WorldWideScience

Sample records for 15-prostaglandin dehydrogenase expression

  1. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  2. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli.

    Bzik, D J; Fox, B A; Gonyer, K

    1993-05-01

    A Plasmodium falciparum gene is described which encodes lactate dehydrogenase activity (P. falciparum LDH). The P. falciparum LDH gene contains no introns and is present in a single copy on chromosome 13. P. falciparum LDH was expressed in all asexual blood stages as a 1.6-kb mRNA. The predicted 316 amino acid protein coding region of P. falciparum LDH was inserted into the prokaryotic expression vector pKK223-3 and a 33-kDa protein having LDH activity was synthesized in Escherichia coli. P. falciparum LDH primary structure displays high amino acid similarity (50-57%) to vertebrate and bacterial LDH, but lacks the amino terminal extension observed in all vertebrate LDH. The majority of amino acid residues implicated in substrate and coenzyme binding and catalysis of other LDH are well conserved in P. falciparum LDH. However, several notable differences in amino acid composition were observed. P. falciparum LDH contained several distinctive single amino acid insertions and deletions compared to other LDH enzymes, and most remarkably, it contained a novel insertion of 5 amino acids within the conserved mobile loop region near arginine residue 109, a residue which is known to make contact with pyruvate in the ternary complex of other LDH. These results suggest that novel features of P. falciparum LDH primary structure may be correlated with previously characterized and distinctive kinetic, biochemical, immunochemical, and electrophoretic properties of P. falciparum LDH. PMID:8515777

  3. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  4. Cloning and expression of chicken 20-hydroxysteroid dehydrogenase

    Bryndová, Jana; Klusoňová, Petra; Kučka, Marek; Vagnerová, Karla; Mikšík, Ivan; Pácha, Jiří

    2006-01-01

    Roč. 37, č. 3 (2006), s. 453-462. ISSN 0952-5041 R&D Projects: GA AV ČR(CZ) IAA6011201 Grant ostatní: GA UK(CZ) 216/2004 Institutional research plan: CEZ:AV0Z50110509 Keywords : 20-hydroxysteroid dehydrogenase * SDR family Subject RIV: CE - Biochemistry Impact factor: 2.988, year: 2006

  5. Cloning and expression of chicken 20beta hydroxysteroid dehydrogenase

    Klusoňová, Petra; Kučka, Marek; Bryndová, Jana; Vagnerová, Karla; Mikšík, Ivan; Pácha, Jiří

    Seefeld, 2006. [International Symposium of the Journal of Steroid Biochemistry and Molecular Biology /17./. 31.05.2006-03.06.2006, Seefeld] R&D Projects: GA AV ČR(CZ) IAA6011201 Keywords : 20beta hydroxysteroid dehydrogenase * chicken Subject RIV: ED - Physiology

  6. Simple and efficient expression of Agaricus meleagris pyranose dehydrogenase in Pichia pastoris

    Sygmund, Christoph; Gutmann, Alexander; Krondorfer, Iris; Kujawa, Magdalena; Glieder, Anton; Pscheidt, Beate; Haltrich, Dietmar; Peterbauer, Clemens; Kittl, Roman

    2011-01-01

    Pyranose dehydrogenase (PDH) is a fungal flavin-dependent sugar oxidoreductase that is highly interesting for applications in organic synthesis or electrochemistry. The low expression levels of the filamentous fungus Agaricus meleagris as well as the demand for engineered PDH make heterologous expression necessary. Recently, Aspergillus species were described to efficiently secrete recombinant PDH. Here, we evaluate recombinant protein production with expression hosts more suitable for geneti...

  7. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  8. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    Kruhøffer Mogens; Vainer Ben; Jensen Søren A; Sørensen Jens B

    2009-01-01

    Abstract Background Microsatellite instability (MSI) refers to mutations in short motifs of tandemly repeated nucleotides resulting from replication errors and deficient mismatch repair (MMR). Colorectal cancer with MSI has characteristic biology and chemosensitivity, however the molecular basis remains unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. Met...

  9. Expression of Cellobiose Dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization

    A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a his6-tag (rNC-...

  10. Cloning and expression of glucose 3-dehydrogenase from Halomonas sp. alpha-15 in Escherichia coli.

    Kojima, K; Tsugawa, W; Sode, K

    2001-03-23

    The gene encoding glucose 3-dehydrogenase (G3DH) from Halomonas sp. alpha-15 was cloned and expressed in Escherichia coli. An open reading frame of 1686 nucleotides was shown to encode G3DH. The flavine adenine dinucleotide binding motif was found in the N-terminal region of G3DH. The deduced primary structure of G3DH showed about 30% identity to sorbitol dehydrogenase from Gluconobacter oxydans and 2-keto-d-gluconate dehydrogenases from Erwinia herbicola and Pantoea citrea. The folding prediction of G3DH suggested that the 3D structure of G3DH was similar with cholesterol oxidase from Brevibacterium sterolicum or glucose oxidase from Aspergillus niger. PMID:11263965

  11. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    Potassium tellurite (K2TeO3) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  12. Expression, crystallization and preliminary X-ray crystallographic analysis of aldehyde dehydrogenase (ALDH) from Bacillus cereus

    Aldehyde dehydrogenase (ALDH) catalyses the oxidation of aldehydes using NAD(P)+ as a cofactor. The aldh gene from B. cereus was cloned; the protein was expressed, purified and crystallized, and a preliminary X-ray crystallography analysis was performed. Aldehyde dehydrogenase (ALDH) catalyses the oxidation of aldehydes using NAD(P)+ as a cofactor. Most aldehydes are toxic at low levels. ALDHs are used to regulate metabolic intermediate aldehydes. The aldh gene from Bacillus cereus was cloned and the ALDH protein was expressed, purified and crystallized. A crystal of the ALDH protein diffracted to 2.6 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 83.5, b = 93.3, c = 145.5 Å, β = 98.05°. Four protomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å3 Da−1 and a solvent content of 51.8%

  13. Androgen-stimulated UDP-glucose dehydrogenase expression limits prostate androgen availability without impacting hyaluronan levels

    Wei, Qin; Galbenus, Robert; Raza, Ashraf; Ronald L. Cerny; Simpson, Melanie A.

    2009-01-01

    UDP-glucose dehydrogenase (UGDH) oxidizes UDP-glucose to UDP-glucuronate, an essential precursor for production of hyaluronan (HA), proteoglycans, and xenobiotic glucuronides. High levels of HA turnover in prostate cancer are correlated with aggressive progression. UGDH expression is high in the normal prostate even though HA accumulation is virtually undetectable. Thus, its normal role in the prostate may be to provide precursors for glucuronosyltransferase enzymes, which inactivate and solu...

  14. Expression of 11beta-hydroxysteroid-dehydrogenase type 2 in human thymus.

    Almanzar, Giovanni; Mayerl, Christina; Seitz, Jan-Christoph; Höfner, Kerstin; Brunner, Andrea; Wild, Vanessa; Jahn, Daniel; Geier, Andreas; Fassnacht, Martin; Prelog, Martina

    2016-06-01

    11beta-hydroxysteroid-dehydrogenase type 2 (11β-HSD2) is a high affinity dehydrogenase which rapidly inactivates physiologically-active glucocorticoids to protect key tissues. 11β-HSD2 expression has been described in peripheral cells of the innate and the adaptive immune system as well as in murine thymus. In absence of knowledge of 11β-HSD2 expression in human thymus, the study aimed to localize 11β-HSD2 in human thymic tissue. Thymic tissue was taken of six healthy, non-immunologically impaired male infants below 12months of age with congenital heart defects who had to undergo correction surgery. 11β-HSD2 protein expression was analyzed by immunohistochemistry and Western blot. Kidney tissue, peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC) were taken as positive controls. Significant expression of 11β-HSD2 protein was found at single cell level in thymus parenchyma, at perivascular sites of capillaries and small vessels penetrating the thymus lobuli and within Hassall's bodies. The present study demonstrates that 11β-HSD2 is expressed in human thymus with predominant perivascular expression and also within Hassall's bodies. To our knowledge, this is the first report confirming 11β-HSD2 expression at the protein level in human thymic tissue underlining a potential role of this enzyme in regulating glucocorticoid function at the thymic level. PMID:27025972

  15. Expression, purification, crystallization and preliminary X-ray studies of histamine dehydrogenase from Nocardioides simplex

    Histamine dehydrogenase from Nocardioides simplex has been expressed, purified and crystallized with full incorporation of 6-S-cysteinyl-FMN. Diffraction data have been collected to 2.7 Å resolution; the crystals belonged to the orthorhombic space group P212121. Histamine dehydrogenase (HADH) from Nocardioides simplex catalyzes the oxidative deamination of histamine to produce imidazole acetaldehyde and an ammonium ion. HADH is functionally related to trimethylamine dehydrogenase (TMADH), but HADH has strict substrate specificity towards histamine. HADH is a homodimer, with each 76 kDa subunit containing two redox cofactors: a [4Fe–4S] cluster and an unusual covalently bound flavin mononucleotide, 6-S-cysteinyl-FMN. In order to understand the substrate specificity of HADH, it was sought to determine its structure by X-ray crystallography. This enzyme has been expressed recombinantly in Escherichia coli and successfully crystallized in two forms. Diffraction data were collected to 2.7 Å resolution at the SSRL synchrotron with 99.7% completeness. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 101.14, b = 107.03, c = 153.35 Å

  16. Cerium Regulates Expression of Alternative Methanol Dehydrogenases in Methylosinus trichosporium OB3b

    Farhan Ul Haque, Muhammad; Kalidass, Bhagyalakshmi; Bandow, Nathan; Turpin, Erick A.; DiSpirito, Alan A.; Semrau, Jeremy D.

    2015-01-01

    Methanotrophs have multiple methane monooxygenases that are well known to be regulated by copper, i.e., a “copper switch.” At low copper/biomass ratios the soluble methane monooxygenase (sMMO) is expressed while expression and activity of the particulate methane monooxygenase (pMMO) increases with increasing availability of copper. In many methanotrophs there are also multiple methanol dehydrogenases (MeDHs), one based on Mxa and another based on Xox. Mxa-MeDH is known to have calcium in its ...

  17. Cloning, expression, purification and preliminary crystallographic characterization of a shikimate dehydrogenase from Corynebacterium glutamicum

    Schoepe, Jan, E-mail: jschoepe@smail.uni-koeln.de; Niefind, Karsten; Chatterjee, Shivani; Schomburg, Dietmar [Institute for Biochemistry, University of Köln, Zülpicher Strasse 47, Köln, NRW 50974 (Germany)

    2006-07-01

    The crystallization and preliminary X-ray characterization of a shikimate dehydrogenase from C. glutamicum is presented. The shikimate dehydrogenase from Corynebacterium glutamicum has been cloned into an Escherichia coli expression vector, overexpressed and purified. Native crystals were obtained by the vapour-diffusion technique using 2-methyl-2,4-pentanediol as a precipitant. The crystals belong to the centred monoclinic space group C2, with unit-cell parameters a = 118.77, b = 63.17, c = 35.67 Å, β = 92.26° (at 100 K), and diffract to 1.64 Å on a synchrotron X-ray source. The asymmetric unit is likely to contain one molecule, corresponding to a packing density of 2.08 Å{sup 3} Da{sup −1} and a solvent content of about 41%.

  18. Cloning, expression, purification and preliminary crystallographic characterization of a shikimate dehydrogenase from Corynebacterium glutamicum

    The crystallization and preliminary X-ray characterization of a shikimate dehydrogenase from C. glutamicum is presented. The shikimate dehydrogenase from Corynebacterium glutamicum has been cloned into an Escherichia coli expression vector, overexpressed and purified. Native crystals were obtained by the vapour-diffusion technique using 2-methyl-2,4-pentanediol as a precipitant. The crystals belong to the centred monoclinic space group C2, with unit-cell parameters a = 118.77, b = 63.17, c = 35.67 Å, β = 92.26° (at 100 K), and diffract to 1.64 Å on a synchrotron X-ray source. The asymmetric unit is likely to contain one molecule, corresponding to a packing density of 2.08 Å3 Da−1 and a solvent content of about 41%

  19. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    Jensen, Søren A; Vainer, Ben; Kruhøffer, Mogens; Sørensen, Jens B

    2009-01-01

    BACKGROUND: Microsatellite instability (MSI) refers to mutations in short motifs of tandemly repeated nucleotides resulting from replication errors and deficient mismatch repair (MMR). Colorectal cancer with MSI has characteristic biology and chemosensitivity, however the molecular basis remains...... unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. METHODS: MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2), thymidylate synthase (TS) and...

  20. Murine branched chain alpha-ketoacid dehydrogenase kinase; cDNA cloning, tissue distribution, and temporal expression during embryonic development.

    Doering, C B; Coursey, C; Spangler, W; Danner, D J

    1998-06-01

    These studies were designed to demonstrate the structural and functional similarity of murine branched chain alpha-ketoacid dehydrogenase and its regulation by the complex-specific kinase. Nucleotide sequence and deduced amino acid sequence for the kinase cDNA demonstrate a highly conserved coding sequence between mouse and human. Tissue-specific expression in adult mice parallels that reported in other mammals. Kinase expression in female liver is influenced by circadian rhythm. Of special interest is the fluctuating expression of this kinase during embryonic development against the continuing increase in the catalytic subunits of this mitochondrial complex during development. The need for regulation of the branched chain alpha-ketoacid dehydrogenase complex by kinase expression during embryogenesis is not understood. However, the similarity of murine branched chain alpha-ketoacid dehydrogenase and its kinase to the human enzyme supports the use of this animal as a model for the human system. PMID:9611264

  1. Simple and efficient expression of Agaricus meleagris pyranose dehydrogenase in Pichia pastoris.

    Sygmund, Christoph; Gutmann, Alexander; Krondorfer, Iris; Kujawa, Magdalena; Glieder, Anton; Pscheidt, Beate; Haltrich, Dietmar; Peterbauer, Clemens; Kittl, Roman

    2012-05-01

    Pyranose dehydrogenase (PDH) is a fungal flavin-dependent sugar oxidoreductase that is highly interesting for applications in organic synthesis or electrochemistry. The low expression levels of the filamentous fungus Agaricus meleagris as well as the demand for engineered PDH make heterologous expression necessary. Recently, Aspergillus species were described to efficiently secrete recombinant PDH. Here, we evaluate recombinant protein production with expression hosts more suitable for genetic engineering. Expression in Escherichia coli resulted in no soluble or active PDH. Heterologous expression in the methylotrophic yeast Pichia pastoris was investigated using two different signal sequences as well as a codon-optimized sequence. A 96-well plate activity screening for transformants of all constructs was established and the best expressing clone was used for large-scale production in 50-L scale, which gave a volumetric yield of 223 mg L(-1) PDH or 1,330 U L(-1) d(-1) in space-time yield. Purification yielded 13.4 g of pure enzyme representing 95.8% of the initial activity. The hyperglycosylated recombinant enzyme had a 20% lower specific activity than the native enzyme; however, the kinetic properties were essentially identical. This study demonstrates the successful expression of PDH in the eukaryotic host organism P. pastoris paving the way for protein engineering. Additionally, the feasibility of large-scale production of the enzyme with this expression system together with a simplified purification scheme for easy high-yield purification is shown. PMID:22080342

  2. Expression, purification and crystallization of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with orotate

    Inaoka, Daniel Ken; Takashima, Eizo; Osanai, Arihiro; Shimizu, Hironari [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nara, Takeshi; Aoki, Takashi [Department of Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Harada, Shigeharu [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Kita, Kiyoshi, E-mail: kitak@m.u-tokyo.ac.jp [Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2005-10-01

    The Trypanosoma cruzi dihydroorotate dehydrogenase, a key enzyme in pyrimidine de novo biosynthesis and redox homeostasis, was crystallized in complex with its first reaction product, orotate. Dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate, the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine. DHOD from Trypanosoma cruzi (TcDHOD) has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. Crystals of the TcDHOD–orotate complex were grown at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. The crystals diffract to better than 1.8 Å resolution using synchrotron radiation (λ = 0.900 Å). X-ray diffraction data were collected at 100 K and processed to 1.9 Å resolution with 98.2% completeness and an overall R{sub merge} of 7.8%. The TcDHOD crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.87, b = 71.89, c = 123.27 Å. The presence of two molecules in the asymmetric unit (2 × 34 kDa) gives a crystal volume per protein weight (V{sub M}) of 2.2 Å{sup 3} Da{sup −1} and a solvent content of 44%.

  3. Cloning, expression and characterization of 3-hydroxyisobutyrate dehydrogenase from Pseudomonas denitrificans ATCC 13867.

    Shengfang Zhou

    Full Text Available The gene encoding an NAD(+-dependent, 3-hydroxyisobutyrate dehydrogenase (3HIBDH-IV from Pseudomonas denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL 21 (DE3 and characterized to understand its physiological relevance in the degradation of 3-hydroxypropionic acid (3-HP. The deduced amino acid sequence showed high similarity to other 3-hydroxyisobutyrate dehydrogenase isozymes (3HIBDHs of P. denitrificans ATCC 13867. A comparison of 3HIBDH-IV with its relevant enzymes along with molecular docking studies suggested that Lys171, Asn175 and Gly123 are important for its catalytic function on 3-hydroxyacids. The recombinant 3HIBDH-IV was purified to homogeneity utilizing a Ni-NTA-HP resin column in high yield. 3HIBDH-IV was very specific to (S-3-hydroxyisobutyrate, but also catalyzed the oxidation of 3-HP to malonate semialdehyde. The specific activity and half-saturation constant (K m for 3-HP at 30°C and pH 9.0 were determined to be 17 U/mg protein and 1.0 mM, respectively. Heavy metals, such as Ag(+ and Hg(2+, completely inhibited the 3HIBDH-IV activity, whereas dithiothreitol, 2-mercaptoethanol and ethylenediaminetetraacetic acid increased its activity 1.5-1.8-fold. This paper reports the characteristics of 3HIBDH-IV as well as its probable role in 3-HP degradation.

  4. Expression, purification and crystallization of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with orotate

    The Trypanosoma cruzi dihydroorotate dehydrogenase, a key enzyme in pyrimidine de novo biosynthesis and redox homeostasis, was crystallized in complex with its first reaction product, orotate. Dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate, the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine. DHOD from Trypanosoma cruzi (TcDHOD) has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. Crystals of the TcDHOD–orotate complex were grown at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. The crystals diffract to better than 1.8 Å resolution using synchrotron radiation (λ = 0.900 Å). X-ray diffraction data were collected at 100 K and processed to 1.9 Å resolution with 98.2% completeness and an overall Rmerge of 7.8%. The TcDHOD crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 67.87, b = 71.89, c = 123.27 Å. The presence of two molecules in the asymmetric unit (2 × 34 kDa) gives a crystal volume per protein weight (VM) of 2.2 Å3 Da−1 and a solvent content of 44%

  5. Succinate Dehydrogenase B Subunit Immunohistochemical Expression Predicts Aggressiveness in Well Differentiated Neuroendocrine Tumors of the Ileum

    Immunohistochemical loss of the succinate dehydrogenase subunit B (SDHB) has recently been reported as a surrogate biomarker of malignancy in sporadic and familial pheocromocytomas and paragangliomas through the activation of hypoxia pathways. However, data on the prevalence and the clinical implications of SDHB immunoreactivity in ileal neuroendocrine tumors are still lacking. Thirty-one consecutive, advanced primary midgut neuroendocrine tumors and related lymph node or liver metastases from 24 males and seven females were immunohistochemically assessed for SDHB. All patients were G1 tumors (Ki-67 labeling index ≤2%). SDHB immunohistochemistry results were expressed as immunostaining intensity and scored as low or strong according to the internal control represented by normal intestinal cells. Strong positivity for SDHB, with granular cytoplasmatic reactivity, was found in 77% of primary tumors (T), whilst low SDHB expression was detected in 90% of metastases (M). The combined analysis (T+M) confirmed the loss of SDHB expression in 82% of metastases compared to 18% of primary tumors. SDHB expression was inversely correlated with Ki-67 labeling index, which accounted for 1.54% in metastastic sites and 0.7% in primary tumors. A correlation between SDHB expression loss, increased Ki-67 labeling index and biological aggressiveness was shown in advanced midgut neuroendocrine tumors, suggesting a role of tumor suppressor gene

  6. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine

  7. Succinate Dehydrogenase B Subunit Immunohistochemical Expression Predicts Aggressiveness in Well Differentiated Neuroendocrine Tumors of the Ileum

    Milione, Massimo [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Pusceddu, Sara [Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Gasparini, Patrizia [Molecular Cytogenetics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Melotti, Flavia [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Maisonneuve, Patrick [Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan 20141 (Italy); Mazzaferro, Vincenzo [Division of Gastrointestinal Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Braud, Filippo G. de [Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Pelosi, Giuseppe, E-mail: giuseppe.pelosi@unimi.it [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Department of Medicine, Surgery and Dentistry, Università degli Studi, Facoltà di Medicina, Milan 20122 (Italy)

    2012-08-16

    Immunohistochemical loss of the succinate dehydrogenase subunit B (SDHB) has recently been reported as a surrogate biomarker of malignancy in sporadic and familial pheocromocytomas and paragangliomas through the activation of hypoxia pathways. However, data on the prevalence and the clinical implications of SDHB immunoreactivity in ileal neuroendocrine tumors are still lacking. Thirty-one consecutive, advanced primary midgut neuroendocrine tumors and related lymph node or liver metastases from 24 males and seven females were immunohistochemically assessed for SDHB. All patients were G1 tumors (Ki-67 labeling index ≤2%). SDHB immunohistochemistry results were expressed as immunostaining intensity and scored as low or strong according to the internal control represented by normal intestinal cells. Strong positivity for SDHB, with granular cytoplasmatic reactivity, was found in 77% of primary tumors (T), whilst low SDHB expression was detected in 90% of metastases (M). The combined analysis (T+M) confirmed the loss of SDHB expression in 82% of metastases compared to 18% of primary tumors. SDHB expression was inversely correlated with Ki-67 labeling index, which accounted for 1.54% in metastastic sites and 0.7% in primary tumors. A correlation between SDHB expression loss, increased Ki-67 labeling index and biological aggressiveness was shown in advanced midgut neuroendocrine tumors, suggesting a role of tumor suppressor gene.

  8. Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b.

    Farhan Ul Haque, Muhammad; Kalidass, Bhagyalakshmi; Bandow, Nathan; Turpin, Erick A; DiSpirito, Alan A; Semrau, Jeremy D

    2015-11-01

    Methanotrophs have multiple methane monooxygenases that are well known to be regulated by copper, i.e., a "copper switch." At low copper/biomass ratios the soluble methane monooxygenase (sMMO) is expressed while expression and activity of the particulate methane monooxygenase (pMMO) increases with increasing availability of copper. In many methanotrophs there are also multiple methanol dehydrogenases (MeDHs), one based on Mxa and another based on Xox. Mxa-MeDH is known to have calcium in its active site, while Xox-MeDHs have been shown to have rare earth elements in their active site. We show here that the expression levels of Mxa-MeDH and Xox-MeDH in Methylosinus trichosporium OB3b significantly decreased and increased, respectively, when grown in the presence of cerium but the absence of copper compared to the absence of both metals. Expression of sMMO and pMMO was not affected. In the presence of copper, the effect of cerium on gene expression was less significant, i.e., expression of Mxa-MeDH in the presence of copper and cerium was slightly lower than in the presence of copper alone, but Xox-MeDH was again found to increase significantly. As expected, the addition of copper caused sMMO and pMMO expression levels to significantly decrease and increase, respectively, but the simultaneous addition of cerium had no discernible effect on MMO expression. As a result, it appears Mxa-MeDH can be uncoupled from methane oxidation by sMMO in M. trichosporium OB3b but not from pMMO. PMID:26296730

  9. Effect of Follicular Fluid and Platelet-Activating Factor on Lactate Dehydrogenase C Expression in Human Asthenozoospermic Samples

    Tahereh Esmaeilpour; Mohmmad-Reza Zarei; Soghra Bahmanpour; Elham Aliabadi; Ahmad Hosseini; Mansooreh Jaberipour

    2014-01-01

    Background: Application of follicular fluid (FF) and platelet-activating factor (PAF) in artificial insemination improves sperm motility. Lactate dehydrogenase C (LDH-C) is a key enzyme for sperm motility. In this study, the effects of FF and PAF on the sperm motility index and LDH-C expression were investigated. Moreover, LDH-C expression was compared between asthenozoospermic and normozoospermic samples. Methods: The expression of LDH-C was examined by quantitative real-time polymerase ...

  10. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.: Bioinformatic Analysis and Expression Patterns

    Yazhong eJin

    2016-05-01

    Full Text Available Alcohol dehydrogenases (ADH, encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH, designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into 3 groups respectively, namely long-, medium- and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into 6 medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed.

  11. [Expression, purification and characterization of a thermostable lactate dehydrogenase from Thermotoga maritima].

    Qian, Guojun; Chen, Caiping; Zhai, Ruying; Shao, Weilan; Mei, Yanzhen

    2014-04-01

    The gene encoding thermostable lactate dehydrogenase (Tm-LDH) was cloned into the plasmid pHsh from Thermotoga maritima, and expressed in Escherichia coli JM 109. The recombinant protein was purified to homogeneity by a simple step, heat treatment. The recombinant enzyme had a molecular mass of 33 kDa. The optimal temperature and pH of Tm-LDH were observed 95 degrees C and 7.0. The purified enzyme had a half-life of 2 h at 90 degrees C, and exhibited better stability over a pH range from 5.5 to 8.0. The K(m) and V(max) values were 1.7 mmol/L, 3.8 x 10(4) U/mg of protein for pyruvate, and 7.2 mmol/L and 1.1 x 10(5) U/mg for NADH, respectively. The expression of Tm-LDH in T7 system could not obtain high efficiency, but it has been soluble over-expression in pHsh system and reached 340 mg/L. The superior stability and productivity of Tm-LDH will lay the foundation of its industrial-scale fermentation and application in the NAD regeneration. PMID:25195245

  12. Molecular cloning and expression analysis of the gene encoding proline dehydrogenase from Jatropha curcas L.

    Wang, Haibo; Ao, Pingxing; Yang, Shuanglong; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2015-03-01

    Proline dehydrogenase (ProDH) (EC 1.5.99.8) is a key enzyme in the catabolism of proline. The enzyme JcProDH and its complementary DNA (cDNA) were isolated from Jatropha curcas L., an important woody oil plant used as a raw material for biodiesels. It has been classified as a member of the Pro_dh superfamily based on multiple sequence alignment, phylogenetic characterization, and its role in proline catabolism. Its cDNA is 1674 bp in length with a complete open reading frame of 1485 bp, which encodes a polypeptide chain of 494 amino acids with a predicted molecular mass of 54 kD and a pI of 8.27. Phylogenetic analysis indicated that JcProDH showed high similarity with ProDH from other plants. Reverse transcription PCR (RT-PCR) analysis revealed that JcProDH was especially abundant in the seeds and flowers but scarcely present in the stems, roots, and leaves. In addition, the expression of JcProDH increased in leaves experiencing environmental stress such as cold (5 °C), heat (42 °C), salt (300 mM), and drought (30 % PEG6000). The JcProDH protein was successfully expressed in the yeast strain INVSc1 and showed high enzyme activity in proline catabolism. This result confirmed that the JcProDH gene negatively participated in the stress response. PMID:25502926

  13. Ectopic Expression of the Chinese Cabbage Malate Dehydrogenase Gene Promotes Growth and Aluminum Resistance in Arabidopsis.

    Li, Qing-Fei; Zhao, Jing; Zhang, Jing; Dai, Zi-Hui; Zhang, Lu-Gang

    2016-01-01

    Malate dehydrogenases (MDHs) are key metabolic enzymes that play important roles in plant growth and development. In the present study, we isolated the full-length and coding sequences of BraMDH from Chinese cabbage [Brassica campestris L. ssp. pekinensis (Lour) Olsson]. We conducted bioinformatics analysis and a subcellular localization assay, which revealed that the BraMDH gene sequence contained no introns and that BraMDH is localized to the chloroplast. In addition, the expression pattern of BraMDH in Chinese cabbage was investigated, which revealed that BraMDH was heavily expressed in inflorescence apical meristems, as well as the effect of BraMDH overexpression in two homozygous transgenic Arabidopsis lines, which resulted in early bolting and taller inflorescence stems. Furthermore, the fresh and dry weights of aerial tissue from the transgenic Arabidopsis plants were significantly higher than those from the corresponding wild-type plants, as were plant height, the number of rosette leaves, and the number of siliques produced, and the transgenic plants also exhibited stronger aluminum resistance when treated with AlCl3. Therefore, our results suggest that BraMDH has a dramatic effect on plant growth and that the gene is involved in both plant growth and aluminum resistance. PMID:27536317

  14. Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes

    Bey Mathieu

    2011-12-01

    Full Text Available Abstract Background Cellobiose dehydrogenase (CDH is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass. Results First, P. cinnabarinus growth conditions were optimized for CDH production. Following growth under cellulolytic conditions, the main components secreted were cellulases, xylanases and CDH. To investigate the contribution of P. cinnabarinus secretome in saccharification processes, the Trichoderma reesei enzymatic cocktail was supplemented with the P. cinnabarinus secretome. A significant enhancement of the degradation of wheat straw was observed with (i the production of a large amount of gluconic acid, (ii increased hemicellulose degradation, and (iii increased overall degradation of the lignocellulosic material. P. cinnabarinus CDH was heterologously expressed in Pichia pastoris to obtain large amounts of pure enzyme. In a bioreactor, the recombinant CDH (rCDH expression level reached 7800 U/L. rCDH exhibited values of biochemical parameters similar to those of the natural enzyme, and was able to bind cellulose despite the absence of a carbohydrate-binding module (CBM. Following supplementation of purified rCDH to T. reesei enzymatic cocktail, formation of gluconic acid and increased hemicellulose degradation were observed, thus confirming the previous results observed with P. cinnabarinus secretome. Conclusions We demonstrate that CDH offers an attractive tool for saccharification process enhancement due to gluconic acid production from raw lignocellulosic material.

  15. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  16. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...

  17. The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression

    Yellanki Priyadarshini

    2009-03-01

    Full Text Available Abstract Background Lignin is a phenolic heteropolymer in secondary cell walls that plays a major role in the development of plants and their defense against pathogens. The biosynthesis of monolignols, which represent the main component of lignin involves many enzymes. The cinnamyl alcohol dehydrogenase (CAD is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. The CAD gene family has been studied in Arabidopsis thaliana, Oryza sativa and partially in Populus. This is the first comprehensive study on the CAD gene family in woody plants including genome organization, gene structure, phylogeny across land plant lineages, and expression profiling in Populus. Results The phylogenetic analyses showed that CAD genes fall into three main classes (clades, one of which is represented by CAD sequences from gymnosperms and angiosperms. The other two clades are represented by sequences only from angiosperms. All Populus CAD genes, except PoptrCAD 4 are distributed in Class II and Class III. CAD genes associated with xylem development (PoptrCAD 4 and PoptrCAD 10 belong to Class I and Class II. Most of the CAD genes are physically distributed on duplicated blocks and are still in conserved locations on the homeologous duplicated blocks. Promoter analysis of CAD genes revealed several motifs involved in gene expression modulation under various biological and physiological processes. The CAD genes showed different expression patterns in poplar with only two genes preferentially expressed in xylem tissues during lignin biosynthesis. Conclusion The phylogeny of CAD genes suggests that the radiation of this gene family may have occurred in the early ancestry of angiosperms. Gene distribution on the chromosomes of Populus showed that both large scale and tandem duplications contributed significantly to the CAD gene family expansion. The duplication of several CAD genes seems to be associated with a genome duplication

  18. Relationship between the Expression of Thymidylate Synthase,Thymidine Phosphorylase and Dihydropyrimidine Dehydrogenase and Survival in Epithelial Ovarian Cancer

    王常玉; 翁艳洁; 王鸿雁; 石英; 马丁

    2010-01-01

    The mRNA and protein expression of thymidylate synthase (TS), thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD) and their relationship with prognosis were investigated. Real-time quantitative RT-PCR (Taqman) was used to detect the mRNA expression of TS, TP and DPD in formalin-fixed and paraffin-embedded 106 samples of epithelial ovarian cancer and 29 normal ovaries. A TATA box-binding protein (TBP) was used as an endogenous reference gene. A relationship between TS, TP, DPD expression a...

  19. Cloning and Expression of a Xylitol-4-Dehydrogenase Gene from Pantoea ananatis

    Aarnikunnas, J. S.; Pihlajaniemi, A.; Palva, A; Leisola, M.; Nyyssölä, A.

    2006-01-01

    The Pantoea ananatis ATCC 43072 mutant strain is capable of growing with xylitol as the sole carbon source. The xylitol-4-dehydrogenase (XDH) catalyzing the oxidation of xylitol to l-xylulose was isolated from the cell extract of this strain. The N-terminal amino acid sequence of the purified protein was determined, and an oligonucleotide deduced from this peptide sequence was used to isolate the xylitol-4-dehydrogenase gene (xdh) from a P. ananatis gene library. Nucleotide sequence analysis ...

  20. Cloning and expression of bacterial genes coding amino acid dehydrogenases (oxidoreductases)

    Full text: The synthesis of 15N-labeled amino acids from the corresponding α-ketoacids can be accomplished in vitro using bacterial NAD-dependent amino acid dehydrogenases. The example of alanine dehydrogenase (AlaDH) and leucine dehydrogenase (LeuDH) will be presented here. Both enzymes belong to NAD dependent oxidoreductase family. AlaDH or L-alanine NAD-oxidoreductase (EC 1.4.1.1) promotes the reversible oxidative deamination of L-alanine to pyruvate (pyruvic acid). LeuDH or L-leucine NAD-oxidoreductase (EC 1.4.1.9) catalyses the reversible oxidative deamination of many related L-amino acids to corresponding α-ketoacids. The bacterial genes encoding AlaDH from Bacillus subtilis and LeuDH from Bacillus stearothermophilus were cloned separately in pET21b vector, and overexpressed in Escherichia coli BL21(DE3) strain. The [15N]L-alanine was synthesized by reductive amination of pyruvate, in the presence of 15NH4Cl, NADH, AlaDH and glucose dehydrogenase. The [15N]L-leucine, [15N]L-isoleucine, [15N]L-norleucine, [15N]L-valine and [15N]L-norvaline were produced in the same conditions using LeuDH, as a catalyst, and α- ketoisocaproate, DL-α-keto-β-methyl-n-valerate, α-ketocaproate, α-ketoisovalerate and α-ketovalerate, respectively, as substrates. In all cases, the reaction mixtures included glucose dehydrogenase for NADH regeneration with glucose as electron donor. The NADH renewal is more convenient with glucose dehydrogenase than other methods described before using formate dehydrogenase or alcohol dehydrogenase. The glucose dehydrogenase is very active and do not inhibit 15N-labeled amino acid synthesis. As determined by mass spectroscopy, the 15N-labeled amino acids were synthesized with yields between 60% and 95%. Our results demonstrate the usefulness of recombinant amino acid dehydrogenases for in vitro synthesis of 15N-labeled amino acids. (author)

  1. Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli.

    Inose, Ken; Fujikawa, Masako; Yamazaki, Tomohiko; Kojima, Katsuhiro; Sode, Koji

    2003-02-21

    We have cloned a 1620-nucleotide gene encoding the catalytic subunit (alpha subunit) of a thermostable glucose dehydrogenase (GDH) from Burkholderia cepacia. The FAD binding motif was found in the N-terminal region of the alpha subunit. The deduced primary structure of the alpha subunit showed about 48% identity to the catalytic subunits of sorbitol dehydrogenase (SDH) from Gluconobacter oxydans and 2-keto-D-gluconate dehydrogenases (2KGDH) from Erwinia herbicola and Pantoea citrea. The alpha subunit of B. cepacia was expressed in Escherichia coli in its active water-soluble form, showing maximum dye-mediated GDH activity at 70 degrees C, retaining high thermal stability. A putative open reading frame (ORF) of 507 nucleotides was also found upstream of the alpha subunit encoding an 18-kDa peptide, designated as gamma subunit. The deduced primary structure of gamma subunit showed about 30% identity to the small subunits of the SDH from G. oxydans and 2KGDHs from E. herbicola and P. citrea. PMID:12573242

  2. Developmental expression of Xenopus short-chain dehydrogenase/reductase 3

    Kam, Richard Kin Ting; Chen, Yonglong; Chan, Sun On; Chan, Wood Yee; Dawid, Igor B.; Hui ZHAO

    2010-01-01

    During early embryonic development, the retinoic acid signaling pathway coordinates with other signaling pathways to regulate body axis patterning and organogenesis. The production of retinoic acid requires two enzymatic reactions, the first of which is the oxidization of vitamin A (all-trans-retinol) to all-trans-retinal, mediated in part by the short-chain dehydrogenase/reductase. Through DNA microarrays, we have identified a gene in Xenopus laevis, which shares a high sequence similarity t...

  3. Efficacy of Vigabatrin Intervention in a Mild Phenotypic Expression of Succinic Semialdehyde Dehydrogenase Deficiency

    Casarano, M.; Alessandrì, M G.; Salomons, G.S.; E. Moretti; Jakobs, C.; Gibson, K. M.; G. Cioni; Battini, R.

    2011-01-01

    We report a patient with succinic semialdehyde dehydrogenase deficiency who presented a mild phenotype including developmental language delay, in association with the typical elevations of 4-hydroxybutyric acid (GHB) in biological fluids and MRI alterations. Two pathogenic mutations were identified one transversion (c.278 G>T) in exon 1 and another (c.1557 T>G) in exon 10. Both parents are carriers of one of the mutations, confirming compound-heterozygosity in their affected child. To reduce ...

  4. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line

    Wang, Yi; Jiang, Yang; IKEDA, JUN-ICHIRO; TIAN, TIAN; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-01-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, mi...

  5. Cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene and the use of its promoter for expression in Myrothecium gramineum, a novel expression host.

    De Maeseneire, Sofie L; Dauvrin, Thierry; Jonniaux, Jean-Luc; Van Bogaert, Inge N A; Soetaert, Wim K; Vandamme, Erick J M C

    2008-04-01

    At our laboratory, research has focused on the development of Myrothecium gramineum as a novel expression host. The glyceraldehyde-3-phosphate dehydrogenase (gpd)-promoter of M. gramineum was isolated and characterized (Genbank accession number EF486690). In order to prove its functionality and to explore the potential of M. gramineum as a novel fungal expression host, use of this gpd-promoter for the expression of a fungal alpha-amylase was investigated. Myrothecium gramineum was transformed with pGPDlpAmyAO, containing the gpd-promoter followed by the amy3 encoding sequence of Aspergillus oryzae. Study of the amylase production indicated that the promoter can be successfully used for the expression of heterologous proteins in M. gramineum. To the best of our knowledge, this is the first time a homologous expression system has been described for M. gramineum. PMID:18294194

  6. Transcription analysis of pyranose dehydrogenase from the basidiomycete Agaricus bisporus and characterization of the recombinantly expressed enzyme.

    Gonaus, Christoph; Kittl, Roman; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens

    2016-03-01

    Agaricus bisporus is a litter degrading basidiomycete commonly found in humic-rich environments. It is used as model organism and cultivated in large scale for food industry. Due to its ecological niche it produces a variety of enzymes for detoxification and degradation of humified plant litter. One of these, pyranose dehydrogenase, is thought to play a role in detoxification and lignocellulose degradation. It is a member of the glucose-methanol-choline family of flavin-dependent enzymes and oxidizes a wide range of sugars with concomitant reduction of electron acceptors like quinones. In this work, transcription of pdh in A. bisporus was investigated with real-time PCR revealing influence of the carbon source on pdh expression levels. The gene was isolated and heterologously expressed in Pichia pastoris. Characterization of the recombinant enzyme showed a higher affinity towards disaccharides compared to other tested pyranose dehydrogenases from related Agariceae. Homology modeling and sequence alignments indicated that two loops of high sequence variability at substrate access site could play an important role in modulating these substrate specificities. PMID:26616098

  7. Situational aldehyde dehydrogenase expression by regulatory T cells may explain the contextual duality of cyclophosphamide as both a pro-inflammatory and tolerogenic agent

    Kanakry, Christopher G.; Ganguly, Sudipto; Luznik, Leo

    2015-01-01

    In two recent publications, we demonstrated that after allogeneic stimulation, regulatory T cells (Tregs) increase expression of aldehyde dehydrogenase (ALDH), the major in vivo mechanism of cyclophosphamide detoxification, thereby becoming cyclophosphamide resistant. Differential ALDH expression may explain why cyclophosphamide has pro- and anti-inflammatory effects that are temporally and contextually dependent.

  8. The Cinnamyl Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2014-01-01

    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. However, little was known about CADs in melon. Five CAD-like genes were identified in the genome of melons, namely CmCAD1 to CmCAD5. The signal peptides analysis and CAD proteins prediction showed no typical signal peptides were found in all CmCADs and CmCAD proteins may locate in the cytoplasm. Multiple alignments implied that some motifs may be responsible for the high specificity of these CAD proteins, and may be ...

  9. Expression of 11 beta-hydroxysteroid dehydrogenase type 2 is deregulated in colon carcinoma

    Moravec, Martin; Švec, Jiří; Ergang, Peter; Mandys, V.; Řeháková, Lenka; Zádorová, Z.; Hajer, J.; Kment, M.; Pácha, Jiří

    2014-01-01

    Roč. 29, č. 4 (2014), s. 489-496. ISSN 0213-3911 R&D Projects: GA MZd(CZ) NS9982; GA ČR(CZ) GA13-08304S Grant ostatní: Univerzita Karlova(CZ) 70310; Univerzita Karlova(CZ) Prvouk P27; Univerzita Karlova(CZ) CZ.2.16/3.1.00/24024 Institutional support: RVO:67985823 Keywords : 11beta-hydroxysteroid dehydrogenase * colorectal polyp * adenoma Subject RIV: ED - Physiology Impact factor: 2.236, year: 2013

  10. Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine

    Uhlenbusch, I.; Sahm, H.; Sprenger, G.A. (Inst. fur Biotechnologie 1, Julich (Germany))

    1991-05-01

    Gene alaD for L-alanine dehydrogenase from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 {mu}mol {center dot} min{sup {minus}1} {center dot} mg of protein{sup {minus}1} in recombinant cells. As a result of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH{sub 4}{sup +} to the medium, growth of the recombinant cells stopped, and up to 41 mmol of alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PP{sub i}. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH {sub 4}{sup +} and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol {center dot} min{sup {minus}1} {center dot} mg(dry weight){sup {minus}1}. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.

  11. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1, in human epithelial cancers.

    Shan Deng

    Full Text Available Aldehyde dehydrogenase isoform 1 (ALDH1 has been proved useful for the identification of cancer stem cells. However, our knowledge of the expression and activity of ALDH1 in common epithelial cancers and their corresponding normal tissues is still largely absent. Therefore, we characterized ALDH1 expression in 24 types of normal tissues and a large collection of epithelial tumor specimens (six cancer types, n = 792 by immunohistochemical staining. Using the ALDEFUOR assay, ALDH1 activity was also examined in 16 primary tumor specimens and 43 established epithelial cancer cell lines. In addition, an ovarian cancer transgenic mouse model and 7 murine ovarian cancer cell lines were analyzed. We found that the expression levels and patterns of ALDH1 in epithelial cancers are remarkably distinct, and they correlate with their corresponding normal tissues. ALDH1 protein expression levels are positively correlated with ALDH1 enzymatic activity measured by ALDEFLUOR assay. Long-term in vitro culture doesn't significantly affect ALDH1 activity in epithelial tumor cells. Consistent with research on other cancers, we found that high ALDH1 expression is significantly associated with poor clinical outcomes in serous ovarian cancer patients (n = 439, p = 0.0036. Finally, ALDH(br tumor cells exhibit cancer stem cell properties and are resistant to chemotherapy. As a novel cancer stem cell marker, ALDH1 can be used for tumors whose corresponding normal tissues express ALDH1 in relatively restricted or limited levels such as breast, lung, ovarian or colon cancer.

  12. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of isocitrate dehydrogenase 2 (Rv0066c) from Mycobacterium tuberculosis

    Isocitrate dehydrogenase 2 from M. tuberculosis was cloned, expressed, purified and crystallized. A complete data set has been collected to 3.25 Å resolution. Isocitrate dehydrogenase 2 (Icd-2, Rv0066c) from Mycobacterium tuberculosis was cloned and heterologously expressed in Escherichia coli. The protein was purified by affinity and size-exclusion chromatography and crystallized. A complete data set has been collected and reduced to 3.25 Å resolution in space group C2. Preliminary diffraction data analysis suggests a complex packing with at least six molecules in the asymmetric unit

  13. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6522, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported

  14. Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae

    Knudsen, Jan Dines; Johanson, Ted; Eliasson Lantz, Anna; Carlquist, Magnus

    2015-01-01

    A control point for keeping redox homeostasis in Saccharomyces cerevisiae during fermentative growth is the dynamic regulation of transcription for the glycerol-3-phosphate dehydrogenase 2 (GPD2) gene. In this study, the possibility to steer the activity of the GPD2 promoter was investigated by p...... mapping revealed conditions where the GPD2 promoter was either completely inactive or hyperactive, which has implications for its implementation in future biotechnological applications such as for process control of heterologous gene expression.......A control point for keeping redox homeostasis in Saccharomyces cerevisiae during fermentative growth is the dynamic regulation of transcription for the glycerol-3-phosphate dehydrogenase 2 (GPD2) gene. In this study, the possibility to steer the activity of the GPD2 promoter was investigated by...... growth rate of 0.3 h-1 and in conditions with excess oxygen (i.e. with an aeration of 2.5 vvm, and a stirring of 800 rpm). In addition, a clear window of operation where the gpd1Δgpd2Δ strain can be grown with the same efficiency as wild type yeast was identified. In conclusion, the flow cytometry...

  15. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD+-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  16. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  17. Genome-Wide Analysis of Sorbitol Dehydrogenase (SDH Genes and Their Differential Expression in Two Sand Pear (Pyrus pyrifolia Fruits

    Meisong Dai

    2015-06-01

    Full Text Available Through RNA-seq of a mixed fruit sample, fourteen expressed sorbitol dehydrogenase (SDH genes have been identified from sand pear (Pyrus pyrifolia Nakai. Comparative phylogenetic analysis of these PpySDHs with those from other plants supported the closest relationship of sand pear with Chinese white pear (P. bretschneideri. The expression levels varied greatly among members, and the strongest six (PpySDH2, PpySDH4, PpySDH8, PpySDH12, PpySDH13 and PpySDH14 accounted for 96% of total transcript abundance of PpySDHs. Tissue-specific expression of these six members was observed in nine tissues or organs of sand pear, with the greatest abundance found in functional leaf petioles, followed by the flesh of young fruit. Expression patterns of these six PpySDH genes during fruit development were analyzed in two sand pear cultivars, “Cuiguan” and “Cuiyu”. Overall, expression of PpySDHs peaked twice, first at the fruitlet stage and again at or near harvest. The transcript abundance of PpySDHs was higher in “Cuiguan” than in “Cuiyu”, accompanied by a higher content of sugars and higher ratio of fructose to sorbitol maintained in the former cultivar at harvest. In conclusion, it was suggested that multiple members of the SDH gene family are possibly involved in sand pear fruit development and sugar accumulation and may affect both the sugar amount and sugar composition.

  18. Enhanced xylitol production: Expression of xylitol dehydrogenase from Gluconobacter oxydans and mixed culture of resting cell.

    Qi, Xiang-Hui; Zhu, Jing-Fei; Yun, Jun-Hua; Lin, Jing; Qi, Yi-Lin; Guo, Qi; Xu, Hong

    2016-09-01

    Xylitol has numerous applications in food and pharmaceutical industry, and it can be biosynthesized by microorganisms. In the present study, xdh gene, encoding xylitol dehydrogenase (XDH), was cloned from the genome of Gluconobacter oxydans CGMCC 1.49 and overexpressed in Escherichia coli BL21. Sequence analysis revealed that XDH has a TGXXGXXG NAD(H)-binding motif and a YXXXK active site motif, and belongs to the short-chain dehydrogenase/reductase family. And then, the enzymatic properties and kinetic parameter of purified recombinant XDH were investigated. Subsequently, transformations of xylitol from d-xylulose and d-arabitol, respectively, were studied through mixed culture of resting cells of G. oxydans wild-type strain and recombinant strain BL21-xdh. We obtained 28.80 g/L xylitol by mixed culture from 30 g/L d-xylulose in 28 h. The production was increased by more than three times as compared with that of wild-type strain. Furthermore, 25.10 g/L xylitol was produced by the mixed culture from 30 g/L d-arabitol in 30 h with a yield of 0.837 g/g, and the max volumetric productivity of 0.990 g/L h was obtained at 22 h. These contrast to the fact that wild-type strain G. oxydans only produced 8.10 g/L xylitol in 30 h with a yield of 0.270 g/g. To our knowledge, these values are the highest among the reported yields and productivity efficiencies of xylitol from d-arabitol with engineering strains. PMID:26975753

  19. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  20. A thioredoxin fusion protein of VanH, a D-lactate dehydrogenase from Enterococcus faecium: cloning, expression, purification, kinetic analysis, and crystallization.

    Stoll, V. S.; Manohar, A. V.; Gillon, W.; MacFarlane, E. L.; Hynes, R. C.; Pai, E F

    1998-01-01

    The gene encoding the vancomycin resistance protein VanH from Enterococcus faecium, a D-lactate dehydrogenase, has been cloned into a thioredoxin expression system (pTRxFus) and expressed as a fusion protein. The use of several other expression systems yielded only inclusion bodies from which no functional protein could be recovered. Experiments to remove the thioredoxin moiety by enterokinase cleavage at the engineered recognition site under a variety of conditions resulted in nonspecific pr...

  1. Expression and response surface optimization of the recovery and purification of recombinant D-galactose dehydrogenase from Pseudomonas fluorescens.

    Azar, Shadi Rokhsartalab; Naiebi, Raika; Homami, Ameneh; Akbari, Zahra; Kianmehr, Anvarsadat; Mahdizadehdehosta, Rahman; Najafzadeh, Faezeh

    2015-02-01

    The enzyme D-galactose dehydrogenase (GalDH) has been used in diagnostic kits to screen blood serum of neonates for galactosemia. It is also a significant tool for the measurement of β-D-galactose, α-D-galactose and lactose as well. In this study, response surface methodology (RSM) was used to identify the suitable conditions for recovery of recombinant GalDH from Pseudomonas fluorescens in aqueous two-phase systems (ATPS). The identified GalDH gene was amplified by PCR and confirmed by further cloning and sequencing. E. coli BL-21 (DE3) containing the GalDH gene on a plasmid (pET28aGDH) was used to express and purify the recombinant enzyme. The polyethylene glycol (PEG) and ammonium sulfate concentrations and pH value were selected as variables to analyze purification of GalDH. To build mathematical models, RSM with a central composite design was applied based on the conditions for the highest separation. The recombinant GalDH enzyme was expressed after induction with IPTG. It showed NAD'-dependent dehydrogenase activity towards D-Galactose. According to the RSM modeling, an optimal ATPS was composed of PEG-2000 14.0% (w/w) and ammonium sulfate 12.0% (w/w) at pH 7.5. Under these conditions, GalDH preferentially concentrated in the top PEG-rich phase. The enzyme activity, purification factor (PF) and recovery (R) were 1400 U/ml, 60.0% and 270.0%, respectively. The PEG and salt concentrations were found to have significant effect on the recovery of enzyme. Briefly, our data showed that RSM could be an appropriate tool to define the best ATPS for recombinant P. fluorescens GalDH recovery. PMID:26040113

  2. Effect of Follicular Fluid and Platelet-Activating Factor on Lactate Dehydrogenase C Expression in Human Asthenozoospermic Samples

    Tahereh Esmaeilpour

    2014-01-01

    Full Text Available Background: Application of follicular fluid (FF and platelet-activating factor (PAF in artificial insemination improves sperm motility. Lactate dehydrogenase C (LDH-C is a key enzyme for sperm motility. In this study, the effects of FF and PAF on the sperm motility index and LDH-C expression were investigated. Moreover, LDH-C expression was compared between asthenozoospermic and normozoospermic samples. Methods: The expression of LDH-C was examined by quantitative real-time polymerase chain reaction (q-RT PCR and western blotting after it was treated with optimized concentrations of FF and PAF in twenty asthenozoospermic samples. Also, LDH-C expression was evaluated in five normozoospermic samples. Results: Samples with 75% FF and 100 nM of PAF had an increase in their percentages of progressive and slowly motile sperms and a decrease in their percentages of non-progressive and non-motile sperms. Moreover, LDH-C mRNA transcripts were not changed following PAF and FF treatment, and LDH-C protein was detected in highly progressive motile specimens treated with FF in the asthenozoospermic samples. Furthermore, LDH-C expression was more detectable in the normal sperms. Conclusion: Our results indicated that PAF had more beneficial effects than FF on sperm motility in the asthenozoospermic samples (P=0.0001, although the LDH-C expressions of the sperms were not changed significantly in both groups. We found no association between LDH-C expression and sperm motility after FF and PAF actions. This finding, however, requires further investigation. The fact that LDH-C protein was detected in the normozoospermic, but not asthenozoospermic, samples could be cited as a reason for the infertility in these patients.

  3. 11β-Hydroxysteroid Dehydrogenase Type 1 Is Expressed in Neutrophils and Restrains an Inflammatory Response in Male Mice.

    Coutinho, Agnes E; Kipari, Tiina M J; Zhang, Zhenguang; Esteves, Cristina L; Lucas, Christopher D; Gilmour, James S; Webster, Scott P; Walker, Brian R; Hughes, Jeremy; Savill, John S; Seckl, Jonathan R; Rossi, Adriano G; Chapman, Karen E

    2016-07-01

    Endogenous glucocorticoid action within cells is enhanced by prereceptor metabolism by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts intrinsically inert cortisone and 11-dehydrocorticosterone into active cortisol and corticosterone, respectively. 11β-HSD1 is highly expressed in immune cells elicited to the mouse peritoneum during thioglycollate-induced peritonitis and is down-regulated as the inflammation resolves. During inflammation, 11β-HSD1-deficient mice show enhanced recruitment of inflammatory cells and delayed acquisition of macrophage phagocytic capacity. However, the key cells in which 11β-HSD1 exerts these effects remain unknown. Here we have identified neutrophils (CD11b(+),Ly6G(+),7/4(+) cells) as the thioglycollate-recruited cells that most highly express 11β-HSD1 and show dynamic regulation of 11β-HSD1 in these cells during an inflammatory response. Flow cytometry showed high expression of 11β-HSD1 in peritoneal neutrophils early during inflammation, declining at later states. In contrast, expression in blood neutrophils continued to increase during inflammation. Ablation of monocytes/macrophages by treatment of CD11b-diphtheria-toxin receptor transgenic mice with diphtheria toxin prior to thioglycollate injection had no significant effect on 11β-HSD1 activity in peritoneal cells, consistent with neutrophils being the predominant 11β-HSD1 expressing cell type at this time. Similar to genetic deficiency in 11β-HSD1, acute inhibition of 11β-HSD1 activity during thioglycollate-induced peritonitis augmented inflammatory cell recruitment to the peritoneum. These data suggest that neutrophil 11β-HSD1 increases during inflammation to contribute to the restraining effect of glucocorticoids upon neutrophil-mediated inflammation. In human neutrophils, lipopolysaccharide activation increased 11β-HSD1 expression, suggesting the antiinflammatory effects of 11β-HSD1 in neutrophils may be conserved in humans. PMID:27145012

  4. The expression of Arabidopsis glutamate dehydrogenase gene gdh2 is induced under the influence of tetrapyrrole synthesis inhibitor norflurazon

    E.Yu. Garnik

    2013-11-01

    Full Text Available The gdh2 gene encoding beta-subunit of glutamate dehydrogenase in Arabidopsis belongs to diurnal-regulated genes. Its expression is highly increased in the dark and reduced to minimal rates at the day light. Some sugar-responsive regulatory pathways are known to be involved in the gdh2 light repression, but the specific mechanisms of this regulation are unknown. In our experiments expression of gdh2 gene increased 6-11 fold in Arabidopsis seedlings grown in presence of the tetrapyrrole synthesis inhibitor norflurazon. The increasing rate depended on the light intensity and did not correlate with the induction of ROS marker genes. This observation can be explained by both a low glucose level in the cells treated with norflurazon and absence of repression by the chloroplast-to-nucleus retrograde pathways because of chloroplast dysfunction. We assume that the diurnal regulation of gdh2 gene expression involves not only sugar-dependent, but also chloroplast-to-nucleus regulatory signals.

  5. Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in Osmotolerant yeast, Candida glycerinogenes WL2002-5.

    Zhang, Cheng; Zong, Hong; Zhuge, Bin; Lu, Xinyao; Fang, Huiying; Zhuge, Jian

    2015-01-01

    Yeasts are excellent hosts for the production of recombinant proteins. Candida glycerinogenes WL2002-5, an osmotolerant yeast with extremely high glycerol productivity, provides an attractive eukaryotic expression platform. The integrative vectors PURGAP-gfp and PURGPD-gfp harbouring phleomycin-resistance coding sequence and GFP coding sequence with PCgGAP, PCgGPD promoter, respectively, were constructed. The recombinant plasmid PURPpGAP-gfp with the promoter PPpGAP based on the sequence of Pichia pastoris GAPDH gene and the plasmid PURScGAP-gfp with the promoter PScGAP from Saccharomyces cerevisiae were constructed. After transformation, the copy number of gfp gene, which determined using fluorescent quantitative real-time polymerase chain reaction (FQ-RTPCR) in genome of C. glycerinogenes is 1. Expressions of gfp at different levels were conducted using different promoters by osmotic stress containing NaCl or glucose for the recombinant strains. In this study, C. glycerinogenes WL2002-5, expressing xylitol dehydrogenase (XYL2) gene from Pichia stipitis, has the ability to produce glycerol from xylose entered into pentose phosphate pathway. Two recombinant strains of PURGAPX, PURGPDX with XYL2 overexpression were constructed to ferment a mixture of glucose and xylose simultaneously in batch fermentation. Compared to C. glycerinogenes WL2002-5 strain, glycerol production from xylose in strains PURGAPX, PURGPDX were increased by 95.9 and 121.1 %, respectively. PMID:25363139

  6. Plant Formate Dehydrogenase

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  7. Regulation of cell growth and apoptosis through lactate dehydrogenase C over-expression in Chinese hamster ovary cells.

    Fu, Tuo; Zhang, Cunchao; Jing, Yu; Jiang, Cheng; Li, Zhenhua; Wang, Shengyu; Ma, Kai; Zhang, Dapeng; Hou, Sheng; Dai, Jianxin; Kou, Geng; Wang, Hao

    2016-06-01

    Lactate has long been credited as a by-product, which jeopardizes cell growth and productivity when accumulated over a certain concentration during the manufacturing process of therapeutic recombinant proteins by Chinese hamster ovary (CHO) cells. A number of efforts to decrease the lactate concentration have been developed; however, the accumulation of lactate is still a critical issue by the late stage of fed-batch culture. Therefore, a lactate-tolerant cell line was developed through over-expression of lactate dehydrogenase C (LDH-C). In fed-batch culture, sodium lactate or sodium pyruvate was supplemented into the culture medium to simulate the environment of lactate accumulation, and LDH-C over-expression increased the highest viable cell density by over 30 and 50 %, respectively, on day 5, meanwhile the viability was also improved significantly since day 5 compared with that of the control. The percentages of cells suffering early and late apoptosis decreased by 3.2 to 12.5 and 2.0 to 4.3 %, respectively, from day 6 onwards in the fed-batch culture when 40 mM sodium pyruvate was added compared to the control. The results were confirmed by mitochondrial membrane potential assay. In addition, the expression of cleaved caspases 3 and 7 decreased in cells over-expressing LDH-C, suggesting the mitochondrial pathway was involved in the LDH-C regulated anti-apoptosis. In conclusion, a novel cell line with higher lactate tolerance, lowered lactate production, and alleviated apoptosis response was developed by over-expression of LDH-C, which may potentially represent an efficient and labor-saving approach in generating recombinant proteins. PMID:26841889

  8. Labisia pumila extract down-regulates hydroxysteroid (11-beta) dehydrogenase 1 expression and corticosterone levels in ovariectomized rats.

    Fazliana, Mansor; Gu, Harvest F; Östenson, Claes-Göran; Yusoff, Mashitah Mohd; Wan Nazaimoon, W M

    2012-04-01

    We evaluated the effects of a standardized Labisia pumila var. alata (LPva) extract on body weight change, hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) expressions and corticosterone (CORT) level in ovariectomized (OVX) rats. The decoction of LPva has been used for generations among Malay women in Malaysia to maintain a healthy reproductive system.Thirty-six Sprague-Dawley OVX rats were treated orally with LPva extract (10, 20 or 50 mg/kg/day) or estrogen replacement (ERT) for 30 days. Sham operated rats were used as controls. Compared to untreated OVX rats, LPva-treated rats showed less weight gain and had significantly down-regulated HSD11B1 mRNA in liver tissues. HSD11B1 mRNA in adipose tissues increased by 55% (p rats but normalized in rats treated with LPva. Similarly, there was significant down-regulation (p rats. This is the first study ever conducted to evaluate the beneficial effects of LPva in relation to weight gain caused by estrogen insufficiency. Results implied that the bioactive components in LPva extract affect not only HSD11B1 expressions in both adipose and liver tissues but also decrease circulating CORT. The extract should be explored for its potential use as a natural remedy for weight management. PMID:21833773

  9. Pigs fed camelina meal increase hepatic gene expression of cytochrome 8b1, aldehyde dehydrogenase, and thiosulfate transferase.

    Meadus, William Jon; Duff, Pascale; McDonald, Tanya; Caine, William R

    2014-01-01

    Camelina sativa is an oil seed crop which can be grown on marginal lands. Camelina seed oil is rich in omega-3 fatty acids (>35%) and γ-tocopherol but is also high in erucic acid and glucosinolates. Camelina meal, is the by-product after the oil has been extracted. Camelina meal was fed to 28 d old weaned pigs at 3.7% and 7.4% until age 56 d. The camelina meal supplements in the soy based diets, improved feed efficiency but also significantly increased the liver weights. Gene expression analyses of the livers, using intra-species microarrays, identified increased expression of phase 1 and phase 2 drug metabolism enzymes. The porcine versions of the enzymes were confirmed by real time PCR. Cytochrome 8b1 (CYP8B1), aldehyde dehydrogenase 2 (Aldh2), and thiosulfate transferase (TST) were all significantly stimulated. Collectively, these genes implicate the camelina glucosinolate metabolite, methyl-sulfinyldecyl isothiocyanate, as the main xeniobiotic, causing increased hepatic metabolism and increased liver weight. PMID:24383433

  10. Expression of protein engineered NADP{sup +}-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

    Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki [National Institute of Advanced Industrial Science and Technology, Hiroshima (Japan). Biomass Technology Research Center; Watanabe, Seiya; Kodaki, Tsutomu; Makino, Keisuke [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2008-11-15

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD{sup +}-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP{sup +}. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP{sup +}-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP{sup +}-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain. (orig.)

  11. Lactate dehydrogenase 5 expression in Non-Hodgkin lymphoma is associated with the induced hypoxia regulated protein and poor prognosis.

    Renquan Lu

    Full Text Available Lactate dehydrogenase 5 (LDH-5 is one of the major isoenzymes catalyzing the biochemical process of pyruvate to lactate. The purpose of this study was to investigate the expression of serum LDH-5 and test whether this enzyme is regulated by tumor hypoxia and represents a prognostic marker in patients with Non-Hodgkin's lymphoma (NHL. In this study, LDH-5 levels were detected using agarose gel electrophoresis in NHL patients (n = 266 and non-NHL controls including benign lymphadenectasis (n = 30 and healthy cohorts (n = 233. We also explored the expression of LDH-5 and hypoxia-inducible factor (HIF 1α in NHL and benign controls by immunohistochemistry and immunofluorescence staining, respectively. Moreover, the role of LDH-5 in the progression of NHL was assessed by multivariate Cox analyses and Kaplan-Meier survival estimates. Serum concentrations of LDH-5 were significantly higher in NHL patients (9.3% than in benign patients and healthy controls (7.5% and 7.2%, respectively, P<0.01. Application of LDH-5 detection increased the sensitivity of NHL detection, identifying 53.4% of NHL patients as positive, compared with the measurement of total LDH levels (36.5% sensitivity. LDH-5 concentrations increased with clinical stage, extra-nodal site involvement, and WHO performance status of patients with NHL. Exposure to a hypoxic environment induced the expression of LDH-5 and its overexpression correlated with HIF1α cytoplasmic accumulation in NHL cells. In multivariate analyses, LDH-5 was an independent marker for progression-free survival in patients with NHL (P<0.001. Overall, the expression of LDH-5 was elevated in NHL, showing an association with tumor hypoxia and unfavorable prognosis. Thus, LDH-5 emerges as a promising prognostic predictor for NHL patients.

  12. Increased Expression of Aldehyde Dehydrogenase 2 Reduces Renal Cell Apoptosis During Ischemia/Reperfusion Injury After Hypothermic Machine Perfusion.

    Zhong, Zibiao; Hu, Qianchao; Fu, Zhen; Wang, Ren; Xiong, Yan; Zhang, Yang; Liu, Zhongzhong; Wang, Yanfeng; Ye, Qifa

    2016-06-01

    Hypothermic machine perfusion (MP) can reduce graft's injury after kidney transplantation; however, the mechanism has not been elucidated. In the past decade, many studies showed that aldehyde dehydrogenase 2 (ALDH2) is a protease which can inhibit cell apoptosis. Therefore, this study aims to explore whether ALDH2 takes part in reducing organ damage after MP. Eighteen healthy male New Zealand rabbits (12 weeks old, weight 3.0 ± 0.3 kg) were randomly divided into three groups: normal group, MP group, and cold storage (CS) group (n = 6). The left kidney of rabbits underwent warm ischemia for 35 min through clamping the left renal pedicle and then reperfusion for 1 h. Left kidneys were preserved by MP or CS (4°C for 4 h) in vivo followed by the right nephrectomy and 24-h reperfusion, and then the specimens and blood were collected. Finally, concentration of urine creatinine (Cr), blood urea nitrogen (BUN), and 4-HNE were tested. Renal apoptosis was detected by TUNEL staining, and the expression of ALDH2, cleaved-caspase 3, bcl-2/ bax, MAPK in renal tissue was detected by immunohistochemistry or Western blot; 24 h after surgery, the concentration of Cr in MP group was 355 ± 71μmol/L, in CS group was 511 ± 44 μmol/L (P bcl-2/bax in MP group was significantly higher than that in CS group (P < 0.05); expression of cleaved caspase-3 in both MP and CS group significantly increased as compared with that in normal group (P < 0.05). In conclusion, increased expression of ALDH2 can reduce the renal cell apoptosis through inhibiting MAPK pathway during ischemia/reperfusion injury (IRI) after hypothermic MP. PMID:26582147

  13. Deficient Expression of Aldehyde Dehydrogenase 1A1 Is Consistent with Increased Sensitivity of Gorlin Syndrome Patients to Radiation Carcinogenesis

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  14. Molecular cloning, sequence analysis and expression in Escherichia coli of Camelus dromedarius glucose-6-phosphate dehydrogenase cDNA.

    Saeed, Hesham Mahmoud; Alanazi, Mohammad Saud; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Khan, Zahid

    2012-06-01

    This study determined the full length sequence of glucose-6-phosphate dehydrogenase cDNA (G6PD) from the Arabian camel Camelus dromedarius using reverse transcription polymerase chain reaction. The C. dromedarius G6PD has an open reading frame of 1545 bp, and the cDNA encodes a protein of 515 amino acid residues with a molecular weight of 59.0 KDa. The amino acid sequence showed the highest identity with Equus caballus (92%) and Homo sapiens (92%). The G6PD cDNA was cloned and expressed into Escherichia coli as a fusion protein and was purified in a single chromatographic step using nickel affinity gel column. The purity and the molecular weight of the enzyme were checked on SDS-PAGE and the purified enzyme showed a single band on the gel with a molecular weight of 63.0 KDa. The specific activity of G6PD was determined to be 289.6 EU/mg protein with a fold purification of 95.45 and yield of 56.8%. PMID:22538316

  15. Oxidation of fatty aldehydes to fatty acids by Escherichia coli cells expressing the Vibrio harveyi fatty aldehyde dehydrogenase (FALDH).

    Buchhaupt, Markus; Guder, Jan; Sporleder, Fenja; Paetzold, Melanie; Schrader, Jens

    2013-03-01

    Fatty acids represent an important renewable feedstock for the chemical industry. To enable biotechnological one carbon truncations of fatty acids, the enzymes α-dioxygenase and fatty aldehyde dehydrogenase (FALDH) have to be combined in a two-step process. We expressed an FALDH from V. harveyi in E. coli and characterized its substrate spectrum with a focus on the number and position of double bonds in the fatty aldehyde molecules. Synthesis of the expected fatty acid products was proven by analysis of whole cell biotransformation products. Coexpression of a H(2)O-forming NADPH oxidase (NOX) from Lactobacillus sanfranciscensis led to the implementation of a cofactor regeneration cycle in in vitro oxidation experiments. The presence of NOX in whole cell biotransformations improved reaction velocity but did not result in higher product yields. We could further demonstrate that at least part of the endogenous NAD(P)(+) regeneration capacity in the resting cells results from the respiratory chain. The whole cell catalyst with the high broad range FALDH activity described here is an important biotechnological module for lipid biotransformation processes, especially the shortening of fatty acids. PMID:23180547

  16. Expression and validation of D-erythrulose 1-phosphate dehydrogenase from Brucella abortus: a diagnostic reagent for bovine brucellosis.

    Eoh, Hyungjin; Jeon, Bo-Young; Kim, Zhiyeol; Kim, Seung-Cheol; Cho, Sang-Nae

    2010-07-01

    Brucella abortus is a bacterium of brucellosis causing abortion in cattle. The diagnosis of bovine brucellosis mainly relies on serologic tests using smooth lipopolysaccharide (S-LPS) from B. abortus. However, the usefulness of this method is limited by false-positive reactions due to cross-reaction with other Gram-negative bacteria. In the present study, the eryC gene encoding B. abortus d-erythrulose 1-phosphate dehydrogenase, which is involved in the erythritol metabolism in virulent B. abortus strain but is absent from a B. abortus vaccine strain (S19), was cloned. Recombinant EryC was expressed and purified for the evaluation as a diagnostic reagent for bovine brucellosis. Other B. abortus proteins, Omp16, PP26, and CP39 were also purified and their seroreactivities were compared. Recombinant EryC, Omp16, PP26, and PP39 were all reactive to B. abortus-positive serum. The specificity of recombinant Omp16, PP26, CP39, and EryC, were shown to be approximately 98%, whereas that of B. abortus whole cell lysates was shown to be 95%. The sensitivity of Omp16, PP26, CP39, and EryC were 10%, 51%, 64%, and 43%, respectively, whereas that of B. abortus whole cell lysates was 53%. These results suggested that B. abortus EryC would be a potential reagent for diagnosis for bovine brucellosis as a single protein antigen. PMID:20622221

  17. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase.

    Taowei Yang

    Full Text Available BACKGROUND: Previously, a safe strain, Bacillus amyloliquefaciens B10-127 was identified as an excellent candidate for industrial-scale microbial fermentation of 2,3-butanediol (2,3-BD. However, B. amyloliquefaciens fermentation yields large quantities of acetoin, lactate and succinate as by-products, and the 2,3-BD yield remains prohibitively low for commercial production. METHODOLOGY/PRINCIPAL FINDINGS: In the 2,3-butanediol metabolic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH catalyzes the conversion of 3-phosphate glyceraldehyde to 1,3-bisphosphoglycerate, with concomitant reduction of NAD(+ to NADH. In the same pathway, 2,3-BD dehydrogenase (BDH catalyzes the conversion of acetoin to 2,3-BD with concomitant oxidation of NADH to NAD(+. In this study, to improve 2,3-BD production, we first over-produced NAD(+-dependent GAPDH and NADH-dependent BDH in B. amyloliquefaciens. Excess GAPDH reduced the fermentation time, increased the 2,3-BD yield by 12.7%, and decreased the acetoin titer by 44.3%. However, the process also enhanced lactate and succinate production. Excess BDH increased the 2,3-BD yield by 16.6% while decreasing acetoin, lactate and succinate production, but prolonged the fermentation time. When BDH and GAPDH were co-overproduced in B. amyloliquefaciens, the fermentation time was reduced. Furthermore, in the NADH-dependent pathways, the molar yield of 2,3-BD was increased by 22.7%, while those of acetoin, lactate and succinate were reduced by 80.8%, 33.3% and 39.5%, relative to the parent strain. In fed-batch fermentations, the 2,3-BD concentration was maximized at 132.9 g/l after 45 h, with a productivity of 2.95 g/l·h. CONCLUSIONS/SIGNIFICANCE: Co-overexpression of bdh and gapA genes proved an effective method for enhancing 2,3-BD production and inhibiting the accumulation of unwanted by-products (acetoin, lactate and succinate. To our knowledge, we have attained the highest 2,3-BD fermentation yield thus far

  18. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  19. Lactate-Dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1

    Stickeler Elmar; Aumann Konrad; Mattern Dominik; Schulte-Uentrop Luzie; Sienel Wulf; Kassem Ahmad; Kayser Gian; Werner Martin; Passlick Bernward; Hausen Axel

    2010-01-01

    Abstract Aims As one of the five Lactate dehydrogenase (LDH) isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival. Methods Primary lung c...

  20. Succinate Dehydrogenase Subunit B (SDHB Is Expressed in Neurofibromatosis 1-Associated Gastrointestinal Stromal Tumors (Gists: Implications for the SDHB Expression Based Classification of Gists

    Jeanny H. Wang, Jerzy Lasota, Markku Miettinen

    2011-01-01

    Full Text Available Gastrointestinal Stromal Tumor (GIST is the most common mesenchymal tumor of the digestive tract. GISTs develop with relatively high incidence in patients with Neurofibromatosis-1 syndrome (NF1. Mutational activation of KIT or PDGFRA is believed to be a driving force in the pathogenesis of familial and sporadic GISTs. Unlike those tumors, NF1-associated GISTs do not have KIT or PGDFRA mutations. Similarly, no mutational activation of KIT or PDGFRA has been identified in pediatric GISTs and in GISTs associated with Carney Triad and Carney-Stratakis Syndrome. KIT and PDGFRA-wild type tumors are expected to have lesser response to imatinib treatment. Recently, Carney Triad and Carney-Stratakis Syndrome -associated GISTs and pediatric GISTs have been shown to have a loss of expression of succinate dehydrogenase subunit B (SDHB, a Krebs cycle/electron transport chain interface protein. It was proposed that GISTs can be divided into SDHB- positive (type 1, and SDHB-negative (type 2 tumors because of similarities in clinical features and response to imatinib treatment. In this study, SDHB expression was examined immunohistochemically in 22 well-characterized NF1-associated GISTs. All analyzed tumors expressed SDHB. Based on SDHB-expression status, NF1-associated GISTs belong to type 1 category; however, similarly to SDHB type 2 tumors, they do not respond well to imatinib treatment. Therefore, a simple categorization of GISTs into SDHB-positive and-negative seems to be incomplete. A classification based on both SDHB expression status and KIT and PDGFRA mutation status characterize GISTs more accurately and allow subdivision of SDHB-positive tumors into different clinico-genetic categories.

  1. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-01

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  2. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  3. Burst of succinate dehydrogenase and α-ketoglutarate dehydrogenase activity in concert with the expression of genes coding for respiratory chain proteins underlies short-term beneficial physiological stress in mitochondria.

    Zakharchenko, Marina V; Zakharchenko, A V; Khunderyakova, N V; Tutukina, M N; Simonova, M A; Vasilieva, A A; Romanova, O I; Fedotcheva, N I; Litvinova, E G; Maevsky, E I; Zinchenko, V P; Berezhnov, A V; Morgunov, I G; Gulayev, A A; Kondrashova, M N

    2013-01-01

    Conditions for the realization in rats of moderate physiological stress (PHS) (30-120 min) were selected, which preferentially increase adaptive restorative processes without adverse responses typical of harmful stress (HST). The succinate dehydrogenase (SDH) and α-ketoglutarate dehydrogenase (KDH) activity and the formation of reactive oxygen species (ROS) in mitochondria were measured in lymphocytes by the cytobiochemical method, which detects the regulation of mitochondria in the organism with high sensitivity. These mitochondrial markers undergo an initial 10-20-fold burst of activity followed by a decrease to a level exceeding the quiescent state 2-3-fold by 120 min of PHS. By 30-60 min, the rise in SDH activity was greater than in KDH activity, while the activity of KDH prevailed over that of SDH by 120 min. The attenuation of SDH hyperactivity during PHS occurs by a mechanism other than oxaloacetate inhibition developed under HST. The dynamics of SDH and KDH activity corresponds to the known physiological replacement of adrenergic regulation by cholinergic during PHS, which is confirmed here by mitochondrial markers because their activity reflects these two types of nerve regulation, respectively. The domination of cholinergic regulation provides the overrestoration of expenditures for activity. In essence, this phenomenon corresponds to the training of the organism. It was first revealed in mitochondria after a single short-time stress episode. The burst of ROS formation was congruous with changes in SDH and KDH activity, as well as in ucp2 and cox3 expression, while the activity of SDH was inversely dependent on the expression of the gene of its catalytic subunit in the spleen. As the SDH activity enhanced, the expression of the succinate receptor decreased with subsequent dramatic rise when the activity was becoming lower. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaption and therapy. PMID:22814171

  4. Molecular cloning of three pyranose dehydrogenase-encoding genes from Agaricus meleagris and analysis of their expression by real-time RT-PCR.

    Kittl, Roman; Sygmund, Christoph; Halada, Petr; Volc, Jindrich; Divne, Christina; Haltrich, Dietmar; Peterbauer, Clemens K

    2008-02-01

    Sugar oxidoreductases such as cellobiose dehydrogenase or pyranose oxidase are widespread enzymes among fungi, whose biological function is largely speculative. We investigated a similar gene family in the mushroom Agaricus meleagris and its expression under various conditions. Three genes (named pdh1, pdh2 and pdh3) putatively encoding pyranose dehydrogenases were isolated. All three genes displayed a conserved structure and organization, and the respective cDNAs contained ORFs translating into polypeptides of 602 or 600 amino acids. The N-terminal sections of all three genes encode putative signal peptides consistent with the enzymes extracellular secretion. We cultivated the fungus on different carbon sources and analyzed the mRNA levels of all three genes over a period of several weeks using real-time RT-PCR. The glyceraldehyde-3-phosphate dehydrogenase gene from A. meleagris was also isolated and served as reference gene. pdh2 and pdh3 are essentially transcribed constitutively, whereas pdh1 expression is upregulated upon exhaustion of the carbon source; pdh1 appears to be additionally regulated under conditions of oxygen limitation. These data are consistent with an assumed role in lignocellulose degradation. PMID:18097667

  5. Expression, purification and X-ray analysis of 1,3-propanediol dehydrogenase (Aq-1145) from Aquifex aeolicus VF5

    1,3-Propanediol dehydrogenase (Aq-1145) from A. aeolicus VF5 has been overexpressed, purified and crystallized. The crystals diffracted to 2.4 Å resolution. 1,3-Propanediol dehydrogenase is an enzyme that catalyzes the oxidation of 1,3-propanediol to 3-hydroxypropanal with the simultaneous reduction of NADP+ to NADPH. SeMet-labelled 1,3-propanediol dehydrogenase protein from the hyperthermophilic bacterium Aquifex aeolicus VF5 was overexpressed in Escherichia coli and purified to homogeneity. Crystals of this protein were grown from an acidic buffer with ammonium sulfate as the precipitant. Single-wavelength data were collected at the selenium peak to a resolution of 2.4 Å. The crystal belonged to space group P32, with unit-cell parameters a = b = 142.19, c = 123.34 Å. The structure contained two dimers in the asymmetric unit and was solved by the MR-SAD approach

  6. Glucose 6-phosphate dehydrogenase knockdown enhances IL-8 expression in HepG2 cells via oxidative stress and NF-κB signaling pathway

    Yang, Hung-Chi; Cheng, Mei-Ling; Hua, Yi-Syuan; Wu, Yi-Hsuan; Lin, Hsin-Ru; Liu, Hui-Ya; Ho, Hung-Yao; Chiu, Daniel Tsun-Yee

    2015-01-01

    Background This study was designed to investigate the effect of glucose 6-phosphate dehydrogenase (G6PD) deficiency on pro-inflammatory cytokine secretion using a palmitate-induced inflammation HepG2 in vitro model. The modulation of cellular pro-inflammatory cytokine expression under G6PD deficiency during chronic hepatic inflammation has never been investigated before. Methods The culture medium of untreated and palmitate-treated G6PD-scramble (Sc) and G6PD-knockdown (Gi) HepG2 cells were s...

  7. Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases

    Ilmén, Marja; Koivuranta, Kari; Ruohonen, Laura; Rajgarhia, Vineet; Suominen, Pirkko; Penttilä, Merja

    2013-01-01

    Background Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding l-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expre...

  8. L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene

    Koivuranta, Kari T; Ilmén, Marja; Wiebe, Marilyn G.; Ruohonen, Laura; Suominen, Pirkko; Penttilä, Merja

    2014-01-01

    Background Bioplastics, like polylactic acid (PLA), are renewable alternatives for petroleum-based plastics. Lactic acid, the monomer of PLA, has traditionally been produced biotechnologically with bacteria. With genetic engineering, yeast have the potential to replace bacteria in biotechnological lactic acid production, with the benefits of being acid tolerant and having simple nutritional requirements. Lactate dehydrogenase genes have been introduced to various yeast to demonstrate this pot...

  9. Expression of a Heterologous Glutamate Dehydrogenase Gene in Lactococcus lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds

    Rijnen, Liesbeth; Courtin, Pascal; Gripon, Jean-Claude; Yvon, Mireille

    2000-01-01

    The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so ...

  10. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase.

    Bae, Sang-Jeong; Kim, Sujin; Hahn, Ji-Sook

    2016-01-01

    Acetoin is widely used in food and cosmetic industry as taste and fragrance enhancer. For acetoin production in this study, Saccharomyces cerevisiae JHY605 was used as a host strain, where the production of ethanol and glycerol was largely eliminated by deleting five alcohol dehydrogenase genes (ADH1, ADH2, ADH3, ADH4, and ADH5) and two glycerol 3-phosphate dehydrogenase genes (GPD1 and GPD2). To improve acetoin production, acetoin biosynthetic genes from Bacillus subtilis encoding α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD) were overexpressed, and BDH1 encoding butanediol dehydrogenase, which converts acetoin to 2,3-butanediol, was deleted. Furthermore, by NAD(+) regeneration through overexpression of water-forming NADH oxidase (NoxE) from Lactococcus lactis, the cofactor imbalance generated during the acetoin production from glucose was successfully relieved. As a result, in fed-batch fermentation, the engineered strain JHY617-SDN produced 100.1 g/L acetoin with a yield of 0.44 g/g glucose. PMID:27279026

  11. Functional characterization and expression analysis of rice δ1-pyrroline-5-carboxylate dehydrogenase provide new insight into the regulation of proline and arginine catabolism

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar

    2015-01-01

    While intracellular proline accumulation in response to various stress conditions has been investigated in great detail, the biochemistry and physiological relevance of proline degradation in plants is much less understood. Moreover, the second and last step in proline catabolism, the oxidation of δ1-pyrroline-5-carboxylic acid (P5C) to glutamate, is shared with arginine catabolism. Little information is available to date concerning the regulatory mechanisms coordinating these two pathways. Expression of the gene coding for P5C dehydrogenase was analyzed in rice by real-time PCR either following the exogenous supply of amino acids of the glutamate family, or under hyperosmotic stress conditions. The rice enzyme was heterologously expressed in E. coli, and the affinity-purified protein was thoroughly characterized with respect to structural and functional properties. A tetrameric oligomerization state was observed in size exclusion chromatography, which suggests a structure of the plant enzyme different from that shown for the bacterial P5C dehydrogenases structurally characterized to date. Kinetic analysis accounted for a preferential use of NAD+ as the electron acceptor. Cations were found to modulate enzyme activity, whereas anion effects were negligible. Several metal ions were inhibitory in the micromolar range. Interestingly, arginine also inhibited the enzyme at higher concentrations, with a mechanism of uncompetitive type with respect to P5C. This implies that millimolar levels of arginine would increase the affinity of P5C dehydrogenase toward its specific substrate. Results are discussed in view of the involvement of the enzyme in either proline or arginine catabolism. PMID:26300893

  12. Functional characterization and expression analysis of rice δ(1)-pyrroline-5-carboxylate dehydrogenase provide new insight into the regulation of proline and arginine catabolism.

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar

    2015-01-01

    While intracellular proline accumulation in response to various stress conditions has been investigated in great detail, the biochemistry and physiological relevance of proline degradation in plants is much less understood. Moreover, the second and last step in proline catabolism, the oxidation of δ(1)-pyrroline-5-carboxylic acid (P5C) to glutamate, is shared with arginine catabolism. Little information is available to date concerning the regulatory mechanisms coordinating these two pathways. Expression of the gene coding for P5C dehydrogenase was analyzed in rice by real-time PCR either following the exogenous supply of amino acids of the glutamate family, or under hyperosmotic stress conditions. The rice enzyme was heterologously expressed in E. coli, and the affinity-purified protein was thoroughly characterized with respect to structural and functional properties. A tetrameric oligomerization state was observed in size exclusion chromatography, which suggests a structure of the plant enzyme different from that shown for the bacterial P5C dehydrogenases structurally characterized to date. Kinetic analysis accounted for a preferential use of NAD(+) as the electron acceptor. Cations were found to modulate enzyme activity, whereas anion effects were negligible. Several metal ions were inhibitory in the micromolar range. Interestingly, arginine also inhibited the enzyme at higher concentrations, with a mechanism of uncompetitive type with respect to P5C. This implies that millimolar levels of arginine would increase the affinity of P5C dehydrogenase toward its specific substrate. Results are discussed in view of the involvement of the enzyme in either proline or arginine catabolism. PMID:26300893

  13. Expression, purification and preliminary crystallographic studies of NahF, a salicylaldehyde dehydrogenase from Pseudomonas putida G7 involved in naphthalene degradation

    NahF is a salicylaldehyde dehydrogenase that is involved in the naphthalene-degradation pathway, converting salicylaldehyde into salicylate. The subcloning, expression, purification and preliminary X-ray diffraction studies at 2.42 Å resolution of P. putida G7 NahF are reported. Pseudomonas putida G7 is one of the most studied naphthalene-degrading species. The nah operon in P. putida, which is present on the 83 kb metabolic plasmid NAH7, codes for enzymes involved in the conversion of naphthalene to salicylate. The enzyme NahF (salicylaldehyde dehydrogenase) catalyzes the last reaction in this pathway. The nahF gene was subcloned into the pET28a(TEV) vector and the recombinant protein was overexpressed in Escherichia coli Arctic Express at 285 K. The soluble protein was purified by affinity chromatography followed by gel filtration. Crystals of recombinant NahF (6×His-NahF) were obtained at 291 K and diffracted to 2.42 Å resolution. They belonged to the hexagonal space group P6422, with unit-cell parameters a = b = 169.47, c = 157.94 Å. The asymmetric unit contained a monomer and a crystallographic twofold axis generated the dimeric biological unit

  14. Lactate-Dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1

    Stickeler Elmar

    2010-04-01

    Full Text Available Abstract Aims As one of the five Lactate dehydrogenase (LDH isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival. Methods Primary lung cancers (n = 269 and non neoplastic lung tissue (n = 35 were tested for LDH5 expression by immunohistochemistry using a polyclonal LDH5 antibody (ab53010. The results of LDH5 expression were correlated to clinico-pathological data as well as to patient's survival. In addition, the results of the previously tested Transketolase like 1 protein (TKTL1 expression were correlated to LDH5 expression. Results 89.5% (n = 238 of NSCLC revealed LDH5 expression whereas LDH5 expression was not detected in non neoplastic lung tissues (n = 34 (p Conclusions LDH5 is overexpressed in NSCLC and could hence serve as an additional marker for malignancy. Furthermore, LDH5 correlates positively with the prognostic marker TKTL1. Our results confirm a close link between the two metabolic enzymes and indicate an alteration in the glucose metabolism in the process of malignant transformation.

  15. cDNA Fragment Cloning of L-Galactono-1,4-Lactone Dehydrogenase and It's Expression in Different Organs of R.roxburghii Tratt

    AN Hua-ming; CHEN Li-geng; FAN Wei-guo

    2004-01-01

    A 855 bp cDNA encoding L-galactono-1,4-lactone dehydrogenase (GalLDH) fragment was cloned from fruit of R. roxburghii Tratt by the method of RT-PCR, on the basis of the homologous genes of Arabidopsis thaliana, cauliflower, sweet potato, strawberry, etc. in GenBank. Sequence analysis showed 79-92% identity in nucleotide sequence and 75-87%identity in amino acid sequence to that of strawberry and Arabidopsis thaliana, etc.Northern blot showed that the expression of GalLDH was significantly different in different organs. The transcription level of GalLDH in fruit was significantly higher than that in leaf, stem and root respectively. Furthermore, this expression mode was highly correlated with AsA levels.

  16. Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767

    Yang Dong-Dong

    2012-06-01

    Full Text Available Abstract Background The white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched. The efficient lignin oxidation system of this fungus requires cyclic redox reactions involving the reduction of aryl-aldehydes to the corresponding alcohols by aryl-alcohol dehydrogenase. However, the biochemical properties of this enzyme have not been extensively studied. These are of most interest for the design of metabolic engineering/synthetic biology strategies in the field of biotechnological applications of this enzyme. Results We report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His6 tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. NADH could also be the electron donor, while having a higher Km (220 μM compared to that of NADPH (39 μM. The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was also capable of oxidizing aryl-alcohols with NADP + at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction. Conclusions In this work, we have characterized the biochemical properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. We show that this enzyme functions in the reductive sense under physiological conditions and that it displays relatively large substrate specificity with highest activity towards the natural compound Veratraldehyde.

  17. L-arabonate and D-galactonate production by expressing a versatile sugar dehydrogenase in metabolically engineered Escherichia coli.

    Liu, Huaiwei; Valdehuesa, Kris Niño G; Ramos, Kristine Rose M; Nisola, Grace M; Lee, Won-Keun; Chung, Wook-Jin

    2014-05-01

    The production of L-arabonate and D-galactonate employing a versatile l-arabinose dehydrogenase (AraDH) from Azospirillum brasilense is presented. The promiscuity of AraDH is manifested by its appreciable activity towards L-arabinose and D-galactose as substrates, and NAD(+) and NADP(+) as cofactors. The AraDH was introduced into an engineered Escherichia coli with inactive L-arabinose or D-galactose metabolism, resulting in strains EMA2 and EWG4, respectively. EMA2 produced 43.9 g L(-1)L-arabonate with a productivity of 1.22 g L(-1)h(-1) and 99.1% (mol/mol) yield. After methanol precipitation, 92.6% of L-arabonate potassium salt was recovered with a purity of 88.8%. Meanwhile, EWG4 produced 24.0 g L(-1)D-galactonate, which is 36% higher than that of the strain carrying the specific d-galactose dehydrogenase. Overall results reveal that the versatility of AraDH to efficiently catalyze the formation of L-arabonate and D-galactonate could be a useful tool in advancing industrial viability for sugar acids production. PMID:24713235

  18. Reactive oxygen species (ROS) production triggered by prostaglandin D2 (PGD2) regulates lactate dehydrogenase (LDH) expression/activity in TM4 Sertoli cells.

    Rossi, Soledad P; Windschüttl, Stefanie; Matzkin, María E; Rey-Ares, Verónica; Terradas, Claudio; Ponzio, Roberto; Puigdomenech, Elisa; Levalle, Oscar; Calandra, Ricardo S; Mayerhofer, Artur; Frungieri, Mónica B

    2016-10-15

    Reactive oxygen species (ROS) regulate testicular function in health and disease. We previously described a prostaglandin D2 (PGD2) system in Sertoli cells. Now, we found that PGD2 increases ROS and hydrogen peroxide (H2O2) generation in murine TM4 Sertoli cells, and also induces antioxidant enzymes expression suggesting that defense systems are triggered as an adaptive stress mechanism that guarantees cell survival. ROS and specially H2O2 may act as second messengers regulating signal transduction pathways and gene expression. We describe a stimulatory effect of PGD2 on lactate dehydrogenase (LDH) expression via DP1/DP2 receptors, which is prevented by the antioxidant N-acetyl-L-cysteine and the PI3K/Akt pathway inhibitor LY 294002. PGD2 also enhances Akt and CREB/ATF-1 phosphorylation. Our results provide evidence for a role of PGD2 in the regulation of the oxidant/antioxidant status in Sertoli cells and, more importantly, in the modulation of LDH expression which takes place through ROS generation and the Akt-CREB/ATF-1 pathway. PMID:27329155

  19. Calcium-insensitive splice variants of mammalian E1 subunit of 2-oxoglutarate dehydrogenase complex with tissue-specific patterns of expression.

    Denton, Richard M; Pullen, Timothy J; Armstrong, Craig T; Heesom, Kate J; Rutter, Guy A

    2016-05-01

    The 2-oxoglutarate dehydrogenase (OGDH) complex is an important control point in vertebrate mitochondrial oxidative metabolism, including in the citrate cycle and catabolism of alternative fuels including glutamine. It is subject to allosteric regulation by NADH and the ATP/ADP ratio, and by Ca(2+) through binding to the E1 subunit. The latter involves a unique Ca(2+)-binding site which includes D(114)ADLD (site 1). Here, we describe three splice variants of E1 in which either the exon expressing this site is replaced with another exon (loss of site 1, LS1) or an additional exon is expressed leading to the insertion of 15 amino acids just downstream of site 1 (Insert), or both changes occur together (LS1/Insert). We show that all three variants are essentially Ca(2+)-insensitive. Comparison of massive parallel sequence (RNA-Seq) databases demonstrates predominant expression of the Ca(2+)-sensitive archetype form in heart and skeletal muscle, but substantial expression of the Ca(2+)-insensitive variants in brain, pancreatic islets and other tissues. Detailed proteomic and activity studies comparing OGDH complexes from rat heart and brain confirmed the substantial difference in expression between these tissues. The evolution of OGDH variants was explored using bioinformatics, and this indicated that Ca(2+)-sensitivity arose with the emergence of chordates. In all species examined, this was associated with the co-emergence of Ca(2+)-insensitive variants suggesting a retained requirement for the latter in some settings. Tissue-specific expression of OGDH splice variants may thus provide a mechanism that tunes the control of the enzyme to the specialized metabolic and signalling needs of individual cell types. PMID:26936970

  20. Expression of 17beta- and 3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro.

    Sahmi, M; Nicola, E S; Silva, J M; Price, C A

    2004-08-31

    Granulosa cells of small follicles differentiate in vitro in serum-free medium, resulting in increased estradiol secretion and abundance of mRNA encoding cytochrome P450aromatase (P450arom). We tested the hypothesis that differentiation in vitro also involves increased expression of 3beta- and 17beta-hydroxysteroid dehydrogenases (HSD) in the absence of steroidogenic acute regulatory protein (StAR) expression, as has been observed in vivo. Granulosa cells from small (basal layer of the membrana granulosa) did not affect steroidogenesis. We conclude that under the present cell culture system granulosa cells do not luteinize, and show expression of key steroidogenic enzymes in patterns similar to those occurring in differentiating follicles in vivo. Further, the data suggest that 17beta-HSD may be as important as P450arom in regulating estradiol secretion, and that 3beta-HSD is more important than P450scc as a regulator of progesterone secretion in non-luteinizing granulosa cells. PMID:15279910

  1. Differential expression of aldehyde dehydrogenase 1a1 (ALDH1 in normal ovary and serous ovarian tumors

    Penumatsa Krishna

    2010-12-01

    Full Text Available Abstract Background We showed there are specific ALDH1 autoantibodies in ovarian autoimmune disease and ovarian cancer, suggesting a role for ALDH1 in ovarian pathology. However, there is little information on the ovarian expression of ALDH1. Therefore, we compared ALDH1 expression in normal ovary and benign and malignant ovarian tumors to determine if ALDH1 expression is altered in ovarian cancer. Since there is also recent interest in ALDH1 as a cancer stem cell (CSC marker, we assessed co-expression of ALDH1 with CSC markers in order to determine if ALDH1 is a potential CSC marker in ovarian cancer. Methods mRNA and protein expression were compared in normal human ovary and serous ovarian tumors using quantitative Reverse-Transcriptase PCR, Western blot (WB and semi-quantitative immunohistochemistry (IHC. ALDH1 enzyme activity was confirmed in primary ovarian cells by flow cytometry (FC using ALDEFLUOR assay. Results ALDH1 mRNA expression was significantly reduced (p Conclusions Total ALDH1 expression is significantly reduced in malignant ovarian tumors while it is relatively unchanged in benign tumors compared to normal ovary. Thus, ALDH1 expression in the ovary does not appear to be similar to breast, lung or colon cancer suggesting possible functional differences in these cancers. Significance These observations suggest that reduced ALDH1 expression is associated with malignant transformation in ovarian cancer and provides a basis for further study of the mechanism of ALDH1 in this process.

  2. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas expressing spinach betaine aldehyde dehydrogenase.

    Weijuan Fan

    Full Text Available Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas, a root crop with worldwide importance. The increased production of glycine betaine (GB improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait

  3. Expression of 3β-hydroxysteroid dehydrogenase in ovarian and uterine tissue during diestrus and open cervix cystic endometrial hyperplasia-pyometra in the bitch.

    Gultiken, Nilgun; Yarim, Murat; Yarim, Gul Fatma; Gacar, Ayhan; Mason, James Ian

    2016-07-15

    The purpose of this study was to compare the expression of 3β-hydroxystreroid dehydrogenase (3β-HSD) in the uterus and ovary of healthy dogs and those with cystic endometrial hyperplasia and/or pyometra complex (CEH-pyometra). Eighteen female dogs were included in the study. Eleven bitches with open cervix CEH-pyometra were included in the CEH-pyometra group and seven diestrus bitches in the control group. For immunostaining a rabbit polyclonal, one raised against recombinant human type 2 (adrenal/gonadal) 3β-HSD was used. Progesterone (P4) concentrations were not statistically different between the groups. Strongly stained large interstitial cell groups in the ovarian medulla were observed particularly in CEH-pyometra group although these cells in the control group were weakly or moderately stained and existed singly or paired. The expressions of 3β-HSD in luminal epithelium (42.40 ± 22.40% vs. 18.42 ± 13.15%, P pyometra group than those in the control group. The expression of 3β-HSD in CL was higher (29.38 ± 9.58% vs. 22.94 ± 4.97%) in CEH-pyometra group than that of control group although the differences were not significant (P > 0.05). Similarly, the significant increase in the expression of 3β-HSD in ovarian interstitial cells (33.86 ± 29.44 vs. 1.13 ± 2.97, P pyometra group compared to the control group. The study revealed that 3β-HSD expression in the endometrium of canine CEH-pyometra was significantly high. PMID:27020880

  4. High Level Expression of Glucose-6-phosphate Dehydrogenase Gene PsG6PDH from Populus suaveolens in E. coli

    2005-01-01

    In order to investigate the functions of the gene PsG6PDH and the mechanisms underlying freezing tolerance of Populus suaveolens, the recombinant expression vector pET-G (pET30a-G6PDH), which contained full encoding region of PsG6PDH gene, was established. The recombinant was identified by lawn-PCR and double enzyme digestion and then transformed into expression host XA90 and induced by isopropyl-a-D-thiogalactoside (IPTG) to express 100 kD polypeptide of G6PDH fusion protein. The results showed that the expressed amount of the fusion protein culminated after 1 mmol·L-1 IPTG treatment for 4 h and that pET-G product was predominately soluble and not extra-cellular secreting.

  5. Osmotic Regulation of Betaine Content in Leymus chinensis Under Saline-alkali Stress and Cloning and Expression of Betaine Aldehyde Dehydrogenase(BADH)Gene

    CUI Xi-yan; WANG Yong; GUO Ji-xun

    2008-01-01

    The potted Leymus chinensis seedlings were treated with saline-alkali solution of six different(from Ⅰ to Ⅵ) concentrations.The results demonstrate that the betaine content and Betaine-aldehyde dehydrogenase(BADH:EC 1.2.1.8) activities have a direct relation with increased stressing time in the same treatment;both exhibit a single peak with increasing the concentration of saline-alkali solution,and number V shows the highest value.The BADH gene of Leymus chinensis Was cloned by RT-PCR and RACE technology and Was designated as LcBADH.The cDNA sequence of LcBADH Was 1774bp including the open reading frame(ORF)of 1521bp(coding 506 amino acids).The vector of prokaryotic expression was constructed by inserting the LcBADH gene fragment into pET30a(+)and transformed into E. coli BL21(DE3).The result of SDS-PAGE shows that the idio-protein with a molecular mass of 56.78 kDa was effectively expressed in the recombinant bacteria induced by isopropyl β-D-thiogalactoside(IPTG).

  6. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system.

    Payam Ghiaci

    Full Text Available 2-Butanol and its chemical precursor butanone (methyl ethyl ketone--MEK are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuteri, which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp. able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions.

  7. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.

    Singh, Vijayata; Singh, Praveen Kumar; Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-03-01

    Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement. PMID:26747130

  8. Whole-cell bioreduction of aromatic α-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli

    Egger Sigrid

    2008-12-01

    Full Text Available Abstract Background Whole cell-catalyzed biotransformation is a clear process option for the production of chiral alcohols via enantioselective reduction of precursor ketones. A wide variety of synthetically useful reductases are expressed heterologously in Escherichia coli to a high level of activity. Therefore, this microbe has become a prime system for carrying out whole-cell bioreductions at different scales. The limited capacity of central metabolic pathways in E. coli usually requires that reductase coenzyme in the form of NADPH or NADH be regenerated through a suitable oxidation reaction catalyzed by a second NADP+ or NAD+ dependent dehydrogenase that is co-expressed. Candida tenuis xylose reductase (CtXR was previously shown to promote NADH dependent reduction of aromatic α-keto esters with high Prelog-type stereoselectivity. We describe here the development of a new whole-cell biocatalyst that is based on an E. coli strain co-expressing CtXR and formate dehydrogenase from Candida boidinii (CbFDH. The bacterial system was evaluated for the synthesis of ethyl R-4-cyanomandelate under different process conditions and benchmarked against a previously described catalyst derived from Saccharomyces cerevisiae expressing CtXR. Results Gene co-expression from a pETDuet-1 vector yielded about 260 and 90 units of intracellular CtXR and CbFDH activity per gram of dry E. coli cell mass (gCDW. The maximum conversion rate (rS for ethyl 4-cyanobenzoylformate by intact or polymyxin B sulphate-permeabilized cells was similar (2 mmol/gCDWh, suggesting that the activity of CbFDH was partly rate-limiting overall. Uncatalyzed ester hydrolysis in substrate as well as inactivation of CtXR and CbFDH in the presence of the α-keto ester constituted major restrictions to the yield of alcohol product. Using optimized reaction conditions (100 mM substrate; 40 gCDW/L, we obtained ethyl R-4-cyanomandelate with an enantiomeric excess (e.e. of 97.2% in a yield of 82

  9. Cloning, expression and protective immunity evaluation of the full-length cDNA encoding succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum

    YU JunLong; WANG ShiPing; LI WenKai; DAI Gan; XU ShaoRui; HE Zhuo; PENG XianChu; ZHOU SongHua; LIU XueQin

    2007-01-01

    1071-bp fragment was obtained from the Schistosoma japonicum (Chinese strain) adult cDNA library after the 3' and 5' ends of the incomplete expression sequence tag (EST) of succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum (SjSDISP) were amplified by the anchored PCR with 2pairs of primers designed according to the EST of SjSDISP and the sequence of multiclone sites of the library vector. Sequence analysis indicated that the fragment was a full-length cDNA with a complete open reading frame (ORF), encoding 278 amino acid residues. The fragment was cloned into prokaryotic expression vector pQE30, and subsequently sequenced and expressed in Escherichia coll.SDS-PAGE and Western-blot analyses showed that the recombinant protein was about 32 kD and could be recognized by the polyclonal antisera from rabbits immunized with Schistosoma japonicum adult worm antigen. Compared with the FCA controls, mice vaccinated with rSjSDISP (test) or rSjGST (positive control) all revealed high levels of specific antibody and significant reduction in worm burden, liver eggs per gram (LEPG), fecal eggs per gram (FEPG) and intrauterine eggs. These results suggest that SjSDISP may be a novel and partially protective vaccine candidate against schistosomiasis. In contrast to the worm burden reduction rate, the higher degree of egg reduction rate in the test group also suggested that SjSDISP vaccine may primarily play a role in anti-embryonation or anti-fecundity immunity.

  10. Glucose-6-phosphate dehydrogenase

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  11. Decreased expression of 17β-hydroxysteroid dehydrogenase type 1 is associated with DNA hypermethylation in colorectal cancer located in the proximal colon

    The importance of 17β-estradiol (E2) in the prevention of large bowel tumorigenesis has been shown in many epidemiological studies. Extragonadal E2 may form by the aromatase pathway from androstenedione or the sulfatase pathway from estrone (E1) sulfate followed by E1 reduction to E2 by 17-β-hydroxysteroid dehydrogenase (HSD17B1), so HSD17B1 gene expression may play an important role in the production of E2 in peripheral tissue, including the colon. HSD17B1 expression was analyzed in colorectal cancer cell lines (HT29, SW707) and primary colonic adenocarcinoma tissues collected from fifty two patients who underwent radical colon surgical resection. Histopathologically unchanged colonic mucosa located at least 10-20 cm away from the cancerous lesions was obtained from the same patients. Expression level of HSD17B1 using quantitative PCR and western blot were evaluated. DNA methylation level in the 5' flanking region of HSD17B1 CpG rich region was assessed using bisulfite DNA sequencing and HRM analysis. The influence of DNA methylation on HSD17B1 expression was further evaluated by ChIP analysis in HT29 and SW707 cell lines. The conversion of estrone (E1) in to E2 was determined by electrochemiluminescence method. We found a significant decrease in HSD17B1 transcript (p = 0.0016) and protein (p = 0.0028) levels in colorectal cancer (CRC) from the proximal but not distal colon and rectum. This reduced HSD17B1 expression was associated with significantly increased DNA methylation (p = 0.003) in the CpG rich region located in the 5' flanking sequence of the HSD17B1 gene in CRC in the proximal but not distal colon and rectum. We also showed that 5-dAzaC induced demethylation of the 5' flanking region of HSD17B1, leading to increased occupation of the promoter by Polymerase II, and increased transcript and protein levels in HT29 and SW707 CRC cells, which contributed to the increase in E2 formation. Our results showed that reduced HSD17B1 expression can

  12. The 17beta-hydroxysteroid dehydrogenase 4: Gender-specific and seasonal gene expression in the liver of brown trout (Salmo trutta f. fario).

    Castro, L Filipe C; Rocha, Maria J; Lobo-da-Cunha, Alexandre; Batista-Pinto, Carla; Machado, Ana; Rocha, Eduardo

    2009-06-01

    Previously, it was documented that liver peroxisomes display seasonal size changes in the adult Salmo trutta fario, especially in females (and negatively correlated with ovary maturation). It was then hypothesized that decreases in peroxisome size could be paralleled by changes in peroxisomal beta-oxidation and estradiol catabolism actions. The 17beta-hydroxysteroid dehydrogenase 4 has been portrayed as playing an important role in both processes. To elucidate its function in the described peroxisomal pattern, we isolated the cDNA and predicted the protein sequence of the enzyme in that species. The seasonal gene expression pattern in both genders was addressed through quantitative PCR. Fish sampling was in post-spawning period, early and advanced gonad maturation, and pre-spawning. Males did not vary seasonally. As to females, a seasonal pattern was evidenced according to our previous hypothesis. We suggest that the decreased levels observed during vitellogenesis are related to lipid needs for ovary maturation, and, additionally, with the need of modulating estradiol titers. PMID:19268712

  13. Pigs fed camelina meal increase hepatic gene expression of cytochrome 8b1, aldehyde dehydrogenase, and thiosulfate transferase

    Meadus, William Jon; Duff, Pascale; McDonald, Tanya; Caine, William R

    2014-01-01

    Camelina sativa is an oil seed crop which can be grown on marginal lands. Camelina seed oil is rich in omega-3 fatty acids (>35%) and γ-tocopherol but is also high in erucic acid and glucosinolates. Camelina meal, is the by-product after the oil has been extracted. Camelina meal was fed to 28 d old weaned pigs at 3.7% and 7.4% until age 56 d. The camelina meal supplements in the soy based diets, improved feed efficiency but also significantly increased the liver weights. Gene expression analy...

  14. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: Enhancement of formate dehydrogenase activity for regeneration of NADH

    Mädje Katharina

    2012-01-01

    Full Text Available Abstract Background Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(PH. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH, presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S-1-(2-chlorophenylethanol from o-chloroacetophenone. Results As compared to individual expression of C. boidinii FDH in E. coli BL21 (DE3 that gave an intracellular enzyme activity of 400 units/gCDW, co-expression of the FDH with the ketoreductase (Candida tenuis xylose reductase; XR resulted in a substantial decline in FDH activity. The remaining FDH activity of only 85 U/gCDW was strongly limiting the overall catalytic activity of the whole cell system. Combined effects from increase in FDH gene copy number, supply of rare tRNAs in a Rosetta strain of E. coli, dampened expression of the ketoreductase, and induction at low temperature (18°C brought up the FDH activity threefold to a level of 250 U/gCDW while reducing the XR activity by

  15. Complex genetic findings in a female patient with pyruvate dehydrogenase complex deficiency: Null mutations in the PDHX gene associated with unusual expression of the testis-specific PDHA2 gene in her somatic cells

    Pinheiro, Ana; Silva, Maria João; Pavlu-Pereira, Hana; Florindo, Cristina; Barroso, Madalena; Marques, Bárbara; Correia, Hildeberto; Oliveira, Anabela; Gaspar, Ana; Tavares de Almeida, Isabel; Rivera, Isabel

    2016-01-01

    Human pyruvate dehydrogenase complex (PDC) catalyzes a key step in the generation of cellular energy and is composed by three catalytic elements (E1, E2, E3), one structural subunit (E3-binding protein), and specific regulatory elements, phosphatases and kinases (PDKs, PDPs). The E1α subunit exists as two isoforms encoded by different genes: PDHA1 located on Xp22.1 and expressed in somatic tissues, and the intronless PDHA2 located on chromosome 4 and only detected in human spermatocytes and s...

  16. Molecular cloning of three pyranose dehydrogenase-encoding genes from Agaricus meleagris and analysis of their expression by real-time RT-PCR

    Kittl, R.; Sygmund, Ch.; Halada, Petr; Volc, Jindřich; Divne, Ch.; Haltrich, D.; Peterbauer, C.

    2008-01-01

    Roč. 53, č. 2 (2008), s. 117-127. ISSN 0172-8083 R&D Projects: GA MŠk LC545 Grant ostatní: GA MŠk(CZ) Kontakt 6-06-4 Institutional research plan: CEZ:AV0Z50200510 Keywords : pyranose dehydrogenase * lignocellulose degradation * agarices spp Subject RIV: EE - Microbiology, Virology Impact factor: 2.323, year: 2008

  17. Expression of the glutamate dehydrogenase gene from Lactobacillus plantarum in Escherichia coli%植物乳杆菌谷氨酸脱氢酶基因在大肠杆菌中的表达

    田喜梅; 谢琼; 黄仁慧; 陶雪莹; 万翠香; 魏华

    2016-01-01

    构建植物乳杆菌谷氨酸脱氢酶基因原核表达载体,表达并纯化蛋白。本研究以植物乳杆菌ZDY 2013基因组DNA为模板,PCR 扩增谷氨酸脱氢酶基因,连接到表达载体 pET-32a(+)上,重组质粒转入大肠杆菌 BL21(DE3)中,经 IPTG诱导表达和镍柱亲和层析后获得目的蛋白,活性测定显示该蛋白具有谷氨酸脱氢酶的活性。同时,对表达菌株的酸耐受性测定结果表明,细胞对 pH 4.5的酸胁迫耐受性提高1.4倍。实验结果为深入研究植物乳杆菌ZDY 2013谷氨酸脱氢酶保护细胞抵御酸胁迫提供有益的参考。%The expression vector of the glutamate dehydrogenase gene from Lactobacillus plantarum in Escherichia coli was constructed.The recombinant protein was induced and purified.The glutamate dehy-drogenase gene was amplified by PCR from the genomic DNA of L.plantarum ZDY 2013,then was insert-ed into the expression plasmid pET-32a (+).The recombinant plasmid was transformed into E.coli BL21 (DE3).The host bacteria containing recombinant plasmid was grown and induced with IPTG and the com-bined protein was purified using Ni-NTA affinity chromatography.The glutamate dehydrogenase activity was determined to confirm the protein identity.At the same time,the survival rate of cells under acid stress was determined,and the results showed it was increased by 1 .4-fold in the host bacteria containing recom-binant plasmid at pH 4.5.This study would provide a reference to study glutamate dehydrogenase protect L.plantarum ZDY 2013 resist stress.

  18. Glucose-6-phosphate dehydrogenase deficiency

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  19. Cholesterol side-chain cleavage cytochrome P450 and 3beta-hydroxysteroid dehydrogenase expression and the concentrations of steroid hormones in the follicular fluids of different phenotypes of healthy and atretic bovine ovarian follicles.

    Irving-Rodgers, Helen F; Krupa, Malgorzata; Rodgers, Raymond J

    2003-12-01

    Bovine ovarian antral follicles exhibit either one or the other of two patterns of granulosa cell death in atresia. Death can commence either from the antrum and progress toward the basal lamina (antral atresia) or the converse (basal atresia). In basal atresia, the remaining live antrally situated cells appeared to continue maturing. Beyond that, little is known about these distinct patterns of atresia. Healthy (nonatretic) follicles also exhibit either one or the other of two patterns of granulosa cell shape, follicular basal lamina ultrastructure or location of younger cells within the membrana granulosa. To examine these different phenotypes, the expression of the steroidogenic enzymes cholesterol side-chain cleavage cytochrome P450 (SCC) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) in granulosa cells and concentrations of steroid hormones in follicular fluid were measured in individual histologically classified bovine antral follicles. Healthy follicles first expressed SCC and 3beta-HSD in granulosa cells only when the follicles reached an approximate threshold of 10 mm in diameter. The pattern of expression in antral atretic follicles was the same as healthy follicles. Basal atretic follicles were all basal atretic follicles were found to have substantially elevated progesterone (P basal atretic follicles. Our findings have two major implications. First, the traditional method of identifying atretic follicles by measurement of steroid hormone concentrations may be less valid with small bovine follicles. Second, features of the two forms of follicular atresia are so different as to imply different mechanisms of initiation and regulation. PMID:12930727

  20. Dynamic changes in the expression of relaxin-like factor (INSL3), cholesterol side-chain cleavage cytochrome p450, and 3beta-hydroxysteroid dehydrogenase in bovine ovarian follicles during growth and atresia.

    Irving-Rodgers, Helen F; Bathgate, Ross A D; Ivell, Richard; Domagalski, Roger; Rodgers, Raymond J

    2002-04-01

    Relaxin-like factor (RLF) is a new member of the insulin-relaxin gene family known to be expressed in the ovarian follicular thecal cells of ruminants. To investigate the pattern of RLF expression in development and atresia of bovine follicles, antisera were raised in rats and rabbits to recombinantly expressed bovine pro-RLF and to chemically synthesized ovine RLF B chain, respectively. On dot blotting analysis, the rat antiserum bound to pro-RLF and less strongly to a synthetic mature ovine RLF lacking the C-domain, whereas the rabbit antiserum bound the mature form of ovine RLF. These antisera were used to immunostain bovine ovarian follicles of differing sizes and stages of health and atresia. 3beta-Hydroxysteroid dehydrogenase was colocalized with pro-RLF (n = 86 follicles), and cholesterol side-chain cleavage cytochrome P450 was localized in another section of many of the same follicles (n = 66). Not all follicles expressed pro-RLF in the theca interna, so the results are presented as the proportion of follicles expressing pro-RLF. Both mature and pro-RLF were immunolocalized to steroidogenic thecal cells of healthy follicles. As follicles enlarged to >5 mm, the proportion expressing pro-RLF declined (19/19 for 6 mm). Atresia was divided into antral (antral granulosa cells dying first) or basal (basal cells dying first) and further divided into early, middle, and late. For antral atresia of small follicles (2-5 mm), no decline in the proportion expressing pro-RLF was observed (early 6/6, middle 2/2) until the late stages (1/4). For basal atresia, which only occurs in small follicles (2-5 mm), the proportion expressing pro-RLF declined in the middle (2/5) and late (0/8) stages. In larger follicles (>6 to membrana granulosa was observed. We conclude that the expression of pro-RLF in the theca interna is switched off as follicles enlarge or enter atresia, whereas the expression of steroidogenic enzymes is maintained in the theca interna. PMID:11906911

  1. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii1.

    Baltz, Anthony; Dang, Kieu-Van; Beyly, Audrey; Auroy, Pascaline; Richaud, Pierre; Cournac, Laurent; Peltier, Gilles

    2014-05-12

    Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae. PMID:24820024

  2. Regulation of 3β-hydroxysteroid dehydrogenase and sulphotransferase 2A1 gene expression in primary porcine hepatocytes by selected sex-steroids and plant secondary metabolites from chicory (Cichorium intybus L.) and wormwood (Artemisia sp.).

    Rasmussen, Martin Krøyer; Ekstrand, Bo

    2014-02-15

    In pigs the endogenously produced compound androstenone is metabolised in the liver in two steps by 3β-hydroxysteroid dehydrogenase (3β-HSD) and sulphotransferase 2A1 (SULT2A1). The present study investigated the effect of selected sex-steroids (0.01-1 μM androstenone, testosterone and estradiol), skatole (1-100 μM) and secondary plant metabolites (1-100 μM) on the expression of 3β-HSD and SULT2A1 mRNA. Additionally the effect of a global methanolic extract of dried chicory root was investigated and compared to previous obtained in vivo effects. Primary hepatocytes were isolated from the livers of piglets (crossbreed: Landrace×Yorkshire and Duroc) and cultured for 24h before treatment for an additionally 24h. RNA was isolated from the hepatocytes and specific gene expression determined by RT-PCR using TaqMan probes. The investigated sex-steroids had no effect on the mRNA expression of 3β-HSD and SULT2A1, while skatole decreased the content of SULT2A1 30% compared to control. Of the investigated secondary plant metabolites artemisinin and scoparone (found in Artemisia sp.) lowered the content of SULT2A1 by 20 and 30% compared to control, respectively. Moreover, we tested three secondary plant metabolites (lactucin, esculetin and esculin) found in chicory root. Lactucin increased the mRNA content of both 3β-HSD and SULT2A1 by 200% compared to control. An extract of chicory root was shown to decrease the expression of both 3β-HSD and SULT2A1. It is concluded that the gene expression of enzymes with importance for androstenone metabolism is regulated by secondary plant metabolites in a complex manner. PMID:24333270

  3. Thymidylate synthase, dihydropyrimidine dehydrogenase, ERCC1, and thymidine phosphorylase gene expression in primary and metastatic gastrointestinal adenocarcinoma tissue in patients treated on a phase I trial of oxaliplatin and capecitabine

    Over-expression of thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) in tumor tissue is associated with insensitivity to 5-fluorouracil (5-FU). Over-expression of ERCC1 correlates with insensitivity to oxaliplatin (OX) therapy, while high thymidine phosphorylase (TP) levels predict for increased sensitivity to capecitabine (Xel). Biopsies of metastatic tumor were taken before OX (130 mg/m2 day 1) given with Xel (1200–3000 mg/m2 in two divided doses days 1–5 and 8–12) every 3-weeks. Micro-dissected metastatic and primary tumors were analyzed for relative gene expression by real-time quantitative polymerase chain reaction. The clinical protocol prospectively identified the molecular targets of interest that would be tested. Endpoints for the molecular analyses were correlation of median, first and third quartiles for relative gene expression of each target with response, time to treatment failure (TTF), and survival. Among 91 patients participating in this trial; 97% had colorectal cancer. The median number of prior chemotherapy regimens was 2, and most had prior 5-FU and irinotecan. In paired samples, median mRNA levels were significantly higher in metastatic versus primary tumor (-fold): TS (1.9), DPD (3.8), ERCC1 (2.1) and TP (1.6). A strong positive correlation was noted between DPD and TP mRNA levels in both primary (r = 0.693, p < 0.0005) and metastatic tissue (r = 0.697, p < 0.00001). There was an association between TS gene expression and responsive and stable disease: patients whose intratumoral TS mRNA levels were above the median value had significantly greater risk of early disease progression (43% vs 17%), but this did not translate into a significant difference in TTF. ERCC1 gene expression above the third quartile was associated with a shorter TTF (median 85 vs 162 days, p = 0.046). Patients whose TS mRNA levels in metastatic tumor tissue were below the median had a longer overall survival (median 417 vs 294 days, p = 0

  4. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome

    Svendsen, P F; Madsbad, S; Nilas, L;

    2009-01-01

    assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. RESULTS: Polycystic ovary syndrome (P<0.05) and obesity (P<0.05) were independently associated with increased expression of 11...... controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model...... peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1....

  5. Regulation of 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase expression and activity in the hypophysectomized rat ovary: Interactions between the stimulatory effect of human chorionic gonadotropin and the luteolytic effect of prolactin

    The enzyme 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD) catalyzes an obligatory step in the conversion of pregnenolone and other 5-ene-3 beta-hydroxysteroids into progesterone as well as precursors of all androgens and estrogens in the ovary. Since 3 beta-HSD is likely to be an important target for regulation by pituitary hormones, we have studied the effect of chronic treatment with LH (hCG), FSH, and PRL on ovarian 3 beta-HSD expression and activity in hypophysectomized adult female rats. Human CG (hCG) [10 IU, twice a day (bid)], ovine FSH (0.5 microgram, bid), and ovine PRL (1 mg, bid) were administered, singly or in combination, for a period of 10 days starting 15 days after hypophysectomy. In hypophysectomized rats, PRL exerted a potent inhibitory effect on all the parameters studied. In fact, PRL caused a 81% decrease in ovarian 3 beta-HSD mRNA content accompanied by a similar decrease in 3 beta-HSD activity and protein levels. In addition, ovarian weight decreased by 40% whereas serum progesterone fell dramatically from 1.92 nmol/liter to undetectable levels after treatment with PRL. Whereas hCG alone had only slight stimulatory effects on 3 beta-HSD mRNA, protein content and activity levels, treatment with the gonadotropin partially or completely reversed the potent inhibitory effects of oPRL on all the parameters measured. FSH, on the other hand, had no significant effect on 3 beta-HSD expression and activity. In situ hybridization experiments using the 35S-labeled rat ovary 3 beta-HSD cDNA probe show that the inhibitory effect of PRL is exerted primarily on luteal cell 3 beta-HSD expression and activity. On the other hand, it can be seen that hCG stimulates 3 beta-HSD mRNA accumulation in interstitial cells

  6. Increase in activity, glycosylation and expression of cytokinin oxidase/dehydrogenase during the senescence of barley leaf segments in the dark

    Conrad, K.; Motyka, Václav; Schlüter, T.

    2007-01-01

    Roč. 130, č. 4 (2007), s. 572-579. ISSN 0031-9317 R&D Projects: GA ČR GA206/03/0313 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : OXIDASE ACTIVITY * GENE-EXPRESSION * ZEA - MAYS Subject RIV: EF - Botanics Impact factor: 2.192, year: 2007

  7. Elevated glutathione level does not protect against chronic alcohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes--alcohol dehydrogenase and Cytochrome P450 2E1.

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Chatterjee, Suvro; Clemens, Dahn L; Dey, Aparajita

    2011-06-01

    Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied. Untreated VL-17A cells exhibited apoptosis and oxidative stress when compared with untreated HepG2 cells. Chronic alcohol exposure, i.e., 100 mM ethanol treatment for 72 h caused a significant decrease in viability (47%) in VL-17A cells but not in HepG2 cells. Chronic ethanol mediated cell death in VL-17A cells was predominantly apoptotic, with increased oxidative stress as the underlying mechanism. Chronic ethanol exposure of VL-17A cells resulted in 1.1- to 2.5-fold increased levels of ADH and CYP2E1. Interestingly, the level of the antioxidant GSH was found to be 3-fold upregulated in VL-17A cells treated with ethanol, which may be a metabolic adaptation to the persistent and overwhelming oxidative stress. In conclusion, the increased GSH level may not be sufficient enough to protect VL-17A cells from chronic alcohol mediated oxidative stress and resultant apoptosis. PMID:21414402

  8. Cloning, characterization and prokaryotic expression of lactate dehydrogenase C cDNA in Tamias sibiricus%花鼠乳酸脱氢酶C基因cDNA的克隆、分析及原核表达

    李昊; 韩崇选; 张冬辉; 周智敏

    2015-01-01

    In order to investigate the effects of lactate dehydrogenase C (LDH-C) on chipmunks,Tamias sibiricus,immune infertility control,the cDNA of chipmunks LDH-C was cloned from the chipmunks testis by RT-PCR,and its sequence was analyzed.The LDH-C gene was constructed into the prokaryotic expression vector,and this vector was transformed into E.coli BL21 (DE3) and was induced by IPTG.The SDS-PAGE and western-blot were conducted to identify the expression products.The results showed that the cDNA was 999 bp and encoded for a polypeptide of 332 amino acids,which contained complete open reading frame.The amount of negatively charged residues and positively charged residues were both 36 and the predicted molecular mass was around 37 kD.The theoretical isoelectric point (pI) was 7.04,and there was no signal peptide or transmembrane region.The LDH-C protein was predicted as non-secreted and hydrophobicity protein.Alpha helix,random coil and extended strand were the main components of the secondary structure of LDH-C.A 37 kD target protein with His-Tag was obtained from prokaryotic expression induced by IPTG.%为研究花鼠乳酸脱氢酶C(lactate dehydrogenase C,LDH-C)对花鼠免疫不育控制的影响,以花鼠睾丸cDNA为模板,通过RT-PCR技术得到花鼠LDH-C基因cDNA编码区,并进行序列分析,构建花鼠LDH-C的原核表达载体,导入到大肠杆菌BL21(DE3)中诱导表达,并采用聚丙烯酰胺凝胶电泳和免疫印迹法对表达产物进行鉴定.结果显示:扩增出的cDNA片段为999 bp,编码332个氨基酸,含有完整的开放阅读框;负电荷残基与正电荷残基均为36个;预测蛋白质分子量为37kD,理论等电点为7.04,无信号肽和跨膜区,推测其是一种非分泌、疏水性蛋白.α螺旋、无规则卷曲以及延伸链是sLDH-C蛋白二级结构的主要成分.重组菌在IPTG诱导下获得了约37 kD带有His-Tag的目的蛋白.

  9. Cloning, expression and characterization of a short-chain dehydrogenase from Pseudomonasfluorescens%荧光假单胞菌短链脱氢酶的克隆、表达及酶学性质分析

    薛群; 应向贤; 杨池; 汪钊

    2011-01-01

    为了研究荧光假单胞菌中短链脱氢酶的生理角色和催化特性,从荧光假单胞菌Pseudomonas fluorescens GIMl.49基因组DNA克隆表达了一个短链脱氢酶的编码基因pfd,并分析了该基因产物的酶学性质.基因pfd全长684 bp,编码227个氨基酸,推算分子量为24.2 kDa.将携带短链脱氢酶基因的重组质粒pET28b-pfd转入大肠杆菌BL21(DE3)进行表达,得到了28 kDa的表达产物.重组荧光假单胞菌短链脱氢酶(PFD)能氧化4-氯-3-羟基丁酸乙酯、1-苯乙醇、苯甲醇、仲丁醇和还原4-氯-乙酰乙酸乙酯、2-溴-苯乙酮、4-溴-苯乙酮等底物.以4-氯-3-羟基丁酸乙酯为底物时活力最高,Km值为186.40 mmol/L,Vmax为89.56 U/mg.氧化4-氯-3-羟基丁酸乙酯时,最适反应温度和pH分别为12℃和10.5,倾向于利用NAD+作辅酶;而还原4-氯-乙酰乙酸乙酯时,最适温度和pH为24℃和8.8,倾向于利用NADPH作辅酶.重组PFD能耐受50%(V/V)的甲醇等有机助溶剂,Ca2+(1 mmol/L)和EDTA(5 mmol/L)对其酶活有一定的促进作用.上述结果表明,重组PFD是一个新型的短链脱氢酶,其代谢角色推测与卤代次级醇的氧化降解有关.%To explore the physiological role and biocatalytic properties of short-chain dehydrogenases from Pseudomonas fluorescens GIM1.49, we cloned the structural gene pfd and characterized its over-expressed product. The length of gene pfd was 684 bp encoding a short-chain dehydrogenase with 227 amino acid residues and calculated molecular mass of 24.2 kDa. The recombinant plasmid pET28b-pfy was constructed and functionally expressed in Escherichia coli BL21(DE3), resulting in the over-production of recombinant short-chain dehydrogenase PFD with a size of 28 kDa. The enzyme could oxidize alcohols including 4-chloro-3-hydroxbutanoate ester and reduce 4-chloro-acetoacetate ester using either NAD(H) or NADP(H) as coenzyme. The enzyme showed the highest activity against 4-chloro-3-hydroxbutanoate ester as

  10. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1.

    Brozic, P; Lanisnik Risner, T; Gobec, S

    2008-01-01

    Carcinogenesis of hormone-related cancers involves hormone-stimulated cell proliferation, which increases the number of cell divisions and the opportunity for random genetic errors. In target tissues, steroid hormones are interconverted between their potent, high affinity forms for their respective receptors and their inactive, low affinity forms. One group of enzymes responsible for these interconversions are the hydroxysteroid dehydrogenases, which regulate ligand access to steroid receptors and thus act at a pre-receptor level. As part of this group, the 17beta-hydroxysteroid dehydrogenases catalyze either oxidation of hydroxyl groups or reduction of keto groups at steroid position C17. The thoroughly characterized 17beta-hydroxysteroid dehydrogenase type 1 activates the less active estrone to estradiol, a potent ligand for estrogen receptors. This isoform is expressed in gonads, where it affects circulating levels of estradiol, and in peripheral tissue, where it regulates ligand occupancy of estrogen receptors. Inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 are thus highly interesting potential therapeutic agents for the control of estrogen-dependent diseases such as endometriosis, as well as breast and ovarian cancers. Here, we present the review on the recent development of inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 published and patented since the previous review of 17beta-hydroxysteroid dehydrogenase inhibitors of Poirier (Curr. Med. Chem., 2003, 10, 453). These inhibitors are divided into two separate groups according to their chemical structures: steroidal and non-steroidal 17beta-hydroxysteroid dehydrogenase type 1 inhibitors. Their estrogenic/ proliferative activities and selectivities over other 17beta-hydroxysteroid dehydrogenases that are involved in local regulation of estrogen action (types 2, 7 and 12) are also presented. PMID:18220769

  11. Fourier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase

    Xylem from stems of genetically manipulated tobacco plants which had had cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) activity down-regulated to a greater or lesser degree (clones 37 and 49, respectively) by the insertion of antisense CAD cDNA had similar, or slightly higher, lignin contents than xylem from wild-type plants. Fourier-transform infrared (FT-IR) microspectroscopy indicated that down-regulation of CAD had resulted in the incorporation of moieties with conjugated carbonyl groups into lignin and that the overall extent of cross-linking, particularly of guaiacyl (4-hydroxy-3-methoxyphenyl) rings, in the lignin had altered. The FT-Raman spectra of manipulated xylem exhibited maxima consistent with the presence of elevated levels of aldehydic groups conjugated to a carbon-carbon double bond and a guaiacyl ring. These maxima were particularly intense in the spectra of xylem from clone 37, the xylem of which exhibits a uniform red coloration, and their absolute frequencies matched those of coniferaldehyde. Furthermore, xylem from clone 37 was found to have a higher content of carbonyl groups than that of clone 49 or the wild-type (clone 37: clone 49: wild-type; 2.4:1.6:1.0) as measured by a degradative chemical method. This is the first report of the combined use of FT-IR and FT-Raman spectroscopies to study lignin structure in situ. These analyses provide strong evidence for the incorporation of cinnamaldehyde groups into the lignin of transgenic plants with down-regulated CAD expression. In addition, these non-destructive analyses also suggest that the plants transformed with antisense CAD, in particular clone 37, may contain lignin that is less condensed (cross-linked) than that of the wild-type. (author)

  12. Equating salivary lactate dehydrogenase (LDH) with LDH-5 expression in patients with oral squamous cell carcinoma: An insight into metabolic reprogramming of cancer cell as a predictor of aggressive phenotype.

    Saluja, Tajindra Singh; Spadigam, Anita; Dhupar, Anita; Syed, Shaheen

    2016-04-01

    Oral squamous cell carcinoma (OSCC) is the sixth most common human malignancy. According to World Health Organization, oral cancer has been reported to have the highest morbidity and mortality and a survival rate of approximately 50 % at 5 years from diagnosis. This is attributed to the subjectivity in TNM staging and histological grading which may result in less than optimum treatment outcomes including tumour recurrence. One of the hallmarks of cancer is aerobic glycolysis also known as the Warburg effect. This glycolytic phenotype (hypoxic state) not only confers immortality to cancer cells, but also correlates with the belligerent behaviour of various malignancies and is reflected as an increase in the expression of lactate dehydrogenase 5 (LDH-5), the main isoform of LDH catalysing the conversion of pyruvate to lactate during glycolysis. The diagnostic role of salivary LDH in assessing the metabolic phenotype of oral cancer has not been studied. Since salivary LDH is mainly sourced from oral epithelial cells, any pathological changes in the epithelium should reflect diagnostically in saliva. Thus in our current research, we made an attempt to ascertain the biological behaviour and aggressiveness of OSCC by appraising its metabolic phenotype as indirectly reflected in salivary LDH activity. We found that salivary LDH can be used to assess the aggressiveness of different histological grades of OSCC. For the first time, an evidence of differing metabolic behaviour in similar histologic tumour grade is presented. Taken together, our study examines the inclusion of salivary LDH as potential diagnostic parameter and therapeutic index in OSCC. PMID:26577856

  13. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.

    Teng Bao

    Full Text Available Acetoin (3-hydroxy-2-butanone, an extensively-used food spice and bio-based platform chemical, is usually produced by chemical synthesis methods. With increasingly requirement of food security and environmental protection, bio-fermentation of acetoin by microorganisms has a great promising market. However, through metabolic engineering strategies, the mixed acid-butanediol fermentation metabolizes a certain portion of substrate to the by-products of organic acids such as lactic acid and acetic acid, which causes energy cost and increases the difficulty of product purification in downstream processes. In this work, due to the high efficiency of enzymatic reaction and excellent selectivity, a strategy for efficiently converting 2,3-butandiol to acetoin using whole-cell biocatalyst by engineered Bacillus subtilis is proposed. In this process, NAD+ plays a significant role on 2,3-butanediol and acetoin distribution, so the NADH oxidase and 2,3-butanediol dehydrogenase both from B. subtilis are co-expressed in B. subtilis 168 to construct an NAD+ regeneration system, which forces dramatic decrease of the intracellular NADH concentration (1.6 fold and NADH/NAD+ ratio (2.2 fold. By optimization of the enzymatic reaction and applying repeated batch conversion, the whole-cell biocatalyst efficiently produced 91.8 g/L acetoin with a productivity of 2.30 g/(L·h, which was the highest record ever reported by biocatalysis. This work indicated that manipulation of the intracellular cofactor levels was more effective than the strategy of enhancing enzyme activity, and the bioprocess for NAD+ regeneration may also be a useful way for improving the productivity of NAD+-dependent chemistry-based products.

  14. Characterization of the rat Class 3 aldehyde dehydrogenase gene promoter.

    Xie, Y Q; Takimoto, K; Pitot, H. C.; Miskimins, W K; Lindahl, R

    1996-01-01

    The Class 3 aldehyde dehydrogenase gene (ALDH-3) is differentially expressed. Expression is either constitutive or xenobiotic inducible via an aromatic hydrocarbon (Ah) receptor-mediated pathway, depending upon the tissue. A series of studies were performed to examine the regulation of rat ALDH-3 basal expression. DNase I footprint analysis identified four DNA regions within the proximal 1 kb of the 5' flanking region of rat ALDH-3 which interact with regulatory proteins. Reporter gene and ge...

  15. Molybdenum center of xanthine dehydrogenase

    Cyanolysis of native, oxidized xanthine dehydrogenase is known to inactivate the enzyme by removing a unique sulfur as thiocyanate. Chemical, genetic, and spectroscopic evidence indicates that this sulfur is a terminal ligand of Mo and is present in native xanthine dehydrogenase, but not in cyanolyzed xanthine dehydrogenase or native sulfite oxidase. A procedure for rapid, reproducible, and quantitative reconstitution of desulfo Mo hydroxylases with sulfide was developed. The cyanolyzable sulfur of xanthine dehydrogenase was specifically radiolabeled with 35sulfide using this procedure. Various chemical properties of the cyanolyzable sulfur could be determined with the radiolabelled enzyme. The data support the conclusion that the cyanolyzable sulfur is a terminal sulfur ligand of the Mo atoms, and is not part of an organic moiety. Application of the resulfuration procedure to crude extracts of Drosophila melanogaster ma-1 flies, which are pleiotropically deficient in xanthine dehydrogenase and aldehyde oxidase, led to the emergence of these enzyme activities. Evidence for the identity of in vitro reconstituted xanthine dehydrogenase from ma-1 mutants with wild type enzyme is presented. A system for efficient reconstitution of the apo-subunits of the molybdoenzyme nitrate reductase from the Neurospora crassa mutant nit-1 with molybdenum cofactor from denatured purified molybdoenzymes in the absence of exogenous molybdate was developed

  16. Characterization of breast precancerous lesions and myoepithelial hyperplasia in sclerosing adenosis with apocrine metaplasia

    Celis, J.E.; Gromova, I.; Cabezón, T.;

    2007-01-01

    includes 15-prostaglandin dehydrogenase (15-PGDH), a protein that is expressed by all benign apocrine lesions, and markers that are highly overexpressed by pure invasive apocrine carcinomas such as MRP14 (S100A9), psoriasin (S100A7), and p53 to identify precancerous lesions in sclerosing adenosis (SA) with...

  17. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Glucose-6-phosphate dehydrogenase deficiency Title Other Names: G6PD ... G6PD deficiency Categories: Newborn Screening Summary Summary Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary ...

  18. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    ... Information Center (GARD) Print friendly version Glucose-6-phosphate dehydrogenase deficiency Table of Contents Overview Symptoms Cause ... National Institutes of Health. Overview Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary condition in ...

  19. Sorbitol dehydrogenase is a zinc enzyme.

    Jeffery, J; Chesters, J; C. Mills; P.J. Sadler; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and poly...

  20. Specific biotinylation of IMP dehydrogenase

    Hoefler, B. Christopher; Gollapalli, Deviprasad R.; Hedstrom, Lizbeth

    2011-01-01

    IMP dehydrogenase (IMPDH) catalyzes a critical step in guanine nucleotide biosynthesis. IMPDH also has biological roles that are distinct from its enzymatic function. We report a biotin-linked reagent that selectively labels IMPDH and is released by dithiothreitol. This reagent will be invaluable in elucidating the moonlighting functions of IMPDH.

  1. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    Sadeghi, H. Mir Mohammad; Ahmadi, R.; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D.

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. coli XL1-blue competent cells. Following plasmid preparation, the cloned gene was digested out and ligated into the expression vector pET-22b(+). Electrophoresis of PCR product showed a 789 bp band. Recombinant plasmid (rpTZ57R) was then constructed. This plasmid was double digested with XhoI and EcoRI resulting in 800 bp and 2900 bp bands. The obtained insert was ligated into pET-22b(+) vector and its orientation was confirmed with XhoI and BamHI restriction enzymes. In conclusion, in the present study the recombinant expression vector containing xylitol dehydrogenase gene has been constructed and can be used for the production of this enzyme in high quantities. PMID:22110522

  2. A new dawn for plant mitochondrial NAD(P)H dehydrogenases

    Møller, I.M.

    2002-01-01

    The expression of complex I and two homologues of bacterial and yeast NADH dehydrogenases, NDA and NDB, have been studied in potato leaf mitochondria. The mRNA level of NDA is completely light dependent and shows a diurnal rhythm with a sharp maximum just after dawn. NDA protein quantity and inte...... internal rotenone-insensitive NADH dehydrogenase activity are also light dependent. These findings suggest that NDA has a role in photorespiration and might be identical to the previously unidentified internal rotenone-insensitive NADH dehydrogenase....

  3. 猪带绦虫苹果酸脱氢酶基因的克隆表达及免疫学分析%Expression and purification of malate dehydrogenase gene in Taenia solium and immunologic analysis of the recombinant proteins

    江楠; 席晓兰; 王杰; 戴佳琳; 廖兴江; 黄江

    2011-01-01

    目的 对猪带绦虫苹果酸脱氢酶基因(malate dehydrogenase,MDH)进行克隆,表达及免疫学特性的初步研究.方法 将猪带绦虫MDH基因克隆到原核表达质粒pET-28a(+)中,在大肠埃希菌BL21/DE3中用异丙基-β-D-半乳糖苷(IPTG)诱导表达,表达产物通过十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)进行鉴定,用镍离子金属螯合剂亲和层析柱进行纯化,纯化的重组蛋白用蛋白印迹(Western Blot)进行免疫学分析.结果 成功构建pET-28a(+)-MDH重组质粒,并获得高纯度蛋白,该重组蛋白可被其免疫SD大鼠血清识别,同时也能被感染猪带绦虫的病人及猪、感染牛带绦虫病人及感染亚带绦虫病人血清所识别.结论 猪带绦虫苹果酸脱氢酶基因可在原核表达系统中获得具有免疫学活性的高效表达,为进一步研究该蛋白的功能奠定了基础.%The objective of this study was to clone and express the gene named as malate dehydrogenase gene (MDH) in Taenia Solium, and to analyze the immunogenicity of its recombinant protein. The coding region of MDH was amplified with PCR, cloned into the prokaryotic expression vector pET-28a(+) and expressed in E. coli BL21/DE3 with IPTG induction. In addition, the immunogenicity of the purified recombinant proteins was analyzed by Western blotting. PCR, double enzyme digestion and DNA sequencing confirmed that the recombinant expression plasmid was successfully constructed. The expression products were obtained and purified by His-Ni2+ affinity chromatography. Western blotting analysis of MDH recombinant protein testified that these proteins could be recognized by sera of the patients infected with T. asiatica and T. rhynchus saginatus. Results suggested that the MDH gene of T. solium has been cloned and expressed, and the purified protein has been confirmed with immunogenicity.

  4. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. (Laval Univ., Quebec City, Quebec (Canada))

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  5. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  6. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization. PMID:26595095

  7. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers

    Nam Ho Jeoung

    2015-06-01

    Full Text Available Impaired glucose homeostasis is one of the risk factors for causing metabolic diseases including obesity, type 2 diabetes, and cancers. In glucose metabolism, pyruvate dehydrogenase complex (PDC mediates a major regulatory step, an irreversible reaction of oxidative decarboxylation of pyruvate to acetyl-CoA. Tight control of PDC is critical because it plays a key role in glucose disposal. PDC activity is tightly regulated using phosphorylation by pyruvate dehydrogenase kinases (PDK1 to 4 and pyruvate dehydrogenase phosphatases (PDP1 and 2. PDKs and PDPs exhibit unique tissue expression patterns, kinetic properties, and sensitivities to regulatory molecules. During the last decades, the up-regulation of PDKs has been observed in the tissues of patients and mammals with metabolic diseases, which suggests that the inhibition of these kinases may have beneficial effects for treating metabolic diseases. This review summarizes the recent advances in the role of specific PDK isoenzymes on the induction of metabolic diseases and describes the effects of PDK inhibition on the prevention of metabolic diseases using pharmacological inhibitors. Based on these reports, PDK isoenzymes are strong therapeutic targets for preventing and treating metabolic diseases.

  8. Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii1[W][OPEN

    Baltz, Anthony; Dang, Kieu-Van; Beyly, Audrey; Auroy, Pascaline; Richaud, Pierre; Cournac, Laurent; Peltier, Gilles

    2014-01-01

    Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae. PMID:24820024

  9. Studies on 2-oxoacid dehydrogenase multienzyme complexes of Azotobacter vinelandii

    Bosma, H.J.

    1984-01-01

    In this thesis, some studies on the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes of Azotobacter vinelandii are described; the emphasis strongly lies on the pyruvate dehydrogenase complex.A survey of the literature on 2-oxoacid dehydrogenase complexes is given in chap

  10. Microbial alcohol dehydrogenases: identification, characterization and engineering

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  11. Screening of aspartate dehydrogenase of bacteria

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  12. Changes in short-chain acyl-coA dehydrogenase during rat cardiac development and stress

    Huang, Jinxian; Xu, Lipeng; Huang, Qiuju; Luo, Jiani; Liu, Peiqing; Chen, Shaorui; Yuan, Xi; Lu, Yao; Wang, Ping; Zhou, Sigui

    2015-01-01

    This study was designed to investigate the expression of short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme of fatty acid β-oxidation, during rat heart development and the difference of SCAD between pathological and physiological cardiac hypertrophy. The expression of SCAD was lowest in the foetal and neonatal heart, which had time-dependent increase during normal heart development. In contrast, a significant decrease in SCAD expression was observed in different ages of spontaneously hyp...

  13. Phosphorylation site on yeast pyruvate dehydrogenase complex

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  14. 杜氏盐藻甘油醛-3-磷酸脱氢酶基因启动子驱动氯霉素乙酰转移酶基因的表达及其活性检测%Expression and activity detection of chloramphenicol acetyltransferase gene driven by the glyceraldehyde-3-phosphate dehydrogenase gene of Dunaliella salina

    张小毅; 刘巨源; 邱乐乐; 贾岩龙

    2012-01-01

    目的 为建立稳定高效的盐藻生物反应器寻找合适的内源性启动子驱动表达外源基因.方法 克隆鉴定了盐藻甘油醛-3-磷酸脱氢酶(GAPDH)基因5 ′上游区序列并成功构建由盐藻GAPDH基因启动子驱动的氯霉素乙酰转移酶(CAT)基因表达载体pUC-Gcat.利用构建的表达载体电击转化盐藻并在含有氯霉素的培养基中筛选转化藻株.随机挑选稳定转化的盐藻藻株进行CAT酶联免疫吸附测定分析.结果 获得3株稳定转化的盐藻藻株.聚合酶链式反应鉴定和CAT酶联免疫吸附测定分析结果表明,CAT基因已整合到了转化的盐藻基因组中.结论 本研究所克隆的内源性盐藻GAPDH基因启动子能够驱动CAT基因在盐藻中表达.%Objective To explore expression of foreign gene driven by a strong endogenous promoter in order to construct stable and high-performance bioreactors in Dunaliella salina. Methods In the present study, the upstream sequence of glyceraldehyde phosphate dehydrogenase of Dunaliella salina was cloned and identificated. Using electroporation, the alga was transformed with a plasmid pUC-Ccat containing giyceraldehyde-3-phosphate dehydrogenase ( GAPDH) gene promoter of Du-naliella salina and chloramphenicol acetyltransferase ( CAT) gene as a seletable gene. Using the expression vector, the Dunaliella salina cell was translated and the transformational strain was screened in nutrient medium containing chloramphenicol. The stable transformational strain was selected randomly to undertake CAT enzyme linked immunosorbent assay (ELISA). Results Three stable transformational strain were obtained. The results of polymerase chain reaction and CAT ELISA indicated that the CAT gene had been transferred to the alga. Conclusion The results of this paper suggest that the GAPDH gene promoter can work for genetic transformation of Dunaliella salina.

  15. Pentitol phosphate dehydrogenases: Discovery, characterization and use in D-arabitol and xylitol production by metabolically engineered Bacillus subtilis

    Povelainen, Mira

    2008-01-01

    The ultimate goal of this study has been to construct metabolically engineered microbial strains capable of fermenting glucose into pentitols D-arabitol and, especially, xylitol. The path that was chosen to achieve this goal required discovery, isolation and sequencing of at least two pentitol phosphate dehydrogenases of different specificity, followed by cloning and expression of their genes and characterization of recombinant arabitol and xylitol phosphate dehydrogenases. An enzyme of ...

  16. An autosomal glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) polymorphism in human saliva.

    Tan, S G; Ashton, G C

    1976-01-01

    Glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) from human saliva has been demonstrated by the zymogram technique. Three phenotypes were found. Family and population studies suggested that these phenotypes are the products of an autosomal locus with two alleles Sgd-1 and Sgd-2. PMID:950237

  17. n-3多不饱和脂肪酸脱氢酶基因fat-1在人肺癌细胞H460内的表达%The Effect of n -3 Fatty Acid Dehydrogenase Gene fat - 1 Expression on Human Lung Cancer Cell H460

    李芳芳; 葛银林; 李艳君; 单虎

    2011-01-01

    n-3多不饱和脂肪酸脱氢酶基因fat -1来自于秀丽线虫(C.elegans).为检测该基因在人肺癌细胞H460中的表达效果,本项研究构建了哺乳动物表达载体peDNA3.1(+)myc - HisA - fat -1,以Xfet polymer介导法转染到人肺癌细胞H460中,RT - PCR检测到有效的异源基因表达,MTT法证实基因表达能有效地抑制肺癌细胞的增殖率(P<0.05),气相色谱分析基因表达前后细胞中n - 6/n -3多不饱和脂肪酸比例降低(P<0.05),为将该基因用于癌症的转基因治疗奠定了基础.%fat -1 gene is a kind of n - 3 fatty acid dehydrogenase gene from Caenorhabditis elegans. In this stud-y, the eukaryotic expression vector pcDNA3.1 ( + ) myc - HisA - fat - 1 was constructed and expressed in human lung cancer cell H460. RT - PCR results showed that fat - 1 gene could expressed effectively in H460 cell and cell proliferation rate was markedly inhibited ( P <0.05). Moreover, fat - 1 gene could significantly decreased the ratio of cellular n -6 /n -3 PUFAs ( P <0.05).

  18. Three-dimensional structures of the three human class I alcohol dehydrogenases

    Niederhut, Monica S.; Gibbons, Brian J.; Perez-Miller, Samantha; Hurley, Thomas D.

    2001-01-01

    In contrast with other animal species, humans possess three distinct genes for class I alcohol dehydrogenase and show polymorphic variation in the ADH1B and ADH1C genes. The three class I alcohol dehydrogenase isoenzymes share ∼93% sequence identity but differ in their substrate specificity and their developmental expression. We report here the first three-dimensional structures for the ADH1A and ADH1C*2 gene products at 2.5 and 2.0 Å, respectively, and the structure of the ADH1B*1 gene produ...

  19. Preliminary X-ray crystallographic study of glucose dehydrogenase from Thermus thermophilus HB8

    The glucose dehydrogenase (GDH) protein from T. thermophilus HB8 was cloned, expressed, purified and crystallized. GDH crystals belong to space group P21 and diffract to 1.9 Å resolution. Thermus thermophilus is an aerobic chemoorganotroph that has been found to grow anaerobically in the presence of nitrate. Crystals of glucose dehydrogenase (GDH) from T. thermophilus HB8 belong to space group P21, with unit-cell parameters a = 36.90, b = 132.96, c = 60.78 Å, β = 97.2°. Preliminary studies and molecular-replacement calculations reveal that the asymmetric unit contains two monomers

  20. Inducible xylitol dehydrogenases in enteric bacteria.

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  1. Biochemical characterization of prephenate dehydrogenase from the hyperthermophilic bacterium Aquifex aeolicus

    Bonvin, Julie; Aponte, Raphael A.; Marcantonio, Maria; Singh, Sasha; Christendat, Dinesh; Turnbull, Joanne L.

    2006-01-01

    A monofunctional prephenate dehydrogenase (PD) from Aquifex aeolicus was expressed as a His-tagged protein in Escherichia coli and was purified by nickel affinity chromatography allowing the first biochemical and biophysical characterization of a thermostable PD. A. aeolicus PD is susceptible to proteolysis. In this report, the properties of the full-length PD are compared with one of these products, an N-terminally truncated protein variant (Δ19PD) also expressed recombinantly in E. coli. Bo...

  2. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon

    Bukh, Christian; Nord-Larsen, Pia Haugaard; Rasmussen, Søren K.

    2012-01-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem w...

  3. Expression

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  4. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems. PMID:27459246

  5. 链球菌表面三磷酸甘油醛脱氢酶及其突变体重组蛋白的表达和纯化%EXPRESSION AND PURIFICATION OF RECOMBINANT STREPTOCOCCAL SURFACE GLYCERALDEHYDE - 3 - PHOSPHATE DEHYDROGENASE AND C- TERMINAL LYSINE RESIDUES - TRUNCATED VARIANT

    许丽萍; 代霄燕; 李培锋

    2011-01-01

    表达并纯化M6型GAS表面三磷酸甘油醛脱氢酶以及其敲除C末端赖氨酸残基重组蛋白(rGAPDH和rGAPDHA345).克隆了M6型GAS ATCC32175的GAPDH基因以及GAPDHΔ345基因,与pASK -IBA37载体连接后,表达蛋白并用亲和层析色谱纯化重组蛋白;对重组蛋白进行质谱检测,并用酶切方法进一步纯化目的蛋白,通过酶促反应实验测定了重组蛋白的生物活性.2种基因克隆条件稳定,蛋白表达量大,酶切后纯度高,纯化的重组蛋白具有较高的生物活性.功表达并纯化了rCAPDH和rGAPDH△345蛋白.%To express and purify the recombinant streptococcal surface glyceraldehyde -3 -phosphate dehydrogenase (rGAPDH) and its C - terminal lysine residues - truncated variant ( rGAPDHA345 ). We cloned GAPDH and GAPDHA345 from M6 - type GAS ATCC32175, produced rGAPDH and rCAPDHA345 in E. Coli using the 6 x Histag pASK - IBA37 expression vector and purified the recombinant proteins by affinity chromatography with TALON metal affinity resins. Mass spectrometric detection and then enzyme cutting for the recombinant proteins. The enzyme reaction was performed to determine enolase activity. PCR conditions ampifing GAPDH and GAPDHA345 were veridical and expression and purity after enzyme cutting of recombinant proteins were profuse. The purified rGAPDH and rGAPDHA345 were found to have relatively full enolase activity. We succusfully expressed and purified rGAPDH and rGAPDH A345.

  6. Microbial alcohol dehydrogenases: identification, characterization and engineering

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety of substrate specificities and are involved in an astonishingly wide range of metabolic processes, in all living organisms. Besides the scientific interest in ADHs, they are also attractive biocat...

  7. Genetics Home Reference: pyruvate dehydrogenase deficiency

    ... the most common cause of pyruvate dehydrogenase deficiency , accounting for approximately 80 percent of cases. These mutations ... deficiency ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific articles on PubMed (1 link) PubMed OMIM (5 links) ...

  8. Genetics Home Reference: lactate dehydrogenase deficiency

    ... throughout the body and is important for creating energy for cells. There are five different forms of this enzyme, each made up of four ... and lactate dehydrogenase-B subunits make up the different forms of the ... large amounts of energy during high-intensity physical activity when the body's ...

  9. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    Iris Krondorfer

    Full Text Available Pyranose dehydrogenase (PDH, a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organometals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.

  10. The Genetics of Alcohol Metabolism: Role of Alcohol Dehydrogenase and Aldehyde Dehydrogenase Variants

    Edenberg, Howard J

    2007-01-01

    The primary enzymes involved in alcohol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Both enzymes occur in several forms that are encoded by different genes; moreover, there are variants (i.e., alleles) of some of these genes that encode enzymes with different characteristics and which have different ethnic distributions. Which ADH or ALDH alleles a person carries influence his or her level of alcohol consumption and risk of alcoholism. Researchers to date pri...

  11. Characterization of xylitol dehydrogenase from Debaryomyces hansenii

    Girio, F.M.; Amaral-Collaco, M.T. [INETI, Lisboa (Portugal); Pelica, F. [ITQB, Oeiras (Portugal)

    1996-01-01

    The xylitol dehydrogenase (EC 1.1.1.9) from xylose-grown cells of Debaryomyces hansenii was partially purified in two chromatographic steps, and characterization studies were carried out in order to investigate the role of the xylitol dehydrogenase-catalyzed step in the regulation of D-xylose metabolism. The enzyme was most active at pH 9.0-9.5, and exhibited a broad polyol specificity. The Michaelis constants for xylitol and NAD{sup +} were 16.5 and 0.55 mM, respectively. Ca{sup 2+}, Mg{sup 2+}, and Mn{sup 2+} did not affect the enzyme activity. Conversely, Zn{sup 2+}, Cd{sup 2+}, and Co{sup 2+} strongly inhibited the enzyme activity. It was concluded that NAD{sup +}-xylitol dehydrogenase from D. hansenii has similarities with other xylose-fermenting yeasts in respect to optimal pH, substrate specificity, and K{sub m} value for xylitol, and therefore should be named L-iditol:NAD{sup +}-5-oxidoreductase (EC 1.1.1.14). The reason D. hansenii is a good xylitol producer is not because of its value of K for xylitol, which is low enough to assure its fast oxidation by NAD{sup +}-xylitol dehydrogenase. However, a higher K{sub m} value of xylitol dehydrogenase for NAD{sup +} compared to the K{sub m} values of other xylose-fermenting yeasts may be responsible for the higher xylitol yields. 22 refs., 4 figs., 2 tabs.

  12. 高效表达木糖醇脱氢酶基因酿酒酵母的构建及木酮糖发酵的初步研究%Construction of Saccharomyces cerevisiae Strain Expressing Xylitol Dehydrogenase Gene Efficiently and Primary Study of Its Xylulose Fermentation

    陈高云; 刘敏; 叶凯; 张元忠; 涂振东; 于孟斌

    2011-01-01

    通过RT—PCR方法克隆得到Candidatropicalis木糖醇脱氢酶基因xyl2,将该基因连入酵母表达载体pYES2的诱导型启动子GAL1下,构建表达质粒pYES2-xyl2;同时用从Pichiapastoris中克隆获取的甘油醛磷酸脱氢酶基因GAP换下GAL1基因,构建含组成型启动子GAP基因的表达质粒pYES2-GAP—xyl2;通过电转化法将其依次转入酿酒酵母S.cerevisiaeINVSc1,山梨醇培养基上筛选的转化子经木糖醇梯度驯化培养,筛选出1株耐木糖醇浓度为20%的酿酒酵母重组菌株ZCX4和1株在半乳糖诱导下耐木糖醇浓度为15%的重组菌株YDX2。酶活测定表明。重组菌株ZCX4比酶活0.621U/mg(蛋白),是YDX2比酶活的2.29倍。摇瓶发酵结果显示,重组菌株ZCX4木糖醇消耗76.46g/L,木糖醇消耗率为76.46%,是重组茵株YDX2木糖醇消耗率的1.63倍,说明木糖醇脱氢酶实现了高效表达。%Yeast expression vector pYES2-xyl2 was constructed by cloning xylitol dehydrogenase gene xyl2, which originated from Candida tropicalis and placed under the inducible promoter GALl of the vector. Meanwhile, the other yeast expression vector pYES2-GAP-xyI2 containing the constitutive strong promoter GAP gene instead ofGAL gene was constructed. The plasmids containing xyl2 gene were transformed into industrial strain of S.cerevisiae INVScl by electroporation. The recombinant transformants ZCX4 and YDX2 grew well on plates in condition of high-concentration xylitol. The xylitol dehydrogenase specific activity of recombinant strain ZCX4 was 0.621 U/mg protein, 2.39 times as much as the recombinant strain YDX2, In addition, flask-shaking fermentation results revealed that the consumption of xylitol for ZCX4 was 76.46 g/L, 1.63 times as much as the recombinant strain YDX2. The results demonstrated that the recombinant stain could utilize xylitol efficiently by xylulose fermentation.

  13. Mellemkaedet acyl-CoA dehydrogenase (MCAD)-mangel

    Gregersen, N; Winter, V; Andresen, B S;

    1992-01-01

    today considered more common than previously anticipated, since the incidence of patients with MCAD enzyme deficiency in Denmark is estimated to 1/27,000 newborns, or two new cases annually. The relationship between the enzyme defect (gene defect) and the clinical expression of the disease is a main......Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially fatal metabolic disease, which is characterized by non-ketotic hypoglycemia and lethargy. The disease manifests itself by periodic attacks in connection with infections and periods of fasting, or suddenly as unexpected child......-card constitute today a certain and specific diagnosis for the disease in 75% of all cases. In the remaining 25% the mutation analysis is supplemented with urine metabolite studies by gas chromatography/mass spectrometry, and with measurements of enzyme activities in cultured skin fibroblasts. The disease is...

  14. Prostaglandin dehydrogenase and the initiation of labor.

    Challis, J R; Patel, F A; Pomini, F

    1999-01-01

    In summary, these studies have suggested that prostaglandin dehydrogenase may have a central role to play in the mechanisms which determine biologically active prostaglandin concentrations within human fetal membranes and placenta at the time of labor, at term or preterm. Moreover, our studies indicate that the regulation of PGDH may by multifactorial (figure 3). In certain regions of the membranes, we suggest that PGDH expression may be influenced by levels of anti-inflammatory and pro-inflammatory cytokines. In other regions of the membranes, we suggest that PGDH may be regulated at a transcriptional level by competing activities of progesterone and cortisol. The action of progesterone could be effected through systemically-derived steroid, or by locally synthesized steroid, acting in a paracrine and/or autocrine fashion. The effects of cortisol in placenta must be due to glucocorticoid derived from the maternal or fetal compartment, since the placenta lacks the hydroxylases required for endogenous cortisol production. However, metabolism of cortisol by 11 beta-HSD-2 reduces the potency of this glucocorticoid in placental tissue. In chorion however, cortisol may be formed locally, from cortisone, in addition to its being derived from the maternal circulation and/or from the amniotic fluid. Our current studies do not allow us to delineate whether the effects of progesterone and cortisol on PGDH are exerted through the glucocorticoid receptor (GR) or progesterone receptor (PR) or both. It is possible that through pregnancy, PGDH activity is maintained by progesterone acting either through low levels of PR in membranes, or, more likely, acting through GR. At term, elevated levels of cortisol compete with and displace progesterone from GR, resulting in inhibition of PGDH transcription and activity. In this way, local withdrawal of progesterone action would be effected within human intrauterine tissues, without requiring changes in systemic, circulating progesterone

  15. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg2+, and [γ-32P]ATP. The protein-bound radioactivity was localized in the PDH α subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg2+, and Ca2+. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the α subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg

  16. Alcohol dehydrogenase activity in immobilized yeast cells

    A method for the immobilization of Saccharomyces cerevisiae was developed and the activity of alcohol dehydrogenase of the immobilized cells was determined. The treatment of the yeast cells with 1 % toluene followed by irradiation with acrylamide and bisacrylamide resulted in a high activity of alcohol dehydrogenase in the immobilized cells. The enzyme of the immobilized cells was stable in the pH range of 7.5 - 8.0 and the optimum pH opposed to be 8.5. Although the immobilized cells showed a rather low level of thermostability, it is suggested that they could be used for a long period of time at a temperature of 27 deg C. The immobilized cells did not exhibit any loss in the enzyme activity when stored at 4 deg C or -20 deg C. (author)

  17. Glucose 6 phosphate dehydrogenase deficiency Review

    Şaşmaz, İlgen

    2009-01-01

    Glucose 6 phosphate dehydrogenase G6PD is the first enzyme of the pentose phosphate pathway providing reducing power to all cells in the form of reduced form of nicotinamide adenine dinucleotide phosphate G6PD deficiency is the most common human enzyme defect being present in more than 400 million people worldwide G6PD deficiency is an X linked hereditary genetic defect caused by mutations in the G6PD gene Clinical presentations include acute hemolytic anemia chronic hemolytic anemia neonatal...

  18. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  19. Constitutive Optimized Production of Streptokinase in Saccharomyces cerevisiae Utilizing Glyceraldehyde 3-Phosphate Dehydrogenase Promoter of Pichia pastoris

    Vellanki, Ravi N.; Ravichandra Potumarthi; Doddapaneni, Kiran K.; Naveen Anubrolu; Lakshmi N. Mangamoori

    2013-01-01

    A novel expression vector constructed from genes of Pichia pastoris was applied for heterologous gene expression in Saccharomyces cerevisiae. Recombinant streptokinase (SK) was synthesized by cloning the region encoding mature SK under the control of glyceraldehyde 3-phosphate dehydrogenase (GAP) promoter of Pichia pastoris in Saccharomyces cerevisiae. SK was intracellularly expressed constitutively, as evidenced by lyticase-nitroanilide and caseinolytic assays. The functional activity was co...

  20. EXPRESS

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  1. The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases

    Zaganas, Ioannis; Pajecka, Kamilla; Nielsen, Camilla Wendel;

    2013-01-01

    Glutamate dehydrogenase (GDH) uses ammonia to reversibly convert α-ketoglutarate to glutamate using NADP(H) and NAD(H) as cofactors. While GDH in most mammals is encoded by a single GLUD1 gene, humans and other primates have acquired a GLUD2 gene with distinct tissue expression profile. The two h...... of the kidney during systemic acidosis. The reverse could apply for conditions of local or systemic hyperammonemia or alkalosis....

  2. Functional Distinctions between IMP Dehydrogenase Genes in Providing Mycophenolate Resistance and Guanine Prototrophy to Yeast*

    Hyle, Judith W.; Shaw, Randal J.; Reines, Daniel

    2003-01-01

    IMP dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo synthesis of GTP. Yeast with mutations in the transcription elongation machinery are sensitive to inhibitors of this enzyme such as 6-azauracil and mycophenolic acid, at least partly because of their inability to transcriptionally induce IMPDH. To understand the molecular basis of this drug-sensitive phenotype, we have dissected the expression and function of a four-gene family in yeast called IMD1 through IMD4. We show...

  3. Use of phi(glp-lac) in studies of respiratory regulation of the Escherichia coli anaerobic sn-glycerol-3-phosphate dehydrogenase genes (glpAB).

    Kuritzkes, D.R.; Zhang, X. Y.; Lin, E C

    1984-01-01

    Expression of the glpA operon encoding the extrinsic membrane anaerobic sn-glycerol-3-phosphate dehydrogenase complex of Escherichia coli K-12 was studied in five strains carrying independent glpA-lac operon fusions. The location of the fusions was confirmed by transduction. Two of the strains produced an enzymatically active anaerobic sn-glycerol-3-phosphate dehydrogenase that accumulated in the cytoplasmic fraction of the cells. This suggests the loss of a specific membrane anchor subunit e...

  4. Lactate dehydrogenase X, malate dehydrogenase and total protein in rat spermatozoa during epididymal transit.

    Vermouth, N T; Carriazo, C S; Ponce, R H; Blanco, A

    1986-01-01

    Lactate dehydrogenase isozyme X (LDH X), malate dehydrogenase (MDH) and total soluble protein have been determined in lysates of spermatozoa isolated from caput, corpus and cauda of rat epididymis. Transit of spermatozoa through epididymis is accompanied by a reduction of LDH X, MDH and total protein per cell in sexually rested animals. The profiles of reduction along epididymal segments are different for the three variables studied. Mating with receptive females during the 5 days prior to determinations increases significantly the levels of MDH in spermatozoa from all sections of epididymis and produces increase of total soluble protein in the cells contained in cauda. PMID:3956158

  5. Human 3β-hydroxysteroid dehydrogenase deficiency seems to affect fertility but may not harbor a tumor risk

    Burckhardt, Marie-Anne; Udhane, Sameer S; Marti, Nesa;

    2015-01-01

    CONTEXT: 3β-hydroxysteroid dehydrogenase deficiency (3βHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3βHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis...

  6. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    Sadeghi, H. Mir Mohammad; Ahmadi, R; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. ...

  7. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

    Duester, G; Farrés, J; Felder, M R; Holmes, R S; Höög, J O; Parés, X; Plapp, B V; Yin, S J; Jörnvall, H

    1999-08-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares 80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies. PMID:10424757

  8. Molecular genetic analysis of human alcohol dehydrogenase

    Duester, G; Wesley Hatfield, G.; Smith, M.

    1985-01-01

    Human alcohol dehydrogenase (ADH) consists of a complex group of isozymes encoded by at least five non-identical genes, two of which have previously been shown through enzymatic analysis to possess polymorphic variants. Using a cDNA probe the ADH2gene encoding the β subunit of human ADH was mapped to human chromosome 4. The cDNA probe for ADH2 was also used to detect a restriction fragment length polymorphism present in human populations. This polymorphism may help establish whether certain A...

  9. Lactate dehydrogenase in sickle cell disease.

    Stankovic Stojanovic, Katia; Lionnet, François

    2016-07-01

    Lactate dehydrogenase (LDH) activity is elevated in many pathological states. Interest in LDH activity in sickle cell disease (SCD) has developed out of an increased comprehension of the pathophysiological process and the clinical course of the disease. Elevated LDH activity in SCD comes from various mechanisms, especially intravascular hemolysis, as well as ischemia-reperfusion damage and tissular necrosis. Intravascular hemolysis is associated with vasoconstriction, platelet activation, endothelial damage, and vascular complications. LDH has been used as a diagnostic and prognostic factor of acute and chronic complications. In this review we have evaluated the literature where LDH activity was examined during steady-state or acute conditions in SCD. PMID:27138446

  10. NAD(H recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase

    2006-03-01

    Full Text Available A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens and lactate dehydrogenase (LDH; from Bacillus stearothermophilus was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.

  11. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  12. Yeast cell-based analysis of human lactate dehydrogenase isoforms.

    Mohamed, Lulu Ahmed; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2015-12-01

    Human lactate dehydrogenase (LDH) has attracted attention as a potential target for cancer therapy and contraception. In this study, we reconstituted human lactic acid fermentation in Saccharomyces cerevisiae, with the goal of constructing a yeast cell-based LDH assay system. pdc null mutant yeast (mutated in the endogenous pyruvate decarboxylase genes) are unable to perform alcoholic fermentation; when grown in the presence of an electron transport chain inhibitor, pdc null strains exhibit a growth defect. We found that introduction of the human gene encoding LDHA complemented the pdc growth defect; this complementation depended on LDHA catalytic activity. Similarly, introduction of the human LDHC complemented the pdc growth defect, even though LDHC did not generate lactate at the levels seen with LDHA. In contrast, the human LDHB did not complement the yeast pdc null mutant, although LDHB did generate lactate in yeast cells. Expression of LDHB as a red fluorescent protein (RFP) fusion yielded blebs in yeast, whereas LDHA-RFP and LDHC-RFP fusion proteins exhibited cytosolic distribution. Thus, LDHB exhibits several unique features when expressed in yeast cells. Because yeast cells are amenable to genetic analysis and cell-based high-throughput screening, our pdc/LDH strains are expected to be of use for versatile analyses of human LDH. PMID:26126931

  13. Aldehyde dehydrogenase protein superfamily in maize.

    Zhou, Mei-Liang; Zhang, Qian; Zhou, Ming; Qi, Lei-Peng; Yang, Xiong-Bang; Zhang, Kai-Xuan; Pang, Jun-Feng; Zhu, Xue-Mei; Shao, Ji-Rong; Tang, Yi-Xiong; Wu, Yan-Min

    2012-11-01

    Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement. PMID:22983498

  14. Dehydrogenase genes in the ectomycorrhizal fungus Tricholoma vaccinum: A role for Ald1 in mycorrhizal symbiosis.

    Henke, Catarina; Jung, Elke-Martina; Voit, Annekatrin; Kothe, Erika; Krause, Katrin

    2016-02-01

    Ectomycorrhizal symbiosis is important for forest ecosystem functioning with tree-fungal cooperation increasing performance and countering stress conditions. Aldehyde dehydrogenases (ALDHs) are key enzymes for detoxification and thus may play a role in stress response of the symbiotic association. With this focus, eight dehydrogenases, Ald1 through Ald7 and TyrA, of the ectomycorrhizal basidiomycete Tricholoma vaccinum were characterized and phylogenetically investigated. Functional analysis was performed through differential expression analysis by feeding different, environmentally important substances. A strong effect of indole-3-acetic acid (IAA) was identified, linking mycorrhiza formation and auxin signaling between the symbiosis partners. We investigated ald1 overexpressing strains for performance in mycorrhiza with the host tree spruce (Picea abies) and observed an increased width of the apoplast, accommodating the Hartig' net hyphae of the T. vaccinum over-expressing transformants. The results support a role for Ald1 in ectomycorrhiza formation and underline functional differentiation within fungal aldehyde dehydrogenases in the family 1 of ALDHs. PMID:26344933

  15. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  16. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [125I]FMIC and [125I]DEIBA were 70±5% and 47±14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  17. HISTIDINE MUTAGENESIS OF ARABIDOPSIS THALIANA PYRUVATE DEHYDROGENASE KINASE

    Pyruvate dehydrogenase kinase (PDK) is the primary regulator of flux through the mitochondrial pyruvate dehydrogenase complex (PDC). Analysis of the primary amino acid sequences of PDK from various sources reveals that these enzymes include the five domains characteristic of prokaryotic two-compone...

  18. Studies on the structure and function of pyruvate dehydrogenase complexes

    Abreu, de R.A.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.In chapter 2 a survey is given of the recent literature on pyruvate dehydrogenase complexes.In chapter 3 results

  19. Evolutionary origins of retinoid active short-chain dehydrogenases/reductases of SDR16C family.

    Belyaeva, Olga V; Chang, Chenbei; Berlett, Michael C; Kedishvili, Natalia Y

    2015-06-01

    Vertebrate enzymes that belong to the 16C family of short-chain dehydrogenases/reductases (SDR16C) were shown to play an essential role in the control of retinoic acid (RA) levels during development. To trace the evolution of enzymatic function of SDR16C family, and to examine the origins of the pathway for RA biosynthesis from vitamin A, we identified putative SDR16C enzymes through the extensive search of available genome sequencing data in a subset of species representing major metazoan phyla. The phylogenetic analysis revealed that enzymes from protostome, non-chordate deuterostome and invertebrate chordate species are found in three clades of SDR16C family containing retinoid active enzymes, which are retinol dehydrogenase 10 (RDH10), retinol dehydrogenases E2 (RDHE2) and RDHE2-similar, and dehydrogenase reductase (SDR family) member 3 (DHRS3). For the initial functional analysis, we cloned RDH10- and RDHE2-related enzymes from the early developmental stages of a non-chordate deuterostome, green sea urchin Lytechinus variegatus, and an invertebrate chordate, sea squirt Ciona intestinalis. In situ hybridization revealed that these proteins are expressed in a pattern relevant to development, while assays performed on proteins expressed in mammalian cell culture showed that they possess retinol-oxidizing activity as their vertebrate homologs. The existence of invertebrate homologs of DHRS3 was inferred from the analysis of phylogeny and cofactor-binding residues characteristic of preference for NADP(H). The presence of invertebrate homologs in the DHRS3 group of SDR16C is interesting in light of the complex mutually activating interaction, which we have recently described for human RDH10 and DHRS3 enzymes. Further functional analysis of these homologs will establish whether this interaction evolved to control retinoid homeostasis only in vertebrates, or is also conserved in pre-vertebrates. PMID:25451586

  20. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  1. Rapid inhibition of pyruvate dehydrogenase: an initiating event in high dietary fat-induced loss of metabolic flexibility in the heart.

    Clair Crewe

    Full Text Available Cardiac function depends on the ability to switch between fatty acid and glucose oxidation for energy production in response to changes in substrate availability and energetic stress. In obese and diabetic individuals, increased reliance on fatty acids and reduced metabolic flexibility are thought to contribute to the development of cardiovascular disease. Mechanisms by which cardiac mitochondria contribute to diet-induced metabolic inflexibility were investigated. Mice were fed a high fat or low fat diet for 1 d, 1 wk, and 20 wk. Cardiac mitochondria isolated from mice fed a high fat diet displayed a diminished ability to utilize the glycolytically derived substrate pyruvate. This response was rapid, occurring within the first day on the diet, and persisted for up to 20 wk. A selective increase in the expression of pyruvate dehydrogenase kinase 4 and inhibition of pyruvate dehydrogenase are responsible for the rapid suppression of pyruvate utilization. An important consequence is that pyruvate dehydrogenase is sensitized to inhibition when mitochondria respire in the presence of fatty acids. Additionally, increased expression of pyruvate dehydrogenase kinase 4 preceded any observed diet-induced reductions in the levels of glucose transporter type 4 and glycolytic enzymes and, as judged by Akt phosphorylation, insulin signaling. Importantly, diminished insulin signaling evident at 1 wk on the high fat diet did not occur in pyruvate dehydrogenase kinase 4 knockout mice. Dietary intervention leads to a rapid decline in pyruvate dehydrogenase kinase 4 levels and recovery of pyruvate dehydrogenase activity indicating an additional form of regulation. Finally, an overnight fast elicits a metabolic response similar to that induced by high dietary fat obscuring diet-induced metabolic changes. Thus, our data indicate that diet-induced inhibition of pyruvate dehydrogenase may be an initiating event in decreased oxidation of glucose and increased reliance

  2. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  3. Fast internal dynamics in alcohol dehydrogenase

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains

  4. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Margit Winkler; Manuela Avi; Karen Robins; Strohmeier, Gernot A; Sonavane, Manoj N.; Kamila Napora-Wijata

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisia...

  5. The Changes of Hepatic,Muscle Glycogen and Succinate Dehydrogenase 3mRNA Expression in Skeletal Muscle of Sport Low Hemoglobin Rats%运动性低血色素大鼠骨骼肌有氧氧化能量代谢系统的变化研究

    张毅

    2011-01-01

    To observe the changes of hepatic,muscle glycogen and succinate dehydrogenase 3mRNA expression in skeletal muscle of sport low hemoglobin rats and to provide a reference for further study on the recovery of the skeletal muscle motor capacity with sports anemia.Method:20 Wister rats were divided into two groups: silent control group(n=10) and training group(n=10).After seven weeks increase mental treadmill exercise,the model of sports anemia was built up.All rats were killed during 24H after training.The Glycogen in liver and skeletal muscle,SDH activity and expression of UCP3mRNA were to be detected and observed.Results:1)Compared with silent control group,the RBC,Hb and HCT of training group decreased significantly(P0.05),so the model was successful;2)There was no significant change in the recovery of the muscle and hepatic glycogen in sports anemia rats(P0.05);3)In sports anemia status,the SDH activity decreased highly significantly(P0.01);4)Expression of UCP3mRNA were increased significantly in sports anemia rats(P0.01).Conclusions: 7 weeks increasing treadmill exercise can make rats appear symptoms of low hemoglobin;Sport low hemoglobin did not affect recovery speed of muscle and hepatic glycogen;the activity of SDH significantly reduce,and increased expression of UCP3mRNA.This may be the reasons that sport low hemoglobin can decrease the rate of athletic aerobic oxidation.%为进一步研究改善贫血状况和采用恢复手段促进骨骼肌的快速恢复打下基础。方法:将20只Wistar大鼠随机分为安静对照组(n=10)和运动组(n=10)。采用7周递增负荷跑台运动建立运动性低血色素大鼠模型,建模成功后第二天宰杀大鼠,取骨骼肌和肝脏测定肌糖原、肝糖原含量,并测定骨骼肌的SDH活性和UCP3mRNA表达。结果:1)7周递增负荷跑台运动导致了运动大鼠红细胞计数、血红蛋白、红细胞压积显著降低(P〈0.05

  6. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice.

    Zhang, Zhe; Cheng, Zhi-Jun; Gan, Lu; Zhang, Huan; Wu, Fu-Qing; Lin, Qi-Bing; Wang, Jiu-Lin; Wang, Jie; Guo, Xiu-Ping; Zhang, Xin; Zhao, Zhi-Chao; Lei, Cai-Lin; Zhu, Shan-Shan; Wang, Chun-Ming; Wan, Jian-Min

    2016-08-01

    Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism. PMID:27297988

  7. Crystallization, X-ray diffraction analysis and phasing of 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus

    The expression, purification and crystallization of 17β-hydroxysteroid dehydrogenase from the filamentous fungus C. lunatus and its Y167F mutant, both in the apo form, are described. X-ray diffraction analysis and phasing by Patterson-search techniques are reported. 17β-Hydroxysteroid dehydrogenase from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) is an NADP(H)-dependent enzyme that preferentially catalyses the oxidoreduction of oestrogens and androgens. The enzyme belongs to the short-chain dehydrogenase/reductase superfamily and is the only fungal hydroxysteroid dehydrogenase known to date. 17β-HSDcl has recently been characterized and cloned and has been the subject of several functional studies. Although several hypotheses on the physiological role of 17β-HSDcl in fungal metabolism have been formulated, its function is still unclear. An X-ray crystallographic study has been undertaken and the optimal conditions for crystallization of 17β-HSDcl (apo form) were established, resulting in well shaped crystals that diffracted to 1.7 Å resolution. The space group was identified as I4122, with unit-cell parameters a = b = 67.14, c = 266.77 Å. Phasing was successfully performed by Patterson search techniques. A catalytic inactive mutant Tyr167Phe was also engineered, expressed, purified and crystallized for functional and structural studies

  8. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD+), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H2O2) in the culture medium. Under oxidative stress, the NAD+ generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD+ reveals an intricate link between metabolism and the processing of genetic information

  9. Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase.

    Adam L Orr

    Full Text Available Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD⁺ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5 were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC₅₀ and K(i values between ∼1-15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems.

  10. Undetected Toxicity Risk in Pharmacogenetic Testing for Dihydropyrimidine Dehydrogenase

    Felicia Stefania Falvella

    2015-04-01

    Full Text Available Fluoropyrimidines, the mainstay agents for the treatment of colorectal cancer, alone or as a part of combination therapies, cause severe adverse reactions in about 10%–30% of patients. Dihydropyrimidine dehydrogenase (DPD, a key enzyme in the catabolism of 5-fluorouracil, has been intensively investigated in relation to fluoropyrimidine toxicity, and several DPD gene (DPYD polymorphisms are associated with decreased enzyme activity and increased risk of fluoropyrimidine-related toxicity. In patients carrying non-functional DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T, fluoropyrimidines should be avoided or reduced according to the patients’ homozygous or heterozygous status, respectively. For other common DPYD variants (c.496A>G, c.1129-5923C>G, c.1896T>C, conflicting data are reported and their use in clinical practice still needs to be validated. The high frequency of DPYD polymorphism and the lack of large prospective trials may explain differences in studies’ results. The epigenetic regulation of DPD expression has been recently investigated to explain the variable activity of the enzyme. DPYD promoter methylation and its regulation by microRNAs may affect the toxicity risk of fluoropyrimidines. The studies we reviewed indicate that pharmacogenetic testing is promising to direct personalised dosing of fluoropyrimidines, although further investigations are needed to establish the role of DPD in severe toxicity in patients treated for colorectal cancer.

  11. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  12. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum.

    Asiimwe, Theodore; Krause, Katrin; Schlunk, Ines; Kothe, Erika

    2012-08-01

    We report the first mycorrhizal fungal aldehyde dehydrogenase gene, ald1, which was isolated from the basidiomycete Tricholoma vaccinum. The gene, encoding a protein Ald1 of 502 amino acids, is up-regulated in ectomycorrhiza. Phylogenetic analyses using 53 specific fungal aldehyde dehydrogenases from all major phyla in the kingdom of fungi including Ald1 and two partial sequences of T. vaccinum were performed to get an insight in the evolution of the aldehyde dehydrogenase family. By using competitive and real-time RT-PCR, ald1 is up-regulated in response to alcohol and aldehyde-related stress. Furthermore, heterologous expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay demonstrated the oxidation of propionaldehyde and butyraldehyde with different kinetics using either NAD(+) or NADP(+) as cofactors. In addition, overexpression of ald1 in T. vaccinum after Agrobacterium tumefaciens-mediated transformation increased ethanol stress tolerance. These results demonstrate the ability of Ald1 to circumvent ethanol stress, a critical function in mycorrhizal habitats. PMID:22159964

  13. Function of C-terminal hydrophobic region in fructose dehydrogenase

    Fructose dehydrogenase (FDH) catalyzes oxidation of D-fructose into 2-keto-D-fructose and is one of the enzymes allowing a direct electron transfer (DET)-type bioelectrocatalysis. FDH is a heterotrimeric membrane-bound enzyme (subunit I, II, and III) and subunit II has a C terminal hydrophobic region (CHR), which was expected to play a role in anchoring to membranes from the amino acid sequence. We have constructed a mutated FDH lacking of CHR (ΔchrFDH). Contrary to the expected function of CHR, ΔchrFDH is expressed in the membrane fraction, and subunit I/III subcomplex (ΔcFDH) is also expressed in a similar activity level but in the soluble fraction. In addition, the enzyme activity of the purified ΔchrFDH is about one twentieth of the native FDH. These results indicate that CHR is concerned with the binding between subunit I(/III) and subunit II and then with the enzyme activity. ΔchrFDH has clear DET activity that is larger than that expected from the solution activity, and the characteristics of the catalytic wave of ΔchrFDH are very similar to those of FDH. The deletion of CHR seems to increase the amounts of the enzyme with the proper orientation for the DET reaction at electrode surfaces. Gel filtration chromatography coupled with urea treatment shows that the binding in ΔchrFDH is stronger than that in FDH. It can be considered that the rigid binding between subunit I(/III) and II without CHR results in a conformation different from the native one, which leads to the decrease in the enzyme activity in solution

  14. Urinary Bladder Paragangliomas: Analysis of Succinate Dehydrogenase and Outcome.

    Gupta, Sounak; Zhang, Jun; Rivera, Michael; Erickson, Lori A

    2016-09-01

    Paragangliomas of the urinary bladder can arise sporadically or as a part of hereditary syndromes including those with underlying mutations in the succinate dehydrogenase (SDH) genes, which serve as tumor suppressors. SDH deficiency can be screened for by absence of immunohistochemical detection of SDHB. In this study of 11 cases, clinical follow-up was available for 9/11 cases. The cases were reviewed and graded based on the grading system for adrenal pheochromocytomas and paragangliomas (GAPP) criteria. Immunohistochemistry was performed for Ki67 and SDHB. Proliferative index was calculated by quantification of Ki67-positive cells at hot spots. The medical record was accessed for documentation of germline SDH mutations. Urinary bladder paragangliomas had a female predilection (8/11 cases), and 5/11 cases exhibited metastatic behavior. Patients with metastatic disease tended to be younger (mean age 43 vs 49 years), have larger lesions (5.8 vs 1.5 cm), and presented with catecholamine excess (4/4 vs 2/6 patients with non-metastatic lesions). Patients with metastatic disease had a higher mean Ki67 proliferation rate (4.9 vs 1.3 %) and GAPP score (mean of 5.8 vs 3.8) (p = 0.01). IHC for SDHB expression revealed loss of expression in 2/6 cases of non-metastatic paragangliomas compared to 4/5 patients with metastatic paragangliomas. Interestingly, of these four patients, two had a documented mutation of SDHB, one patient had a SDHC mutation, and another patient had a history of familial disease without mutation analysis being performed. Our study, suggests that SDH loss was suggestive of metastatic behavior in addition to younger age at diagnosis, larger tumor size, and higher Ki67 proliferation rate and catecholamine type. PMID:27262318

  15. Maize cytokinin dehydrogenase isozymes are localized predominantly to the vacuoles.

    Zalabák, David; Johnová, Patricie; Plíhal, Ondřej; Šenková, Karolina; Šamajová, Olga; Jiskrová, Eva; Novák, Ondřej; Jackson, David; Mohanty, Amitabh; Galuszka, Petr

    2016-07-01

    The maize genome encompasses 13 genes encoding for cytokinin dehydrogenase isozymes (CKXs). These enzymes are responsible for irreversible degradation of cytokinin plant hormones and thus, contribute regulating their levels. Here, we focus on the unique aspect of CKXs: their diverse subcellular distribution, important in regulating cytokinin homeostasis. Maize CKXs were tagged with green fluorescent protein (GFP) and transiently expressed in maize protoplasts. Most of the isoforms, namely ZmCKX1, ZmCKX2, ZmCKX4a, ZmCKX5, ZmCKX6, ZmCKX8, ZmCKX9, and ZmCKX12, were associated with endoplasmic reticulum (ER) several hours after transformation. GFP-fused CKXs were observed to accumulate in putative prevacuolar compartments. To gain more information about the spatiotemporal localization of the above isoforms, we prepared stable expression lines of all ZmCKX-GFP fusions in Arabidopsis thaliana Ler suspension culture. All the ER-associated isoforms except ZmCKX1 and ZmCKX9 were found to be targeted primarily to vacuoles, suggesting that ER-localization is a transition point in the intracellular secretory pathway and vacuoles serve as these isoforms' final destination. ZmCKX9 showed an ER-like localization pattern similar to those observed in the transient maize assay. Apoplastic localization of ZmCKX1 was further confirmed and ZmCKX10 showed cytosolic/nuclear localization due to the absence of the signal peptide sequence as previously reported. Additionally, we prepared GFP-fused N-terminal signal deletion mutants of ZmCKX2 and ZmCKX9 and clearly demonstrated that the localization pattern of these mutant forms was cytosolic/nuclear. This study provides the first complex model for spatiotemporal localization of the key enzymes of the cytokinin degradation/catabolism in monocotyledonous plants. PMID:27031423

  16. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes.

    Smith, K.; Sundaram, T K; Kernick, M

    1984-01-01

    Malate dehydrogenases from bacteria belonging to the genus Thermoactinomyces are tetrameric, like those from Bacillus spp., and exhibit a high degree of structural homology to Bacillus malate dehydrogenase as judged by immunological cross-reactivity. Malate dehydrogenases from other actinomycetes are dimers and do not cross-react with antibodies to Bacillus malate dehydrogenase.

  17. Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae.

    Tang, J. C.; Forage, R G; Lin, E C

    1982-01-01

    An NAD+-linked glycerol dehydrogenase hyperproduced by a mutant of Escherichia coli K-12 was found to be immunochemically homologous to a minor glycerol dehydrogenase of unknown physiological function in Klebsiella pneumoniae 1033, but not to the glycerol dehydrogenase of the dha system responsible for anaerobic dissimilation of glycerol or to the 2,3-butanediol dehydrogenase of K. pneumoniae.

  18. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    ... as seizures, life-threatening heart and breathing problems, coma, and sudden death. This condition may explain some ... hydroxyacyl-CoA dehydrogenase United Mitochondrial Disease Foundation: Treatments & Therapies These resources from MedlinePlus offer information about the ...

  19. Crystallization behaviour of glyceraldehyde dehydrogenase from Thermoplasma acidophilum

    Lermark, L.; Degtjarik, Oksana; Steffler, F.; Sieber, V.; Kutá-Smatanová, Ivana

    2015-01-01

    Roč. 71, č. 12 (2015), s. 1475-1480. ISSN 2053-230X Institutional support: RVO:67179843 Keywords : TaAlDH * Thermoplasma acidophilum * bioproduction * cell-free enzyme cascade * glyceraldehyde dehydrogenase Subject RIV: CE - Biochemistry

  20. Glucose 6 phosphate dehydrogenase deficiency in adults

    Objective: To determine the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in adults presented with anemia. Subjects and Methods: Eighteen months admission data was reviewed for G6PD deficiency as a cause of anemia. Anemia was defined by world health organization (WHO) criteria as haemoglobin less than 11.3 gm%. G6PD activity was measured by Sigma dye decolorisation method. All patients were screened for complications of hemolysis and its possible cause. Patients with more than 13 years of age were included in the study. Results: Out of 3600 patients admitted, 1440 were found anaemic and 49 as G6PD deficient. So the frequency of G6PD deficiency in anaemic patients was 3.4% and the overall frequency is 1.36%. G6PD deficiency among males and females was three and six percent respectively. Antimalarials and antibiotics containing sulphonamide group were the most common precipitating factors for hemolysis. Anemia and jaundice were the most common presentations while malaria was the most common associated disease. Acute renal failure was the most severe complication occurring in five patients with two deaths. Conclusion: G6PD deficiency is a fairly common cause of anemia with medicine as common precipitating factor for hemolysis. Such complications can be avoided with early recognition of the disease and avoiding indiscriminate use of medicine. (author)

  1. Aromatic amine dehydrogenase, a second tryptophan tryptophylquinone enzyme.

    Govindaraj, S; Eisenstein, E.; Jones, L. H.; Sanders-Loehr, J; Chistoserdov, A Y; Davidson, V L; Edwards, S. L.

    1994-01-01

    Aromatic amine dehydrogenase (AADH) catalyzes the oxidative deamination of aromatic amines including tyramine and dopamine. AADH is structurally similar to methylamine dehydrogenase (MADH) and possesses the same tryptophan tryptophylquinone (TTQ) prosthetic group. AADH exhibits an alpha 2 beta 2 structure with subunit molecular weights of 39,000 and 18,000 and with a quinone covalently attached to each beta subunit. Neither subunit cross-reacted immunologically with antibodies to the correspo...

  2. Soluble aldehyde dehydrogenase and metabolism of aldehydes by soybean bacteroids.

    Peterson, J. B.; LaRue, T A

    1982-01-01

    A soluble aldehyde dehydrogenase (EC 1.2.1.3) was partially purified from Rhizobium japonicum bacteroids and from free-living R. japonicum 61A76. The enzyme was activated by NAD+, NADH, and dithiothreitol, and it reduced NAD(P)+. Acetaldehyde, propionaldehyde, butyraldehyde, benzaldehyde, and succinic semialdehyde were substrates. The Km for straight-chain aldehydes decreased with increasing carbon chain length. The aldehyde dehydrogenase was inhibited by 6-cyanopurine, but not by metronidazo...

  3. Malate dehydrogenase activity in human seminal plasma and spermatozoa homogenates

    Hulya Leventerler

    2013-08-01

    Full Text Available Purpose: Malate Dehydrogenase is an important enzyme of the Krebs cycle, most cells require this enzyme for their metabolic activity. We evaluated the Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates in normozoospermic, fertile and infertile males. Also glucose and fructose concentrations were determined in the seminal plasma samples. Material and Methods: Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates of normozoospermic and infertile males was determined by spectrophotometric method. Semen analysis was considered according to the WHO Criteria. Results: Malat Dehydrogenase-NAD value in seminal plasma (the mean ± SD, mU/ml of asthenoteratospermic (40.0±25.7 and azospermic (38.0±43.6 groups were significantly lower than normozoospermic, (93.9±52.1 males. Malat Dehydrogenase-NAD value in sperm homogenates (the mean ± SD, mU/ 20x106 sperm of teratospermic group (136.8±61.8 was significantly higher compared to the normozoospermic (87.3±26.5 males. Glucose concentration (mg/dl in asthenoteratospermic (4.0±1.4 and azospermic (15.4±6.4 groups were significantly higher than fertile (2.0±2.1 males. Also fructose concentration (mg/dl in asthenoteratospermic (706.6±143.3 and azospermic (338.1±228.2 groups were significantly high compared to the normozoospermic (184.7±124.8 group. Conclusion: Sperm may be some part of the source of Malat Dehydrogenase activity in semen. Malat Dehydrogenase activity in seminal plasma has an important role on energy metabolism of sperm. Intermediate substrates of Krebs cycle might have been produced under the control of Malat Dehydrogenase and these substrates may be important for sperm motility and male infertility. [Cukurova Med J 2013; 38(4.000: 648-658

  4. In vitro inhibition of 10-formyltetrahydrofolate dehydrogenase activity by acetaldehyde

    Mun, Ju-Ae; Doh, Eunjin; Min, Hyesun

    2008-01-01

    Alcoholism has been associated with folate deficiency in humans and laboratory animals. Previous study showed that ethanol feeding reduces the dehydrogenase and hydrolase activity of 10-formyltetrahydrofolate dehydrogenase (FDH) in rat liver. Hepatic ethanol metabolism generates acetaldehyde and acetate. The mechanisms by which ethanol and its metabolites produce toxicity within the liver cells are unknown. We purified FDH from rat liver and investigated the effect of ethanol, acetaldehyde an...

  5. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation

    Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hallberg, B Martin; Ludwig, Roland; Divne, Christina

    2015-01-01

    A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled vi...

  6. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C4 of the Plateau Pika (Ochotona curzoniae

    Yang Wang

    2016-01-01

    Full Text Available Testis-specific lactate dehydrogenase (LDH-C4 is one of the lactate dehydrogenase (LDH isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C4 in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000–5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C4 in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A4 (LDH-A4, Lactate Dehydrogenase B4 (LDH-B4, and LDH-C4 were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE and native polyacrylamide gel electrophoresis (PAGE. The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km of LDH-C4 for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C4 for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki of the LDH isoenzymes varied: LDH-A4 (Ki = 26.900 mmol/L, LDH-B4 (Ki = 23.800 mmol/L, and LDH-C4 (Ki = 65.500 mmol/L. These data suggest that inhibition of lactate by LDH-A4 and LDH-B4 were stronger than LDH-C4. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C4.

  7. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli.

    Leonardo, M R; Cunningham, P.R.; Clark, D P

    1993-01-01

    The regulation of the adhE gene, which encodes the trifunctional fermentative acetaldehyde-alcohol dehydrogenase of Escherichia coli, was investigated by the construction of gene fusions and by two-dimensional protein gel electrophoresis. Both operon and protein fusions of adhE to lacZ were induced 10- to 20-fold by anaerobic conditions, and both fusions were repressed by nitrate, demonstrating that regulation is at the level of transcription. Nitrate repression of phi (adhE-lacZ) expression,...

  8. Biochemical and molecular characterization of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase from Toxoplasma gondii

    Triana, Miryam Andrea Hortua; Huynh, My-Hang; Manuel F Garavito; Fox, Barbara A.; Bzik, David J.; Vern B Carruthers; Löffler, Monika; Zimmermann, Barbara H.

    2012-01-01

    The pyrimidine biosynthesis pathway in the protozoan pathogen Toxoplasma gondii is essential for parasite growth during infection. To investigate the properties of dihydroorotate dehydrogenase (TgDHOD), the fourth enzyme in the T. gondii pyrimidine pathway, we expressed and purified recombinant TgDHOD. TgDHOD exhibited a specific activity of 84 U/mg, a kcat of 89 sec−1, a Km = 60 μM for L-dihydroorotate, and a Km = 29 μM for decylubiquinone (QD). Quinones lacking or having short isoprenoid si...

  9. Characterization of Two Mitochondrial Flavin Adenine Dinucleotide-Dependent Glycerol-3-Phosphate Dehydrogenases in Trypanosoma brucei

    Škodová, Ingrid; Verner, Zdeněk; Bringaud, F.; Fabian, P.; Lukeš, Julius; Horváth, A.

    2013-01-01

    Roč. 12, č. 12 (2013), s. 1664-1673. ISSN 1535-9778 R&D Projects: GA ČR(CZ) GAP305/11/2179; GA ČR GD206/09/H026; GA MŠk LH12104 Institutional support: RVO:60077344 Keywords : alternative NADH dehydrogenase * inducible expression system * blood-stream forms * complex-I * procyclic trypanosomes * sleeping sickness * oxidase * localization * metabolism * cycle Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.179, year: 2013

  10. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C₄ of the Plateau Pika (Ochotona curzoniae).

    Wang, Yang; Wei, Lian; Wei, Dengbang; Li, Xiao; Xu, Lina; Wei, Linna

    2016-01-01

    Testis-specific lactate dehydrogenase (LDH-C₄) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C₄ in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000-5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C₄ in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A₄ (LDH-A₄), Lactate Dehydrogenase B₄ (LDH-B₄), and LDH-C₄ were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C₄ for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C₄ for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A₄ (Ki = 26.900 mmol/L), LDH-B₄ (Ki = 23.800 mmol/L), and LDH-C₄ (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A₄ and LDH-B₄ were stronger than LDH-C₄. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH

  11. Nox5 forms a functional oligomer mediated by self-association of its dehydrogenase domain†

    Kawahara, Tsukasa; Jackson, Heather M.; Smith, Susan M. E.; Simpson, Paul D.; Lambeth, J. David

    2011-01-01

    Nox5 belongs to the calcium-regulated subfamily of NADPH oxidases (Nox). Like other calcium-regulated Noxes, Nox5 has an EF hand-containing calcium-binding domain at its N-terminus, a transmembrane heme-containing region and a C-terminal dehydrogenase (DH) domain that binds FAD and NADPH. While Nox1-4 require regulatory subunits including p22phox, Nox5 activity does not depend on any subunits. We found that inactive point mutants and truncated forms of Nox5 (including the naturally expressed ...

  12. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein.

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Kim, Suk

    2016-03-01

    The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis. PMID:27051349

  13. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha;

    2012-01-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-direc...... insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k...

  14. Inhibition of stress mediated cell death by human lactate dehydrogenase B in yeast.

    Sheibani, Sara; Jones, Natalie K; Eid, Rawan; Gharib, Nada; Arab, Nagla T T; Titorenko, Vladimir; Vali, Hojatollah; Young, Paul A; Greenwood, Michael T

    2015-08-01

    We report the identification of human L- lactate dehydrogenase B (LDHB) as a novel Bax suppressor. Yeast heterologously expressing LDHB is also resistant to the lethal effects of copper indicating that it is a general suppressor of stress mediated cell death. To identify potential LDHB targets, LDHB was expressed in yeast mutants defective in apoptosis, necrosis and autophagy. The absence of functional PCD regulators including MCA1, YBH3, cyclophilin (CPR3) and VMA3, as well as the absence of the pro-survival autophagic pathway (ATG1,7) did not interfere with the LDHB mediated protection against copper indicating that LDHB functions independently of known PCD regulators or by simply blocking or stimulating a common PCD promoting or inhibitory pathway. Measurements of lactate levels revealed that short-term copper stress (1.6 mM, 4 h), does not increase intracellular levels of lactate, instead a three-fold increase in extracellular lactate was observed. Thus, yeast cells resemble mammalian cells where different stresses are known to lead to increased lactate production leading to lactic acidosis. In agreement with this, we found that the addition of exogenous lactic acid to growth media was sufficient to induce cell death that could be inhibited by the expression of LDHB. Taken together our results suggest that lactate dehydrogenase is a general suppressor of PCD in yeast. PMID:26032856

  15. Crystallization and preliminary X-ray characterization of a glycerol dehydrogenase from the human pathogen Salmonella enterica serovar Typhimurium

    The expression, purification and crystallization of a glycerol dehydrogenase from S. typhimurium is decribed. The crystals diffracted to 3.5 Å resolution. Glycerol dehydrogenase (GldA) encoded by the STM4108 gene (gldA) has been related to the synthesis of HilA, a major transcriptional regulator that is responsible for the expression of invasion genes in the human pathogen Salmonella enterica serovar Typhimurium. Single colourless crystals were obtained from a recombinant preparation of GldA overexpressed in Escherichia coli. They belonged to space group P2221, with unit-cell parameters a = 127.0, b = 160.1, c = 665.2 Å. The crystals contained a very large number of molecules in the asymmetric unit, probably 30–35. Diffraction data were collected to 3.5 Å resolution using synchrotron radiation at the European Synchrotron Radiation Facility

  16. A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

    Adeboye, Peter Temitope; Olsson, Lisbeth; Bettiga, Maurizio

    2016-07-01

    The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenase (Ald5) was also hypothesized to be actively involved in the conversion of coniferyl aldehyde under aerobic growth conditions in S. cerevisiae. In a second S. cerevisiae strain, the acetaldehyde dehydrogenase (ALD5) was deleted. A prototrophic control strain was also engineered. The engineered S. cerevisiae strains were cultivated in the presence of 1.1mM coniferyl aldehyde under aerobic condition in bioreactors. The results confirmed that expression of CALDH increased endogenous conversion of coniferyl aldehyde in S. cerevisiae and ALD5 is actively involved with the conversion of coniferyl aldehyde in S. cerevisiae. PMID:27070284

  17. Structural studies on dihydrolipoyl transacetylase : the core component of the pyruvate dehydrogenase complex of Azotobacter vinelandii.

    Hanemaaijer, R.

    1988-01-01

    The studies described in this thesis deal with the structure of the Azotobactervinelandii dihydrolipoyl transacetylase, the core component (E 2 ) of the pyruvate dehydrogenase complex. in all organisms the pyruvate dehydrogenase complex is closely related to the 2-oxoglutarate dehydrogenase complex and, if present, the branched-chain 2-oxoacid dehydrogenase complex. These enzyme complexes are large multimeric structures. The smallest known is the pyruvate dehydrogenase complex from A.vineland...

  18. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    Saúl Gómez-Manzo; Jaime Marcial-Quino; America Vanoye-Carlo; Hugo Serrano-Posada; Abigail González-Valdez; Víctor Martínez-Rosas; Beatriz Hernández-Ochoa; Edgar Sierra-Palacios; Rosa Angélica Castillo-Rodríguez; Miguel Cuevas-Cruz; Eduardo Rodríguez-Bustamante; Roberto Arreguin-Espinosa

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinic...

  19. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J;

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  20. Expressions of 11β-hydroxysteroid dehydrogenase type 1 and steroids receptors in ciliary body with glucocorticoid-induced ocular hypertension rabbit model%11β-HSD1及皮质类固醇受体在兔糖皮质激素性高眼压模型睫状体组织中的表达

    刘溢; 张玉杰; 夏丹; 姚志峰; 袁志兰

    2014-01-01

    Background Long-term administration of glucocorticoid drugs induces ocular hypertension in susceptible individuals probably.It has been verified that 1 1β-hydroxysteroid dehydrogenase type 1 (11β-HSD1),glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) can affect the generating of aqueous humor,but how they play the role in glucocorticoid-induced ocular hypertension is unclear.Objective This study was to investigate the relationship of expressions of 11β-HSD1 and steroids receptors in ciliary body and steroid-induced ocular hypertension.Methods Thirteen 12-16 week-old New Zealand albino rabbits were randomized to control group (5 rabbits) and experimental group (8 rabbits).Steroid-induced glaucoma models were induced by administration of subconjunctival injection of 5 mg dexamethasone solution(1 ml) and 0.5% dexamethasone eye drops on alternate days in the left eyes for consecutive two months in the experimental group,and the equal volume of sterile normal saline solution was used in the same way in the control group.The successful criteria of model eyes was defined as rising of intraocular pressure (IOP) to ≥ 18 mmHg for over one week.Then,the animals were sacrificed by excessive anesthesia and the ciliary tissues were isolated for the assay of expressions of 1 1β-HSD1 protein by immunochemistry,and the expressions of 11β-HSD1 mRNA,GR mRNA and MR mRNA in ciliary body were semi-quantitatively detected by reverse transcription-PCR (RT-PCR).The experimental results were compared between the two groups.Results The IOP was normal in the first two weeks after administration of drugs,and no significant difference was found in IOP between the first week and the second week in the experimental group (q =0.469,P >0.05).From 3 through 5 weeks after injection,the IOP was gradually elevated,with the highest value of (18.87±0.77) mmHg in the fifth week.Significant differences were seen between the two groups at mentioned-above time points (q =10

  1. Retinol dehydrogenase, RDH1l, is essential for the heart development and cardiac performance in zebrafish

    WANG Wei; ZHANG Li-feng; GUI Yong-hao; SONG Hou-yan

    2013-01-01

    Background Retinoic acid (RA) is a potent signaling molecule that plays pleiotropic roles in patterning,morphogenesis,and organogenesis during embryonic development.The synthesis from retinol (vitamin A) to retinoic acid requires two sequential oxidative steps.The first step involves the oxidation of retinol to retinal through the action of retinol dehydrogenases.Retinol dehydrogenases1l (RDH1l) is a novel zebrafish retinol dehydrogenase.Herein we investigated the role of zebrafish RDH1l in heart development and cardiac performance in detail.Methods RDH1l specific morpholino was used to reduce the function of RDH1l in zebrafish.The gene expressions were observed by using whole mount in situ hybridization.Heart rates were observed and recorded under the microscope from 24 to 72 hours post fertilization (hpf).The cardiac performance was analyzed by measuring ventricular shortening fraction (VSF).Results The knock-down of RDH1l led to abnormal neural crest cells migration and reduced numbers of neural crest cells in RDH1l morphant embryos.The reduced numbers of cardiac neural crest cells also can be seen in RDH1l morphant embryos.Furthermore,the morpholino-mediated knock-down of RDH1l resulted in the abnormal heart loop.The left-right determining genes expression pattern was altered in RDH1l morphant embryos.The impaired cardiac performance was observed in RDH1l morphant embryos.Taken together,these data demonstrate that RDH1l is essential for the heart development and cardiac performance in zebrafish.Conclusions RDH1l plays a important role in the neural crest cells development,and then ultimately affects the heart loop and cardiac performance.These results show for the first time that an enzyme involved in the retinol to retinaldehyde conversion participate in the heart development and cardiac performance in zebrafish.

  2. Testis-specific glyceraldehyde-3-phosphate dehydrogenase: origin and evolution

    Frishman Dmitrij

    2011-06-01

    Full Text Available Abstract Background Glyceraldehyde-3-phosphate dehydrogenase (GAPD catalyses one of the glycolytic reactions and is also involved in a number of non-glycolytic processes, such as endocytosis, DNA excision repair, and induction of apoptosis. Mammals are known to possess two homologous GAPD isoenzymes: GAPD-1, a well-studied protein found in all somatic cells, and GAPD-2, which is expressed solely in testis. GAPD-2 supplies energy required for the movement of spermatozoa and is tightly bound to the sperm tail cytoskeleton by the additional N-terminal proline-rich domain absent in GAPD-1. In this study we investigate the evolutionary history of GAPD and gain some insights into specialization of GAPD-2 as a testis-specific protein. Results A dataset of GAPD sequences was assembled from public databases and used for phylogeny reconstruction by means of the Bayesian method. Since resolution in some clades of the obtained tree was too low, syntenic analysis was carried out to define the evolutionary history of GAPD more precisely. The performed selection tests showed that selective pressure varies across lineages and isoenzymes, as well as across different regions of the same sequences. Conclusions The obtained results suggest that GAPD-1 and GAPD-2 emerged after duplication during the early evolution of chordates. GAPD-2 was subsequently lost by most lineages except lizards, mammals, as well as cartilaginous and bony fishes. In reptilians and mammals, GAPD-2 specialized to a testis-specific protein and acquired the novel N-terminal proline-rich domain anchoring the protein in the sperm tail cytoskeleton. This domain is likely to have originated by exonization of a microsatellite genomic region. Recognition of the proline-rich domain by cytoskeletal proteins seems to be unspecific. Besides testis, GAPD-2 of lizards was also found in some regenerating tissues, but it lacks the proline-rich domain due to tissue-specific alternative splicing.

  3. Cloning and Characterization of Glyceraldehyde-3-phosphate Dehydrogenase Encoding Gene in Gracilaria/Gracilariopsis lemaneiformis

    REN Xueying; SUI Zhenghong; ZHANG Xuecheng

    2006-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene (gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  4. Assessment of toxicity using dehydrogenases activity and mathematical modeling.

    Matyja, Konrad; Małachowska-Jutsz, Anna; Mazur, Anna K; Grabas, Kazimierz

    2016-07-01

    Dehydrogenase activity is frequently used to assess the general condition of microorganisms in soil and activated sludge. Many studies have investigated the inhibition of dehydrogenase activity by various compounds, including heavy metal ions. However, the time after which the measurements are carried out is often chosen arbitrarily. Thus, it can be difficult to estimate how the toxic effects of compounds vary during the reaction and when the maximum of the effect would be reached. Hence, the aim of this study was to create simple and useful mathematical model describing changes in dehydrogenase activity during exposure to substances that inactivate enzymes. Our model is based on the Lagergrens pseudo-first-order equation, the rate of chemical reactions, enzyme activity, and inactivation and was created to describe short-term changes in dehydrogenase activity. The main assumption of our model is that toxic substances cause irreversible inactivation of enzyme units. The model is able to predict the maximum direct toxic effect (MDTE) and the time to reach this maximum (TMDTE). In order to validate our model, we present two examples: inactivation of dehydrogenase in microorganisms in soil and activated sludge. The model was applied successfully for cadmium and copper ions. Our results indicate that the predicted MDTE and TMDTE are more appropriate than EC50 and IC50 for toxicity assessments, except for long exposure times. PMID:27021434

  5. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri

    Carbon monoxide-dependent production of H2, CO2, and CH4 was detected in crude cell extracts of acetate-grown Methanosarcina barkeri. This metabolic transformation was associated with an active methyl viologen-linked CO dehydrogenase activity (5 to 10 U/mg of protein). Carbon monoxide dehydrogenase activity was inhibited 85% by 10 μM KCN and was rapidly inactivated by O2. The enzyme was nearly homogenous after 20-fold purification, indicating that a significant proportion of soluble cell protein was CO dehydrogenase (ca. 5%). The native purified enzyme displayed a molecular weight of 232,000 and a two-subunit composition of 92,000 and 18,000 daltons. The enzyme was shown to contain nickel by isolation of radioactive CO dehydrogenase from cells grown in 63Ni. Analysis of enzyme kinetic properties revealed an apparent K/sub m/ of 5 mM for CO and a V/sub max/ of 1300 U/mg of protein. The spectral properties of the enzyme were similar to those published for CO dehydrogenase from acetogenic anaerobes. The physiological functions of the enzyme are discussed

  6. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor. PMID:27266631

  7. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  8. Molecular cloning and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene from Penicillium expansum PE-12.

    Zhang, T; Qi, Z; Yu, Q S; Tang, K X

    2013-01-01

    Penicillium expansum produces large amounts of lipase, which is widely used in laundry detergent and leather industry. We isolated the glyceraldehyde-3-phosphate dehydrogenase gene (PeGPD) from P. expansum PE-12 through reverse transcriptase PCR and 5'-3' rapid amplification of cDNA ends (RACE-PCR). The gene is 1266 bp long, including an ORF of 1014 bp, encoding a polypeptide chain of 337 amino acids. A phylogenetic tree based on GPD proteins showed that P. expansum is close to Aspergillus species, but comparatively distant from P. marneffei. Southern blot results revealed a single copy of PeGPD, and expression analysis gave evidence of high expression levels. PeGPD genes have potential for genetic engineering of P. expansum for industrial lipase production. PMID:23420404

  9. Characterization of an Arxula adeninivorans alcohol dehydrogenase involved in the metabolism of ethanol and 1-butanol.

    Kasprzak, Jakub; Rauter, Marion; Riechen, Jan; Worch, Sebastian; Baronian, Kim; Bode, Rüdiger; Schauer, Frieder; Kunze, Gotthard

    2016-05-01

    In this study, alcohol dehydrogenase 1 from Arxula adeninivorans (Aadh1p) was identified and characterized. Aadh1p showed activity with short and medium chain length primary alcohols in the forward reaction and their aldehydes in the reverse reaction. Aadh1p has 64% identity with Saccharomyces cerevisiae Adh1p, is localized in the cytoplasm and uses NAD(+) as cofactor. Gene expression analysis showed a low level increase in AADH1 gene expression with ethanol, pyruvate or xylose as the carbon source. Deletion of the AADH1 gene affects growth of the cells with 1-butanol, ethanol and glucose as the carbon source, and a strain which overexpressed the AADH1 gene metabolized 1-butanol more rapidly. An ADH activity assay indicated that Aadh1p is a major enzyme for the synthesis of ethanol and the degradation of 1-butanol in A. adeninivorans. PMID:26912215

  10. Identification of a xanthinuria type I case with mutations of xanthine dehydrogenase in an Afghan child.

    Nakamura, Makiko; Yuichiro, Yamaguchi; Sass, Jörn Oliver; Tomohiro, Matsumura; Schwab, Karl Otfried; Takeshi, Nishino; Tatsuo, Hosoya; Ichida, Kimiyoshi

    2012-12-24

    Xanthinuria due to xanthine dehydrogenase (XDH) deficiency is a rare genetic disorder characterized by hypouricemia and the accumulation of xanthine in the urine. We have identified an Afghan girl whose xanthinuria could be classified as type I xanthinuria based on an allopurinol loading test. Three mutations were identified in the XDH gene, 141insG, C2729T (T910M) and C3886T (R1296W). Site-directed mutagenesis followed by expression analysis in Escherichia coli revealed that not only the frame shift mutation 141insG impairs XDH activity, but also the missense mutation C2729T, while C3886T resulted in major residual activity of about 50% of the wild type. In this report, a case of xanthinuria type I with mutations of XDH was identified and characterized by expression studies. PMID:22981351