attenuation value increased by 10 Hounsfield units. 15-DECT was more accurate than CSMR in characterising hyperattenuating adrenal masses regardless of underlying malignancy. (orig.)

  3. Scan time reduction in {sup 23}Na-Magnetic Resonance Imaging using the chemical shift imaging sequence. Evaluation of an iterative reconstruction method

    Weingaertner, Sebastian; Konstandin, Simon; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Wetterling, Friedrich [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Dublin Univ. (Ireland) Trinity Inst. of Neuroscience; Fatar, Marc [Heidelberg Univ., Mannheim (Germany). Dept. of Neurology; Neumaier-Probst, Eva [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2015-07-01

    To evaluate potential scan time reduction in {sup 23}Na-Magnetic Resonance Imaging with the chemical shift imaging sequence (CSI) using undersampled data of high-quality datasets, reconstructed with an iterative constrained reconstruction, compared to reduced resolution or reduced signal-to-noise ratio. CSI {sup 23}Na-images were retrospectively undersampled and reconstructed with a constrained reconstruction scheme. The results were compared to conventional methods of scan time reduction. The constrained reconstruction scheme used a phase constraint and a finite object support, which was extracted from a spatially registered {sup 1}H-image acquired with a double-tuned coil. The methods were evaluated using numerical simulations, phantom images and in-vivo images of a healthy volunteer and a patient who suffered from cerebral ischemic stroke. The constrained reconstruction scheme showed improved image quality compared to a decreased number of averages, images with decreased resolution or circular undersampling with weighted averaging for any undersampling factor. Brain images of a stroke patient, which were reconstructed from three-fold undersampled k-space data, resulted in only minor differences from the original image (normalized root means square error < 12%) and an almost identical delineation of the stroke region (mismatch < 6%). The acquisition of undersampled {sup 23}Na-CSI images enables up to three-fold scan time reduction with improved image quality compared to conventional methods of scan time saving.

  4. The value of 15-minute delayed contrast-enhanced CT to differentiate hyperattenuating adrenal masses compared with chemical shift MR imaging

    Koo, Hyun Jung; Choi, Hyuck Jae; Cho, Kyoung-Sik [Asan Medical Center, University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Kim, Hwa Jung; Kim, Sun-Ok [Asan Medical Center, University of Ulsan College of Medicine, Cancer Center, Department of Clinical Epidemiology and Biostatistics, Seoul (Korea, Republic of)

    2014-06-15

    To investigate the diagnostic performance of 15-min delayed contrast-enhanced computed tomography (15-DECT) compared with that of chemical shift magnetic resonance (CSMR) imaging in differentiating hyperattenuating adrenal masses and to perform subgroup analysis in underlying malignancy and non-malignancy. This study included 478 adrenal masses in 453 patients examined with 15-DECT and 235 masses in 217 patients examined with CSMR. Relative percentage washout (RPW) and absolute percentage washout (APW) on 15-DECT, and signal intensity index (SII) and adrenal-to-spleen ratio (ASR) on CSMR were measured. Sensitivity, specificity and accuracy of 15-DECT and CSMR were analysed for characterisation of adrenal adenoma. Subgroup analyses were performed in patients with and without underlying malignancy. Attenuation and size of the masses on unenhanced CT correlated with the risk of non-adenoma. RPW calculated from 15-DECT showed the highest diagnostic performance for characterising hyperattenuating adrenal masses regardless of underlying malignancy, and the sensitivity, specificity and accuracy were 91.7 %, 74.8 % and 88.1 %, respectively in all patients. The risk of non-adenoma increased approximately threefold as mass size increased 1 cm or as its attenuation value increased by 10 Hounsfield units. 15-DECT was more accurate than CSMR in characterising hyperattenuating adrenal masses regardless of underlying malignancy. (orig.)

  5. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-12-01

    The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.

  6. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-01

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments. PMID:27359161

  7. δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the

  8. Rivermouth alteration of agricultural impacts on consumer tissue δ(15N.

    James H Larson

    Full Text Available Terrestrial agricultural activities strongly influence riverine nitrogen (N dynamics, which is reflected in the δ(15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ(15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ(15N. In a previous study, this terrestrial-consumer tissue δ(15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the 'rivermouth effect'. This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ(15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients will require integration of biogeochemical and hydrologic models.

  9. Fate of 15N-urea applied to wheat-soybean succession crop

    The wheat crop in Sao Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha-1) depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha-1 of N. The efficiency of 15N-urea utilization ranged from 52% to 85%. The main loss of applied 15 N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha-1, was less than 1% of applied 15N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual 15 N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the 15 N applied to wheat at sowing or at tillering stage. (author)

  10. Fate of {sup 15}N-urea applied to wheat-soybean succession crop

    Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)]. E-mail: aeboaret@cena.usp.br; pcotrive@cena.usp.br; muraoka@cena.usp.br; Spolidorio, Eduardo Scarpari [SN Centro de Pesquisa e Promocao de Sulfato de Amonio, Piracicaba, SP (Brazil)]. E-mail: sncentro@merconet.com.br; Freitas, Jose Guilherme de; Cantarella, Heitor [Instituto Agronomico de Campinas, SP (Brazil)]. E-mail: jfreitas@iac.sp.gov.br; hcantare@iac.sp.gov.br

    2004-07-01

    The wheat crop in Sao Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha{sup -1}) depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha{sup -1} of N. The efficiency of {sup 15}N-urea utilization ranged from 52% to 85%. The main loss of applied {sup 15} N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha{sup -1}, was less than 1% of applied {sup 15}N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual {sup 15} N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the {sup 15} N applied to wheat at sowing or at tillering stage. (author)

  11. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry. (author)

  12. Incorporation of 15N-inorganic nitrogen into free-amino acids in germinating corn

    Incorporation of 15N-labeled compounds, (K15NO3) and (15NH4)2SO4, into free-amino acids was measured in germinating corn. Sterilized seeds of sweet corn (Choko No. 865) were sown on the filter papers soaked in 10 ml of the solution containing one of the labeled compounds (40 ppm N, 99 atom % excess) in petri dishes and germinated at 30 deg C. After 48 hours and 72 hours, 15N-incorporation was measured in 5 seedlings selected owing to uniform growth. A GC-MS was used for measuring the ratio of 15N isotopes present in free-amino acids. 15N incorporation into free-amino acids hardly occurred when corn was germinated in the solution containing K15NO3, which suggested that endogenous nitrogen was used during the early germination stage of corn when nitrate is present. Incorporation into amino acids was greater when corn was germinated in the medium containing (15NH4)2SO4, than the case of the solution containing K15NO3. When corn was germinated in the solution containing (15NH4)2SO4, assimilation of 15N into asparagine or aspartic acid was comparatively higher than that into the other amino acids, though the incorporation rate was low. Thus, in intact germinating corn, the hydrolyzed product of protein was utilized for germination with priority, and dependence on exogenous nitrogen was low. (Kaihara, S.)

  13. The {sup 15}N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant

    Fenilli, Tatiele A.B. [Universidade Regional de Blumenau, (FURB), SC (Brazil); Reichart, Klaus; Bacchi, Osny O.S.; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)]. E-mail: klaus@cena.usp.br; Dourado-Neto, Durval [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz (ESALQ)

    2007-12-15

    The use of the {sup 15}N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of {sup 15}N labeled fertilizer experiments, using as an example a coffee crop fertilized with {sup 15}N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% {sup 15}N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and {sup 15}N enrichments of plant material by mass-spectrometry. (author)

  14. Utilization of 15N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    After systematic application of 15N-ammonium nitrate, the change of the dinuclidic composition and 15N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative 15N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The 15N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are 15N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors. (author)

  15. Utilization of 15N-labelled urea in laying hens. 5

    In the series of experiments with labelled urea three colostomized laying hybrids were butchered after a six-day application of 1% urea with 96.06 atom-% 15N excess (15N') in the ration and another 2 days with a supplement of 1% unlabelled urea. Out of the individual samples from crop, gizzard, small intestine, caecum and rectum, the content of the small intestine and the caecum showed the highest labelling with > 1 atom-% 15N'. The TCA soluble fraction of the content of the gizzard was more highly and that of the intestines less labelled than the total nitrogen. The tissue of the gizzard is distinctly less labelled than the 'omasum system' and the small intestine. The atom-% 15N' of the oesophagus with crop and glandular stomach largely showed agreement in the individual hens with that of intestinal tissue and ranged between 0.71 and 0.89 atom-%. 2% of the 15N' supplemented with the urea could be recovered in the content and the tissue of the gastro-intestinal tract. (author)

  16. Grafting and carbonated irrigation water in transport of 15N and in the tomato production

    The effects of CO2 application through irrigation water, and of grafting in transport of 15N and in the tomato production, were studied. These treatments were arranged in a 2 x 2 factorial scheme (with and without CO2 in irrigation water and grafted and non-grafted tomato), in a completely randomized design, with four replications. The injection of CO2 into the water began at 34 days after transplant of seedlings (DAT) and continued for all irrigations. The application of the sulfate of ammonium with abundance in atoms of 15N of 3.13% in plants destined to analysis was done at 45 DAT when the plants were in the middle of fructification. After 14 days of fertilizer (15N) application the plants were harvested, washed, dried and sent for analysis of 15N in plant tissue. The results demonstrated that CO2 and the grafting did not alter the transport of 15N in the plant. The production of commercial fruits was larger when CO2 was applied in water. (author)

  17. Shifting Attention

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  18. Preparation of 15N labelled protein sample by gene engineering technology

    Using the advanced multi-dimension heteronuclear pulses and isotope labelled protein technique, nuclear magnetic resonance spectroscopy has become an important tool in analysis of the solution conformation of protein. On the basis of the high level expression of a protein-trichosanthin in recombinant E.coli using DNA, 15N was used to label the protein, the 15N labelled trichosanthin was obtained by affinity chromatography on Ni-NTA agarose. Terminating pregnant effect in mice showed that this recombinant protein had the same activity as natural trichosanthin. A 1H-15N heteronuclear single-quantum coherence (HSQC) spectrum was obtained from an AM-500 NMR spectrometer, demonstrating that this method is suitable in preparing labelled protein sample for NMR

  19. SAFT缔合模型关联含水体系的1H NMR%Correlation of 1H NMR Chemical Shift for Aqueous Solutions by Statistical Associating Fluid Theory Association Model

    许波; 李浩然; 王从敏; 许映杰; 韩世钧

    2005-01-01

    1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAFT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.

  20. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on 1H and 13C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in th...

  1. Detection of fat in lipomatous tumors of the myometrium by means of computed tomography and chemical shift magnetic resonance imaging; Deteccion de grasa en tumores lipomatosos del miometrio mediante TC y RM con tecnica de Desplazamiento Quimico

    Costa, S.; Marti-Bonmati, L.; Delgado, F.; Ripolles, T. [Hospital Universitario Doctor Peset. Valencia (Spain)

    2000-07-01

    Lipomatous tumors of the myometrium are rare lesions composed of varying amounts of mature fatty tissue. Our objective was to assess the computed tomography (CT) and magnetic resonance MR findings associated with these tumors and determine the utility of the chemical shift imaging technique in the detection of fact within these focal uterine masses. Lipomatous focal uterine lesions were detected in three women by means of ultrasound. The patients underwent CT and MR using the chemical shift imaging technique and in-phase and opposed phase T1-weighted gradient-echo images. Qualitative and quantitative analyses of the results were carried out, based on the attenuations and relations of signal intensity. The tumors were hypoattenuated in CT seans and hyperintense in T1-weighted images, showing a decreased signal in opposed phase T1-weighted images when compared with in-phase images. The percentage change (between 2% and 3%) is probably proportional to the differing proportions of fact and muscle elements present in these lipoleiomyomas. Lipomatous tumors of the myometrium are uterine lesions with a varying proportion of fact. Their fat composition can be detected by CT and MR. The chemical shift imaging technique reveals the variations in the proportions of fat in these tumors. Since the presence of fat within uterine lesions is virtually diagnostic of the myometrial lipomatous tumor, the chemical shift imaging technique contributes to the characterization of these lesions. (Author) 11 refs.

  2. Origin and tracing techniques of high 15N nitrogen compounds in industrial environments

    Effluents and process waters from various industrial plants were investigated for the 15N/14N isotope ratio in nitrate and ammonia. It was found that large isotope fractionation occurs in cases where ammonia is involved in gas-liquid phase changes. This feature was found to occur in two coke oven plants where ammonia gas is removed from a gas stream by solution in water, in an ammonia sulphate plant where ammonia gas is absorbed in sulphuric acid and in a water treatment plant where ammonia is removed from (high pH) water by blowing air through the process water. In all these cases 15N isotope enrichments (in the range of 10 to 30 per mille) occurred. These enrichments are in excess of those found naturally. Ammonia in such wastewaters essentially retains this high 15N content when it is converted to nitrate underground: which occurs rapidly under well-oxidised conditions. Nitrate is a fairly conservative tracer and its contamination in water can be followed readily. In the low recharge environment in the central parts of South Africa evidence of waste management practices of 10-20 years earlier were still quite evident using this isotopic label. The high 15N nitrate signal could be used to distinguish industrial nitrogen pollution from pollution by local sewage disposal systems. Vegetation that derives its nitrogen from such high 15N sources retains the isotope signature of its source. Grass and other annual plants then exhibit the isotope signature of the water of a specific year. Trees exhibit the isotope signature of deeper water, which shows the effects of longer term pollution events. The use of high 15N as tracer enables the source apportionment of nitrogen derived pollution in these specific circumstances. (author)

  3. Coral skeletal δ15N reveals isotopic traces of an agricultural revolution

    This study introduces a new method of tracing the history of nutrient loading in coastal oceans via δ15N analysis of organic nitrogen preserved in the skeleton of the massive Porites coral. Four coral cores were collected in Bali, Indonesia, from reefs exposed to high levels of fertilizers in agricultural run-off, from lagoonal corals impacted by sewage, and from a reef located 30 km offshore. Skeletal δ15N in the agriculturally exposed coral declined from 10.7 ± 0.4 per mille in 1970-1971, when synthetic fertilizers (-0.8 per mille ± 0.2 per mille ) were introduced to Bali, to a depleted 'anthropogenic' baseline of 3.5 per mille ± 0.4% in the mid-1990s. δ15N values were negatively correlated with rainfall, suggesting that marine δ15N lowers during flood-born influxes of waste fertilizers. Reef cores exposed to untreated sewage in terrestrial discharge were enriched (7.8 and 7.3 ± 0.4 per mille ), while the offshore core reflected background oceanic signals (6.2 ± 0.4 per mille). δ15N, N concentration, and C:N systematics indicate that the N isotopic composition of skeletal organic matter was generally well preserved over 30 years. We suggest that skeletal organic δ15N can serve as a recorder of past nitrogen sources. In Bali, this tracer suggests that the intensification of Western style agricultural practices since 1970 are contributing to the degradation of coastal coral reefs

  4. Modified micro-diffusion method for 15N-enriched soil solutions

    The preparation of solutions for determination of 15N/14N isotope ratios is described, with special reference to dilute samples. A micro-diffusion method has been simplified to be more suitable for rapid isotope-ratio determination in soil solutions collected in tensionics. Ammonia expelled during micro-diffusion is captured on acidified filter discs fixed to the caps of gas-tight vials. The discs are transferred to tin capsules for shipment to the Soil Science Unit for 15N-enrichment determination. (author)

  5. Optical $\\Lambda$ transitions and quantum computing in the $^{15}$N-V$^{-}$ Center in Diamond

    González, Gabriel; Leuenberger, Michael N.

    2009-01-01

    We present a thorough derivation of the excited state energy levels of the negatively charged $^{15}$N-V$^{-}$ center in diamond for the strong applied electric field case. We show that in the $^{15}$N-V$^{-}$ center a spin non-conserving two-photon $\\Lambda$ transition exists that is mediated by the hyperfine interaction, which provides the possibility to write quantum information. Using second order perturbation theory we obtain a $\\Lambda$ transition rate of the order of 10 MHz at room tem...

  6. 15N-urea tracing emission spectroscopy for detecting the infection of Helicobacter pylori

    Objective: To study a noninvasive and nonradioactive method, 15N-urea tracing emission spectroscopy, for detecting the Helicobacter pylori (Hp) infection. Methods: A group of 26 patients was tested with a method of 15N-urea tracing emission spectroscopy for detecting the Hp infection. Results: Taking the bacterial culture or (and) Gram stain as a standard, the specificity, sensitivity and positive predicting rate of the test were 81%, 89% and 84%, respectively. Conclusion: The method could be considered useful for clinical practice

  7. Constraints on oceanic N balance/imbalance from sedimentary 15N records

    M. A. Altabet

    2007-01-01

    Full Text Available According to current best estimates, the modern ocean's N cycle is in severe deficit. N isotope budgeting provides an independent geochemical constraint in this regard as well as the only means for past reconstruction. Overall, it is the relative proportion of N2 fixation consumed by water column denitrification that sets average oceanic δ15N under steady-state conditions. Several factors (conversion of organic N to N2, Rayleigh closed and open system effects likely reduce the effective fractionation factor (ε for water column denitrification to about half the inherent microbial value for εden. If so, the average oceanic δ15N of ~5‰ is consistent with a canonical contribution from water column denitrification of 50% of the source flux from N2 fixation. If an imbalance in oceanic N sources and sinks changes this proportion then a transient in average oceanic δ15N would occur. Using a simple model, changing water column denitrification by ±30% or N2 fixation by ±15% produces detectable (>1‰ changes in average oceanic δ15N over one residence time period or more with corresponding changes in oceanic N inventory. Changing sedimentary denitrification produces no change in δ15N but does change N inventory. Sediment δ15N records from sites thought to be sensitive to oceanic average δ15N all show no detectible change over the last 3 kyr or so implying a balanced marine N budget over the latest Holocene. A mismatch in time scales is the most likely meaningful interpretation of the apparent conflict with modern flux estimates. Decadal to centennial scale oscillations between net N deficit and net surplus may occur but on the N residence timescale of several thousand years, net balance is achieved in sum. However, sediment δ15N records from the literature covering the period since the last glacial maximum show excursions of up to several ‰ that are consistent with sustained N deficit during the deglaciation followed by readjustment

  8. Constraints on oceanic N balance/imbalance from sedimentary 15N records

    M. A. Altabet

    2006-07-01

    Full Text Available According to current best estimates, the modern ocean's N cycle is in severe deficit. N isotope budgeting provides an independent geochemical constraint in this regard as well as the only means for past reconstruction. Overall, it is the relative proportion of N2 fixation consumed by water column denitrification that sets average oceanic δ15N under steady-state conditions. Several factors (conversion of organic N to N2, Rayleigh closed and open system effects likely reduce the effective fractionation factor (ε for water column denitrification to about half the inherent microbial value for εden. If so, the average oceanic δ15N of ~5 is consistent with a canonical contribution from water column denitrification of 50% of the source flux from N2 fixation. If an imbalance in oceanic N sources and sinks changes this proportion then a transient in average oceanic δ15N would occur. Using a simple model, changing water column denitrification ±30% or N2 fixation by ±15% produces detectable (>1 changes in average oceanic δ15N over one residence time period or more with corresponding changes in oceanic N inventory. Changing sedimentary denitrification produces no change in δ15N but does change N inventory. Sediment δ15N records from sites thought to be sensitive to oceanic average δ15N all show no detectible change over the last 3 kyr or so implying a balanced marine N budget over the latest Holocene. A mismatch in time scales is the most likely meaningful interpretation of the apparent conflict with modern flux estimates. Decadal to centennial scale oscillations between net N deficit and net surplus may occur but on the N residence timescale of several thousand years, net balance is achieved in sum. However, sediment δ15N records from the literature covering the period since the last glacial maximum show excursions of up to several that are consistent with sustained N deficit during the deglaciation followed by readjustment and establishment of

  9. 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si MAS NMR in studies of Portland cement including limestone additions

    13C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed 13C MAS or 13C(1H) CP/MAS NMR spectra (9.4 T or 14.1 T) for 13C in natural abundance. The variation in the 13C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in 13C MAS NMR spectra. However, it is shown that by combining 13C MAS and 13C(1H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends 29Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in 27Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •13C chemical shift anisotropies for inorganic carbonates from 13C MAS NMR. •Narrow 13C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by 13C MAS and 13C(1H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase

  10. {sup 31}P-MR spectroscopy of all regions of the human heart at 1.5 T with acquisition-weighted chemical shift imaging; P-MR-Spektroskopie aller Wandabschnitte des menschlichen Herzens bei 1,5 T mit akquisitionsgewichteter Chemical-shift-Bildgebung

    Koestler, H.; Beer, M.; Buchner, S.; Sandstede, J.; Pabst, T.; Kenn, W.; Hahn, D. [Wuerzburg Univ. (Germany). Abt. fuer Roentgendiagnostik; Landschuetz, W.; Kienlin, M. von [Wuerzburg Univ. (Germany). Physikalisches Inst.; Neubauer, S. [Dept. of Cardiovascular Medicine, John Radcliffe Hospital, Oxford (United Kingdom)

    2001-12-01

    Aim: Aim of this study was to show whether or not acquisition-weighted chemical shift imaging (AW-CSI) allows the determination of PCr and ATP in the lateral and posterior wall of the human heart at 1.5 T. Methods: 12 healthy volunteers were examined using a conventional chemical shift imaging (CSI) and an AW-CSI. The sequences differed only in the number of repetitions for each point in k space. A hanning function was used as filter function leading to 7 repetitions in the center of the k space and 0 in the corners. Thus, AW-CSI had the same resolution as the CSI sequence. The results for both sequences were analyzed using identically positioned voxels in the septal, anterior, lateral and posterior wall. Results: The determined averaged AW-CSI signal to noise ratios were higher for PCr by a factor of 1.3 and for ATP by 1.4 than those of CSI. The PCr/ATP ratios were higher by a factor of 1.2 - 1.3 and showed a smaller standard deviation in all locations for AW-CSI. The mean PCr/ATP ratios determined by AW-CSI of septal, lateral and posterior wall were almost identical (1.72 - 1.76), while it was higher in the anterior wall (1.9). Conclusions: The reduced contamination in AW-CSI improves the signal to noise ratio and the determination of the PCr/ATP ratio in cardiac {sup 31}P spectroscopy compared to CSI with the same resolution. The results in volunteers indicate that AW-CSI renders {sup 31}P spectroscopy of the lateral and posterior wall of the human heart feasible for patient studies at 1.5 T. (orig.) [German] Ziel: Ziel der Arbeit war es zu untersuchen, ob die akquisitionsgewichtete Chemical-shift-Bildgebung (AW-CSI) die Bestimmung von PCr und ATP in der Seiten- und Hinterwand des menschlichen Herzens an einem klinischen 1,5 T MR-Tomographen erlaubt. Methoden: 12 gesunde Probanden wurden jeweils mit einer chemical shift imaging (CSI) und einer AW-CSI-Sequenz untersucht. Die Sequenzen unterschieden sich lediglich in der Anzahl der Wiederholungen der einzelnen

  11. Chemical shift changes provide evidence for overlapping single-stranded DNA and XPA binding sites on the 70 kDa subunit of human replication protein A

    Daughdrill, Gary W.; Buchko, Garry W.; Botuyan, Maria V.; Arrowsmith, Cheryl H.; Wold, Marc S.; Kennedy, Michael A.; Lowry, David F.

    2003-07-15

    Replication protein A (RPA) is a heterotrimeric single-stranded DNA (ssDNA) binding protein that can form a complex with the xeroderma pigmentosum group A protein (XPA). This complex can preferentially recognize UV damaged DNA over undamaged DNA and has been implicated in the stabilization of open complex formation during nucleotide excision repair. In this report, NMR spectroscopy was used to investigate the interaction between a fragment of the 70 kDa subunit of human RPA, residues 1-326 (hRPA701-326), and a fragment of the human XPA protein, residues 98-219 (XPA-MBD). Intensity changes were observed for amide resonances in the 1H-15N correlation spectrum of uniformly 15N-labeled hRPA701-326 after the addition of unlabeled XPA-MBD. The intensity changes observed were restricted to an ssDNA binding domain that is between residues 183 and 296 of the hRPA701-326 fragment. The hRPA701-326 residues with the largest resonance intensity reductions were mapped onto the structure of the ssDNA binding domain to identify the binding surface with XPA-MBD. The XPA-MBD binding surface showed significant overlap with an ssDNA binding surface that was previously identified using NMR spectroscopy and X-ray crystallography.

  12. Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser

    Zhao, L. M.; Tang, D. Y.

    2006-06-01

    We report on the generation of high power superbroad spectrum bunched noise-like pulses from a passively mode-locked erbium-doped fiber ring laser without using the stretched-pulse technique. The maximum 3-dB spectral bandwidth of the noise-like pulses is about 93 nm with an energy of about 15 nJ. We further show numerically that the superbroad spectrum of the pulses is caused by the transform-limited feature of the pulses together with the Raman self-frequency shift effect.

  13. Measurement of 15N relaxation rates in perdeuterated proteins by TROSY-based methods

    While extracting dynamics parameters from backbone 15N relaxation measurements in proteins has become routine over the past two decades, it is increasingly recognized that accurate quantitative analysis can remain limited by the potential presence of systematic errors associated with the measurement of 15N R1 and R2 or R1ρ relaxation rates as well as heteronuclear 15N-{1H} NOE values. We show that systematic errors in such measurements can be far larger than the statistical error derived from either the observed signal-to-noise ratio, or from the reproducibility of the measurement. Unless special precautions are taken, the problem of systematic errors is shown to be particularly acute in perdeuterated systems, and even more so when TROSY instead of HSQC elements are used to read out the 15N magnetization through the NMR-sensitive 1H nucleus. A discussion of the most common sources of systematic errors is presented, as well as TROSY-based pulse schemes that appear free of systematic errors to the level of 2′/R1′ ratios fit an axially symmetric diffusion tensor with a Pearson’s correlation coefficient of 0.97, comparable to fits obtained for backbone amide RDCs to the Saupe matrix.

  14. The use of δ15N in assessing sewage stress on coral reefs

    While coral reefs decline, scientists argue, and effective strategies to manage land-based pollution lag behind the extent of the problem. There is need for objective, cost-effective, assessment methods. The measurement of stable nitrogen isotope ratios, δ15N, in tissues of reef organisms shows promise as an indicator of sewage stress. The choice of target organism will depend upon study purpose, availability, and other considerations such as conservation. Algae are usually plentiful and have been shown faithfully to track sewage input. The organic matrix of bivalve shells can provide time series spanning, perhaps, decades. Gorgonians have been shown to track sewage, and can provide records potentially centuries-long. In areas where baseline data are lacking, which is almost everywhere, δ15N in gorgonians can provide information on status and trends. In coral tissue, δ15N combined with insoluble residue determination can provide information on both sewage and sediment stress in areas lacking baseline data. In the developed world, δ15N provides objective assessment in a field complicated by conflicting opinions. Sample handling and processing are simple and analysis costs are low. This is a method deserving widespread application.

  15. Using a Macroalgal δ15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  16. Determination of level widths in 15N using nuclear resonance fluorescence

    Szücs T.

    2015-01-01

    Full Text Available Level widths in 15N have been measured with the nuclear resonance fluorescence (NRF technique. Solid nitrogen compounds, bremsstrahlung, and HPGe detectors have been used as target, beam, and detectors, respectively. The preliminarily level widths are in agreement with the literature values, but more precise.

  17. An improved method for delta 15N measurements in ice cores

    M. Leuenberger

    2008-02-01

    Full Text Available The use of isotopic ratios of nitrogen gas (δ15N trapped in ice cores as a paleothermometer to characterise abrupt climate changes is becoming a widespread technique. The versatility of the technique could be enhanced, for instance in quantifying small temperature changes during the last glacial period in Antarctic ice cores, by using high precision methods. In this paper, we outline a method for measuring δ15N to a precision of 0.006permil (1σ, n=9 from replicate ice core samples. The high precision results from removing oxygen, carbon dioxide and water vapour from the air extracted from ice cores. The advantage of the technique is that it does not involve correction for isobaric interference due to CO+ ions. We also highlight the importance of oxygen removal from the sample, and how it influences δ15N measurements. The results show that a small amount of oxygen in the sample can be detrimental to achieving an optimum precision in δ15N measurements of atmospheric nitrogen trapped ice core samples.

  18. Pathways of nitrogen assimilation in cowpea nodules studied using 15N2 and allopurinol

    In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo [3,4-d]pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (vigna unguiculata L. Walp. cv Vita 3) formed [15N]xanthine from 15N2 at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.87.99.2) activity. Negligible 15N -labeling of asparagine from 15N2 was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery

  19. Experimental studies on porcine protein catabolism after thermic traumas using 15N

    Within studies on protein metabolism extensive third-degree burns were produced in pigs. During burn disease protein catabolism was determined by means of parenterally applied 15N-glycine and the improvement of the negative total N balance as well as modes of application of amino acids and proteins especially albumins are discussed

  20. Interregional training course on the use of 15N in soil science and plant nutrition

    In trials under greenhouse conditions the action of herbicides (2,4-D, Atrazine, Dicamba, Lenacil) on the nitrogen metabolism (total fertilizer nitrogen uptake, incorporation of fertilizer into composition of nitrogeneous substances) of sensitive and resistant plants (pea, maize, spring wheat, weeds) was studied by means of 15N-labelled fertilizer nitrogen. (author)

  1. Recovery of 15N-urea in soil-plant system of tanzania grass pasture

    The economic attractiveness and negative environmental impact of nitrogen (N) fertilization in pastures depend on the N use efficiency in the soil-plant system. However, the recovery of urea-15N by Panicum maximum cv. Tanzania pastures, one of the most widely used forage species in intensified pastoral systems, is still unknown. This experiment was conducted in a randomized complete block design with four treatments (0, 40, 80 and 120 kg ha-1 of N-urea) and three replications, to determine the recovery of 15N urea by Tanzania grass. Forage production, total N content and N yield were not affected by fertilization (p > 0.05), reflecting the high losses of applied N under the experimental conditions. The recovery of 15N urea (% of applied N) in forage and roots was not affected by fertilization levels (p > 0.05), but decreased exponentially in the soil and soil-plant system (p 15N (kg ha-1) in forage and roots (15 to 30 cm) increased with increasing urea doses (p < 0.05). (author)

  2. δ15N as a proxy for historic anthropogenic nitrogen loading in Charleston Harbor, SC, USA

    Payne, T. N.; Andrus, C. F. T.

    2015-12-01

    Bivalve shell geochemistry can serve as a useful indicator of changes in coastal environments. There is increasing interest in developing paleoenvironmental proxies from mollusk shell organic components. Numerous studies have focused on how the δ15N obtained from bivalve tissues can be used to trace present-day wastewater input into estuaries. However, comparatively little attention has been paid to tracing the impact of anthropogenic nitrogen loading into estuaries over time. By measuring historic levels of δ15N in the organic fraction of oyster shells (Crassostrea virginica) from archaeological sites around Charleston Harbor and comparing those levels to the δ15N content of modern shells, it is possible to assess how nitrogen has fluctuated historically in the area. Whole-shell samples from the Late Archaic Period (~3000-4000 BP, Late Woodland Period (~1400-800 BP), 18th and 19th centuries, and modern controls were measured for %N and d15N. Evidence of increased anthropogenic input of N is expected to begin in the early historic period based on similar analysis in Chesapeake Bay. More ancient samples may give insight into baseline conditions prior to recent population growth and industrialization. This information could help understand how large-scale anthropogenic nitrogen loading has affected coastal ecosystems over time and guide future remediation. Furthermore, this project will help refine and improve this novel proxy of past environmental conditions.

  3. Impact of seaweed beachings on dynamics of δ15N isotopic signatures in marine macroalgae

    Highlights: • Two coastal sites (COU, GM) in the Bay of Seine affected by summer seaweed beachings. • The same temporal dynamics of the algal δ15N at the two sites. • N and P concentrations in seawater of the two sites dominated by riverine sources. • A coupling between seaweed beachings and N sources of intertidal macroalgae. - Abstract: A fine-scale survey of δ15N, δ13C, tissue-N in seaweeds was conducted using samples from 17 sampling points at two sites (Grandcamp-Maisy (GM), Courseulles/Mer (COU)) along the French coast of the English Channel in 2012 and 2013. Partial triadic analysis was performed on the parameter data sets and revealed the functioning of three areas: one estuary (EstA) and two rocky areas (GM∗, COU∗). In contrast to oceanic and anthropogenic reference points similar temporal dynamics characterized δ15N signatures and N contents at GM∗ and COU∗. Nutrient dynamics were similar: the N-concentrations in seawater originated from the River Seine and local coastal rivers while P-concentrations mainly from these local rivers. δ15N at GM∗ were linked to turbidity suggesting inputs of autochthonous organic matter from large-scale summer seaweed beachings made up of a mixture of Rhodophyta, Phaeophyta and Chlorophyta species. This study highlights the coupling between seaweed beachings and nitrogen sources of intertidal macroalgae

  4. Incorporation of 15N-labelled fertilizer nitrogen into wheat grain proteins during grain development

    The aim of our experiments was to study the incorporation of 15N-labelled fertilizer nitrogen into winter wheat (Triticum aestivum L.) grain and its protein fractions during grain development. The microplot N fertilization experiments were carried out on a eutric Cambisol of medium N status in Keszthely (Hungary). (author)

  5. Applications of stable isotopes of 2H, 13C and 15N to clinical problems

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use 2H, 13C, or 15N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective 13C and 15N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. 13C and 15N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B12-responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. 15N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome. (Mukohata, S.)

  6. Carbon-rich presolar grains from massive stars. Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N

    Pignatari, M; Hoppe, P; Jordan, C J; Gibson, B K; Trappitsch, R; Herwig, F; Fryer, C; Hirschi, R; Timmes, F X

    2015-01-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C, and low-density graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the SN shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the pu...

  7. Studies of the endogeneous N metabolism in 15N-labelled pigs. 2

    4 pigs were labelled with 15N-ammonium salt over a period of 10 days in the feeding of a fishmeal diet (1), a fishmeal diet + partly hydrolyzed straw meal (2), a field bean diet (3) and a field bean diet + partly hydrolyzed straw meal (4). The 14N-amino acids and the 15N-amino acids excreted in feces showed highly significant correlation coefficient with the increasing content of crude fiber in the diets, which amounted to 3.0, 5.3, 10.0 and 12.1% in the dry matter. The following sequence was established for the growth angle of the essential 14N-amino acids: Leu, Lys, Arg, Thr, Phe, Ile, Val, His and of the 15N-amino acids: Lys, Arg, Val, Leu, Ile, Thr, Phe and His. As Lys, His and Thr cannot incorporate 15N in transamination reactions in the intermediate metabolism, their level of labelling was considerable in case of diet 4. Nevertheless, tan α is highest for 15N-Lys and lowest for 15N-His. This means that His in contrast to Lys, parallel to increased synthesis, is also increasingly decomposed in the large intestine. In contrast to this, proline was not labelled with 15N even with the highest content of crude fiber in the diet. Despite this, 14N-proline excretion, next to glutamic acid, increased most with the growing content of crude fiber in the diet. Due to the hydrophilic character of glutamic acid and the increased water influx in the large intestine and the increased content of crude fiber in the diet, a growing proline transport parallel to the increased influx of crude fiber and water must be assumed. If the growth angle tan α for the excretion of 14N-amino acids is ascertained regressively for a crude fiber content of diet of 10 %, one can prove from the proportion of the amino acids and a comparison from literature for fecal bacteria and ileum digesta that the amino acid composition for this measuring point largely corresponds to that of bacterial protein. (author)

  8. Fertilizer 15N balance in a coffee cropping system: a case study in Brazil

    Knowledge about the fate of fertilizer nitrogen in agricultural systems is essential for the improvement of management practices in order to maximize nitrogen (N) recovery by the crop and reduce N losses from the system to a minimum. This study involves fertilizer management practices using the 15N isotope label applied in a single rate to determine the fertilizer-N balance in a particular soil-coffee-atmosphere system and to deepen the understanding of N plant dynamics. Five replicates consisting of plots of about 120 plants each were randomly defined within a 0.2 ha coffee plantation planted in 2001, in Piracicaba, SP, Brazil. Nine plants of each plot were separated in sub-plots for the 15N balance studies and treated with N rates of 280 and 350 kg ha-1 during 2003/2004 and 2004/ 2005, respectively, both of them as ammonium sulfate enriched to a 15N abundance of 2.072 atom %. Plant shoots were considered as separate parts: the orthotropic central branch, productive branches, leaves of productive branches, vegetative branches, leaves of vegetative branches and fruit. Litter, consisting of dead leaves accumulated below the plant canopy, was measured by the difference between leaves at harvest and at the beginning of the following flowering. Roots and soil were sampled down to a depth of 1.0 at intervals of 0.2 m. Samples from the isotopic sub-plots were used to evaluate total N and 15N, and plants outside sub-plots were used to evaluate dry matter. Volatilization losses of NH3 were estimated using special collectors. Leaching of fertilizer-N was estimated from deep drainage water fluxes and 15N concentrations of the soil solution at 1 m soil depth. At the end of the 2-year evaluation, the recovery of 15N applied as ammonium sulfate was 19.1 % in aerial plant parts, 9.4 % in the roots, 23.8 % in the litter, 26.3 % in the fruit and 12.6 % remaining in the 0-1.0 m soil profile. Annual leaching and volatilization losses were very small (2.0 % and 0.9 %, respectively

  9. Variable δ(15)N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    Olin, Jill A; Hussey, Nigel E; Grgicak-Mannion, Alice; Fritts, Mark W; Wintner, Sabine P; Fisk, Aaron T

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15)N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15)N dietary values). Overall, the most suitable species-specific ∆(15)N values decreased with increasing dietary-δ(15)N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15)N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15)N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15)N = 9‰) whereas a ∆(15)N value shark (mean diet δ(15)N = 15‰). These data corroborate the previously reported inverse ∆(15)N-dietary δ(15)N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15)N values that reflect the predators' δ(15)N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species' ecological role in their community will be influenced with consequences for conservation and

  10. Variable δ(15N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    Jill A Olin

    Full Text Available The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15N diet-tissue discrimination factors (∆(15N. As ∆(15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15N dietary values. Overall, the most suitable species-specific ∆(15N values decreased with increasing dietary-δ(15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15N = 9‰ whereas a ∆(15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ(15N = 15‰. These data corroborate the previously reported inverse ∆(15N-dietary δ(15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15N values that reflect the predators' δ(15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species

  11. Effect of applying wheat stubble on preservation and utilization of n-fertilizer by 15N trace technique

    By using 15N trace technique, the effect of applying wheat stubble on the preservation and utilization rate of 15N- ammonium sulphate have been studied. The abundance of (15NH4)2SO4 fertilizer was 8.92%. After three years pot test and field plot test, the results showed that the yields with '15N+mulching' and '15N+incorporating' treated were increased by 5.4∼30.0% for spring wheat and millet(pot test), and 18∼23% for winter wheat and summer corn(field plot test), as compared with only '15N' treatment. The results of 15N-fertilizer labelled tests showed that the utilization rates of 15N-fertilizer treated by '15N+mulching' for cropping seasons were 57.8%, 65.8%, 36.6% and 8.5% respectively. These were increased 3.7%, 10.2%, 21.5% and 2.8% as compared with only '15N' treatment. Comparing with only '15N'treatment, the N leached off by percolation water was decreasing 50%, the loss of N caused by volatilization was decreasing 30.3% and the N in humus was increasing 21.1%. All of these proved that the applying of wheat stubble in different mode would adjust and control the activation of microbe in the soil, and the preservation and utilization rate of fertilizer in the soul would be increased

  12. Application time of nitrogen fertilizer 15N by a potato crop (Solanum Tuberosum L.)

    This study was performed at the ''San Jorge'' experimental farm of the Instituto Colombiano Agropecuario (ICA), Bogota, Colombia. The study was performed to investigate the effect of timing of application of nitrogen fertilizer on the productivity of, and the efficiency of utilization of 15N-labelled fertilizer by, a potato crop (Solanum tuberosum L.), cv. Tequendama. The crop was fertilized with 100, 200 and 100 Kg/ha-1 of N, P2O5 and K2O respectively. The N fertilizers were either added as 15N labelled urea (2.955 at.% 15N excess) or as labelled ammonium sulphate (2.071 at.% 15N excess). In all treatments with nitrogen, a total of 100 Kg N ha-1 was added, but the nitrogen was added either in two or three split doses (only one dose being labelled with 15N) at the following times: at planting, 35 days after emergence (DAE) and/or 60 DAE. It was found that: a) Nitrogen fertilization increased tuber production from 24 to 43 t/ha-1; b) The tubers constituted approximately 80% of total plant dry matter and 70% of the total nitrogen and fertilizer N accumulated by the plant; c) The fertilizer use efficiency varied between 49 and 68%, and the highest efficiency occurred when the nitrogen was split in three doses; d) The urea and ammonium sulphate gave similar results in all parameters evaluated; e) When the total nitrogen difference method was applied to interpretation of the results the fertilizer use efficiency was overestimated by 15 to 30%

  13. Araucaria cunninghamii Seedling Response to Different Forms and Rates of 15N-Labelled Fertiliser

    T.J.BLUMFIELD; XU Zhi-Hong

    2006-01-01

    Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Aiton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using 15Nlabelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg-1 dried soil) of fertilisers on the growth, 15N recovery and carbon isotope composition (δ13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland,Australia. The 15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots,containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage,and then analysed for 15N, total N, δ13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined 15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of 15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg-1 soil gradually increased seedling foliage δ13C over the 12-month period, indicating an increase in seedling water use efficiency.

  14. Bradyrhizobium strain and the 15N natural abundance quantification of biological N2 fixation in soybean

    In commercial plantations of soybean in both the Southern and the Cerrado regions, contributions from biological nitrogen fixation (BNF) are generally proportionately high. When using the 15N natural abundance technique to quantify BNF inputs, it is essential to determine, with accuracy, the 15N abundance of the N derived from BNF (the 'B' value). This study aimed to determine the effect of four recommended strains of Bradyrhizobium spp. (two B. japonicum and two B. elkanii) on the 'B' value of soybean grown in pots in an open field using an equation based on the determination of δ15N natural abundance in a non-labelled soil, and estimate of the contribution of BNF derived from the use of 15N-isotope dilution in soils enriched with 15N. To evaluate N2 fixation by soybean, three non-N2-fixing reference crops were grown under the same conditions. Regardless of Bradyrhizobium strain, no differences were observed in dry matter, nodule weight and total N between labelled and non-labelled soil. The N2 fixation of the soybeans grown in the two soil conditions were similar. The mean 'B' values of the soybeans inoculated with the B. japonicum strains were -1.84 per mille and -0.50 per mille, while those inoculated with B. elkanii were -3.67 per mille and -1.0 per mille, for the shoot tissue and the whole plant, respectively. Finally, the 'B' value for the soybean crop varied considerably in function of the inoculated Bradyrhizobium strain, being most important when only the shoot tissue was utilised to estimate the proportion of N in the plant derived from N2 fixation. (author)

  15. Distribution of 15N-labeled urea injected into field-grown corn plants

    Nitrogen (N) assimilate supply to developing corn (Zea mays L.) ears plays a critical role in grain dry weight accumulation. The use of stem-perfused/injected 15N labeled compounds to determine the effects of an artificial N source on the subsequent distribution of injected N and grain weight of field-grown corn plants has not been reported previously. Our objective was to assess the distribution of N added via an artificial source. Three soil N fertilizer levels (0, 180, and 270 kg N ha-1) and three N solutions (distilled water control and 15N enriched urea at 15 and 30 mM N) were arranged in a split-plot design. Three N concentrations were injected using a pressurized stem injection technique. The injection started fifteen days after silking and continued until immediately prior to plant physiological maturity. The average uptake volume was 256 mL over the 30-day injection period. The N supplied via injection represented 1.5 to 3% of the total plant N. Neither soil applied N fertilizer nor injected N altered dry matter distribution among plant tissues. As the concentration of N in the injected solutions increased, N concentrations increased in the grain and upper stalks, and % 15N atom excess in ear+1 leaves and leaves increased. The relative degree of 15N enrichment for each of the tissues measured was injected internode grain upper stalks leaves lower stalks cob husk ear + 1 leaf ear leaf. This study indicated that the exogenous N supplied via stem-injection, was incorporated into all the measured plant parts, although not uniformly. The distribution of the injected 15N was affected both by the proximity of sinks to the point of injection and the strength of the various sinks

  16. Evaluating δ(15)N-body size relationships across taxonomic levels using hierarchical models.

    Reum, Jonathan C P; Marshall, Kristin N

    2013-12-01

    Ecologists routinely set out to estimate the trophic position of individuals, populations, and species composing food webs, and nitrogen stable isotopes (δ(15)N) are a widely used proxy for trophic position. Although δ(15)N values are often sampled at the level of individuals, estimates and confidence intervals are frequently sought for aggregations of individuals. If individual δ(15)N values are correlated as an artifact of sampling design (e.g., clustering of samples in space or time) or due to intrinsic groupings (e.g., life history stages, social groups, taxonomy), such estimates may be biased and exhibit overly optimistic confidence intervals. However, these issues can be accommodated using hierarchical modeling methods. Here, we demonstrate how hierarchical models offer an additional quantitative tool for investigating δ(15)N variability and we explicitly evaluate how δ(15)N varies with body size at successively higher levels of taxonomic aggregation in a diverse fish assemblage. The models take advantage of all available data, better account for uncertainty in parameters estimates, may improve inferences on coefficients corresponding to groups with small to moderate sample sizes, and partition variation across model levels, which provides convenient summaries of the 'importance' of each level in terms of unexplained heterogeneity in the data. These methods can easily be applied to diet-based studies of trophic position. Although hierarchical models are well-understood and established tools, their benefits have yet to be fully reaped by stable isotope and food web ecologists. We suggest that hierarchical models can provide a robust framework for conceptualizing and statistically modeling trophic position at multiple levels of aggregation. PMID:23812110

  17. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals

    Wang, Xingchen T.; Sigman, Daniel M.; Cohen, Anne L.; Sinclair, Daniel J.; Sherrell, Robert M.; Cobb, Kim M.; Erler, Dirk V.; Stolarski, Jarosław; Kitahara, Marcelo V.; Ren, Haojia

    2016-05-01

    The isotopic composition of skeleton-bound organic nitrogen in shallow-water scleractinian corals (hereafter, CS-δ15N) is an emerging tool for studying the marine nitrogen cycle in the past. The CS-δ15N has been shown to reflect the δ15N of nitrogen (N) sources to corals, with most applications to date focusing on the anthropogenic/terrestrial N inputs to reef environments. However, many coral reefs receive their primary N sources from the open ocean, and the CS-δ15N of these corals may provide information on past changes in the open ocean regional and global N cycle. Using a recently developed persulfate/denitrifier-based method, we measured CS-δ15N in modern shallow-water scleractinian corals from 8 sites proximal to the open ocean. At sites with low open ocean surface nitrate concentrations typical of the subtropics and tropics, measured CS-δ15N variation on seasonal and annual timescales is most often less than 2‰. In contrast, a broad range in CS-δ15N (of ∼10‰) is measured across these sites, with a strong correlation between CS-δ15N and the δ15N of the deep nitrate supply to the surface waters near the reefs. While CS-δ15N can be affected by other N sources as well and can vary in response to local reef conditions as well as coral/symbiont physiological changes, this survey indicates that, when considering corals proximal to the open ocean, the δ15N of the subsurface nitrate supply to surface waters drives most of the CS-δ15N variation across the global ocean. Thus, CS-δ15N is a promising proxy for reconstructing the open ocean N cycle in the past.

  18. Use of 15N/14N Ratio to Evaluate the Sources of Nitrate Pollution in Surface and Groundwaters in the Upper Orontes Basin (Central Syria)

    This work represents the results of using of 15N technique in the evaluation and interpretation of nitrate pollution sources of surface and groundwaters in the Upper Orontes Basin (Central Syria). Based on this method, it was possible to distinguish between two groups of water bodies: 1) the group of fresh and non polluted water, which effectively reflects natural mineralization in nitrogen, such as the waters in the Upper Orontes River, the Qattineh Lake in its western and southern parts, as well as the Al-Qoussier well; 2) the group of polluted water, such as the waters in the other sampling sites. The chemical and isotopic 15N characteristics of this group reflect the impact of different intensities of pollution processes, which could mainly be derived from anthropogenic source. The intensity of this source was maximum in the Al-Domineh well, which was practically close to a sewage sink. (author)

  19. Utility of chemical-shift MR imaging in detecting small amounts of fat in extrahepatic abdominal tumors; Utilidad de la tecnica de desplazamiento quimico den RM para la deteccion de pequenas cantidades de grasa en tumores abdominales extrahepaticos

    Martin, J.; Falco, J.; Puig, J.; Donoso, L. [Unidad de Diagnostico por Imagen de Alta Tecnologia (UDIAT). Sabadell (Spain)

    1999-07-01

    To determine the utility of the chemical shift technique in magnetic resonance imaging (MRI) to confirm small amounts of fat in extrahepatic intraabdominal tumours. 7 extrahepatic abdominal tumours that are suspected to have fat as seen in the axial computed tomography (TC) are analysed retrospectively. In order to confirm the fat content, the chemical displacement technique with gradient echo sequences (GE) in phase (P) and in opposite phase (OP) was used with MRI 1 T equipment. The tumours corresponded to renal angiomyolipoma (AML) (n=4), intraperitoneal liposarcoma (n=1), retroperitoneal liposarcoma (n=1) and intraabdominal extramedular hematopoiesis (n=1). To confirm the existence of fat in the tumours, we used a quantitative percentage variation parameter of the intensity of the signals (VIS) between the images in P and OP, according to the formula: IS{sub (}p)-IS({sub o}p)x100/IS{sub (}op), where IS is the intensity of the signal. The chemical shift technique showed fat in the seven tumours. Upon visual inspection, all the tumoral areas that were suspected to have fat showed a notable difference in the signal intensity, being hypointense in OP and hyperintense in P. In these areas the average VIS percentage was 170% while in the rest of the tumour the average VIS percentage was 3%. The chemical shift technique with RG sequences can be easily used in MRI equipment and allows us to confirm if a specific abdominal tumour has fat, even if there is only a small quantity. (Author) 13 refs.

  20. Double-echo gradient chemical shift MR imaging fails to differentiate minimal fat renal angiomyolipomas from other homogeneous solid renal tumors

    Highlights: •Diagnosis of AMLs with minimal fat (mfAMLs) is still challenging with MRI. •Drop of signal on opposed-phase MR imaging is not specific of mfAMLs. •Double-echo gradient-echo sequences cannot accurately differentiate renal mfAMLs from other renal tumors. -- Abstract: Objectives: The purpose of this retrospective study was to evaluate the diagnostic performance of double-echo gradient chemical shift (GRE) magnetic resonance (MR) imaging for the differentiation of angiomyolipomas with minimal fat (mfAML) from other homogeneous solid renal tumors. Methods: Between 2005 and 2010 in two institutions, all histologically proven homogenous solid renal tumors imaged with computed tomography and MR imaging, including GRE sequences, have been retrospectively selected. A total of 118 patients (mean age: 61 years; range: 20–87) with 119 tumors were included. Two readers measured independently the signal intensity (SI) on GRE images and calculated SI index (SII) and tumor-to-spleen ratio (TSR) on in-phase and opposed-phase images. Intra- and interreader agreement was obtained. Cut-off values were derived from the receiver operating characteristic (ROC) curve analysis. Results: Twelve mfAMLs in 11 patients were identified (mean size: 2.8 cm; range: 1.2–3.5), and 107 non-AML tumors (3.2 cm; 1–7.8) in 107 patients. The intraobserver reproducibility of SII and TSR was excellent with an intraclass correlation coefficient equal to 0.99 [0.98–0.99]. The coefficient of correlation between the readers was 0.99. The mean values of TSR for mfAMLs and non-mfAMLs were −7.0 ± 22.8 versus −8.2 ± 21.2 for reader 1 and −6.7 ± 22.8 versus −8.4 ± 20.9 for reader 2 respectively. No significant difference was noticed between the two groups for SII (p = 0.98) and TSR (p = 0.86). Only 1 out of 12 mfAMLs and 11 of 107 non-AML tumors presented with a TSR inferior to −30% (p = 0.83). Conclusion: In a routine practice, GRE sequences cannot be a confident tool to