WorldWideScience

Sample records for 14mev neutron cd

  1. FEASIBILITY OF MEASURING IRON IN VIVO USING FAST 14 MEV NEUTRONS.

    WIELOPOLSKI, L.

    2005-05-01

    In this short report, I reassess the feasibility of measuring iron in vivo in the liver and heart of thalassemia patients undergoing chelation therapy. Despite the multiplicity of analytical methods for analyzing iron, only two, magnetic resonance imaging, and magnetic susceptibility, are suitable for in vivo applications, and these are limited to the liver because of the heart's beat. Previously, a nuclear method, gamma-resonance scattering, offered a quantitative measure of iron in these organs; however, it was abandoned because it necessitated a nuclear reactor to produce the radioactive source. I reviewed and reassessed the status of two alternative nuclear methods, based on iron spectroscopy of gamma rays induced by fast neutron inelastic scattering and delayed activation in iron. Both are quantitative methods with high specificity for iron and adequate penetrating power to measure it in organs sited deep within the human body. My experiments demonstrated that both modalities met the stated qualitative objectives to measure iron. However, neutron dosimetry revealed that the intensity of the neutron radiation field was too weak to reliably assess the minimum detection limits, and to allow quantitative extrapolations to measurements in people. A review of the literature, included in this report, showed that these findings agree qualitatively with the published results, although the doses reported were about three orders-of-magnitude higher than those I used. Reviewing the limitations of the present work, steps were outlined for overcoming some of the shortcomings. Due to a dearth of valid quantitative alternatives for determining iron in vivo, I conclude that nuclear methods remain the only viable option. However, from the lessons learned, further systematic work is required before embarking on clinical studies.

  2. Neutron activitation analysis of an air-dust sample using a high-flux 14 Mev neutron generator

    The 14 MeV neutron activation analysis technique is illustrated for multielement analysis of a Milanese air-dust sample. The neutron generator and electronic system, the efficiency and flux calibration, the γ-ray background, the sample preparation and the peak analysis used are described. After careful corrections of all possible interferences and error calculations, the results of 24 elemental concentrations are compared with those of other analytical techniques in the scope of an interlaboratory test. (orig.)

  3. Linking laboratory and in situ activation analysis of rock-forming elements using a 14 Mev neutron source. Doctoral thesis

    Truax, J.

    1995-10-06

    This work examines the ability of a borehole-conveyed delayed neutron activation system to perform elemental analysis of earth formations with the combination of a neutron generator and a large germanium spectrometer. High purity germanium spectrometers are now made large enough that detection efficiency rivals that of borehole-compatible scintillators. Elemental concentrations of silicon, aluminum, magnesium, and sodium are important quantities used in the characterization of rocks. A series of activation spectrometry experiments was performed on chemically pure compounds of these elements in a neutron moderating environment similar to what would pertain in a borehole measurement. Then, the geometry of the experimental setup was entered into a radiation transport modeling code based on a Monte Carlo process. The purpose of this exercise was to compare the measured responses with those predicted by the reaction cross sections in the library of the model, which are often ill-defined for high energy neutron interactions.

  4. Development of a CdTe thermal neutron detector for neutron imaging

    A thin CdTe thermal neutron detector has been developed and its suitability for neutron imaging has been investigated. Simulations of the interaction of neutrons with a 0.5 mm-thick CdTe detector demonstrate the advantages of using 96 keV prompt gamma rays produced by neutron capture in 113Cd as a neutron event. Specifically, they provide a high spatial resolution and approximately the same detection efficiency as 558 keV prompt gamma rays, which are commonly used for detecting thermal neutrons in CdTe detectors. We fabricated a thin CdTe detector. Measurements using a 133Ba gamma-ray source revealed that the detector has a gamma-ray energy resolution of 3 keV at 80 keV, while measurements using a 252Cf neutron source demonstrated that the CdTe detector has good neutron/gamma ray discrimination.

  5. Quadrupole collectivity in neutron-rich Cd isotopes

    The proximity to the closed shells at Z = 50 and N = 82 makes the neutron-rich Cd isotopes a perfect test case for nuclear theories. The energy of the first excited 2+-state in the even 122-128 shows an irregular behaviour as the Cd isotopes exhibit only a slight increase for 122Cd to 126Cd and even a decrease from 126Cd to 128Cd. This anomaly can so far not be reproduced by shell model calculations. Only beyond mean field calculations with a resultant prolate deformation are capable to describe this anomalous behaviour. In order to gain more information about the neutron-rich Cd isotopes a Coulomb excitation experiment was performed with MINIBALL at REX-ISOLDE, CERN. The extracted transition strengths B (E2,0+gs → 2+1) for 122,124,126,128Cd agree with beyond mean field calculations. The spectroscopic quadrupole moments Qs (2+1) are compared with measurements on odd neutron-rich Cd isotopes

  6. Quadrupole collectivity in neutron-rich Cd istotopes

    The neutron-rich cadmium nuclei with a proton number of Z=48 are some of the most interesting isotopes in nuclear structure physics due to the proximity to the proton and neutron shell closures at Z=50 and N=82 respectively. The transition strength B(E2, 0gs+→ 21+) and quadrupole moment Qs(21+) in the even neutron-rich isotopes 122-128Cd was measured in Coulomb excitation experiments with MINIBALL at REX-ISOLDE (CERN). Results of these experiments will pursue the picture of the behaviour of the transition strength towards the neutron shell closure at N=82. A closer insight into the onset of collectivity and the roles played by different orbits can be obtained by the investigation of the odd isotopes. We started this program with the examination of 123Cd where already discrepancies in the level scheme to the literature were evidenced. In this contribution the results of these investigations are presented.

  7. The ferroelectric phase of CdTiO3: A powder neutron diffraction study

    The synthesis of bulk samples of polycrystalline CdTiO3 in both the rhombohedral ilmenite and orthorhombic perovskite forms is described and the structures of these have been refined using powder neutron diffraction data. This involved the preparation of samples enriched in 114Cd. Cooling perovskite-type CdTiO3 to 4 K induces a ferroelectric phase transition, with the neutron data suggesting the low temperature structure is in Pna21. Mode analysis shows the polar mode to be dominant at low temperatures. The ilmenite-structure of CdTiO3 is compared with that of ZnTiO3. The refined scattering length of the 114Cd is estimated to be 5.56 fm. Attempts to dope CdTiO3 with Ca and Sr are described. - Graphical abstract: The structure of three phases of CdTiO3 have been refined using high resolution powder neutron diffraction data. This involved the preparation of samples enriched in 114Cd. Cooling perovskite-type CdTiO3 to 4 K results in a ferroelectric phase in Pna21. Highlights: → Both the ilmenite and perovskite forms of CdTiO3 have been prepared using 114Cd. → Cooling the perovskite form results in a ferroelectric phase. → The structures of these are refined from powder neutron diffraction data. → Attempts to dope CdTiO3 are described.

  8. Investigation of the structure of neutron-deficient Cd isotopes

    Simon, Anna; Humby, P.; Beausang, C. W.; Burke, J. T.; Casperson, R. J.; McCleskey, M.; Saastamoinen, A.; Allmond, J. M.; Chyzh, R.; Dag, M.; Koglin, J.; Ota, S.; Ross, T. J.

    2014-03-01

    The STARLITER setup at Texas A&M University consists of an array of six Compton suppressed HPGe clover γ-ray detectors coupled with a segmented Si ΔE-E charged particle telescope. The combination allows for coincident γ ray and particle spectroscopy and provides a powerful tool for precise determination of the nuclear level structure. A recent experiment conducted using STARLITER aimed at the investigation of structures of neutron-deficient Cd isotopes (A = 104, 105, 106) using an enriched 106Cd target and 35 MeV proton beam supplied by the K-150 Cyclotron at TAMU. Low mass cadmium isotopes are a great environment for analysis of the evolution from vibrational to rotational sequences in A ~100-110 region and provide insight into the structure phenomena around Z = 50 shell closure. Here, the first results of the experiment will be presented. This work was partly supported by the US Department of Energy Grants No. DE-FG52-06NA26206 and No. DE-FG02-05ER41379.

  9. Radiation damage and activation of CdZnTe by intermediate energy neutrons

    The authors exposed a CdZnTe detector to MeV neutrons from a 252Cf source and found no performance degradation for fluences below 1010 neutrons cm-2. Detector resolution did show significant degradation at higher neutron fluences. There is evidence of room temperature annealing of the radiation effects over time. Activation lines were observed and the responsible isotopes were identified by the energy and half-life of the lines. These radiation damage studies allow evaluation of the robustness of CdZnTe detectors in high neutron and radiation environments

  10. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. PMID:26249745

  11. Neutron scattering studies of Cd1−xMnxTe

    Giebultowicz, T.; Lebech, Bente; Buras, B;

    1984-01-01

    The diluted magnetic (‘‘semimagnetic’’) semiconductor Cd1–xMnxTe reveals intriguing spin glass properties. In this paper, the results of neutron scattering studies of Cd1–xMnxTe are presented. The low‐temperature spin correlations have been studied for several single crystal samples in the...

  12. Neutron-rich In and Cd isotopes close to the doubly-magic $^{132}Sn$

    Scherillo, A.; Genevey, J.; Pinston, J.A.; Covello, A; Faust, H.; Gargano, A.; R. Orlandi; Simpson, G.S.; Tsekhanovich, I.

    2005-01-01

    Microsecond isomers in the In and Cd isotopes, in the mass range A = 123 to 130, were investigated at the ILL reactor, Grenoble, using the LOHENGRIN mass spectrometer, through thermal-neutron induced fission reactions of Pu targets. The level schemes of the odd-mass $^{123-129}$In are reported. A shell-model study of the heaviest In and Cd nuclei was performed using a realistic interaction derived from the CD-Bonn nucleon-nucleon potential

  13. Onset of isomers in 125,126,127,128Cd and weakened neutron-neutron interaction strength

    The presence of isomeric levels with half-lives in the microsecond range has been identified in 125,126,127,128Cd. Neutron-rich Cd isotopes were produced from the fragmentation of a 120 MeV/nucleon 136Xe beam and uniquely identified through their time-of-flight, energy loss, and total kinetic energy. γ rays from these isomeric levels were measured with an array of Ge detectors that were gated for 15 μs by a particle implantation trigger from a stack of Si detectors. The γ rays observed in the decay of 126,128Cd isomers populate low-energy levels previously identified in the β decay of 126,128Ag. The γ rays found in the decay of 125,127Cd isomers are consistent with expected yrast structures observed in lighter, odd-mass Cd isotopes. The appearance of these isomers at the point where N/Z exceeds 1.6 is interpreted as an indication of the onset of a weakened neutron-neutron interaction that has been proposed for 134Sn, whose N/Z also exceeds 1.6

  14. Half-lives of neutron-rich Cd-130128

    Dunlop, R.; Bildstein, V.; Dillmann, I.; Jungclaus, A.; Svensson, C. E.; Andreoiu, C.; Ball, G. C.; Bernier, N.; Bidaman, H.; Boubel, P.; Burbadge, C.; Caballero-Folch, R.; Dunlop, M. R.; Evitts, L. J.; Garcia, F.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hallam, S.; Henderson, J.; Ilyushkin, S.; Kisliuk, D.; Krücken, R.; Lassen, J.; Li, R.; MacConnachie, E.; MacLean, A. D.; McGee, E.; Moukaddam, M.; Olaizola, B.; Padilla-Rodal, E.; Park, J.; Paetkau, O.; Petrache, C. M.; Pore, J. L.; Radich, A. J.; Ruotsalainen, P.; Smallcombe, J.; Smith, J. K.; Tabor, S. L.; Teigelhöfer, A.; Turko, J.; Zidar, T.

    2016-06-01

    The β -decay half-lives of Cd-130128 have been measured with the newly commissioned GRIFFIN γ -ray spectrometer at the TRIUMF-ISAC facility. The time structures of the most intense γ rays emitted following the β decay were used to determine the half-lives of 128Cd and 130Cd to be T1 /2=246.2 (21 ) ms and T1 /2=126 (4 ) ms, respectively. The half-lives of the 3 /2+ and 11 /2- states of 129Cd were measured to be T1 /2(3 /2+) =157 (8 ) ms and T1 /2(11 /2-) =147 (3 ) ms. The half-lives of the Cd isotopes around the N =82 shell closure are an important ingredient in astrophysical simulations to derive the magnitude of the second r -process abundance peak in the A ˜130 region. Our new results are compared with recent literature values and theoretical calculations.

  15. Neutron scattering studies of a dilute magnetic semiconductor: Cd1-xMnxTe

    Steigenberger, Ursula; Lebech, Bente; Galazka, Robert R.

    1986-01-01

    The development of the magnetic ordering in the magnetic semiconductor Cd1-xMnxTe was investigated by elastic neutron scattering. A detailed study of the correlation length and the intensity as a function of temperature, direction in reciprocal space and concentration of the magnetic ions has been...

  16. Probing the collectivity in neutron-rich Cd isotopes via γ-ray spectroscopy

    The spin and configurational structure of excited states of 127Cd, 125Cd and 129Cd, having two proton and three, five and one neutron holes, respectively in the doubly magic 132Sn core have been studied. The isomeric states in Cd isotopes were populated in the fragmentation of a 136Xe beam at an energy of 750 MeV/u on a 9Be target of 4 g/cm2. The experiment was performed at GSI Darmstadt. The neutron-rich Cd isotopes were selected using the Bρ - ΔE - Bρ method at the FRagment Separator (FRS). Event by event identification of fragments in terms of their A (mass) and Z (charge) was provided by the standard FRS detectors. The reaction residues were implanted in a plastic stopper surrounded by 15 Ge cluster detectors from the RISING array to detect the γ decays. In 127Cd, an isomeric state with a half-life of 17.5(3) μs has been detected. This yrast (19/2)+ isomer is proposed to have mixed proton-neutron configurations and to decay by two competing stretched M2 and E3 transitions. Experimental results are compared with the isotone 129Sn. In 125Cd, apart from the previously observed (19/2)+ isomer, two new metastable states at 3896 keV and 2141 keV have been detected. A half-life of 13.6(2) μs was measured for the (19/2)+ isomer, having a decay structure similar to the corresponding isomeric state in 127Cd. The higher lying isomers have a half-life of 3.1(1) μs and 2.5(15) ns, respectively. Time distributions of delayed γ transitions and γγ-coincidence relations were exploited to construct decay schemes for the two nuclei. Comparison of the experimental data with shell-model calculations is also discussed. The new information provides input for the proton-neutron interaction in nuclei around the doubly magic 132Sn core. The γ decays of the isomeric states in 129Cd were not observed experimentally. The reasons for the non-observation of delayed γ rays for 129Cd are either an isomeric half-life of less than 93 ns based on the experimentally obtained isomeric

  17. Neutron resonance spectroscopy on 113Cd: The p-wave levels

    Weak levels in the compound nucleus 114Cd were located by neutron time-of-flight spectroscopy techniques. Neutron capture measurements were performed with both a natural cadmium target and a highly enriched 113Cd target. A total of 22 new resonances were located in the neutron energy interval 20-500 eV and were assumed to be p-wave. Resonance parameters, E0 and gΓn, are given for the newly identified levels. The p-wave strength function was determined to be 104S1=2.8±0.8 and the average level spacing left-angle D1 right-angle=14 eV. Comparison of the reduced widths with a Porter-Thomas distribution is consistent with having missed 15% of the p-wave levels

  18. Neutron generation by laser irradiation of CD4 clusters

    It was shown in 1999 that D2 cluster explosion under ultrashort intense laser irradiation can lead to ion energies sufficient to drive nuclear fusion reactions [Ditmire et al. Nature 398, 491]. We show how the use of molecular clusters allows to further enhance the ionic acceleration, allowing one to reach optimal fusion cross sections. A new low density high energy regime is described, in which fusion occurs via a spallation-like process. The process increases with laser intensity up to the relativistic threshold, at which the neutron production is overwhelmed by gamma production resulting from electron acceleration

  19. Structural changes at large angular momentum in neutron-rich Cd,123121

    Rejmund, M.; Navin, A.; Bhattacharyya, S.; Caamaño, M.; Clément, E.; Delaune, O.; Farget, F.; de France, G.; Jacquot, B.; Lemasson, A.

    2016-02-01

    Prompt γ rays of isotopically identified neutron-rich isotopes of Cd, produced in transfer- and fusion-fission induced by the 238U beam at 6.2 MeV/u on a 9Be target, were measured using the EXOGAM γ -ray detector array and the magnetic spectrometer VAMOS++. New results for the level scheme of Cd,123121, extending to relatively large angular momentum are reported. The energy levels above 2-MeV excitation energy, are found to differ from those observed in lighter isotopes of Cd indicating a change in structure in these more neutron-rich nuclei. These states are not explained by large-scale shell model calculations, that explain well the structure of the underlying Sn isotopes and the neighboring even-A Cd isotopes. The present data, especially for the odd-A nuclei, point to a deficiency in the matrix elements related to the p-n residual interaction and provide a new domain for testing widely used shell model interactions employed for understanding the evolution of structure in neutron-rich nuclei.

  20. Neutron resonance spectroscopy on 113Cd to En=15 keV

    The results of a study of the compound nucleus 114Cd by neutron time-of-flight spectroscopy methods are presented. Targets of both natural cadmium and cadmium enriched in the 113 isotope were used. The neutron total capture and neutron transmission were both measured. A total of 275 new resonances were located. In addition, 102 other resonances which were previously known but not assigned to a particular cadmium isotope were definitively assigned to 113Cd. Resonance parameters E0 and gΓn were obtained for both newly identified and previously known resonances. Of the 437 resonances now known in 113Cd, we identify 104 of them as l=1 based on their small widths. Strength functions and level spacings are obtained for both l=0 and l=1 resonances. Comparisons of the data with Porter-Thomas reduced width distributions, Wigner nearest neighbor spacing distributions, and the Dyson-Metha Δ3 statistic are given. The linear correlation coefficient between adjacent spacings is also discussed. The spectroscopic information obtained is of importance for planning and interpretation of parity violation measurements on the p-wave resonances of 113Cd

  1. Gamow-Teller beta decay of the very neutron deficient $N=50$ nucleus $^{98}$Cd

    Grant, I S; Batsch, T; Plochocki, A; Zylicz, J; Barden, R; Klepper, O; Schardt, D; Szerypo, J; Gabelmann, H; Hill, P; Ravn, H L

    1992-01-01

    For the first time, detailed decay-spectroscopic investigations were performed for the very neutron-deficientN=50 nuclide98Cd. The98Cd activity was produced in spallation reactions between 600 MeV protons and a natural tin target, yielding a98Cd beam intensity of 10 to 60 atoms/s at the collector of the ISOLDE massseparator. By means ofγ-ray and conversion-electron spectroscopy, 19 transitions were found to follow the β+/EC decay98Cd→98Ag. The transitions at 61 and 107 keV were shown to beM1(+E2) andE2, respectively, and the98Cd half-life was measured as 9.2±0.3 s. TheQ EC value of98Cd is determined semiempirically and is compared to model predictions together with the measuredQ EC values of the neighbouring cadmium isotopes100,102Cd and theN=50 isotones92Mo,94Ru, and96Pd, taken from the literature. The newly established decay scheme of98Cd includes 9 excited states of98Ag. Four states at 1691, 1861, 2164, and 2544 keV are directly fed by 0+ → 1+ Gamow-Teller beta transitions with a summed strength of ...

  2. Measurements of absolute γ-ray intensities in the decays of very neutron rich isotopes of Cd and In

    The half lives and the γ-ray branching ratios of neutron rich Cd and In isotopes have been investigated by simultaneous measurements of β- and γ-ray spectra. The results presented contain information on 21 different β-decaying isotopes or isomers of Cd and In in the mass region A=123-129. Four previously unknown or little known isotopes of Cd are reliably characterized for the first time. (orig.)

  3. Spins of resonances in reactions of neutrons with (238)U and (113)Cd. Doctoral thesis; Spins van resonanties in reacties van neutronen met (238)u en (113)cd

    Gunsing, F.

    1994-12-31

    In this thesis experiments are described that have lead to the assignments of spins to a large number of resonances in reactions of epithermal neutrons with the nuclei (238)U and (113)Cd. When a neutron is captured by an atomic nucleus, a compound nucleus is formed which is in a highly excited state with an energy of the order of the neutron binding energy. If the kinetic neutron energy is varied around a state of the compound nucleus, one observes a peak in the cross section. This is called a resonance in the reaction. Dependent on the amount or orbital momentum l that the neutron adds to the system, the resonances are indicated with spectroscopic notations as s- and p-waves for l = 0 and 1 respectively. The purpose of this thesis is to determine the spins of such resonances.

  4. Spherical proton-neutron structure of isomeric states in 128Cd

    The γ-ray decay of isomeric states in the even-even nucleus 128Cd has been observed. The nucleus of interest was produced both by the fragmentation of 136Xe and the fission of 238U primary beams. The level scheme was unambiguously constructed based on γγ coincidence relations in conjunction with detailed lifetime analysis employed for the first time on this nucleus. Large-scale shell-model calculations, without consideration of excitations across the N=82 shell closure, were performed and provide a consistent description of the experimental level scheme. The structure of the isomeric states and their decays exhibit coexistence of proton, neutron, and strongly mixed configurations due to πν interaction in overlapping orbitals for both proton and neutron holes

  5. Collective excitations in liquid CD4: Neutron scattering and molecular-dynamics simulations

    Guarini, E.; Bafile, U.; Barocchi, F.; Demmel, F.; Formisano, F.; Sampoli, M.; Venturi, G.

    2005-12-01

    We have investigated the dynamic structure factor S(Q,ω) of liquid CD4 at T = 97.7 K in the wave vector range 2 <= Q/nm-1 <= 15 by means of neutron scattering and molecular-dynamics simulation, in order to study the centre-of-mass collective dynamics. The agreement between the experimental spectra and those simulated using a recent ab initio based intermolecular potential is good, particularly at low Q. Underdamped collective excitations, detected in the whole experimental Q-range, characterize the dynamics of liquid CD4 as markedly different from that of other molecular liquids. Also, the energy and damping of collective excitations in methane are shown to differ considerably, even at the lowest measured Q-values, from those of linearized hydrodynamic modes. An empirical relation, able to reconcile the different wave vector ranges of mode propagation observed in disparate liquids, is investigated.

  6. Coulomb excitation of neutron-rich odd-$A$ Cd isotopes

    Reiter, P; Kruecken, R; Gernhaeuser, R A; Kroell, T; Leske, J; Marginean, N M

    We propose to study excited states in the odd-${A}$ isotopes $^{123,125,127}$Cd by ${\\gamma}$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to determine the B(E2) values connecting excited states with the ground state as well as the long-lived (11/2$^{-}$) isomer. The proposed study profits from the unique capability of ISOLDE to produce beams containing Cd in the ground state or in the isomeric state. Our recent results on the neutron-rich even-A Cd nuclei appear to show that these nuclei may possess some collectivity beyond that calculated by modern shell-model predictions. Beyond-mean-field calculations also predict these nuclei to be weakly deformed. These facets are surprising considering their proximity to the doubly magic $^{132}$Sn. Coulomb-excitation studies of odd-${A}$ Cd isotopes may give a unique insight into the deformation-driving roles played by different orbits in this region. Such studies of the onset of collectivity become especially important in light of recent...

  7. Local distortions revealed by neutron holography in SnCd0.0026 alloy

    Szakál, Alex; Markó, Márton; Cser, László

    2016-05-01

    Local distortions of the ideal periodic structure in crystals around impurity atoms play an important role in various physical properties of materials. The aim of this study was to investigate the static distortions around cadmium impurity atoms in a SnCd0.0026 single crystal using atomic resolution neutron holography technique. The cadmium nucleus was used as an inside detector to measure the holographic interference pattern from which the three-dimensional (3D) atomic arrangement of tin nuclei around the cadmium impurities was reconstructed. Detailed analysis of the reconstructed image revealed the 3D static displacements of Sn atoms around the impurity. It was found that the crystal structure contracts around the cadmium impurity atom and the displacements tend to transform the crystal to the α phase. The local contraction of the lattice was used to explain the slower phase transformation to α -Sn phase when Cd impurity atoms are present. The study shows the ability of neutron holography to measure 3D displacements around impurities which can be used, e.g., to understand the mechanisms that block the phase transformations in the presence of impurities.

  8. On the origin of the anomalous behaviour of 2+ excitation energies in the neutron-rich Cd isotopes

    Recent experimental results obtained using β decay and isomer spectroscopy indicate an unusual behaviour of the energies of the first excited 2+ states in neutron-rich Cd isotopes approaching the N=82 shell closure. To explain the unexpected trend, changes of the nuclear structure far-off stability have been suggested, namely a quenching of the N=82 shell gap already in 130Cd, only two proton holes away from doubly magic 132Sn. We study the behaviour of the 2+ energies in the Cd isotopes from N=50 to N=82, i.e. across the entire span of a major neutron shell using modern beyond mean field techniques and the Gogny force. We demonstrate that the observed low 2+ excitation energy in 128Cd close to the N=82 shell closure is a consequence of the doubly magic character of this nucleus for oblate deformation favoring thereby prolate configurations rather than spherical ones

  9. $\\beta$-delayed neutron spectroscopy of $^{130-132}$ Cd isotopes with the ISOLDE decay station and the VANDLE array

    We propose to use the new ISOLDE decay station and the neutron detector VANDLE to measure the $\\beta$-delayed neutron emission of N=82-84 $^{130-132}$Cd isotopes. The large delayed neutron emission probability observed in a previous ISOLDE measurement [M. Hannawald et al., Phys. Rev. C62, 054301 (2000)] is indicative of the Gamow-Teller transitions due to the decay of deep core neutrons. Core Gamow-Teller decay has been experimentally proven in the $^{78}$Ni region for the N>50 nuclei using the VANDLE array. The spectrocopic measurement of delayed neutron emission along the cadmium isotopic chain will allow us to track the evolution of the single particle states and the shell gap.

  10. The coupling of the Star-Cd software to a whole-core neutron transport code Decart for PWR applications

    As part of a U.S.- Korea collaborative U.S. Department of Energy INERI project, a comprehensive high-fidelity reactor-core modeling capability is being developed for detailed analysis of existing and advanced PWR reactor designs. An essential element of the project has been the development of an interface between the computational fluid dynamics (CFD) module, STAR-CD, and the neutronics module, DeCART. Since the computational mesh for CFD and neutronics calculations are generally different, the capability to average and decompose data on these different meshes has been an important part of code coupling activities. An averaging process has been developed to extract neutronics zone temperatures in the fuel and coolant and to generate appropriate multi group cross sections and densities. Similar procedures have also been established to map the power distribution from the neutronics zones to the mesh structure used in the CFD module. Since MPI is used as the parallel model in STAR-CD and conflicts arise during initiation of a second level of MPI, the interface developed here is based on using TCP/IP protocol sockets to establish communication between the CFD and neutronics modules. Preliminary coupled calculations have been performed for PWR fuel assembly size problems and converged solutions have been achieved for a series of steady-state problems ranging from a single pin to a 1/8 model of a 17 x 17 PWR fuel assembly. (authors)

  11. Study of Neutron-Rich $^{124,126,128}$Cd Isotopes; Excursion from Symmetries to Shell-Model Picture

    Nieminen, A M; Reponen, M

    2002-01-01

    A short outline is given on a number of topics that are present in the long series of even-even Cd nuclei and therefore, may turn out to constitute an ideal test bench in order to verify a number of theoretical ideas on how collective motion, near closed shells, builds up taking into account both the valence and core nucleons when studying the nucleon correlations. Moreover, these experiments can reveal new challenges when moving towards very neutron-rich systems.

  12. Neutron Knockout on Beams of $^{108,106}$Sn and $^{106}$Cd

    Cerizza, Giordano

    2015-01-01

    Characterizing the nature of single-particle states outside of double shell closures is essential to a fundamental understanding of nuclear structure. This is especially true for those doubly magic nuclei that lie far from stability and where the shell closures influence nucleo-synthetic pathways. The region around $^{100}$Sn is one of the most important due to the proximity of the N=Z=50 magic numbers, the proton-drip line, and the end of the rp-process. However, owing to the low production rates, there is a lack of spectroscopic information and no firm spin-parity assignment for ground states of odd-A isotopes close to $^{100}$Sn. Neutron knockout reaction experiments on beams of $^{108,106}$Sn and $^{106}$Cd have been performed at the NSCL. By measuring gamma rays and momentum distributions from reaction residues, the spin of ground state and first excited state for $^{107,105}$Sn have been established. The results also show a degree of mixing in the ground states of the isotopes $^{108,106}$Sn between the...

  13. Neutron emission asymmetries from linearly polarized γ rays on ^natCd, ^natSn, and ^181Ta

    Clarke Smith, W.; Feldman, Gerald

    2011-10-01

    Azimuthal asymmetries in neutron yields produced by bombarding targets with linearly polarized photons via (γ,n), (γ,2n), and (γ,f) reactions are being investigated as a possible means of identifying various nuclear isotopes. The High Intensity γ-ray Source (HIγS) at Duke University provides nearly monochromatic, circularly or linearly polarized γ rays with high intensity by Compton backscattering free-electron-laser photons from stored electrons. Linearly polarized γ rays produced by HIγS were incident on ^natCd, ^natSn, and ^181Ta targets at six energies Eγ between 11.0 and 15.5 MeV and emitted neutrons were detected both parallel and perpendicular to the plane of polarization by an array of 18 liquid-scintillator detectors at angles in the range θ=55^o--142^o. Detected neutrons were distinguished from Compton scattered photons by pulse-shape-discrimination and timing cuts, and their energies (En) were determined using time-of-flight information over a 0.5 m flight path. The characteristic plots of Rn, the ratio of neutron counts parallel to neutron counts perpendicular to the plane of the incident γ-ray polarization, against En were constructed for each value of Eγ and θ and then compared to those for other targets studied at HIγS, including fissile nuclei ^235U and ^238U.

  14. Nuclear spectroscopic studies on the nucleus 107Cd using an apparature for the measurement of neutron-gamma angular correlations

    In the present thesis an apperature for the measurement of n-γ angular correlations was developed. With that the nucleus 107Cd was studied using the reaction 107Ag(p,nγ) 107Cd. The analysis of the measured angular distributions yields by comparison with the calculated angular distribution a number of hitherto not yet or only uncertainly determined spins. Especially for levels, for which from neutron transfer experiments the orbital angular momentum of the transferred neutron was determined to lsub(n) = 2, a decision for spin 3/2+ or 5/2+ could be made. For a number of levels in addition to the spins the multipole mixing parameter of the γ-radiation could be determined. Using the obtain multipole mixing parameters and lifetimes from the measurement of Gompf using the Doppler shift attenuation method statements about the excitation character of some levels could be made. For this in the particle-core coupling model a wave function with two components was assumed, a pure particle wave function and a coupled core-particle excitation. By the knowledge of multipole mixing parameter and lifetime the amplitudes of the wave function are determined. (orig./HSI)

  15. Simultaneous cloud point extraction of low levels of Cd, Cr and Hg in seaweed species prior to neutron activation analysis

    A one-step preconcentration cloud point extraction (CPE) method has been developed for the simultaneous determination of Cd, Cr, and Hg using a mixture of 1-(2-pyridylazo)-2-naphthol (PAN) and 1-(2-thiazolylazo)-2-naphthol (TAN) chelating agents and polyoxyethylene nonylphenylether-20 (PONPE-20) surfactant. The pH concentration of PAN and TAN, concentration of PONPE-20, ionic strength and temperature affecting the separation were optimized. The recoveries of each of the elements under the optimum conditions of pH 8.6, (PAN/TAN) = 1 X 10-4 M, (PONPE-20) = 0.1 % (m/v), ionic strength = 0.05 M KNO3, and temperature of 41 0C were > 98%. The concentrations of the elements were determined by neutron activation analysis using the Dalhousie University Slowpoke-2 reactor (DUSR) facility. The detection limits of Cd, Cr and Hg were 6.0, 3.6 and 1.2 ng g-1 respectively, and precision and accuracy of measurements were evaluated. The method was successfully applied to the simultaneous determination of Cd, Cr and Hg in fifteen Ghanaian seaweed species. (au)

  16. International comparison of Cd content in a quality control material of Navajuelas (Tagelus dombeii) determined by anodic stripping voltammetry, atomic absorption spectrometry and neutron activation analysis

    Queirolo, F. (Universidad Catolica del Norte, Antofagasta (Chile). Dept. of Chemistry Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Ostapczuk, P. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Valenta, P.; Stegen, S. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry); Marin, C.; Vinagre, F.; Sanchez, A. (Universidad de Extremadura, Badajoz (Spain). Dept. of Analytical Chemistry and Electrochemistry)

    1991-05-01

    The determination of Cd was performed by neutron activation analysis (NAA), atomic absorption spectrometry (AAS) with flame or in the electrothermal mode and anodic stripping voltammetry in the differential pulse mode (DPASV) and the square wave mode (SWASV). (orig./EF).

  17. Measurement of the neutron spectrum in a room with an accelerator Varian 2300C/D Linac using the Bonner multisphere spectrometer

    The generated neutron field varies considerably and depends on the beam energy, on the shielding of the accelerator, on the filters for beam homogeneity, and also on the mobile collimators and geometry of irradiation. The estimation of the component relative to the photoneutrons has practical interest for evaluation of the radiological risks for the workers and for the patient as well. Due to the high frequency magnetic field, and to the photon abundance resulting of the escape and scattering at treatment room, those measurements present some difficulties. Measurements of the neutron fields can be made with a Bonner spectrometer. Those system was calibrated with referred neutron standard sources and used for make measurements on a spot of the room where a Variant 2300C/D Linac is installed. The unfolding process used the BUNKI computer code for determination of the neutron spectra at the measurement spot

  18. Strength functions for transfer of a neutron-proton pair on 82Se, 96Mo, 116Cd and 128Te nuclei

    This study presents the calculation of strength functions for neutron-proton pair transfer on 82Se, 96Mo, 116Cd and 128Te even-even nuclei. We study 1+ states, which are a part of the Gamow-Teller (GT) giant resonances in neighboring odd-odd nuclei, excited via the neutron-proton pair transfer on even-even parent nuclei. The main result of this work is to find these states using strength functions. Calculations have been made only in the particle-particle channel of charge-exchange spin-spin forces via the random phase approximation (RPA).

  19. Neutron Scattering Studies of the Anti-ferromagnetic Phase of Cd1-xMnxTe

    Giebultowicz, T.; Minor, W.; Buras, B.; Lebech, Bente; Galazka, R. R.

    1982-01-01

    Studies of the magnetic properties of crystals of the mixed semiconductors Cd1-xMnxTe indicate that: (i) for x ≤ 0.17 the crystals are paramagnetic at all temperatures, (ii) for 0.17

  20. Simultaneous preconcentration of Cd, Cr and Hg in seaweeds by cloud point extraction using PAN/TAN and neutron activation

    A simple one-step green chemistry method for the simultaneous preconcentration of Cd, Cr, and Hg in seaweed samples has been developed. The method is based on the separation phenomenon of non-ionic surfactant polyoxyethylene nonyl ether (PONPE-20) in aqueous solutions after the formation of a complex with a mixture of two chelating agents, namely, 1-(2-pyridylazo)-2-naphthol (PAN) and 1-(2-thiazolylazo)-2-naphthol (TAN). The chemical variables affecting the separation phase were optimized. The recoveries of these elements under the optimum conditions, namely pH=8.5, (PAN/TAN)=1x10-4 M, (PONPE-20)=0.1% (wt) , ionic strength=0.05 M KNO3, T=40 deg C, and preconcentration of 20-30 mL of sample solutions, were found to be >98%. The samples were irradiated in the inner sites of the Dalhousie University SLOWPOKE-2 reactor (DUSR) facility at a thermal neutron flux of 2.5 x 1011 cm-2 s-1

  1. Microscopic quasiparticle-phonon description of beta decays of {sup 113}Cd and {sup 115}In using proton-neutron phonons

    Mustonen, M.T. [Department of Physics, University of Jyvaeskylae, PO Box 35, FIN-40351 Jyvaeskylae (Finland)], E-mail: mika.t.mustonen@jyu.fi; Suhonen, J. [Department of Physics, University of Jyvaeskylae, PO Box 35, FIN-40351 Jyvaeskylae (Finland)], E-mail: jouni.suhonen@phys.jyu.fi

    2007-11-29

    The fourth-forbidden non-unique ground-state-to-ground-state beta decays of {sup 113}Cd and {sup 115}In are calculated using a realistic microscopic two-body interaction and a realistic single-particle model space. To describe the involved initial and final nuclear states we introduce a proton-neutron variant of the microscopic quasiparticle-phonon model (MQPM), the proton-neutron MQPM (pnMQPM). The states of the pnMQPM are created by coupling quasiparticles with phonons of the proton-neutron quasiparticle random-phase approximation (pnQRPA). The computed half-lives and logft values are found to be in excellent agreement with experimental data. Computed beta spectra of the decays are also given.

  2. The structural properties of CdO-Bi 2 O 3 borophosphate glass system containing Fe 2 O 3 and its role in attenuating neutrons and gamma rays

    Saudi, H. A.; Mostafa, A. G.; Sheta, N.; El Kameesy, S. U.; Sallam, H. A.

    2011-11-01

    A glass system with chemical formula xBi 2O 3-(30- x)CdO-10B 2O 3-20Fe 2O 3-40P 2O 5 (0≤ x≤30) wt% is prepared to be used as radiation shield. The mass attenuation coefficient and half value layer of the glass system to gamma rays have been measured experimentally and compared with those determined from theoretical calculations using the mixture rule of WinXCom program. A database of effective mass removal cross-sections for fast neutrons is also introduced in this work. The obtained results of this study are correlated to the structural properties of these glasses obtained from their IR spectra and the influence of gamma and neutrons irradiation on these structural properties.

  3. Use of new composite materials for the determination of Cu, Cd, Mo, As, and Sb in biological samples by radiochemical neutron activation analysis

    New composite materials were developed and tested for determination of Cu, Cd, Mo, As, and Sb in biological materials by radiochemical neutron activation analysis (RNAA). The materials were prepared by incorporation of solid zinc diethyldithiocarbamate or liquid bis(2,4,4- trimethylpentyl)dithiophosphinic acid (CYANEX 301) into a polyacrylonitrile (PAN) binding matrix. The accuracy of the RNAA methods developed was proved by analysis of NIST SRM-1515 Apple Leaves, NIST SRM-1577b Bovine Liver, and NIST SRM-1549 Non Fat Milk Powder. (author)

  4. E1 and E2 cross sections of the 12C(α,γ)16O reaction at Ecm∼1.4 Mev using pulsed α beams

    We have installed a new system to measure the γ-ray angular distribution of the 12C(α,γ)16O reaction at the 3.2 MV Pelletron accelerator laboratory at Tokyo Institute of Technology to accurately determine the E1 and E2 cross sections. In this experiment, we used high efficiency anti-Compton NaI(T1) spectrometers to detect a γ-ray from the reaction with a large S/N ratio, intense pulsed α beams to discriminate true events from neutron induced background with a time-of-flight (TOF) method, and the monitoring system of target thickness. We succeeded in removing a background due to neutrons and could clearly detect the γ-ray from the 12C(α,γ)l6O reaction with high statistics

  5. $\\beta$-decay study of very neutron-rich Cd isotopes with a chemically selective laser ion source

    2002-01-01

    Following our test measurements of N=82-84 Cd isotopes with a specifically developed laser ion source (CERN/ISC 97-16, ISC/I 22), we now propose detailed spectroscopic studies of the decay of $^{130}$Cd to $\\,^{132}\\!$Cd, and at least the determination of some gross properties of the new N=85-86 nuclides $^{133}\\!$Cd and $\\,^{134}\\!$Cd. The main nuclear-structure objective of this experiment is the identification of the energies of the single-hole (SH) proton states in $^{131}$In. Nearly all of the other single-nucleon shell-model basis energies around doubly magic $^{132}$Sn are known by now, except those $\\pi$SH in Z=49 $\\,^{131}$In. Theoretical agreement on these values has not been achieved so far. Of particular interest is the depth of the $\\pi$f$_{5/3}$ hole and the p$_{3/2}$ - p$_{1/2}$ spin-orbit splitting. A second important goal is the determination of the position of the lowest-energy 1$^+\\,$ level in $^{130}$In predominantly populated in the Gamow-Teller (GT) decay of N=82 $^{130}\\!$Cd. Apart from...

  6. Measurement of cross sections producing short-lived nuclei by 14MeV neutron. Cd, Sn, Te, Nd, Gd, Re

    Sakane, H.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Iida, T.; Takahashi, A.

    1998-03-01

    Nine neutron activation cross sections producing the nuclei with half-lives between 25sec and 22min were measured at energy range between 13.4 and 14.9 MeV by activation method. The (n,p) and (n,{alpha}) reaction cross sections were measured for the isotopes of {sup 110}Cd, {sup 112}Sn, {sup 122}Te, {sup 130}Te and {sup 185}Re and those of {sup 130}Te, {sup 148}Nd and {sup 158}Gd, respectively. The present results were compared with our systematics proposed on the basis of 58 cross section data of (n,p) and 33 data of (n,{alpha}) reaction. Good agreements have been seen between them. (author)

  7. Neutron scattering studies on phase transitions in (CD3ND3)2CuCl4 and MnCl2.4H2O

    In this thesis the results of neutron scattering experiments and measurements of the susceptibility on some compounds which display magnetic and/or structural phase transitions, are described. Following an introductory chapter, chapter 2 shows that neutron scattering can be used as a tool for unravelling problems in crystallographic and magnetic structure. The qualitative different scattering patterns for scatters are described. In chapters 3 and 4 an investigation on the layered ferromagnets (CH3NH3)2CuCl4 and (CD3ND3)2CuCl4 is described. In these materials the copper ions, which carry the magnetic moment, are more closely spaced in the ab-planes, and consequently the magnetic interactions in these planes are stronger than those in the direction perpendicular to these planes by about a factor of 105. Chapter 5 presents a discussion and a calculation of demagnetizing and dipole fields. The second part of this thesis is concerned with the transition from the antiferromagnetic to the paramagnetic phase in MnCl2.4H2O in the presence of a magnetic field applied perpendicular to the preferred direction of the magnetic moments. The theory is reviewed in chapter 6 and in chapter 7 the correction procedure for inhomogeneous internal fields is applied to the measurements on MnCl2.4H2O. (Auth./C.F.)

  8. Concentration-dependent binding of CO2 and CD4 in UiO-66(Zr): A combination of neutron powder diffraction and first-principle DFT calculations

    Over the last twenty years, tremendous progress has been achieved in the field of Metal Organic Frameworks. Among these materials, the zirconium terephthalate UiO-66(Zr) [1] has attracted a growing attention because of its interesting thermal, chemical and water stability and has shown to be a promising material for the separation of CO2/CH4 gas mixtures. In order to get a better understanding of its sorption behavior towards these gases, a Neutron Powder Diffraction (NPD) investigation of UiO-66 loaded with sequential doses of CO2 and CD4 has been carried out on the High Resolution Powder Diffractometer instrument “Echidna” at the OPAL reactor (ANSTO, Sydney). In total, three adsorption sites for CO2 and three adsorption sites for CD4 within the UiO-66(Zr) have been located by NPD then characterized by a combination of first-principles Density Functional Theory (DFT) calculations, binding energies and Quantum Theory of Atoms In Molecules (QTAIM) theory. An example of the first CO2 adsorption site is given in figure 1.

  9. Precision Mass Measurements of ^{129-131}Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process.

    Atanasov, D; Ascher, P; Blaum, K; Cakirli, R B; Cocolios, T E; George, S; Goriely, S; Herfurth, F; Janka, H-T; Just, O; Kowalska, M; Kreim, S; Kisler, D; Litvinov, Yu A; Lunney, D; Manea, V; Neidherr, D; Rosenbusch, M; Schweikhard, L; Welker, A; Wienholtz, F; Wolf, R N; Zuber, K

    2015-12-01

    Masses adjacent to the classical waiting-point nuclide ^{130}Cd have been measured by using the Penning-trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N=82 shell gap below the doubly magic ^{132}Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A=128-132 region and a reduction of the uncertainties from the precision mass input data. PMID:26684113

  10. Precision Mass Measurements of 129-131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

    Atanasov, D; Blaum, K; Cakirli, R B; Cocolios, T E; George, S; Herfurth, F; Kisler, D; Kowalska, M; Kreim, S; Litvinov, Yu A; Lunney, D; Manea, V; Neidherr, D; Rosenbusch, M; Schweikhard, L; Welker, A; Wienholtz, F; Wolf, R N; Zuber, K

    2015-01-01

    Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning- trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N = 82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A = 128 - 132 region and a reduction of the uncertainties from the precision mass input data.

  11. Effect of external shielding for neutrons during radiotherapy for prostate cancer, considering the 2300 CD linear accelerator and voxel phantom

    Thalhofer, J. L.; Roque, H. S.; Rebello, W. F.; Correa, S. A.; Silva, A. X.; Souza, E. M.; Batita, D. V. S.; Sandrini, E. S.

    2014-02-01

    Photoneutron production occurs when high energy photons, greater than 6.7 MeV, interact with linear accelerator head structures. In Brazil, the National Cancer Institute, one of the centers of reference in cancer treatment, uses radiation at 4 angles (0°, 90°, 180° and 270°) as treatment protocol for prostate cancer. With the objective of minimizing the dose deposited in the patient due to photoneutrons, this study simulated radiotherapy treatment using MCNPX, considering the most realistic environment; simulating the radiotherapy room, the Linac 2300 head, the MAX phantom and the treatment protocol with the accelerator operating at 18 MV. In an attempt to reduce the dose deposited by photoneutrons, an external shielding was added to the Linac 2300. Results show that the equivalent dose due to photoneutrons deposited in the patient diminished. The biggest reduction was seen in bone structures, such as the tibia and fibula, and mandible, at approximately 75%. Besides that, organs such as the brain, pancreas, small intestine, lungs and thyroid revealed a reduction of approximately 60%. It can be concluded that the shielding developed by our research group is efficient in neutron shielding, reducing the dose for the patient, and thus, the risk of secondary cancer, and increasing patient survival rates.

  12. First direct mass measurements of stored neutron-rich 129,130,131Cd isotopes with FRS-ESR

    Knöbel, R.; Diwisch, M.; Bosch, F.; Boutin, D.; Chen, L.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S. A.; Martinez-Pinedo, G.; Matoš, M.; Mazzocco, M.; Münzenberg, G.; Nakajima, S.; Nociforo, C.; Nolden, F.; Ohtsubo, T.; Ozawa, A.; Patyk, Z.; Plaß, W. R.; Scheidenberger, C.; Stadlmann, J.; Steck, M.; Sun, B.; Suzuki, T.; Walker, P. M.; Weick, H.; Wu, M.-R.; Winkler, M.; Yamaguchi, T.

    2016-03-01

    A 410 MeV/u 238U projectile beam was used to create cadmium isotopes via abrasion-fission in a beryllium target placed at the entrance of the in-flight separator FRS at GSI. The fission fragments were separated by the FRS and injected into the isochronous storage ring ESR for mass measurements. Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without Bρ-tagging at the high-resolution central focal plane of the FRS. In the experiment with Bρ-tagging the magnetic rigidity of the injected fragments was determined with an accuracy of 2 ṡ10-4. A new method of data analysis, which uses a correlation matrix for the combined data set from both experiments, has provided experimental mass values of 25 rare isotopes for the first time. The high sensitivity and selectivity of the method have given access to nuclides detected with a rate of a few atoms per week. In this letter we present for the 129,130,131Cd isotopes mass values directly measured for the first time. The experimental mass values of cadmium as well as for tellurium and tin isotopes show a pronounced shell effect towards and at N = 82. Shell quenching cannot be deduced from a single new mass value, nor by a better agreement with a theoretical model which explicitly takes into account a quenching feature. This is in agreement with the conclusion from γ-ray spectroscopy and confirms modern shell-model calculations.

  13. Neutron beam characteristics of the prompt gamma neutron activation analysis system at HANARO

    Neutron beam characteristics of the Prompt Gamma Neutron Activation Analysis facility at HANARO were measured. The neutron beam of this facility is polychromatic thermal neutrons diffracted vertically by a set of pyrolytic graphite crystals at the Bragg angle of 45 .deg. from a horizontal beam line. Three conditions of thermal neutron extraction were applied by varying graphite crystal thickness and focusing geometry of diffracted beam. Thermal neutron profile, thermal neutron flux and Cd-ratio were measured at the sample position for each extraction condition. Thermal neutron flux of 6.1x107 n/cm2s and Cd-ratio of 364 are achieved finally

  14. Use of new composite materials for the determination of Cu, Cd, Mo, As, and Sb in biological samples by radiochemical neutron activation analysis

    Lučaníková, M.; Kučera, Jan; Šebesta, F.; John, J.

    2006-01-01

    Roč. 269, č. 2 (2006), s. 463-468. ISSN 0236-5731 R&D Projects: GA ČR(CZ) GA203/04/0943 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiochemical neutron activation analysis * separation using composite materials Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.509, year: 2006

  15. Determination of As, Cd, Cr, Cu, Hg, Sb and Se concentrations by radiochemical neutron activation analysis in different Brazilian regional diets

    Radiochemical separation procedures developed for the determination of seven elements: As, Cd, Cr, Cu, Hg, Sb and Se in different Brazilian regional diets are described. In the case of the elements As, Hg, Sb and Se, the procedure was based on retention in inorganic exchanger TFO (tin dioxide) and determination of Hg by extraction with Ni(DDC)2. For determination of Cd, Cr, Cu and Se the procedure chosen was based on retention in inorganic exchanger HMD (hydrated manganese dioxide) and extraction of Cu and Cd as diethyldithiocarbamate compounds. The accuracy and precision of the methods studied were tested by means of analyses of different reference materials-Due to the lack of data on trace element levels in Brazilian foodstuffs and diets, these methods were applied to determination of these elements in different Brazilian regional diets. These s were supplied by the Food and Experimental Nutrition Department of the Faculty of Pharmaceutical Science, University of Sao Paulo. The daily intake values for these diets are presented for As, Cd, Cr, Cu, Hg, Sb and Se. (author) 21 refs.; 6 tabs

  16. Basic neutronics. Neutrons migration

    This article presents the basic neutronics necessary for the understanding of the operation of the different types of nuclear reactors: 1 - introduction to neutronics: principle of fission chain reactions, fast neutron reactors and thermal neutron reactors, capture, neutron status, variations with the reactor lattices; 2 - Boltzmann equation: neutrons population, neutrons migration, characterization of neutrons population and reactions, integral form of the Boltzmann equation, integral-differential form, equivalence between the two forms; 3 - reactor kinetics: fast neutrons and delayed neutrons, kinetic equations in punctual model, Nordheim equation, reactivity jumps, reactivity ramp; 4 - diffusion equation: local neutron status, Fick's law, diffusion equation, initial, boundary and interface conditions, nuclei in infinite and homogenous medium, some examples of solutions, developments in Eigenmodes; 5 - one-group theory: equation of the 'one-group - diffusion' theory, critical condition of the naked and homogenous reactor, critical condition of a reactor with reflectors, generalizations; 6 - neutrons moderation: different moderation mechanisms, elastic shock laws, moderation equation, some examples of solutions; 7 - resonance absorption of neutrons: advantage of the discontinuous moderation character, advantage of an heterogenous disposition, classical formula of the anti-trap factor in homogenous and heterogenous situation; 8 - neutrons thermalization: notions of thermalization mechanisms, thermalization equation, Maxwell spectrum, real spectrum, classical formula of the thermal utilisation factor, classical formula of the reproduction factor, moderation optimum. (J.S.)

  17. Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases

    Bang, W; Bonasera, A; Quevedo, H J; Dyer, G; Bernstein, A C; Hagel, K; Schmidt, K; Gaul, E; Donovan, M E; Consoli, F; De Angelis, R; Andreoli, P; Barbarino, M; Kimura, S; Mazzocco, M; Natowitz, J B; Ditmire, T

    2013-01-01

    We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d, 3He)n, D(d, t)p and 3He(d, p)4He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time-of-flight, and (2) utilizing the ratio of neutron yield to proton yield from D(d, 3He)n and 3He(d, p)4He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.

  18. Neutron monitoring using moderating sphere detectors

    Three moderating sphere-detector systems are examined as a neutron area monitoring instruments. The thermal neutron detectors used are the (bare-Cd covered) Li6 (Eu) crystal scintillating detector, the U235-mica track detector and the partially Cd-covered R.M. film. The response of the 12 s sphere-detector systems to Pu-Be neutrons are found to be 0.22 counts/neutrons for the Li6I-system. 8x10-4 tracks per neutron for the track-detector system and 10 mR equivalent γ-ray exposure per 2x10-neutrons per cm- for the Cd-covered R.M. film system

  19. Neutron radiography using neutron imaging plate.

    Chankow, Nares; Punnachaiya, Suvit; Wonglee, Sarinrat

    2010-01-01

    The aims of this research are to study properties of a neutron imaging plate (NIP) and to test it for use in nondestructive testing (NDT) of materials. The experiments were carried out by using a BAS-ND 2040 Fuji NIP and a neutron beam from the Thai Research Reactor TRR-1/M1. The neutron intensity and Cd ratio at the specimen position were approximately 9x10(5) ns/cm(2) s and 100 respectively. It was found that the photostimulated luminescence (PSL) readout of the imaging plate was directly proportional to the exposure time and approximately 40 times faster than the conventional NR using Gd converter screen/X-ray film technique. The sensitivities of the imaging plate to slow neutron and to Ir-192 gamma-rays were found to be approximately 4.2x10(-3) PSL/mm(2) per neutron and 6.7x10(-5) PSL/mm(2) per gamma-ray photon respectively. Finally, some specimens containing light elements were selected to be radiographed with neutrons using the NIP and the Gd converter screen/X-ray film technique. The image quality obtained from the two recording media was found to be comparable. PMID:19828321

  20. Neutron radiography using neutron imaging plate

    The aims of this research are to study properties of a neutron imaging plate (NIP) and to test it for use in nondestructive testing (NDT) of materials. The experiments were carried out by using a BAS-ND 2040 Fuji NIP and a neutron beam from the Thai Research Reactor TRR-1/M1. The neutron intensity and Cd ratio at the specimen position were approximately 9x105 ns/cm2 s and 100 respectively. It was found that the photostimulated luminescence (PSL) readout of the imaging plate was directly proportional to the exposure time and approximately 40 times faster than the conventional NR using Gd converter screen/X-ray film technique. The sensitivities of the imaging plate to slow neutron and to Ir-192 gamma-rays were found to be approximately 4.2x10-3 PSL/mm2 per neutron and 6.7x10-5 PSL/mm2 per gamma-ray photon respectively. Finally, some specimens containing light elements were selected to be radiographed with neutrons using the NIP and the Gd converter screen/X-ray film technique. The image quality obtained from the two recording media was found to be comparable.

  1. Neutron Beam Characterization for Neutron Radiography Facility at the Thai Research Reactor TRR-1/M1

    The aim of this research is to characterize the present status of neutron beam coming out from the reactor core of Thai Research Reactor TRR-1/M1 through neutron radiography facility. In this study, the neutron beam profiles at different positions along the beam exit were recorded using digital imaging devices. In addition, thin foil activation technique, with and without cadmium cover, was employed to determine thermal neutron flux and Cd ratio. An acrylic step wedge was exposed to neutron at different time. In parallel to image construction, neutron detection was carried out using a BF3 gas-filled detector. Then, the image intensities at particular thicknesses were normalized by neutron counts from the BF3 detector to determine relative neutron intensity. The obtained information of neutron beam characterization will be useful not only for monitoring the present status of neutron radiography facility but also for determining the optimum exposure conditions for particular samples in the future.

  2. CD163

    Moestrup, Søren K; Møller, Holger J

    2004-01-01

    acute phase response, there is evidence that this metabolic pathway regulates inflammation by at least two ways. First, CD163 is reported to directly induce intracellular signaling leading to secretion of anti-inflammatory cytokines. Second and perhaps even more important, the CD163-mediated delivery of......CD163 is a hemoglobin scavenger receptor exclusively expressed in the monocyte-macrophage system. A particularly high expression is seen in macrophages of the 'alternative activation' phenotype playing a major role in dampening the inflammatory response and in scavenging components of damaged cells....... CD163-mediated endocytosis of haptoglobin-hemoglobin complexes formed upon red blood cell hemolysis leads to lysosomal degradation of the ligand protein and metabolism of heme by cytosolic heme oxygenase. In accordance with a stimulated expression of haptoglobin, CD163 and heme oxygenase-1 during the...

  3. Preliminary Study on Neutron Radiography with Several Hundred keV Fast Neutrons

    Several hundred keV fast neutron radiography (HKFNR) can be a complementary technique to common thermal neutron radiography (TNR) and several MeV fast neutron radiography (MFNR). We tested HKFNR on a 4.5 MV Van de Graaff accelerator, and the experimental results show that the spatial resolution of this technique is better than MFNR and close to TNR. Several hundred keV fast neutrons can penetrate some thermal neutron absorbers such as Cd, and it is feasible to investigate its use on some materials which are transparent to cold/thermal neutrons, such as aluminum, using this technique

  4. Neutron Radiography

    Reddy, A. R.; Rao, M. V. N.

    2012-01-01

    The field of neutron radiography with special reference to isotopic neutron radiography has been reviewed. Different components viz., sources, collimators, imaging systems are described. Various designs of neutron radiography facilities, their relative merits and demerits , the appropriateness of each design depending on the object to be radiographed, and economics of each technique are also dealt. The applications of neutron radiography are also briefly presented.

  5. Neutron reflectometry

    Neutron research where reflection, refraction, and interference play an essential role is generally referred to as 'neutron optics'. The neutron wavelength, the scattering length density and the magnetic properties of the material determine the critical angle for total reflection. The theoretical background of neutron reflection, experimental methods and the interpretation of reflection data are presented. (K.A.)

  6. Neutron Detection with Cryogenics and Semiconductors

    bell, Z.W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.

    2005-03-10

    The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI{sub 2} for direct detection of neutrons.

  7. Neutron Skins and Neutron Stars

    Piekarewicz, J

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  8. Study of damages by neutron irradiation in lithium aluminates

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile (≅ 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of γ -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  9. Neutron Radiography

    A. R. Reddy

    1982-07-01

    Full Text Available The field of neutron radiography with special reference to isotopic neutron radiography has been reviewed. Different components viz., sources, collimators, imaging systems are described. Various designs of neutron radiography facilities, their relative merits and demerits , the appropriateness of each design depending on the object to be radiographed, and economics of each technique are also dealt. The applications of neutron radiography are also briefly presented.

  10. Neutron collimator design of neutron radiography based on the BNCT facility

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography. (authors)

  11. Radiosensitivity of CD3-CD8+CD56+ NK cells

    Vokurkova, Doris [Charles University in Prague, Faculty of Medicine in Hradec Kralove, Department of Medical Biochemistry, Simkova 870, 50038 Hradec Kralove 1 (Czech Republic); Vavrova, Jirina [University of Defence, Faculty of Military Health Sciences, Department of Radiobiology, Hradec Kralove (Czech Republic); Sinkora, Jiri [Becton Dickinson (Czech Republic); Stoklasova, Alena [Charles University in Prague, Faculty of Medicine in Hradec Kralove, Department of Medical Biochemistry, Simkova 870, 50038 Hradec Kralove 1 (Czech Republic); Blaha, Vaclav [University of Defence, Faculty of Military Health Sciences, Department of Radiobiology, Hradec Kralove (Czech Republic); Rezacova, Martina, E-mail: rezacovam@lfhk.cuni.c [Charles University in Prague, Faculty of Medicine in Hradec Kralove, Department of Medical Biochemistry, Simkova 870, 50038 Hradec Kralove 1 (Czech Republic)

    2010-10-15

    The effect of lower doses (0.5-3.0 Gy) of gamma radiation on radiosensitivity of CD3-/CD8+ NK cells subpopulation isolated from the peripheral blood of healthy volunteers was studied 48 h after the irradiation. Only a subtle increase in terms of induction of apoptosis (A+ cells), was observed in Annexin positive CD3-/CD8+ NK cells. The assessment of the relative presence of CD3{sup -}/CD8{sup +} NK cells in Annexin negative populations of lymphocytes considerably contributes to the elimination of individual variability and could be useful in biodosimetry. Living CD3-/CD8+; Annexin negative NK cells were analyzed using five-color flow cytometry 16 h after irradiation by the doses of 1-10 Gy. The study was carried out on NK cells subsets CD3-/CD8- CD16+, CD56 (dim) and CD56 (bright). NK cells characterized with their low-density expression of CD56 (dim) are more cytotoxic and express CD16. Those with high-density expression of CD56 (bright) are known for their capacity to produce cytokines following activation of monocytes but their natural cytotoxicity is low; they are classified as CD16- or CD16 (dim). A dose-depending decrease in the relative presence of CD3-/CD8+ NK cells was observed 16 h after ionizing radiation (1-10 Gy). The decrease was highly pronounced in CD56 (bright) subset of NK cells and this subpopulation was considered as the most radiosensitive one. Unfortunately, the most radiosensitive subpopulation of NK cells - CD56bright cannot be used as a biodosimetric marker due to its insufficient amount in peripheral blood.

  12. Neutron Capture and Neutron Halos

    A.Mengoni; Otsuka, T; Nakamura, T.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Ishihara, M.

    1996-01-01

    The connection between the neutron halo observed in light neutron rich nuclei and the neutron radiative capture process is outlined. We show how nuclear structure information such as spectroscopic factors and external components of the radial wave function of loosely bound states can be derived from the neutron capture cross section. The link between the direct radiative capture and the Coulomb dissociation process is elucidated.

  13. Analysis of ancient coins by activation with rapid neutrons and by PIXE method

    The quantitative analysis of valuable objects in archaelogical research calls for the use of strictly non-destructive methods, even on very small surfaces of the object to investigate. The analytical method used by L.A.R.N. for the determination of principal elements Cu, Sn and Pb and of trace elements As and Ag in coins have been: 1. the rapid neutron activation (14 Mev) for the analysis of Sn; 2. the PIXE (Proton-Induced X-ray Emission) technique for the surface and core measures in samples which have been sawn as Sn, Pb, Ag and As. These methods have been used to analyse the blanks of Argos supplied by the Institut d'Archeologie of the University of Louvain. (A.F.)

  14. Calibration of a special neutron dosemeter based on solid-state track detectors and fission radiators in various neutron fields

    The calibration of a personnel neutron dosemeter in different neutron fields is described. The badge-like dosemeter contains 5 detectors: polycarbonate foil (10 μm, Makrofol KG), 232Th, natural uranium, natural uranium with boron, and natural uranium with cadmium. Detector sensitivity and calibration factors have been calculated and measured in radiation fields of 252Cf fission neutrons, WWR-S reactor neutrons with and without Cd and Fe shielding, 3-MeV (d,t) generator neutrons, and 238PuBe neutrons. Measurement range and achievable accuracy are discussed from the point of view of applying the dosemeter in routine and emergency uses

  15. Quadrupole collectivity in 128Cd

    The regions around shell closures, especially around doubly magic nuclei, are of major interest in nuclear structure physics, as they provide a perfect test for nuclear structure theory. The neutron-rich Cd isotopes in the region of 132Sn are only two protons away from the shell closure at Z=50 and in close proximity to the N=82 magic number. Nevertheless they show an irregular behaviour regarding the excitation energy of the first excited 2+ state. This is not reproduced by shell model calculations, which is astonishing due to the proximity of the shell closures. In order to shed light on the much discussed region around doubly magic 132Sn, a Coulomb excitation experiment of 128Cd has been performed at REX-ISOLDE, CERN. The reduced transition strength B(E2;0+gs → 2+1), which is a measure of collectivity, and the spectroscopic quadrupole moment Qs(2+1) as a measure of deformation could be determined for the first time. The results are shown as the continuation of already measured neutron-rich Cd isotopes and are compared to both beyond mean field and shell model calculations, which give different predictions for these observables.

  16. In-beam γ-ray spectroscopy of 103Cd

    Excited states of 103Cd were studied in the reaction 58Ni(50Cr,4pn)103Cd. The NORDBALL array with neutron and charged particle detectors was employed for the detection of γ rays and light evaporated particles. The level scheme of 103Cd was significantly extended. A strong cascade of E2 transitions connecting negative parity states was found. Shell model calculations were performed and positive parity excited states were interpreted in terms of neutron-particle and proton-hole excitations with respect to the doubly magic N=Z=50 core. The negative parity band was well reproduced by the total routhian surface calculations. (orig.)

  17. Neutron sources

    As neutron scattering experiments have grown more and more demanding with respect to resolution and quality, it became more and more necessary to include the neutron source itself in the design of an experimental setup. In this sense the generic representation of a neutron scattering arrangement includes the primary neutron source and the associated spectrum shifter (or moderator). In fact, the design of a modern neutron source will start from a set of users requirements and will proceed 'inwards' through a selection of the moderators (spectrum shifters) to the primary source best suited to meet these often conflicting needs. This paper aims at explaining the options source designers have to match the neutron source performance to the users' demands. (author)

  18. Neutron detector

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  19. Neutron activation analysis in Bulgaria

    The development of instrumental neutron activation analysis (INAA) as a routine method started in 1960 with bringing into use of the experimental nuclear reactor 2 MW -IRT-2000. For the purposes of INAA the vertical channels were used. The neutron flux vary from 1 to 6x1012n/cm2s, with Cd ratio for gold of about 4,4. In one of the channels the neutron flux is additionally thermalised with grafite, in others - a pneumatic double-tube rabbit system is installed. One of the irradiation positions is equiped with 1 mm Cd shield constantly. With the pressure of the working gas (air) of 2 bar the transport time in one direction is 2,5 sec. Because of lack of special system for uniform irradiation an accuracy of 3% can be reached by use of iron monitors for long irradiations and copper monitors for use in the rabbit system. Two neutron generators are also working but the application of 14 MeV neutrons for INAA is still quite limited. The most developed are the applications of INAA in the fields of geology and paedology, medicine and biology, environment and pollution, archaeology, metallurgy, metrology and hydrology, criminology

  20. Heavy weight concrete with special mixes for neutron attenuation

    This work is concerned with the study of the attenuation properties of special mixes of magnetite concrete for fast and thermal neutrons. Investigations were carried out using a collimated beam of neutrons emitted from Pu-α-Be and Californium-252 neutron sources. The fast spectra of neutrons were measured by a scintillation spectrometer with stilbene crystal. Discrimination against undesired pulses of neutrons or gamma -rays was achieved by a zero crossover method. The thermal neutron fluxes were measured by a BF3 detector. The obtained data are displayed in the form of spectra for fast neutrons and attenuation relations for thermal neutrons.The thermal neutron fluxes were measured using bare beam and beams filtered by 113 Cd and B4 C filters to discuss the origin of thermal neutrons interacting with the concrete samples. The obtained results were also used to derive the attenuation coefficients for total thermal neutrons and for newly produced thermal neutrons resulting from neutron beams filtered by 113 Cd and B4 C in the different magnetite concrete shields of different thicknesses.

  1. Neutron collimator design of neutron radiography based on the BNCT facility

    Yang, XP; Li, YG; Peng, D; Lu, J; Zhang, GL; Zhao, H; Zhang, AW; Li, CY; Liu, WJ; Hu, T; Lv, JG

    2013-01-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of theneutron collimator is greater than 10^6 n/cm^2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  2. Atmospheric neutrons

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J2/sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  3. Neutron dosimetry

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq 241 Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s-1 and 0,5 μSv s-1. A calibrated 50 nSv s-1 thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the 241 Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold 241 Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,α) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kVpp cm-1, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46± 0,09) 104 tracks cm-2 mSv-1 for thermal neutrons, (9±3) 102 tracks cm-2 mSV-1 for intermediate neutrons and (26±4) tracks cm-2 mSv-1 for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990's ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is sufficiently sensitive to thermal and intermediate neutrons but fast neutron monitoring ar radiological protection level

  4. Micromegas neutron beam monitor neutronics.

    Stephan, Andrew C; Miller, Laurence F

    2005-01-01

    The Micromegas is a type of ionising radiation detector that consists of a gas chamber sandwiched between two parallel plate electrodes, with the gas chamber divided by a Frisch grid into drift and amplification gaps. Investigators have applied it to a number of different applications, such as charged particle, X-ray and neutron detection. A Micromegas device has been tested as a neutron beam monitor at CERN and is expected to be used for that purpose at the Spallation Neutron Source (SNS) under construction in Oak Ridge, TN. For the Micromegas to function effectively as neutron beam monitor, it should cause minimal disruption to the neutron beam in question. Specifically, it should scatter as few neutrons as possible and avoid neutron absorption when it does not contribute to generating useful information concerning the neutron beam. Here, we present the results of Monte Carlo calculations of the effect of different types of wall materials and detector gases on neutron beams and suggest methods for minimising disruption to the beam. PMID:16381746

  5. Neutron dosimetry; Dosimetria de neutrons

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  6. Neutron gun

    The neutron gun combines a new core ion source of the cold type based on X-ray ionization and new cold type of neutron source working with core ion generation. The neutrons are formed from the impact of core ions on the negatively charged anode. Based on a new conversion function, the function of the positive anode becomes analogous to the beta-unstable decomposition of a neutron. A core ion and neutron amplifier in the sense of amplifying the number is derived from the beta-unstable neutron decomposition, in order to raise the output of a gun in pulsed operation by using the number amplification in the intervals between the pulses. The method of construction is simple and cheap, the equipment has purely linear acceleration or operation with circular acceleration with linear pre-acceleration as an alternative. Purely linear operation should be sufficient for medical applications, e.g. for neutron photography to replay X-ray photography and particularly for neutron scalpels in the surgical treatment of tumours. (orig./HP)

  7. Cadmium mass measurements between the neutron shell closures at N = 50 and 82

    The mass values of the neutron-deficient cadmium isotopes 99-109Cd and of the neutron-rich isotopes 114,120,122-124,126,128Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.

  8. Neutron transport

    This bibliographical note presents a reference book which addresses the study of neutron transport in matter, the study of conditions for a chain reaction and the study of modifications of matter composition due to nuclear reactions. This book presents the main nuclear data, their measurement, assessment and processing, and the spallation. It proposes an overview of methods applied for the study of neutron transport: basic equations and their derived forms, deterministic methods and Monte Carlo method of resolution of the Boltzmann equation, methods of resolution of generalized Bateman equations, methods of time resolution of space kinetics coupled equations. It presents the main calculation codes, discusses the qualification and experimental aspects, and gives an overview of neutron transport applications: neutron transport calculation of reactors, neutron transport coupled with other disciplines, physics of fuel cycle, criticality

  9. Neutron tubes

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  10. Parity-non-conserving internucleon potentials studied in the 113Cd (n, γ) 114Cd reaction

    Warming, Inge Elisabeth; Stecher-Rasmussen, F.; Ratynski, W.; Kopecky, J.

    The asymmetry in the gamma intensity after capture of polarized neutrons in 113Cd was investigated. An upper limit to a possible asymmetry A was determined of |A| <4.7 times 10-4. This result does not agree with that of Abov et al....

  11. Combination of the prompt neutron capture method with other neutron methods for substance elemental content analysis

    Neutron analysis method of determining element composition have found wide range of applications in industry thanks to different types of interaction of neutron with substances /1/. With the aim of widening the range of problems to be solved, on the basis of the device /2/ for determining the element content of substance, possibilities of combining the method based on the use of neutron capture gamma-ray spectrometry with other neutron methods, in particular neutron activation analysis and neutron absorption analysis were studied. In this radionuclide source (252Cf) with the yield of 1,5 x 107 neutron/sec is used. By means of using neutron capture gamma radiation spectrometry the possibilities of determining some elements (H, B, N, S etc. ), which are not determined by very widely used method, activation analysis. These elements can be determined by both the semiconductor and scintillation detectors with parameters fitting the manufacturing requirements. And for a number of elements ( B, Cl, Cd, Sm, Gd) very high limits of determination ( up to 10- 5 %) are possible using semiconductor Ge (Li) -detectors with high resolution. Possibility of determination of some 'well' activated elements ( K, Al, Fe, Mn, Ti, Sc etc.) in samples of ore and products of their processing using the neutron-activation analysis. For 1 hour of irradiation on the experimental device quite accurate analytical peak, of these elements are obtained, allowing to determine them qualitatively. However, with decreasing neutron yield of radionuclide source it becomes more difficult to achieve the necessary parameters both in neutron capture and activation analysis. Experimental works on determination of some elements with large cross-sections of capture ( B, Cd, Sm ) by absorption of neutrons in the investigated substance, i.e. using the neutron absorption analysis method with absence of other large capture cross section elements in the samples being studied. (author)

  12. Neutron radiography

    This introduction is addressed to an audience active in diverse forms of neutron source applications but not directly familiar with neutron radiography. Neutron radiography is, of course, similar to, and complementary to, radiography using x-rays. However, neutrons, being sensitive to the nuclear properties of materials, provide information fundamentally different from x-rays. For example, neutrons can penetrate many dense metals such as uranium, lead, bismuth or steel, and can reveal details of internal hydrogenous components: explosives, lubricants and gaskets. For nuclear fuel inspection neutron radiography offers the ability to penetrate dense uranium-238 and contrast the isotopes U-235 or Pu-239 and also offers the ability to discriminate against unwanted interference from gamma radiation. In addition to advantages in industrial applications, there are special situations in fields such as medical diagnostics, dentistry, agriculture and forensic science. Comprehensive accounts of applications in the field can be found in the proceedings of the world conferences on neutron radiography: USA (1981), FRANCE (1986). A third conference in this series is scheduled for May 1989 in Japan

  13. Neutron radiography

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H2O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  14. Neutron tomography

    In this paper a survey is given of recent developments in selected areas of neutron tomography, within the context of several applications Argonne is involved in, including high penetration of reactor-fuel bundles in thick containers (involving TREAT and NRAD facilities), dual-energy hydrogen imaging (performed at IPNS), dynamic coarse-resolution emission tomography of rector fuel under test (a proposed modification to the TREAT hodoscope), and an associated-particle system that uses neutron flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays

  15. TLD determination of neutron dose contribution in medical linac

    The increased use of Linacs with accelerating voltage higher than 10 MV in clinical radiotherapy is producing and increasing demand of accurate dosimetric measurements of the photon induced neutron contamination of the radiotherapy beams, due that the associated Bremsstrahlung X rays may produce neutrons as a result of subsequent photonuclear reactions with the different materials constituting the accelerator head. Thermal neutron fluences can be measured with TLD-600/TLD-700 pairs arranged in both a bare and a cadmium (Cd) foil covered methacry-late box. Neutron response of Tl dosemeters irradiated with two different neutron sources has been investigated. The shape of the glow curve of these TLDs after irradiation in a medical Linac and in a Pu Be neutron source has been studied to verify the contribution of neutrons to an additional dose to staff, patients and the general public, due to photonuclear reactions generating neutrons from medical Linacs. (Author)

  16. Levels structures of Cd-114

    The level structures of 114Cd up to an excitation energy of 3.6 MeV have been investigated. Gamma radiation following thermal neutron capture in 113Cd in the energy region from 50 keV to 2.2 MeV has been measured by means of the three curved-crystal γ-ray spectrometers, GAMS 1 and GAMS 2/3 at the I.L.L. reactor. Internal conversion electrons have been measured with the electron spectrometer BILL installed at the I.L.L. Several targets were prepared by the evaporation or sedimentation technique in order to measure the electrons in the energy region from 40 keV to 8.5 MeV. Multipolarities for a large number of transitions were determined. Primary γ-ray following average resonance neutron capture at Esub(n) = 2 keV and 24 keV were recorded at the Brookhaven National Laboratory resulting in a complete set of levels with Isup(π) +- up to 3 MeV excitation energy. Combining these results a level scheme up to 3.6 MeV has been constructed

  17. Neutron scattering

    This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs

  18. Piezonuclear Neutrons

    Cardone, Fabio; Petrucci, Andrea

    2008-01-01

    We report the results of neutron measurements carried out during the application of ultrasounds to a solution containing only stable elements like Iron and Chlorine, without any other radioactive source of any kind. These measurements, carried out by CR39 detectors and a Boron TriFouride electronic detector, evidenced the emission of neutron pulses. These pulses stand well above the electronic noise and the background of the laboratory where the measurements were carried out.

  19. Neutron Scattering

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  20. FOREWORD: Neutron metrology Neutron metrology

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  1. Neutron activation analysis of cadmium in Jamaican soils

    A procedure for the instrumental neutron activation analysis of Cd in soils with relatively high Cd content and possible interferences is reported. Cadmium concentrations in Jamaican soils above 4 mg x kg-1 can now be reliably determined by multielemental instrumental activation analysis with an accuracy ±10% and the reasonably high throughput of 30 samples per day. Over 600 geochemical survey samples were analysed for Cd along with some 20 other long-lived elements. (author)

  2. Multi particle excitations in 102Cd

    The structure of nuclei belonging to A ∼100 mass region are interesting to study because of the dominating shell closure effects. The even-even transitional nucleus 102Cd with 48 protons and 54 neutrons is close to the doubly magic 100Sn with N=Z=50. Its structure may follow the shell model or it may possibly develop collective features since it has sufficiently large number of valence nucleons outside the 100Sn core. The distinct pattern of proton and neutron excitations at low spins may align to contribute to the total angular momentum at high spin giving rise to magnetic rotation. However, the lack of firm spin parity assignment and absolute transition strengths, the interpretation of high spin states in 102Cd is very tentative. This mechanism is characterised by a pronounced decrease in magnetic dipole transition strength B(M1) as the shears vectors close. Such behaviour may be proved from lifetime measurements

  3. Producing CD-ROMs.

    Hyams, Peter, Ed.

    1992-01-01

    This issue presents 11 articles that address issues relating to the production of CD-ROMs. Highlights include current uses of CD-ROM; standards; steps involved in producing CD-ROMs, including data capture, conversion, and tagging, product design, and indexing; authoring; selecting indexing and retrieval software; costs; multimedia CD-ROMs; and…

  4. Cadmium Subtraction Method for the Active Albedo Neutron Interrogation of Uranium

    Worrall, Louise G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    This report describes work performed under the Next Generation Safeguards Initiative (NGSI) Cadmium Subtraction Project. The project objective was to explore the difference between the traditional cadmium (Cd) ratio signature and a proposed alternative Cd subtraction (or Cd difference) approach. The thinking behind the project was that a Cd subtraction method would provide a more direct measure of multiplication than the existing Cd ratio method. At the same time, it would be relatively insensitive to changes in neutron detection efficiency when properly calibrated. This is the first published experimental comparison and evaluation of the Cd ratio and Cd subtraction methods.

  5. Neutron Repulsion

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  6. Probing the quadrupole collectivity of 128Cd using Coulomb excitation

    128Cd is only two proton and two neutron holes away from the doubly magic nucleus 132Sn. The excitation energy of the first excited 2+-state decreases when approaching the neutron shell closure. This unexpected behaviour makes this nucleus interesting for investigation. So far, contradicting theoretical predictions for the B(E2,0+ → 2+) value of 128Cd exist. While shell model calculations conclude an almost spherical shape of 128Cd, beyond mean field calculations predict an already considerable quadrupole collectivity. In this contribution the experimental details of the Coulomb excitation of 128Cd at REX-ISOLDE, investigated with MINIBALL (experiment IS477), are presented. Furthermore the current status of the analysis to determine the transition strength of the ground state into the first excited 2+ state is shown.

  7. neutron radiography

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  8. The Qβ values of the heavy Cd and In isotopes

    The total decay energies of neutron rich isotopes of Cd and In have been determined using end-points of β-spectra recorded in a βγ-coincidence experiment. The data have been used to deduce the first experimental nuclear masses for 123-128Cd and have given improved mass values for 123-130In. A comparison is made with the predictions of several mass formulae. (orig.)

  9. Neutron diffraction

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  10. Regulatory function of cytomegalovirus-specific CD4+CD27-CD28- T cells

    CMV infection is characterized by high of frequencies of CD27-CD28- T cells. Here we demonstrate that CMV-specific CD4+CD27-CD28- cells are regulatory T cells (TR). CD4+CD27-CD28- cells sorted from CMV-stimulated PBMC of CMV-seropositive donors inhibited de novo CMV-specific proliferation of autologous PBMC in a dose-dependent fashion. Compared with the entire CMV-stimulated CD4+ T-cell population, higher proportions of CD4+CD27-CD28- TR expressed FoxP3, TGFβ, granzyme B, perforin, GITR and PD-1, lower proportions expressed CD127 and PD1-L and similar proportions expressed CD25, CTLA4, Fas-L and GITR-L. CMV-CD4+CD27-CD28- TR expanded in response to IL-2, but not to CMV antigenic restimulation. The anti-proliferative effect of CMV-CD4+CD27-CD28- TR significantly decreased after granzyme B or TGFβ inhibition. The CMV-CD4+CD27-CD28- TR of HIV-infected and uninfected donors had similar phenotypes and anti-proliferative potency, but HIV-infected individuals had higher proportions of CMV-CD4+CD27-CD28- TR. The CMV-CD4+CD27-CD28- TR may contribute to the downregulation of CMV-specific and nonspecific immune responses of CMV-infected individuals.

  11. Neutron reflectometer

    The neutron reflectometer is the most powerful and nondestructive tool to analyze the surface and buried interfaces in the layered films. Such films often have a close relation to the functional devices. Structural information in the vicinity of the interfaces is a key parameter in the field of the nanoscale science. (author)

  12. Neutron radiography

    Principles of the method, complementarity with X or gamma rays, neutron energy, detection and applications on irradiated materials and for the industrial quality control are exposed. Examples of applications in pyrotechnics, plastics, fuels, lubricants, metallurgy are given. Techniques developed by the CEA for its own needs or for industry and description of facilities in the nuclear centers are reviewed

  13. Physical engineering for boron neutron capture therapy in KUR

    Kobayashi, Toru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst

    2001-01-01

    Basic results of physical engineering study for neutron capture therapy in KUR have been reported since 1970, such as (1) development of thermal neutron fields for therapy following with low {gamma}-ray, (2) development of thermal neutron shield material ({sup 6}LiF) following with low secondary {gamma}-ray, (3) establishment of measurement techniques for B-10 concentration in tissue by using then (n,{gamma}) reaction, (4) evaluation of absorbed dose in a cell level during neutron capture therapy. It is difficult for many of thermal neutrons to reach to the depths in tissue. The thermal neutron irradiation, therefore, is suitable for the therapy of cancer on surface tissue, but not suitable for the therapy of cancer in the depths. Uses of epi-thermal (0.5 eV - 10 keV) or hyper-thermal (>0.5 eV) neutrons, instead of thermal neutron are considered for the neutron capture therapy to cancer in the depth. The depth dose distributions of thermal neutron are improved by increase of forward component of the epi-thermal or the hyper-thermal neutron. Thermal neutron fluxes have been measured by the activation method of Au-197. Thermo-luminescent detector (MgSiO4, or BeO) is used for the measurement of {gamma}-ray doses. Noninvasive dose estimation at cancer parts is developed with a prompt {gamma}-ray analysis method using HPGe and CdTe semiconductor detectors. (Suetake, M.)

  14. Methods for absorbing neutrons

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  15. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of 239Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of 239Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a 239Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to 239Pu, in comparison with a 235U fission chamber, with a 3He proportional counter, and with a 10B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the 239Pu and 235U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the 3He and 10B proportional counters to increase the sensitivity to 239Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies

  16. Investigation of neutron-deficient isotopes in the barium-region

    Bombarding targets of 106Cd, 108Cd and 110Cd with 16O ions of 52.5-66.0 MeV neutron deficient barium, cesium and xenon isotopes were produced and have been studied using excitation functions and neutron-gamma, proton-gamma, alpha-gamma and gamma-gamma coincidence measurements. Partial level schemes for 123Ba and 121Ba were proposed. A number of gamma transitions was assigned to the different product nuclei. The measured particle emission probabilities from the compound nuclei are compared with different evaporation models. The models mostly underestimate neutron emission and often overestimate the emission of alpha particles. (orig.)

  17. Neutron activation analysis of reference materials

    The importance is pointed out of neutron activation analysis in the preparation of reference materials, and studies are reported conducted recently by UJV. Instrumental neutron activation analysis has been used in testing homogeneity and in determining 28 elements in newly prepared reference standards of coal fly ash designated ENO, EOP and ECH. For accuracy testing, the same method was used in the analysis of NBS SRM-1633a Trace Elements in Coal Fly Ash and IAEA CRM Soil-5 and RM Soil-7. Radiochemical neutron activation analysis was used in determining Cd, Cu, Mn, Mo, and Zn in biological materials NBS SRM-1577 Bovine Liver, Bowen's Kale and in IAEA RM Milk Powder A-11 and Animal Muscle H-4. In all instances very good precision and accuracy of neutron activation analysis results were shown. (author)

  18. Recent Advances in Neutron Physics

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  19. Neutron rich nuclei and neutron stars

    Horowitz, C. J.

    2013-01-01

    The PREX experiment at Jefferson Laboratory measures the neutron radius of 208Pb with parity violating electron scattering in a way that is free from most strong interaction uncertainties. The 208Pb radius has important implications for neutron rich matter and the structure of neutron stars. We present first PREX results, describe future plans, and discuss a follow on measurement of the neutron radius of 48Ca. We review radio and X-ray observations of neutron star masses and radii. These cons...

  20. Photodissociation of neutron deficient nuclei

    Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2006-03-15

    The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)

  1. Photodissociation of neutron deficient nuclei

    Sonnabend, K.; Babilon, M.; Hasper, J.; Müller, S.; Zarza, M.; Zilges, A.

    2006-03-01

    The knowledge of the cross sections for photodissociation reactions like e.g. (γ, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained.

  2. Neutron dosimetry

    It is the object of the present invention to provide a method of measuring neutron radiation which eliminates the use of powders as dosimeter target materials and reduces the requirement for repetitive weighing of dosimeters, for expensive radioisotopes as dosimeter target material, and for dosimeter housings (in many cases). The invention described is a method of measuring neutron radiation within a nuclear reactor consisting of placing one or more extruded sintered oxide wires comprising a dosimeter target oxide within the reactor and measuring the radioactivity induced in the wires by neutron radiation. These oxide wires consist of a dilution containing at least 0.1% by weight of the dosimeter target oxide in a diluent oxide. The diluent oxide is selected from a group consisting of Al2O3 and BeO. Almost any metal oxide may be used as a target oxide. The wires may be encapsulated within a co-extruded housing. These mixed oxide wires have been found to be sufficiently uniform for quantitative analyses. (JTA)

  3. Neutron scattering

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  4. Neutron scattering. Lectures

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  5. Neutron scattering. Lectures

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  6. Study of damages by neutron irradiation in lithium aluminates; Estudio de danos por irradiacion neutronica en aluminatos de litio

    Palacios G, O

    1999-06-01

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile ({approx_equal} 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of {gamma} -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  7. CD3(+)CD8(+)CD28(-) T Lymphocytes in Patients with Lupus Nephritis.

    Żabińska, Marcelina; Krajewska, Magdalena; Kościelska-Kasprzak, Katarzyna; Klinger, Marian

    2016-01-01

    The results of studies on the CD3(+)CD8(+)CD28(-) cells in SLE are inconsistent since several analyses describe CD3(+)CD8(+)CD28(-) as either immunosuppressive or cytotoxic. The aim of this study is to inquire whether the quantitative changes of CD3(+)CD8(+)CD28(-) T lymphocytes subpopulation are related to the clinical status of patients with lupus nephritis. Evaluation of Foxp3 expression on CD3(+)CD8(+)CD28(-) cells may shed some light on functional properties of these cells. 54 adult SLE patients and 19 sex and age matched healthy volunteers were enrolled in the study. There were 15 patients in inactive (SLEDAI ≤ 5) and 39 in active (SLEDAI > 5) phase of disease. We determined absolute count of CD3(+)CD8(+)CD28(-) and CD3(+)CD8(+)CD28(-)Foxp3(+) subpopulations by flow cytometry. We observed a statistically significant increase in absolute count and percentage of CD3(+)CD8(+)CD28(-) in SLE patients compared to HC (p < 0.001). Moreover there was significant positive correlation between increasing absolute count of CD3(+)CD8(+)CD28(-) cells and disease activity measured by SLEDAI (rs = 0.281, p = 0.038). Active LN patients had increased absolute count of CD3(+)CD8(+)CD28(-) cells compared to HC. Positive correlation of CD3(+)CD8(+)CD28(-) number with disease activity, and lack of Foxp3 expression on these cells, suggests that CD3(+)CD8(+)CD28(-) lymphocytes might be responsible for an increased proinflammatory response in the exacerbation of SLE. PMID:27446964

  8. Influence of thermal and resonance neutron on fast neutron flux measurement by Pu-239 fission chamber

    zeng, Lina; Song, Lingli; Zheng, Chun

    2014-01-01

    The Pu-239 fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the mean time the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of Pu-239 are measured as 1.791*10-16,2.350*10-16 and 1.385*10-15 per second for 15mm thick B cover, 0.5mm thick Cd cover, and no cover respectively. While the fission reaction rate of Pu-239 is rapidly increased to 2.569*10-14 for a 20mm thick polythene covering fission chamber. The average Pu-239 fission cross-section of thermal and resonance neutrons is calculated to be 500b and 24.95b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30*106,2.24*106 and 1.04*108cm-2s-1.

  9. Quadrupole collectivity in {sup 128}Cd

    Boenig, Esther Sabine

    2014-07-07

    The regions around shell closures, especially around doubly magic nuclei, are of major interest in nuclear structure physics, as they provide a perfect test for nuclear structure theory. The neutron-rich Cd isotopes in the region of {sup 132}Sn are only two protons away from the shell closure at Z=50 and in close proximity to the N=82 magic number. Nevertheless they show an irregular behaviour regarding the excitation energy of the first excited 2{sup +} state. This is not reproduced by shell model calculations, which is astonishing due to the proximity of the shell closures. In order to shed light on the much discussed region around doubly magic {sup 132}Sn, a Coulomb excitation experiment of {sup 128}Cd has been performed at REX-ISOLDE, CERN. The reduced transition strength B(E2;0{sup +}{sub gs} → 2{sup +}{sub 1}), which is a measure of collectivity, and the spectroscopic quadrupole moment Q{sub s}(2{sup +}{sub 1}) as a measure of deformation could be determined for the first time. The results are shown as the continuation of already measured neutron-rich Cd isotopes and are compared to both beyond mean field and shell model calculations, which give different predictions for these observables.

  10. Spallation Neutron Source (SNS)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  11. Design of an epi-thermal neutron flux intensity monitor with GaN wafer for boron neutron capture therapy

    Boron neutron capture therapy (BNCT) is a promising cancer therapy. Epi-thermal neutron (0.5 eV < En < 10 keV) flux intensity is one of the basic characteristics for modern BNCT. In this work, based on the 71Ga(n, γ)72Ga reaction, a new simple monitor with gallium nitride (GaN) wafer as activation material was designed by Monte Carlo simulations to precisely measure the absolute integral flux intensity of epi-thermal neutrons especially for practical BNCT. In the monitor, a GaN wafer was positioned in the center of a polyethylene sphere as neutron moderator covered with cadmium (Cd) layer as thermal neutron absorber outside. The simulation results and related analysis indicated that the epi-thermal neutron flux intensity could be precisely measured by the presently designed monitor. (author)

  12. The crystal structure analysis of deuterated benzene and deuterated nitromethane by pulsed-neutron powder diffraction: a comparison with single crystal neutron diffraction analysis

    The results of time-of-flight neutron powder diffraction analyses at 4.2 K are compared with those from steady-state neutron single-crystal analyses at 15 K for deuterated benzene, C6D6, and deuteronitromethane, CD3NO2. (orig.)

  13. Neutron scattering. Lectures

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  14. REFRACTIVE NEUTRON LENS

    Petrov, P. V.; Kolchevsky, N.N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  15. Neutron Capture Nucleosynthesis

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these resu...

  16. Neutron scattering. Lectures

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  17. The reference neutron field - a standard neutron source for neutron measurements at the research reactor IRT-2000 in Sofia

    A reference neutron field (RFN) is used as a standard neutron source (SNS) that is influenced by the changes in the reactor core due to recharging or other causes. A whole range of measurements is carried out in a full scope, to specify its characteristics precisely. The SNS comprises: 1) the RNF certificated to the neutron energy spectrum, its location in the reactor field, being a reference measure of the differential energy distribution in the neutron flux; 2) exposure monitoring tools (detectors revealing the certified physical characteristics); 3) functional measurement apparatus (revealing the spectral characteristics). The following basic metrological characteristics are given: differential neutron energy spectrum, described by F(E) [1/cm2.s.MeV], normalized by 1 in the range 3-19 MeV and the measurement error; the conventional neutron flux density and its error. The methodology of measuring the neutron flux integral density comprises the following six steps: 1) assessment of the influence of the changes in the core configuration on the stability of the RNF (estimated in six energy ranges); 2) demonstration of RNF application in reactor physics studies; 3) irradiation of two sets of activation detectors (Au, Sc and Au, Sc, S in Al and Cd shields); 4) measurement of the detector activities by calibrated gamma- and beta- spectrometric apparatus; 5) determination of the neutron field characteristics at a certain point of the RNF by the method of activating ratios; 6) the result accuracy assessment and probabilistic error limits determination with 95% upper bound frequency. The RNF neutron energy range have been measured 6 times for a period of two years. 6 refs., 8 figs. (M.A.)

  18. Neutron Therapy Facility

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  19. Different thresholds of T cell activation regulate FIV infection of CD4+CD25+ and CD4+CD25- cells

    Cellular activation plays an important role in retroviral replication. Previously, we have shown that CD4+CD25+ T cells by the virtue of their partially activated phenotype represent ideal candidates for a productive feline immunodeficiency virus (FIV) infection. In the present study, we extended our previous observations with regard to FIV replication in CD4+CD25+ and CD4+CD25- cells under different stimulation conditions. Both CD4+CD25+ and CD4+CD25- cells remain latently infected in the absence of IL-2 or concanvalinA (ConA), respectively; harboring a replication competent provirus capable of reactivation several days post-infection. While CD4+CD25+ cells require low levels of exogenous IL-2 and virus inputs for an efficient FIV replication, CD4+CD25- T cells can only be productively infected in the presence of either high concentrations of IL-2 or high virus titers, even in the absence of mitogenic stimulation. Interestingly, while high virus input activates CD4+CD25- cells to replicate FIV, it induces apoptosis in a high percentage of CD4+CD25+ T cells. High IL-2 concentrations but not high virus inputs lead to surface upregulation of CD25 and significant cellular proliferation in CD4+CD25- cells. These results suggest that CD4+CD25+ and CD4+CD25- T cells have different activation requirements which can be modulated by both viral and cytokine stimuli to reach threshold activation levels in order to harbor a productive FIV infection. This holds implications in vivo for CD4+CD25+ and CD4+CD25- cells to serve as potential reservoirs of a productive and latent FIV infection

  20. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  1. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Sacco, D.; Bedogni, R.; Bortot, D.; Palomba, M.; Pola, A.; Introini, M. V.; Lorenzoli, M.; Gentile, A.; Strigari, L.; Pressello, C.; Soriani, A.; Gómez-Ros, J. M.

    2015-10-01

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 109-1010 cm-2, using the ex-core radial thermal neutron column of the ENEA Casaccia - TRIGA reactor. The results are presented in this work.

  2. Neutronic fields produced by a lineal accelerator for radiotherapy

    Measurements and Monte Carlo calculations has been utilized to determine the dosimetric features as well as the neutron spectra of photoneutrons produced around an 18 MV linear accelerator for radiotherapy. Measurements were carried out with bare and Cd covered thermoluminescent dosimeters, TLD600 and TLD700, as well as inside a paraffine moderator. TLD pairs were also utilized as thermal neutrons inside a Bonner sphere spectrometer (au)

  3. Photocatalytic Hydrogen Generation by CdSe/CdS Nanoparticles.

    Qiu, Fen; Han, Zhiji; Peterson, Jeffrey J; Odoi, Michael Y; Sowers, Kelly L; Krauss, Todd D

    2016-09-14

    The photocatalytic hydrogen (H2) production activity of various CdSe semiconductor nanoparticles was compared including CdSe and CdSe/CdS quantum dots (QDs), CdSe quantum rods (QRs), and CdSe/CdS dot-in-rods (DIRs). With equivalent photons absorbed, the H2 generation activity orders as CdSe QDs ≫ CdSe QRs > CdSe/CdS QDs > CdSe/CdS DIRs, which is surprisingly the opposite of the electron-hole separation efficiency. Calculations of photoexcited surface charge densities are positively correlated with the H2 production rate and suggest the size of the nanoparticle plays a critical role in determining the relative efficiency of H2 production. PMID:27478995

  4. Soluble CD163

    Møller, Holger J

    2012-01-01

    macrophage activation syndrome, sepsis, and liver disease. Moreover, sCD163 is a general risk marker of comorbidity and mortality in several chronic inflammatory disease states. Recently, sCD163 has been shown to be strongly associated with later development of type 2 diabetes in both lean and obese subjects......, likely due to macrophage infiltration of adipose tissue and the liver. This review summarizes the current knowledge on the regulation of sCD163 in normal and pathological states and also deals with analytical aspects of sCD163 measurements in biological samples....

  5. Neutron excitation function guide for reactor dosimetry

    Neutron Excitation Function Guide for Reactor Dosimetry (NEFGRD) has been prepared in the Ukrainian Nuclear Data Center (UKRNDC) using ZVV 9.2 code for graphical data presentation. The data can be retrieved through Web or obtained on CD-ROM or as hard copy report. NEFGRD contains graphical and text information for 56 nuclides (81 dosimetry reactions). Each reaction is provided by the information part and several graphical function blocks (from one to nine). (author)

  6. Experimental research on reflected neutrons from cement material

    Neutrons reflected by the cement material were studied by nuclear fission and activation methods with a D-T neutron source. With the small enriched uranium and depleted uranium fission ionization chambers combining to the capturing detector, the 235U (wrapped by Cd foil) and 238U fission reaction rates induced by reflected neutrons are measured on the horizontal equator of the Fe shell's outer surface. The standard experimental uncertainties of fission reaction rates were 6.1%-7.3% for 235U(wrapped by Cd foil) and 6.4%-7.4% for 238U. With five kinds of activation foils of different threshold energy, the 56Fe, 27Al, 93Nb, 19F and 63Cu reaction rates induced by reflected neutrons were measured. The standard experimental uncertainties of activation reaction rates were 7.2%-8.0%. The 235U(wrapped by Cd foil) fission reaction rates with a 252Cf neutron source were compared to the ones with a D-T neutron source. The experimental results were discussed and analyzed. (authors)

  7. Measurement of Secondary Neutron Emission Double-Differential Cross Section for Deuteron Induced by 8.22 MeV Neutrons

    LIN; Meng-na; RUAN; Xi-chao; HUANG; Han-xiong; REN; Jie; LI; Yong-ming; LI; Xia; NIE; Yang-bo; ZHANG; Qi-wei; HE; Guo-zhu; ZHOU; Zu-ying

    2012-01-01

    <正>This experiment is performed to measure the time-of-flight spectra of secondary neutrons for deuteron induced by 8.22 MeV neutrons in the range of 15o-155o for CD2 and C samples, and 15o -65o for a polyethylene sample, by using the multi-detector fast neutron TOF spectrometer at the China institute of Atomic Energy (CIAE). The D(d, n)3He reaction source was used. The influence of the C in the CD2

  8. Canine CD4(+)CD8(+) double-positive T cells can develop from CD4(+) and CD8(+) T cells.

    Bismarck, Doris; Moore, Peter F; Alber, Gottfried; von Buttlar, Heiner

    2014-12-15

    For a long time the expression of the CD4 and CD8 receptor on peripheral blood T cells was thought to be mutually exclusive. However, in canine peripheral blood, similar to other species as swine or human for example, mature CD4(+)CD8(+) double-positive (dp) T cells exist which simultaneously express both surface receptors and have features of activated T cells. Canine CD4(+)CD8(+)dp T cells are heterogeneous and can be divided into three subpopulations by their intensity of CD4 and CD8α expression: CD4(bright)CD8α(bright), CD4(dim)CD8α(bright) and CD4(dim)CD8α(dim). The number of CD4(+)CD8α(+)dp T cells increases after in vitro stimulation of canine peripheral blood mononuclear cells (PBMC) raising the question of their progenitor(s). Thus, the aim of our study was to characterize the progenitor(s) of canine CD4(+)CD8α(+)dp T cells. By cell tracing experiments we identified both CD4(+) single-positive (sp) and also CD8α(+)sp T cells as progenitors of canine CD4(+)CD8α(+)dp T cells after in vitro stimulation. CD4(+)sp T cells almost exclusively upregulate a CD8αα homodimer, whereas CD8α(+)sp T cells can become CD4(+)CD8αβ(+) or CD4(+)CD8αα(+). Even in the absence of other cells, highly purified CD4(+)sp T cells can become double-positive upon in vitro stimulation, whereas highly purified CD8α(+)sp T cells fail to do so. However, CD8α(+)sp T cells can additionally express CD4 when stimulated in the presence of CD4(-)CD8α(-) double-negative (dn) cells or more efficiently when stimulated in the presence of CD4(+)sp T cells. Soluble factors secreted by CD4(+)sp T cells are sufficient for the upregulation of CD4 on CD8α(+)sp T cells, but direct cell-cell contact between CD4(+)sp and CD8α(+)sp T cells is more efficient. mRNA analysis shows that additional CD4 expression on CD8α(+)sp T cells results from de novo synthesis. Thus, uptake of soluble CD4 or trogocytosis is less likely as mechanism for generation of canine double-positive T cells. CD4(+)CD

  9. Neutron source for Neutron Capture Synovectomy

    Monte Carlo calculations were performed to obtain a thermal neutron field from a 239PuBe neutron source inside a cylindrical heterogeneous moderators for Neutron Capture Synovectomy. Studied moderators were light water and heavy water, graphite and heavy water, lucite and polyethylene and heavy water. The neutron spectrum of polyethylene and heavy water moderator was used to determine neutron spectra inside a knee model. In this model the elemental composition of synovium and synovial liquid was assumed like blood. Kerma factors for synovium and synovial liquid were calculated to compare with water Kerma factors, in this calculations the synovium was loaded with two different concentrations of Boron

  10. Neutron dosimetry - A review

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  11. Borner Ball Neutron Detector

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  12. Superfluid neutron stars

    Langlois, David

    2001-01-01

    Neutron stars are believed to contain (neutron and proton) superfluids. I will give a summary of a macroscopic description of the interior of neutron stars, in a formulation which is general relativistic. I will also present recent results on the oscillations of neutron stars, with superfluidity explicitly taken into account, which leads in particular to the existence of a new class of modes.

  13. Neutrostriction in Neutron stars

    Ignatovich, V. K.

    2003-01-01

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  14. Neutron scattering. Lectures

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  15. Neutron scattering. Lectures

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  16. Neutron standard data

    The neutron standards are reviewed with emphasis on the evaluation for ENDFB-VI. Also discussed are the neutron spectrum of 252Cf spontaneous fission, activation cross sections for neutron flux measurement, and standards for neutron energies greater than 20 MeV. Recommendations are made for future work. 21 refs., 6 figs., 3 tabs

  17. Possibilities of Controlling Nutritious Wheat Flour by the Method of Neutron Activation Analysis

    Possibilities of controlling nutritious wheat flour by the method of neutron activation analysis are studied. It is established, that detection of contents of As, Cd, Hg, Cu and Zn in wheat flour is possible using this method and a neutron multiplier. The results of measurements were worked out by polycomparative method. (author)

  18. Neutron Capture Nucleosynthesis

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  19. Neutron halo state of 13C

    2001-01-01

    Angular distributions for the 12C(d, p)13C transfer reactionshave been measured at Ed = 11.8 MeV, and compared with those of the DWBA calculations. By means of this comparison, density distributions of the last neutron in the ground state and the first 1/2+ state of 13C are extracted. The properties of these states in 13C have also been studied in the framework of the nonlinear relativistic mean-field theory with NL-SH parameters. It is found that the first 1/2+ state in 13C is a neutron halo state shown by both the experimental and theoretical density distributions of the last neutron.

  20. Effectiveness of custom neutron shielding in the maze of radiotherapy accelerators

    An investigation was performed to examine the neutron dose equivalent in a radiotherapy maze lined with a customised neutron shielding material. The accelerator investigated was a Varian Clinac 2100C/D using 18 MV photons, and the neutron shielding utilised at this centre was PremadexTM commercially available neutron shielding. Based on Monte Carlo simulations, properly installed customised neutron shielding may reduce the neutron dose equivalent by up to a factor of 8 outside the maze, depending upon the installation. In addition, it was determined that the neutron dose near the entrance to the maze may be reduced by approximately 40% by using customised neutron shielding in the maze, as compared with a facility not using this shielding. This would have a positive dose-saving effect in doorless maze designs. (author)

  1. Neutrons in cancer therapy

    Allen, Barry J.

    1995-03-01

    The role of neutrons in the management of cancer has a long history. However, it is only in recent years that neutrons are beginning to find an accepted place as an efficacious radiation modality. Fast neutron therapy is already well established for the treatment of certain cancers, and clinical trials are ongoing. Californium neutron sources are being used in brachytherapy. Boron neutron capture therapy has been well tested with thermal neutrons and epithermal neutron dose escalation studies are about to commence in the USA and Europe. Possibilities of neutron induced auger electron therapy are also discussed. With respect to chemotherapy, prompt neutron capture analysis is being used to study the dose optimization of chemotherapy in the management of breast cancer. The rationales behind these applications of neutrons in the management of cancer are examined.

  2. High energy neutron detector

    Wiegand, C.

    1948-04-27

    It is the purpose of this paper to describe a neutron detector suitable for monitoring a flux of neutrons whose energy is greater than about 50 MeV. Detection of the neutrons is accomplished by their ability to induce fission in heavy elements. Kelly and Wiegand studied the neutron fission of Bi, Pb, Ti, Hg, Au, and Pt at various neutron energies and the presently described counter is an application of this work.

  3. Imaging with Scattered Neutrons

    Ballhausen, H; Gähler, R; Trapp, M; Van Overberghe, A

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

  4. Delayed-neutron activities produced in fission: Mass range 122--146

    Delayed-neutron emission from mass separated heavy fission products has been studied using a sensitive neutron counter. Twelve new delayed-neutron precursors have been found, namely 122Ag, 123Ag, 127In, 128Cd (or 128In/sub m/), 128In, 129In (two isomers), 130In, 131In, 132In, 133Sn, and 136Sb. The half-life determination for 11 other precursors has been improved

  5. Measurement of epithermal neutrons by a coherent demodulation technique

    Horiuchi, N; Takahashi, H; Kobayashi, H; Harasawa, S

    2000-01-01

    Epithermal neutrons have been measured using a neutron dosimeter via a coherent demodulation technique. This dosimeter consists of CsI(Tl)-photodiode scintillation detectors, four of which are coupled to neutron-gamma converting foils of various sizes. Neutron-gamma converting foils of In, Au and Co materials were used, each of which has a large capture cross section which peaks in the epithermal neutron energy region. The type of foil was selected according to the material properties that best correspond to the energy of the epithermal neutrons to be measured. In addition, the proposed technique was applied using Au-foils in order to measure the Cd ratio. The validity of the proposed technique was examined using an sup 2 sup 4 sup 1 Am-Be source placed in a testing stack of polyethylene blocks, and the results were compared with the theoretical values calculated by the Monte Carlo calculation. Finally, the dosimeter was applied for measuring epithermal neutrons and the Cd ratio in an experimental beam-tube o...

  6. Position sensitive detection of neutrons in high radiation background field

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e− radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm2) spectroscopic Timepix detector adapted for neutron detection utilizing very thin 10B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10−4

  7. Spectral fluence of neutrons generated by radiotherapeutic Linacs

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac. (authors)

  8. The instrumental neutron activation determination of impurities in technical cobalt

    Instrumental neutron activation techniques for determination of 13 impurities with detection limit 10-5 - 10-2% in technical cobalt have been developed by using thermal and epithermal neutrons of nuclear reactor. Self-shielding and disturbance of neutron flux(Co59 has high capture cross-section of neutrons) by sample were taken into account by using some references and from the results obtained in preliminary experiments. Samples and standards have been placed in such a way that neutron flux disturbance was less than 2-3%. The Al-Pb-Cd-Cu filter was used for absorption of low energy γ-rays of Co60m and Co61. (author)

  9. Neutron total cross section measurements with the {sup 6}Li-ZnS(Ag) scintillator (BC702) employing a neutron and noise separation technique

    Shin, Sung Gyun; Kye, Yong Uk; Cho, Moo Hyun [Pohang University of Science and Technology, Pohang (Korea, Republic of); Namkung, Won [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, Gui Nyun [Kyungpook National University, Daegu (Korea, Republic of); Lee, Man Woo; Kang, Yeong Rok [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-05-15

    The neutron total cross-section of natural Dy has been measured in the energy region from 0.01 to 100 eV by using the neutron time-of-flight method at Pohang Neutron Facility, which consists of an electron linear accelerator, a water-cooled Ta target with a water moderator, and a timeof-flight path with an 11-m length. A {sup 6}Li-ZnS(Ag) scintillator with a diameter of 12.5 cm and a thickness of 1.5 cm has been used as a neutron detector, and a metallic Dy plate has been used for the neutron transmission measurement. The background level has been determined by using notch filters of Co, Ta, and Cd sheets. In order to reduce the gamma rays from Bremsstrahlung and from neutron capture, we have employed a neutron-gamma separation system based on their different pulse shapes.

  10. Pulsed neutron sources for epithermal neutrons

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  11. Neutron Scintillators for Downscattered Neutron Imaging

    Images of neutron emission from Inertial Confinement Fusion (ICF) (D,T) targets reveal the internal structure of the target during the fusion burn. 14-MeV neutrons provide images which show the size and shape of the region where (D,T) fusion is most intense. Images based on ''downscattered'' neutrons with energies from 5 to 10 MeV emphasize the distribution of deuterium and tritium fuel within the compressed target. The downscattered images are difficult to record because the lower energy neutrons are detected with less efficiency than the much more intense pulse of 14-MeV neutrons which precedes them at the detector. The success of downscattered neutron imaging will depend on the scintillation decay times and the sensitivities to lower-energy neutrons of the scintillator materials that are used in the detectors. A time-correlated photon counting system measured the decay of neutron-induced scintillation for times as long as several hundred ns. Accelerators at the University of California, Berkeley, and the Lawrence Livermore National Laboratory provided stable 14-MeV neutron sources for the measurements. Measurements of scintillator decay characteristics indicate that some commercially available scintillators should be suitable for recording both 14-MeV and downscattered neutron images of compressed ICF targets

  12. Weapons Neutron Research Facility (WNR)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  13. Neutron in biology

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  14. Layered semiconductor neutron detectors

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  15. Reactor neutron dosimetry

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  16. Pulsed neutron porosity logging

    A borehole logging tool employing a pulsed neutron source and a pair of spaced-apart epithermal neutron detectors is lowered into a borehole traversing a subsurface formation. The formation is irradiated with bursts of fast neutrons and the epithermal neutrons returning to the borehole as a result of such irradiation are detected by the pair of epithermal neutrons detectors. These detected epithermal neutrons are both time resolved and time integrated during their epithermal dieaway spectrum to provide indications of lithology independent porosity and lithology dependent porosity respectively. 6 refs

  17. Broadband Neutron Interferometer

    Pushin, Dmitry A; Hussey, Dan; Miao, Houxun; Arif, Muhammad; Cory, David G; Huber, Michael G; Jacobson, David; LaManna, Jacob; Parker, Joseph D; Shinohara, Taken; Ueno, Wakana; Wen, Han

    2016-01-01

    We demonstrate a two phase-grating, multi-beam neutron interferometer by using a modified Ronchi setup in a far-field regime. The functionality of the interferometer is based on the universal \\moire effect that was recently implemented for X-ray phase-contrast imaging in the far-field regime. Interference fringes were achieved with monochromatic, bichromatic, and polychromatic neutron beams; for both continuous and pulsed beams. This far-field neutron interferometry allows for the utilization of the full neutron flux for precise measurements of potential gradients, and expands neutron phase-contrast imaging techniques to more intense polycromatic neutron beams.

  18. CD3+CD8+CD161high Tc17 cells are depleted in HIV-infection

    Gaardbo, Julie Christine; Hartling, Hans Jakob; Thorsteinsson, Kristina;

    2012-01-01

    CD8+ Tc17 cells with pro-inflammatory properties have only recently been acknowledged, and Tc17 cells in HIV-infection are undescribed. CD3+CD8+CD161 Tc17 cells and the production of Interleukin-17 were examined in untreated and treated HIV-infected patients, HIV-HCV co-infected patients and...... healthy controls. Depletion of CD3+CD8+CD161 Tc17 cells and diminished production of Interleukin-17 in HIV-infected patients was found. The level of Tc17 cells was associated with the level of the CD4+ count in treated patients....

  19. CD3+CD8+CD161high Tc17 cells are depleted in HIV-infection.

    Gaardbo, Julie Christine; Hartling, Hans Jakob; Thorsteinsson, Kristina; Ullum, Henrik; Nielsen, Susanne Dam

    2013-02-20

    CD8 Tc17 cells with pro-inflammatory properties have only recently been acknowledged, and Tc17 cells in HIV-infection are not described. CD3CD8CD161 Tc17 cells and the production of interleukin (IL)-17 were examined in untreated and treated HIV-infected patients, HIV-hepatitis C virus co-infected patients, and healthy controls. Depletion of CD3CD8CD161 Tc17 cells and diminished production of IL-17 in HIV-infected patients were found. The level of Tc17 cells was associated with the CD4 cell count in treated patients. PMID:23135168

  20. Neutron scattering and spallation neutron sources

    Neutron scattering as a probe of microscopic structure and dynamics is a powerful tool for research in a wide variety of fields, and an accelerator-based spallation neutron source can supply high flux pulses for neutron scattering. The characteristics of neutron scattering, the principle and development of spallation neutron sources, and their advantages in multidisciplinary applications are summarized. In the proposed project of the Chinese Spallation Neutron Source the target station will consist of a piece-stacked tungsten target, a Be/Fe reflector and an Fe/heavy concrete bio-protected shelter. The pulsed neutron flux will be up to 2.4 x 1016 n/cm2/s under a nuclear power of 100 kW. Five neutron scattering instruments--a high flux powder diffractometer, a high resolution powder diffractometer, small angle diffractometer, multi-functional reflectometer and direct geometry inelastic spectrometer, will be constructed as the first step to cover most neutron scattering applications. (authors)

  1. Neutron-antineutron oscillation in neutron stars

    It is investigated if the neutron-antineutron oscillation might affect the stability of a neutron star. Because of the very high density inside a neutron star the possibility is reduced drastically and it is shown that only a small percentage of the neutrons are capable of becoming antineutrons and thus are annihilated. Fixing the lower limit (referred to the vacuum) of τn,antin as 106 s, it is obtained that only 1021 erg/s are produced by this mechanism, so the thermodynamical equilibrium of the star is unaffected

  2. Naiskoori uus CD

    2007-01-01

    Tallinna Tehnikaülikooli Akadeemilise Naiskoori uue CD "...nagu puhas mõte" esitluskontserdist 21. veebr. Tallinna Matkamajas. TTÜ Akadeemilise Naiskoori 55. aastapäeva kontserdist 23. mail TTÜ aulas

  3. Advances in imaging with thermal neutrons

    Experiments have been conducted using a modern high-resolution 3He two-dimensional position-sensitive detection chamber combined with coded apertures to produce images by means of thermal neutrons. These images are comparable to those produced by gamma ray imaging, but with some important differences. The detector is much less sensitive to the fast neutrons than to the thermalized component. Therefore, assuming that the neutron source has a fission spectrum, the brightest regions in an image represent moderating material in close proximity to the source, rather than the source itself. Earlier experiments have shown that useful contrast can be produced with thermal neutrons using thin masks made of metallic Cd sheet, but the resolution in those experiments was detector-limited at a few centimeters per pixel. The newer detector can resolve a line image with a fwhm resolution of about 1 mm. The technique could in principle be used in re-entry vehicle on-site inspections to count multiple nuclear warheads. Thermal neutrons carry no detailed spectral information, so their detection should not be as intrusive as gamma ray imaging. This technique can be used in nuclear materials management and arms control

  4. Neutron anatomy

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone

  5. Neutron anatomy

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  6. Sources of ultracold neutrons

    The results of comparative experimental investigations to study ultracold neutron yields from different neutron moderator-converters are presented. The installation is described which is based on a WWR-K reactor once-through beam hole. The neutron yields were measured using Al, Mg, ZrHsub(1.9), H2O and H2 neutron converters at 80 and 300 K. For H2 converters pressure dependences of the neutron yield were also measured in the 0.1-1.5 atm. pressure range. Among solid neutron converters the ZrHsub(1.9) one possesses the highest ultracold neutron yield, whereas among all the converters tested the best performance was shown by the frozen water one, the ultracold neutron count with the proportional He3 counter being about 500ssup(-1)

  7. Neutron radiation capture

    For all stable and experimentally studied radionuclides evaluated data are presented on cross sections of thermal neutrons, on resonance integrals and medium neutron cross sections with energy of 30 KeV. Refs, figs and tabs

  8. Neutron color image intensifier

    Neutron radiography is expanding from the conventional reactor based imaging to the imaging by accelerator based pulsed neutron source. Among them, an expectation for image intensifier technology is increasing especially for video rate dynamic image detection or time dependent imaging in a pulsed neutron source. Based on the X-ray color image intensifier technology, Toshiba has developed neutron color image intensifiers as a powerful imaging tool for dynamic and time dependent neutron radiographics. In this paper, the construction and the feature of the developed neutron color image intensifier and some examples of neutron images are presented. I would be grateful if this paper helps for wide application of neutron color image intensifiers. (author)

  9. INVESTIGATION OF CdTe/CdS HETEROJUNCTION CHARACTERISTICS%CdTe/CdS异质结特性

    郭江; 王万录; 刘高斌; 冯良桓

    2003-01-01

    从理论上对CdTe/CdS太阳电池CdS/CdTe异质结的特性进行了研究和讨论,结果表明可以简单利用改变CdTe、CdS两种半导体材料的掺杂浓度来改变CdS/CdTe异质结的能带结构.针对不同的能带结构采用了不同的物理模型,得到的CdS/CdTe异质结伏安特性曲线有一折点,且折点位置随异质结能带结构的变化而变化.

  10. Properties of neutron sources

    The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers

  11. Imaging with Scattered Neutrons

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  12. Isotopic neutron sources for neutron activation analysis

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  13. Response of quiescent and total tumor cells in solid tumors to neutrons with various cadmium ratios

    Purpose: Response of quiescent (Q) and total tumor cells in solid tumors to neutron irradiation with three different cadmium (Cd) ratios was examined. The role of Q cells in tumor control was also discussed. Methods and Materials: C3H/He mice bearing SCC VII tumors received continuous administration of 5-bromo-2'-deoxyuridine (BrdU) for 5 days using implanted mini-osmotic pumps to label all proliferating (P) cells. Thirty minutes after intraperitoneal injection of sodium borocaptate-10B (BSH), or 3 h after oral administration of dl-p-boronophenylalanine-10B (BPA), the tumors were irradiated with neutrons, or those without 10B-compounds were irradiated with gamma rays. This neutron irradiation was performed using neutrons with three different cadmium (Cd) ratios. The tumors were then excised, minced, and trypsinized. The tumor cell suspensions were incubated with cytochalasin-B (a cytokinesis-blocker), and the micronucleus (MN) frequency in cells without BrdU labeling (Q cells) was determined using immunofluorescence staining for BrdU. The MN frequency in total (P + Q) tumor cells was determined from tumors that were not pretreated with BrdU. The sensitivity to neutrons was evaluated in terms of the frequency of induced micronuclei in binuclear tumor cells (MN frequency). Results: Without 10B-compounds, the MN frequency in Q cells was lower than that in the total cell population. The sensitivity difference between total and Q cells was reduced by neutron irradiation. Relative biological effectiveness (RBE) of neutrons compared with gamma rays was larger in Q cells than in total cells, and the RBE values for low-Cd-ratio neutrons tended to be larger than those for high-Cd-ratio neutrons. With 10B-compounds, MN frequency for each cell population was increased, especially for total cells. This increase in MN frequency was marked when high-Cd-ratio neutrons were used. BPA increased the MN frequency for total tumor cells more than BSH. Nevertheless, the sensitivity of Q

  14. Uses of reactor neutrons for studying the microcomposition of materials

    Reactor neutrons constitute excellents 'probes' for exploring and measuring a wide range both of minor and trace constituents in solids and liquids with high sensitivity because of their transparency in materials. Nondestructive neutron prompt-gamma analysis (PGA) utilizing either cold or thermal neutrons, such as at JRR-3M, is compared and contrasted to the more common (delayed) instrumental neutron activation analysis (INAA) and epithermal NAA. Clearly PGA offers high sensitivity for selected elements: B, H, Cd and REE's in suitable matrices, and is therefore, complementary to INAA which is not as useful for them, or for Ni, Sn, Fe, C or N. Recent INAA applications in our laboratory that demonstrate some of the uniqueness of neutron methods include use of epithermal neutrons for small biological specimens to measure Cd, K, As, Zn and, multielemental INAA for environmental pollution studies. The latter involves large data sets of multielemental concentrations which are subjected to statistical multivariant factor analysis to reveal unknown or unsuspected quantitative relationships among groups of trace constituents. These patterns, or 'factors' are shown to be uniquely related to pollution sources and can be utilized to compute the relative source contributions at a given receptor site. (author)

  15. Segmented CdWO4 detector for low background experiments at DUSEL

    Mei, Dongming; Sun, Yongchen; Day, Alyssa; Thomas, Keenan; Perevozchikov, Oleg

    2010-11-01

    We propose to develop a segmented CdWO4 scintillator array for detecting geo-neutrinos, neutrinoless double-beta, and dark matter. The detection of geo-neutrinos can shed light on the sources of the terrestrial heat flow, on the present composition, and on the origins of the Earth. The development of a new technique to detect geo-neutrinos through charge current antineutrino capture processes on ^106Cd is very interesting. This target allows us to detect all of geo-neutrinos from uranium, thorium, and potassium decays. When it is built, the detector can be also used to detect neutrinoless double-beta decay with ^116Cd. Both enriched ^106Cd and ^116Cd can be used to search for dark matter from the Universe. This paper will present RD results on the energy response of gamma-rays and neutrons from three small CdWO4 detectors.

  16. Fundamental neutron physics

    Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more

  17. Neutron radiography with cyclotron

    The technique using thermal neutrons was demanded because of its inspection ability to show hydrogeneous material such as plastics, water, explosives or composite materials and irradiated nuclear fuel capsules. This paper describes some experimental results and applications in neutron radiography by the use of several small cyclotrons producing neutrons by Be(p,n) reaction. (author)

  18. Thermal neutron beamline monitor

    A detector has been developed which has characteristics that make it suitable for use as a neutron beamline monitor on the Spallation Neutron Source. Efficiency has been reduced to 10-4, pulse pair resolution is 50 nSecs and it presents minimal obstruction to the neutron beam. (author)

  19. International Neutron Radiography Newsletter

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...

  20. Neutrons in medicine

    The potential advantages for the treatment of solid human tumours with high LET radiation are outlined. Two different kinds of neutron radio-therapy a) boron capture therapy with slow neutrons and b) fast neutron radiotherapy are briefly reviewed together with some clinical results for the latter. Radiotherapy with charged nuclear particles is also mentioned. (UK)

  1. Polarized Neutron Scattering

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  2. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B., E-mail: gnade@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, G. R.; Allee, D. R. [Flexible Display Center, Arizona State University, Phoenix, Arizona 85284 (United States); Sastré-Hernández, J.; Contreras-Puente, G. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City 07738 (Mexico); Mendoza-Pérez, R. [Universidad Autónoma de la Ciudad de México, Mexico City 09790 (Mexico)

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  3. Experimental studies on neutron attenuation with polyethylene slabs in the south beam end of KAMINI reactor

    The neutron attenuating properties of polyethylene slabs are studied in this experiment. Better thermal neutron attenuation is observed in high density slabs compared to low density slabs. In the fast neutron attenuation similar behaviour is seen between both high and low density slabs. The attenuation factors are found over a thickness of 18-30 cm for the measured reaction rates of 55Mn (n,γ) 56Mn, 63Cu (n,γ) 64Cu, 23Na (n,γ) 24Na, 197Au (n,γ)198Au, 180Hf (n,n') 180mHf, 195Pt (n,n') 195mPt, 111Cd(n, n') 111mCd; 115In(n,n') In115m and 56Fe (n,p) 56Mn reactions representative of thermal, epithermal and fast neutron fluxes. A comparative analysis with the neutron attenuation behaviour in water is also made. (author)

  4. Neutron absorbers and detector types for spent fuel verification using the self-interrogation neutron resonance densitometry

    Rossa, Riccardo, E-mail: rrossa@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Borella, Alessandro, E-mail: aborella@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium); Labeau, Pierre-Etienne, E-mail: pelabeau@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Pauly, Nicolas, E-mail: nipauly@ulb.ac.be [Université libre de Bruxelles, Ecole polytechnique de Bruxelles, Service de Métrologie Nucléaire (CP 165/84), Avenue F.D. Roosevelt, 50, B1050 Brussels (Belgium); Meer, Klaas van der, E-mail: kvdmeer@sckcen.be [SCK-CEN, Belgian Nuclear Research Centre, Boeretang, 200, B2400 Mol (Belgium)

    2015-08-11

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive non-destructive assay (NDA) technique that is proposed for the direct measurement of {sup 239}Pu in a spent fuel assembly. The insertion of neutron detectors wrapped with different neutron absorbing materials, or neutron filters, in the central guide tube of a PWR fuel assembly is envisaged to measure the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. In addition, the measurement of the fast neutron flux is foreseen. This paper is focused on the determination of the Gd and Cd neutron filters thickness to maximize the detection of neutrons within the resonance region. Moreover, several detector types are compared to identify the optimal condition and to assess the expected total neutron counts that can be obtained with the SINRD measurements. Results from Monte Carlo simulations showed that ranges between 0.1–0.3 mm and 0.5–1.0 mm ensure the optimal conditions for the Gd and Cd filters, respectively. Moreover, a {sup 239}Pu fission chamber is better suited to measure neutrons close to the 0.3 eV resonance and it has the highest sensitivity to {sup 239}Pu, in comparison with a {sup 235}U fission chamber, with a {sup 3}He proportional counter, and with a {sup 10}B proportional counter. The use of a thin Gd filter and a thick Cd filter is suggested for the {sup 239}Pu and {sup 235}U fission chambers to increase the total counts achieved in a measurement, while a thick Gd filter and a thin Cd filter are envisaged for the {sup 3}He and {sup 10}B proportional counters to increase the sensitivity to {sup 239}Pu. We concluded that an optimization process that takes into account measurement time, filters thickness, and detector size is needed to develop a SINRD detector that can meet the requirement for an efficient verification of spent fuel assemblies.

  5. Nuclear $\\beta^+$/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing

    Niu, Z M; Liu, Q; Liang, H Z; Guo, J Y

    2013-01-01

    Self-consistent proton-neutron quasiparticle random phase approximation based on the spherical nonlinear point-coupling relativistic Hartree-Bogoliubov theory is established and used to investigate the $\\beta^+$/EC-decay half-lives of neutron-deficient Ar, Ca, Ti, Fe, Ni, Zn, Cd, and Sn isotopes. The isoscalar proton-neutron pairing is found to play an important role in reducing the decay half-lives, which is consistent with the same mechanism in the $\\beta$ decays of neutron-rich nuclei. The experimental $\\beta^+$/EC-decay half-lives can be well reproduced by a universal isoscalar proton-neutron pairing strength.

  6. Neutron removal cross section as a measure of neutron skin

    D. Q. Fang; Y. G. Ma; Cai, X. Z.(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China); Tian, W.D.; Wang, H. W.

    2010-01-01

    We study the relation between neutron removal cross section ($\\sigma_{-N}$) and neutron skin thickness for finite neutron rich nuclei using the statistical abrasion ablation (SAA) model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between $\\sigma_{-N}$ and the neutron skin thickness for neutron rich nuclei. Further analysis suggests that the relative increa...

  7. Downregulation of CD44 reduces doxorubicin resistance of CD44+CD24- breast cancer cells

    Phuc PV

    2011-06-01

    Full Text Available Pham Van Phuc, Phan Lu Chinh Nhan, Truong Hai Nhung, Nguyen Thanh Tam, Nguyen Minh Hoang, Vuong Gia Tue, Duong Thanh Thuy, Phan Kim NgocLaboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh, VietnamBackground: Cells within breast cancer stem cell populations have been confirmed to have a CD44+CD24- phenotype. Strong expression of CD44 plays a critical role in numerous types of human cancers. CD44 is involved in cell differentiation, adhesion, and metastasis of cancer cells.Methods: In this study, we reduced CD44 expression in CD44+CD24- breast cancer stem cells and investigated their sensitivity to an antitumor drug. The CD44+CD24- breast cancer stem cells were isolated from breast tumors; CD44 expression was downregulated with siRNAs followed by treatment with different concentrations of the antitumor drug.Results: The proliferation of CD44 downregulated CD44+CD24- breast cancer stem cells was decreased after drug treatment. We noticed treated cells were more sensitive to doxorubicin, even at low doses, compared with the control groups.Conclusions: It would appear that expression of CD44 is integral among the CD44+CD24- cell population. Reducing the expression level of CD44, combined with doxorubicin treatment, yields promising results for eradicating breast cancer stem cells in vitro. This study opens a new direction in treating breast cancer through gene therapy in conjunction with chemotherapy.Keywords: antitumor drugs, breast cancer stem cells, CD44, CD44+CD24- cells, doxorubicin

  8. Neutron scattering. Experiment manuals

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  9. Neutron scattering. Experiment manuals

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  10. Neutron scattering. Experiment manuals

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2012-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, the neutron polarization analyzer DNS, the neutron spin-echo spectrometer J-NSE, the small-angle neutron diffractometers KWS-1/-2, the very-small-angle neutron diffractometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  11. Grazing Incidence Neutron Optics

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  12. Neutron scatter camera

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  13. Neutron scattering. Experiment manuals

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, the neutron polarization analyzer DNS, the neutron spin-echo spectrometer J-NSE, the small-angle neutron diffractometers KWS-1/-2, the very-small-angle neutron diffractometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  14. Neutron techniques in Safeguards

    An essential part of Safeguards is the ability to quantitatively and nondestructively assay those materials with special neutron-interactive properties involved in nuclear industrial or military technology. Neutron techniques have furnished most of the important ways of assaying such materials, which is no surprise since the neutronic properties are what characterizes them. The techniques employed rely on a wide selection of the many methods of neutron generation, detection, and data analysis that have been developed for neutron physics and nuclear science in general

  15. CD4+/CD8+ double-positive T cells

    Overgaard, Nana H; Jung, Ji-Won; Steptoe, Raymond J;

    2015-01-01

    lymphoid tissues of numerous species, as well as in numerous disease settings, including cancer. The expression of CD4 and CD8 is regulated by a very strict transcriptional program involving the transcription factors Runx3 and ThPOK. Initially thought to be mutually exclusive within CD4(+) and CD8(+) T...... reports describing cytotoxic or suppressive roles for these cells. In this review, we describe how transcriptional regulation, lineage of origin, heterogeneity of CD4 and CD8 expression, age, species, and specific disease settings influence the functionality of this rarely studied T cell population....

  16. A time-of-flight detector for thermal neutrons from radiotherapy Linacs

    Conti, V. [Universita degli Studi di Milano and INFN di Milano (Italy)], E-mail: conti.Valentina@gmail.com; Bartesaghi, G. [Universita degli Studi di Milano and INFN di Milano (Italy); Bolognini, D.; Mascagna, V.; Perboni, C.; Prest, M.; Scazzi, S. [Universita dell' Insubria, Como and INFN di Milano (Italy); Mozzanica, A. [Universita degli Studi di Brescia and INFN sezione di Pavia (Italy); Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A. [Fisica Sanitaria, Ospedale S. Anna di Como (Italy); Giannini, G.; Vallazza, E. [INFN, sezione di Trieste and Universita degli Studi di Trieste (Italy)

    2007-10-21

    Boron Neutron Capture Therapy (BNCT) is a therapeutic technique exploiting the release of dose inside the tumour cell after a fission of a {sup 10}B nucleus following the capture of a thermal neutron. BNCT could be the treatment for extended tumors (liver, stomach, lung), radio-resistant ones (melanoma) or tumours surrounded by vital organs (brain). The application of BNCT requires a high thermal neutron flux (>5x10{sup 8}ncm{sup -2}s{sup -1}) with the correct energy spectrum (neutron energy <10keV), two requirements that for the moment are fulfilled only by nuclear reactors. The INFN PhoNeS (Photo Neutron Source) project is trying to produce such a neutron beam with standard radiotherapy Linacs, maximizing with a dedicated photo-neutron converter the neutrons produced by Giant Dipole Resonance by a high energy (>8MeV) photon beam. In this framework, we have developed a real-time detector to measure the thermal neutron time-of -flight to compute the flux and the energy spectrum. Given the pulsed nature of Linac beams, the detector is a single neutron counting system made of a scintillator detecting the photon emitted after the neutron capture by the hydrogen nuclei. The scintillator signal is sampled by a dedicated FPGA clock thus obtaining the exact arrival time of the neutron itself. The paper will present the detector and its electronics, the feasibility measurements with a Varian Clinac 1800/2100CD and comparison with a Monte Carlo simulation.

  17. Study of the improvement of TLD cards for personal neutron dosimetry

    Rabie, N.; Hassan, G. M.; El-Sersy, A. R.; Ezzat, M.

    In this work, personal thermoluminescence dosimeter (TLD) cards type of GN-6770 (holder type 8806) from Harshaw were used for personal neutron dosimetry. The response of the dosimeters has been determined in terms of the personal absorbed dose and personal dose equivalent for different neutron energy components, based on the recommendations of ICRP-60 and ICRU-49. Neutron irradiation was performed using a 5 mCi Am-Be neutron source. The TLD reader, type Harshaw 6600, was installed and calibrated for accurate neutron doses equivalent to gamma-ray doses. It was found that fast neutron doses measured by TLD (badges or cards) are in agreement with those measured by neutron TE (tissue equivalent gas) ionization chambers and neutron monitors. Thermal neutron doses measured by TLD cards were overestimated when compared with those measured by neutron monitors. Additional Cd was used to reduce thermal neutron doses to be in agreement with actual thermal doses. Other configurations for TLD crystals are also suggested for accurate thermal neutron dose measurements.

  18. CD4(+)CD25 (+)CD127 (low/-) T cells: a more specific Treg population in human peripheral blood.

    Yu, Ning; Li, Xiaomei; Song, Weiya; Li, Dongmei; Yu, Daliang; Zeng, Xiaofeng; Li, Mengtao; Leng, Xiaomei; Li, Xiangpei

    2012-12-01

    The quantitative identification and enrichment of viable regulatory T cells (Treg) requires reliable surface markers that are selectively expressed on Treg. Foxp3 is the accepted marker of nTreg, but it cannot be used to isolate cells for functional studies. In this study, we compared four staining profiles of Treg, including CD4(+)CD25(high) T cells, CD4(+)CD39(+) T cells, CD4(+)CD73(+) T cells, and CD4(+)CD25(+)CD127(low/-) T cells. We found that CD4(+)CD25(+)CD127(low/-) T cells expressed the highest level of Foxp3 and had the strongest correlation with CD4(+)CD25(+)Foxp3(+) T cells, the accepted identifying characteristics for "real" nTreg cells. Moreover, functional data showed that CD4(+)CD25(+)CD127(low/-) T cells could effectively suppress the proliferation of CD4(+)CD25(-) T cells, suggesting that compared with the other three populations, CD4(+)CD25(+)CD127(low/-) T cells best fit the definition of naturally occurring regulatory T cells in human peripheral blood. Finally, we showed that CD4(+)CD25(+)CD127(low/-) can be used to quantitate Treg cells in individuals with systemic lupus erythematosus supporting the use of CD4(+)CD25(+)CD127(low/-) to identify human Treg cells. PMID:22752562

  19. Commissioning of the 1.4 Mev/u High Current Heavy Ion Linac at Gsi

    Barth, W

    2000-01-01

    The disassembly of the Unilac prestripper linac of the Wideroe type took place at the beginning of 1999. An increase of more than two orders of magnitude in particle number for the most heavy elements in the SIS had to be gained. Since that time the new High Current Injector (HSI) consisting of H-type RFQ and DTL-structures for dual beam operation was installed and successfully commissioned. The High Charge Injector (HLI) supplied the main linac during that time. Simultaneously conditioning and running in of the rf-transmitters and rf-structures were done. The HSI commissioning strategy included beam investigation after each transport and acceleration section, using a versatile diagnostic test stand. Results of the extensive commissioning measurements (e.g. transverse emittance, bunch width, beam transmission) behind LEBT, RFQ, Super Lens, IH tank I and II and stripping section will be discussed. An 40Ar1+ beam coming from a MUCIS ion source was used to fill the linac up to the theoretical space charge limit....

  20. Advances in neutron tomography

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  1. Neutron structural biology

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  2. Neutron response study

    Neutron response of the albedo type dosimeter is strongly dependent on the energy of the incident neutrons as well as the moderating material on the backside of the dosimeter. This study characterizes the response of the Hanford dosimeter for a variety of neutron energies for both a water and Rando phantom (a simulated human body consisting of an actual human skeleton with plastic for body muscles and certain organs). The Hanford dosimeter response to neutrons of different energies is typical of albedo type dosimeters. An approximate two orders of magnitude difference in response is observed between neutron energies of 100 keV and 10 MeV. Methods were described to compensate for the difference in dosimeter response between a laboratory neutron spectrum and the different spectra encountered at various facilities in the field. Generally, substantial field support is necessary for accurate neutron dosimetry

  3. Neutron polarisation for ISIS

    Scattering experiments using polarised thermal and cold neutron beams have made important contributions to condensed matter physics, particularly to the understanding of atomic magnetism. This has been largely due to the vigorous efforts made at reactor institutes to develop polarised beam technology; their success in this enterprise is now paying handsome dividends. Progress in developing comparable techniques for pulsed neutron sources has been slower, largely due to the greater practical difficulties associated with polarising higher energy neutrons. However, there has been some advance, and this has now provided clarification into the best ways of integrating the various polarising devices into pulsed source spectrometers. The status of polarised neutron spectrometers at pulsed neutron sources is reviewed. The paper deals with three main topics, the scientific relevance of polarised neutron scattering experiments, a discussion of the properties of neutron polarisers, emphasising their strengths and limitations, and the integration of polarisers into a range of ISIS pulsed source spectrometers. (author)

  4. High-energy excited states in {sup 98}Cd

    Braun, Norbert; Blazhev, Andrey; Jolie, Jan [Institut fuer Kernphysik, Universitaet Koeln (Germany); Boutachkov, Plamen; Gorska, Magda; Grawe, Hubert; Pietri, Stephane [GSI, Darmstadt (Germany); Brock, Tim; Nara Singh, B.S.; Wadsworth, Robert [Department of Physics, University of York, York (United Kingdom); Liu, Zhong [University of Edinburgh, Edinburgh (United Kingdom)

    2009-07-01

    Studies of isomerism in the proton-rich N {approx_equal}Z nuclei around {sup 100}Sn give important insights into the role of proton-neutron pairing and also serve as testing grounds for nuclear models. In summer 2008, an experiment on {sup 96,97,98}Cd was performed using the FRS fragment separator and the RISING germanium array at GSI. These exotic nuclei of interest were produced using fragmentation of a 850 MeV/u {sup 124}Xe beam on a 4 g/cm{sup 2} {sup 9}Be target and finally implanted into an active stopper consisting of 9 double-sided silicon strip detectors. In {sup 98}Cd, a new high-energy isomeric transition was identified. Preliminary results on {sup 98}Cd are presented and their implications for the high-excitation level scheme are discussed.

  5. Design of a neutron activation system around a DD neutron generator by an analytical method and Monte Carlo simulation

    (LW), Beryllium (Be), Beryllium Oxide (BeO), and many shielding materials for gamma and fast neutrons have been studied (Boron Carbide (CB4), Borated Polyethylene, Lead. (Pb) Enriched Lithium Fluoride (6LiF), Cadmium (Cd), Graphite (G), Aluminum (Al)). This study concluded with an optimal configuration for an irradiation facility based on D-D NG for NAA and PGNAA achieving 1x107 N cm-2 s-1 thermal neutrons for internal configuration.

  6. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    Wang, Hu; Zou, Yubin; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator-based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8-2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8-2.0 ms, especially for materials with strong moderating capability.

  7. Haptoglobin and CD163

    Madsen, M; Graversen, Jonas Heilskov; Moestrup, S K

    2001-01-01

    The plasma protein haptoglobin and the endocytic hemoglobin receptor HbSR/CD163 are key molecules in the process of removing hemoglobin released from ruptured erythrocytes. Hemoglobin in plasma is instantly bound with high affinity to haptoglobin--an interaction leading to the recognition of the ...

  8. Capture analysis of element content of a substance with other neutron methods

    Full text: Neutron analysis method of determining element composition have found wide range of applications in industry thanks to different types of interaction of neutron with substances /1/. With the aim of widening the range of problems to be solved, on the basis of the device /2/ for determining the element content of substance, possibilities of combining the method based on the use of neutron capture gamma-ray spectrometry with other neutron methods, in particular neutron activation analysis and neutron absorption analysis were studied. In this radionuclide source (252Cf) with the yield of 1,5 x 107 neutron/sec is used. By means of using neutron capture gamma radiation spectrometry the possibilities of determining some elements (H, B, N, S etc. ), which are not determined by very widely used method, activation analysis. These elements can be determined by both the semiconductor and scintillation detectors with parameters fitting the manufacturing requirements. And for a number of elements ( B, Cl, Cd, Sm, Gd) very high limits of determination ( up to 10- 5 %) are possible using semiconductor Ge (Li) -detectors with high resolution. Possibility of determination of some 'well' activated elements ( K, Al, Fe, Mn, Ti, Sc etc.) in samples of ore and products of their processing using the neutron-activation analysis. For 1 hour of irradiation on the experimental device quite accurate analytical peak, of these elements are obtained, allowing to determine them qualitatively. However, with decreasing neutron yield of radionuclide source it becomes more difficult to achieve the necessary parameters both in neutron capture and activation analysis. Experimental works on determination of some elements with large cross-sections of capture ( B, Cd, Sm ) by absorption of neutrons in the investigated substance, i.e. using the neutron absorption analysis method with absence of other large capture cross section elements in the samples being studied

  9. Curved neutron guide

    The principle of the curved neutron guide is to transport neutrons far away from the reactor core with as minimum particle loss as possible. After a series of total reflection,the neutron beam is no longer visible from the reactor core and consequently, gamma radiations and fast neutrons emitted from the core are scattered by the walls of the guide and absorbed by the biological shielding set around the guide. The curved neutron guide provides a high-quality beam of slow neutrons. The first chapter deals with the theoretical concept of curved guide, we have determined the parameters for the setting of such a guide in the EL3 reactor at Saclay (France). The different tolerances on the state the surface, on the alignment of the different parts of the guide, on the waving of the guide wall have been assessed. The second chapter presents the technical solution chosen that complies to all the required specifications. The curved neutron guide has been designed for neutrons with wavelength of 4 Angstroms, it is 29 m long, has a bending radius of 835 m and is composed of 87 rectangular components made of glass plates on which a 1500 angstrom thick layer of nickel has been deposited. Each component is set with a fixed angle of (4±0.25)*10-4 radians from the previous component in order to form the bending radius. The last chapter is dedicated to the neutron flux measurement made at the end of the neutron guide

  10. The biological difference between CD13+CD133+ and CD13¬CD133¬liver cancer cells and its clinical significance

    Shi-long JIN; Zhong-rong HUANG; Chen, Hua; Tian-wu YU; Cao, Hong; Yun-quan LONG; Zhou, Jian; Li, He; Yi GOU; Li, Yuan; Liao, Juan

    2013-01-01

    Objective To compare the biological difference between CD13+CD133+ and CD13-CD133- hepatocellular carcinoma (HCC) cells in HuH7 cell line and its clinical significance. Methods The status of proliferation, phase of the cell cycle, tumor formation in vivo, differentiation, and their chemoresistance to 5-FU and pirarubicin of CD13+CD133+ and CD13-CD133-HCC cells were studied to analyze the clinical implication of CD13+CD133+HCC cell subset. Results The proliferation rate of CD13+CD133+HCC cells...

  11. CdS/CdSSe quantum dots in glass matrix

    R S Sonawane; S D Naik; S K Apte; M V Kulkarni; B B Kale

    2008-06-01

    The compositions containing 55 and 60% of silica have been formulated for preparation of glass filters having sharp cut-off at 475 and 575 nm. To achieve cut-off at these wavelengths, the glasses have been doped with CdS/CdSSe and melted at 1200–1300°C. The glass samples were transparent and pale yellow in colour due to presence of CdS/CdSSe tiny nano crystal (Q-dots). in situ growth of CdS/CdSSe nano crystals imparts the yellow/orange/red colour to these glasses. Optical study shows that as prepared glasses have optical cut-off in the range 350–370 nm. The linear crystal growth of CdS/CdSSe in glasses exhibits red shift in optical cut-off. The optical filter having cut-off at 475 nm can be prepared by doping CdS and cut-off filter of wavelength 575 nm by CdSSe. The TEM results show that the CdS/CdSSe nano crystals (Q-dots) ranging from 2–5 nm are uniformly distributed into the glass matrix.

  12. Pulsed neutron porosity logging system

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  13. Neutron chopper development at LANSCE

    Progress is reported on neutron chopper systems for the Los Alamos Neutron Scattering Center pulsed spallation neutron source. This includes the development of 600+ Hz active magnetic bearing neutron chopper and a high speed control system designed to operate with the Proton Storage Ring to phase the chopper to the neutron source. 5 refs., 3 figs

  14. Status of spallation neutron source

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  15. Precursor phenomenon of martensitic transformation in Au-49.5at%Cd alloy

    Phonon softening was observed in the parent phase of a AuCd alloy which t=forms from the β2(B2) parent to ζ2' (trigonal) martensitic. Since Cd strongly absorbs neutrons, the isotope 114Cd was used in preparing the single crystal for the measurements. The [ζζ0]TA2 phonon branch was measured and found to be anomalously low. A minimum is present at ζ = 0.35 which softens with decreasing temperature towards Ms. The results are consistent with the model proposed by Ohba et al. based upon a crystallographic study of the ζ2' phase

  16. IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells

    Skov, S; Bonyhadi, M; Odum, Niels; Ledbetter, J A

    2000-01-01

    The cellular and humoral immune system is critically dependent upon CD40-CD154 (CD40 ligand) interactions between CD40 expressed on B cells, macrophages, and dendritic cells, and CD154 expressed primarily on CD4 T cells. Previous studies have shown that CD154 is transiently expressed on CD4 T cel...

  17. Rabbit CD200R binds host CD200 but not CD200-like proteins from poxviruses

    Akkaya, Munir; Kwong, Lai-Shan; Akkaya, Erdem; Hatherley, Deborah; Barclay, A. Neil

    2016-01-01

    CD200 is a widely distributed membrane protein that gives inhibitory signals through its receptor (CD200R) on myeloid cells. CD200 has been acquired by herpesviruses where it has been shown to interact with host CD200R and downmodulate the immune system. It has been hypothesized that poxviruses have acquired CD200; but the potential orthologues show less similarity to their hosts. Myxoma virus M141 protein is a potential CD200 orthologue with a potent immune modulatory function in rabbits. Here, we characterized the rabbit CD200, CD200R and tested the CD200-like sequences for binding CD200R. No binding could be detected using soluble recombinant proteins, full length protein expressed on cells or myxoma virus infected cells. Finally, using knockdown models, we showed that the inhibitory effect of M141 on RAW 264.7 cells upon myxoma virus infection is not due to CD200R. We conclude that the rabbit poxvirus CD200-like proteins cause immunomodulation without utilizing CD200R. PMID:26590792

  18. Neutron sources and applications

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  19. Biological effects of neutrons

    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  20. Resonance neutron radiography

    The production of images by the use of neutrons having energies in the resonance region is described. Two-dimensional position-sensitive neutron detectors are used to produce transmission images using neutron time-of-flight techniques at the National Bureau of Standards' electron linac facility. Two types of detectors are described. The first is a crossed-wire proportional counter using 3He as the neutron-sensitive component. The second type utilizes a multichannel plate electron multiplier and a resistive anode readout. A lithium glass scintillator is the neutron-sensitive component in the latter detector. Resonance neutron radiography, using these detectors, has the capability of producing images with isotopic and chemical element discrimination in a complex matrix with a resolution of 1 mm or better. (Auth.)

  1. Active neutron instrumentation

    An introduction to neutron interactions in tissue and a discussion of pertinent nuetron cross-sections will be given. A brief description of the statistics of energy deposition due to interactions of neutron secondaries in tissue equivalent media is presented. Present and past techniques for measurement of neutron radiation fields are given with advantages and disadvantages in the light of legal limits and proposed changes in those requirements. Neutron dose measuring devices, such as the tissue equivalent proportional counter (TEPC) developed by Rossi, are discussed with emphasis on their response in varying neutron energy spectra. Techniques for determining neutron quality factors from TEPC response functions are discussed along with implications of possible new definitions of quality factor. A brief description of high-resolution spectrometry systems, which use hydrogen, methane and He-3 fill gases, is given with discussion of their limitations. Low resolution systems, such as multisphere spectrometers and activation foils, are also presented

  2. Gravitational neutron monochromator

    A new type of slow-neutron monochromator is described that is based on the interaction of slow neutrons with the earth's gravitational field. The monochromator is formed by three slit collimators placed along the neutron trajectory. The energy of the neutrons selected by the monochromator is set by vertical movement of any of the slit collimators. This scheme was used to create a gravitational monochromator on the 1000-meter path of the IBR-30 pulsed fast reactor at Dubna. It provides monochromatic neutrons with an energy resolution of 1.8% and measures the free-fall acceleration of neutrons with an error of 0.1% in the energy range of 0.0175-0.4223 eV

  3. Burnable neutron absorber element

    A burnable thermal neutron absorber element is described comprising: a zirconium alloy elongated tubular container having an inside diameter surface; hydrogen diffusion barrier means for limiting hydrogen diffusion from within the container into the zirconium alloy; a boron-containing burnable thermal neutron absorber material sealed within the zirconium alloy elongated container, the boron-containing burnable absorber material being in a particle form, the particles of absorber material being coated with a diffusion barrier material; zirconium hydride sealed within the zirconium alloy elongated container, the zirconium hydride being in a partially hydrided condition and having a H to Zr ratio on an atomic basis in the range of about 1.0 to about 1.8; the burnable thermal neutron absorber material and the zirconium hydride distributed along the length of the zirconium alloy elongated container; and the zirconium hydride acts as a neutron moderator thereby enhancing the neutron capture efficiency of the burnable thermal neutron absorber

  4. Burnable neutron absorber element

    Ferrari, H.M.

    1988-06-14

    A burnable thermal neutron absorber element is described comprising: a zirconium alloy elongated tubular container having an inside diameter surface; hydrogen diffusion barrier means for limiting hydrogen diffusion from within the container into the zirconium alloy; a boron-containing burnable thermal neutron absorber material sealed within the zirconium alloy elongated container, the boron-containing burnable absorber material being in a particle form, the particles of absorber material being coated with a diffusion barrier material; zirconium hydride sealed within the zirconium alloy elongated container, the zirconium hydride being in a partially hydrided condition and having a H to Zr ratio on an atomic basis in the range of about 1.0 to about 1.8; the burnable thermal neutron absorber material and the zirconium hydride distributed along the length of the zirconium alloy elongated container; and the zirconium hydride acts as a neutron moderator thereby enhancing the neutron capture efficiency of the burnable thermal neutron absorber.

  5. Neutron sources and applications

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications

  6. Measurement of thermal neutron spectra using LINAC in Japan Atomic Energy Research Institute (JAERI)

    The exact grasp of thermal neutron spectra in a core region is very important for obtaining accurate thermal neutron group constants in the calculation for the nuclear design of a reactor core. For the accurate grasp of thermal neutron spectra, the capability of thermal neutron spectra to describe the moderator cross-sections for thermal neutron scattering is a key factor. Accordingly, 0 deg angular thermal neutron spectra were measured by the time of flight (TOF) method using the JAERI LINAC as a pulsed neutron source, for light water system added with Cd and In, high temperature graphite system added with boron, and light water-natural uranium heterogeneous multiplication system among the reactor moderators of light water or graphite systems. First, the equations to give the time of flight and neutron flux by TOF method were analyzed, and several corrections were investigated, such as those for detector efficiency, background, the transmission coefficient of air and the Al window of a flight tube, mean emission time of neutrons, and the distortion effect of re-entrant hole on thermal neutron spectra. Then, the experimental system, results and calculation were reported for the experiments on the above three moderator systems. Finally, the measurement of fast neutron spectra in natural uranium system and that of the efficiency of a 6Li glass scintillator detector are described. (Wakatsuki, Y.)

  7. Soluble CD14 in periodontitis

    E.A. Nicu; M.L. Laine; S.A. Morre; U. van der Velden; B.G. Loos

    2009-01-01

    Lipopolysaccharide (LPS) binds to soluble (s)CD14. We investigated which factors contribute to variations in sCD14 levels in periodontitis, a chronic infectious disease of tooth-supporting tissues associated with endotoxemia and leading to inflammation and subsequently loss of teeth. The sCD14 level

  8. Polysiloxane based neutron detectors

    Dalla Palma, Matteo

    2016-01-01

    In the last decade, neutron detection has been attracting the attention of the scientific community for different reasons. On one side, the increase in the price of 3He, employed in the most efficient and the most widely used neutron detectors. On the other side, the harmfulness of traditional xylene based liquid scintillators, used in extremely large volumes for the detection of fast neutrons. Finally, the demand for most compact and rough systems pushed by the increased popularity of neutro...

  9. ATR neutron spectral characterization

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix

  10. Neutrons and Nuclear Engineering

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop (http://neutrons.ornl.gov/workshops/nst2/), several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons for Materials Science and Engineering educational symposium (http://neutrons.ornl.gov/workshops/edsym2007). It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcratornl.gov

  11. DEMON: Modular Neutron Detector

    DEMON is a liquid scintillator neutron multidetector devoted to study particular aspects of the dynamics of heavy-ion reactions. The problems of measuring neutron energy spectra, angular distributions and neutron multiplicities are described. Efficiency measurements, time-of-flight measurements and the experimental programme of the detector are presented. The document consists of transparencies presented at the workshop, text is missing. (K.A.) 12 figs

  12. The DIORAMA Neutron Emitter

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  13. Broadband Neutron Interferometer

    Pushin, Dmitry A.; Sarenac, Dusan; Hussey, Dan; Miao, Houxun; Arif, Muhammad; Cory, David G.; Huber, Michael G.; Jacobson, David; LaManna, Jacob; Parker, Joseph D.; Shinohara, Taken; Ueno, Wakana; Wen, Han

    2016-01-01

    We demonstrate a two phase-grating, multi-beam neutron interferometer by using a modified Ronchi setup in a far-field regime. The functionality of the interferometer is based on the universal \\moire effect that was recently implemented for X-ray phase-contrast imaging in the far-field regime. Interference fringes were achieved with monochromatic, bichromatic, and polychromatic neutron beams; for both continuous and pulsed beams. This far-field neutron interferometry allows for the utilization...

  14. Electrical properties of CdS/CdTe heterojunctions

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.

    1988-08-01

    The electrical properties of n-CdS/p-CdTe heterojunctions depend strongly on the cleanliness of the interface region. In this work, CdTe films were deposited on CdS/glass substrates by close-spaced sublimation (CSS) under various conditions. The dark current-voltage characteristics of the resulting heterojunctions were measured over a wide temperature range, and the capacitance-voltage characteristics were measured in the dark and under illumination. When the CdS surface is in situ cleaned prior to the deposition of the CdTe film, the current transport across the junction is controlled by a thermally activated process. Tunneling makes an important contribution to the interface recombination at temperatures below room temperature when the in situ cleaning of CdS is not used. The dark capacitance of CdS/CdTe heterojunctions prepared with in situ etching is essentially independent of the reverse bias due to intrinsic interface states. Under white light illumination, the 1/C 2 vs V relation is nearly linear. The CdS/CdTe heterojunctions without in situ cleaning showed different 1/C 2 vs V relations due to higher density of interface states. The in situ cleaning also has pronounced effects on the frequency dependence of dark and illuminated capacitances. Using the in situ cleaning technique, solar cells of about 1 cm2 area have achieved an AM 1.5 (global) efficiency of about 10.5%.

  15. Electrical properties of CdS/CdTe heterojunctions

    Chu, T.L.; Chu, S.S.; Ang, S.T.

    1988-08-01

    The electrical properties of n-CdS/p-CdTe heterojunctions depend strongly on the cleanliness of the interface region. In this work, CdTe films were deposited on CdS/glass substrates by close-spaced sublimation (CSS) under various conditions. The dark current-voltage characteristics of the resulting heterojunctions were measured over a wide temperature range, and the capacitance-voltage characteristics were measured in the dark and under illumination. When the CdS surface is in situ cleaned prior to the deposition of the CdTe film, the current transport across the junction is controlled by a thermally activated process. Tunneling makes an important contribution to the interface recombination at temperatures below room temperature when the in situ cleaning of CdS is not used. The dark capacitance of CdS/CdTe heterojunctions prepared with in situ etching is essentially independent of the reverse bias due to intrinsic interface states. Under white light illumination, the 1/C /sup 2/ vs V relation is nearly linear. The CdS/CdTe heterojunctions without in situ cleaning showed different 1/C /sup 2/ vs V relations due to higher density of interface states. The in situ cleaning also has pronounced effects on the frequency dependence of dark and illuminated capacitances. Using the in situ cleaning technique, solar cells of about 1 cm/sup 2/ area have achieved an AM 1.5 (global) efficiency of about 10.5%.

  16. Neutron scattering. Experiment manuals

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  17. Neutron powder diffraction

    Neutron powder diffraction is a powerful technique that provides a detailed description of moderately complex crystal structures. This is nowhere more apparent than in the area of high temperature superconductors where neutron powder diffraction has provided precise structural and magnetic information, not only under ambient conditions but also at high and low temperatures and high pressures. Outside superconductor research, the variety of materials studied by neutron powder diffraction is equally impressive including zeolites, fast ionic conductors, permanent magnets and materials undergoing phase transitions. Recent advances that include high resolution studies and real-time crystallography are presented. Future possibilities of neutron powder diffraction are discussed

  18. A neutron prism

    A neutron detector with an energy and time resolution makes it possible to realize a new type of a scattering instrument. Such kind of detector can be developed by combining the neutron refractive device (neutron prism) and position-sensitive-detector (PSD) with a time resolution. As the neutron refractive device, two candidates are considered; a compound refractive device and magnetic field gradient. In former case, suitable choice of material and design of the refractive device overcomes a problem of neutron absorption and weak refraction due to material. On the other hand, the magnetic field gradient has an advantage that it has a large refraction and zero neutron absorption comparing with the compound refractive device. A refractive device has been developed with suitable material and design for neutron optics and a quadrupole magnet with permanent magnets in which a constant field gradient is realized. In this paper, the construction and performance of the energy and time resoluble detectors using the neutron refractive devices are described and their application to a neutron scattering experiment is discussed. (author)

  19. Neutron scattering. Experiment manuals

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  20. Effective neutron targets

    Because of the lack of a free neutron target, deuterium targets have been used extensively in studying the neutron structure. The unique spin structure of the 3He ground state wave function and the recent developments in laser technologies made polarized 3He targets widely used in many experiments from neutron electromagnetic form factor studies to nucleon spin structure function measurements at all major electron accelerator facilities. In this talk, the current status of the polarized 3He targets will be reviewed. The author will focus on neutron electromagnetic form factor studies using polarized 3He targets. The polarized nucleon spin structure function measurements using polarized 3He targets will also be discussed

  1. Neutron structural biology

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  2. Neutrons in biology

    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  3. CIT: Neutron Generator Systems

    Neutron generator systems, including neutron tubes: (1) Controls - HS: 8543.19, 8479.89, 9015.80, 9027.80 - NSG DUL: 6.A.5. - EU: 3A231; (2) Nuclear uses - initiate nuclear fission chain reaction in a nuclear explosive device - to analyze the state of reactors or other critical assemblies; and (3) Other uses - Downhole oil well logging - plutonium and effluent flow analysis - examination of sealed packages (to detect explosives, etc.) - detection or assay of fissionable materials - neutron radiography, physics research, radiation therapy for cancer. Neutron generator systems include a neutron tube, control unit, and a high-voltage power supply. The neutron tube is the fundamental element. Neutron generator tubes are usually cylindrical. The tube housing can be glass, ceramic, or metal, with sizes between 3.8-6.4 cm in diameter and 10-30 cm in length. Neutron generator assemblies contain the neutron tube, magnet, and high-voltage transformer. It may be enclosed in a glass, ceramic, or steel cylinder 10-25 cm in diameter, 43-61 cm in length. Assemblies are typically filled with a dielectric gas or liquid to insulate and cool the high-voltage circuitry.

  4. Neutron visual sensing technique

    The neutron visual sensing technique is a technology to extract physical quantities from the information on inner structures of complex materials or machineries which have been visualized and recorded by using neutron beams. Research and utilization of this technique is now under worldwide development since it can provide the information that is not possible by X-ray radiography. We show how to use stationary neutron sources (Research reactors) in chapter 2, and how to utilize pulsed neutron source (Japan Proton Accelerator Complex, J-PARC). Also the production of micro-element analyzer by an enterprise using the knowledge on radiological equipment is described as an example. (author)

  5. Shell Model Description of Neutron-Deficient Sn Isotopes

    Erdal Dikmen

    2009-01-01

    The shell model calculations in the sdgh major shell for the neutron-deficient 106,107,108,109Sn isotopes have been carried out by using CD-Bonn and Nijmegenl two-body effective nucleon-nucleon interactions. The single-shell states and the corresponding matrix elements needed for describing Sn isotopes are reconstructed to calculate the coefficient of fractional parantage by reducing the calculation requirements. This reconstruction allows us to do the shell model calculations of the neutron deficient Sn isotopes in very reasonable time. The results are compared to the recent high-resolution experimental data and found to be in good agreement with experiments.

  6. Neutron-emission measurements at a white neutron source

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  7. New states in heavy Cd isotopes and evidence for weakening of the N=82 shell structure

    A chemically selective laser ion source has been used in a β-decay study of heavy Ag isotopes into even-even Cd nuclides. Gamma-spectroscopic techniques in time-resolving event-by-event and multiscaling modes have permitted the identification of the first 2+ and 4+ levels in 126Cd78, 128Cd80, and tentatively the 2+ state in 130Cd82. From a comparison of these new states in 48Cd with the E(2+) and E(4+)/E(2+) level systematics of 46Pd and 52Te isotopes and several recent model predictions, possible evidence for a weakening of the spherical N=82 neutron-shell below double-magic 132Sn is obtained. (orig.)

  8. In ovo injection of anti-chicken CD25 monoclonal antibodies depletes CD4+CD25+ T cells in chickens.

    Shanmugasundaram, Revathi; Selvaraj, Ramesh K

    2013-01-01

    The CD4(+)CD25(+) cells have T regulatory cell properties in chickens. This study investigated the effect of in ovo injection of anti-chicken CD25 monoclonal antibodies (0.5 mg/egg) on CD4(+)CD25(+) cell depletion and on amounts of interleukin-2 mRNA and interferon-γ mRNA in CD4(+)CD25(-) cells posthatch. Anti-chicken CD25 or PBS (control) was injected into 16-d-old embryos. Chicks hatched from eggs injected with anti-chicken CD25 antibodies had a lower CD4(+)CD25(+) cell percentage in the blood until 25 d posthatch. The anti-chicken CD25 antibody injection nearly depleted CD4(+)CD25(+) cells in the blood until 16 d posthatch. At 30 d posthatch, the CD4(+)CD25(+) cell percentage in the anti-CD25-antibody-injected group was comparable with the percentage in the control group. At 16 d posthatch, the anti-chicken CD25 antibody injection decreased CD4(+)CD25(+) cell percentages in the thymus, spleen, and cecal tonsils. Chickens hatched from anti-CD25-antibody-injected eggs had approximately 25% of CD4(+)CD25(+) cells in the cecal tonsils and thymus compared with those in the cecal tonsils and thymus of the control group. The CD4(+)CD25(-) cells from the spleen and cecal tonsils of chicks hatched from anti-chicken-CD25-injected eggs had higher amounts of interferon-γ and interleukin-2 mRNA than CD4(+)CD25(-) cells from the control group. It could be concluded that injecting anti-chicken CD25 antibodies in ovo at 16 d of incubation nearly depleted the CD4(+)CD25(+) cells until 25 d posthatch. PMID:23243240

  9. Muon capture on deuteron and the neutron-neutron scattering length

    Marcucci, L E

    2014-01-01

    The muon capture reaction mu + 2H --> nu_mu + n + n is studied with nuclear potentials and charge-changing weak currents, derived within chiral effective field theory. The next-to-next-to-next-to leading order (N3LO) chiral potential with cutoff parameter Lambda=500 MeV is used, but the low-energy constant (LEC) determining the neutron-neutron S-wave scattering length (a_{nn}) is varied so as to obtain four different values, which are a_{nn}=-18.95 fm, -16.0 fm, -22.0 fm, and +18.22 fm. The first value is the present empirical one, while the last one is chosen such as to lead to a di-neutron bound system with a binding energy of 139 keV. The LEC's c_D and c_E, present in the three-nucleon potential and axial-vector current (c_D), are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The muon capture rate on the deuteron in the doublet hyperfine initial state is found to be 399(3) s^{-1} for a_{nn}=-18.95 and -16.0 fm; and 400(3) s^{-1} for a_{nn}=-22.0 fm. However, ...

  10. Neutron Stars: Formation and Structure

    Kutschera, Marek

    1998-01-01

    A short introduction is given to astrophysics of neutron stars and to physics of dense matter in neutron stars. Observed properties of astrophysical objects containing neutron stars are discussed. Current scenarios regarding formation and evolution of neutron stars in those objects are presented. Physical principles governing the internal structure of neutron stars are considered with special emphasis on the possible spin ordering in the neutron star matter.

  11. Neutron optics requirements for neutron imaging techniques

    The utilization of X-rays for material research is common in many respects since their discovery at the end of the 19th century. New sources as electron synchrotrons or free-electron lasers push the methodology and the application ranges further. A similar approach started 50 years later with neutrons when sources with reasonable high intensity became available. Today, there are many similarities and complementarities visible between X-ray and neutron studies and the involved techniques. Therefore, it is worth to compare and to adapt from the advanced X-ray techniques and to translate it into the neutron world. Despite of the lack of neutron intensities compared to the most brilliant X-ray beams, the specific properties of neutrons (contrast, spin, magnetic moment, penetration power) are utilized and they will further play an important role in non-invasive studies on the micro- and macro scale. This paper wants to encourage to 'look over the fence' into activities of the X-ray community as currently running in the COST action MP-1203.

  12. Generation of high-energy neutrons with the 300-ps-laser system PALS

    J.Krsa; D.Klír; A.Velyhan; E.Krousky; M.Pfeifer; K.Rez; J.Cikhardt; K.Turek; J.Ullschmied; K.Jungwirth

    2014-01-01

    The laser system PALS,as a driver of a broad-beam ion source,delivered deuterons which generated neutrons with energies higher than 14 Me V through the 7Li(d,n)8 Be reaction.Deuterons with sub-Me V energy were accelerated from the front surface of a massive CD2 target in the backward direction with respect to the laser beam vector.Simultaneously,neutrons were emitted from the primary CD2 target and a secondary Li F catcher.The total maximum measured neutron yield from 2D(d,n)3He,7Li(d,n)8Be,12C(d,n)13N reactions was ~3.5(±0.5) × 108 neutrons/shot.

  13. Neutron monitoring for radiological protection

    Neutron monitoring is a subject of increasing general interest and considerable attention is being paid to the development of improved techniques and methods for neutron monitoring. The Agency, therefore, considered it important to prepare a guide on the subject of neutron monitoring for radiation protection purposes. The present Manual is intended for those persons or authorities in Member States, particularly developing countries, who are responsible for the organization of neutron monitoring programmes and practical neutron monitoring. This Manual consequently, deals with topics such as neutron dosimetry, sources of neutrons and neutron detection as well as field instruments and operational systems used in this context

  14. Utilization of recycled neutron source to teach prompt gamma analysis activation-PGNA

    Delgado-Correal, Camilo; Munera, Hector

    2008-03-01

    Neutron activation analysis based on prompt gamma ray emission has significantly developed during the past twenty years. The technique is particularly suited for the identification of low atomic number elements, as nitrogen that is a main component of drugs and explosives. Identification of these substances is important in the context of humanitarian demining, and in the control of illicit traffic of drugs and explosives. As a good example of recycling of radioactive sources, a ^241Am-Be neutron source emitting 10^7neutron/s, that was not longer in use for other purposes at Ingeominas, was used to build a neutron irradiator that can be used to teach prompt gamma ray analysis, and other nuclear techniques. We irradiated individual samples, each about 4 gram, of three different elements: nitrogen in urea, silicon in milled rock, and cadmium in cadmium oxide. The prompt gamma rays emitted in the nuclear reactions ^112Cd (neutron,gamma) ^113Cd, ^28Si (neutron,gamma) ^29Si and ^14N (neutron,gamma) ^15N were identified using a well-type NaI (Tl) detector, connected to a multi-channel analyzer.

  15. Development of a 115Cd/115In generator for industrial applications

    The Indium short-lived isotope, 113mIn, has been extensively used as radiotracers. 113mIn generators are available at the international market, but are fabricated by a few number of enterprises at a very elevate prices, and request relatively frequent repositions. A possibility is to use the 114Cd as precursor, which isotopic abundance (∼ 29%) is favorable when compared to the 112Sn (1%) which generates the 113mIn father. Isotopically additionally enriching the 114Cd it will be viable to produce the pairs 115Cd/115In and 115mCd/115mIn by irradiation in nuclear reactors with low neutron flux. Preliminary tests in columns using non-enriched and non-irradiated Cd O has been developed , through synthesis of two different composites of cadmium into two series of experiments: CdCl42- and CdI42. Eventual alterations of the column or even of the physical and chemical properties in her structure, has been evaluated for optimization its performance. The better eluent defined was the HCl, and then the elution conditions such as time, flow and concentration must be optimized. The quantity of Cd2+ present in the eluent, and the formation of 115In will be followed by gamma spectrometry analyses in the feeding solutions of the column and of the recovered fractions of the eluted. Posteriorly to these prospecting tests, complementary studies will be effectuated using enriched and irradiated CdO

  16. Neutron spectroscopy, nuclear structure, related topics. Abstracts

    Neutron spectroscopy, nuclear structure and related topics are considered. P, T-breaking, neutron beta decay, neutron radiative capture and neutron polarizability are discussed. Reaction with fast neutrons, methodical aspect low-energy fission are considered too

  17. Neutron resonance spectroscopy

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  18. Neutron scattering by ferroelectrics

    Aksenov, V; Stamenkovic, S

    1989-01-01

    This book presents the recent theoretical and experimental developments of neutron scattering by ferroelectrics. A Model description of lattice dynamics of structurally unstable crystals (self-consistent phonon approximation, pseudo-spin formalism, coherent potential approximation etc.) is formulated. The effects of nonlinear excitations and lattice defects in neutron scattering are also discussed.

  19. Synovectomy by Neutron capture

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  20. Multidisc neutron velocity selector

    The prototype of a velocity selector for neutron monochromatization in the 4-20 A wavelength range is presented. The theoretical background of the multidisc rotor system is given together with a description of the mechanical construction and electronic driving system. The first tests and neutron measurements prove easy handling and excellent parameters. (author) 6 refs.; 7 figs.; 2 tabs

  1. Neutron resonance spectroscopy

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  2. Neutron Star Matter

    Wambach, Jochen

    2013-01-01

    In this presentation I discuss two aspects of the neutron-matter equation of state. One relates to the symmetry energy of nuclear matter and empirical constraints on its slope parameter at saturation density. The second deals with spatially inhomogeneous chiral phases of deconfined quark matter in the inner core of a neutron star.

  3. Prompt Neutrons from Fission

    A survey is given of the present state of knowledge of the spectrum, angular distribution and number of prompt fission neutrons, as functions of incident neutron energy and individual fragment mass, for low-energy fission. The energy spectrum of prompt neutrons has been found to be of the same form (nearly Maxwellian) for many different types of fission. It has been shown that this type of spectrum is to be expected on the basis of evaporation from moving fragments, and theoretical predictions of the spectrum agree very accurately with experimental data. Some data are now available on the variation of the neutron spectrum with fragment mass and angle of emission. Only recently has it become possible to take accurate data on the angular distribution of the neutrons. It appears that the neutrons have the angular distribution to be expected if emitted almost isotropically from the moving fragments, with a possibility that some small fraction are not emitted in this way, but directly from the fissioning nuclide. Much work has been done on the variation of fission neutron number v with incident neutron energy for neutron-induced fission. The neutron number increases roughly linearly with energy, with a slope of about 0.15 n/MeV. There is now evidence that this slope changes somewhat with energy. This change must be associated with other changes in the-fission process. The most interesting recent discovery concerning fission neutrons is the strong dependence of neutron number on individual fragment mass. The data are being rapidly improved by means of the newer techniques of determining fragment mass yields from velocity and pulse-height data, and of determining neutron yields from cumulative mass yields. There is evidence of similar dependence of neutron yield on fragment mass in a number of cases. It has been suggested that this property is directly connected with the deformability of the fragments, and in particular with the near-spherical shapes of magic

  4. Performance Evaluation of Neutron Absorption Materials with Temperature Change

    Jeong, Hae Sun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Some of these facilities are operated at higher than room temperature, thus the neutron absorption material can be directly affected by the surrounding environment where the temperature is not maintained in a constant condition. Meanwhile, a nucleus in an atom is continuously vibrated with the thermal energy, after which there arises a range of relative speeds between a neutron and the nucleus, even for a fixed neutron speed. At higher temperature, the random motion of the nucleus reproduces new resonance with a lower and broader peak, i.e., Doppler broadening of a resonance, and the capture cross section of neutron is revised. Therefore, the performance of neutron absorption materials may vary with a change of temperature. In this study, the absorption abilities of three kinds of neutron absorbers generally used in the reactor core were analyzed at a range of temperatures from 293.6K to 584K. As a result, the neutron absorption abilities for B{sup 4}C and Ag-In-Cd do not vary with the change of temperature, while that for Gd{sup 2}O{sup 3} absorbers was shown to be decreased approximately 3% with reference to that at 293.6K in the temperature range between the 293.6K and 584K. This phenomenon of the Gd{sup 2}O{sup 3} absorber seems to be caused by the Doppler broadening of the neutron absorption cross-section. Therefore, it is expected that the effect of material temperature on the neutron absorption performance is needed to be considered in the design of nuclear reactor and the analysis of radiation shielding.

  5. Dosimetry of neutron irradiations

    Biological dosimetry of neutron irradiation appears to be of great difficulty due to the multiparametric aspect of the relative biological effectiveness and the heterogeneity of the neutron dose distribution. Dosimetry by sodium 24 activation which can be performed by means of portable radiameters appears to be very useful for early triage within the 3 h following neutron irradiation, whereas hematological dosimetry by slope and level analysis of the lymphocyte drop cannot be used in this case. Chromosomic aberration analysis allows to evaluate the neutron dose heterogeneity by the frequency measurement of acentric fragments not originating from the formation of dicentrics or rings. Finally, recent experimental data on large primate models (baboons) have shown that some plasma hemostasia factors appear to be reliable biological indicators and noticeable markers of the prognosis of neutron irradiation

  6. Canada's Neutron Beam Laboratory

    This paper describes the current and planned activities of Canada's Neutron Beam Laboratory which is managed by the National Research Council of Canada. In 1994, Professor Bertram Brockhouse shared the Nobel Prize in Physics for his pioneering work carried out in this laboratory. He developed neutron scattering as a powerful and versatile tool for investigating materials at the level of molecules and nano structures. The neutron source for this work is Canada's NRU reactor located at the Chalk River Nuclear Laboratories of the Atomic Energy of Canada Limited. This neutron source is also used for the production of medical isotopes, testing of components for the nuclear power stations and neutron scattering experiments on materials

  7. Neutrons against cancer

    Dovbnya, A. N.; Kuplennikov, E. L.; Kandybey, S. S.; Krasiljnikov, V. V.

    2014-09-01

    The review is devoted to the analysis and generalization of the research carried out during recent years in industrially advanced countries on the use of fast, epithermal, and thermal neutrons for therapy of malignant tumors. Basic facilities for neutron production used for cancer treatment are presented. Optimal parameters of therapeutic beams are described. Techniques using neutrons of different energy regions are discussed. Results and medical treatment efficiency are given. Comparison of the current state of neutron therapy of tumors and alternative treatments with beams of protons and carbon ions has been conducted. Main attention is given to the possibility of the practical use of accumulated experience of application of neutron beams for cancer therapy.

  8. A Neutron Rem Counter

    A neutron detector is described which measures the neutron dose rate in rem/h independently of the energy of the neutrons from thermal to 15 MeV. The detector consists of a BF3 proportional counter surrounded by a shield made of polyethylene and boron plastic that gives the appropriate amount of moderation and absorption to the impinging neutrons to obtain rem response. Two different versions have been developed. One model can utilize standard BF3 counters and is suitable for use in installed monitors around reactors and accelerators and the other model is specially designed for use in a portable survey instrument. The neutron rem counter for portable instruments has a sensitivity of 2.4 cps/mrem/h and is essentially nondirectional in response. With correct bias setting the counter is insensitive to gamma exposure up to 200 r/h from Co-60

  9. Neutron production during thunderstorms

    We have analyzed the neutron fluxes correlated with thunderstorm activity recently measured at mountain altitudes by Tien-Shan, Tibet and Aragats groups. We perform simulations of the photonuclear reactions of gamma rays born in the electron-gamma ray avalanches in the thunderstorm atmosphere and calculate expected count rates of the neutron counters used by 3 groups. Our analysis supported the Tibet group conclusion on the photonuclear nature of thunderstorm-correlated neutrons. The photonuclear reactions of the gamma rays born in the electron-photon avalanches in the thunderstorm atmospheres interacting in the lead producer of a Neutron monitor can provide neutron yield compatible with additional count of NM at least for the largest Thunderstorm Ground Enhancements (TGEs).

  10. THERMAL NEUTRON BACKSCATTER IMAGING.

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  11. Fission neutron statistical emission

    The statistical model approach FINESSE (FIssion NEutronS' Statistical Emission) for the description of fission neutron multiplicities, energy spectra and angular distributions is described. Based on an extended Weisskopf ansatz and on a realistic temperature distribution it provides a fragment mass number dependent description of fission neutron data. Model parameters (optical potential, n/γ competition) were fixed on the basis of the 252Cf(sf) (nuclear data standard). Combined with a phenomenological fission model for predicting relevant fragment data as function of asymmetry. FINESSE can be applied to any fission reaction of actinides in the Th-Cf region without further parameter adjustment. Results are presented for 252Cf(sf) and neutron induced fission of 235U, 239Pu, 232Th. Effects of multiple-chance fission are discussed for 232Th(n,xnf) reacation. (author). 46 refs, 11 figs

  12. Fast neutrons dosimetry

    A proton recoil technique has been developed for inducing thermoluminescence with incident fast neutrons. CaF2 was used as the TL phosphor, and cane sugar and polyethylene were used as proton radiators. The phosphor and the hydrogeneous material powders were well mixed, encapsulated in glass tubes and exposed to Am-Be sources, resulting in recoils from incident fast neutrons of energy between 0,25 and 11,25 MeV. The intrinsic response of pure CaF2 to fast neutrons without a hydrogeneous radiator was checked by using LiF (TLD-700). Glow curves were recorded from room temperature up to 3500C after different doses of neutrons and gamma rays of 60Co. First collision dose due to fast neutrons in tissue like materials such as cane sugar and polyethylene was also calculated

  13. Neutron Stars and Pulsars

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  14. Determination of cadmium in water samples by co-precipitation and neutron activation analysis

    For the determination of cadmium in sea water, a neutron activation analysis method involving a preconcentration step has been developed. Preconcentration is achieved by co-precipitation of cadmium dibenzyldithiocarbamate with phenolphthalein. The precipitate is collected on 0.45 μm membrane filters and cadmium is determined by instrumental neutron activation analysis. A 115mCd radio tracer was used to establish optimum conditions and to evaluate the chemical yield. (author) 14 refs.; 1 fig. ; 2 tabs

  15. Parity non-conservation in the capture of polarized thermal neutrons

    Warming, Inge Elisabeth

    1969-01-01

    The asymmetry in the intensity of γ-radiation following the capture of polarized thermal neutrons in 113Cd has been measured with Ge(Li) detectors. The result, A = (−0.6±1.8)×10−4, like that previously reported [1], gives no evidence for a non-zero effect.......The asymmetry in the intensity of γ-radiation following the capture of polarized thermal neutrons in 113Cd has been measured with Ge(Li) detectors. The result, A = (−0.6±1.8)×10−4, like that previously reported [1], gives no evidence for a non-zero effect....

  16. New developments of Czech Personnel Neutron Dosemeter and its application

    There are two systems for neutron personal dosimetry used at practice in the Czech Republic: - solid state nuclear track detectors in contact with fissionable materials (intermetallic enriched U + AI alloy, and 232Th) in Cd shield badge, and - Albedo dosimeter based on 6LiF and 7LiF thermoluminescent detectors in a plastic badge covered from the front side by Cd to screen it from directly coming thermalized neutrons. The first system is used in National Personal Dosimetry Service; its performance is continuously checked and improved. In this contribution we would like to present some of results of this development, the contribution to the calibration of the second system included. (authors)

  17. CdTe/CdS solar cells with transparent contacts

    Birkmire, R.W.; McCandless, B.E.; Shafarman, W.N.

    1988-01-15

    Evaporated CdTe/CdS solar cells with a transparent Cu-indium tin oxide contact have been made with an efficiency greater than 8.5%. The deposition of single-phase CdTe films from a compound source required a cadmium-to-tellurium flux ratio of 1.7 incident on the substrate. To obtain the needed p-type conductivity of the CdTe films required a high temperature heat treatment in air which reduced the transmission through the CdTe film owing to the formation of a CdTeO/sub 3/ surface layer. The heating and cooling rates used for the heat treatment affected the open-circuit voltage and contact resistance of the cells. The total subband gap absorption of the entire cell is 40%-50%.

  18. Status report and measurement of total cross-sections at the Pohang Neutron Facility

    We report the status of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and an 11-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It is possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to 100 eV by using the neutron time of flight method. A 6LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 10.81±0.02 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from Bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements are in general agreement with the evaluated data in ENDF/B-VI. The resonance parameters were extracted from the transmission data from the SAMMY fitting and compared with the previous ones. (author)

  19. Optical polarizing neutron devices designed for pulsed neutron sources

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  20. Neutron transition moments and quadrupole T- or F-vector states

    A study of low-lying 2+ states by proton and deuteron inelastic scattering from 104Pd, 110Pd, 112Cd, 146Nd, 150Nd and 150Sm is described. Evidence of neutron components in the excitation of 2+ states lying between 2.2 and 3.0 MeV in Pd and Cd isotopes has been obtained. This result is consistent with the predictions of the IBM-2 model for mixed-symmetry states. (orig.)

  1. Adoptive immunotherapy via CD4+ versus CD8+ T cells

    Vy Phan-Lai

    2016-04-01

    Full Text Available The goal of cancer immunotherapy is to induce specific and durable antitumor immunity. Adoptive T cell therapy (ACT has garnered wide interest, particularly in regard to strategies to improve T cell efficacy in trials. There are many types of T cells (and subsets which can be selected for use in ACT. CD4+ T cells are critical for the regulation, activation and aid of host defense mechanisms and, importantly, for enhancing the function of tumor-specific CD8+ T cells. To date, much research in cancer immunotherapy has focused on CD8+ T cells, in melanoma and other cancers. Both CD4+ T cells and CD8+ T cells have been evaluated as ACT in mice and humans, and both are effective at eliciting antitumor responses. IL-17 producing CD4+ T cells are a new subset of CD4+ T cells to be evaluated in ACT models. This review discusses the benefits of adoptive immunotherapy mediated by CD8+ and CD4+ cells. It also discusses the various type of T cells, source of T cells, and ex vivo cytokine growth factors for augmenting clinical efficacy of ACT. [Biomed Res Ther 2016; 3(4.000: 588-595

  2. Some characteristics of the AEOI Neutriran Albedo Neutron Personnel Dosemeter

    The Neutriran Albedo Personnel Neutron Dosemeter (NAPND) is based on the combination of a sensitive polymer such as polycarbonate (PC) in contact with 6LiF or 10B pellets in a cadmium cover. By adding a 10B pellet in front, the design of the dosemeter can be such that when worn on the body, direct thermal neutron induced alpha tracks (TNIAT), albedo neutron induced alpha tracks (ANIAT) and fast neutron induced recoil tracks (FNIRT) can be simultaneously detected in a single electrochemically etched PC foil. To establish a national personnel neutron dosimetry service in Iran, different parameters such as the effect of 10B(n,α)7Li convertor thickness, Cd thickness and its diameter, dosemeter distance from the phantom, dosemeter angle with phantom and directional response were studied using different phantoms. Under optimised conditions, a sensitivity of 1500 tracks.cm-2.mSv-1 for 252Cf neutrons with a lowest value of 0.05 mSv was measured. The results of these studies are reported and discussed. (author)

  3. Effect of CdCl2 annealing treatment on CdS thin films and CdTe/CdS thin film solar cells

    In order to study the effect of CdCl2 annealing treatment on thin CdS films and CdTe/CdS thin film solar cells, a comparative study was carried out on three types of CdTe/CdS solar cells, which had different kinds of CdS window layer: as-deposited CdS, air-annealed CdS without CdCl2 pre-coating, and CdCl2-annealed CdS. When annealed in air the CdS film was partially oxidated to CdO and CdSO4. These oxides increased the series resistance of the CdTe solar cell and led to the lowest fill factor. The presence of CdCl2 on the surface of a CdS thin film during heat treatment in air protected it from oxidation and promoted the recrystallization of the CdS film, resulting in large and closely packed grains with a grain size of ∝ 50 -150 nm. CdTe/CdS solar cell with such a kind of CdS window layer showed the largest short circuit current and highest conversion efficiency of 12.4%. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. NEUTRON WAVE OPTICS STUDIED WITH ULTRACOLD NEUTRONS

    Steyerl, A.

    1984-01-01

    The paper reports experiments demonstrating or utilizing the wave properties of neutrons with wavelengths of about 100 nm. The significant effects of gravity are discussed, and special features of the flight parabola have been used in designing high-resolution instruments and image-forming systems.

  5. Tracking fast neutrons

    Both neutron absorption and elastic scattering can be used to measure neutron momentum. Based on elastic collisions, the linear momentum of a fast neutron can be measured from as few as two consecutive recoil ion tracks plus the vertex position of the third collision, or ‘two and half’ ion tracks. If the time delay between the first two consecutive ion tracks is also measured, the number of ion tracks can be reduced to one and a half. The angular and magnitude resolutions are limited by ion range straggling to about 10%. Multi-wire proportional chambers and light-field imaging can be used for fast neutron tracking. Light-field imaging is free of charge-diffusion-induced image blur, but the limited number of photons available can be a challenge. 1H, 2H and 3He could be used for the initial development of fast neutron trackers based on light-field imaging. -- Highlights: • We describe the basic principle of fast neutron tracking through elastic collisions and absorption; • We calculate tracking errors, which are limited by ion range straggling. • Multi-wire proportional chamber and light field imaging are discussed for fast neutron tracking; • Time projection of ion tracks can be achieved by detecting photons

  6. Versatile neutron NDA

    DeVolpi, A.

    1995-07-01

    Non-destructive analysis (NDA) of bulk samples is a major tool in international safeguards and domestic MC&A. Yet, enhancements are needed to reduce inspection time, financial cost, and radiation exposure-while improving reliability and accuracy-particularly for mixtures of fissile and fertile isotopes. Perhaps the greatest remaining direction for NDA improvement is the development of a single controllable neutron source that would add versatility and capability. One of the primary prospects is a switchable radioactive neutron source (SRNS) that has been under advanced-concept development at Argonne with DOE funding. The SRNS would be in a sealed capsule that can be remotely switched on and off, or pulsed at a controllable rate. Li({alpha}, n) or Be({alpha}, n) reactions could give a choice of sub-threshold or hard-spectrum neutrons at yields ranging from 10{sup 4}/s to more than 10{sup 8}s. The SRNS would provide improved capabilities for (1) simultaneous or alternating interrogation with fast and slow neutrons, (2) detection of the first few seconds of delayed neutrons, (3) measurements in the presence of high neutron and/or gamma background, and (4) inspection of heterogeneous materials. When the neutrons are switched off, the source would be portable with vastly reduced shielding. Proof-of-concept with a single switchable plate has been established under laboratory conditions.

  7. Neutron dosimetry in mixed fields with monoblock neutron spectrometer

    Full text: The multi-sphere method of neutron spectrometry or namely Bonner spheres neutron spectrometry is currently playing an increasing role in the mixed radiation field measurements. The growing popularity of this methodology is caused by its relative availability, simplicity of measurement in a wide energy range, high sensitivity and satisfactory gamma-ray suppression. These qualities allow the usage of multi-sphere neutron spectrometers for adequate characterization of neutron field, particularly reliable measurements of neutron dose rate. However, the main difficulties in the application of this kind of neutron detector are the perturbation of the neutron field, caused by the detector itself, and the complex procedure required for unfolding the neutron spectrum. Furthermore, it is necessary to perform a relatively high number of measurements, one for each spherical moderator (as a rule, 5-7 pieces). This in turn may require a dedicated source monitoring system, otherwise significant errors may occur. These requirements hamper the application of the multi-sphere spectrometry method to pulsed neutron sources, for example. Other difficulties occur in the characterization of reactor neutron beams, in case the beam diameter is smaller than those of the spherical moderators. In this situation it is necessary to carry out a beam scanning and integrate the acquired data. To improve the methodology of neutron field parameter measurement the Monoblock Neutron Spectrometer (MNS) has been developed recently. The basic idea of the novel detector is to determine the neutron energy spectrum by unfolding a set of count rates from thermal neutron detectors located at different depths in the common polyethylene moderator. The unfolding algorithms for neutron spectrum and neutron dose rates have been specifically improved for operation with MNS. The testing results with well-know neutron reference fields and reactor neutron beam are presented. The application of MNS for

  8. Neutron-Phonon Interaction in Neutron Star Crusts

    Sedrakian, Armen

    1998-01-01

    The phonon spectrum of Coulomb lattice in neutron star crusts above the neutron drip density is affected by the interaction with the ambient neutron Fermi-liquid. For the values of the neutron-phonon coupling constant in the range $0.1 \\le \\lambda \\le 1$ an appreciable renormalization of the phonon spectrum occurs which can lead to a lattice instability manifested in an exponential growth of the density fluctuations. The BCS phonon exchange mechanism of superconductivity leads to neutron pair...

  9. ${}^3$H production via neutron-neutron-deuteron recombination

    Deltuva, A; Fonseca, A.C.

    2013-01-01

    We study the recombination of two neutrons and deuteron into neutron and ${}^3$H using realistic nucleon-nucleon potential models. Exact Alt, Grassberger, and Sandhas equations for the four-nucleon transition operators are solved in the momentum-space framework using the complex-energy method with special integration weights. We find that at astrophysical or laboratory neutron densities the production of ${}^3$H via the neutron-neutron-deuteron recombination is much slower as compared to the ...

  10. The neutron radii of Lead and neutron stars

    Horowitz, Charles J.; Piekarewicz, Jorge

    2001-01-01

    A new relation between the neutron skin of a heavy nucleus and the radius of a neutron star is proposed: the larger the neutron skin of the nucleus the larger the radius of the star. Relativistic models that reproduce a variety of ground-state observables can not determine uniquely the neutron skin of a heavy nucleus. Thus, a large range of neutron skins is generated by supplementing the models with nonlinear couplings between isoscalar and isovector mesons. We illustrate how the correlation ...

  11. Fusion Based Neutron Sources for Security Applications: Neutron Techniques

    Albright, S.; Seviour, Rebecca

    2014-01-01

    The current reliance on X-Rays and intelligence for na- tional security is insufficient to combat the current risks of smuggling and terrorism seen on an international level. There are a range of neutron based security techniques which have the potential to dramatically improve national security. Neutron techniques can be broadly grouped into neutron in/neutron out and neutron in/photon out tech- niques. The use of accelerator based fusion devices will potentially enable to wide spread applic...

  12. Neutron - Mirror Neutron Oscillations: How Fast Might They Be?

    Berezhiani, Zurab; Bento, Luis

    2005-01-01

    We discuss the phenomenological implications of the neutron (n) oscillation into the mirror neutron (n'), a hypothetical particle exactly degenerate in mass with the neutron but sterile to normal matter. We show that the present experimental data allow a maximal n-n' oscillation in vacuum with a characteristic time $\\tau$ much shorter than the neutron lifetime, in fact as small as 1 sec. This phenomenon may manifest in neutron disappearance and regeneration experiments perfectly accessible to...

  13. Los Alamos National Laboratory neutron-neutron scattering program

    A theoretical and experimental program is underway to determine the feasibility of a measurement of the neutron-neutron scattering cross section of 10 to 12% uncertainty using small-angle, low center-of-mass energy, colliding neutron beams derived from a fusion-fission nuclear source. The neutron-neutron scattering length would be inferred from the measured cross sections. The general concept of the experiments and progress are discussed

  14. Influence of neutron scattering on fission neutron spectrum measurement

    The study of the influence of neutron scattering by the surrounding medium and fragment detector on fission neutron spectrum measurement with time-of-flight (TOF) method has been carried out. The scattering by air and the walls of the measuring room was determined by both experiment and Monte Carlo simulation. It was found that the neutron scattering influence on the fission neutron spectrum is rather essential and can noticeably change the shape of the fission neutron spectra. (4 figs.)

  15. Neutron production, shielding and activation

    This chapter contains information on neutron cross-sections, production, spectra and yields; detection and detectors; shielding with various materials, particularly with ordinary concrete; and neutron activation products of interest to health physicists. Neutron energy terminology as well as neutron energy spectrum calculations are included

  16. Neoplasia hematodérmica CD4+ CD56+ en la infancia Hematodermic CD4+ CD56+ neoplasm in childhood

    Erica A. Rojas Bilbao

    2008-04-01

    Full Text Available La neoplasia hematodérmica CD4+ CD56+ con fenotipo de célula dendrítica plasmocitoide es una rara y agresiva neoplasia recientemente reconocida por la WHO-EORTC classification. Afecta adultos de edad media y ancianos, siendo muy pocos los casos descriptos en niños. Presentamos el caso de una niña de 12 años con grave retraso mental, estigmas genéticos y múltiples lesiones cutáneas localizadas en miembros inferiores y superiores. Histológicamente se observó un infiltrado dérmico difuso de células pequeñas y medianas con expresión de CD4, CD56, CD43 y S100 así como de marcadores dendríticos plasmocitoides: CD 123 y BDCA-2 confirmados por citometría de flujo, sin compromiso de sangre periférica ni médula ósea. Cumpliendo dos semanas de tratamiento para leucemia linfoblástica aguda evolucionó con remisión clínica de las lesiones cutaneas.Hematodermic CD4+ CD56+ neoplasm with plasmacytoid dendritic cell phenotype is a rare and aggressive neoplasm recently recognized by the WHO-EORTC classification. It generally appears in elderly adults, exceptionally in childhood. We present a 12-year-old girl with severe mental retardation, genetic clinical features and multiple nodular cutaneous lesions on legs and arms. Histologically the nodules showed diffuse dermal infiltrate of medium and small cells and expression of CD4, CD56, CD43, S100 and plasmacytoid dendritic markers: CD123, BDCA-2 under flow cytometry study. Peripheral blood and bone marrow were not involved. Clinical remission of cutaneous lesions was observed after two weeks of acute lymphoblastic leukemia therapy.

  17. The neutron channeling phenomenon.

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    Shields, used for protection against radiation, are often pierced with vacuum channels for passing cables and other instruments for measurements. The neutron transmission through these shields is an unavoidable phenomenon. In this work we study and discuss the effect of channels on neutron transmission through shields. We consider an infinite homogeneous slab, with a fixed thickness (20 lambda, with lambda the mean free path of the neutron in the slab), which contains a vacuum channel. This slab is irradiated with an infinite source of neutrons on the left side and on the other side (right side) many detectors with windows equal to 2 lambda are placed in order to evaluate the neutron transmission probabilities (Khanouchi, A., Aboubekr, A., Ghassoun, J. and Jehouani, A. (1994) Rencontre Nationale des Jeunes Chercheurs en Physique. Casa Blanca Maroc; Khanouchi, A., Sabir, A., Ghassoun, J. and Jehouani, A. (1995) Premier Congré International des Intéractions Rayonnements Matière. Eljadida Maroc). The neutron history within the slab is simulated by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) and using the exponential biasing technique in order to improve the Monte Carlo calculation (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Aboubker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco). Then different geometries of the vacuum channel have been studied. For each geometry we have determined the detector response and calculated the neutron transmission probability for different detector positions. This neutron transmission probability presents a peak for the detectors placed in front of the vacuum channel. This study allowed us to clearly identify the neutron channeling phenomenon. One application of our study is to detect vacuum defects in materials. PMID:9463884

  18. β decay of 123Ag and 123Cd level scheme

    Using the NAVE facility at the Buenos Aires TANDAR Laboratory, fast neutrons were produced with deuteron beams of 27 MeV and 800 nA by the 9Be(2H, n) reaction. These neutrons induce, in turn, natural-uranium fission. Samples of 123Ag were obtained by means of non-line mass separation techniques applied to the fission products. The half-life of the β- decaying 123Ag was measured to be 0.35 ± 0.04 s in agreement with previously reported data. The energy level scheme of 123Cd was built from the obtained experimental results and is reported for the first time. Spins and parities for the most important states are suggested based upon log fT values obtained from measured γ-ray transition intensities. The most important characteristics are discussed and nuclear structure properties are inferred. (Author)

  19. Fruits of neutron research

    Car windshields that don't break during accidents and jets that fly longer without making a refueling stop. Compact discs, credit cards, and pocket calculators. Refrigerator magnets and automatic car window openers. Beach shoes, food packaging, and bulletproof vests made of tough plastics. The quality and range of consumer products have improved steadily since the 1970s. One of the reasons: neutron research. Industries, employing neutron scattering techniques, to study materials properties, to act as diagnostics in tracing system performance, or as sources for radioactive isotopes used in medical fields for diagnostics or treatment, have all benefited from the fruits of advanced work with neutron sources

  20. METHOD OF PRODUCING NEUTRONS

    Imhoff, D.H.; Harker, W.H.

    1964-01-14

    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  1. International Neutron Radiography Newsletter

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing (BJNDT) has agreed to publish the INRNL in i t s column "NDT Bookcase". The Revue Practique de Control Industriel has also agreed to publish the French version of the INRNL. Up t i l l now 12 issues of...

  2. Coupled moderator neutronics

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source

  3. Neutron scattering in liquids

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica

    1996-12-31

    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  4. Neutrons in soft matter

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  5. Hyperons in neutron stars

    Tetsuya Katayama

    2015-07-01

    Full Text Available Using the Dirac–Brueckner–Hartree–Fock approach, the properties of neutron-star matter including hyperons are investigated. In the calculation, we consider both time and space components of the vector self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of baryons is partly taken into account. We obtain the maximum neutron-star mass of 2.08M⊙, which is consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body force for hyperons in matter.

  6. Hyperons in neutron stars

    Katayama, Tetsuya

    2015-01-01

    Using the Dirac-Brueckner-Hartree-Fock approach, the properties of neutron-star matter including hyperons are investigated. In the calculation, we consider both time and space components of the vector self-energies of baryons as well as the scalar ones. Furthermore, the effect of negative-energy states of baryons is partly taken into account. We obtain the maximum neutron-star mass of $2.08\\,M_{\\odot}$, which is consistent with the recently observed, massive neutron stars. We discuss a universal, repulsive three-body force for hyperons in matter.

  7. Time-Resolved Photoluminescence Spectroscopy Evaluation of CdTe and CdTe/CdS Quantum Dots

    Yuan, Zhimin; Yang, Ping; Cao, Yongqiang

    2012-01-01

    CdTe and CdTe/CdS quantum dots (QDs) were prepared in aqueous solutions using thioglycolic acid as a stabilizing agent. The photoluminescence (PL) wavelength of the QDs depended strongly on the size of CdTe cores and the thickness of CdS shells. Being kept at room temperature for 130 days, the PL wavelength of CdTe and CdTe/CdS QDs was red-shifted. However the red-shifted degree of CdTe QDs is larger than that of CdTe/CdS QDs. The size of CdTe QDs and the thickness of CdS play important roles...

  8. Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses

    Andreasen, Susanne; Christensen, Jeanette Erbo; Marker, O; Thomsen, Allan Randrup

    2000-01-01

    and extensively, whereas vesicular stomatitis virus (VSV) spreads poorly. We found that the primary response of CD40L-/- mice toward VSV is significantly impaired; proliferation of both CD4+ and CD8+ cells is reduced 2- to 3-fold, few CD8+ cells acquire an activated phenotype, and little functional...... activity is induced. Very similar results were obtained in VSV-infected, CD28-deficient mice. In contrast, neither CD40L nor CD28 was required for induction of a primary CD8+ response toward LCMV. Surprisingly, lack of CD4+ T cells had no impact on the primary immune response toward any of the viruses......-specific CD8+ T cells on day 6 postinfection. Finally, despite the fact that the primary LCMV-specific CD8+ response is virtually unimpaired in CD40L-/- mice, their capacity to maintain CD8+ effector activity and to permanently control the infection is significantly reduced. Thus, our results demonstrate that...

  9. Thermal neutrons response of PS1 photographic dosimeters

    The PS1 photographic dosemeter is used by the dosimetry exploitation laboratory of IPSN (institute of protection and nuclear safety) for the regulatory medical surveillance of workers who have risks of exposure to ionizing radiations.It is an ALFA dosimetric film and a case (PS1) equipped with seven screens. The responses of Pb+Sn+Cd and Pb+Sn screens allow to measure the doses coming from high energy photons (higher than 150 keV) and thee one coming from thermal neutrons. This report describes and analyses the results of a recent series of measurements in the aim to check the answer of this dosemeter to thermal neutrons and to determine the transfer coefficients of visible doses in Co60, under the mentioned screens, in doses equivalents coming from thermal neutrons and photons. (N.C.)

  10. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    Jalali, Majid; Mohammadi, Ali

    2008-05-01

    The compounds Na 2B 4O 7, H 3BO 3, CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  11. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    The compounds Na2B4O7, H3BO3, CdCl2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H3BO3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds

  12. Production of megavolt neutron beams with relative energy spread of ∼5x10-4

    A method for production of megavolt neutron beams with relative energy spread of ∼ 5x10-4 based on using electrostatic accelerator and a foilless gas target permitting to realize continuous and easily controlled reproduction of working substance (acetone, heavy water) is described. Differential pumping of vapors of working substance by freezing in refrigerators cooled by liquid nitrogen is used in the target. Technique for using neutron beams from the 12C(d, n) reaction for measuring total cross sections of neutron interaction with nuclei and differential cross sections of elastic scattering is developed

  13. RNAA determination of As, Cd and Zn in biological materials

    In connection with the IAEA project 3739/RB the elements Hg, As, Cd and Zn in human spleen, kidney, heart, liver, SRM Bovine Liver 1577a and Bowen's Kale. The consecutive extraction have been chosen as the most rational approach determining these elements in a single specimen. Aiming at getting reliable results well established systems were used (ditizone to separate Hg, Cu and DEDTC to extract As, Cd and Zn). Special attention was paid to the accuracy of the determination. Monitoring, optimization and cooling time and control of chemical yield were carried out in each case. The samples were irradiated in the vertical channel of the IRT-2000 reactor in Sofia, in thermal neutron flux of about 5.1012n.cm-2.s-1 for 24 h. Iron monitor was used and cooling time varied from 20 h to 30 h

  14. Magnetic trapping of ultracold neutrons

    Brome, C. R.; Butterworth, J. S.; Dzhosyuk, S. N.; Mattoni, C. E. H.; McKinsey, D. N.; Doyle, J. M.; Huffman, P. R.; Dewey, M. S.; Wietfeldt, F. E.; Golub, R.; Habicht, K.; Greene, G. L.; Lamoreaux, S. K.; Coakley, K. J.

    2001-01-01

    Three-dimensional magnetic confinement of neutrons is reported. Neutrons are loaded into an Ioffe-type superconducting magnetic trap through inelastic scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low energy and in the appropriate spin state are confined by the magnetic field until they decay. The electron resulting from neutron decay produces scintillations in the liquid helium bath that results in a pulse of extreme ultraviolet light. This light is frequency dow...

  15. Euratom Neutron Radiography Working Group

    Domanus, Joseph Czeslaw

    1986-01-01

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made ...

  16. Neutron spectra produced by moderating an isotopic neutron source

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2. From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  17. Mass measurements on short-lived Cd and Ag nuclides at the online mass spectrometer ISOLTRAP

    In the present work, mass determinations of the eleven neutron-deficient nuclides 99-109Cd, of ten neutron-rich silver nuclides 112,114-121,123Ag, and seven neutron-rich cadmium nuclides 114,120,122-124,126,128Cd are reported. Due to the clean production of the neutron-deficient nuclides it was possible to reduce the experimental uncertainties down to 2 keV, whereas the measurements of neutron-rich nuclides were hampered by the presence of contaminations from more stable In and Cs nuclides. In the case of 99Cd and 123Ag the masses were determined for the first time and for the other nuclides the mass uncertainties could be reduced by up to a factor of 50 as in the case of 100Cd. In the case of a potential isomeric mixture as for 115,117,119Ag and 123Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of a potential isomeric mixture as for 115,117,119Ag and 123Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of the neutron-deficient Cd nuclides a conflict between the mass values obtained in the present work and those published by the JYFLTRAP group [EEH+] could be solved by performing an atomic-mass evaluation. Thus, it was revealed that reason for the conflict was a different value of the JYFLTRAP reference mass 96Mo. Furthermore, a reduction of the mass uncertainty and a slight increase of the mass of 100In were obtained. These mass measurements are an important step towards an understanding of the physics of the rp process that will enable a more reliable determination of the composition

  18. Neutron flux measurements with Monte Carlo verification at the thermal column of a TRIGA MARK II reactor: Feasibility study for a BNCT facility

    The treatment of the malignant brain tumor through Boron Neutron Capture Therapy (BNCT) requires a high-flux neutron source. The Malaysian TRIGA Mark II reactor was investigated for a proposed BNCT facility. The neutron flux was measured along the central stringer of the thermal column and the outermost positions of the other stringers. The unfolding foil method was applied here. We have used Al, As, Au, Co, In, Mo, Ni and Re foils and Cd as a cover with 19 useful reactions in this study. The infinitely diluted foil activity was calculated and used in the SAND-II code (Spectrum Analysis by Neutron Detectors) to calculate the neutron flux. The reactor was also simulated using Monte Carlo code (MCNP5) and the neutron flux was calculated along the thermal column. The measured and calculated neutron flux along the thermal column show good agreement. The minimum epithermal neutron intensity required for BNCT is achieved up to position 22 with a mixed neutron-gamma beam. A suggested MCNP simulated modification of the reactor thermal column increased the neutron flux at distant positions from the reactor core but the epithermal neutron part was below the minimum requirement for a BNCT facility. The photon flux calculations along the thermal column show relatively high results which should be filtered. The calculation of the neutron and gamma dose in a head phantom (water) indicated that the available neutron spectrum requires modifications to increase the epithermal part of the neutrons and filter the gamma ray contamination. (author)

  19. In-vivo measurement of kidney and liver cadmium by neutron capture prompt gamma-ray analysis

    A method for the determination of Cd in-vivo in human kidney and liver has been developed. The technique employs the detection of prompt gamma-rays emitted under slow neutron capture in Cd. The method allows measurement of absolute quantities of Cd in the left kidney and Cd concentration in the liver, in normal population. The limit of detection of cadmium is 2.5 mg for the left kidney and 1.5 μg/g (wet weight) for the liver, for a localized dose of 670 mrem

  20. IBIC analysis of CdTe/CdS solar cells

    Colombo, E; Calusi, S; Giuntini, L; Giudice, A Lo; Manfredotti, C; Massi, M; Olivero, P; Romeo, A; Romeo, N; Vittone, E

    2016-01-01

    This paper reports on the investigation of the electronic properties of a thin film CdS/CdTe solar cell with the Ion Beam Induced Charge (IBIC) technique. The device under test is a thin film (total thickness around 10 um) multilayer heterojunction solar cell, displaying an efficiency of 14% under AM1.5 illumination conditions. The IBIC measurements were carried out using focused 3.150 MeV He ions raster scanned onto the surface of the back electrode. The charge collection efficiency (CCE) maps show inhomogeneous response of the cell to be attributed to the polycrystalline nature of the CdTe bulk material. Finally, the evolution of the IBIC signal vs. the ion fluence was studied in order to evaluate the radiation hardness of the CdS/CdTe solar cells in view of their use in solar modules for space applications.

  1. Astrophysical problems of neutron stars

    Full text: Due to the recent discovery of 2 solar mass neutron stars in a neutron star - white dwarf binary, many soft neutron star equations of states are ruled out. On the other hand, all well-measured neutron star masses in double neutron star binaries are still below 1.5 solar mass. In this review talk, we would like to summarize the current status of neutron star mass observations and discuss the possibility of supercritical accretion during the neutron star binary evolution. We argue that the fate of the supercritical accretion strongly depends on the type of neutron star companion. The first-born neutron star in neutron star-white dwarf binaries can accrete significant amount of matter after its formation. Consequently, neutron star masses in neutron star-white dwarf binaries can be significantly higher than those of fresh neutron stars. On the other hand, neutron stars in double neutron star binaries that are observed don't have enough time to accrete and remain more or less the same as they are born. (author)

  2. Neutrons for industry

    Neutrons are a unique tool for materials science, from hard to soft matter. This uniqueness relies on the privileged penetration of neutrons in any kind of matter, their particular contrast for different elements/isotopes, their capability to characterize in situ, in operation and in real time. Often enough neutron research explains the functionality of materials and work pieces by their atomistic foundation and opens the way for optimization of the functionality. In this paper the author reviews some new applications of neutron irradiation in industry: homogenous doping for power electronics; the selection of the right candidates for hydrogen storage materials; the optimization of Li-ion batteries and organic solar cells; the 3-dimensional determination of residual stresses without damaging the specimen. Concerning medicine there were some advances for the production of some isotopes like Lu177 or Mo99-Tc99m

  3. Instruments for neutron scattering

    The wide variety of science that can be presented with neutron scattering essentially boils down to determine two vectors, the momentum k of the neutron before it hits the sample and after it leaves the sample. All experimentally obtainable information is contained in the probability distribution W(k,k') of a neutron to undergo scattering takes it from k to k'. In this paper we will introduce the principles and concepts to understand what one is doing if one perform an experiment on a certain instrument We will describe the components of which almost all neutron scattering instruments are made up and their functions and show how these components can be combined to contribute in the best possible way to the solution of questions in a large number of scientific areas

  4. Neutron personnel dosimetry

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  5. The intense neutron generator

    Lewis, W.B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  6. Neutron resonance averaging

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  7. Cylindrical neutron generator

    Leung, Ka-Ngo

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Neutron irradiation of seeds

    Neutrons are a valuable type of ionizing radiation for seed irradiation and radiobiological studies and for inducing mutations in crop plants. In experiments where neutrons are used in research reactors for seed irradiation it is difficult to measure the dose accurately and therefore to establish significant comparisons between experimental results obtained in various reactors and between repeated experiments in the same reactor. A further obstacle lies in the nature and response of the seeds themselves and the variety of ways in which they are exposed in reactors. The International Atomic Energy Agency decided to initiate international efforts to improve and standardize methods of exposing seeds in research reactors and of measuring and reporting the neutron dose. For this purpose, an International Neutron Seed Irradiation Programme has been established. The present report aims to give a brief but comprehensive picture of the work so far done in this programme. Refs, figs and tabs

  9. Intense pulsed neutron sources

    Kustom, R.L.

    1981-01-01

    Accelerator requirements for pulsed spallation neutron sources are stated. Brief descriptions of the Argonne IPNS-I, the Japanese KENS, Los Alamos Scientific Laboratory WNR/PSR, the Rutherford Laboratory SNS, and the West German SNQ facilities are presented.

  10. Neutron signal transfer analysis

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  11. Neutrons from Piezonuclear Reactions

    Cardone, F; Mignani, R; Perconti, W; Petrucci, A; Rosetto, F; Spera, G

    2007-01-01

    We report the results obtained by cavitating water solutions of iron salts (iron chloride and iron nitrate) with different concentrations at different ultrasound powers. In all cases we detected a neutron radiation well higher than the background level. The neutron production is perfectly reproducible and can at some extent be controlled. These evidences for neutron emission generated by cavitation support some preliminary clues for the possibility of piezonuclear reactions (namely nuclear reactions induced by pressure and shock waves) obtained in the last ten years. We have been able for the first time to state some basic features of such a neutron emission induced by cavitation, namely: 1) a marked threshold behavior in power, energy and time; 2) its occurring without a concomitant production of gamma radiation.

  12. Directionally positionable neutron beam

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positioned on the axis of rotation of the enclosed housing but not rotating with the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center. (author)

  13. Neutron phase spin echo

    Piegsa, Florian M.; Hautle, Patrick; Schanzer, Christian

    2016-04-01

    A novel neutron spin resonance technique is presented based on the well-known neutron spin echo method. In a first proof-of-principle measurement using a monochromatic neutron beam, it is demonstrated that relative velocity changes of down to a precision of 4 ×10-7 can be resolved, corresponding to an energy resolution of better than 3 neV. Currently, the sensitivity is only limited by counting statistics and not by systematic effects. An improvement by another two orders of magnitude can be achieved with a dedicated setup, allowing energy resolutions in the 10 peV regime. The new technique is ideally suited for investigations in the field of precision fundamental neutron physics, but will also be beneficial in scattering applications.

  14. Neutron phase spin echo

    Piegsa, Florian M; Schanzer, Christian

    2016-01-01

    A novel neutron spin resonance technique is presented based on the well-know neutron spin echo method. In a first proof-of-principle measurement using a monochromatic neutron beam, it is demonstrated that relative velocity changes of down to a precision of $4 \\times 10^{-7}$ can be resolved, corresponding to an energy resolution of better than 3~neV. Currently, the sensitivity is only limited by counting statistics and not by systematic effects. An improvement by another two orders of magnitude can be achieved with a dedicated setup, allowing for energy resolutions in the 10~peV regime. The new technique is ideally suited for investigations in the field of precision fundamental neutron physics, but will also be beneficial in scattering applications.

  15. Neutron scattering in dimers

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    1986-01-01

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  16. Decoherence Free Neutron Interferometry

    Pushin, Dmitry A; Cory, David G

    2016-01-01

    Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particularly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good interference solutions for reducing vibration other than those normally used in optical experiments must be explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free subspaces that are described in quantum information processing. By removing the need for bulky vibration isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications and increase its sensitivity.

  17. Neutrons in natural environment

    A detecting system for environmental neutrons has to be characterized by a very low inherent background. The details are reported of measuring the background of a 3He proportional counter in a polythene sphere in the Asse salt mine. A spherical counter with 40 mm ext. diameter, filled with 100 kPa 3He and 53 kPa Xe was used. The inherent background of the counter was found to be less then 1 nSv per 24 hours, being less than 1% of the natural neutron radiation level at the ground level. The ambient dose equivalent due to environmental neutrons was estimated at 100-200 nSv per 24 hours. A 3He proportional counter in a polythene sphere was thus found to be sufficiently sensitive to estimate the neutron component at environmental levels. (A.K.)

  18. The intense neutron generator

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through μ-, π- and K-meson production. Isotope production enters many fields of applied research. (author)

  19. A spherical shell target scheme for laser-driven neutron sources

    He, Min-Qing; Cai, Hong-Bo; Zhang, Hua; Dong, Quan-Li; Zhou, Cang-Tao; Wu, Si-Zhong; Sheng, Zheng-Ming; Cao, Li-Hua; Zheng, Chun-Yang; Wu, Jun-Feng; Chen, Mo; Pei, Wen-Bing; Zhu, Shao-Ping; He, X. T.

    2015-12-01

    A scheme for neutron production is investigated in which an ultra-intense laser is irradiated into a two-layer (deuterium and aurum) spherical shell target through the cone shaped entrance hole. It is found that the energy conversion efficiency from laser to target can reach as high as 71%, and deuterium ions are heated to a maximum energy of several MeV from the inner layer surface. These ions are accelerated towards the center of the cavity and accumulated finally with a high density up to tens of critical density in several picoseconds. Two different mechanisms account for the efficient yield of the neutrons in the cavity: (1) At the early stage, the neutrons are generated by the high energy deuterium ions based on the "beam-target" approach. (2) At the later stage, the neutrons are generated by the thermonuclear fusion when the most of the deuterium ions reach equilibrium in the cavity. It is also found that a large number of deuterium ions accelerated inward can pass through the target center and the outer Au layer and finally stopped in the CD2 layer. This also causes efficient yield of neutrons inside the CD2 layer due to "beam-target" approach. A postprocessor has been designed to evaluate the neutron yield and the neutron spectrum is obtained.

  20. A spherical shell target scheme for laser-driven neutron sources

    He, Min-Qing, E-mail: he-minqing@iapcm.ac.cn; Zhang, Hua; Wu, Si-Zhong; Wu, Jun-Feng; Chen, Mo [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Cai, Hong-Bo, E-mail: cai-hongbo@iapcm.ac.cn; Zhou, Cang-Tao; Cao, Li-Hua; Zheng, Chun-Yang; Zhu, Shao-Ping; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Dong, Quan-Li [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 260405 (China); Sheng, Zheng-Ming [Department of Physics, Jiaotong University, Shanghai 200240 (China); Pei, Wen-Bing [Shanghai Institute of Laser Plasma, Shanghai 201800 (China)

    2015-12-15

    A scheme for neutron production is investigated in which an ultra-intense laser is irradiated into a two-layer (deuterium and aurum) spherical shell target through the cone shaped entrance hole. It is found that the energy conversion efficiency from laser to target can reach as high as 71%, and deuterium ions are heated to a maximum energy of several MeV from the inner layer surface. These ions are accelerated towards the center of the cavity and accumulated finally with a high density up to tens of critical density in several picoseconds. Two different mechanisms account for the efficient yield of the neutrons in the cavity: (1) At the early stage, the neutrons are generated by the high energy deuterium ions based on the “beam-target” approach. (2) At the later stage, the neutrons are generated by the thermonuclear fusion when the most of the deuterium ions reach equilibrium in the cavity. It is also found that a large number of deuterium ions accelerated inward can pass through the target center and the outer Au layer and finally stopped in the CD{sub 2} layer. This also causes efficient yield of neutrons inside the CD{sub 2} layer due to “beam-target” approach. A postprocessor has been designed to evaluate the neutron yield and the neutron spectrum is obtained.

  1. Laboratory tests on neutron shields for gamma-ray detectors in space

    Hong, J; Hailey, C J

    2000-01-01

    Shields capable of suppressing neutron-induced background in new classes of gamma-ray detectors such as CdZnTe are becoming important for a variety of reasons. These include a high cross section for neutron interactions in new classes of detector materials as well as the inefficient vetoing of neutron-induced background in conventional active shields. We have previously demonstrated through Monte-Carlo simulations how our new approach, supershields, is superior to the monolithic, bi-atomic neutron shields which have been developed in the past. We report here on the first prototype models for supershields based on boron and hydrogen. We verify the performance of these supershields through laboratory experiments. These experimental results, as well as measurements of conventional monolithic neutron shields, are shown to be consistent with Monte-Carlo simulations. We discuss the implications of this experiment for designs of supershields in general and their application to future hard X-ray/gamma-ray experiments...

  2. Search of parity violation effects in neutron reaction on natural Lead

    Oprea, A I; Sedyshev, P V; Gledenov, Yu M

    2014-01-01

    Parity violation effects (PV) in nuclear reaction were discovered in the 60 years of the last century in the capture of thermal transversal polarized neutrons by 113Cd nucleus. In this reaction experimentally was measured a non zero asymmetry of emitted gamma quanta and the results was interpreted by the existence of weak non leptonic interaction between nucleons in the compound nucleus. This first experimental result gave a serious impulse of theoretical and experimental developments of parity violation question in nuclear reactions. The weak interaction acts in the background of strong interaction (with order of magnitude higher) and therefore it is very difficult to observe and evidence it. One possibility is the evaluation of asymmetry effects induced by PV phenomena. For neutrons scattering there are a few asymmetry effects (like polarization of incident neutron beam, spin rotation and emitted neutrons asymmetry of incident transversal polarized neutrons) explained by the presence of weak interaction. In...

  3. Pulsed spallation Neutron Sources

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  4. Pulsed spallation neutron sources

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  5. Neutrons and fusion

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 1020 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  6. Teaching neutron diffusion theory

    A method has been developed of introducing to, in particular, engineering students, neutron diffusion theory and the relevant one-group neutron equations. This new approach to Fick's law suggests a concise, speedy and physically-based method of introducing the subject which is seen to encompass a wider class of spatially dependent problems and which offers an alternative method of introducing boundary continuity conditions. (U.K.)

  7. Neutron Compton Scattering

    Watson, Greg

    1996-01-01

    Neutron Compton scattering measurements have the potential to provide direct information about atomic momentum distributions and adiabatic energy surfaces in condensed matter. First applied to measuring the condensate fraction in superfluid helium, the technique has recently been extended to study a variety of classical and quantum liquids and solids. This article reviews the theoretical background for the interpretation of neutron Compton scattering, with emphasis on studies of solids.

  8. Neutron-Proton Collisions

    Di Grezia, E.

    2011-01-01

    A theoretical model describing neutron-proton scattering developed by Majorana as early as in 1932, is discussed in detail with the experiments that motivated it. Majorana using collisions' theory, obtained the explicit expression of solutions of wave equation of the neutron-proton system. In this work two different models, the unpublished one of Majorana and the contemporary work of Massey, are studied and compared.

  9. Pulsed spallation Neutron Sources

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  10. Neutron scattering in dimers

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer excitati......Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  11. Introduction to neutron scattering

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  12. Evolution of yrast states and B(E2 : 81+ -> 61+) values of 114, 116, 1:1:8, 120, 122Cd by interacting boson model (ibm-1)

    In this paper we address the evolution of yrast levels of low-lying structure in the neutron-rich even-even 114-122Cd nuclei within the framework of interaction boson model (IBM-1). The reduced transition probabilities B(E2) ↓ between 81+ to 61+ states of even-even neutron rich Cd nuclei for N = 66, 68, 70, 72, 74 have been calculated by IBM-1 and compared with the previous available experimental values. The calculated values of 114Cd, 116Cd, 118Cd, 120Cd, and 122Cd, are 0.272 e2b2, 0.281 e2b2, 0.259 e2b2, 0.190 e2b2 and 0.149 e2b2 respectively. The ratio of the excitation energies of the first 4+ and the first 2+ excited states, R4/2, were also calculated for those nuclei. The 114-122Cd isotopes in U(5) - O(6) transitional symmetry were investigated. We have studied the systematic B(E2) values as a function of even neutrons from N = 66 to 74. Furthermore as a measure to quantify the evolution, we have studied systematically the ground state energy ratios RL = E(L+) / E(21+ ) and transition rate R = B(E2 : L+ > (L - 2)+) / B(E2 : 2+- > 0+) of some of the low-lying quadrupole collective states in comparison to the available experimental data.

  13. The biological difference between CD13+CD133+ and CD13¬CD133¬liver cancer cells and its clinical significance

    Shi-long JIN

    2013-09-01

    Full Text Available Objective To compare the biological difference between CD13+CD133+ and CD13-CD133- hepatocellular carcinoma (HCC cells in HuH7 cell line and its clinical significance. Methods The status of proliferation, phase of the cell cycle, tumor formation in vivo, differentiation, and their chemoresistance to 5-FU and pirarubicin of CD13+CD133+ and CD13-CD133-HCC cells were studied to analyze the clinical implication of CD13+CD133+HCC cell subset. Results The proliferation rate of CD13+CD133+HCC cells was significantly higher than that of CD13-CD133-HCC cells. The cell-cycle phase study showed that 78.45% of the CD13+CD133+HCC cells were in the G0/G1 phase, 2.19% in G2/M phase, and 19.36% in S phase, while 62.18% CD13-CD133-HCC cells were in the G0/G1 phase, 11.88% in G2/M phase, and 25.95% in S phase. Limiting dilution analysis of HuH7 cells revealed that 1×103 CD13+CD133+ cells could form the tumor, while 1×105 CD13-CD133- cells did. CD13+CD133+ cells showed chemoresistance to 5-FU and pirarubicin, while other three subsets succumbed to the drugs. Conclusion CD13+CD133+ cancer cells in HuH7 showed the characteristics of cancer stem cells (CSCs, which might contribute to the relapse and metastasis of liver cancer, and they may be the main target for chemotherapy in human liver cancer.

  14. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    Piegsa, Florian Michael

    2009-07-09

    The doublet neutron-deuteron (nd) scattering length b{sub 2,d}, which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b{sub 2,d} can be obtained via a linear combination of the spin-independent nd scattering length b{sub c,d} and the spin-dependent one, b{sub i,d}. The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b{sub 2,d} below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b{sub i,d}. During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the

  15. Study of microsecond isomers in neutron-rich indium and cadmium isotopes

    Scherillo, Antonella

    2005-01-01

    Microsecond isomers in In and Cd isotopes, in the mass range A = 123 to 130, were investigated at the ILL reactor, Grenoble, through thermal-neutron induced fission reactions of Pu targets. The LOHENGRIN mass spectrometer has been used to select the recoiling fission fragments. The level schemes of the odd-even 123,125,127,129In and 125Cd, and new measurements of the microsecond half-lives of the odd-odd 126-130In are reported. However, the expected 8+ isomers in the even-even 126,128,130$Cd ...

  16. Neutron measuring device

    The device of the present invention concerns measurement for neutrons in a tokamak type thermonuclear device and it can measure total amount of generated neutrons accurately throughout the operation period even if an error is caused in counted values by plasma disruption. That is, the device comprises (1) a means for detecting presence or absence of occurrence of plasma disruption and the time for the initiation of the occurrence, (2) a first data processing means for processing detection signals, (3) a means for detecting neutrons generated in plasmas and (4) a second data processing means for calculating integrated values for the number of neutrons generated from the start to the completion of electric discharge when no disruption occurs and calculating integrated values for the number of generated neutrons from the start of electric discharge to the time at the initiation of occurrence of the disruption when disruption is present. In the thus constituted device, even if an error is caused by frequent occurrence of plasma disruption, total time integrated amount of neutrons generated in the plasmas can be measured accurately. (I.S.)

  17. Opal neutron beams shutters

    Full text: The Opal Reactor has five beam tubes for neutron beams. Of these 5 tubes, two come from a cold neutron source, another two from thermal sources, and a fifth is ready for a future hot neutron source. Neutron guides come from the cold and thermal beam tubes. Neutron beams are enabled/disabled through shutters located inside the reactor pool's radial shield. These shutters were specially designed by INVAP for the OPAL reactor. They comprise fixed and movable shields. The movable part allows neutron beam enabling or disabling. The design of these shutters demanded the construction of prototypes that were further submitted to comprehensive tests to be qualified in light of the strict movement precision and high reliability requirements involved. The shielding material - a plastic and steel mix - was also specifically designed for this facility. The design required great efforts as to shield calculation and energy deposition. A heat removal system was designed to dissipate the energy absorbed by the shields. The cold and thermal beam shutters are built following a single vertical axis design. The hot shutter, due to different requirements, was designed with a horizontal axis

  18. Neutron scattering in Australia

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains

  19. Neutron beam applications

    For the materials science by neutron technique, the development of the various complementary neutron beam facilities at horizontal beam port of HANARO and the techniques for measurement and analysis has been performed. High resolution powder diffractometer, after the installation and performance test, has been opened and used actively for crystal structure analysis, magnetic structure analysis, phase transition study, etc., since January 1998. The main components for four circle diffractometer were developed and, after performance test, it has been opened for crystal structure analysis and texture measurement since the end of 1999. For the small angle neutron spectrometer, the main component development and test, beam characterization, and the preliminary experiment for the structure study of polymer have been carried out. Neutron radiography facility, after the precise performance test, has been used for the non-destructive test of industrial component. Addition to the development of main instruments, for the effective utilization of those facilities, the scattering techniques relating to quantitative phase analysis, magnetic structure analysis, texture measurement, residual stress measurement, polymer study, etc, were developed. For the neutron radiography, photographing and printing technique on direct and indirect method was stabilized and the development for the real time image processing technique by neutron TV was carried out. The sample environment facilities for low and high temperature, magnetic field were also developed

  20. Neutrons for materials science

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  1. Neutron scattering in Australia

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  2. Neutron Nucleic Acid Crystallography.

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination. PMID:26227050

  3. High quality neutron radiography

    By the neutron radiography which is reported in this paper, the radiographs which cannot be obtained by X-ray radiography such as the distribution of water flow in a metal vessel or high radioactive substances can be obtained. As the imaging methods of neutron radiography, there are TV method, film method, track etching method and so on. As for these devices, the dynamic range is small, and there is the limit in quantitative evaluation. Consequently, the semiconductor light-receiving element made by Hamamatsu Photonics K.K. developed for measuring weak light was used as a new device. It is called PCD linear image sensor as a plasma coupled device (PCD) is used as the shift register. The basic research on imaging neutron flux distribution by using a cooled type PCD linear image sensor and a honeycomb collimator and analyzing it quantitatively was carried out. The principle of neutron radiography, the PCD linear image sensor system and its cooling unit, the principle and the method of quantitative neutron radiography, the experiment on neutron radiography and its results, and the example of the application to CT are reported. (K.I.)

  4. Coded source neutron imaging

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  5. Biology with neutron radiation

    Neutron diffraction, elastic and inelastic neutron scattering experiments provide important information on the structure, interactions and dynamics of biological molecules. This arises from the unique properties of the neutron and of its interaction with matter. Coherent and incoherent neutron scattering amplitudes and cross-sections are very different for H and 2H (deuterium). Deuterium labelling by chemical or biochemical methods and H2O:2H2O exchange is the basis of high resolution crystallography experiments to locate functionally important H-atoms in protein molecules. It is also very important in low resolution crystallography and small angle scattering experiments to solve large complex structures, such as protein-nucleic acid complexes or biological membrane systems, by using contrast variation techniques. The energies of neutrons with a wavelength of the order of 1 - 10 A are similar to thermal energies and inelastic neutron scattering experiments have been done with different energy resolutions (≥∼ 1 μeV) to characterise the functional dynamics of proteins in solution and in membranes. (author)

  6. Passive neutron dosemeter design

    A passive neutron dosemeter was designed to be used in mixed radiation fields. The design was carried out using Monte Carlo method. The dosemeter model was a 25.4 cm-diameter polyethylene sphere with a thermoluminescent dosemeter, TLD600, located at the sphere center. This model was irradiated with 50 monoenergetic neutron sources with energies from 10-8 to 20 MeV. A 506.71 cm2-area disk was used to model the source term whose center was located at 100 cm from polyethylene sphere's center. The dosemeter response was compared with the responses of SNOOPY, Harwell 95/0075 and PNR-4. With these responses it was calculated the dosemeter responses for 252Cf, 252Cf/D2O and 239PuBe neutron sources. The passive dosemeter relative response has the same shape of SNOOPY, Harwell 95/0075 and PNR-4 dosemeters. Due to the type of thermal neutron detector used in the passive dosemeter the absolute response per unit fluence, is lower than the absolute response of SNOOPY, Harwell 95/0075 and PNR-4 dosemeters. However the passive dosemeter response in function of the average neutron energy of the 252Cf, 252Cf/D2O and 239PuBe neutron energy was more linear

  7. CD4 responses against IDO

    Andersen, Mads Hald

    2012-01-01

    Natural indoleamine-2,3-dioxygenase (IDO)-reactive CD4(+) T cells have been shown to release interferonγ (IFNγ), tumor necrosis factor α (TNFα), as well as interleukin 17 (IL-17). In some individuals, these cells also demonstrated the ability to suppress IL-10 production. IDO-specific CD4(+) helper...

  8. Isolated CD39 Expression on CD4+ T Cells Denotes both Regulatory and Memory Populations

    Zhou, Q.; Yan, J.; Putheti, P.; Wu, Y.; X. Sun; Toxavidis, V.; Tigges, J.; Kassam, N.; Enjyoji, K.; Robson, S C; Strom, T. B.; Gao, W.

    2009-01-01

    Foxp3+ regulatory T cells (Tregs) express both ectoenzymes CD39 and CD73, which in tandem hydrolyze pericellular ATP into adenosine, an immunoinhibitory molecule that contributes to Treg suppressive function. Using Foxp3GFP knockin mice, we noted that the mouse CD4+CD39+ T-cell pool contains two roughly equal size Foxp3+ and Foxp3− populations. While Foxp3+CD39+ cells are CD73bright and are the bone fide Tregs, Foxp3−CD39+ cells do not have suppressive activity and are CD44+CD62L−CD25−CD73dim...

  9. The Role of CD16+, CD56+, NK (CD16+/CD56+ and B CD20+ Cells in the Outcome of Pregnancy in Women with Recurrent Spontaneous Abortion

    Mehri Ghafourian

    2015-01-01

    Full Text Available Objectives: Recurrent Spontaneous Abortion (RSA is the most common complication of pregnancy. It is considered as one of the most important issues of reproduction in the world. RSA is defined as having three or more miscarriages in the first trimester of pregnancy. Increase in peripheral blood lymphocytes may be associated with abortion; therefore,the study was aimed to investigate and compare the peripheral blood CD16+, CD56+, NK(CD16+/CD56+ and B CD20+ cells populations in diagnosis and on pregnancy outcome in women with abortion. Materials and Methods: In this case-control study, 25 non-pregnant women with at least 3 abortions without obvious reason and 25 non-pregnant women with a living child without history of previous abortion participated. Using monoclonal antibodies anti (CD16, CD56 and CD20 and flow cytometry method, the percentage of cells with these markers was determined. Data analysis was performed by with SPSS 15 software and T-test. Results: CD16+, CD56+ and NK (CD16+/CD56+ cells significantly increased in women with RSA compared with control group (P≤0.05 but there were no significant differences in the percentage of B CD20+ cells between the experimental and control groups (P>0.05. Conclusion: According to the results of the present study, increased percentage of NK cells may be considered as a risk factor for RSA but involvement and the role of B CD20+ lymphocytes in RSA cannot be confirmed; however, in regard to important role of B and NK cell in the management of the immune responses, more studies are required to understand the behavior of these cells in the different stages of pregnancy more efficiently

  10. Determination of Neutron Flux at the HANARO Cold Neutron Guides

    Kang, Min Young; Sun, Gwang Min; Lee, Yuna; Yoo, Sang Ho; Lee, Chang Hee; Park, Byung Gun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A Cold neutron source (CNS) has been installed at the HANARO research reactor. After the completion of the CNS, it was most important to characterize the neutron beam from the CNS and along the neutron guides. Time-of-Flight (TOF) and gold activation methods were utilized to measure the neutron speed distribution and neutron flux, respectively. In this study, we described the neutron flux monitoring at several positions such as a primary shutter, secondary shutters, and sample or monochromator of the experimental instruments and so on

  11. Neutron Star Structure and the Neutron Radius of 208Pb

    Horowitz, C J

    2001-01-01

    We study relationships between the neutron-rich skin of a heavy nucleus and the properties of neutron-star crusts. Relativistic effective field theories with a thicker neutron skin in $^{208}$Pb have a larger electron fraction and a lower liquid-to-solid transition density for neutron-rich matter. These properties are determined by the density dependence of the symmetry energy which we vary by adding nonlinear couplings between isoscalar and isovector mesons. An accurate measurement of the neutron radius in $^{208}$Pb---via parity violating electron scattering---may have important implications for the structure of neutron stars.

  12. Neutron scattering on neutron irradiated steel

    Three pressure vessel steel systems (two base material and one weld material) with a 50% irradiation induced hardness enhancement were investigated by small angle neutron scattering. All three steel systems were irradiated in the light water moderated research reactor FRJ-1 at a temperature of 1500C. The strongest scattering effect was found for steel A; a pressure vessel containment steel ASTM a 533 B. This system was irradiated with a fluence of 7 1019 n/cm2 (E > 1 MeV). The annealing behaviour was then investigated after isochronal anneals of 300, 350, 400 and 4500C. Viker's hardness measurements were made parallel to the neutron scattering experiments. The hardness enhancement of 50% decreased after the first anneal to 30% and after the second to 18%. The neutron scattering patterns show a decrease in the number of very small voids having a Guinier radius less than 5 A. These voids have annealed, or coagulated into larger voids (Rg = 20-25 A) with a density of n = 1015 cm-3. After the third anneal at 4000C, the scattering patterns became, within statistical errors, identical to the scattering pattern of the unirradiated specimen; but a hardness enhancement of 13% was measured. (orig./WBU)

  13. Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules

    1989-01-01

    The leukocyte CD11/CD18 adhesion molecules (beta 2 integrins) are a family of three heterodimeric glycoproteins each with a distinct alpha subunit (CD11a, b, or c) and a common beta subunit (CD18). CD11/CD18 mediate crucial leukocyte adhesion functions such as chemotaxis, phagocytosis, adhesion to endothelium, aggregation, and cell-mediated cytotoxicity. The enhanced cell adhesion observed upon activation of leukocytes is associated with increased surface membrane expression of CD11/CD18, as ...

  14. Fundamental neutron physics at LANSCE

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  15. Radiography with polarised neutrons

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  16. Radiography with polarised neutrons

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd1-xNix and Ni3Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd1-xNix and Ni3Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni3Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature TC on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with different ordering temperatures. This procedure was

  17. Differential number of CD34+, CD133+ and CD34+/CD133+ cells in peripheral blood of patients with congestive heart failure

    Fritzenwanger M

    2009-03-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC which are characterised by the simulateous expression of CD34, CD133 and vascular endothelial growth receptor 2 (VEGF 2 are involved in the pathophysiology of congestive heart failure (CHF and their number and function is reduced in CHF. But so far our knowledge about the number of circulating hematopoietic stem/progenitor cells (CPC expressing the early hematopoietic marker CD133 and CD34 in CHF is spares and therefore we determined their number and correlated them with New York Heart Association (NYHA functional class. Methods CD34 and CD133 surface expression was quantified by flow cytometry in the peripheral venous blood of 41 healthy adults and 101 patients with various degrees of CHF. Results CD34+, CD133+ and CD34+/CD133+ cells correlated inversely with age. Both the number of CD34+ and of CD34+/CD133+ cells inversely correlated with NYHA functional class. The number of CD133+ cells was not affected by NYHA class. Furthermore the number of CD133+ cells did not differ between control and CHF patients. Conclusion In CHF the release of CD34+, CD133+ and CD34+/CD133+ cells from the bone marrow seems to be regulated differently. Modulating the releasing process in CHF may be a tool in CHF treatment.

  18. Increased T cell expression of CD154 (CD40-ligand) in multiple sclerosis

    Jensen, J; Krakauer, M; Sellebjerg, F

    2001-01-01

    with secondary progressive MS (SPMS) had constitutive CD154 expression on CD4 and CD8 T cells in blood. Constitutive CD154 expression was not observed in patients with relapsing-remitting MS (RRMS) or clinically isolated syndromes (CIS) suggestive of demyelinating disease. After ex vivo activation CD154 was...... with constitutive, systemic CD154 expression....

  19. Improved flow cytometric identification of myelopoiesis by the simultaneous labelling with CD13, CD14 and CD66 monoclonal antibodies

    Bonde, J; Meyer, K; Broe, M K; Hokland, M; Turley, H; Hokland, P

    1996-01-01

    The aim of the present study was to increase our knowledge of myelopoiesis evaluated by flow cytometry. We therefore designed a triple-marker assay employing monoclonal antibodies against the CD13 (immature), the CD14 (monocytic), and the CD66 (mature myeloid) antigens using three......-colour immunofluorescence. In normal donor bone marrow the assay enables simultaneous identification of immature (CD13+, CD14-, CD66-), intermediate (CD13+, myelopoietic differentiation stages through the exclusion of CD14+ monocytic cells. In the diagnosis and longitudinal follow-up of AML patients the assay was of value...

  20. Neutrons for materials science

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particular electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Small-angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of in situ time-dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. Examples will be given of small-angle scattering projects from the nuclear metallurgy, coal, oil, cement, detergent and plastics industries. High-resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasingly complex phases. The structure and volume fraction of minority phase can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Neutron diffraction is unique in being able to measure the full strain tensor from a specified volume within a bulk specimen. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. Examples will be chosen from the field of catalysis where inelastic spectroscopy has revealed the nature of the bonding of hydrocarbon molecules. (author)

  1. Support for cold neutron utilization

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  2. Neutron radiography, techniques and applications

    After describing the principles of the ''in pool'' and ''dry'' installations, techniques used in neutron radiography are reviewed. Use of converter foils with silver halide films for the direct and transfer methods is described. Advantages of the use of nitrocellulose film for radiographying radioactive objects are discussed. Dynamic imaging is shortly reviewed. Standardization in the field of neutron radiography (ASTM and Euratom Neutron Radiography Working Group) is described. The paper reviews main fields of use of neutron radiography. Possibilities of use of neutron radiography at research reactors in various scientific, industrial and other fields are mentioned. Examples are given of application of neutron radiography in industry and the nuclear field. (author)

  3. Neutron drip transition in accreting and nonaccreting neutron star crusts

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  4. Development of highly effective neutron shields and neutron absorbing materials

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  5. Extracting the neutron-neutron scattering length -- recent developments

    Gardestig, Anders

    2009-01-01

    The experimental and theoretical issues and challenges for extracting the neutron-neutron scattering length are discussed. Particular emphasis is placed on recent results and their impact on the field. Comments are made regarding current experimental and theoretical possibilities.

  6. Neutron imaging system for neutron tomography, radiography, and beam diagnostics

    A neutron imaging system (NIS) has been recently installed at the University of Texas TRIGA reactor facility. The imaging system establishes new capabilities for beam diagnostics at the Texas Cold Neutron Source (TCNS) for real-time neutron radiography (RTNR) and for neutron computed tomography (NCT) research. The NIS will also be used for other research projects. The system consists of two subsystems as follows: (1) Thomson 9-in. neutron image intensifier (NII) tube sensitive to cold, thermal, and epithermal neutrons, (2) image-processing unit consisting of vidicon camera, two high-resolution monitors, image enhancement and measurement processor, and video printer. The NIS is installed at the cold neutron beam of the TCNS for testing and cold neutron beam diagnostics

  7. Neutron-Induced Failures in Semiconductor Devices

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  8. Effects of neutron irradiation on polycrystalline Mg11B2

    We studied the influence of the disorder introduced in polycrystalline MgB2 samples by neutron irradiation. To circumvent self-shielding effects due to the strong interaction between thermal neutrons and 10B we employed isotopically enriched 11B which contains 40 times less 10B than natural B. The comparison of electrical and structural properties of different series of samples irradiated in different neutron sources, also using Cd shields, allowed us to conclude that, despite the low 10B content, the main damage mechanisms are caused by thermal neutrons, whereas fast neutrons play a minor role. Irradiation leads to an improvement in both upper critical field and critical current density for an exposure level in the range 1-2x1018 cm-2. With increasing fluence the superconducting properties are depressed. An in-depth analysis of the critical field and current density behavior has been carried out to identify what scattering and pinning mechanisms come into play. Finally, the correlation between some characteristic lengths and the transition widths is analyzed

  9. Imaging with cold neutrons

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  10. Imaging with cold neutrons

    Lehmann, E. H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-09-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 Å). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects—choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  11. SAD: Neutronics researches - Russia

    Planned programme of neutronics researches at the SAD facility Research programme for SAD facility is forming in collaboration between scientific teams and design organizations. Main points of the SAD experimental programme are: – Qualification of subcriticality monitoring, experiments with Pulsed Neutron Generator (PNG), precise on-line monitoring of HII; – Validation of the core power-beam current ratio, precise measurements; – Measurements of the spallation neutrons spectral and angular distributions with actual targets; – Measurements of the high energy neutrons spectral and angular distributions behind thick concrete shielding; – Post-irradiation and on-line spallation products yields investigation; – Measurements of spectral dependencies of neutron flux density and power density in different places of the installation, neutron lifetime and effective fraction of delayed neutrons; – Transmutation reactions rates, integral cross-sections and spectral indices measurements; – Interpretation and validation of experimental data, codes validation, benchmarking. One of the main points of experimental research programme is development of experimental techniques for deep subcriticality measurements and monitoring. This question is vitally important for safety assessment of the subcritical systems of high power driven by external sources. Such investigations were performed at subcritical assemblies of zero power with fast and thermal neutron spectra. At the SAD facility these researches will be continued making important step towards construction of industrial scale ADS, where reactivity trips caused by beam and coolant fluctuations will determine the safety margins. Within SAD research programme it is planned to pay special attention to the experiments on HII measurements and monitoring by inverse multiplication, asymptotic period and other methods. The time structure of the proton beam will give ample opportunities for application the pulsed techniques

  12. Direct determination of Cd, Hg in liver and kidney by prompt gamma activation analysis

    The development of a method for in-vivo measurement of some elemental concentration in organs making use of prompt gamma activation analysis with the filtered neutron beam at the Dalat reactor is being carried out. In this paper we present primary results in research and development of an IVPGNAA facility at the Dalat reactor. Beside the description of experimental set-up, it consists of determination of thermal neutron flux distribution in phantom, and the evaluation of the detection limit and analytical sensitivity for Cd and Hg in the kidney and the liver. Discussions are given to improve the IVPGNAA facility in the future. (author)

  13. Twisting Neutron Waves

    Pushin, Dmitry

    Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.

  14. Apollo 16 neutron stratigraphy.

    Russ, G. P., III

    1973-01-01

    The Apollo 16 soils have the largest low-energy neutron fluences yet observed in lunar samples. Variations in the isotopic ratios Gd-158/Gd-157 and Sm-150/Sm-149 (up to 1.9 and 2.0%, respectively) indicate that the low-energy neutron fluence in the Apollo 16 drill stem increases with depth throughout the section sampled. Such a variation implies that accretion has been the dominant regolith 'gardening' process at this location. The data may be fit by a model of continuous accretion of pre-irradiated material or by models involving as few as two slabs of material in which the first slab could have been deposited as long as 1 b.y. ago. The ratio of the number of neutrons captured per atom by Sm to the number captured per atom by Gd is lower than in previously measured lunar samples, which implies a lower energy neutron spectrum at this site. The variation of this ratio with chemical composition is qualitatively similar to that predicted by Lingenfelter et al. (1972). Variations are observed in the ratio Gd-152/Gd-160 which are fluence-correlated and probably result from neutron capture by Eu-151.

  15. Neutrons and art

    Following modern trends in art objects connoisseurship, through examination of the structure of art objects supports traditional studies conducted by art historians based on composition, iconographic and stylistic comparisons. It must be emphasized that complete technological examinations are carried out by means of comprehensive physical and chemical studies. Among various methods used for the examination of art objects, methods which apply neutrons such as instrumental neutron activation analysis (INAA), prompt gamma activation analysis (PGAA) and neutron-induced autoradiography are crucial due to their high sensitivity, reproducibility and capability of simultaneous determination of several tens of elements. Systematic studies on art objects using instrumental neutron activation analysis and neutron autoradiography have been carried out in the institute of Nuclear Chemistry and Technology. It was possible to accumulate a number of essential data on the concentration of trace elements particularly in chalk grounds and pigments (such as lead white, lead-tin yellow, smalt), Chinese porcelain, Thai ceramics, silver denarius, jewellery made of copper alloys, as well as in the clay fillings of Egyptian mummies. The above mentioned examination of art objects prior to their conservation helps to determine precisely the materials used in the process of creating art objects, as well as to identify the appropriate place of origin of particular materials. (author)

  16. Neutron source multiplication method

    Extensive use has been made of neutron source multiplication in thousands of measurements of critical masses and configurations and in subcritical neutron-multiplication measurements in situ that provide data for criticality prevention and control in nuclear materials operations. There is continuing interest in developing reliable methods for monitoring the reactivity, or k/sub eff/, of plant operations, but the required measurements are difficult to carry out and interpret on the far subcritical configurations usually encountered. The relationship between neutron multiplication and reactivity is briefly discussed and data presented to illustrate problems associated with the absolute measurement of neutron multiplication and reactivity in subcritical systems. A number of curves of inverse multiplication have been selected from a variety of experiments showing variations observed in multiplication during the course of critical and subcritical experiments where different methods of reactivity addition were used, with different neutron source detector position locations. Concern is raised regarding the meaning and interpretation of k/sub eff/ as might be measured in a far subcritical system because of the modal effects and spectrum differences that exist between the subcritical and critical systems. Because of this, the calculation of k/sub eff/ identical with unity for the critical assembly, although necessary, may not be sufficient to assure safety margins in calculations pertaining to far subcritical systems. Further study is needed on the interpretation and meaning of k/sub eff/ in the far subcritical system

  17. Fast neutron dosimetry

    During 1988--1990 the magnetic resonance dosimetry project was completed, as were the 250 MeV proton shielding measurements. The first cellular experiment using human cells in vitro at the 1 GeV electron storage ring was also accomplished. More detail may be found in DOE Report number-sign DOE/EV/60417-002 and the open literature cited in the individual progress subsections. We report Kinetic Energy Released in Matter (KERMA), factor measurements in several elements of critical importance to neutron radiation therapy and radiation protection for space habitation and exploration for neutron energies below 30 MeV. The results of this effort provide the only direct measurements of the oxygen and magnesium kerma factors above 20 MeV neutron energy, and the only measurements of the iron kerma factor above 15 MeV. They provide data of immediate relevance to neutron radiotherapy and impose strict criteria for normalizing and testing nuclear models used to calculate kerma factors at higher neutron energies

  18. Neutron shielding material

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  19. Hybrid superconducting neutron detectors

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  20. Hybrid superconducting neutron detectors

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed

  1. SUSANS With Polarized Neutrons

    Wagh, Apoorva G.; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang

    2005-01-01

    Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10–4 nm–1 to 10–3 nm–1 afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 104 A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10–3 nm–1 range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples.

  2. Hybrid superconducting neutron detectors

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  3. Hybrid Superconducting Neutron Detectors

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  4. Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri.

    Ueno, Daisei; Iwashita, Takashi; Zhao, Fang-Jie; Ma, Jian Feng

    2008-04-01

    Arabidopsis halleri is a Cd hyperaccumulator; however, the mechanisms involved in the root to shoot translocation of Cd are not well understood. In this study, we characterized Cd transfer from the root medium to xylem in this species. Arabidopsis halleri accumulated 1,500 mg kg(-1) Cd in the shoot without growth inhibition. A time-course experiment showed that the release of Cd into the xylem was very rapid; by 2 h exposure to Cd, Cd concentration in the xylem sap was 5-fold higher than that in the external solution. The concentration of Cd in the xylem sap increased linearly with increasing Cd concentration in the external solution. Cd transfer to the xylem was completely inhibited by the metabolic inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Cd concentration in the xylem sap was decreased by increasing the concentration of external Zn, but enhanced by Fe deficiency treatment. Analysis with 113Cd-nuclear magnetic resonance (NMR) showed that the chemical shift of 113Cd in the xylem sap was the same as that of Cd(NO3)2. Metal speciation with Geochem-PC also showed that Cd occurred mainly in the free ionic form in the xylem sap. These results suggest that Cd transfer from the root medium to the xylem in A. halleri is an energy-dependent process that is partly shared with Zn and/or Fe transport. Furthermore, Cd is translocated from roots to shoots in inorganic forms. PMID:18281325

  5. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress.

    Wang, Feijuan; Wang, Min; Liu, Zhouping; Shi, Yan; Han, Tiqian; Ye, Yaoyao; Gong, Ning; Sun, Junwei; Zhu, Cheng

    2015-11-01

    Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. The accumulation of Cd in rice grains is a major agricultural problem in regions with Cd pollution. A hydroponics experiment using low grain-Cd-accumulating rice (xiushui 11) and high grain-Cd-accumulating rice (xiushui 110) was carried out to characterize the different responses of rice cultivars to Cd stress. We found that xiushui 11 was more tolerant to Cd than xiushui 110, and xiushui 11 suffered less oxidative damage. Cell walls played an important role in limiting the amount of Cd that entered the protoplast, especially in xiushui 11. Cd stored in organelles as soluble fractions, leading to greater physiological stress of Cd detoxification. We found that Cd can disturb the ion homeostasis in rice roots because Cd(2+) and Ca(2+) may have a similar uptake route. Xiushui 11 had a faster root-to-shoot transport of Cd, and the expression level of OsPCR1 gene which was predicted related with Cd accumulation in rice was consist with the Cd transport of root-to-shoot in rice and maintain the greater Cd tolerance of xiushui 11. These results suggest there are different Cd detoxification and accumulation mechanisms in rice cultivars. PMID:26318143

  6. Neutron nuclear physics under the neutron science project

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  7. Neutron spectra and dosimetric assessment around a neutron Howitzer container

    Barros, Silvia; Gallego Díaz, Eduardo F.; Lorente Fillol, Alfredo; Gonçalves, Isabel F.; Vaz, Pedro; Vega-Carrillo, Héctor René; Zankl, María

    2014-01-01

    The neutron Howitzer container at the Neutron Measurements Laboratory of the Nuclear Engineering Department of the Polytechnic University of Madrid (UPM), is equipped with a 241Am-Be neutron source of 74 GBq in its center. The container allows the source to be in either the irradiation or the storage position. To measure the neutron fluence rate spectra around the Howitzer container, measurements were performed using a Bonner spheres spectrometer and the spectra were unfolded using the NSDann...

  8. Time-resolved neutron imaging at ANTARES cold neutron beamline

    Tremsin, A.S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time...

  9. CD-ROM-aided Databases

    Miyazaki, Kazuhide; Nishimura, Masayoshi

    Nippon Telegraph & Telephone Corporation (NTT) was the first company in the world to record the entire business classified Tokyo telephone directory containing more than 1,100,000 entries on CD-ROM. NTT's telephone directory on CD-ROM contains the business classification, the names, addresses and telephon numbers of more than 1,100,000 companies located in Tokyo’s 23 wards and surrounding towns. This report about NTT’s telephone directory on CD-ROM was written about the reason of development, outline, and the point at issue.

  10. HuMax-CD4

    Skov, Lone; Kragballe, Knud; Zachariae, Claus;

    2003-01-01

    BACKGROUND: Psoriasis is characterized by infiltration with mononuclear cells. Especially activated memory CD4+ T cells are critical in the pathogenesis. Interaction between the CD4 receptor and the major histocompatibility complex class II molecule is important for T-cell activation. OBJECTIVE: To...... dose level, 6 (38%) of 16 patients obtained more than 25% reduction of PASI and 3 (19%) obtained more than 50% reduction of PASI. A dose-dependent decrease in total lymphocyte count was seen and was parallel to a dose-dependent decrease in CD4+ T cells. This decrease was due to a decrease in the memory...

  11. Comparative contribution of CD1 on the development of CD4+ and CD8+ T cell compartments.

    Wang, B; Chun, T; Wang, C R

    2000-01-15

    CD1 molecules are MHC class I-like glycoproteins whose expression is essential for the development of a unique subset of T cells, the NK T cells. To evaluate to what extent CD1 contributes to the development of CD4+ and CD8+ T cells, we generated CD1oIIo and CD1oTAPo mice and compared the generation of T cells in these double-mutant mice and IIo or TAPo mice. FACS analysis showed that the number of CD4+ T cells in CD1oIIo mice was reduced significantly compared with the corresponding population in IIo mice. Both CD4+ NK1.1+ and the CD4+ NK1.1- population were reduced in CD1oIIo mice, suggesting that CD1 can select not only CD4+ NK1.1+ T cells but also some NK1.1- CD4+ T cells. Functional analysis showed that the residual CD4+ cells in CD1oIIo can secrete large amounts of IFN-gamma and a significant amount of IL-4 during primary stimulation with anti-CD3, suggesting that this population may be enriched for NK T cells restricted by other class I molecules. In contrast to the CD4+ population, no significant differences in the CD8+ T cell compartment can be detected between TAPo and CD1oTAPo mice in all lymphoid tissues tested, including intestinal intraepithelial lymphocytes. Our data suggest that, unlike other MHC class I molecules, CD1 does not contribute in a major way to the development of CD8+ T cells. PMID:10623818

  12. Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion

    Zuopeng Wu; Rong Liang; Thomas Ohnesorg; Vicky Cho; Wesley Lam; Walter P Abhayaratna; Gatenby, Paul A.; Chandima Perera; Yafei Zhang; Belinda Whittle; Andrew Sinclair; Goodnow, Christopher C.; Matthew Field; T Daniel Andrews; Cook, Matthew C.

    2016-01-01

    Author Summary Expression of the neutrophil-specific antigen CD177 varies across the population. 1–10% of humans are CD177null. CD177pos neonates born to CD177null mothers are susceptible to alloimmune neutropenia. Interestingly, CD177pos and CD177neg populations of neutrophils often exist together within individuals. The reasons for heterogeneous CD177 expression are not well understood. We deep sequenced the CD177 locus in individuals with different levels of CD177 expression, catalogued CD...

  13. Cooling of Neutron Stars and 3P_2 neutron gap

    Grigorian, H.; Voskresensky, D.N.(National Research Nuclear University (MEPhI), Moscow, 115409, Russia)

    2005-01-01

    We study the dependence of the cooling of isolated neutron stars on the magnitude of the $3P_2$ neutron gap. It is demonstrated that our ``Nuclear medium cooling scenario'' is in favor of a suppressed value of the $3P_2$ neutron gap.

  14. Neutron imaging and small angle neutron scattering instruments at KUR

    We review the neutron imaging (NI) and small-angle neutron scattering (SANS) instruments at KUR, Kumatori, Osaka, Japan. There are two NI and one SANS instruments. The both instruments are compact and used flexibly. Some challenging experiments taking advantage of low neutron fluence are described. The feature of KUR is also described briefly. (author)

  15. Spins, moments and radii of Cd isotopes

    The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ''magic numbers'', which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of 100-130Cd by collinear laser spectroscopy. The experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium from A = 106 to A = 126 and extends the measured isotopes to even more exotic species. The required gain in sensitivity is mainly achieved by using a radiofrequency cooler and buncher for background reduction and by using the strong 5s 2S1/2→5p2P3/2 transition in singly ionized Cd. The latter requires a continuous wave laser system with a wavelength of 214.6 nm, which has been developed during this thesis. Fourth harmonic generation of an infrared titanium sapphire laser is achieved by two subsequent cavity-enhanced second harmonic generations, leading to the production of deep-UV laser light up to about 100 mW. The acquired data of the Z=48 Cd isotopes, having one proton pair less than the Z=50 shell closure at tin, covers the isotopes from N=52 up to N=82 and therefore almost the complete region between the neutron shell closures N=50 and N=82. The isotope shifts and the hyperfine structures of these isotopes have been recorded and the magnetic dipole moments, the

  16. Uniformly rotating neutron stars

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  17. Neutron beam characterization

    At the first Research Coordination Meeting in November 1999 it was agreed that each experimental participant would characterize his own neutron beam and detector system, and then use it to analyze an unknown sample. A set of five materials was prepared and distributed to aid this effort: titanium foil, gold foil, borophosphosilicate glass on silicon, boron 10-aluminum alloy sheet, and a mixture of a complex aluminosilicate and graphite. Neutron flux can be measured by the conventional foil activation method using the gold foil. The titanium foil is to be used to measure the sensitivity of the system, the product of the neutron flux and the detector efficiency. The effective velocity or wavelength of the beam can be measured with the boron samples using a prescribed procedure. Excel spreadsheets for the flux and velocity calculations were placed on the IAEA server ndsalpha.iaea.org

  18. Hyperons and neutron stars

    Vidaña, Isaac [Centro de Física Computacional, Department of Physics, University of Coimbra, PT-3004-516 Coimbra (Portugal)

    2015-02-24

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  19. Hyperons and neutron stars

    In this work we briefly review some of the effects of hyperons on neutron and proto-neutron star properties. We revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, due to the presence of hyperons, a puzzle which has become more intriguing due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1614-2230 (1.97±0.04M⊙) and PSR J1903+0327 (1.667±0.021M⊙). We examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability

  20. Hyperons and neutron stars

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M⊙), PSR J1614–2230 (1.97±0.04M⊙), and PSR J0348+0432 (2.01±0.04M⊙). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability

  1. Hyperons in Neutron Stars

    Vidaña, Isaac

    2016-01-01

    In this work I briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve because of the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667 ± 0.021M⊙), PSR J1614-2230 (1.97 ± 0.04M⊙), and PSR J0348+0432 (2.01 ± 0.04M⊙). Some of the solutions proposed to tackle this problem are discussed. Finally, I re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  2. Hyperons in Neutron Stars

    Vidana, Isaac

    2015-01-01

    In this work I briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 ($1.667\\pm 0.021 M_\\odot$), PSR J1614-2230 ($1.97 \\pm 0.04 M_\\odot$), and PSR J0348+0432 ($2.01 \\pm 0.04 M_\\odot$). Some of the solutions proposed to tackle this problem are discussed. Finally, I re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  3. Ultrafast neutron detector

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  4. Carbon neutron star atmospheres

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  5. Multidisk neutron velocity selectors

    Helical multidisk velocity selectors used for neutron scattering applications have been analyzed and tested experimentally. Design and performance considerations are discussed along with simple explanation of the basic concept. A simple progression is used for the inter-disk spacing in the 'Rosta' design. Ray tracing computer investigations are presented in order to assess the 'coverage' (how many absorbing layers are stacked along the path of 'wrong' wavelength neutrons) and the relative number of neutrons absorbed in each disk (and therefore the relative amount of gamma radiation emitted from each disk). We discuss whether a multidisk velocity selector can be operated in the 'reverse' configuration (i.e. the selector is turned by 1800 around a vertical axis with the rotor spun in the reverse direction). Experimental tests and calibration of a multidisk selector are reported together with evidence that a multidisk selector can be operated in the 'reverse' configuration. (orig.)

  6. Gadolinium neutron capture therapy

    Gadolinium neutron capture therapy makes use of photons and electrons produced by nuclear reactions between gadolinium and lower-energy neutrons which occur within the tumor. The results of our studies have shown that its radiation effect is mostly of low LET and that the electrons are the significant component in the over-all dose. The dose from gadolinium neutron capture reactions does not seem to increase in proportion to the gadolinium concentration, and the Gd-157 concentration of about 100 μg/ml appears most optimal for therapy. Close contact between gadolinium and the cell is not necessarily required for cell inactivation, however, the effect of electrons released from intracellular gadolinium may be significant. Experimental studies on tumor-bearing mice and rabbits have shown that this is a very promising modality though further improvements in gadolinium delivery to tumors are needed. (author)

  7. Personal neutron dosimeter

    Objective: To introduce the principle, structure and character of a new personal neutron dosimeter. Methods: In combination with relative documents, the dosimeter datum measured on neutron and γ rays emitted by 241Am-Be source, when 6LiF (Mg, Cu, P) and 7LiF(Mg, Cu, P) are disposed, are evaluated. Results: Its measurement results showed good linear relationship and can be repeated. The sensitivity of neutron detection is 0.72 times of 60Co γ rays and this result is similar to that to be reported previously. Conclusion: The measurement results of this dosimeter has been satisfied with the requirement of personal dose measurement in n or n-γ radiation field under 4.4 MeV energy

  8. Plasma focus neutron source

    A neutron source not permanently active is obtained from an electric discharge plasma focus (PF) device. A small PF device, a Mather model device, works in the limit of low energy, 100 to 200 J at charging voltage of 20 to 30 kV with a capacitor bank of 160 nF, and a characteristic inductance of 25 to 50 nH. A theoretical model leads us to estimate the optimum values of capacitance, inductance, initial charging voltage and electrode geometry. In this work is presented the design evolution and construction of a first PF neutron source prototype, preliminary measures of current, voltage and temporal evolution of the current with the end of have an electric characterization. This parameters must be optimized with the objective of geeting an emission of 104 to 105 neutrons per pulse when Deuterium is used like filled gas (C.W)

  9. Quaking Neutron Stars

    Franco, L M; Epstein, R I; Franco, Lucia M.; Link, Bennett; Epstein, Richard I.

    1999-01-01

    Gravitational, magnetic and superfluid forces can stress the crust of an evolving neutron star. Fracture of the crust under these stresses could affect the star's spin evolution and generate high-energy emission. We study the growth of strain in the crust of a spinning down, magnetized neutron star and examine the initiation of crust cracking (a {\\em starquake}). In preliminary work (Link, Franco & Epstein 1998), we studied a homogeneous model of a neutron star. Here we extend this work by considering a more realistic model of a solid, homogeneous crust afloat on a liquid core. In the limits of astrophysical interest, our new results qualitatively agree with those from the simpler model: the stellar crust fractures under shear stress at the rotational equator, matter moves to higher latitudes and the star's oblateness is reduced. Magnetic stresses favor faults directed toward the magnetic poles. Thus our previous conclusions concerning the star's spin response still hold; namely, asymmetric redistribution...

  10. Neutron star at finite temperature

    It is well known that neutron star is remanent of supernova explosion. At the time of birth, hot neutron stars are composed of supernova matter and it is at temperature about 20 MeV. Afterwards this new born neutron star is cooled down by neutron diffusion process and within a time scale also of 10-20 seconds, it almost evolves into a usual cold neutron star where the temperature is about 0.01 MeV, which contains neutron star matter. Since the finite temperature neutron star calculation is very rare much interest is taken for the calculation at finite temperature. In this abstracts some of the static and rotational properties of hot neutron star at temperature T= 5 MeV, 10 MeV and 15 MeV are given

  11. Nuclear fusion and neutron processes

    Problems of providing development of the design of an experimental fusion reactor with necessary neutron-physical data are discussed. Isotope composition of spent fuel in the blanket of a hybride fusion reactor (HFR) is given. Neutron balance of the reactor with Li-blanket and neutron balance of the reactor with Pb-multiplier are disclosed. A simplified scheme of neutron and energy balance in the HFR blanket is given. Development and construction of the experimental power reactor is shown to become the nearest problem of the UTS program. Alongside with other complex physical and technical problems solution of this problem requires realization of a wide program of neutron-physical investigations including measurements with required accuracy of neutron cross sections, development of methodical, program and constant basis of neutron calculations and macroscopic experiments on neutron sources

  12. Recent advances in neutron tomography

    Neutron imaging has been shown to be an excellent imaging tool for many nondestructive evaluation applications. Significantly improved contrast over X-ray images is possible for materials commonly found in engineering assemblies. The major limitations have been the neutron source and detection. A low cost, position sensitive neutron tomography detector system has been designed and built based on an electro-optical detector system using a LiF-ZnS scintillator screen and a cooled charge coupled device. This detector system can be used for neutron radiography as well as two and three-dimensional neutron tomography. Calculated performance of the system predicted near-quantum efficiency for position sensitive neutron detection. Experimental data was recently taken using this system at McClellan Air Force Base, Air Logistics Center, Sacramento, CA. With increased availability of low cost neutron sources and advanced image processing, neutron tomography will become an increasingly important nondestructive imaging method

  13. Validation of the MCNP Computational Model for Neutron Flux Distribution with the Neutron Activation Analysis Measurement

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using MCNP computer code model. The reaction rate using in the experiment including 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminum (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with Cd were irradiated in 9 locations in the core referring as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modeled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using MCNP geometrical model was below 10%. In conclusion MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  14. Use of a detector CZT for verification of shields against neutron in 3 linear accelerators in clinical use; Uso de un detector CZT para la verificacion de blindajes frente a neutrones en 3 aceleradores lineales de uso clinico

    Barquero Sanz, R.; Anton, D. A.; Iniguez de la Torre, P. L.; Castillo Belmonte, A. C. del; Alonso, D. A.; Miguel, D. M. de; Lopez Lara-Martin, F. L.

    2013-07-01

    This paper describes how to use the reaction of thermal neutrons (n?) {sup 1}13Cd, {sup 1}14 Cd with the cadmium in an alloy of cadmium and zinc Telluride (CZT) semiconductor detector. 558 keV photons produced can be detected by the own semiconductor. In this way have an agile method for the measurement of the neutron flux transmitted by shielding and which provides an almost immediate reading of the result. This method applies three accelerators linear in that checks the correct shield on their respective treatment rooms. (Author)

  15. Verification of plutonium content in spent fuel assemblies using neutron self-interrogation

    Menlove, Howard O [Los Alamos National Laboratory; Menlove, Apencer H [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory

    2009-01-01

    The large amounts of plutonium in reactor spent fuel assemblies has led to increased research directed toward the measurement of the plutonium for safeguards verification. The high levels of fission product gamma-ray activity and curium neutron backgrounds have made the plutonium measurement difficult. We have developed a new technique that can directly measure both the {sup 235}U concentration and the plutonium fissile concentration using the intrinsic neutron emission fronl the curium in the fuel assembly. The passive neutron albedo reactivity (PNAR) method has been described previously where the curium neutrons are moderated in the surrounding water and reflect back into the fuel assembly to induce fissions in the fissile material in the assembly. The cadmium (Cd) ratio is used to separate the spontaneous fission source neutrons from the reflected thermal neutron fission reactions. This method can measure the sum of the {sup 235}U and the plutonium fissile mass, but not the separate components. Our new differential die-away self-interrogation method (DDSI) can be used to separate the {sup 235}U from the {sup 239}Pu. The method has been applied to both fuel rods and full assemblies. For fuel rods the epi-thermal neutron reflection method filters the reflected neutrons through thin Cd filters so that the reflected neutrons are from the epi-cadmium energy region. The neutron fission energy response in the epi-cadmium region is distinctly different for {sup 235}U and {sup 239}Pu. We are able to measure the difference between {sup 235}U and {sup 239}Pu by sampling the neutron induced fission rate as a function of time and multiplicity after the initial fission neutron is detected. We measure the neutron fission rate using list-mode data collection that stores the time correlations between all of the counts. The computer software can select from the data base the time correlations that include singles, doubles, and triples. The die-away time for the doubles

  16. Neutron star crusts

    The formation, structure, composition, and the equation of state of neutron star crusts are described. A scenario of formation of the crust in a newly born neutron star is considered and a model of evolution of the crust composition during the early neutron star cooling is presented. Structure of the ground state of the crust is studied. In the case of the outer crust, recent nuclear data on masses of neutron rich nuclei are used. For the inner crust, results of different many-body calculations are presented, and dependence on the assumed effective nucleon-nucleon interaction is discussed. Uncertainties concerning the bottom layers of the crust and crust-liquid interface are illustrated using results of various many-body calculations based on different effective nucleon-nucleon interactions. A scenario of formation of a crust of matter-accreting neutron star is presented, and evolution of the crust-matter element under the increasing pressure of accreted layer is studied. Within a specific dense matter model, composition of accreted crust is calculated, and is shown to be vastly different from the ground-state one. Non-equilibrium processes in the crust of mass-accreting neutron star are studied, heat release due to them is estimated, and their relevance to the properties of X-ray sources is briefly discussed. Equation of state of the ground-state crust is presented, and compared with that for accreted crust. Elastic properties of the crust are reviewed. Possible deviations from idealized models of one-component plasmas are briefly discussed. (orig.)

  17. Neutron skin in Osmium isotopes

    Here we have made an attempt to calculate neutron skin thickness in rare earth even-even osmium isotopes. The selected isotopes ranges from 2-p to 2-n drip line. Neutron skin is an important feature of neutron rich nuclei. The ground state proton and neutron rms radii have been calculated using HFB approximation. A comparison of calculated radii have been done by using two different Skyrme parameterizations and two different basis

  18. Corrosion resistant neutron absorbing coatings

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  19. Corrosion resistant neutron absorbing coatings

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  20. Neutron imaging in materials science

    Nikolay Kardjilov; Ingo Manke; André Hilger; Markus Strobl; John Banhart

    2011-01-01

    Neutron imaging is a non-destructive technique that can reveal the interior of many materials and engineering components and also probe magnetic fields. Within the past few years, several new imaging modes have been introduced that extend the scope of neutron imaging beyond conventional neutron attenuation imaging, yielding both 2- and 3D information about properties and phenomena inaccessible until now. We present an overview of the most important advances in the application of neutron imagi...

  1. Significant disparity in base and sugar damage in DNA resulting from neutron and electron irradiation.

    Pang, Dalong; Nico, Jeffrey S; Karam, Lisa; Timofeeva, Olga; Blakely, William F; Dritschilo, Anatoly; Dizdaroglu, Miral; Jaruga, Pawel

    2014-11-01

    In this study, a comparison of the effects of neutron and electron irradiation of aqueous DNA solutions was investigated to characterize potential neutron signatures in DNA damage induction. Ionizing radiation generates numerous lesions in DNA, including base and sugar lesions, lesions involving base-sugar combinations (e.g. 8,5'-cyclopurine-2'-deoxynucleosides) and DNA-protein cross-links, as well as single- and double-strand breaks and clustered damage. The characteristics of damage depend on the linear energy transfer (LET) of the incident radiation. Here we investigated DNA damage using aqueous DNA solutions in 10 mmol/l phosphate buffer from 0-80 Gy by low-LET electrons (10 Gy/min) and the specific high-LET (∼0.16 Gy/h) neutrons formed by spontaneous (252)Cf decay fissions. 8-hydroxy-2'-deoxyguanosine (8-OH-dG), (5'R)-8,5'-cyclo-2'-deoxyadenosine (R-cdA) and (5'S)-8,5'-cyclo-2'-deoxyadenosine (S-cdA) were quantified using liquid chromatography-isotope-dilution tandem mass spectrometry to demonstrate a linear dose dependence for induction of 8-OH-dG by both types of radiation, although neutron irradiation was ∼50% less effective at a given dose compared with electron irradiation. Electron irradiation resulted in an exponential increase in S-cdA and R-cdA with dose, whereas neutron irradiation induced substantially less damage and the amount of damage increased only gradually with dose. Addition of 30 mmol/l 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS), a free radical scavenger, to the DNA solution before irradiation reduced lesion induction to background levels for both types of radiation. These results provide insight into the mechanisms of DNA damage by high-LET (252)Cf decay neutrons and low-LET electrons, leading to enhanced understanding of the potential biological effects of these types of irradiation. PMID:25034731

  2. Effects of CdS film thickness on the photovoltaic properties of sintered CdS/CdTe solar cells

    Lee, J. S.; Jun, Y. K.; Im, H. B.

    1987-01-01

    All polycrystalline CdS/CdTe heterojunction solar cells with various thicknesses of CdS film were prepared by the coating and sintering method in an attempt to optimize the thickness of the sintered CdSfilm whose role is to be the window as well as the front contact for the CdS/CdS/CdTe solar cell. The thickness of the CdS films was varied from 14 to 55 microns by changing the screen mesh size of a screen printer and the solid-liquid ratio of the slurry which consisted of CdS powder, 9 weight percent CdCl2 and propylene glycol. Average grain size of the sintered CdS films increases and porosity decreases with an increase in film thickness. Electrical resistivity of the sintered CdS films shows a minimum value in 35-micron thick film. Highest optical transmission is observed in 20-micron thick CdS film. The CdCl2 remaining in the CdS film after the sintering causes an increase in the thickness of the CdS(1-x)Te(x) solid solution layer, acting as a sintering aid, at the interface between the CdS and the CdTe films. The combination of the optical transmission, the solid solution layer, and the sheet resistance effects resulted in the highest solar efficiency in a CdS/CdTe heterojunction solar cell with 20-micron thick CdS layer.

  3. Simplified fast neutron dosimeter

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  4. GUIDE FOR POLARIZED NEUTRONS

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  5. Hybrid Superconducting Neutron Detectors

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection...

  6. Fast neutron dosimetry

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ''white'' source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report

  7. The neutron star zoo

    Harding, Alice K.

    2013-12-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  8. The Neutron Star Zoo

    Harding, Alice K

    2013-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  9. Neutron-antineutron oscillations

    The n anti n-oscillations in various media and systems were considered fenomenologically. The low limit of oscillation period was estimated. The requirements to experiment conditions for discovering the (n reversible anti n)-transition in free state were determined. The ways o+ search of transition of free neutron into antineutron are discussed. An experiment using a neutron source of the meson factory of the AN USSR IJI is proposed. It is shown that the realization of this proposal will allow to advance the n anti n-oscillation period measurement up to the value (0.5-1)x1010 s

  10. The neutron bomb

    The 'weapon with increased radiation', as the neutron bomb is officially called, has become the subject of fervent discussions. As a substitute for nuclear bombs it is said to reduce the damage to the non-combatant population when tactically deployed, having a greatly reduced radius of action - that at least is what the military say, who are in favour of it. The article describes the radiation effect of the atomic bomb from the examples of Hiroshima and Nagasaki. The report on the military concept and development of the neutron bomb is followed by a description of how might be constructed. (orig.)

  11. Fast neutron dosimetry

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  12. Spallation neutron production measurements

    Measurements of neutron production by the proton bombardment of range-thick targets of lead (Pb) and of tungsten (W) at energies of 0.8, 1.0, 1.2, and 1.4 GeV were made for comparison with calculations based on the computer codes LAHET for neutrons with Eη > 20 MeV and MCNP for Eη ≤ 20 MeV and also to compare with each of two prior experiments dating from about 1965. 2 refs., 7 figs., 4 tabs

  13. MCNP neutron benchmarks

    Over 50 neutron benchmark calculations have recently been completed as part of an ongoing program to validate the MCNP Monte Carlo radiation transport code. The new and significant aspects of this work are as follows: These calculations are the first attempt at a validation program for MCNP and the first official benchmarking of version 4 of the code. We believe the chosen set of benchmarks is a comprehensive set that may be useful for benchmarking other radiation transport codes and data libraries. These calculations provide insight into how well neutron transport calculations can be expected to model a wide variety of problems

  14. Rietveld analysis of CdS/CdTe thin film junctions submitted to a CdCl2 heat treatment

    In this work we investigate the effects of a CdCl2 heat treatment on the interface of CdTe/CdS heterojunction solar cells using Rietveld analysis of X-ray diffraction patterns. Although the Rietveld method is an important tool for the study of materials by X-ray diffraction, there have been few reports of its use in thin film analysis. The results showed the occurrence of interdiffusion in the CdS–CdTe boundary, with substitution of tellurium by sulfur in the CdTe lattice that resulted in a CdSxTe1−x alloy. The sulfur content of the alloy was greater than in previous studies. This is attributed to the low oxygen concentration during processing and the strong (111) texture of the CdTe films. - Highlights: • CdS/CdTe solar cells were treated in the presence of CdCl2 vapor. • Interdiffusion in CdS/CdTe junction was investigated by Rietveld analysis. • Sulfur replaces tellurium in the CdTe layer. • Sulfur amount increases with the temperature of the CdCl2 heat treatment. • Introduction of sulfur led to a nanocrystalline component in CdTe layer

  15. Streamlining CdSe/CdS PEC characteristics using Cd metal substrate

    Martirosyan, S. [Department of Chemical Technologies and Ecology, State Engineering University of Armenia, Teryan Str. 105, Yerevan (Armenia)

    2001-12-15

    Ti or Ni metals - used conventionally as substrates - were substituted with Cd metal to improve the output characteristics and the reproducibility of the CdSe/CdS PEC (photoelectrochemical converter - photoelectrochemical solar cell). This approach proved valid and the following mean results were obtained: light to electric energy efficiency - Ca. 4.5% filling factor - approx. 0.37, open-circuit voltage - around 500mV and short-circuited current density - about 35mA/cm{sup 2} at light illumination intensity of 70mW/cm{sup 2}.

  16. Bulk Analysis Method of Gold Determination in Ores Using Epithermal Neutrons of Electron Accelerator Microtron MT-22

    Gerbish, Sh; Baatarkhuu, D; Ganbold, G; Belov, A G

    2004-01-01

    Bulk analysis method of gold determination in ores by Instrumental Neutron Activation Analysis (INAA) is described. The powder (100-200 mesh) samples were irradiated in Cd foils of 1 mm thick with photo-neutrons at the Microtron MT-22 of the Nuclear Research Center, Mongolian State University (Ulaanbaatar). The sensitivity of 0.1 mg/kg Au can be obtained using 30-50 g samples and irradiation time of 1-2 h.

  17. Bulk analysis method of gold determination in ores using epithermal neutrons of electron accelerator microtron MT-22

    Bulk analysis method of gold determination in ores by Instrumental Neutron Activation Analysis (INAA) is described. The powder (100-200 mesh) samples were irradiated in Cd foils of 1 mm thick with photo-neutrons at the Microtron MT-22 of the Nuclear Research Center, Mongolian State University (Ulaanbaatar). The sensitivity of 0.1 mg/kg Au can be obtained using 30-50 g samples and irradiation time of 1-2 h

  18. Beam characteristics of polychromatic diffracted neutrons used for prompt gamma activation analysis

    The neutron beam is fully characterized for the prompt gamma activation analysis facility at Hanaro in the Korea Atomic Energy Research Institute(KAERI). The facility uses thermal neutrons which are diffracted vertically from a horizontal beam port by a set of pyrolytic graphite(PG) crystals positioned at the Bragg angle of 45 .deg.. Neutron spectra, neutron flux and Cd-ratio are determined for the three extraction modes of diffracted beam by means of the theoretical and experimental efforts. To obtain theoretical result, the reflectivity of pyrolytic graphite is calculated in the diffraction model for mosaic crystal and the angular divergence after diffraction by mosaic crystal is estimated from Monte Carlo simulation. The time-of-flight spectrometer and gold activation wire are used for measuring the neutron spectra. Both the calculated and measured spectra have proven that the unique feature of polychromatic beam obtained by PG crystals are useful for PGAA. The thermal neutron flux of 7.9 x 107 n/cm2s and the Cd-ratio of 266 for gold have been achieved at the sample position while the reactor operates at 24MW. The uniformity of beam flux is 12% in the central 1 x 1 cm2 area. Finally, the beam is briefly characterized by the effective velocity and temperature which are determined by measuring the prompt γ-ray spectra for thin and thick boron samples

  19. Neutron irradiation effect of silicon

    Several kinds of silicon wafers were irradiated at four neutron fields with different energy spectra. Electrical resistivity and deep level defect concentrations after the neutron irradiation, and their changes against number of displacement atoms (DPA's) for different neutron fields were compared. The number of DPA's was calculated by N. Yamano's data. (author)

  20. Neutronic measurements of radioactive waste

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author)

  1. Capture-gated neutron spectrometry

    Czirr, J B; Buehler, D; McKnight, T K; Carroll, J L; Abbott, T; Wilcox, E

    2002-01-01

    The applications of a new inorganic scintillator, lithium gadolinium borate, to neutron dosimetry and spectroscopy, are described. A dosimeter using this material registers, in separate energy bins, thermal, epithermal and MeV neutrons. A spectrometer for MeV neutrons has a calculated energy resolution of 10% FWHM.

  2. Rotational Deformation of Neutron Stars

    WEN De-Hua; CHEN Wei; LIU Liang-Gang

    2005-01-01

    @@ The rotational deformations of two kinds of neutron stars are calculated by using Hartle's slow-rotation formulism.The results show that only the faster rotating neutron star gives an obvious deformation. For the slow rotating neutron star with a period larger than hundreds of millisecond, the rotating deformation is very weak.

  3. Educational activities for neutron sciences

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  4. Introductory theory of neutron scattering

    The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)

  5. New electronically black neutron detectors

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors

  6. Characterization of CdTe, (Cd,Zn)Te, and Cd(Te,Se) single crystals by transmission electron microscopy

    Rai, R. S.; Mahajan, S.; McDevitt, S.; Johnson, C. J.

    1991-10-01

    CdTe, (Cd,Zn)Te, and Cd(Te,Se) crystals grown by the Bridgman technique have been characterized by transmission electron microscopy. Results indicate that the Te precipitates are seen in all the crystals, but their density and size are lowest and largest in the case of Cd(Te,Se) crystals. In addition, dislocations, stacking faults, and microtwins are observed in as-grown CdTe, (Cd,Zn)Te, and Cd(Te,Se) crystals. Arguments have been developed to rationalize these observations and their ramifications on crystal perfection are discussed.

  7. Neutron recognition in LAND detector for large neutron multiplicity

    Pawłowski, P; Leifels, Y; Trautmann, W; Adrich, P; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Boretzky, K; Boudard, A; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Gorbinet, T; Hellström, M; Henzlova, D; Hlavac, S; Immè, J; Iori, I; Johansson, H; Kezzar, K; Kupny, S; Lafriakh, A; Fèvre, A Le; Gentil, E Le; Leray, S; Łukasik, J; Lühning, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Müller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Panebianco, S; Pullia, A; Raciti, G; Rapisarda, E; Rossi, D; Salsac, M -D; Sann, H; Schwarz, C; Simon, H; Sfienti, C; Sümmerer, K; Tsang, M B; Verde, G; Veselsky, M; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwiegliński, B

    2012-01-01

    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.

  8. Neutronic conceptual design of the ETRR-2 cold neutron source

    The conceptual neutronic design of the cold neutron source (CNS) for the Egyptian second research reactor (ETRR-2) was carried out using the MCNP code. A parametric analysis was also performed to choose the type and geometry of the moderator and the required CNS dimensions to maximize the cold neutron production. The moderator cell is a spherical annulus containing liquid hydrogen. The cold neutron gain and brightness are calculated together with the nuclear heat load of the CNS. The effects of void fraction in the moderator cell and the ortho:para ratios on cold neutron gain were calculated. (orig.)

  9. Neutron recognition in the LAND detector for large neutron multiplicity

    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.

  10. Scission neutron emission and prompt fission neutron spectrum

    The mass, energy and angular integrated spectra of prompt fission neutrons for 235U induced fission in the energy range from thermal to 5 MeV were analyzed. It allows assume that about 0.362±0.025 neutrons per fission are emitted due to another mechanism then neutron emission from excited fragments after full acceleration. The spectrum of scission neutrons consists of two components with average energy 0.98 MeV and 2.74 MeV. The share of scission neutrons and their spectrum shape estimated in this work does not contradict to results of differential experiments analyzed in previous papers. (author)

  11. Neutron guides and scientific neutron equipment at CILAS/GMI

    CILAS company is the world's leading supplier of complete neutron guides systems. The neutron optics with multilayer coatings produced by CILAS have become an international standard for neutron beam transportation in the modern research institutes. During the last 30 years, CILAS designed, produced and installed more than 5000 meters of guides in many European, American and Asian countries. To reinforce its leadership and presence in neutron research, CILAS acquired the company Grenoble Modular Instruments (GMI), a leading company in high precision mechanics, engineering and manufacturing of spectrometers and scientific equipment for neutron and synchrotron research. (author)

  12. Calculation verification of the utilization of LR-0 for reference neutron spectra

    Well-defined neutron spectrum is crucial for calibration and testing of detectors for spectrometry and dosimetry purposes. As a possible source of neutrons nuclear reactors can be utilized. In reactor core most of the neutrons are originated from fission and neutron spectra is usually some form of moderated spectra of fast neutrons. The reactor LR-0 is an experimental light-water zero-power pool-type reactor originally designed for research of the VVER type reactor cores, spent-fuel storage lattices and benchmark experiments. The main reactor feature that influences the performance of experiments is the flexible arrangement of the core. Special types of the possible core arrangements on the reactor LR-0 can provide different neutron spectra in special experimental channels. These neutron spectra are modified by inserting different materials around the channel and whole core is driven by standard fuel assemblies. Fast, epithermal or thermal spectra can be simulated using graphite, H2O, D2O insertions, air, Cd foils or fuel with different enrichment. - Highlights: • Original light water reactor spectra can be modified by material insertions. • Calculations of resulted neutron spectra have been done. • Comparison of the calcualted data to possible further utilization and research has been done

  13. Quantitative analysis of silicates by instrumental epithermal neutron activation using (n,p) reactions

    Instrumental epithermal neutron activation (IENA) involves the use of a neutron filter to screen out the thermal portion of the reactor neutron energy spectrum. Both Cd and B are efficient neutron filters. The principal advantage of epithermal over conventional thermal neutron activation for elemental analysis of geological materials is that the most common rock forming elements, which activate strongly with thermal neutrons (Na, Al, P, K, Fe, and Sc), have their activities suppressed, relative to elements which have cross-sectional resonances in the epithermal energy region. One-gram samples of various silicate standard reference materials were encapsulated in polyethylene vials and irradiated in the Los Alamos Omega West Reactor epithermal facility. Only six elements (F, Si, Na, Fe, Ni, and Ti) were successfully determined in geological matrices via (n,p) reactions. The single standard deviations among the measurements were less than 10% in all cases. The production ratio of (n,p) to (n,γ) and (n,p) to (n,α) interfering reactions are included for silicate materials having Mason's average crustal abundance of elements. Epithermal activation via (n,p) reactions provides an alternative method for the determination of Fe, Al, Na, Ni, and F. The preferred techniques are probably thermal neutron activation for the first three elements, atomic absorption for Ni, and ion selective electrode for F.Titanium and Si can be measured much more sensitively using the (n,p) reaction than by thermal neutron activation. 4 tables

  14. Neutronic studies of the coupled moderators for spallation neutron sources

    Yin Wen; Liang Jiu-Qing

    2005-01-01

    We investigate the neutronic performance of coupled moderators to be implemented in spallation neutron sources by Monte-Carlo simulation and give the slow neutron spectra for the cold and thermal moderators. CH4 moderator can provide slow neutrons with highly desirable characteristics and will be used in low-power spallation neutron soureces. The slow neutron intensity extracted from different angles has been calculated. The capability of moderation of liquid H2 is lower than H2O and liquid CH4 due to lower atomic number density of hydrogen but we can compensate for this disadvantage by using a premoderator. The H2O premoderator of 2cm thickness can reduce the heat deposition in the cold moderator by about 33% without spoiling the neutron pulse.

  15. Impact of CdS annealing atmosphere on the performance of CdS–CdTe solar cell

    Highlights: • Annealed CdS films are used for CdTe based solar cells. • CdS–CdTe solar cell with air annealed CdS shows better performance. • The air annealed CdS brings the O2 and chloride at the place of junction formation. • H2 removes the oxygen containing compounds from CdS grain boundaries. - Abstract: CdS thin films obtained by chemical bath deposition and annealed in hydrogen and air ambients were combined with CdTe absorbers obtained by close spaced sublimation. CdS–CdTe solar cells in superstrate configuration were characterized by current–voltage and quantum efficiency measurements while the analysis of annealed CdS films was made by scanning electron microscopy, X-ray diffraction and UV–vis spectroscopy. It was found that in superstrate configuration, due to the big grains on CdS surface and gas emission from CdS film at high temperature deposition of the absorber, the delamination of layers take place. Annealing in H2 removes the oxygen compounds from CdS grain boundaries and opens them for formation of shortcutting through the CdS layer. The processing in air is most advantageous due to simultaneous presence of chloride and oxygen, contributing to the recrystallization and sintering of the highly textured columnar CdS. The direct influence of the CdS annealing on the solar cell parameters is shown for CdS–CdTe solar cell

  16. Impact of CdS annealing atmosphere on the performance of CdS–CdTe solar cell

    Maticiuc, N., E-mail: nataliamaticiuc@yahoo.com; Spalatu, N.; Mikli, V.; Hiie, J.

    2015-09-30

    Highlights: • Annealed CdS films are used for CdTe based solar cells. • CdS–CdTe solar cell with air annealed CdS shows better performance. • The air annealed CdS brings the O{sub 2} and chloride at the place of junction formation. • H{sub 2} removes the oxygen containing compounds from CdS grain boundaries. - Abstract: CdS thin films obtained by chemical bath deposition and annealed in hydrogen and air ambients were combined with CdTe absorbers obtained by close spaced sublimation. CdS–CdTe solar cells in superstrate configuration were characterized by current–voltage and quantum efficiency measurements while the analysis of annealed CdS films was made by scanning electron microscopy, X-ray diffraction and UV–vis spectroscopy. It was found that in superstrate configuration, due to the big grains on CdS surface and gas emission from CdS film at high temperature deposition of the absorber, the delamination of layers take place. Annealing in H{sub 2} removes the oxygen compounds from CdS grain boundaries and opens them for formation of shortcutting through the CdS layer. The processing in air is most advantageous due to simultaneous presence of chloride and oxygen, contributing to the recrystallization and sintering of the highly textured columnar CdS. The direct influence of the CdS annealing on the solar cell parameters is shown for CdS–CdTe solar cell.

  17. Study of in situ CdCl{sub 2} treatment on CSS deposited CdTe films and CdS/CdTe solar cells

    Paulson, P.D.; Dutta, V. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

    2000-07-17

    Effect of in situ CdCl{sub 2} treatment on the morphological, structural and electrical properties of CdTe films as well as on solar cell characteristics of CdS/CdTe junction has been investigated. XRD measurements show that the presence of CdCl{sub 2} vapours induces left angle 111 right angle oriented growth in the CdTe films. CdCl{sub 2} concentration required for this oriented growth is found to be directly proportional to the substrate temperature. SEM measurements show enhanced grain growth in the presence of CdCl{sub 2}. Spectral response of the CdCl{sub 2} treated CdS/CdTe solar cells shows an enhanced CdS diffusion in to the CdTe, which results in an improved spectral response in UV range and a consequent reduction in the interface states density. A drastic reduction in the deep levels due to the CdCl{sub 2} treatment, as seen in the photo-capacitance studies, has results in CdS/CdTe solar cells having efficiency >8%. (orig.)

  18. The effect on CdS/CdTe solar cell conversion efficiency of the presence of fluorine in the usual CdCl2 treatment of CdTe

    Echendu, O. K.; Dharmadasa, I.

    2015-01-01

    The addition of CdF2 to the CdCl2 solution used in the well-known CdCl2 treatment of CdS/CdTe solar cells has been observed to drastically improve the conversion efficiency of fully fabricated CdS/CdTe solar cells. The observed improvement is as a result of further enhancement of structural and optoelectronic properties of the CdCl2+CdF2-treated CdTe layers compared to the CdCl2-treated CdTe layers. A set of CdS/CdTe samples were grown by electrochemical deposition under different conditions ...

  19. The tokamak as a neutron source

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  20. New Neutron Dosimeter

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...